WO2019120001A1 - 激光器及其控制方法和计算机可读存储介质 - Google Patents

激光器及其控制方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2019120001A1
WO2019120001A1 PCT/CN2018/114457 CN2018114457W WO2019120001A1 WO 2019120001 A1 WO2019120001 A1 WO 2019120001A1 CN 2018114457 W CN2018114457 W CN 2018114457W WO 2019120001 A1 WO2019120001 A1 WO 2019120001A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
heat
time
remaining
Prior art date
Application number
PCT/CN2018/114457
Other languages
English (en)
French (fr)
Inventor
何高锋
蒋峰
Original Assignee
深圳市创鑫激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创鑫激光股份有限公司 filed Critical 深圳市创鑫激光股份有限公司
Publication of WO2019120001A1 publication Critical patent/WO2019120001A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Definitions

  • the present invention relates to the field of laser technology, and more particularly to a laser and its control method and computer readable storage medium.
  • the inventors have found that in the prior art, in order to protect itself, the laser needs to limit the amount of heat of the laser itself.
  • the laser output pulse heat cannot exceed N joules at a certain time, so it is necessary to calculate the heat output of the laser. Turn off the laser when the limited amount of heat is reached.
  • a laser control method comprising:
  • the laser is turned off when the remaining output time is reached or a preset time before the remaining output time is reached.
  • the calculating the remaining output time according to the maximum heat, the accumulated laser output heat, and the laser output power represented by the real-time monitored control signal specifically includes:
  • the determining whether the laser output power represented by the real-time monitored control signal changes, and when the change occurs, updating the remaining output according to the maximum heat, the accumulated laser output heat, and the laser output power represented by the changed control signal includes:
  • the laser output power is updated to calculate the remaining output time.
  • the calculating the remaining laser output heat according to the maximum heat and the accumulated laser output heat is specifically:
  • N2 N-(P1*t1)
  • N2 the residual laser output heat
  • N is equal to the maximum heat
  • P1 the laser output power
  • t1 the laser output power P1 Output time
  • the calculating the remaining output time according to the remaining laser output heat and the laser output power represented by the changed control signal is specifically:
  • the method further includes: when the preset duration is reached, the maximum heat that allows the laser to output uninterruptedly is not accumulated, and the time for the laser to output heat is re-timed.
  • the method further includes:
  • a laser comprising: a storage device for storing maximum heat allowing an uninterrupted output of a laser for a predetermined period of time, a monitoring device, an optical path structure, and a circuit form connected to the optical path structure Driving and control circuit; the monitoring device is configured to monitor a control signal for controlling the output of the laser in real time, the monitoring device feeds back the detected laser output power to the driving and control circuit; the storage device and the The monitoring devices are each connected in circuit form to the drive and control circuitry for implementing the steps of the laser control method described above.
  • the drive and control circuit includes a clock circuit for timing the time at which the laser outputs heat and ending the timing when the remaining output time is reached.
  • a computer readable storage medium having stored therein a computer program, the computer program being executed by a processor to implement the steps of the laser control method described above.
  • a laser control electronic device comprising: at least one processor, at least one memory, at least one input device, at least one output device, and one or more computer programs, wherein the one or A plurality of computer programs are stored in the memory and configured to be executed by the at least one processor, the processor, the memory, the input device, and the output device being coupled by a bus, the processor executing the computer program
  • the steps of the laser control method are implemented as described.
  • the laser control method of the embodiment of the present invention obtains the laser output power represented by the control signal outputted by the real-time monitoring control laser output; calculates the cumulative laser output heat according to the laser output power and the output duration; allows the laser not to be within the preset duration
  • the maximum output of the intermittent output, the accumulated laser output heat, and the laser output power represented by the real-time monitored control signal calculate the remaining output time; close when the remaining output time is reached or the preset time before the remaining output time is reached
  • the laser that is, the embodiment of the present invention proposes a "self-decreasing" algorithm to calculate the current heat output of the current laser. By subtracting the accumulated laser output heat from the maximum heat, combined with the current laser output power, it is possible to quickly calculate how long the laser output heat can last, and control the laser to be self-protected when the heat amount is used up.
  • FIG. 1 is a flow chart of a laser control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of power collection of a laser control method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of monitoring signal change monitoring of a laser control method according to an embodiment of the present invention.
