WO2019119843A1 - 一种天线和终端 - Google Patents

一种天线和终端 Download PDF

Info

Publication number
WO2019119843A1
WO2019119843A1 PCT/CN2018/101975 CN2018101975W WO2019119843A1 WO 2019119843 A1 WO2019119843 A1 WO 2019119843A1 CN 2018101975 W CN2018101975 W CN 2018101975W WO 2019119843 A1 WO2019119843 A1 WO 2019119843A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
unit
microstrip line
length
Prior art date
Application number
PCT/CN2018/101975
Other languages
English (en)
French (fr)
Inventor
张俊宏
李正浩
孙树辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810142705.5A external-priority patent/CN109950690B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/956,188 priority Critical patent/US11251534B2/en
Priority to AU2018386614A priority patent/AU2018386614B2/en
Priority to JP2020528266A priority patent/JP7001313B2/ja
Priority to EP18892342.9A priority patent/EP3706241A4/en
Priority to CN201880022588.7A priority patent/CN110731031B/zh
Publication of WO2019119843A1 publication Critical patent/WO2019119843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present application relates to the field of communications, and in particular, to an antenna and a terminal.
  • the radiator of the Franklin antenna is composed of an inverting unit connected to an upright radiating unit, and the inverting unit portion is folded, the internal current is cancelled, and no radiation is performed, so only the radiating unit performs radiation.
  • network devices typically need to radiate or receive signals from at least two frequency bands, the center frequency ratio of which is typically close to 1.5.
  • the Franklin antenna in the existing scheme can only radiate signals in one frequency band horizontally, and cannot completely cover the at least two frequency bands by one Franklin antenna, and can only radiate one of the at least two frequency bands.
  • Band41 2496MHz-2690MHz
  • Band42 3400MHz-3600MHz
  • the Franklin antenna supporting the high-gain horizontal omnidirectional radiation in the Band41 band cannot radiate the Band42 band horizontally. signal.
  • the network device needs to radiate signals of at least two frequency bands, when the network device uses a Franklin antenna, the signals of the at least two frequency bands cannot be radiated, so the network device needs to include at least two antennas corresponding to the at least two frequency bands, Therefore, the volume of the network device occupied by the at least two antennas is increased, and the cost of using the antenna for data transmission by the network device is increased.
  • How to achieve horizontal omnidirectional radiation and receive signals of the at least two frequency bands through a Franklin antenna becomes a Problems to be solved.
  • the embodiment of the present application provides an antenna and a terminal for simultaneously radiating signals of at least two frequency bands through one antenna, thereby reducing the volume and cost of the network device.
  • the present application provides an antenna that radiates the signal of Band 41 and the signal of Band 42.
  • the wavelength corresponding to the center frequency of the signal of Band 41 is ⁇ 1
  • the wavelength of the center frequency of the signal of Band 42 is ⁇ 2
  • the antenna includes: a dielectric substrate, a top radiating unit, an inverting unit, and a bottom radiating unit;
  • the dielectric substrate serves as the top radiating unit, the inverting unit, and a carrier of the bottom radiating unit;
  • One end of the top radiating unit is connected to one end of the inverting unit;
  • the other end of the inverting unit is connected to one end of the bottom radiating unit, the length of the inverting unit is 3 ⁇ 2 /2, and the length of the inverting unit is greater than ⁇ 1 /2;
  • the inverting unit includes at least two current inversion points, a portion between the at least two current inversion points does not generate radiation, and the top radiating unit and the bottom radiating unit horizontally omnidirectionally radiate the Band 41 The signal is signaled with the Band 42.
  • the present application also provides an antenna that radiates a first signal and a second signal, the first signal and the second signal are in different frequency bands, the first signal corresponds to a first half wavelength, and the second signal corresponds to a second half Wavelength
  • the antenna comprises: a dielectric substrate, a top radiating unit, an inverting unit and a bottom radiating unit; the dielectric substrate as the top radiating unit, the inverting unit, and a carrier of the bottom radiating unit; One end of the inverting unit is connected; the other end of the inverting unit is connected to one end of the bottom radiating unit, the length of the inverting unit is a first odd multiple of the second half wavelength, and the length of the inverting unit is greater than the a second odd multiple of the first half wavelength; the inverting unit includes at least two current inversion points, a portion between the at least two current inversion points does not generate radiation, and the top radiating unit and the bottom radiating unit are horizontally full The first signal and the second signal are radiated.
  • the inverting unit of the antenna is the first odd multiple of the second half wavelength, and the length of the inverting unit is greater than the second odd multiple of the first half wavelength, so that the antenna is In operation, no radiation is generated between the inversion points of the inverting unit portion, and the top radiating unit and the bottom radiating unit radiate the first signal and the second signal. Therefore, the antenna provided by the present application can achieve radiation by at least one upright antenna. Signals for both bands.
