WO2019120078A1 - 用于正电子发射成像设备的检测器及正电子发射成像设备 - Google Patents

用于正电子发射成像设备的检测器及正电子发射成像设备 Download PDF

Info

Publication number
WO2019120078A1
WO2019120078A1 PCT/CN2018/119268 CN2018119268W WO2019120078A1 WO 2019120078 A1 WO2019120078 A1 WO 2019120078A1 CN 2018119268 W CN2018119268 W CN 2018119268W WO 2019120078 A1 WO2019120078 A1 WO 2019120078A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillation crystal
flake
module
crystal module
light
Prior art date
Application number
PCT/CN2018/119268
Other languages
English (en)
French (fr)
Inventor
张熙
谢思维
杨静梧
赵指向
黄秋
彭旗宇
Original Assignee
中派科技(深圳)有限责任公司
广东影诺数字医学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中派科技(深圳)有限责任公司, 广东影诺数字医学科技有限公司 filed Critical 中派科技(深圳)有限责任公司
Publication of WO2019120078A1 publication Critical patent/WO2019120078A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy

Definitions

  • the present invention relates to the field of positron emission imaging, and in particular to a detector for a positron emission imaging device and a positron emission imaging device.
  • Positron Emission Tomography is a representative product of international advanced medical devices. It is a technology that uses radioactive element tracer to display the internal structure of human or animal body. It is widely used in cancer and heart. Early diagnosis, treatment plan development, prognosis prediction and drug efficacy evaluation of cerebrovascular diseases and neurodegenerative diseases.
  • the detector system is generally connected by a plurality of square detector modules through a mechanical structure to form a cylindrical envelope structure for intercepting gamma photons that receive radioactive material release.
  • the square detector module is formed by a scintillation crystal (flashing crystal array) and a photoelectric sensor, and some designs also insert a readout circuit into the module; a plurality of square detectors are fixed by a complicated mechanical structure along the cylinder.
  • the surface or the spherical surface is arranged to form a gamma photon detecting layer.
  • Edge effect may occur in the discrete crystal assembly design, so that the detected photon position information can not correctly reflect the light distribution, resulting in low decoding precision and low spatial resolution of the imaging device;
  • the detection gap includes the crystal assembly gap: a large assembly gap will be generated when the discrete crystals are spliced, and the detection module gap: the square detection module cannot form a complete detection surface along the annular arrangement, both of which will lead to the detection gap. Appears to reduce system sensitivity.
  • Conventional positron emission imaging devices also have a continuous crystal design in the form of a sheet, and a continuous crystal of a sheet is optically connected to form a semi-continuous crystal, which is a long-established solution. This method reduces the difficulty of the crystal processing process to a certain extent, but still cannot solve the problem caused by the edge effect.
  • a detector for a positron emission imaging apparatus comprising a scintillation crystal module and a photosensor array, the scintillation crystal module comprising a plurality of flake-shaped scintillation crystal units, each of the flake-shaped scintillation crystals
  • the unit has a through hole, and a plurality of flake-shaped scintillation crystal units are axially stacked to form the scintillation crystal module, and the scintillation crystal module formed by the stacking has an inner wall, an outer wall and a through hole for accommodating the object to be imaged .
  • a photosensor array coupled to an inner wall of the scintillation crystal module or/and an outer wall of the scintillation crystal module for detecting a photon generated by a reaction of a gamma photon with the scintillation crystal module, wherein the gamma photon Produced by a positron annihilation effect occurring in the body to be imaged.
  • adjacent two of the flake-shaped scintillation crystal units are connected by a reflective layer.
  • the light reflecting layer is provided with a light transmitting window.
  • the light-transmissive window on each of the light-reflecting layers is one, disposed inside or outside the light-reflecting layer; or, the light-transmitting windows on each of the light-reflecting layers are two, respectively Provided inside and outside the light reflecting layer; or, the light transmissive window on each of the light reflecting layers is plural, and the plurality of light transmitting windows are spaced apart from the inside to the outside or from the outside to the inside. It is disposed on the reflective layer.
  • the scintillation crystal module has a polygonal prism shape or a cylindrical shape as a whole.
  • the through hole is circular or polygonal.
  • the flake-shaped scintillation crystal unit is formed by connecting a plurality of scintillation crystals.
  • the scintillation crystal module comprises an inner layer scintillation crystal module and an outer layer scintillation crystal module
  • the inner layer scintillation crystal module comprises a plurality of first flake scintillation crystal units, each of the first flake scintillation crystal units Having a first via, a plurality of first flake-shaped scintillation crystal units are axially stacked to form the inner scintillation crystal module
  • the outer scintillation crystal module includes a plurality of second flake-shaped scintillation crystal units, each of the The second flake scintillation crystal unit has a second through hole, and the plurality of second flake scintillation crystal units are axially stacked to form the outer scintillation crystal module
  • the first flake scintillation crystal unit can be accommodated in the The first flake crystal unit of the inner scintillation crystal module is misaligned with respect to the second flake crystal unit of the outer scintillation crystal
  • the photosensor array comprises a plurality of photosensors, one of the plurality of photosensors being coupled to one of the flake-shaped scintillation crystal units.
  • the photosensor array comprises a plurality of photosensors, at least one of which is coupled to a plurality of the flake-shaped scintillation crystal units, respectively.
  • the photosensor array comprises m ⁇ n photosensors, wherein m and n are positive integers, and the photosensors on the mth row are misaligned with the photosensors on the m+1th row.
  • the photosensor array comprises m ⁇ n photosensors, wherein m and n are positive integers, and the photosensors on the nth column are misaligned with the photosensors on the n+1th column.
  • a positron emission imaging apparatus including a readout circuit module, a data processing module, and a detector as described above, the readout circuit module and the a photosensor array connection for receiving an electrical signal output by the photosensor array, and outputting energy information and time information of the gamma photon, wherein the electrical signal is light of the visible light detected by the photosensor array The signal is obtained by conversion.
  • the data processing module is coupled to the readout circuit module for performing data processing and image reconstruction on the energy information and the time information to obtain a scanned image of an object to be imaged.
  • the detector provided by the present invention has the following main advantages:
  • crystal assembly is simple, can greatly reduce the position error caused by multi-module positioning and splicing;
  • FIG. 1 is a structural diagram of a detector for a positron emission imaging apparatus according to an embodiment of the present invention
  • FIGS. 2a-2d are schematic views showing the arrangement of a light transmission window according to an embodiment of the invention.
  • FIG. 3 is a schematic diagram of DOI decoding of a detector in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of windowed DOI decoding according to an embodiment of the invention.
  • 5a-5d are structural views of a flake-shaped scintillation crystal unit according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a scintillation crystal module according to still another embodiment of the present invention.
  • FIG. 7a-7d are structural views of a flake-shaped scintillation crystal unit according to still another embodiment of the present invention.
  • FIG. 8 is a structural diagram of a detector for a positron emission imaging apparatus according to still another embodiment of the present invention.
  • 9a-9c are schematic diagrams showing a coupling manner of a photosensor array of a detector according to an embodiment of the invention.
  • 10a-10d are schematic diagrams showing a coupling manner of a photosensor and a flake scintillation crystal unit on the same optical readout surface according to an embodiment of the invention
