WO2019120152A1 - 构建模块化机器人的校正方法及系统和模块化机器人的控制方法 - Google Patents

构建模块化机器人的校正方法及系统和模块化机器人的控制方法 Download PDF

Info

Publication number
WO2019120152A1
WO2019120152A1 PCT/CN2018/121439 CN2018121439W WO2019120152A1 WO 2019120152 A1 WO2019120152 A1 WO 2019120152A1 CN 2018121439 W CN2018121439 W CN 2018121439W WO 2019120152 A1 WO2019120152 A1 WO 2019120152A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
information
modular
modular robot
cell
Prior art date
Application number
PCT/CN2018/121439
Other languages
English (en)
French (fr)
Inventor
杨健勃
Original Assignee
北京可以科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京可以科技有限公司 filed Critical 北京可以科技有限公司
Publication of WO2019120152A1 publication Critical patent/WO2019120152A1/zh
Priority to US16/905,900 priority Critical patent/US11458620B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1617Cellular, reconfigurable manipulator, e.g. cebot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed

Definitions

  • the invention relates to the field of modular robots, in particular to a calibration method and system for constructing a modular robot and a control method for the modular robot.
  • Robots have been widely used in life and industry, such as teaching to develop students' thinking skills, such as welding, painting, assembly, and handling in automated production. Although robots have great flexibility and flexibility as an execution system, they can perform different tasks. However, existing robots are often used for specific purposes and occasions. There is only one main function, and the degrees of freedom and configuration are fixed. Change, lack of functional scalability and reconfigurability of configuration. In addition, the cost of developing a specific robot for each field and each application is very large, which seriously restricts the promotion and application of the robot. Therefore, reconfigurable robots came into being.
  • Reconfigurable robots are usually obtained by combining a main module and a plurality of basic modules.
  • the basic structures of the multiple basic modules are the same, and the connection faces are provided to realize the combination, but the user cannot verify in the process of combining the module robots. Whether the combined structure is correct or not, brings a lot of repetitive assembly work to the user, resulting in a poor experience.
  • the present invention provides a calibration method and system for constructing a modular robot and a control method for the modular robot.
  • the solution to the technical problem of the present invention is to provide a calibration method for constructing a modular robot, the modular robot comprising at least two modular units, each modular unit comprising at least two relatively movable submodules, each submodule comprising At least a pair of joints, the module unit and the module unit are connected by a docking portion, and the method for constructing the modular robot includes the following steps:
  • S1 acquiring configuration information of the target modular robot, where the configuration information of the target modular robot includes one or more of position information, module type information, and module quantity information of the plurality of module units in the target modular robot ;
  • S2 acquiring configuration information of the currently constructed solid model, where the configuration information of the constructed physical model includes one or more of location information, module type information, and module quantity information of multiple module units in the constructed physical model.
  • the step S4 specifically includes the following steps:
  • the positional error is when the cell monomer to be assembled is connected to the upper cell monomer or the cell body, and the selection is made when the upper cell monomer or the docking portion on the cell body is selected; two of each module unit
  • the connection of the sub-modules defines a virtual connection plane, and the two virtual connection planes of the two modular units of the target modular robot have two parallel and cross directions, and the direction error refers to two of the two modular units connected.
  • the matching result includes one or more of a location information error, a module type error, and a module number error, and the error type of the location information includes a location error and/or a direction error.
  • the prompt is displayed on the overall shape of the modular unit or on the docking portion where the modular unit and the modular unit connected thereto are connected.
  • each of the docking portions has unique interface identification information
  • the plurality of module units that have been constructed into the solid model may include a plurality of identical or different modular units, and the location information of the plurality of modular units that have acquired the physical model is obtained. Specifically:
  • the module unit identifies the interface identification information of the docking part of the adjacent module unit connected thereto, and obtains the interface identification information according to the interface identification information of the docking part of the adjacent module unit and the interface identification information of the docking part of the connection with the adjacent module unit. location information.
  • the plurality of modular units comprises a plurality of different modular units
  • the plurality of modular units comprise a cellular body and at least one cellular monomer
  • the cellular monomer defining the direct connection to the cellular body is a primary cellular monomer
  • the cell body transmits a signal to the first-level cell monomer connected thereto through the docking portion;
  • the first-level cell monomer performs surface recognition after receiving the signal to obtain interface identification information of the docking part of the cell body sending signal, and the first-level cell monomer transmits the interface identification information of the interface of the cell body to the signal and the self-receiving signal thereof.
  • the interface identification information of the docking portion is transmitted to the cell body to obtain the position information of the primary cell monomer.
  • the cell monomer defined to be linked to the primary cell monomer is a secondary cell monomer
  • the cell monomer linked to the M-class cellular monomer is a (M+1)-order cell monomer, and M is greater than or equal to 1.
  • the obtaining location information of the plurality of module units in the constructed solid model further includes the following steps:
  • (M+1)-level cell monomer performs face recognition after receiving the signal to obtain interface identification information of the docking portion of the M-level cell monomer sending signal, and (M+1)-level cell monomer will be M-class cell monomer
  • the interface identification information of the interface of the transmitted signal and the interface identification information of the interface of the self-received signal are transmitted to the cell body.
  • the interface of the plurality of lower cell monomers to transmit the interface of the different electrical signals according to the cell body or the superior cell monomer The identification information periodically returns its position information to the cell body; or the cell body or the cell monomer sequentially transmits the same or different electrical signals to the plurality of lower-level cell monomers, and the plurality of lower-level cell monomers are based on the received electrical signals.
  • the timing sequentially returns its position information to the cell body.
  • the configuration information of the constructed solid model is obtained, and the configuration information of the constructed solid model and the configuration information of the target modular robot are matched, and the correction is performed according to the matching result; or After the assembly is completed, the configuration information of the constructed solid model is acquired once, and the configuration information of the constructed solid model and the configuration information of the target modular robot are matched, and the correction is performed according to the matching result.
  • the four docking parts on the same sub-module can be adjusted by the servo when connected with the adjacent module unit to achieve the configuration information of the target modular robot.
  • the invention also provides a calibration system for constructing a modular robot, the calibration system for constructing the modular robot comprising
  • a modular robot comprising at least two modular units, each modular unit comprising two sub-modules arranged in a relatively movable manner, each sub-module comprising at least a pair of joints, the modular unit being connected to the modular unit by a docking portion;
  • a storage module configured to store configuration information of the target modular robot, and configuration information of the constructed solid model, where the configuration information of the target modular robot includes position information and module types of the plurality of modular units in the target modular robot One or more of information and module quantity information, and the configuration information of the constructed entity model includes one or more of location information, module type information, and module quantity information of a plurality of module units in the constructed entity model Species
  • a matching module configured to confirm, according to the configuration information of the constructed solid model and the configuration information of the target modular robot, whether the constructed solid model matches the target modular robot;
  • a correction module for correcting based on the matching result is provided.
  • the invention also provides a calibration system for constructing a modular robot, the calibration system for constructing the modular robot comprising
  • a modular robot comprising at least two modular units, each modular unit comprising two relatively movable sub-modules, each sub-module comprising at least one pair of joints, the modular unit being connected to the modular unit by a docking portion;
  • a memory and one or more programs, wherein one or more of said programs are stored in said memory, said memory being in communication with a module unit, said program being operative to:
  • S1 acquiring configuration information of the target modular robot, where the configuration information of the target modular robot includes one or more of position information, module type information, and module quantity information of the plurality of module units in the target modular robot ;
  • S2 acquiring configuration information of the currently constructed solid model, where the configuration information of the constructed physical model includes one or more of location information, module type information, and module quantity information of multiple module units in the constructed physical model.
  • the plurality of modular units comprise a cell body and at least one cell monomer, each docking portion having unique interface identification information, and the cell monomer defining the direct connection with the cell body is a primary cell monomer,
  • Obtaining location information for multiple module units in a constructed solid model includes the following steps:
  • the cell body transmits a signal through the docking portion to the primary cell monomer connected thereto;
  • the first-level cell monomer performs surface recognition after receiving the signal to obtain interface identification information of the docking part of the cell body transmitting the electrical signal, and the first-level cell monomer transmits the interface identification information of the docking part of the electrical signal to the cell body and itself The interface identification information of the docking portion receiving the electrical signal is transmitted to the cell body to obtain the position information of the primary cell monomer.
  • the method for constructing a modular robot of the present invention comprises at least two modular units, each modular unit comprising two sub-modules that are relatively movable, each sub-module comprising at least one
  • the docking portion has a unique interface identification information, and the module unit and the module unit are connected by the docking portion.
  • the method for constructing the modular robot includes the following steps: S1: acquiring configuration information of the target modular robot
  • the configuration information of the target modular robot includes one or more of position information, module type information, and module quantity information of the plurality of module units in the target modular robot;
  • S3 according to the constructed entity model Configuration information and configuration information of the target modular robot confirm whether the solid model has been constructed and whether the target Block matching robotics; and
  • S4 corrected according to the matching result.
  • the calibration method for constructing the modular robot of the present invention can be corrected according to whether the assembled structure matches the target structure in the process of assembling the modular robot, avoiding the repeated assembly work of the user, and bringing a good experience of the user to the user. .
  • the position of each module unit can be accurately obtained by surface recognition, which is simple and fast, and has low hardware requirements.
  • the acquisition of the location guarantees that real-time correction of user operations is possible.
  • the correction system for constructing a modular robot and the control method for the modular robot of the present invention also have the above advantages.
  • FIG. 1 is a flow chart showing a method of correcting a modular robot according to a first embodiment of the present invention.
  • step S2 is a schematic diagram of a sub-flow of step S2 in the method of constructing a modular robot according to the first embodiment of the present invention.
  • step S4 is a schematic diagram of a sub-flow of step S4 in the method of constructing a modular robot according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart showing a control method of a modular robot according to a second embodiment of the present invention.
  • Fig. 5 is a block diagram showing the structure of a calibration system for constructing a modular robot according to a third embodiment of the present invention.
  • Fig. 6 is a block diagram showing the structure of a calibration system for constructing a modular robot according to a fourth embodiment of the present invention.