  • the top radiating unit and the bottom radiating unit omnidirectionally radiate the first signal and the second signal, including:
  • a current between at least two current inversion points included in a portion of the second odd-numbered length of the first half-wavelength in the inverting unit such that a second odd-numbered length of the first half wavelength of the inverting unit Part not generating radiation, the portion of the inverting unit except the odd-numbered length portion of the first half-wavelength, the top radiating unit and the bottom radiating unit radiating the first signal horizontally omnidirectionally; and the inverting unit
  • the current between the at least two current inversion points included in the first odd multiple of the second half wavelength is offset such that the inverting unit does not generate radiation, and the top radiating element and the bottom radiating element are horizontally omnidirectional
  • the second signal is radiated.
  • the second odd-numbered length of the first half wavelength in the inverting unit cancels each other due to the opposite current directions, and no radiation is generated, and the phase is eliminated by the inverting unit.
  • the portion outside the odd-numbered length portion of the first half wavelength, the bottom radiating unit and the top radiating unit radiate the first signal, and when the antenna radiates the first signal, the opposite-phase unit cancels each other due to the opposite current direction, and no radiation is generated.
  • the second signal is radiated by the bottom radiating unit and the top radiating unit. Therefore, the antenna can radiate the first signal and the second signal.
  • Embodiments of the present application are specific embodiments in which the antenna radiates the first signal and the second signal.
  • the inverting unit includes a folded wire portion and an upright portion, the upright portion includes a first slot and a second slot, the first slot is parallel to the second slot, the first slot and the second slot
  • the slit divides the length range corresponding to the first slot and the second slot in the inverting unit into a first microstrip line, a second microstrip line and a third microstrip line, and the first microstrip line and the first
  • the three microstrip lines are respectively located on opposite sides of the second microstrip line, and when the antenna radiates the second signal, the first microstrip line and the second microstrip line current are opposite in direction, and the second microstrip line
  • the direction of current is opposite to the direction of current of the third microstrip line such that the second microstrip line does not generate radiation.
  • two slits are added in the upright portion of the inverting unit, so that the microstrip lines on both sides of the slit are opposite to the microstrip line current in the middle of the slit.
  • the microstrip line current on both sides of the slot and the current of the microstrip line in the middle of the slot cancel each other, which can reduce the radiation generated by the inverting unit portion when the antenna radiates the second signal, and suppress the antenna when the antenna radiates the second signal. Side lobes.
  • the frequency ratio of the second signal to the first signal ranges from 1.3 to 1.6.
  • the frequency ratio of the second signal to the first signal ranges from 1.3 to 1.6, so that the antenna in the present application radiates signals in at least two frequency bands.
  • the first signal is at 2496 MHz - 2690 MHz and the second signal is at 3400 MHz - 3800 MHz.
  • the length of the antenna is 99 mm
  • the length of the antenna is three times the wavelength of the first half
  • the length of the antenna is five times the wavelength of the second half.
  • the length of the antenna is 3 times of the first half wavelength and the length of the antenna is 5 times of the second half wavelength. Therefore, in combination with actual conditions, the inverting unit of the antenna may include the first At half the wavelength of one half, and the length of the inverting unit of the antenna can be three times the wavelength of the second half, which enables the antenna to achieve high gain radiation of the first signal and the second signal.
  • the first microstrip line has a minimum width of 2 mm and the third microstrip line has a minimum width of 2 mm.
  • the width of the first microstrip line and the third microstrip line is at least 2 mm, which may be sufficient to cancel the current generated by the second microstrip line, so that the upright portion of the reverse unit radiates the second signal at the antenna. No radiation is generated, so that the second signal radiated by the antenna is closer to horizontal omnidirectional.
  • the first slit has a width ranging from 0.5 mm to 3.8 mm
  • the second slit has a width ranging from 0.5 mm to 3.8 mm.
  • the first slit has a length of 8 mm and the second slit has a length of 8 mm.
  • the bottom radiating unit includes: an upper radiating module and a lower radiating module, wherein the upper radiating module is connected to the lower radiating module through a coaxial line, and the lower radiating module includes a gap portion, wherein the coaxial line is disposed The gap portion of the lower radiating module is used to feed the antenna.
  • the upper radiating module and the lower radiating module are connected by a coaxial line, and the lower radiating module includes a gap portion, and the coaxial line can pass through the gap portion of the lower radiating module, and the coaxial pair can be reduced.
  • the effect of antenna radiation is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the coaxial line.
  • the application also provides a CPE, the CPE comprising:
  • An antenna An antenna, a processor, a memory, a bus, and an input/output interface; the memory storing the code, the antenna being the antenna of any of the first aspect and the first aspect; the memory storing the program code; the processing When the program code is called in the memory, a control signal is sent to the antenna, and the control signal is used to control the antenna to transmit the first signal or the second signal.
  • the application also provides a terminal, the terminal device includes:
  • An antenna An antenna, a processor, a memory, a bus, and an input/output interface; the memory storing the code, the antenna being the antenna of any of the first aspect and the first aspect; the memory storing the program code; the processing When the program code is called in the memory, a control signal is sent to the antenna, and the control signal is used to control the antenna to transmit the first signal or the second signal.