  • FIG. 4 is a control block diagram of a laser control method according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a laser according to an embodiment of the present invention.
  • FIG. 6 is a diagram of a laser control electronic device according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • An embodiment of the present invention discloses a laser control method, and a technical solution for requesting protection is described.
  • the laser control method involved in the detailed description is only a preferred embodiment and is not all possible embodiments of the present invention.
  • the laser output pulse heat does not exceed N joules at a certain time. Therefore, it is necessary to monitor the external power control analog input in real time.
  • the continuous output heat is greater than N joules, the laser should be turned off.
  • the heat is the product of power and time. To limit the heat of the laser, it is necessary to monitor the magnitude and duration of the analog in real time.
  • the laser control method of the embodiment of the present invention includes:
  • Step 10 Obtain a maximum output of the laser that allows the uninterrupted output of the laser within a preset duration and a laser output power represented by a control signal that controls the output of the laser that is monitored in real time; and the control signal that controls the output of the laser is specifically an analog quantity output by the external control board.
  • Step 20 calculating cumulative laser output heat according to the laser output power and the output duration
  • Step 30 Calculate a remaining output time according to the maximum heat, the accumulated laser output heat, and the laser output power represented by the real-time monitored control signal;
  • Step 40 Turn off the laser when the remaining output time is reached or a preset time before the remaining output time is reached.
  • the embodiment of the invention proposes a "self-decreasing" algorithm to calculate the current output heat of the current laser in real time. By subtracting the accumulated laser output heat from the maximum heat, combined with the current laser output power, it is possible to quickly calculate how long the laser output heat can last, and control the laser to be self-protected when the heat amount is used up.
  • the maximum output of the laser is used to monitor whether the maximum heat is reached, it is necessary to collect the analog signal output from the external control board (analog, that is, the control signal that controls the laser output), such as 1ms. Collecting the size of the analog quantity will get the analog quantity in this ms. After the product, the laser heat inside the ms will be obtained, and then the laser heat in each ms will be added up, which is the accumulated laser heat. As shown in Figure 2, the middle longitudinal line is the sampling point, and the power analog quantity is collected at the sampling point.
  • the accuracy of this approach often depends on the acquisition cycle. The smaller the acquisition cycle, the higher the accuracy of the calculation. The larger the acquisition cycle, the lower the accuracy of the calculation.
  • the embodiment of the present invention is based on real-time monitoring of external power control analog input, and proposes the above laser control method, which inputs and accumulates the external power control analog input and accumulates the maximum heat to convert to the simple timing range, whether Both the processing speed and the processing efficiency have been significantly improved.
  • the laser of the present invention is a fiber laser or a gas laser or other type of laser, such as a pulsed laser when it is a fiber laser.
  • the laser control method of the present invention can be considered to include a method of rapidly calculating the pulse energy of the laser.
  • step 30 calculating the remaining output time according to the maximum heat, the accumulated laser output heat, and the laser output power represented by the real-time monitored control signal specifically includes:
  • step of the above step may specifically include:
  • the laser output power is updated to calculate the remaining output time.
  • the remaining laser output heat as an intermediate output result, it is convenient to calculate or view the remaining output time.
  • the laser stores the maximum heat that allows the laser to continuously output during a preset period of time.
  • the control signal of the control laser output is monitored in real time, and the voltage of the input analog quantity is monitored for the first time, that is, the first time the control signal is obtained.
  • the laser output power P1 can also obtain the maximum heat that allows the laser to continuously output during the preset time.
  • N1 that is, the heat limit point N, at this time, N1 is equal to N; thus, when the laser power is constant, the time of turning on the laser is counted, and when the time is accumulated to T1, the heat is accumulated to N1. However, since the laser output power P1 is constant, N1 is equal to the maximum heat that allows the laser to continuously output during the preset time period. N, this time the laser enters the stage of self-protection.
  • the monitoring of the output heat of the laser becomes the timing of the open laser, which reduces the amount of calculation of the system and improves the accuracy of the calculation.
  • the control signal for controlling the output of the laser is monitored, and the analog quantity is collected according to a certain time interval, and the change point of the analog quantity is sought.