  • Figure 11 is a schematic illustration of a positron emission imaging apparatus in accordance with one embodiment of the present invention.
  • the present invention provides a detector for a positron emission imaging apparatus that includes a scintillation crystal module and a photosensor array.
  • the scintillation crystal module 10 includes a plurality of flake scintillation crystal units 11, each flake crystal unit 11 having a through hole 111, and a plurality of flake scintillation crystal units 11 are axially stacked to form a scintillation crystal module 10.
  • the scintillation crystal module formed by the stacking has an inner wall 106, an outer wall 108, and a through hole 105.
  • the through hole 105 is for accommodating the object to be imaged, and the center line of the through hole 105 coincides with the center line of the through hole 111.
  • the photosensor array 20 is coupled to the outer wall 108 of the scintillation crystal module, and the surface on which the outer wall 108 is located is an optical readout surface (which will be referred to hereinafter to the inner wall 106 coupled to the scintillation crystal module, and to the inner wall 106 and the outer wall 108 of the scintillation crystal module).
  • An embodiment of the coupled photosensor array is for detecting a photon generated by a reaction of a gamma photon with a scintillation crystal module 10, wherein the gamma photon is generated by a positron quenching effect occurring in a body to be imaged.
  • the detector of the positron emission to image forming apparatus of the present invention is assembled into a scintillation crystal module 10 by a flake-shaped scintillation crystal unit 11 having a through hole 111, and the flake-like scintillation crystal unit 11 can be reflected from each other.
  • the layers 40 are connected (i.e., adjacent two flake-like scintillation crystal units are connected by a reflective layer 40), and the flake-like scintillation crystal unit 11 is axially stacked to satisfy the axial field length requirement.
  • the reflective layer 40 There are many kinds of materials for the reflective layer 40, including diffuse reflection materials: BaSO4, coating, etc., specular reflection materials: ESR, coating, etc.; diffuse emission, specular reflection mixed materials: Teflon tape, titanium oxide coating, etc., by adjusting the reflection
  • diffuse reflection materials BaSO4, coating, etc.
  • specular reflection materials ESR, coating, etc.
  • diffuse emission, specular reflection mixed materials Teflon tape, titanium oxide coating, etc.
  • a plurality of flake-shaped scintillation crystal units 11 may be assembled into a small scintillation crystal module, and then stacked into a scintillation crystal module 10 by a plurality of small scintillation crystal modules.
  • the photosensor array 20 and the scintillation crystal module 10 may be connected by a light guide 30 such that the photosensor detects an optical signal of the uncoupled crystal to achieve position decoding.
  • the scintillation crystal module 10 and the photosensor array 20 may be directly coupled together by a coupling agent such as optical glue, or by air coupling or the like.
  • a light-transmissive window 50 can be formed on the light-reflecting layer 40, and the light-transmitting window 50 can be realized by using a reflective material, air or optical glue at the same time.
  • the light-transmitting window 50 is arranged in various manners.
  • one light-transmissive window 50 on each light-reflecting layer 40 is disposed inside the light-reflecting layer 40 (as shown in FIG. 2a).
  • the interior is closer to the inner wall 106 of the scintillation crystal module than the exterior of the flash crystal module; or the light transmissive window 50 on each of the light reflecting layers 40 is disposed outside the reflective layer 40 (as shown in FIG. 2b).
  • the outer portion is closer to the outer wall 108 of the scintillation crystal module than the inner portion of the flash crystal module; or two light transmissive windows 50 on each of the light reflecting layers 40 are respectively disposed inside and outside the light reflecting layer 40 (as shown in FIG. 2c).
  • the light-transmissive window 50 on each of the light-reflecting layers 40 is plural, and the plurality of light-transmissive windows 50 are disposed on the light-reflecting layer 50 at intervals from the inside to the outside or from the outside to the inside (as shown in FIG. 2d). ).
  • the photosensor array 20 is used to measure the light distribution in the height direction to achieve height direction decoding, and the algorithm may select a center of gravity algorithm, a neural network algorithm or other algorithms;
  • angular direction decoding through the photoelectric sensor array 20, measuring the light distribution in the angular direction, to achieve angular direction decoding, the algorithm can choose the center of gravity algorithm, neural network algorithm or other algorithms;
  • DOI (radial direction) decoding The photosensor array 20 is used to measure the light distribution that can be used for DOI direction decoding.
  • the algorithm may use a neural network algorithm or other algorithms; as shown in the upper left corner of Fig. 3, the photosensor 21 is read at both ends. Out, read the half-width and peak of the energy signal, and use the neural network algorithm to achieve DOI decoding.
  • a plurality of flake-shaped scintillation crystal units 11 are axially stacked to form a scintillation crystal module, and the photosensor 21 is coupled to the outer wall of the scintillation crystal module, and the light-transmitting window 50 on each of the light-reflecting layers 40 is one.
  • reaction positions of different depths can obtain a large difference light distribution from the single-ended photoelectric sensor 21, thereby realizing DOI decoding.
  • the flake-shaped scintillation crystal unit 11 is circular, the through-hole 111 is also circular, and the scintillation crystal module 10 formed by axially stacking the plurality of flake-shaped scintillation crystal units 11 is cylindrical ( Figure 1).
  • the flake-shaped scintillation crystal unit 11 is circular, the through-hole 111 is polygonal, and the scintillation crystal module 10 formed by axially stacking the plurality of flake-shaped scintillation crystal units 11 has a cylindrical shape as a whole.
  • the flake-shaped scintillation crystal unit 11 is polygonal, the through-hole 111 is circular, and the scintillation crystal module 10 formed by axially stacking the plurality of flake-shaped scintillation crystal units 11 has a polygonal prism shape as a whole.
  • the flake-shaped scintillation crystal unit 11 is polygonal
  • the through-hole 111 is also polygonal
  • the scintillation crystal module 10 formed by axially stacking the plurality of flake-shaped scintillation crystal units 11 has a polygonal prism shape as a whole. It should be noted that in the case where the flake-shaped scintillation crystal unit 11 is a polygon and the through hole 111 is also a polygonal through hole, the number of sides of the flake scintillation crystal unit 11 and the number of sides of the through hole may be the same or different.
  • the flake-shaped scintillation crystal unit 11 is shown as a hexagonal structure, the scintillation crystal module 10 formed by axially stacking has a hexagonal columnar structure as a whole, but it should be noted that the flake-shaped scintillation crystal unit 11
  • the number of sides can be any suitable number, and the invention does not limit this.
  • the flake-shaped scintillation crystal unit 11 may be a triangle, a quadrangle, a pentagon or the like.
  • the scintillation crystal modules stacked in the axial direction may be a triangular prism, a quadrangular prism, a pentagonal column, or the like.
  • the through holes may be quadrilateral through holes, hexagonal through holes, twenty-four-sided through holes, and the like.
  • FIG. 6 is a structural diagram of a scintillation crystal module according to still another embodiment of the present invention.
  • the flake-shaped scintillation crystal unit 11 is connected by a plurality of scintillation crystals 101.
  • the fan-shaped scintillation crystals 101 are connected by a connecting body 102 to form an annular flake-shaped scintillation crystal unit 11, and the connecting body It may be an optical glue, and the two annular sheet-like scintillation crystal units 11 may be connected by a reflective sheet 40'.
  • the optical glue acts as a connection while allowing light between the fan-shaped scintillation crystals 101 to be transmitted to each other to form a semi-continuous crystal, and the connector 102 includes, but is not limited to, optical glue.