  • the antenna in the embodiment of the present application may include a dielectric substrate, a top radiating unit, an inverting unit, and a bottom radiating unit, wherein the length of the inverting unit is a first odd multiple of the second half wavelength, and the length of the inverting unit is greater than
  • the second odd-numbered half of the half-wavelength is half of the wavelength corresponding to the first signal
  • the second half-wavelength is half of the wavelength corresponding to the second signal. Therefore, when the antenna is in an operating state, the inverting unit may include at least two current inversion points, and no radiation is generated between the at least two current inversion points, and the top radiating unit and the bottom radiating unit are horizontally omnidirectionally radiated first.
  • the signal and the second signal, and the first signal and the second signal are in different frequency bands. Therefore, the antenna provided by the embodiment of the present application can radiate at least two signals in different frequency bands.
  • FIG. 1 is a schematic structural diagram of a system in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of an antenna in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of an antenna according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of an antenna according to an embodiment of the present application.
  • 9A is a current distribution diagram of an antenna in an embodiment of the present application.
  • 9B is another current distribution diagram of the antenna in the embodiment of the present application.
  • FIG. 10A is another current distribution diagram of an antenna in an embodiment of the present application.
  • FIG. 10B is another current distribution diagram of the antenna in the embodiment of the present application.
  • 11A is another current distribution diagram of an antenna in an embodiment of the present application.
  • 11B is another current distribution diagram of an antenna in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a return loss of an antenna in an embodiment of the present application.
  • 13A is another current distribution diagram of an antenna in an embodiment of the present application.
  • FIG. 13B is another current distribution diagram of the antenna in the embodiment of the present application.
  • 15A is another current distribution diagram of an antenna in an embodiment of the present application.
  • 15B is another current distribution diagram of an antenna in an embodiment of the present application.
  • 16 is another radiation pattern of an antenna in an embodiment of the present application.
  • 17A is another current distribution diagram of an antenna in an embodiment of the present application.
  • 17B is another current distribution diagram of an antenna in an embodiment of the present application.
  • Figure 18 is another radiation pattern of the antenna in the embodiment of the present application.
  • 20A is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • 20B is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • 20C is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • 21A is another current distribution diagram of an antenna in an embodiment of the present application.
  • 21B is another current distribution diagram of an antenna in an embodiment of the present application.
  • 21C is another current distribution diagram of an antenna in an embodiment of the present application.
  • 22A is another current distribution diagram of an antenna in an embodiment of the present application.
  • 22B is another current distribution diagram of the antenna in the embodiment of the present application.
  • 22C is another current distribution diagram of the antenna in the embodiment of the present application.
  • FIG. 23 is a schematic diagram of another return loss of an antenna in an embodiment of the present application.
  • 24A is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • 24B is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • 25A is another current distribution diagram of an antenna in an embodiment of the present application.
  • 25B is another current distribution diagram of an antenna in an embodiment of the present application.
  • 26 is another schematic diagram of return loss of an antenna in an embodiment of the present application.
  • Figure 27 is another radiation pattern of the antenna in the embodiment of the present application.
  • 28A is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • 28B is a schematic diagram of another embodiment of an antenna in an embodiment of the present application.
  • 29 is another schematic diagram of return loss of an antenna in an embodiment of the present application.
  • FIG. 30 is a schematic diagram of another return loss of an antenna in an embodiment of the present application.
  • FIG. 31 is a schematic diagram of an embodiment of a client device CPE in an embodiment of the present application.
  • FIG. 32 is a schematic diagram of an embodiment of a terminal device in an embodiment of the present application.
  • the network device may send or receive a wireless signal through an antenna, and the terminal device 1, the terminal device 2, the terminal device 3, and the terminal device 4 may be connected to the network device by using a wireless signal, and the network device may be a customer premises equipment (customer premises equipment, CPE), router, mobile station (MS), subscriber station (SS), etc.
  • CPE customer premises equipment
  • MS mobile station
  • SS subscriber station
  • the CPE may convert a mobile cellular signal, such as a signal in a LTE, a wideband code division multiple access (W-CDMA) or a global system for mobile communication (GSM) system, into a wireless protection.
  • W-CDMA wideband code division multiple access
  • GSM global system for mobile communication
  • a network device that is a wireless fidelity (Wi-Fi) signal or a wireless local area networks (WLAN) signal.
  • CPE products usually need to communicate over long distances. Therefore, antennas used in CPE products usually need to achieve high gain level omnidirectional radiation.
  • Band41 2496MHz-2690MHz
  • Band42 3400MHz-3600MHz
  • CPE needs to support Band41, Band42 and Band43 (3600MHz-3800MHz).
  • more and more routers need to include Band41 and Band42, or Band41, Band42 and Band43.
  • the working frequency band of the antenna includes at least two frequency bands, so that the network device can perform signal radiation or reception of at least two frequency bands by using one antenna, which can reduce the cost of the network device using the antenna for signal transmission or reception.