  • the analog quantity remains unchanged, there is no need to pay attention, and only the first step is needed. Timing work, waiting for the pulse heat to accumulate to N. As shown in Figure 3, it is the monitoring of control signal changes. Once the control signal changes are detected, it enters the secondary calculation.
  • the laser output heat is monitored again for the laser. Timing, when the input control signal is constant, the laser turning on the remaining output time T2 means that the laser output heat is accumulated to the remaining laser output heat N2, and the laser starts the heat-limited output, that is, the laser is turned off.
  • the method further includes: repeatedly determining whether the remaining output time is reached or a preset time before the remaining output time, when the remaining output time is reached or arrives at the location The timing is ended within the preset time before the remaining output time.
  • the method further includes: repeatedly determining whether the laser output power represented by the real-time monitored control signal changes, and whether the remaining laser output heat needs to be updated. Cycle repeatedly until the remaining laser output heat is reduced to zero.
  • FIG. 4 it is a simple flow chart of the control method of the laser control method. The step of accumulating the heat in FIG. 4 is the above step 30, and the laser output represented by the maximum heat, the accumulated laser output heat, and the real-time monitored control signal. Power, calculate the remaining output time.
  • the method further includes: re-accumulating the maximum amount of heat that allows the laser to output uninterruptedly when the preset duration is reached, and re-times the time at which the laser outputs heat .
  • the embodiment of the present invention is based on real-time monitoring of the external control signal input of the control laser, and proposes the above-mentioned laser control method, and the real-time monitoring of the external power control analog input and accumulating to achieve the maximum heat is converted to the simple timing range, regardless of Whether it is in processing speed or processing efficiency has been significantly improved.
  • the embodiment of the present invention further provides a laser 100, including: a storage device 101 for storing maximum heat that allows the laser to output uninterrupted within a preset duration, a monitoring device 102, an optical path structure 103, and the optical path.
  • the structure 103 is a driving and control circuit 104 connected in a circuit form; the monitoring device 102 is configured to monitor a control signal for controlling the output of the laser in real time, and the monitoring device 102 feeds back the detected laser output power to the driving and controlling The circuit 102; the storage device 101 and the monitoring device 102 are each connected in circuit form to the drive and control circuit 104, and the drive and control circuit 104 is used to implement the laser control method described above.
  • the drive and control circuit 104 includes a clock circuit for counting the time at which the laser outputs heat and ending the timing when the remaining output time is reached.
  • the monitoring device 102 monitors the control signal outputted by the laser in real time, and feeds back the detected laser output power to the driving and control circuit 102, and the storage device 101 stores the laser for a predetermined period of time.
  • the laser 100 is used to implement the above laser control method.
  • the laser control method is a "self-decreasing" algorithm to calculate the current output heat of the laser in real time. By subtracting the accumulated laser output heat from the maximum heat, combined with the current laser output power, it is possible to quickly calculate how long the laser output heat can last, and control the laser to be self-protected when the heat amount is used up.
  • One or more embodiments of the present invention also disclose a computer readable storage medium having stored therein a computer program, the computer program being executed by a processor to implement any of the above laser control methods .
  • an embodiment of the present invention discloses a laser control electronic device including: at least one processor 201, at least one memory 202, at least one input device 203, at least one output device 204, and one or more computer programs. Wherein the one or more computer programs are stored in the memory and configured to be executed by the at least one processor.
  • the processor 201, the memory 202, the input device 203, and the output device 204 are connected by a bus.