  • the scintillation crystal 101 is a fan-shaped ring, and the fan-shaped scintillation crystals 101 are connected by the connecting body 102 into an annular flake-shaped scintillation crystal unit 11, and the through holes 111 are circular and plural.
  • the scintillation crystal module 10 formed by axially stacking the annular sheet-like scintillation crystal unit 11 has a cylindrical shape (Fig. 6).
  • the outer edge of the scintillation crystal 101 is curved, and the inner edge is linear.
  • Each of the two scintillation crystals 101 is connected by a connecting body 102 into a flake-shaped scintillation crystal unit 11, a flake-shaped scintillation crystal.
  • the unit 11 has a circular shape as a whole, and the through hole 111 has a polygonal shape.
  • the scintillation crystal module 10 formed by axially stacking a plurality of sheet-like scintillation crystal units 11 has a cylindrical shape as a whole.
  • the inner edge of the scintillator crystal 101 is linear, and the outer edge is linear.
  • Each of the two scintillation crystals 101 is connected by a connecting body 102 into a flake-shaped scintillation crystal unit 11, a flake-shaped scintillation crystal.
  • the unit 11 has a polygonal shape as a whole, and the through hole 111 has a circular shape.
  • the scintillation crystal module 10 formed by stacking a plurality of sheet-like scintillation crystal units 11 in the axial direction has a polygonal prism shape as a whole.
  • the inner edge of the scintillator crystal 101 is linear, and the outer edge is linear.
  • Each of the two scintillation crystals 101 is connected by a connecting body 102 into a flake-shaped scintillation crystal unit 11, a flake-shaped scintillation crystal.
  • the unit 11 has a polygonal shape as a whole, and the through hole 111 is also polygonal.
  • the scintillation crystal module 10 formed by axially stacking a plurality of sheet-like scintillation crystal units 11 has a polygonal prism shape as a whole.
  • the number of sides of the flake scintillation crystal unit 11 and the number of sides of the through hole may be the same or different.
  • the flake-shaped scintillation crystal unit 11 is shown as a hexagonal structure, the scintillation crystal module 10 formed by axially stacking has a hexagonal columnar structure as a whole, but it should be noted that the flake-shaped scintillation crystal unit 11
  • the number of sides can be any suitable number, and the invention does not limit this.
  • the flake-shaped scintillation crystal unit 11 may be a triangle, a quadrangle, a pentagon or the like.
  • the scintillation crystal modules stacked in the axial direction may be a triangular prism, a quadrangular prism, a pentagonal column, or the like.
  • the through holes may be quadrilateral through holes, hexagonal through holes, twenty-four-sided through holes, and the like.
  • the scintillation crystal module 10 includes an inner layer scintillation crystal module 110 and an outer layer scintillation crystal module 120.
  • the inner layer scintillation crystal module 110 includes a plurality of first flake scintillation crystal units 1101, each of the first flake scintillation crystals.
  • the unit 1101 has a first through hole 1111, a plurality of first flake scintillation crystal units 1101 are axially stacked to form an inner layer scintillation crystal module 110; and an outer scintillation crystal module 120 includes a plurality of second flake scintillation crystal units 1201, each A second flake crystal unit 1201 has a second through hole 1211, and a plurality of second flake crystal unit 1211 are axially stacked to form an outer scintillation crystal module 120; the first flake crystal unit 1101 can be accommodated in The first flake crystal unit 1101 of the inner scintillation crystal module 110 is misaligned with the second flake crystal unit 1201 of the outer scintillation crystal module 120.
  • the detector of this embodiment introduces a scrambled double-layer scintillation crystal module, and the detector of the structure can perform the reaction depth judgment by decoding the position.
  • Photoelectric sensor array as an important part of the detector, its size, detection efficiency, position distribution and other factors will directly affect the position decoding accuracy, and determine the quality of post-image reconstruction.
  • the performance of the photosensor itself is determined by the production process.
  • the positional arrangement of the photosensor array can be in an in-coupling manner as shown in Figure 9a, i.e., the photosensor array 20 is coupled to the inner wall 106 of the scintillation crystal module 10, and the face of the inner wall 106 is the optical readout surface of the scintillation crystal module 10.
  • the positional arrangement of the photosensor array can also be an outcoupling manner as shown in FIG. 9b, that is, the photosensor array 20 is coupled to the outer wall 108 of the scintillation crystal module 10, and the surface of the outer wall 108 is the optical readout surface of the scintillation crystal module 10. .
  • the positional arrangement of the photosensor array may also adopt an internal and external double coupling manner as shown in FIG. 9c.
  • the inner wall 106 and the outer wall 108 of the scintillation crystal module 10 are coupled with a photosensor array, that is, the photosensor array 20' is coupled to the scintillation crystal.
  • the inner wall 106 of the module 10 the photosensor array 20 is coupled to the outer wall 108 of the scintillation crystal module 10, the surface on which the inner wall 106 is located, and the surface on which the outer wall 108 is located are simultaneously the optical readout surface of the scintillation crystal module 10.
  • the photosensor array 20 includes a plurality of photosensors 21, and one of the plurality of photosensors 21 is coupled to only one flake-shaped scintillation crystal unit 11, The two flake scintillation crystal units 11 are connected by a light reflecting layer 40.
  • FIG. 10b it adopts a one-to-many coupling method.
  • the photosensor array 20 includes a plurality of photosensors 21, and at least one of the plurality of photosensors 21 is coupled with a plurality of flake-shaped scintillation crystal units 11 . As shown in FIG. 10c, it adopts a dislocation coupling manner.
  • the photosensor array 20 includes m ⁇ n photosensors 21, where m and n are positive integers, and the photosensors 21 and n+ on the nth column are The photosensors 21 on the 1 column are arranged in a misaligned manner. As shown in FIG. 10d, it adopts a misalignment coupling mode.
  • the photosensor array 20 includes m ⁇ n photosensors 21, where m and n are positive integers, and the photosensors 21 and m+ on the mth row are The photosensors 21 on one line are arranged in a misaligned manner.
  • Angle direction resolution continuous or semi-continuous crystal has no edge effect, and has great advantages in angular direction decoding
  • DOI resolution the application of internal and external double coupling method or window method, can obtain high DOI resolution by comparing light distribution
  • the positron emission imaging apparatus includes a readout circuit module 200, a data processing module 300, and the above-described detector (shown as detector module 100 in FIG. 11), and the readout circuit module 200 and the detector
  • the photosensor array is connected to receive an electrical signal output by the photosensor array, and output energy information and time information of the gamma photon, wherein the electrical signal is converted by the photoelectric sensor array to detect the optical signal of the visible light acquired.
  • the data processing module 300 is coupled to the readout circuit module 200 for performing data processing and image reconstruction on the energy information and the time information to obtain a scanned image of an object to be imaged.
  • Readout circuit module 200 and data processing module 300 can be implemented using any suitable hardware, software, and/or firmware.
  • the data processing module 300 can employ a field programmable gate array (FPGA), a digital signal processor (DSP), a complex programmable logic device (CPLD), a micro control unit (MCU), or a central processing unit (CPU).
  • FPGA field programmable gate array
  • DSP digital signal processor
  • CPLD complex programmable logic device
  • MCU micro control unit
  • CPU central processing unit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种检测器和具有检测器的发射成像设备。检测器包括闪烁晶体模块(10)以及光电传感器阵列(20, 20'),闪烁晶体模块(10)包括多个片状闪烁晶体单元(11),每一片状闪烁晶体单元(11)具有通孔(111),多个片状闪烁晶体单元(11)轴向堆积以形成闪烁晶体模块(10),堆积所形成的闪烁晶体模块(10)具有内壁(106)、外壁(108)和贯穿孔(105),贯穿孔(105)用于容纳待成像对象。光电传感器阵列(20, 20')耦合在闪烁晶体模块(10)的内壁(106)或/和闪烁晶体模块(10)的外壁(108),用于检测伽玛光子与闪烁晶体模块(10)发生反应所产生的可见光子,其中,伽玛光子通过在待成像对象体内发生的正电子湮灭效应产生。检测器加工难度低,组装简单,且具备较高的DOI解码精度及位置解码能力。