  • a first embodiment of the present invention provides a calibration method for constructing a modular robot, the modular robot including at least two module units, each module unit including at least two relatively movable sub-modules,
  • the number of sub-modules included in each module unit may be two, three, four or more, especially two, for example, two sub-modules may be relatively rotated, especially for each module unit being made by two relative
  • the upper and lower hemispheres of the rotary motion are configured.
  • Each sub-module includes at least one pair of joints, and each of the docking portions is provided with an interface, each interface has unique interface identification information, and the module unit and the module unit are connected by the docking portion.
  • each sub-module includes at least two docking portions
  • the two module units are connected by a respective docking portion, and a virtual connecting surface is formed at a connecting position of the two module units, and the two module units are based on the virtual connecting surface. Rotating, a plane in which at least one other docking portion on at least one of the two modular units is located intersects the virtual connecting surface.
  • the configuration information includes, but is not limited to, one or more of module type information, location information, module quantity information, and initial angle information between two sub-modules
  • the configuration information is information for defining a connection relationship between adjacent module units, wherein the location information is used to record interface identification information of two docking portions to which adjacent module units are connected, and interface identification information of each docking portion.
  • the position information of each module unit represents its absolute position in a three-dimensional spatial configuration or a planar configuration; the module unit of the same category is provided with The same module type identifier, for example, the cell bodies all have the same module type identifier, the cell monomers have the same module type identifier, and the module type identifier of the cell body is inconsistent with the module type identifier of the cell monomer, when the cell list
  • the cell monomers of each category have the same module type identifier, different
  • the module type identifiers of other cell monomers are different, so that the module type information of the module unit can be known by identifying the module type identifier; the initial angle information between the two submodules refers to the relative relationship between the upper and lower submodules of the module unit.
  • the number of module units refers to the number of module units.
  • the process of identifying the interface identification information of the two docking portions connected between the two adjacent module units is a surface recognition process, and the position information of the module unit can be obtained by performing face recognition. It will be understood that the definitions herein apply equally to other embodiments of the present specification.
  • the calibration method for constructing a modular robot includes the following steps:
  • S1 acquiring configuration information of the target modular robot, where the configuration information of the target modular robot includes one or more of position information, module type information, and module quantity information of the plurality of module units in the target modular robot ;
  • S2 acquiring configuration information of the currently constructed solid model, where the configuration information of the constructed physical model includes one or more of location information, module type information, and module quantity information of multiple module units in the constructed physical model.
  • the configuration information of the target modular robot is derived from a remote terminal, a server, or a database storing configuration information corresponding to a plurality of modular robots.
  • the target modular robot consists of N modular units assembled.
  • the constructed solid model is an initial solid configuration in which the user intends to assemble a plurality of modular units into a target modular robot according to a target configuration of the target modular robot, and the initial physical configuration may be Assembly configuration of two or more modular units.
  • the number of modular units of the constructed solid model is less than or equal to the number N of modular units of the target modular robot.
  • the action of acquiring the constructed entity model configuration information may be that the remote terminal acquires the location information of each module unit, or obtains the location information of the other module unit by a certain module unit and transmits the location information to the remote terminal.
  • a plurality of module units of a built-in solid model may include a plurality of identical or different modular units.
  • the plurality of modular units include a cell body and a plurality of cell monomers, and the cell body is configured to communicate with the remote terminal, and the cell monomer directly defining the cell body is a primary cell monomer, and is connected to the primary cell monomer.
  • the cell monomer is a secondary cell monomer, and the cell monomer linked to the M-class cell monomer is a (M+1)-order cell monomer, and M is an integer of 1 or more.
  • the configuration information of the constructed solid model includes module type information, location information, and module quantity information. After all the cell monomers transmit their respective position information to the cell body, the cell body obtains the module quantity information of the constructed solid model.
  • the obtaining the location information of the multiple module units in the constructed solid model specifically includes the following steps:
  • Step S21 the cell body transmits a signal through the docking portion to the primary cell monomer connected thereto;
  • Step S22 After receiving the signal, the first-level cell monomer performs surface recognition to obtain interface identification information of the interface of the cell body sending signal, and the first-level cell monomer transmits the interface identification information of the interface of the cell body to the signal and receives the signal itself.
  • the interface identification information of the docking portion of the signal is transmitted to the cell body to obtain the position information of the first-level cell monomer;
  • Step S23 M-level cell monomer signals to (M+1)-level cell monomer
  • Step S24 The (M+1)-level cell monomer receives the signal and performs face recognition to obtain the interface identification information of the docking portion of the M-level cell monomer sending signal, and the (M+1)-level cell monomer will be the M-level cell single.
  • the interface identification information of the interface of the body transmission signal and the interface identification information of the interface of the self-receiving signal are transmitted to the cell body.
  • the signal transmitted by the cell body to the primary cell monomer and the signal transmitted by the M-class cell monomer to the (M+1)-order cell monomer are preferably electrical signals or wireless signals.
  • the step S23 and the step S24 may be omitted.
  • one of the modular units is defined as a main modular unit, that is, the above-mentioned cellular main body, and the modular unit directly connected to the main modular unit is a primary cellular unit
  • the modular unit linked to the primary cell monomer is a secondary cellular monomer
  • the modular unit linked to the M-class cellular monomer is a (M+1)-order cellular monomer, and M is an integer greater than or equal to 1, and the same is performed. Steps S21 to S24.
  • the multi-level cell monomers can directly transmit their respective location information directly to the remote terminal without being transmitted to the main module unit.
  • the process of obtaining the location information of the multiple module units of the constructed physical model is: the module unit identifies the interface identification information of the interface part of the adjacent module unit connected thereto, and according to the interface identification information of the interface part of the adjacent module unit The interface identification information of the docking part connected to itself and the adjacent module unit obtains the location information thereof.
  • step S21 is performed:
  • Step S20 The cell body sends a broadcast signal to notify each cell monomer to prepare for face recognition.
  • wireless communication can be performed between the module unit and the module unit, and the manner of wireless communication can be wifi communication, Bluetooth communication or zigbee communication, preferably zigbee communication.
  • the cell body first broadcasts a signal to each cell monomer to enter the face recognition preparation state, and waits until each cell monomer receives an electrical signal to perform a face recognition action.
  • each docking portion on the cell body sends a different electrical signal to the plurality of primary cell monomers
  • the plurality of primary cell monomers are obtained according to the difference of the received electrical signals.
  • the interface identification information of the docking portion of the cell body connected thereto, and each of the first-level cell monomers replies together with the interface identifier information of the docking portion of the cell body transmitting the electrical signal and the interface identifier information of the docking portion of the self-receiving electrical signal.
  • the cell body and the cell body are calculated by algorithm to obtain the position information of the first-level cell monomer. After the plurality of first-level cell monomers perform the same action, the cell body obtains the position information of the plurality of primary cell monomers.
  • each docking portion on the M-class cell monomer transmits a different electrical signal to a plurality of (M+1)-order cell monomers, and the plurality of (M+1)-level cell monomers are The received electrical signal is different to obtain the interface identification information of the docking portion of the M-class cell monomer connected thereto, and each (M+1)-level cell monomer transmits the M-level cell monomer to the docking portion of the electrical signal.
  • the interface identification information and the interface identification information of the interface of the interface for receiving the electrical signal are returned to the cell body, and the cell body calculates the position information of the (M+1)-level cell monomer by an algorithm, and the plurality of (M+1)-level cells After the monomer performs the same action, the cell body obtains positional information of a plurality of (M+1)-order cell monomers. After a series of face recognition, the cell body obtains the position information of all the cell monomers to obtain the configuration information of the constructed solid model.
  • the interface of the plurality of lower cell monomers to transmit the interface of the different electrical signals according to the cell body or the superior cell monomer.
  • the identification information periodically returns its position information to the cell body; or the cell body or the cell monomer sequentially transmits the same or different electrical signals to the plurality of lower-level cell monomers, and the plurality of lower-level cell monomers are based on the received electrical signals.
  • the timing sequentially returns its position information to the cell body.
  • the cell body is provided with two docking portions, and the interface identification information is defined as 1 and 2, respectively, and the cell body simultaneously sends two different electrical signals to the two first-level cell monomers connected thereto, and the setting and docking portion
  • the first-stage cell monomer connected to the first phase returns its position information, waits for 10 s (the specific time can be adjusted by itself), and the primary cell monomer connected to the docking part 2 returns its position information.
  • Step S22a The cell body stops transmitting the electrical signal, and notifies the primary cell monomer directly connected to the cell body to transmit an electrical signal to the secondary cell monomer linked to the primary cell monomer. It is to be understood that, in the step S22a, the cell body is preferably notified of the primary cell monomer by means of a broadcast signal. It can be understood that, before the M-level cell monomer transmits the electrical signal, the cell body sequentially controls the M-level cell monomer to transmit the electrical signal to the plurality according to the interface identification information of the plurality of docking portions of the M-level cell monomer. M+1) cell monomer, the electrical signals sent to the plurality of (M+1) cell monomers may be the same or different, preferably sent by multiple docking stations of the M cell monomer Different electrical signals.
  • the cell body individually numbers each cell monomer after receiving the positional information transmitted from the cell monomer, and stores the positional information of each cell monomer in association with the number.
  • the cell body communicates with the remote terminal, the cell body transmits the location information of each cell cell and its number to the remote terminal.
  • the remote terminal sends the action control information to the cell body, the cell body decomposes the control information according to different numbers and transmits the decomposed control information to each cell monomer according to the number.
  • confirming whether the constructed solid model matches the target modular robot refers to confirming whether the structure of the constructed solid model is consistent with the structure of the target modular robot, or the structure of the constructed solid model is the target modularization. Part of the structure of the robot. It can be understood that an error prompt of the module type information is obtained according to the matching result in step S4. For example, in the configuration information of the target modular robot, the cell body should be connected with two cell monomers of the same type, and in the configuration information of the constructed solid model, there are two different connections on the cell body.