  • the processor implements any of the above laser control methods when the computer program is executed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Abstract

本发明公开了激光器及其控制方法,所述方法包括:获取预设时长内允许激光器不间断输出的最大热量和实时监测得到的控制激光器输出的控制信号代表的激光输出功率;根据所述激光输出功率和输出时长计算累计激光输出热量;根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间;在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内关闭所述激光器。本发明实施例提出一种"自减"算法,来实时计算当前激光器可输出热量。通过用最大热量减去累计激光输出热量的方式,结合当前激光输出功率,可快速计算出激光器输出热量还可持续多长时间,并可在热量额度用完时控制关闭激光器做出自我保护。

Description

激光器及其控制方法和计算机可读存储介质 技术领域
本发明涉及激光器技术领域,尤其涉及激光器及其控制方法和计算机可读存储介质。
背景技术
在激光器的使用中,外部激光控制板卡经常使用模拟量信号控制激光器的功率。
发明人在研究本发明的过程中发现,现有技术中激光器为了自我保护,需要限制自身激光热量的大小,激光在一定的时间输出脉冲热量不能超过N焦耳,因此需要想办法计算激光器输出热量,在达到限制的热量大小时,关闭激光器。
技术问题
本发明的目的在于提供一种激光器及其控制方法和计算机可读存储介质,旨在解决如何快速计算激光器输出热量,并在达到限制的热量大小时,关闭激光器的问题。
技术解决方案
根据本发明的第一个方面,提供一种激光器控制方法,包括:
获取预设时长内允许激光器不间断输出的最大热量和实时监测得到的控制激光器输出的控制信号代表的激光输出功率;
根据所述激光输出功率和输出时长计算累计激光输出热量;
根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间;
在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内关闭所述激光器。
可选地,所述根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间具体包括:
对所述激光器输出热量的时间进行计时;
判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量、累计激光输出热量和变化后控制信号代表的激光输出功率,更新剩余输出时间。
可选地,所述判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量、累计激光输出热量和变化后控制信号代表的激光输出功率,更新剩余输出时间具体包括:
判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量与累计激光输出热量计算剩余激光输出热量,根据所述剩余激光输出热量和变化后控制信号代表的激光输出功率,更新计算剩余输出时间。
可选地,所述根据所述最大热量与累计激光输出热量计算剩余激光输出热量具体为:
按照公式N2=N-(P1*t1)计算剩余激光输出热量,其中N2为所述剩余激光输出热量,N等于为所述最大热量,P1为激光输出功率,t1为激光输出功率为P1时的输出时长。
可选地,所述根据所述剩余激光输出热量和变化后控制信号代表的激光输出功率,更新计算剩余输出时间具体为:
按照公式T2=N2/P2计算剩余输出时间,其中T2为所述剩余输出时间,P2为变化后控制信号代表的激光输出功率。
可选地,所述方法还包括:当达到所述预设时长时未累计到允许激光器不间断输出的最大热量,则重新对所述激光器输出热量的时间进行计时。
可选地,所述方法还包括:
不断重复的判断是否到达剩余输出时间或者是剩余输出时间前的预设时间,在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内结束计时。
根据本发明的第二个方面,提供一种激光器,包括:用于存储预设时长内允许激光器不间断输出的最大热量的存储装置、监测装置、光路结构和与所述光路结构以电路形式连接的驱动和控制电路;所述监测装置用于实时监测控制激光器输出的控制信号,所述监测装置将检测到的所述激光输出功率反馈于所述驱动和控制电路;所述存储装置和所述监测装置均以电路形式连接所述驱动和控制电路,所述驱动和控制电路用于实现上述激光器控制方法的步骤。
可选地,所述驱动和控制电路包括时钟电路,用于对所述激光器输出热量的时间进行计时及在到达所述剩余输出时间时结束计时。
根据本发明的第三个方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现上述激光器控制方法的步骤。
根据本发明的第四个方面,提供一种激光器控制电子装置,包括:至少一个处理器、至少一个存储器、至少一个输入装置、至少一个输出装置以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述至少一个处理器执行,所述处理器、存储器、输入装置以及输出装置通过总线相连,所述处理器执行所述计算机程序时实现如所述激光器控制方法的步骤。
有益效果