Description

用于正电子发射成像设备的检测器及正电子发射成像设备 技术领域
本发明涉及正电子发射成像领域,具体地,涉及一种用于正电子发射成像设备的检测器及正电子发射成像设备。
背景技术
医用正电子发射断层成像系统(Positron Emission Tomography,PET)是国际先进医疗器械的代表产品,它是利用放射性元素示踪方法来显示人体或动物体内部结构的技术,临床上广泛应用于肿瘤、心脑血管疾病和神经退行性疾病的早期诊断、治疗方案制定、预后效果预测和药物疗效评估等。
传统的医用正电子发射断层成像系统,检测器系统一般由多个方形检测器模块通过机械结构连接,组成圆筒形的包络结构,用于拦截接收放射性物质释放的伽马光子。具体地,方形检测器模块由闪烁晶体(闪烁晶体阵列)、光电传感器耦合而成,有些设计还会将读出电路置入到模块内;多个方形检测器通过复杂的机械结构固定,沿圆柱面或者球面排布,形成伽马光子检测层。
由于检测器的组装拼接,导致传统的正电子发射成像设备大多采用离散晶体设计,离散晶体的设计往往会导致如下几个问题:
(1)晶体加工难度大:传统方形晶体设计往往使用小尺寸的闪烁晶体单元,以提高系统分辨率,但是这种方法对晶体加工要求严格,成本昂贵;
(2)边缘效应:离散晶体组装设计中可能出现边缘效应,使得检测到的光子位置信息不能正确反映光分布,导致解码精度低,成像设备空间分辨率低;
(3)组装存在位置误差:拼装在一起的探测器模块容易产生定位误差,从而导致符合事件的检测出现偏差,进而影响成像设备的空间分辨率;
(4)检测间隙:检测间隙包括晶体组装间隙:离散晶体拼接时会产生较大的组装间隙,探测模块间隙:方形探测模块沿环形排布时无法形成完整的检测面,两者都会导致检测间隙的出现,从而减小系统灵敏度。
传统的正电子发射成像设备也有采用片状的连续晶体设计,片状的连续晶体通过光学连接、从而组成半连续晶体,是一种由来已久的解决方案。该方法一定程度上减少了对晶体加工工艺难度的要求,但是仍然无法解决边缘效应带来的问题。
因此,有必要提出一种用于正电子发射成像设备的检测器、以及包括该检测器的正电子发射成像设备,以减小机械设计难度,提高系统灵敏度和空间分辨率,提高解码精度进一步提高系统分辨率。
发明内容
根据本发明的一个方面,提供一种用于正电子发射成像设备的检测器,包括闪烁晶体模块以及光电传感器阵列,闪烁晶体模块包括多个片状闪烁晶体单元,每一所述片状闪烁晶体单元具有通孔,多个片状闪烁晶体单元轴向堆积以形成所述闪烁晶体模块,堆积所形成的所述闪烁晶体模块具有内壁、外壁和贯穿孔,所述贯穿孔用于容纳待成像对象。光电传感器阵列耦合在所述闪烁晶体模块的内壁或/和所述闪烁晶体模块的外壁,用于检测伽玛光子与所述闪烁晶体模块发生反应所产生的可见光子,其中,所述伽玛光子通过在所述待成像对象体内发生的正电子湮灭效应产生。
优选地,相邻两所述的片状闪烁晶体单元之间通过反光层连接。
优选地,所述反光层上开设有透光窗口。
优选地,每一所述反光层上的所述透光窗口为一个,设置在所述反光层的内部或外部;或,每一所述反光层上的所述透光窗口为两个,分别设置在所述反光层的内部和外部;或,每一所述反光层上的所述透光窗口为多个,多个透光窗口以从内到外或从外到内的排布方式间隔设置在所述反光层上。
优选地,所述闪烁晶体模块整体呈多棱柱状或圆柱状。
优选地,所述通孔为圆形或多边形。
优选地,所述片状闪烁晶体单元由多个闪烁晶体连接而成。
优选地,所述闪烁晶体模块包括内层闪烁晶体模块和外层闪烁晶体模块,所述内层闪烁晶体模块包括多个第一片状闪烁晶体单元,每一所述第一片状闪烁晶体单元具有第一通孔,多个第一片状闪烁晶体单元轴向堆积以形成所述内层闪烁晶体模块;所述外层闪烁晶体模块包括多个第二片状闪烁晶体单元,每一所述第二片状闪烁晶体单元具有第二通孔,多个第二 片状闪烁晶体单元轴向堆积以形成所述外层闪烁晶体模块;所述第一片状闪烁晶体单元能够容置在所述第二通孔内,且所述内层闪烁晶体模块的所述第一片状闪烁晶体单元相对所述外层闪烁晶体模块的所述第二片状闪烁晶体单元错位排列。
优选地,所述光电传感器阵列包括多个光电传感器,所述多个光电传感器中的一个分别耦合有一个所述片状闪烁晶体单元。
优选地,所述光电传感器阵列包括多个光电传感器,所述多个光电传感器中的至少一个分别耦合有多个所述片状闪烁晶体单元。
优选地,所述光电传感器阵列包括m×n个光电传感器,其中m、n为正整数,且第m行上的光电传感器与第m+1行上的光电传感器错位排列。
优选地,所述光电传感器阵列包括m×n个光电传感器,其中m、n为正整数,且第n列上的光电传感器与第n+1列上的光电传感器错位排列。
根据本发明的另一个方面,还提供一种正电子发射成像设备,所述正电子发射成像设备包括读出电路模块、数据处理模块和如上述的检测器,所述读出电路模块与所述光电传感器阵列连接,用于接收所述光电传感器阵列输出的电信号,并输出伽玛光子的能量信息和时间信息,所述电信号是通过所述光电传感器阵列对其检测到的可见光子的光信号进行转换而获得的。所述数据处理模块与所述读出电路模块连接,用于对所述能量信息和所述时间信息进行数据处理和图像重建,以获得待成像对象的扫描图像。
由于采用带通孔的片状闪烁晶体单元堆积形成闪烁晶体模块,本发明提供的检测器主要有以下几大优势:
1、晶体加工难度降低,系统成本下降;
2、连续或半连续晶体结构,能够减少边缘效应带来的解码误差;
3、晶体组装简单,可极大地减少多模块定位、拼接带来的位置误差;
4、极小甚至无的晶体间隙,充分提高系统灵敏度。
在发明内容中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
以下结合附图,详细说明本发明的优点和特征。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施方式及其描述,用来解释本发明的原理。在附图中,
图1为根据本发明一个实施例的用于正电子发射成像设备的检测器的结构图;
图2a-图2d为根据本发明的一实施例的透光窗口设置示意图;
图3为根据本发明的一实施例的检测器的DOI解码的示意图;
图4为根据本发明的一实施例的开窗DOI解码原理图;
图5a-图5d为根据本发明实施例的片状闪烁晶体单元的结构图;
图6为根据本发明又一个实施例的闪烁晶体模块的结构图;
图7a-图7d为根据本发明又一个实施例的片状闪烁晶体单元的结构图;
图8为根据本发明又一个实施例的用于正电子发射成像设备的检测器的结构图;
图9a-图9c为根据本发明实施例的检测器的光电传感器阵列的一种耦合方式示意图;