  • the cell body can identify the existence of the module type information error by identifying the module type identifier of the two cell monomers, and correspondingly give an error prompt, for example, highlighting the wrong cell monomer in a specific color, or The specific symbol indicates that the wrong cell monomer is assembled, or a prompt sound that gives the wrong type information of the module.
  • the error prompt may be that a display interface is set on the cell body, and the display interface is used for display; or the cell body is connected to the remote terminal, displayed on the display interface of the remote terminal; or Display in shape; or prompt on the docking part where the cell monomer and the cell monomer connected to it are connected.
  • step S4 specifically includes the following steps:
  • the configuration information of the constructed solid model is obtained after each module unit is assembled, and the configuration information of the constructed solid model and the configuration information of the target modular robot are matched, and the correction is performed according to the matching result; or After the assembly is completed, the configuration information of the constructed solid model is acquired once, and the configuration information of the constructed solid model and the configuration information of the target modular robot are matched, and the correction is performed according to the matching result.
  • the two submodules of each module unit are defined as submodule 1 and submodule 2, and submodule 1 is provided with 1, 3, and 5
  • submodule 1 is provided with 1, 3, and 5
  • there are four docking parts, four sub-modules 2 are provided with four butt joints of 2, 4, 6, and 8, and the four docking parts on the sub-module 1 and the sub-module 2 are symmetrically arranged.
  • the existing module unit A and the module unit B are connected, and in the configuration information of the target modular robot, the module unit B should be connected with the No. 1 docking unit on the module unit A, but in the constructed entity model, the module is Unit A is connected to the other docking parts on module unit B, so that a positional error occurs.
  • the existing module unit C and the module unit D in the configuration information of the target modular robot, should be the first docking part of the module unit C and the first docking part of the module unit D, at this time, the module unit
  • the virtual connection plane of C is parallel to the virtual connection plane of the module unit D, and in the constructed solid model, the 2nd docking part of the module unit C is connected with the 1st docking part of the module unit D, thereby making the module unit C
  • the virtual connection surface intersects with the virtual connection surface of the module unit D, so that a direction error occurs.
  • the docking portion of the selected module unit D is consistent with the configuration information of the target modular robot, and the four docking portions on the module unit C are symmetrically arranged, when the docking portion on the module unit D is correctly selected
  • the virtual connection planes of the module unit C and the module unit D are all in a parallel relationship or a cross relationship, therefore,
  • the virtual connecting surface of the module unit C and the virtual connecting surface of the module unit D are also parallel, and After the servo sub-module 1 is at a certain angle, the configuration information of the constructed solid model is consistent with the configuration information of the target modular robot. That is, without the position error, the four docking parts on the same sub-module can be adjusted by the servo when connected with the adjacent module unit to achieve the configuration information of the
  • the position error is that when the cell monomer to be assembled is connected to the upper cell monomer or the cell body, the selection error is selected when the upper cell monomer or the docking portion on the cell body is selected.
  • the wrong direction is that the directions of the two virtual connection faces of the two connected module units in the target modular robot are parallel, and the two virtual connection faces of the corresponding two modular units in the constructed solid model are The directions are intersected; or the directions of the two virtual joint faces of the two connected modular units in the target modular robot are intersected, and the two virtual joints of the two connected modular units in the constructed solid model The direction of the connecting faces is parallel.
  • a second embodiment of the present invention further provides a control method of a modular robot, comprising: a calibration method for constructing a modular robot as described in the first embodiment, when the matching structure displays the constructed solid model and
  • the control method of the modular robot further includes the following steps:
  • the preset motion control information is transmitted to the constructed solid model, and the constructed solid model performs the action according to the preset motion control information.
  • the preset action control information is stored correspondingly according to the configuration information of the target modular robot in the remote terminal or the cell body.
  • the cell body since the cell body receives the position information transmitted by all the cell monomers, the individual cell monomers are individually numbered, and the number is stored in association with the position information thereof.
  • the remote terminal transmits the preset motion control information to the cell body
  • the cell body decomposes the preset motion control information according to the number, and transmits part of the preset motion control information to the cell monomer according to the number, and the cell monomer is A part of the preset action control information specifying action is received.
  • the correction method for constructing the modular robot in the first embodiment is determined to be the result matching, but the preset motion control information is completely in one-to-one correspondence with the configuration information of the target modular robot, and the constructed entity
  • the model may not be able to perform some or all of the actions in accordance with the preset action control information. Therefore, after step J5, the following steps can also be performed:
  • J5a aligning the configuration information of the constructed solid model with the configuration information of the target modular robot to obtain a transformation conversion parameter
  • J5b adjusting preset motion control information according to the deformation conversion parameter to generate current motion control information
  • J6a The current motion control information is transmitted to the constructed entity model, and the constructed entity model performs the action according to the current motion control information.
  • step J6 is omitted.
  • a third embodiment of the present invention further provides a calibration system 10 for constructing a modular robot, the calibration system 10 for constructing a modular robot comprising
  • a modular robot 11 comprising at least two modular units, each modular unit comprising two sub-modules arranged in a relatively movable manner, each sub-module comprising at least a pair of joints, the modular unit being connected to the modular unit by a docking portion;
  • the storage module 13 is configured to store configuration information of the target modular robot and configuration information of the constructed solid model, where the configuration information of the target modular robot includes position information and modules of the plurality of modular units in the target modular robot One or more of category information and module quantity information, and the configuration information of the constructed entity model includes one of position information, module type information, and module quantity information of a plurality of module units in the constructed entity model or Multiple
  • the matching module 15 is configured to confirm, according to the configuration information of the constructed solid model and the configuration information of the target modular robot, whether the constructed physical model matches the target modular robot;
  • the correction module 19 is configured to perform correction according to the matching result.
  • the built-in solid model is an initial configuration in which the user assembles a plurality of modular units into a target modular robot according to the target configuration of the target modular robot, and the modular robot 11 forms a constructed solid model in the splicing process.
  • the storage module 13 is connected to the modular robot 11 to store configuration information of the constructed solid model
  • the matching module 15 is connected with the storage module 13 to retrieve the configuration information of the constructed solid model from the storage module 13 and the target modular robot.
  • Configuration information, correction module 19 is coupled to matching module 15 for correction based on the matching results given by matching module 15. It can be understood that the storage module 13 is also used to connect with a remote terminal or a server, and the storage module 13 acquires configuration information of the target modular robot from a remote terminal or a server.
  • the calibration system 10 for constructing the modular robot further includes a prompting module 17, which is connected with the matching module 15 and the correction module 19.
  • the prompting module 17 gives different prompts according to different matching results given by the matching module 15.
  • the correction module 19 performs the correction correspondingly according to the different prompts given by the prompting module 17.
  • a fourth embodiment of the present invention further provides a calibration system 20 for constructing a modular robot, the calibration system 20 for constructing a modular robot comprising a modular robot 21 comprising at least two modular units, each The module unit includes two sub-modules disposed relative to each other, each sub-module including at least a pair of joints, and the module unit and the module unit are connected by the docking portion;
  • S1 acquiring configuration information of the target modular robot, where the configuration information of the target modular robot includes one or more of position information, module type information, and module quantity information of the plurality of module units in the target modular robot ;
  • S2 acquiring configuration information of the currently constructed solid model, where the configuration information of the constructed physical model includes one or more of location information, module type information, and module quantity information of multiple module units in the constructed physical model.
  • the constructed solid model is an initial configuration in which the user assembles the plurality of modular units into the target modular robot according to the target configuration of the target modular robot, and the modular robot 11 forms the constructed solid model in the assembly process.
  • the memory 23 is connected to the modular robot 21 to acquire configuration information of the constructed solid model.
  • the plurality of modular units comprise a cell body and at least one cell monomer, each docking portion having unique interface identification information, and the cell monomer defining the direct connection with the cell body is a primary cell monomer,
  • Obtaining the location information of the multiple module units in the constructed entity model in step S2 includes the following steps:
  • Step S21 the cell body transmits a signal through the docking portion to the primary cell monomer connected thereto;
  • Step S22 After receiving the signal, the first-level cell monomer performs surface recognition to obtain interface identification information of the interface of the cell body sending signal, and the first-level cell monomer transmits the interface identification information of the interface of the cell body to the signal and receives the signal itself.
  • the interface identification information of the docking portion of the signal is transmitted to the cell body to obtain the position information of the first-level cell monomer;
  • Step S23 M-level cell monomer signals to (M+1)-level cell monomer
  • Step S24 The (M+1)-level cell monomer receives the signal and performs face recognition to obtain the interface identification information of the docking portion of the M-level cell monomer sending signal, and the (M+1)-level cell monomer will be the M-level cell single.
  • the interface identification information of the interface of the body transmission signal and the interface identification information of the interface of the self-receiving signal are transmitted to the cell body.
  • step S23 and the step S24 may be omitted.
  • the method for constructing a modular robot of the present invention comprises at least two modular units, each modular unit comprising two sub-modules that are relatively movable, each sub-module comprising at least one
  • the docking portion has a unique interface identification information, and the module unit and the module unit are connected by the docking portion.
  • the method for constructing the modular robot includes the following steps: S1: acquiring configuration information of the target modular robot
  • the configuration information of the target modular robot includes one or more of position information, module type information, and module quantity information of the plurality of module units in the target modular robot;
  • S3 according to the constructed entity model Configuration information and configuration information of the target modular robot confirm whether the solid model has been constructed and whether the target Block matching robotics; and
  • S4 corrected according to the matching result.
  • the calibration method for constructing the modular robot of the present invention can be corrected according to whether the assembled structure matches the target structure in the process of assembling the modular robot, avoiding the repeated assembly work of the user, and bringing a good experience of the user to the user. .
  • the position of each module unit can be accurately obtained by surface recognition, which is simple and fast, and has low hardware requirements.
  • the acquisition of the location guarantees that real-time correction of user operations is possible.
  • the correction system for constructing a modular robot and the control method for the modular robot of the present invention also have the above advantages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种构建模块化机器人的校正方法及系统和模块化机器人的控制方法,其在组装模块化机器人的过程中可以根据组装结构是否与目标结构相匹配而进行校正,避免了用户反复的组装工作,给用户带来了良好的使用体验感。