  • the two antennas are used for transmitting and receiving signals of two frequency bands respectively, and the volume of one antenna is significantly smaller than the volume of the two antennas, thereby reducing the use.
  • the volume of the network device of the antenna since the antennas of at least two frequency bands are radiated or received in the same antenna, the two antennas are used for transmitting and receiving signals of two frequency bands respectively, and the volume of one antenna is significantly smaller than the volume of the two antennas, thereby reducing the use. The volume of the network device of the antenna.
  • FIG. 2 is a schematic diagram of an application scenario in the embodiment of the present application.
  • an eNodeB evolved node B, eNB
  • EPC evolved packet core
  • the EPC can be used by the MME, the SGW, or the PGW.
  • the network element is composed of a PCRF; the eNB can radiate a wireless signal, and an antenna is disposed on the CPE product, and can access the eNB by receiving a wireless signal radiated by the eNB, and the CPE converts the signal radiated by the eNB into a Wifi signal, and radiates through the antenna set on the CPE.
  • the Wifi signal; a terminal device such as a computer, a smart phone or a notebook computer can connect to the CPE product via a Wifi signal, and communicate.
  • the antenna provided by the embodiment of the present application is provided on the CPE product, signals of multiple frequency bands can be radiated through one antenna, for example, Band41, Band42, and Band43 are simultaneously radiated, and the terminal device can also pass the RJ (registered jack) 45.
  • the interface accesses the CPE, accesses the Internet through the LTE wireless access function, and sends and receives emails, browses web pages, or downloads files.
  • a plurality of frequency bands need to be radiated by multiple antennas, and a plurality of frequency bands need to be radiated by multiple antennas.
  • the embodiment of the present application implements a signal that radiates multiple frequency bands by one antenna, thereby reducing the occupied volume of the antenna, thereby reducing the CPE. The volume of the product.
  • a wireless signal that a network device communicates with other devices is typically transmitted or received by an antenna on the network device. Therefore, the operating frequency of the antennas in some network devices also needs to include both Band41 and Band42, or both Band41, Band42, and Band43.
  • the antenna provided by the embodiment of the present application can implement transmission and reception of multiple frequency bands by one antenna, and can achieve high gain and horizontal omnidirectional radiation.
  • the antenna provided by the implementation of the present application can be applied to network devices, including routers, CPEs, MSs, SSs, or mobile phones. Referring to FIG. 3, a schematic diagram of an embodiment of an antenna in the embodiment of the present application includes:
  • the top radiating unit 301, the inverting unit 302, the bottom radiating unit 303, and the dielectric substrate 304, and the bottom radiating unit 303 includes an upper radiating module 3031 and a lower radiating module 3032.
  • the dielectric substrate 304 serves as a carrier for the top radiating unit 301, the inverting unit 302, and the bottom radiating unit 303.
  • the dielectric constant of the dielectric substrate can affect the radiated signal of the antenna, and the dielectric substrate can be selected according to actual equipment requirements.
  • One end of the top radiating unit 301 is connected to one end of the inverting unit 302, and the other end of the inverting unit 302 is connected to one end of the upper radiating module 3031.
  • the inverting unit 302 includes a portion of the folding line and an upright portion, and the folding line is The portion may be folded by a spiral trace, and the lower radiation module 3032 and the upper radiation module 3031 are included in the bottom radiation unit 303, and the other end of the upper radiation module 3021 is connected to one end of the lower radiation module 3032 by a coaxial line.
  • the antenna When the antenna is working, the antenna can radiate the first signal and the second signal, the first signal is in the first frequency band, and the second signal is in the second frequency band, wherein the top radiating unit 301 and the bottom radiating unit 303 are in the same direction And radiating or receiving the signal at the working frequency of the antenna, the current inside the inverting unit 302 is opposite to the current direction of each part due to the spiral trace, cancels each other, and does not radiate the signal.
  • the inversion unit 302 does not generate radiation and can reduce the influence of the signals radiated by the top radiating unit 301 and the bottom radiating unit 301.
  • the length of the inverting unit 302 may be an odd multiple of the second half wavelength, and the length of the inverting unit 302 is greater than an odd multiple of the first half wavelength, the first half wavelength being half the wavelength corresponding to the frequency of the first signal,
  • the first half wavelength may be one-half of the wavelength of the center frequency of the first frequency band
  • the second half wavelength is half of the wavelength corresponding to the frequency of the second signal
  • the second half wavelength may be the center frequency wavelength of the second frequency band.
  • One-half of the first frequency band and the second frequency band are different frequency bands, and the ratio of the center frequency of the second frequency band to the center frequency of the first frequency band may range from 1.3 to 1.6.
  • the length of the top radiating unit 301 and the bottom radiating unit 303 may include an odd multiple of the first half wavelength and the second half wavelength, or the first half wavelength and the second half wavelength respectively, so that the antenna radiates at least two frequency bands.
  • the signal enables the network device to transmit and receive signals of at least two frequency bands using one antenna.