本发明实施例的激光器控制方法,由于获取实时监测得到的控制激光器输出的控制信号代表的激光输出功率;根据所述激光输出功率和输出时长计算累计激光输出热量;根据预设时长内允许激光器不间断输出的最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间;在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内关闭所述激光器。即本发明实施例提出一种“自减”算法,来实时计算当前激光器可输出热量。通过用最大热量减去累计激光输出热量的方式,结合当前激光输出功率,可快速计算出激光器输出热量还可持续多长时间,并可在热量额度用完时控制关闭激光器做出自我保护。
附图说明
图1为本发明实施例激光器控制方法流程图;
图2为本发明实施例激光器控制方法的功率采集原理图;
图3为本发明实施例激光器控制方法的控制信号变化监测示意图;
图4为本发明实施例激光器控制方法的控制框图;
图5为本发明实施例激光器的结构框图;
图6为本发明实施例激光器控制电子装置。
本发明的最佳实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本发明的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明的一个实施例公开一种激光器控制方法,对请求保护的技术方案进行说明。具体实施方式中涉及到的激光器控制方法只是较佳的实施例,并非本发明所有可能的实施例。
激光在一定的时间输出脉冲热量不能超过N焦耳,因此需要实时监测外部的功率控制的模拟量输入,当连续输出的热量大于N焦耳的时候,就应该关闭激光器,热量是功率和时间的乘积,要限制激光热量,就是要实时监测模拟量的大小和时长。
参考图1,为本发明实施例激光器控制方法流程图。如图1所示意的,本发明实施例的激光器控制方法,包括:
步骤10,获取预设时长内允许激光器不间断输出的最大热量和实时监测得到的控制激光器输出的控制信号代表的激光输出功率;控制激光器输出的控制信号具体为外部控制板卡输出的模拟量。
步骤20,根据所述激光输出功率和输出时长计算累计激光输出热量;
步骤30,根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间;
步骤40,在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内关闭所述激光器。
本发明实施例提出一种“自减”算法,来实时计算当前激光器可输出热量。通过用最大热量减去累计激光输出热量的方式,结合当前激光输出功率,可快速计算出激光器输出热量还可持续多长时间,并可在热量额度用完时控制关闭激光器做出自我保护。
如果采用激光输出热量累计达到最大热量的方式来监控是否达到最大热量限制的话,需要通过一定的周期去采集外部控制板卡输出的模拟信号(模拟量,即控制激光器输出的控制信号),比如1ms采集一次模拟量的大小,会得到这一个ms里面的模拟量大小,经过乘积就会得到这一个ms里面的激光热量,然后每个ms里面的激光热量累加起来,就是现在累计的激光热量。如图2所示,中间的纵向线条就是采样点,在采样点时刻采集功率模拟量。这种做法的精度往往取决于采集周期,采集的周期越小,计算的精度就越高,采集的周期越大,计算的精度就越低。其次,不断的累加也比较消耗处理器的计算资源。本发明实施例基于实时监测外部的功率控制的模拟量输入,提出上述激光器控制方法,将这种实时监测外部的功率控制的模拟量输入并累加达到最大热量做法转换到简单计时的范畴,不管是在处理速度上还是在处理的效率上都得到了比较明显的提升。
具体地,本发明的激光器为光纤激光器或气体激光器或其他类型的激光器,如为光纤激光器时可以为脉冲激光器,本发明的激光控制方法可以认为包括快速计算激光器脉冲能量的方法。
在本发明的一个或者多个实施例中,所述步骤30,根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间具体包括:
对所述激光器输出热量的时间进行计时;
判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量、累计激光输出热量和变化后控制信号代表的激光输出功率,更新剩余输出时间。
而且,进一步地,上段步骤具体可以包括:
判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量与累计激光输出热量计算剩余激光输出热量,根据所述剩余激光输出热量和变化后控制信号代表的激光输出功率,更新计算剩余输出时间。
具体地,通过剩余激光输出热量作为中间输出结果,可以方便计算或查看剩余输出时间。
激光器内存储预设时长内允许激光器不间断输出的最大热量,当激光器开启之后,实时监测控制激光器输出的控制信号,第一次监测到输入模拟量的电压,也就是第一次获得控制信号代表的激光输出功率P1,还可以同时获取预设时长内允许激光器不间断输出的最大热量,当获得了激光输出功率P1之后,结合最大热量N,就可以计算出当前功率下还需要开启多长时间(输出时长)就可以积累到热量限制点N,T1=N1/P1,T1就是得到的时间点,当开启输出时长T1时间之后,就会积累到预设时长内允许激光器不间断输出的最大热量N,即热量限制点N,此时N1等于N;这样一来,当激光功率不变的情况下,就对开激光的时间进行计时,当时间累计到T1的时候,就代表热量累计到N1了,由于在激光输出功率P1不变的情况下N1等于预设时长内允许激光器不间断输出的最大热量N,这个时候激光器就进入自我保护的环节。
从上面的描述中得知,对激光器输出热量的监测变为对开激光的计时,这样就会降低系统的计算量,提高计算的精度。同时对控制激光器输出的控制信号进行监测,按照一定时间间隔,采集模拟量大小,寻找模拟量大小的变化点,当模拟量大小一直不变的时候,就无需关注,只需要做第一步的计时工作,等待脉冲热量积累到N。如图3所示,就是控制信号变化的监测。一旦监测到控制信号变化之后,就进入二次计算环节。