Description

构建模块化机器人的校正方法及系统和模块化机器人的控制方法 【技术领域】
本发明涉及模块化机器人领域,尤其涉及一种构建模块化机器人的校正方法及系统和模块化机器人的控制方法。
【背景技术】
机器人已广泛用于生活及工业领域,如教学中用于锻炼学生的开拓思维能力,如自动化生产中用于焊接、喷涂、装配、搬运等作业。尽管机器人作为执行系统具有很大的灵活性和弹性,其可完成不同的工作任务,但现有的机器人往往针对特定的使用目的和场合,只有一种主要功能,自由度和构型都固定不变,缺乏功能的扩展性和构型的重构性。此外,针对每一领域和每项应用都开发特定的机器人所花费的代价很大,严重制约机器人的推广应用。因此,可重构机器人应运而生。
可重构机器人通常都是由主模块以及多个基础模块组合得到的,其中多个基础模块的外形结构都相同,都设置有连接面来实现组合,但是用户在组合模块机器人的过程中无法验证组合结构是否正确,给用户带来大量的重复组装工作,造成很差的使用体验感。
【发明内容】
针对上述问题,本发明提供一种构建模块化机器人的校正方法及系统和模块化机器人的控制方法。
本发明解决技术问题的方案是提供一种构建模块化机器人的校正方法,所述模块化机器人包括至少两个模块单元,每个模块单元包括至少两个可相对运动的子模块,每个子模块包括至少一对接部,模块单元与模块单元之间通过对接部连接,所述构建模块化机器人的校正方法包括以下步骤:
S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否和目标模块化机器人匹配;及
S4:根据匹配结果进行校正。
优选地,所述步骤S4具体包括以下步骤:
S41:根据不同的匹配结果给出不同的提示;
S42:按照不同的提示进行校正。
优选地,位置错误是将要组装上去的细胞单体与上一级细胞单体或细胞主体连接时,选择上一级细胞单体或细胞主体上的对接部时选择错误;每个模块单元的两个子模块的连接处界定一虚拟连接面,目标模块化机器人的相连的两个模块单元的两个虚拟连接面的方向存在平行和交叉两种情形,方向错误是指相连的两个模块单元的两个虚拟连接面的方向存在错误;所述匹配结果包括位置信息错误、模块种类错误、和模块数量错误中的一种或多种,所述位置信息的错误类型包括位置错误和/或方向错误。
优选地,所述提示是在模块单元的整体外形上进行显示或者在模块单元和与之相连的模块单元进行连接的对接部上进行 显示。
优选地,每个对接部具有唯一的接口标识信息,已构建实体模型的多个模块单元中可以包含多个相同或不同的模块单元,所述获取已构建实体模型的多个模块单元的位置信息具体为:
模块单元识别与其连接的相邻模块单元的对接部的接口标识信息,并根据相邻模块单元的对接部的接口标识信息和其自身与相邻模块单元进行连接的对接部的接口标识信息得到其位置信息。
优选地,当多个模块单元包括多个不同的模块单元时,所述多个模块单元包括一细胞主体和至少一细胞单体,界定与细胞主体直接连接的细胞单体为一级细胞单体,所述获取已构建实体模型中多个模块单元的位置信息包括以下步骤:
S21:细胞主体通过对接部传输信号至与之连接的一级细胞单体;
S22:一级细胞单体接收到信号之后进行面识别以获得细胞主体发送信号的对接部的接口标识信息,一级细胞单体将细胞主体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体以获得一级细胞单体的位置信息。
优选地,界定与一级细胞单体连接的细胞单体为二级细胞单体,与M级细胞单体连接的细胞单体为(M+1)级细胞单体,M为大于等于1的整数,所述获取已构建实体模型中多个模块单元的位置信息进一步包括以下步骤:
S23:M级细胞单体发出信号至(M+1)级细胞单体;
S24:(M+1)级细胞单体接收到信号之后进行面识别以获得M级细胞单体发送信号的对接部的接口标识信息,(M+1)级细胞单体将M级细胞单体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体。
优选地,细胞主体或细胞单体同时发送不同的电信号至多个下一级细胞单体时,多个下一级细胞单体根据细胞主体或者上级细胞单体传送不同电信号的对接部的接口标识信息分时序回复其位置信息至细胞主体;或者细胞主体或细胞单体分时序发送相同或不同的电信号至多个下一级细胞单体,多个下一级细胞单体根据接收电信号的时序依次回复其位置信息至细胞主体。
优选地,每装配一个模块单元后即获取已构建实体模型的构型信息,并根据已构建实体模型的构型信息和目标模块化机器人的构型信息进行匹配,根据匹配结果进行校正;或者是装配全部完成之后一次性获取已构建实体模型的构型信息,并根据已构建实体模型的构型信息和目标模块化机器人的构型信息进行匹配,根据匹配结果进行校正。
优选地,没有出现位置错误的前提下,同一子模块上的四个对接部与相邻模块单元连接时可以通过伺服来进行调整以实现与目标模块化机器人的构型信息一致。
本发明还提供一种构建模块化机器人的校正系统,所述构建模块化机器人的校正系统包括
模块化机器人,其包括至少两个模块单元,每个模块单元包括相对活动设置的两个子模块,每个子模块包括至少一对接部,模块单元与模块单元之间通过对接部连接;
储存模块,用于存储目标模块化机器人的构型信息和已构建实体模型的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
匹配模块,用于根据已构建实体模型的构型信息和目标模 块化机器人的构型信息确认已构建实体模型是否与目标模块化机器人匹配;
校正模块,用于根据匹配结果进行校正。
本发明还提供一种构建模块化机器人的校正系统,所述构建模块化机器人的校正系统包括
模块化机器人,其包括至少两个模块单元,每个模块单元包括两个可相对运动的子模块,每个子模块包括至少一对接部,模块单元与模块单元之间通过对接部连接;
存储器,以及一个或多个程序,其中一个或多个所述程序被存储在所述存储器中,存储器与模块单元进行通信,所述程序用于以执行以下步骤指令:
S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否和目标模块化机器人匹配;及
S4:根据匹配结果进行校正。
优选地,所述多个模块单元包括一细胞主体和至少一细胞单体,每个对接部具有唯一的接口标识信息,界定与细胞主体直接连接的细胞单体为一级细胞单体,所述获取已构建实体模型中多个模块单元的位置信息包括以下步骤:
S21:细胞主体通过对接部传输信号至与之连接的一级细胞单体;及
S22:一级细胞单体接收到信号之后进行面识别以获得细胞主体发送电信号的对接部的接口标识信息,一级细胞单体将细胞主体发送电信号的对接部的接口标识信息和其自身接收电信号的对接部的接口标识信息一并传输至细胞主体以获得一级细胞单体的位置信息。
与现有技术相比,本发明的构建模块化机器人的校正方法,所述模块化机器人包括至少两个模块单元,每个模块单元包括两个可相对运动的子模块,每个子模块包括至少一对接部,每个对接部具有唯一的接口标识信息,模块单元与模块单元之间通过对接部连接,所述构建模块化机器人的校正方法包括以下步骤:S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否和目标模块化机器人匹配;及S4:根据匹配结果进行校正。本发明的构建模块化机器人的校正方法在组装模块化机器人的过程中可以根据组装结构是否与目标结构相匹配而进行校正,避免了用户反复的组装工作,给用户带来了良好的使用体验感。
另外的,根据不同的错误类型给出不同的提示,便于用户根据不同的提示纠正不同的组装错误,进一步避免了用户反复的组装工作,给用户带来了更加良好的使用体验感。
另外的,该方法中通过面识别可以精确获得每一个模块单元的位置,简单快速且硬件要求低。位置的获得保障了实时校正用户操作成为可能。
本发明的构建模块化机器人的校正系统和模块化机器人的 控制方法同样具有上述优点。
【附图说明】
图1是本发明第一实施例的构建模块化机器人的校正方法的流程示意图。
图2是本发明第一实施例的构建模块化机器人的校正方法中步骤S2的子流程示意图。
图3是本发明第一实施例的构建模块化机器人的校正方法中步骤S4的子流程示意图。
图4是本发明第二实施例的模块化机器人的控制方法的流程示意图。
图5是本发明第三实施例的构建模块化机器人的校正系统的模块结构示意图。
图6是本发明第四实施例的构建模块化机器人的校正系统的模块结构示意图。
【具体实施方式】
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
第一实施例
请参考图1,本发明的第一实施例提供一种构建模块化机器人的校正方法,所述模块化机器人包括至少两个模块单元,每个模块单元包括至少两个可相对运动的子模块,每个模块单元中包含的子模块的数量可以是两个、三个、四个或者更多,尤其为两个,比如两个子模块可相对转动,尤其为每个模块单元由两个可进行相对旋转运动的上下半球构成,每个子模块包括至少一对接部,每个对接部上设置有一接口,每个接口具有唯一的接口标识信息,模块单元与模块单元之间通过对接部连接。可以理解,当每个子模块包括至少二对接部时,两个模块单元通过各自的一个对接部连接,在两个模块单元的连接位置处形成一虚拟连接面,两个模块单元基于虚拟连接面可进行转动,两个模块单元中的至少一个模块单元上的至少另一个对接部所在的平面与该虚拟连接面相交。