  • the working frequency of the antenna covers a frequency range of at least two frequency bands, including a first frequency band and a second frequency band, and the length of the inverting unit 302 may be a length of the second half wavelength and greater than the first half wavelength. length. Therefore, when the antenna is in operation, the currents of the top radiating unit 301 and the bottom radiating unit 303 are in phase, and horizontal omnidirectional high-gain radiation of at least two frequency bands can be achieved.
  • the 1*2 dipole array antenna is taken as an example, where 1 represents a linear array of antennas, and 2 represents two upright radiating elements, that is, the top radiating unit 301 and the bottom radiating.
  • the unit 303, the two upright radiating units are connected by an inverting unit, that is, the inverting unit 302.
  • the antenna may also be an antenna such as 1*4 or 1*5, and the radiating units are connected by an inverting unit.
  • at least two corresponding inverting units may be included. The more the number of radiating elements, the larger the radiation gain of the antenna, and the stronger the signal strength of the radiation, which may be adjusted according to actual design requirements, which is not limited herein. .
  • the specific current flow inside the antenna is different.
  • the coverage of the antenna includes Band41 and Band42
  • the working mode of Band41 can be as shown in Figure 4.
  • the wavelength of the center frequency of Band41 is ⁇ 1
  • the total antenna The length may be 3 times and a half wavelength of the center frequency of Band 41, that is, 3 ⁇ 1 /2 shown in the figure, and the half wavelength is the wavelength of the center frequency of Band 41, that is, one -half of ⁇ 1 .
  • the inverting unit 302 includes two current inversion points, that is, an inversion point 405 and an inversion point 406 shown in the figure, and the current at the two inversion points is 0, and between the two inversion points
  • the length is a half wavelength of Band 41, which is ⁇ 1 /2.
  • the antenna when the antenna is in the working mode of the Band 41, the antenna can be divided into three parts, and the inversion point 405 and the inversion point 406 are folded, so that between the inversion point 405 and the inversion point 406 The currents cancel each other out, no radiation is generated, and the other two portions radiate signals other than the portion between the inversion point 405 and the inversion point 406, that is, by the top radiating unit 301 and the bottom radiating unit 303, in the two portions.
  • the length of the radiation signal can include the length of half the wavelength of Band41.
  • the working mode of Band42 can be as shown in Fig. 5.
  • the wavelength of the center frequency of Band42 is ⁇ 2
  • the total length of the antenna can be 5 times and half wavelength of Band42, which is 5 ⁇ 2 /2 shown in the figure.
  • the half wavelength is the center frequency of Band42.
  • Half of the wavelength which is one-half of the ⁇ 2 shown in the figure.
  • the inverting unit 302 portion includes four current inversion points, that is, an inversion point 507, an inversion point 508, an inversion point 509, and an inversion point 510 shown in the figure.
  • the current at the inversion point of the four currents is 0, and the length between the inversion point 507 and the inversion point 510 is the length of the three half wavelengths of Band 42, that is, 3 ⁇ 2 /2 shown in the figure. It can be understood that when the antenna is in the working mode of the Band 42, the antenna can be divided into three parts, namely, the top radiating unit 301, the bottom radiating unit 303, and the inverting unit 302. The inverting unit 302 is folded and the internal current direction is On the contrary, the currents cancel each other out, and no radiation is generated.
  • the top radiating unit 301 and the bottom radiating unit 303 except the inverting unit 302 radiate signals, and the lengths of the radiated signals in the two portions may include the length of the half wavelength of the Band 42. That is, ⁇ 2 /2 is shown in the figure.
  • the antenna provided by the embodiment of the present application may radiate at least two frequency bands, and may include a Band 41 and a Band 42 frequency band in an LTE system.
  • the at least two frequency bands in the horizontal direction are radiated by one antenna, and one frequency band is radiated from one antenna in the prior art, and at least two frequency bands are required to be corresponding to at least two antennas.
  • the antenna provided in this embodiment can be reduced.
  • the volume of radiation at least two frequency bands reduces the cost of using antennas for network equipment.
  • a gap may be added to the inverting unit 302. Specifically, as shown in FIG. 6, the slit 611, that is, the first slit, and the slit 612 are added.
  • the second slit obtains the microstrip line 613, that is, the first microstrip line and the microstrip line 614, that is, the second microstrip line and the microstrip line 615, that is, the third microstrip line.
  • the microstrip line 613 and the microstrip line 615 can generate a current opposite to the direction of the microstrip line 614, and the current of the microstrip line 613 and the microstrip line 615 can cancel the microstrip line when the antenna operates.
  • the current of 614 even if the microstrip line 614 does not produce radiation when the antenna is in the mode of operation of Band 42.
  • the microstrip line 613 and the microstrip line 615 can generate a current opposite to the current direction between the inversion point 510 and the inversion point 509, and can cancel a part of the current between the partial inversion point 510 and the inversion point 509, and reduce
  • the radiation generated by the portion between the inversion point 510 and the inversion point 509 suppresses the antenna side lobes when the antenna operates in the Band 42 mode.