监测到控制信号在t1点发生变化,因此在第一点中计算到的T1时间脉冲热量累计到N1,这个时候由于激光输出功率P1发生变化,因此,上面得到的输出时长T1已经不能作为接下来计时的标准,这样就需要更新输出时长T1,得到剩余输出时间T2作为计时的标准。由于热量积累到t1的时候,已经积累了一部分热量,即累计激光输出热量N1,N1= P1* t1,此时N1小于N,需要从N中减去激光输出热量N1作为剩余激光输出热量,即为新的热量限制值N2,N2=N-(P1*t1);得到N2之后,就意味着激光热量输出累计限制得到了新值,即剩余激光输出热量已经发生变化,对于热量累计而言,又进入到新的起步阶段,之前累计的计算已经全部抛弃,从新开始计算。由此带来降低系统的计算量的好处,可间接提高计算的精度和效率。
接下来剩余激光输出热量就是N2,因此T2=N2/P2,T2为所述剩余输出时间,也为最新的激光输出累计时间限制T2,经过处理之后,激光输出热量的监测又变成对于激光的计时,当输入的控制信号恒定不变的时候,激光开启剩余输出时间T2就意味着激光输出热量累计到剩余激光输出热量N2,激光器就开始进行热量限制的输出,即关闭所述激光器。
在本发明的一个或者多个实施例中,所述方法还包括:不断重复的判断是否到达剩余输出时间或者是剩余输出时间前的预设时间,在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内结束计时。
持续监测控制激光器输出的控制信号代表的激光输出功率是否发生变化,如发生变化则重复上述步骤。在本发明的一个或者多个实施例中,所述方法还包括:重复判断实时监测的控制信号代表的激光输出功率是否发生变化,剩余激光输出热量是否需要更新。反复循环,直到剩余激光输出热量自减到0。如图4所示,就是激光器控制方法控制的简单流程图,图4中的热量累计计时步骤即为上述步骤30,根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间。
在本发明的一个或者多个实施例中,所述方法还包括:当达到所述预设时长时未累计到允许激光器不间断输出的最大热量,则重新对所述激光器输出热量的时间进行计时。
本发明实施例基于实时监测外部的控制激光器输出的控制信号输入,提出上述激光器控制方法,将这种实时监测外部的功率控制的模拟量输入并累加达到最大热量做法转换到简单计时的范畴,不管是在处理速度上还是在处理的效率上都得到了比较明显的提升。
如图5所示,在本发明实施例还提供激光器100,包括:用于存储预设时长内允许激光器不间断输出的最大热量的存储装置101、监测装置102、光路结构103和与所述光路结构103以电路形式连接的驱动和控制电路104;所述监测装置102用于实时监测控制激光器输出的控制信号,所述监测装置102将检测到的所述激光输出功率反馈于所述驱动和控制电路102;所述存储装置101和所述监测装置102均以电路形式连接所述驱动和控制电路104,所述驱动和控制电路104用于实现上述激光器控制方法。
在本发明的一个或者多个实施例中,所述驱动和控制电路104包括时钟电路,用于对所述激光器输出热量的时间进行计时及在到达所述剩余输出时间时结束计时。
本发明实施例的激光器100,监测装置102实时监测控制激光器输出的控制信号,并将检测到的所述激光输出功率反馈于所述驱动和控制电路102,存储装置101存储预设时长内允许激光器不间断输出的最大热量。激光器100用于实现上述激光器控制方法,激光器控制方法为“自减”算法,来实时计算当前激光器可输出热量。通过用最大热量减去累计激光输出热量的方式,结合当前激光输出功率,可快速计算出激光器输出热量还可持续多长时间,并可在热量额度用完时控制关闭激光器做出自我保护。
本发明的一个或者多个实施例还公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一种激光器控制方法。
参考图6,本发明的一实施例公开一种激光器控制电子装置,包括:至少一个处理器201、至少一个存储器202、至少一个输入装置203、至少一个输出装置204以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述至少一个处理器执行。所述处理器201、存储器202、输入装置203以及输出装置204通过总线相连。所述处理器执行所述计算机程序时实现上述任意一种激光器控制方法。
需要说明的是,上述实施例中各技术特征只要不相互矛盾即可相互组合,形成未在上面列举的各种实施方式,均视为本发明说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种激光器控制方法,其特征在于,包括:
      获取预设时长内允许激光器不间断输出的最大热量和实时监测得到的控制激光器输出的控制信号代表的激光输出功率;
      根据所述激光输出功率和输出时长计算累计激光输出热量;
      根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间;
      在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内关闭所述激光器。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述最大热量、累计激光输出热量和实时监测的控制信号代表的激光输出功率,计算剩余输出时间具体包括:
      对所述激光器输出热量的时间进行计时;
      判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量、累计激光输出热量和变化后控制信号代表的激光输出功率,更新剩余输出时间。