为了便于后续的说明和理解,在此做出以下定义,构型信息包括但不限于模块种类信息、位置信息、模块数量信息和两个子模块之间的初始角度信息中的一种或者多种,构型信息是用来定义相邻模块单元之间的连接关系的信息,其中位置信息用来记录相邻模块单元进行连接的两个对接部的接口标识信息,而每个对接部的接口标识信息即代表着该对接部在其所在的模块单元上的位置,故而每个模块单元的位置信息即代表着其在一个三维空间构型或者平面构型中的绝对位置;同一类别的模块单元设置有相同的模块种类标识,例如:细胞主体都具有相同的模块种类标识,细胞单体具有相同的模块种类标识,且细胞主体的模块种类标识与细胞单体的模块种类标识是不一致的,当细胞单体存在多个类别时,每个类别的细胞单体具有同样的模块种类标识,不同类别的细胞单体的模块种类标识不同,从而通过识别模块种类标识就可以得知模块单元的模块种类信息;两个子模块之间的初始角度信息指的是模块单元上下两个子模块之间的相对角度值;模块数量信息指的模块单元的数量。相邻两个模块单元之间识别其相互连接的两个对接部的接口标识信息的过程就是面识别的过程,通过进行面识别即可获得模块单元的位置信息。可以理解,此处的定义同样适用于本说明书的其他实施例。
所述构建模块化机器人的校正方法包括以下步骤:
S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否跟目标模块化机器人匹配;及
S4:根据匹配结果进行校正。
在所述步骤S1中,目标模块化机器人的构型信息来源于远程终端、服务器或者存储有若干模块化机器人所对应的构型信息的数据库。目标模块化机器人包括N个模块单元组装而成。
在所述步骤S2中,所述已构建实体模型是用户根据目标模块化机器人的目标构型将多个模块单元意图组装成目标模块化机器人的一初始实体构型,该初始实体构型可以是两个或者多个模块单元的组装构型。一般情况下,该已构建实体模型的模块单元数量少于或者等于目标模块化机器人的模块单元数量N。获取已构建实体模型构型信息的动作可以是由远程终端去获取每个模块单元的位置信息,或者由某一模块单元获取其他模块单元的位置信息之后传输至远程终端。
请参考图2,已构建实体模型的多个模块单元中可以包含多个相同或不同的模块单元,当已构建实体模型的多个模块单元包括多个不同的模块单元时,例如已构建实体模型的多个模块单元中包括一细胞主体和多个细胞单体,细胞主体用于与远程终端通信,界定与细胞主体直接连接的细胞单体为一级细胞单体,与一级细胞单体连接的细胞单体为二级细胞单体,与M级细胞单体连接的细胞单体为(M+1)级细胞单体,M为大于等于1的整数。已构建实体模型的构型信息包括模块种类信息、位置信息和模块数量信息,在所有细胞单体将其各自的位置信息传输至细胞主体后,细胞主体获得已构建实体模型的模块数量信息。其中获取已构建实体模型中多个模块单元的位置信息具体包括以下步骤:
步骤S21:细胞主体通过对接部传输信号至与之连接的一级细胞单体;
步骤S22:一级细胞单体接收到信号之后进行面识别以获得细胞主体发送信号的对接部的接口标识信息,一级细胞单体将细胞主体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体以获得一级细胞单体的位置信息;
步骤S23:M级细胞单体发出信号至(M+1)级细胞单体;及
步骤S24:(M+1)级细胞单体接收到信号之后进行面识别以获得M级细胞单体发送信号的对接部的接口标识信息,(M+1)级细胞单体将M级细胞单体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体。
可以理解,细胞主体传输至一级细胞单体的信号和M级细胞单体传输至(M+1)级细胞单体的信号优选为电信号,也可以是无线信号。当已构建实体模型的多个模块单元中只包含细胞主体和一级细胞单体时,所述步骤S23和步骤S24可以省略。
当已构建实体模型的多个模块单元包括多个相同的模块单元时,界定其中一个模块单元为主模块单元,即上述的细胞主体,与主模块单元直接连接的模块单元为一级细胞单体,与一级细胞单体连接的模块单元为二级细胞单体,与M级细胞单体连接的模块单元为(M+1)级细胞单体,M为大于等于1的整数, 同样执行上述步骤S21~S24。作为一种变形,多级细胞单体可以直接将各自的位置信息直接传输至远程终端,而不用再传输给主模块单元。
总而言之,获取已构建实体模型的多个模块单元的位置信息的过程为:模块单元识别与其连接的相邻模块单元的对接部的接口标识信息,并根据相邻模块单元的对接部的接口标识信息和其自身与相邻模块单元进行连接的对接部的接口标识信息得到其位置信息。
另外,在执行步骤S21之前或者同时执行以下步骤:
步骤S20:细胞主体发出广播信号通知各个细胞单体准备进行面识别。可以理解,模块单元与模块单元之间可以进行无线通信,其无线通信的方式可以是wifi通信、蓝牙通信或者zigbee通信,优选为zigbee通信。细胞主体先广播信号通知每个细胞单体进入面识别准备状态,等到每个细胞单体接收到电信号之后即进行面识别动作。
在所述步骤S21中,细胞主体上的每个对接部发送不同的电信号至多个一级细胞单体,在步骤S2中,多个一级细胞单体根据接收到的电信号的不同来获得与之连接的细胞主体的对接部的接口标识信息,每个一级细胞单体将细胞主体传输电信号的对接部的接口标识信息和其自身接收电信号的对接部的接口标识信息一并回复给细胞主体,细胞主体通过算法计算得到该一级细胞单体的位置信息,多个一级细胞单体执行同样的动作后,细胞主体得到多个一级细胞单体的位置信息。同理,在步骤S23和S24中,M级细胞单体上的每个对接部发送不同的电信号至多个(M+1)级细胞单体,多个(M+1)级细胞单体根据接收到的电信号的不同来获得与之连接的M级细胞单体的对接部的接口标识信息,每个(M+1)级细胞单体将M级细胞单体传输电信号的对接部的接口标识信息和其自身接收电信号的对接部的接口标识信息回复给细胞主体,细胞主体通过算法计算得到该(M+1)级细胞单体的位置信息,多个(M+1)级细胞单体执行同样的动作后,细胞主体得到多个(M+1)级细胞单体的位置信息。经过一系列的面识别之后,细胞主体即获得所有细胞单体的位置信息从而获得已构建实体模型的构型信息。
可以理解,细胞主体或细胞单体同时发送不同的电信号至多个下一级细胞单体时,多个下一级细胞单体根据细胞主体或者上级细胞单体传送不同电信号的对接部的接口标识信息分时序回复其位置信息至细胞主体;或者细胞主体或细胞单体分时序发送相同或不同的电信号至多个下一级细胞单体,多个下一级细胞单体根据接收电信号的时序依次回复其位置信息至细胞主体。例如:细胞主体上设置有两个对接部,接口标识信息分别定义为1和2,细胞主体同时发送两个不同的电信号至与之连接的两个一级细胞单体,设定与对接部1相连接的一级细胞单体先回复其位置信息,等待10s后(具体的时间可以自行调整),与对接部2相连接的一级细胞单体再回复其位置信息。
另外,在所述步骤S22和S23之间进一步包括
步骤S22a:细胞主体停止发送电信号,并通知与细胞主体直接连接的一级细胞单体发送电信号至与一级细胞单体连接的二级细胞单体。可以理解,在所述步骤S22a中,细胞主体优选是通过广播信号的形式通知一级细胞单体的。可以理解,在M级细胞单体发送电信号之前,细胞主体按照M级细胞单体的多个对接部的接口标识信息通过广播信号的方式分时序控制M级细胞单体发送电信号至多个(M+1)级细胞单体,该M级细胞单体发送至多个(M+1)级细胞单体的电信号可以是相同或者不同的,优选为M级细胞单体的多个对接部发送不同的电信号。
另外,在所述步骤S22和S24中,细胞主体在接收细胞单体传输过来的位置信息后对各个细胞单体进行单独编号,并将 每个细胞单体的位置信息与编号关联存储。在细胞主体与远程终端进行通信时,细胞主体将每个细胞单体的位置信息及其编号传输至远程终端。远程终端发送动作控制信息给细胞主体后,细胞主体根据不同编号对控制信息进行分解并将分解后的控制信息按照编号对应地传输给各个细胞单体。
在所述步骤S3中,确认已构建实体模型是否跟目标模块化机器人匹配指的是确认已构建实体模型的结构是否与目标模块化机器人的结构一致,或者已构建实体模型的结构是目标模块化机器人的结构的一部分。可以理解,在步骤S4中根据匹配结果会得到模块种类信息的错误提示。例如,在目标模块化机器人的构型信息中,细胞主体上连接的应该是两个相同类型的细胞单体,而在已构建实体模型的构型信息中却是细胞主体上连接有两个不同的细胞单体,细胞主体通过识别两个细胞单体的模块种类标识可以判断存在模块种类信息错误,并对应地给出错误提示,例如以特定的颜色高亮组装错误的细胞单体,或者以特定的符号提示组装错误的细胞单体,或者发出模块种类信息错误的提示音等。可以理解,该错误提示可以是在细胞主体上设置一显示界面,通过该显示界面来进行显示;或者细胞主体与远程终端连接,在远程终端的显示界面上进行显示;或者在细胞单体的整体外形上进行显示;或者在细胞单体和与之相连的细胞单体进行连接的对接部上进行提示。
请参考图3,所述步骤S4具体包括以下步骤:
S41:根据不同的匹配结果给出不同的提示;
S42:按照不同的提示进行校正。
可以理解,每装配一个模块单元后即获取已构建实体模型的构型信息,并根据已构建实体模型的构型信息和目标模块化机器人的构型信息进行匹配,根据匹配结果进行校正;或者是装配全部完成之后一次性获取已构建实体模型的构型信息,并根据已构建实体模型的构型信息和目标模块化机器人的构型信息进行匹配,根据匹配结果进行校正。