图10a-图10d为根据本发明的实施例的同一光读出面上光电传感器与片状闪烁晶体单元的耦合方式示意图;
图11为根据本发明一个实施例的正电子发射成像设备的示意图。
其中,附图标记为
10-晶体模块
11-片状闪烁晶体单元
111-通孔
101-闪烁晶体
102-连接体
105-贯穿孔
110-内层闪烁晶体模块
1101-第一片状闪烁晶体单元
1111-通孔
120-外层闪烁晶体模块
1201-第二片状闪烁晶体单元
1211-通孔
20、20′-光电传感器阵列
21-光电传感器
30-光导
40-反光层
40′-反光片
50-透光窗口
100-检测器模块
200-读出电路模块
300-数据处理模块
具体实施方式
在下文的描述中,提供了大量的细节以便能够彻底地理解本发明。然而,本领域技术人员可以了解,如下描述仅涉及本发明的较佳实施例,本发明可以无需一个或多个这样的细节而得以实施。此外,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
本发明提供一种用于正电子发射成像设备的检测器,其包括闪烁晶体模块和光电传感器阵列。如图1所示,闪烁晶体模块10包括多个片状闪烁晶体单元11,每一片状闪烁晶体单元11具有通孔111,多个片状闪烁晶体单元11轴向堆积以形成闪烁晶体模块10,堆积所形成的闪烁晶体模块具有内壁106、外壁108和贯穿孔105。贯穿孔105用于容纳待成像对象,贯穿孔105的中心线与通孔111的中心线重合。光电传感器阵列20耦合在闪烁晶体模块的外壁108,外壁108所在的面为光读出面(后续将会提及耦合在闪烁晶体模块的内壁106,以及闪烁晶体模块的内壁106和外壁108上皆耦合光电传感器阵列的实施例),用于检测伽玛光子与闪烁晶体模块10发生反应所产生的可见光子,其中,所述伽玛光子通过在待成像对象体内发生的正电子湮灭效应产生。
从上面的结构描述可以看出,本发明的正电子发射成像设备的检测器由带有通孔111的片状闪烁晶体单元11组装成闪烁晶体模块10,片状闪烁晶体单元11相互间可由反光层40连接(即,相邻两片状闪烁晶体单元之间通过反光层40连接),片状闪烁晶体单元11轴向堆积以满足轴向视场长度的要求。反光层40的材料有很多种,包括漫反射材料:BaSO4、镀膜等,镜面反射材料:ESR、镀膜等;漫发射、镜面反射混合材料:特氟龙胶带、氧化钛涂层等,通过调节反光层40的厚度,可以让相邻片状闪烁晶 体单元11间透光,从而实现位置解码。
在实际组装过程中,可以是多个片状闪烁晶体单元11先组装成小闪烁晶体模块,再由多个小闪烁晶体模块轴向堆积成闪烁晶体模块10。
示例性地,光电传感器阵列20与闪烁晶体模块10之间可以通过光导30连接,从而使光电传感器检测到非耦合晶体的光信号,实现位置解码。在未示出的实施例中,闪烁晶体模块10和光电传感器阵列20可以通过例如光学胶水的耦合剂、或者通过空气耦合等方式直接耦合在一起。
示例性地,反光层40上可以开设有透光窗口50,透光窗口50可同时使用反光材料、空气或光学胶水得以实现。
结合参阅图2a至图2d,透光窗口50的设置方式有多种,如,每一反光层40上的透光窗口50为一个,设置在反光层40的内部(如图2a),此处的内部相对后叙的外部而言,更靠近闪烁晶体模块的内壁106;或,每一反光层40上的透光窗口50为一个,设置在反光层40的外部(如图2b),此处的外部相对前叙的内部而言,更靠近闪烁晶体模块的外壁108;或,每一反光层40上的透光窗口50为两个,分别设置在反光层40的内部和外部(如图2c);或,每一反光层40上的透光窗口50为多个,多个透光窗口50以从内到外或从外到内的排布方式间隔设置在反光层50上(如图2d)。
结合参阅图3,针对片状闪烁晶体单元11组成的晶体模块,以图1结构及透光窗口为例,提出以下位置解码方法:
1、高度方向解码:通过光电传感器阵列20,测量高度方向的光分布,实现高度方向解码,算法可选用重心算法,神经网络算法或其他算法;
2、角度方向解码:通过光电传感器阵列20,测量角度方向的光分布,实现角度方向解码,算法可选用重心算法,神经网络算法或其他算法;
3、DOI(半径方向)解码:通过光电传感器阵列20,测量可用于DOI方向解码的光分布,算法可选用神经网络算法或其他算法;如图3左上角图所示,光电传感器21双端读出,读取能量信号的半峰宽和峰值,利用神经网络算法实现DOI解码。
又如图4所示,多个片状闪烁晶体单元11轴向堆积以形成闪烁晶体模块,光电传感器21耦合在闪烁晶体模块的外壁,每一反光层40上的透光窗口50为一个,设置在反光层40的内部,即,采用内部单窗法,不同深 度的反应位置能从单端光电传感器21中获得大差异的光分布,从而实现DOI解码。
示例性地,如图5a所示,片状闪烁晶体单元11为圆形,通孔111也为圆形,多个片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10为圆柱状(如图1)。
示例性地,如图5b所示,片状闪烁晶体单元11为圆形,通孔111为多边形,多个片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10整体为圆柱状。
示例性地,如图5c所示,片状闪烁晶体单元11为多边形,通孔111为圆形,多个片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10整体为多棱柱状。
示例性地,如图5d所示,片状闪烁晶体单元11为多边形,通孔111也为多边形,多个片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10整体为多棱柱状。应注意,在片状闪烁晶体单元11为多边形,通孔111也为多边形通孔的情况下,片状闪烁晶体单元11的边数和通孔的边数可以相同,也可以不同。
虽然在图5c和图5d中,片状闪烁晶体单元11示出为六边形结构,轴向堆积而形成的闪烁晶体模块10整体为六棱柱状结构,但是应注意,片状闪烁晶体单元11的边数均可以是任何合适的数目,本发明不对此进行限制。例如,片状闪烁晶体单元11可以是三角形,四边形,五边形等,对应地,轴向堆积而成的闪烁晶体模块可以是三棱柱状、四棱柱状、五棱柱状,等等。同样地,通孔可以是四边形通孔、六边形通孔、二十四边形通孔,等等。
如图6所示,为根据本发明又一个实施例的闪烁晶体模块的结构图。本实施例中,片状闪烁晶体单元11由多个闪烁晶体101连接而成,示例性地,扇环状的闪烁晶体101之间由连接体102连接成环形片状闪烁晶体单元11,连接体可以是光学胶水,两环形片状闪烁晶体单元11之间可以由反光片40′连接。光学胶水起连接作用,同时使扇环状的闪烁晶体101之间的光可以相互传输,组成半连续晶体,连接体102包括但不限于光学胶水。