  3. 如权利要求2所述的方法,其特征在于,所述判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量、累计激光输出热量和变化后控制信号代表的激光输出功率,更新剩余输出时间具体包括:
      判断实时监测的控制信号代表的激光输出功率是否发生变化,当发生变化时,根据所述最大热量与累计激光输出热量计算剩余激光输出热量,根据所述剩余激光输出热量和变化后控制信号代表的激光输出功率,更新计算剩余输出时间。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述最大热量与累计激光输出热量计算剩余激光输出热量具体为:
      按照公式N2=N-(P1*t1)计算剩余激光输出热量,其中N2为所述剩余激光输出热量,N为所述最大热量,P1为激光输出功率,t1为激光输出功率为P1时的输出时长。
  5. 如权利要求4所述的方法,其特征在于,所述根据所述剩余激光输出热量和变化后控制信号代表的激光输出功率,更新计算剩余输出时间具体为:
      按照公式T2=N2/P2计算剩余输出时间,其中T2为所述剩余输出时间,P2为变化后控制信号代表的激光输出功率。
  6. 如权利要求2-5任一项所述的方法,其特征在于,所述方法还包括:
      当达到所述预设时长时未累计到允许激光器不间断输出的最大热量,则重新对所述激光器输出热量的时间进行计时。
  7. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
      不断重复的判断是否到达剩余输出时间或者是剩余输出时间前的预设时间,在到达所述剩余输出时间时或者是到达所述剩余输出时间前的预设时间内结束计时。
  8. 如权利要求1所述的方法,其特征在于,所述控制激光器输出的控制信号具体为外部控制板卡输出的模拟量。
  9. 一种激光器,其特征在于,包括:用于存储预设时长内允许激光器不间断输出的最大热量的存储装置、监测装置、光路结构和与所述光路结构以电路形式连接的驱动和控制电路;所述监测装置用于实时监测控制激光器输出的控制信号,所述监测装置将检测到的所述激光输出功率反馈于所述驱动和控制电路;所述存储装置和所述监测装置均以电路形式连接所述驱动和控制电路,所述驱动和控制电路用于实现如权利要求1至8任一项所述激光器控制方法的步骤。
  10. 如权利要求9所述的激光器,其特征在于,所述驱动和控制电路包括时钟电路,用于对所述激光器输出热量的时间进行计时及在到达所述剩余输出时间时结束计时。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述激光器控制方法的步骤。
  12. 一种激光器控制电子装置,包括:至少一个处理器、至少一个存储器、至少一个输入装置、至少一个输出装置以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述至少一个处理器执行,所述处理器、存储器、输入装置以及输出装置通过总线相连,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至8任一项所述激光器控制方法的步骤。
PCT/CN2018/114457 2017-12-18 2018-11-08 激光器及其控制方法和计算机可读存储介质 WO2019120001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711361196.7 2017-12-18
CN201711361196.7A CN107978959B (zh) 2017-12-18 2017-12-18 激光器及其控制方法和存储介质

Publications (1)

Publication Number Publication Date
WO2019120001A1 true WO2019120001A1 (zh) 2019-06-27

Family

ID=62006601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114457 WO2019120001A1 (zh) 2017-12-18 2018-11-08 激光器及其控制方法和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN107978959B (zh)
WO (1) WO2019120001A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978959B (zh) * 2017-12-18 2019-09-20 深圳市创鑫激光股份有限公司 激光器及其控制方法和存储介质
CN109752166A (zh) * 2019-01-24 2019-05-14 大族激光科技产业集团股份有限公司 激光器作业监控方法、信号处理设备、系统及存储介质
CN110364922B (zh) * 2019-07-30 2021-07-20 苏州创鑫激光科技有限公司 一种激光器控制方法及其相关设备
CN111628400B (zh) * 2020-05-27 2022-03-15 深圳市杰普特光电股份有限公司 激光器的功率控制方法、装置、存储介质及激光器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298182A (ja) * 2002-04-03 2003-10-17 Sony Corp 半導体レーザアレイ装置
US20090192735A1 (en) * 2008-01-29 2009-07-30 Fujitsu Limited Failure prediction apparatus and failure prediction method