还可以理解,每个模块单元的两个子模块的连接处存在一虚拟连接面,目标模块化机器人的相连的两个模块单元的两个虚拟连接面的方向关系存在平行和交叉两种情形,所述位置信息的错误类型包括位置错误和方向错误,为了便于后续的说明,在此定义每个模块单元的两个子模块分别为子模块1和子模块2,子模块1上设置有1、3、5、7四个对接部,子模块2上设置有2、4、6、8四个对接部,且子模块1和子模块2上的四个对接部都是对称设置。例如,现有模块单元A和模块单元B连接,在目标模块化机器人的构型信息中应该是模块单元B与模块单元A上的1号对接部连接,而在已构建实体模型中却是模块单元A与模块单元B上的其它对接部连接,这样就会出现位置错误。又例如:现有模块单元C和模块单元D,在目标模块化机器人的构型信息中应该是模块单元C的1号对接部和模块单元D的1号对接部进行连接,此时,模块单元C的虚拟连接面与模块单元D的虚拟连接面是平行的,而在已构建实体模型中却是模块单元C的2号对接部与模块单元D的1号对接部连接,从而使模块单元C的虚拟连接面与模块单元D的虚拟连接面是相交,这样就出现了方向错误。但是,只要选定的模块单元D的对接部是与目标模块化机器人的构型信息一致的,而且模块单元C上的四个对接部是对称设置的,当模块单元D上的对接部选择正确后,模块单元C与模块单元D连接时,同一个子模块上的四个对接部与模块单元D连接时,模块单元C和模块单元D的虚拟连接面就都是平行关系或者交叉关系,因此,模块单元C上的3、5、7三个对接部分别与模块单元D上的1号对接部连接时,模块单元C的虚拟连接面与模块单元D的虚拟连接面也都是平行的,并且可以通过伺服子模块1一定角度 后,使已构建实体模型的构型信息与目标模块化机器人的构型信息保持一致。即,没有出现位置错误的前提下,同一子模块上的四个对接部与相邻模块单元连接时可以通过伺服来进行调整以实现与目标模块化机器人的构型信息一致。
总而言之,位置错误就是将要组装上去的细胞单体与上一级细胞单体或细胞主体连接时,选择上一级细胞单体或细胞主体上的对接部时选择错误。而方向错误就是目标模块化机器人中的相连的两个模块单元的两个虚拟连接面的方向是平行的,而在已构建实体模型中对应的相连的两个模块单元的两个虚拟连接面的方向却是相交的;或者目标模块化机器人中的相连的两个模块单元的两个虚拟连接面的方向是相交的,而在已构建实体模型中对应的相连的两个模块单元的两个虚拟连接面的方向却是平行的。
第二实施例
请参考图4,本发明的第二实施例还提供一种模块化机器人的控制方法,其包括如第一实施例所述的构建模块化机器人的校正方法,当匹配结构显示已构建实体模型与目标模块化机器人完全一致时,所述模块化机器人的控制方法进一步包括以下步骤:
J5:获取预设动作控制信息;
J6:将预设动作控制信息传输至已构建实体模型,已构建实体模型按照预设动作控制信息执行动作。
可以理解,所述远程终端或者细胞主体中根据目标模块化机器人的构型信息对应存储有预设动作控制信息。
可以理解,在所述步骤J6中,由于细胞主体在接收所有的细胞单体传输过来的位置信息后对各个细胞单体进行单独编号,并将编号与其位置信息关联存储。当远程终端将预设动作控制信息传输至细胞主体时,细胞主体对预设动作控制信息按照编号进行分解,并将部分预设动作控制信息按照编号对应地传输至细胞单体,细胞单体根据接收到部分预设动作控制信息指定动作。
当已构建实体模型的构型与目标模块化机器人的目标构型相同时,可能会存在对接部连接不同的情形。这样的情形在第一实施例中构建模块化机器人的校正方法是会被判定为结果匹配的,但是预设动作控制信息是与目标模块化机器人的构型信息完全一一对应的,已构建实体模型可能无法按照预设动作控制信息执行部分或全部动作。因此,在步骤J5之后还可以执行以下步骤:
J5a:比对已构建实体模型的构型信息和目标模块化机器人的构型信息以得到一变形转换参数;
J5b:根据该变形转换参数对预设动作控制信息进行调整以生成当前动作控制信息;
J6a:将当前动作控制信息传输至已构建实体模型,已构建实体模型按照当前动作控制信息执行动作。
此时,步骤J6省略。
第三实施例
请参考图5,本发明的第三实施例还提供一种构建模块化机器人的校正系统10,所述构建模块化机器人的校正系统10包括
模块化机器人11,其包括至少两个模块单元,每个模块单元包括相对活动设置的两个子模块,每个子模块包括至少一对接部,模块单元与模块单元之间通过对接部连接;
储存模块13,用于存储目标模块化机器人的构型信息和已构建实体模型的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类 信息和模块数量信息中的一种或多种,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
匹配模块15,用于根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否跟目标模块化机器人匹配;
校正模块19,用于根据匹配结果进行校正。
其中已构建实体模型是用户根据目标模块化机器人的目标构型将多个模块单元意图组装成目标模块化机器人的一初始构型,模块化机器人11在拼接过程中形成已构建实体模型。储存模块13与模块化机器人11连接以存储已构建实体模型的构型信息,匹配模块15与储存模块13连接以从储存模块13中调取已构建实体模型的构型信息和目标模块化机器人的构型信息,校正模块19与匹配模块15连接以根据匹配模块15给出的匹配结果进行校正。可以理解,所述储存模块13还用于与远程终端或者服务器连接,储存模块13从远程终端或者服务器中获取目标模块化机器人的构型信息。
另外,构建模块化机器人的校正系统10还包括一提示模块17,所述提示模块17与匹配模块15、校正模块19连接,提示模块17根据匹配模块15给出的不同匹配结果给出不同的提示,校正模块19根据提示模块17给出的不同提示对应地进行校正。
第四实施例
请参考图6,本发明的第四实施例还提供一种构建模块化机器人的校正系统20,所述构建模块化机器人的校正系统20包括模块化机器人21,其包括至少两个模块单元,每个模块单元包括相对活动设置的两个子模块,每个子模块包括至少一对接部,模块单元与模块单元之间通过对接部连接;
存储器23,以及一个或多个程序,其中一个或多个所述程序被存储在所述存储器中,存储器与模块单元进行通信,所述程序用于以执行以下步骤指令:
S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否匹配;
S4:根据匹配结果进行校正。
其中,已构建实体模型是用户根据目标模块化机器人的目标构型将多个模块单元意图组装成目标模块化机器人的一初始构型,模块化机器人11在组装过程中形成已构建实体模型。存储器23与模块化机器人21连接以获取已构建实体模型的构型信息。
可以理解,所述多个模块单元包括一细胞主体和至少一细胞单体,每个对接部具有唯一的接口标识信息,界定与细胞主体直接连接的细胞单体为一级细胞单体,所述步骤S2中获取已构建实体模型中多个模块单元的位置信息包括以下步骤:
步骤S21:细胞主体通过对接部传输信号至与之连接的一级细胞单体;
步骤S22:一级细胞单体接收到信号之后进行面识别以获得细胞主体发送信号的对接部的接口标识信息,一级细胞单体将细胞主体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体以获得一级细胞单体的位置信息;
步骤S23:M级细胞单体发出信号至(M+1)级细胞单体;及
步骤S24:(M+1)级细胞单体接收到信号之后进行面识别以获得M级细胞单体发送信号的对接部的接口标识信息,(M+1)级细胞单体将M级细胞单体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体。
可以理解,当已构建实体模型的多个模块单元中只包含细胞主体和一级细胞单体时,所述步骤S23和步骤S24可以省略。
与现有技术相比,本发明的构建模块化机器人的校正方法,所述模块化机器人包括至少两个模块单元,每个模块单元包括两个可相对运动的子模块,每个子模块包括至少一对接部,每个对接部具有唯一的接口标识信息,模块单元与模块单元之间通过对接部连接,所述构建模块化机器人的校正方法包括以下步骤:S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否和目标模块化机器人匹配;及S4:根据匹配结果进行校正。本发明的构建模块化机器人的校正方法在组装模块化机器人的过程中可以根据组装结构是否与目标结构相匹配而进行校正,避免了用户反复的组装工作,给用户带来了良好的使用体验感。
另外的,根据不同的错误类型给出不同的提示,便于用户根据不同的提示纠正不同的组装错误,进一步避免了用户反复的组装工作,给用户带来了更加良好的使用体验感。
另外的,该方法中通过面识别可以精确获得每一个模块单元的位置,简单快速且硬件要求低。位置的获得保障了实时校正用户操作成为可能。
本发明的构建模块化机器人的校正系统和模块化机器人的控制方法同样具有上述优点。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的原则之内所作的任何修改,等同替换和改进等均应包含本发明的保护范围之内。