示例性地,如图7a所示,闪烁晶体101为扇环状,扇环状的闪烁晶体 101之间由连接体102连接成环形片状闪烁晶体单元11,通孔111为圆形,多个环形片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10为圆柱状(如图6)。
示例性地,如图7b所示,闪烁晶体101的外缘为弧形,内缘为直线形,每两闪烁晶体101之间由连接体102连接成片状闪烁晶体单元11,片状闪烁晶体单元11整体为圆形,通孔111为多边形,多个片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10整体为圆柱状。
示例性地,如图7c所示,闪烁晶体101的内缘为直线形,外缘为直线形,每两闪烁晶体101之间由连接体102连接成片状闪烁晶体单元11,片状闪烁晶体单元11整体为多边形,通孔111为圆形,多个片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10整体为多棱柱状。
示例性地,如图7d所示,闪烁晶体101的内缘为直线形,外缘为直线性,每两闪烁晶体101之间由连接体102连接成片状闪烁晶体单元11,片状闪烁晶体单元11整体为多边形,通孔111也为多边形,多个片状闪烁晶体单元11轴向堆积而形成的闪烁晶体模块10整体为多棱柱状。应注意,在片状闪烁晶体单元11为多边形,通孔111也为多边形通孔的情况下,片状闪烁晶体单元11的边数和通孔的边数可以相同,也可以不同。
虽然在图7c和图7d中,片状闪烁晶体单元11示出为六边形结构,轴向堆积而形成的闪烁晶体模块10整体为六棱柱状结构,但是应注意,片状闪烁晶体单元11的边数均可以是任何合适的数目,本发明不对此进行限制。例如,片状闪烁晶体单元11可以是三角形,四边形,五边形等,对应地,轴向堆积而成的闪烁晶体模块可以是三棱柱状、四棱柱状、五棱柱状,等等。同样地,通孔可以是四边形通孔、六边形通孔、二十四边形通孔,等等。
如图8所示,为根据本发明又一个实施例的检测器的结构图。本实施例中,闪烁晶体模块10包括内层闪烁晶体模块110和外层闪烁晶体模块120,内层闪烁晶体模块110包括多个第一片状闪烁晶体单元1101,每一第一片状闪烁晶体单元1101具有第一通孔1111,多个第一片状闪烁晶体单元1101轴向堆积以形成内层闪烁晶体模块110;外层闪烁晶体模块120包括多个第二片状闪烁晶体单元1201,每一第二片状闪烁晶体单元1201具有第二通孔1211,多个第二片状闪烁晶体单元1211轴向堆积以形成外 层闪烁晶体模块120;第一片状闪烁晶体单元1101能够容置在第二通孔1211内,且内层闪烁晶体模块110的第一片状闪烁晶体单元1101相对外层闪烁晶体模块120的第二片状闪烁晶体单元1201错位排列。本实施例的检测器引入了错位双层的闪烁晶体模块,该结构的检测器能通过解码位置进行反应深度判断。
光电传感器阵列作为检测器重要的组成部分,其尺寸、探测效率、位置分布等因素,将直接影响位置解码精度,并决定后期图像重建的质量。而光电传感器本身的性能由生产工艺过程决定。光电传感器阵列的位置布置可以采用如图9a所示的内耦合方式,即,光电传感器阵列20耦合至闪烁晶体模块10的内壁106,内壁106所在的面为闪烁晶体模块10的光读出面。
光电传感器阵列的位置布置还可以采用如图9b所示的外耦合方式,即,光电传感器阵列20耦合至闪烁晶体模块10的外壁108,外壁108所在的面为闪烁晶体模块10的光读出面。
光电传感器阵列的位置布置还可以采用如图9c所示的内外双耦合方式,闪烁晶体模块10的内壁106和外壁108上皆耦合有光电传感器器阵列,即,光电传感器阵列20′耦合至闪烁晶体模块10的内壁106,光电传感器阵列20耦合至闪烁晶体模块10的外壁108,内壁106所在的面、外壁108所在的面同时为闪烁晶体模块10的光读出面。
在同一光读出面上,光电传感器与片状闪烁晶体单元之间的耦合也有多种方式。如图10a所示,其采用一对一耦合方式,具体来说,光电传感器阵列20包括多个光电传感器21,多个光电传感器中的一个光电传感器21仅仅耦合有一个片状闪烁晶体单元11,两片状闪烁晶体单元11之间通过反光层40连接。如图10b所示,其采用一对多耦合方式,具体来说,光电传感器阵列20包括多个光电传感器21,多个光电传感器中的至少一个光电传感器21耦合有多个片状闪烁晶体单元11。如图10c所示,其采用错位耦合方式,具体来说,光电传感器阵列20包括m×n个光电传感器21,其中m、n为正整数,且第n列上的光电传感器21与第n+1列上的光电传感器21错位排列。如图10d所示,其采用错位耦合方式,具体来说,光电传感器阵列20包括m×n个光电传感器21,其中m、n为正整数,且第m行上的光电传感器21与第m+1行上的光电传感器21错位排列。
本发明的检测器由于采用带通孔的片状闪烁晶体单元堆积形成闪烁晶体模块,单就位置解码角度而言,有以下优势:
1、角度方向分辨率:连续或半连续晶体无边缘效应,在角度方向解码上具有极大优势;
2、轴向分辨率:与传统晶体组装方式类似,轴向分辨率取决于组装晶体片的厚度;
3、DOI分辨率:应用内外双耦合法或者窗口法,可以通过对比光分布获得高的DOI分辨率;
4、多对一耦合可以降低系统成本,错位耦合可以获得特别的位置解码效果。
根据本发明另一方面,提供一种正电子发射成像设备。如图11所示,正电子发射成像设备包括读出电路模块200、数据处理模块300和上述的检测器(图11中示出为检测器模块100),读出电路模块200与检测器中的光电传感器阵列连接,用于接收光电传感器阵列输出的电信号,并输出伽玛光子的能量信息和时间信息,所述电信号是通过光电传感器阵列对其检测到的可见光子的光信号进行转换而获得的。数据处理模块300与读出电路模块200连接,用于对所述能量信息和所述时间信息进行数据处理和图像重建,以获得待成像对象的扫描图像。读出电路模块200和数据处理模块300可以采用任何合适的硬件、软件和/或固件实现。示例性地,数据处理模块300可以采用现场可编程门阵列(FPGA)、数字信号处理器(DSP)、复杂可编程逻辑器件(CPLD)、微控制单元(MCU)或中央处理单元(CPU)等实现。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (13)