  • the slot 611 and the slot 612 are not between the inversion point 405 and the inversion point 406, and thus have no effect on the Band41 mode.
  • the antenna provided by the embodiment of the present application is specifically described below. First, the length of the antenna in the embodiment of the present application is illustrated. Referring to FIG. 7, another embodiment of the antenna in the embodiment of the present application.
  • the length of the antenna may be determined according to the wavelength of the working frequency band of the antenna.
  • the length of the partial and upper radiation modules 3031 is 30.75 mm, and the length of the lower radiation module 3032 is 19.75 mm.
  • the inverting unit 302 includes the slit 611 and the slit 612, the height of the slit 611 and the slit 612 may be 8 mm, and the depth of the slit 611 and the slit 612 on the inverting unit 302 may be to the inversion point 510 to be at the antenna.
  • the Band42 mode cancels a portion of the current from the inverting point 510 to the inverting point 509, reducing the antenna sidelobes when the antenna is operating in the Band42 mode.
  • the antenna can be fed by a coaxial line, and the upper radiating module 3031 is connected to a conductor in the coaxial line 716, and the conductor in the coaxial line can be soldered to the upper radiating module 3031. Because the shape of the lower radiation module 4062 is "L" shape, the line body of the coaxial line 716 can be placed in the blank portion of the lower radiation module 3032, which can reduce the contact between the coaxial line 716 and the antenna body, and reduce the coaxial line 716 to the antenna. The effect of radiated or received signals.
  • the shape of the lower radiation module 3032 may be a "W" shape, or other shapes, in addition to the "L" shape, and is not limited herein.
  • the "W” shape is as shown in Fig. 8.
  • the conductor of the coaxial line 716 is connected to 3031, and the shield layer is adjacent to the lower radiation module 3033.
  • the coaxial line 716 is placed as far as possible in the blank of the bottom lower radiating module 3033, and by reducing the contact of the coaxial line 716 with the antenna body, the effect of the coaxial line 716 on the signal transmitted or received by the antenna is reduced.
  • the embodiment of the present application only provides a schematic diagram of the length of the antenna.
  • the total length of the antenna is 3 times and a half wavelength of the center frequency of the Band 41, and the center frequency of the Band 42 is 5 times and a half wavelength.
  • the length of the antenna can also be It is 5 times and a half wavelength of the center frequency of the Band 41, 7 times and a half wavelength of the center frequency of the Band 42, etc., and is not limited herein.
  • the antenna provided in the embodiment of the present application is described in detail below through actual simulation.
  • FIG. 9A is a current distribution diagram when the working center frequency of the antenna is 2.6 GHz in the embodiment of the present application
  • FIG. 9B is an inversion phase when the working center frequency of the antenna is 2.6 GHz in the embodiment of the present application.
  • Unit current distribution map As can be seen from FIG. 9A and FIG. 9B, both the inversion point 405 and the inversion point 406 are points at which the current is inverted, and the current after the inversion current is cancelled is zero.
  • the top radiating unit 301 has the same current direction as the bottom radiating unit 303, and since the inverting unit 302 is folded, the internal currents are opposite in direction, cancel each other, and no radiation is generated. Therefore, the antenna can increase the antenna gain when radiating the signal of the Band 41 band, and the current around the slot is consistent with the current direction of the bottom radiating element 303, so the slot has little influence on the Band 41 operating mode of the antenna.
  • FIG. 10A is a current distribution diagram of a slotted antenna at a center frequency of 3.5 GHz according to an embodiment of the present application
  • FIG. 10B is a reversed center frequency of the antenna with a slot in the embodiment of the present application. Current distribution diagram of the phase unit.
  • the top radiating unit 301 and the bottom radiating unit 303 are in phase with each other, and radiate a signal having a center frequency of 3.5 GHz.
  • the inverting unit 302 is inverted by the internal current and cancels each other.
  • a current opposite to the direction of the microstrip line 614 is generated on both sides of the slit, that is, the microstrip line 613 and the microstrip line 615, so that the inversion current of the microstrip line 614 on the inverting unit 510 is narrowed, and the microstrip line
  • the current on 613 and microstrip line 615 is opposite to the direction of current on microstrip line 614, and the portion of microstrip line 613 and current on microstrip line 615 that is opposite to the current on microstrip line 614 can be offset, reducing micro The radiation produced by line 615.
  • FIG. 11A is a current distribution diagram of an antenna without a slot at a center frequency of 3.5 GHz according to an embodiment of the present application
  • FIG. 11B is a center frequency of an antenna without a slot in the embodiment of the present application.
  • Current distribution diagram of the inverting unit As can be seen from FIG. 11A and FIG.
  • the antenna without a slot is in the frequency band of the center frequency of 3.5 GHz, the microstrip line portion of the inverting unit 302, the microstrip line portion 615 of the antenna with the slot, and the microstrip line 1117.