Claims (13)

  1. 一种构建模块化机器人的校正方法,所述模块化机器人包括至少两个模块单元,每个模块单元包括至少两个可相对运动的子模块,每个子模块包括至少一个对接部,模块单元与模块单元之间通过对接部连接,其特征在于:所述构建模块化机器人的校正方法包括以下步骤:
    S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
    S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中一个或多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
    S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否和目标模块化机器人匹配;及
    S4:根据匹配结果进行校正。
  2. 如权利要求1所述的构建模块化机器人的校正方法,其特征在于:所述步骤S4具体包括以下步骤:
    S41:根据不同的匹配结果给出不同的提示;
    S42:按照不同的提示进行校正。
  3. 如权利要求2所述的构建模块化机器人的校正方法,其特征在于:位置错误是将要组装上去的细胞单体与上一级细胞单体或细胞主体连接时,选择上一级细胞单体或细胞主体上的对接部时选择错误;每个模块单元的两个子模块的连接处界定一虚拟连接面,目标模块化机器人的相连的两个模块单元的两个虚拟连接面的方向存在平行和相交两种情形,方向错误是指相连的两个模块单元的两个虚拟连接面的方向存在错误;所述匹配结果包括位置信息错误、模块种类错误、和模块数量错误中的一种或多种,所述位置信息的错误类型包括位置错误和/或方向错误。
  4. 如权利要求2所述的构建模块化机器人的校正方法,其特征在于:所述提示是在模块单元的整体外形上进行显示或者在模块单元和与之相连的模块单元进行连接的对接部上进行显示。
  5. 如权利要求1所述的构建模块化机器人的校正方法,其特征在于:每个对接部具有唯一的接口标识信息,已构建实体模型的多个模块单元中可以包含多个相同或不同的模块单元,所述获取已构建实体模型的多个模块单元的位置信息具体为:
    模块单元识别与其连接的相邻模块单元的对接部的接口标识信息,并根据相邻模块单元的对接部的接口标识信息和其自身与相邻模块单元进行连接的对接部的接口标识信息得到其位置信息。
  6. 如权利要求5所述的构建模块化机器人的校正方法,其特征在于:当多个模块单元包括多个不同的模块单元时,所述多个模块单元包括一细胞主体和至少一细胞单体,界定与细胞主体直接连接的细胞单体为一级细胞单体,所述获取已构建实体模型中多个模块单元的位置信息包括以下步骤:
    S21:细胞主体通过对接部传输信号至与之连接的一级细胞单体;
    S22:一级细胞单体接收到信号之后进行面识别以获得细胞主体发送信号的对接部的接口标识信息,一级细胞单体将细胞主体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体以获得一级细胞单体的位置信息。
  7. 如权利要求6所述的构建模块化机器人的校正方法,其特征在于:界定与一级细胞单体连接的细胞单体为二级细胞单体,与M级细胞单体连接的细胞单体为(M+1)级细胞单体,M为大于等于1的整数,所述获取已构建实体模型中多个模块单元的位置信息进一步包括以下步骤:
    S23:M级细胞单体发出信号至(M+1)级细胞单体;
    S24:(M+1)级细胞单体接收到信号之后进行面识别以获得M级细胞单体发送信号的对接部的接口标识信息,(M+1)级细胞单体将M级细胞单体发送信号的对接部的接口标识信息和其自身接收信号的对接部的接口标识信息一并传输至细胞主体。
  8. 如权利要求7所述的构建模块化机器人的校正方法,其特征在于:细胞主体或细胞单体同时发送不同的电信号至多个下一级细胞单体时,多个下一级细胞单体根据细胞主体或者上级细胞单体传送不同电信号的对接部的接口标识信息分时序回复其位置信息至细胞主体;或者细胞主体或细胞单体分时序发送相同或不同的电信号至多个下一级细胞单体,多个下一级细胞单体根据接收电信号的时序依次回复其位置信息至细胞主体。
  9. 如权利要求1所述的构建模块化机器人的校正方法,其特征在于:每装配一个模块单元后即获取已构建实体模型的构型信息,并根据已构建实体模型的构型信息和目标模块化机器人的构型信息进行匹配,根据匹配结果进行校正;或者是装配全部完成之后一次性获取已构建实体模型的构型信息,并根据已构建实体模型的构型信息和目标模块化机器人的构型信息进行匹配,根据匹配结果进行校正。
  10. 如权利要求3所述的构建模块化机器人的校正方法,其特征在于:没有出现位置错误的前提下,同一子模块上的四个对接部与相邻模块单元连接时可以通过伺服来进行调整以实现与目标模块化机器人的构型信息一致。
  11. 一种构建模块化机器人的校正系统,其特征在于:所述构建模块化机器人的校正系统包括
    模块化机器人,其包括至少两个模块单元,每个模块单元包括相对活动设置的两个子模块,每个子模块包括至少一对接部,模块单元与模块单元之间通过对接部连接;
    储存模块,用于存储目标模块化机器人的构型信息和已构建实体模型的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
    匹配模块,用于根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否与目标模块化机器人匹配;
    校正模块,用于根据匹配结果进行校正。
  12. 一种构建模块化机器人的校正系统,其特征在于:所述构建模块化机器人的校正系统包括
    模块化机器人,其包括至少两个模块单元,每个模块单元包括两个可相对运动的子模块,每个子模块包括至少一对接部,模块单元与模块单元之间通过对接部连接;
    存储器,以及一个或多个程序,其中一个或多个所述程序被存储在所述存储器中,存储器与模块单元进行通信,所述程序用于以执行以下步骤指令:
    S1:获取目标模块化机器人的构型信息,所述目标模块化机器人的构型信息包括目标模块化机器人中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
    S2:获取当前已构建实体模型的构型信息,所述已构建实体模型的构型信息包括已构建实体模型中多个模块单元的位置信息、模块种类信息和模块数量信息中的一种或多种;
    S3:根据已构建实体模型的构型信息和目标模块化机器人的构型信息确认已构建实体模型是否和目标模块化机器人匹配;及
    S4:根据匹配结果进行校正。
  13. 如权利要求12所述的构建模块化机器人的校正系统,其特征在于:所述多个模块单元包括一细胞主体和至少一细胞单体,每个对接部具有唯一的接口标识信息,界定与细胞主体直接连接的细胞单体为一级细胞单体,所述获取已构建实体模型中多个模块单元的位置信息包括以下步骤:
    S21:细胞主体通过对接部传输信号至与之连接的一级细胞单体;及
    S22:一级细胞单体接收到信号之后进行面识别以获得细胞主体发送电信号的对接部的接口标识信息,一级细胞单体将细胞主体发送电信号的对接部的接口标识信息和其自身接收电信号的对接部的接口标识信息一并传输至细胞主体以获得一级细胞单体的位置信息。
PCT/CN2018/121439 2017-12-19 2018-12-17 构建模块化机器人的校正方法及系统和模块化机器人的控制方法 WO2019120152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/905,900 US11458620B2 (en) 2017-12-19 2020-06-18 Correction method and system for constructing modular robot and control method for modular robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711383047.0 2017-12-19
CN201711383047.0A CN108326847B (zh) 2017-12-19 2017-12-19 模块化机器人的校正方法、校正系统及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/905,900 Continuation US11458620B2 (en) 2017-12-19 2020-06-18 Correction method and system for constructing modular robot and control method for modular robot