  1. 一种用于正电子发射成像设备的检测器,其特征在于,包括:
    闪烁晶体模块,包括多个片状闪烁晶体单元,每一所述片状闪烁晶体单元具有通孔,多个片状闪烁晶体单元轴向堆积以形成所述闪烁晶体模块,堆积所形成的所述闪烁晶体模块具有内壁、外壁和贯穿孔,所述贯穿孔用于容纳待成像对象;以及
    光电传感器阵列,耦合在所述闪烁晶体模块的内壁或/和所述闪烁晶体模块的外壁,用于检测伽玛光子与所述闪烁晶体模块发生反应所产生的可见光子,其中,所述伽玛光子通过在所述待成像对象体内发生的正电子湮灭效应产生。
  2. 如权利要求1所述的检测器,其特征在于,相邻两所述的片状闪烁晶体单元之间通过反光层连接。
  3. 如权利要求2所述的检测器,其特征在于,所述反光层上开设有透光窗口。
  4. 如权利要求3所述的检测器,其特征在于,每一所述反光层上的所述透光窗口为一个,设置在所述反光层的内部或外部;或,每一所述反光层上的所述透光窗口为两个,分别设置在所述反光层的内部和外部;或,每一所述反光层上的所述透光窗口为多个,多个透光窗口以从内到外或从外到内的排布方式间隔设置在所述反光层上。
  5. 如权利要求1所述的检测器,其特征在于,所述闪烁晶体模块整体呈多棱柱状或圆柱状。
  6. 如权利要求1所述的检测器,其特征在于,所述通孔为圆形或多边形。
  7. 如权利要求1所述的检测器,其特征在于,所述片状闪烁晶体单元由多个闪烁晶体连接而成。
  8. 如权利要求1-7中任意一项所述的检测器,其特征在于,所述闪烁晶体模块包括内层闪烁晶体模块和外层闪烁晶体模块,所述内层闪烁晶体模块包括多个第一片状闪烁晶体单元,每一所述第一片状闪烁晶体单元具有第一通孔,多个第一片状闪烁晶体单元轴向堆积以形成所述内层闪烁晶体模块;所述外层闪烁晶体模块包括多个第二片状闪烁晶体单元,每一所 述第二片状闪烁晶体单元具有第二通孔,多个第二片状闪烁晶体单元轴向堆积以形成所述外层闪烁晶体模块;所述第一片状闪烁晶体单元能够容置在所述第二通孔内,且所述内层闪烁晶体模块的所述第一片状闪烁晶体单元相对所述外层闪烁晶体模块的所述第二片状闪烁晶体单元错位排列。
  9. 如权利要求1-7中任意一项所述的检测器,其特征在于,所述光电传感器阵列包括多个光电传感器,所述多个光电传感器中的一个分别耦合有一个所述片状闪烁晶体单元。
  10. 如权利要求1-7中任意一项所述的检测器,其特征在于,所述光电传感器阵列包括多个光电传感器,所述多个光电传感器中的至少一个分别耦合有多个所述片状闪烁晶体单元。
  11. 如权利要求1-7中任意一项所述的检测器,其特征在于,所述光电传感器阵列包括m×n个光电传感器,其中m、n为正整数,且第m行上的光电传感器与第m+1行上的光电传感器错位排列。
  12. 如权利要求1-7中任意一项所述的检测器,其特征在于,所述光电传感器阵列包括m×n个光电传感器,其中m、n为正整数,且第n列上的光电传感器与第n+1列上的光电传感器错位排列。
  13. 一种正电子发射成像设备,其特征在于,所述正电子发射成像设备包括读出电路模块、数据处理模块和如权利要求1-12中任一项所述的检测器,其中,
    所述读出电路模块与所述光电传感器阵列连接,用于接收所述光电传感器阵列输出的电信号,并输出伽玛光子的能量信息和时间信息,所述电信号是通过所述光电传感器阵列对其检测到的可见光子的光信号进行转换而获得的;
    所述数据处理模块与所述读出电路模块连接,用于对所述能量信息和所述时间信息进行数据处理和图像重建,以获得待成像对象的扫描图像。
PCT/CN2018/119268 2017-12-18 2018-12-05 用于正电子发射成像设备的检测器及正电子发射成像设备 WO2019120078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711361772.8A CN108562928B (zh) 2017-12-18 2017-12-18 用于正电子发射成像设备的检测器及正电子发射成像设备
CN201711361772.8 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019120078A1 true WO2019120078A1 (zh) 2019-06-27