CN107978959A (zh) * 2017-12-18 2018-05-01 深圳市创鑫激光股份有限公司 激光器及其控制方法和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403618B1 (ko) * 2001-02-16 2003-10-30 삼성전자주식회사 자동 레이저 다이오드 출력 제어 장치
CN100446374C (zh) * 2003-07-05 2008-12-24 华为技术有限公司 一种过热保护方法
CN203481790U (zh) * 2013-01-29 2014-03-12 海尔集团公司 一种防止电源线温度过高的装置及应用该装置的电器
CN105792606B (zh) * 2016-03-31 2017-12-26 海信集团有限公司 风扇转速控制方法、装置及投影系统的散热方法
CN107342532B (zh) * 2017-08-11 2019-01-29 深圳市创鑫激光股份有限公司 一种激光功率控制方法及激光器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298182A (ja) * 2002-04-03 2003-10-17 Sony Corp 半導体レーザアレイ装置
US20090192735A1 (en) * 2008-01-29 2009-07-30 Fujitsu Limited Failure prediction apparatus and failure prediction method
CN107978959A (zh) * 2017-12-18 2018-05-01 深圳市创鑫激光股份有限公司 激光器及其控制方法和存储介质

Also Published As

Publication number Publication date
CN107978959A (zh) 2018-05-01
CN107978959B (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2019120001A1 (zh) 激光器及其控制方法和计算机可读存储介质
US10983576B2 (en) Method and apparatus for managing global chip power on a multicore system on chip
DK1576852T3 (da) Fremgangsmåde til udvælgelse af et program i et høreapparat med flere programmer
US20190354135A1 (en) Frequency execution monitoring in a real-time embedded system
CN110647067B (zh) 一种数据采集系统及其控制方法、装置、设备和介质
CN110364922B (zh) 一种激光器控制方法及其相关设备
WO2024037350A1 (zh) 核电厂汽轮发电机电功率控制方法及系统
CN107037726A (zh) 一种非同元分数阶系统滑膜干扰观测器设计方法
CN110928229B (zh) 送丝机控制方法、控制器及存储介质
CN116833606A (zh) 一种焊接方法、装置、设备及存储介质
JPH05160653A (ja) 自動利得制御装置
EP3330830A1 (en) Method and device for controlling hot plug operation of cpu in mobile terminal
WO2019128493A1 (zh) 频率采集滤波方法、装置、计算机可读存储介质以及激光器
Wang et al. Adaptive predictive functional control for networked control systems with random delays
JPWO2021220488A5 (zh)
CN107210600B (zh) 供电控制装置
CN117193201B (zh) 基于人工智能的机组控制方法及系统、计算机存储介质
Zhang et al. Kalman filtering for discrete-time networked control systems with incomplete observations: A dropping over-delayed packets approach
RU2549172C2 (ru) Способ управления нелинейной динамикой преобразователей постоянного напряжения
JP3541263B2 (ja) ゲイン設定方法
Zou et al. Dynamic matrix control algorithm on the boiler level integral process.
CN113533954B (zh) 用于检测储能逆变器的继电器闭合时间的方法及控制系统
JP2002277493A (ja) デマンド監視装置
RU116716U1 (ru) Система интегрального управления полупроводниковым преобразователем
KR0183808B1 (ko) Ccd 카메라의 전자 셔터 속도제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890404

Country of ref document: EP

Kind code of ref document: A1