Publications (1)

Publication Number Publication Date
WO2019120152A1 true WO2019120152A1 (zh) 2019-06-27

Family

ID=62923213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121439 WO2019120152A1 (zh) 2017-12-19 2018-12-17 构建模块化机器人的校正方法及系统和模块化机器人的控制方法

Country Status (3)

Country Link
US (1) US11458620B2 (zh)
CN (1) CN108326847B (zh)
WO (1) WO2019120152A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108326847B (zh) * 2017-12-19 2020-12-18 北京可以科技有限公司 模块化机器人的校正方法、校正系统及控制方法
CN108326846B (zh) * 2017-12-19 2020-11-03 北京可以科技有限公司 模块化机器人及其模块单元位置计算方法
CN116372932B (zh) * 2023-04-24 2023-11-17 深圳墨影科技有限公司 应用于机器人或机器人系统的模块化设计系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119847A (ja) * 1997-06-25 1999-01-19 Kobe Nippon Denki Software Kk おしゃべりオウム発声装置
US20030040250A1 (en) * 2001-08-24 2003-02-27 Xerox Corporation Robotic toy modular
CN104249368A (zh) * 2014-09-09 2014-12-31 上海交通大学 双柱形自重构模块化机器人
CN104326031A (zh) * 2014-10-29 2015-02-04 北京可以科技有限公司 细胞机器人
CN105171720A (zh) * 2015-10-12 2015-12-23 北京可以科技有限公司 一种基于细胞机器人单体的多自由度机械臂
CN106272550A (zh) * 2016-08-17 2017-01-04 北京可以科技有限公司 构型控制信息处理方法及装置
CN108115686A (zh) * 2017-12-19 2018-06-05 北京可以科技有限公司 一种模块化装置的构建提示方法及系统
CN108326847A (zh) * 2017-12-19 2018-07-27 北京可以科技有限公司 构建模块化机器人的校正方法及系统和模块化机器人的控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222181A (en) * 1977-11-14 1980-09-16 Cummings Darold B Mobile educational toy
JPH11109847A (ja) 1997-10-01 1999-04-23 Sony Corp セル及び多細胞ロボット
JP2001038663A (ja) * 1999-07-28 2001-02-13 Yamaha Motor Co Ltd マシンの制御システム
DE102010062217B4 (de) * 2010-01-22 2018-11-22 Kinematics Gmbh Baukastensystem mit bewegungsfähigen Modulen
CN103566600B (zh) * 2013-11-14 2016-03-02 步步高教育电子有限公司 一种益智玩具及实现益智玩具人机互动功能的方法
CN105172932B (zh) * 2015-10-12 2018-08-10 北京可以科技有限公司 一种基于细胞机器人单体的四足机器人
DE102015015142A1 (de) * 2015-11-25 2017-06-01 Kinematics Gmbh Baukastensystem und Verfahren zum lnformations- und/ oder Energieaustausch zwischen Modulen eines Baukastensystems
CN105536266B (zh) * 2016-01-25 2018-08-14 北京联联看科技有限公司 智能积木游戏装置、智能积木游戏的控制方法及系统
US10300399B2 (en) * 2016-03-31 2019-05-28 Shenzhen Bell Creative Science and Education Co., Ltd. Modules registration and status update of modular assembly system
US10427065B2 (en) * 2017-03-31 2019-10-01 Intel Corporation Building blocks with lights for guided assembly
US10890897B2 (en) * 2017-09-26 2021-01-12 International Business Machines Corporation Assembly of a modular structure
EP3476545A1 (en) * 2017-10-27 2019-05-01 Creaholic SA Method for operating a computer-based inventory of hardware modules of a robotic system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119847A (ja) * 1997-06-25 1999-01-19 Kobe Nippon Denki Software Kk おしゃべりオウム発声装置
US20030040250A1 (en) * 2001-08-24 2003-02-27 Xerox Corporation Robotic toy modular
CN104249368A (zh) * 2014-09-09 2014-12-31 上海交通大学 双柱形自重构模块化机器人
CN104326031A (zh) * 2014-10-29 2015-02-04 北京可以科技有限公司 细胞机器人
CN105171720A (zh) * 2015-10-12 2015-12-23 北京可以科技有限公司 一种基于细胞机器人单体的多自由度机械臂
CN106272550A (zh) * 2016-08-17 2017-01-04 北京可以科技有限公司 构型控制信息处理方法及装置
CN108115686A (zh) * 2017-12-19 2018-06-05 北京可以科技有限公司 一种模块化装置的构建提示方法及系统
CN108326847A (zh) * 2017-12-19 2018-07-27 北京可以科技有限公司 构建模块化机器人的校正方法及系统和模块化机器人的控制方法

Also Published As

Publication number Publication date
US20200391380A1 (en) 2020-12-17
CN108326847B (zh) 2020-12-18
CN108326847A (zh) 2018-07-27
US11458620B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2019120152A1 (zh) 构建模块化机器人的校正方法及系统和模块化机器人的控制方法
WO2019120149A1 (zh) 模块化机器人及其模块单元位置计算方法
WO2019120151A1 (zh) 一种模块化装置的构建提示方法及系统
CN108356806B (zh) 模块化机器人控制方法及系统
CN110695993A (zh) 一种柔性机械臂同步测量方法、系统及装置
CN106468948A (zh) 一种使用连接玩具的教育系统
CN109676606A (zh) 一种计算机械臂臂角范围的方法、机械臂及机器人
CN109176531A (zh) 一种串联型机器人运动学标定方法和系统
CN106060781B (zh) 基于BIM与Zigbee技术融合的空间定位方法
US20220413511A1 (en) Robot control method, a robot control system and a modular robot
Chen et al. A framework of teleoperated and stereo vision guided mobile manipulation for industrial automation
Wang et al. Rapid developing the simulation and control systems for a multifunctional autonomous agricultural robot with ROS
CN109927034A (zh) 校准装置及校准方法
CN106296650A (zh) 一种激光点云配准方法和装置
Tijani Teaching fundamental concepts in robotics technology using MATLAB toolboxes
Escobar et al. Multi-robot platform with features of Cyber-physical systems for education applications
Mead et al. A demonstration of a robot formation control algorithm and platform
Ma et al. Wireless inter-vehicle communication among VEX robots
Aranda et al. Partially distributed multirobot control with multiple cameras
CN215240859U (zh) 一种可识别本体结构的模块化工业机器人
Qu et al. Visual obstacle avoidance method of manipulator based on ROS
Sergeyev PIONEERING MECHATRONICS EDUCATION AT MICHIGAN TECH: UNDERGRADUATE AND GRADUATE CURRICULA DEVELOPMENT
CN207216417U (zh) 一种基于自主定位的室内移动机器人围捕系统
Wu et al. An automatic tracking approach for aircraft skin drilling and riveting robot by using monocular vision technology
CN113932782A (zh) 适用于航天器大尺寸舱体结构坐标系建立及基准转移方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18892737

Country of ref document: EP

Kind code of ref document: A1