Family

ID=63529478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119268 WO2019120078A1 (zh) 2017-12-18 2018-12-05 用于正电子发射成像设备的检测器及正电子发射成像设备

Country Status (2)

Country Link
CN (1) CN108562928B (zh)
WO (1) WO2019120078A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562928B (zh) * 2017-12-18 2022-01-21 中派科技(深圳)有限责任公司 用于正电子发射成像设备的检测器及正电子发射成像设备
CN109846504B (zh) * 2018-05-07 2021-06-01 山东麦德盈华科技有限公司 一种全角度符合pet探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015061A1 (en) * 2014-07-25 2016-01-28 The Regents Of The University Of California Multiple spatial resolution scintillation detectors
CN106562799A (zh) * 2016-10-19 2017-04-19 武汉中派科技有限责任公司 用于正电子发射成像设备的检测器及正电子发射成像设备
CN106597518A (zh) * 2016-12-21 2017-04-26 中国科学院深圳先进技术研究院 一种pet探测器、pet成像系统和pet检查仪
CN106725574A (zh) * 2017-01-17 2017-05-31 孙红岩 一种正电子发射断层扫描成像系统双层晶体探测器
CN107272043A (zh) * 2017-06-05 2017-10-20 中派科技(深圳)有限责任公司 检测器和具有该检测器的发射成像设备
CN108562928A (zh) * 2017-12-18 2018-09-21 中派科技(深圳)有限责任公司 用于正电子发射成像设备的检测器及正电子发射成像设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755680A (en) * 1984-04-27 1988-07-05 The Curators Of The University Of Missouri Radiation imaging apparatus and methods
EP2360493A1 (en) * 2010-02-15 2011-08-24 Bergen Teknologioverføring AS Detector arrangement for a tomographic imaging apparatus, particularly for a positron emission tomograph
CN105361901B (zh) * 2015-12-19 2018-09-28 山西锦地裕成医疗设备有限公司 正电子发射断层扫描仪深度效应校正方法及其系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015061A1 (en) * 2014-07-25 2016-01-28 The Regents Of The University Of California Multiple spatial resolution scintillation detectors
CN106562799A (zh) * 2016-10-19 2017-04-19 武汉中派科技有限责任公司 用于正电子发射成像设备的检测器及正电子发射成像设备
CN106597518A (zh) * 2016-12-21 2017-04-26 中国科学院深圳先进技术研究院 一种pet探测器、pet成像系统和pet检查仪
CN106725574A (zh) * 2017-01-17 2017-05-31 孙红岩 一种正电子发射断层扫描成像系统双层晶体探测器
CN107272043A (zh) * 2017-06-05 2017-10-20 中派科技(深圳)有限责任公司 检测器和具有该检测器的发射成像设备
CN108562928A (zh) * 2017-12-18 2018-09-21 中派科技(深圳)有限责任公司 用于正电子发射成像设备的检测器及正电子发射成像设备

Also Published As

Publication number Publication date
CN108562928A (zh) 2018-09-21
CN108562928B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2018072721A1 (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
WO2018223918A1 (zh) 检测器和具有该检测器的发射成像设备
CN101796428B (zh) 减小了边缘效应的检测器
JP5011590B2 (ja) 放射線位置検出器
CN101019041B (zh) 放射线方向检测器和放射线监测方法及装置
WO2018223917A1 (zh) 检测器和具有该检测器的发射成像设备
KR101772324B1 (ko) 가변형 핀홀 콜리메이터 및 이를 이용한 방사선 영상 장치
WO2019120078A1 (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
US7049600B2 (en) Scintillation crystal detection arrays for radiation imaging devices
WO2019237858A1 (zh) 用于正电子发射成像设备的探测器及正电子发射成像设备
CN108132483B (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
CN108508474B (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
US4883966A (en) Pet camera with crystal masking
WO2023179761A1 (zh) 一种闪烁晶体阵列、探测器、医疗影像设备及制作方法
CN210626673U (zh) 射线探测器及核医学成像设备
CN216696694U (zh) 探测器及具有其的医学影像设备
CN110926622B (zh) 一种基于片层晶体阵列的高能光子检测装置
KR20150095115A (ko) 양전자방출 단층촬영장치용 검출기 모듈 및 이를 이용한 양전자방출 단층촬영장치
KR101684780B1 (ko) 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치
CN110007332B (zh) 晶体阵列、探测器、医疗检测设备及晶体阵列的制造方法
CN208399701U (zh) 一种用于辐射检测以及发射成像设备的检测器
CN219831404U (zh) 探测器和发射成像设备
KR102340521B1 (ko) 에너지 분리에 기반한 방사선 검출기기용 방사선(감마선) 반응 깊이 측정 방법 및 방사선(감마선) 반응 깊이 측정 장치
CN105380672B (zh) 一种pet检测系统及提高pet检测系统分辨率的方法
CN219126405U (zh) 晶体阵列探测器和发射成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891135

Country of ref document: EP

Kind code of ref document: A1