  • the reverse current is wider on the antenna, the electrical length of the microstrip line 1117 is shorter than the microstrip line 614, and the current of the microstrip line 1117 is opposite to the current of the top radiating element 301 and the bottom radiating element 303.
  • the microstrip line 1117 will generate radiation that affects the signal radiation in the frequency band with a center frequency of 3.5 GHz.
  • the gap 611 and the slit 612 have a greater influence on the horizontal radiation of the Band 42 mode, so that the signal radiation of the antenna to the Band 42 frequency band is more horizontal, and the side lobes of the antenna are reduced.
  • the influence of the slot 611 and the slot 612 on the antenna in the embodiment of the present application will be described in detail below.
  • FIG. 12 is a comparison diagram of return loss of the antenna in the embodiment of the present application.
  • the antennas in the Band41, Band42, and Band43 bands of the present application have a return loss of less than -10 dB, so the antenna can be in the Band41, Band42, and Band 43 bands.
  • the comparison shows that the resonant frequency of the antenna with slits is lower than that of the antenna with no gap near 2.6 GHz and 3.5 GHz, and the resonant frequency covered by the antenna without the gap is higher than that of the covered antenna. Covering the Band42 band, the slotted antenna can completely cover the Band42 band, so adding a slot on the inverting unit allows the antenna to completely cover the Band42 band.
  • the antenna is further described in the Band 41 frequency band in the embodiment of the present application by using a specific simulation diagram in conjunction with FIG. 12, FIG. 13A, and FIG.
  • the Band41 frequency band that is, the current distribution simulation diagram with a center frequency of 2.6G with a gap is shown in Fig. 13A
  • the current distribution simulation diagram of the Band41 frequency band without a gap is shown in Fig. 13B
  • the gap is shown in Fig. 13A and Fig. 13B.
  • the current distribution of the antenna in the Band 41 band and the antenna without the slot in the Band 41 band is similar to that in the foregoing FIGS. 9A and 9B.
  • the inversion point of the slotted antenna coincides with the inversion point of the slotless antenna.
  • the comparison between the band width of the antenna Band 41 and the vertical direction without the slot is as shown in FIG. 14.
  • the vertical radiation pattern of the slot antenna and the vertical radiation without the slot antenna are shown in FIG.
  • the picture is similar. Therefore, the addition of the slit 611 and the slit 612 on the inverting unit 302 has little effect on the Band 41 operation mode of the antenna.
  • FIG. 15A The current distribution simulation diagram of the band 42 band center frequency with a 3.4 GHz band slot antenna is shown in FIG. 15A, and the current distribution simulation diagram without the slot antenna is shown in FIG. 15B.
  • the antenna micro without gaps is shown in FIG. 15A and FIG. 15B.
  • the strip line 1117 is wider than the microstrip line 614 of the slotted antenna, and the antenna microstrip line 1117 without the slot is shorter than the electrical length of the slotted antenna microstrip line 614.
  • the circled portions of FIGS. 15A and 15B are current inversion points.
  • the slotted antenna is on both sides of the slot, i.e., the microstrip line 613 and the microstrip line 615 generate a current opposite to the direction of the microstrip line 614, thereby reducing the inverting current width on the microstrip line 614 in the inverting unit.
  • the inverting current split on strip line 614 is more uniform, the electrical length of microstrip line 614 is extended, the impedance is more matched, and can act as an inductive load. Compared with an antenna without a gap, the resonant frequency of the 5x half-wave mode shifts to the low frequency, so that the Band42 band can be completely covered.
  • the vertical direction of the 3.4 GHz band gap and the non-slotted vertical direction in the band Band 42 of the antenna in the embodiment of the present application is as shown in FIG. 16.
  • the vertical direction radiation pattern with the slot antenna and the vertical line without the slot antenna are shown in FIG.
  • the side lobes of the antenna are reduced, and the radiation of the main lobes is more horizontal. Therefore, the antenna with a slot has a more radiative direction toward the horizontal direction when the center frequency is 3.4 GHz, and the antenna with a slot can reduce the antenna side lobes with a center frequency of 3.4 GHz.
  • FIG. 17A The simulation diagram of the current distribution of the band 42 frequency band with a center frequency of 3.45 GHz is shown in Fig. 17A.
  • the simulation diagram of the current distribution without a gap is shown in Fig. 17B.
  • the antenna microstrip line without a gap is known. 1117 is wider and the microstrip line 1117 is shorter than the electrical length of the microstrip line 614 of the slotted antenna.
  • the circled portions of FIGS. 17A and 17B are current inversion points.
  • the slotted antenna generates opposite currents on both sides of the slot, reducing the inverting current width on the microstrip line 614 in the inverting unit, and the inverting current fraction on the inverting unit is more uniform, corresponding to the electrical length.
  • the impedance is more matched and can act as an inductive load.
  • the resonance of the 5x half-wave mode shifts to the low frequency, so that the Band42 band can be completely covered.
  • the vertical direction of the 3.45 GHz band gap and the non-slot in the antenna Band 42 of the embodiment of the present application is as shown in FIG. 18.
  • the vertical direction radiation pattern of the slot antenna and the vertical line without the slot antenna are shown in FIG.
  • the side lobes of the antenna are reduced, and the radiation of the main lobes is more horizontal. Therefore, compared with an antenna without a slot, the antenna with a slot at a center frequency of 3.45 GHz tends to be more horizontal, and the antenna with a slot can reduce the antenna side lobes with a center frequency of 3.45 GHz.
  • the horizontal radiation pattern of the antennas with slots in the embodiment of the present application can be seen in FIG. 19, and the antenna provided in the embodiment of the present invention can achieve omnidirectional radiation in the horizontal direction in Band 41 and Band 42.
  • the dual-band radiation of the Band 41 and the Band 42 is implemented by an antenna, and the antenna can be applied to various network devices, including network devices such as a CPE, a router, or a mobile phone. It is possible to enable the network device to achieve horizontal omnidirectional transmission or reception of signals of multiple frequency bands even when one antenna is used.
  • FIG. 20A is a schematic diagram of an embodiment of an antenna having a slit 611 and a slit 612 having a width of 0.5 mm in the present application
  • FIG. 20B is a slit 611 and a slit 612 having a width of 2.7 mm in the embodiment of the present application.
  • FIG. 20A is a schematic diagram of an embodiment of an antenna having a slit 611 and a slit 612 having a width of 0.5 mm in the present application
  • FIG. 20B is a slit 611 and a slit 612 having a width of 2.7 mm in the embodiment of the present application.
  • FIG. 20A is a schematic diagram of an embodiment of an antenna having a slit 611 and a slit 612 having a width of 0.5 mm in the present application
  • FIG. 20B is a slit 611 and a slit 612 having a width of 2.7 mm in the embodiment of the present application.
  • FIG. 20C is a schematic diagram of an embodiment of an antenna having a slot 611 and a slot 612 having a width of 3.8 mm in the embodiment of the present application.
  • the antennas in FIG. 20A, FIG. 20B, and FIG. 20C have other portions such as the top radiating unit 301, the top radiating unit 303, and the like and the top radiating in FIG. 2-7 except for the width of the slit.
  • the lengths of the unit 301 and the top radiating unit 303 are similar, and are not described herein.
  • 21A, 21B, and 21C are current distribution diagrams of an antenna having a slit width of 0.5 mm, 2.7 mm, and 3.8 mm at a center frequency of 2.6 GHz, which can be obtained by simulation, and have a width of 0.5 mm, 2.7 mm, and The current distribution of the 3.8 mm antenna is similar at the center frequency of 2.6 GHz.
  • 22A, 22B, and 22C are current distribution diagrams of an antenna having a slit width of 0.5 mm, 2.7 mm, and 3.8 mm at a center frequency of 3.5 GHz, which can be obtained by simulation, and have a width of 0.5 mm, 2.7 mm, and The 3.8mm antenna has a similar current distribution at a center frequency of 3.5 GHz.
  • FIG. 23 is a diagram showing the return loss of the antennas of different slot widths according to the embodiment of the present invention.
  • the return loss of the antennas of different slot widths in the respective frequency bands is similar in the embodiment of the present application, that is, the width of the slot is implemented in the present application.
  • the horizontal direction of each frequency band of the antenna has little effect.
  • the width of the microstrip line 613 and the microstrip line 615 outside the slit should not be too narrow to avoid the loss of the reverse current on the microstrip line 614 due to the narrowness of the microstrip line 613 and the microstrip line 615 outside the slit.
  • the cancellation effect for example, the microstrip line 613 and the microstrip line 615 may have a width of at least 2 mm, which may cancel the reverse current of the portion of the microstrip line 614.
  • the effect of the slot width of the antenna in the embodiment of the present application on the working frequency band in addition, the length of each radiating element and the inverting unit of the antenna also affects the working frequency band of the antenna, for example, the folding of the folded portion of the inverting unit
  • the number of points will affect the working frequency band of the antenna.
  • the antenna 1 of the five bending points is as shown in Fig. 24A
  • the antenna 2 of the four bending points is as shown in Fig. 24B.
  • the folded portion of the inverting unit of the antenna 1 in Fig. 24A includes five bending points
  • the antenna 2 of Fig. 24B has four bending points
  • the antenna 1 has the same total length as the antenna 2.
  • the length of the top radiating element of the antenna 1 is 32 mm
  • the length of the top radiating element of the antenna 2 is 34 mm
  • the length of the radiating element of the antenna 1 and the antenna 2 is the same
  • the length of the slit portion of the antenna 1 and the inverting unit of the antenna 2 is 8 mm
  • the antenna 1 The width of the antenna 2 is also 15 mm at the same time.
  • the current distribution diagram of the antenna 1 in the frequency band of the center frequency of 3.5 GHz is as shown in Fig. 25A
  • the current distribution diagram of the antenna 2 in the frequency band of the center frequency of 3.5 GHz is as shown in Fig. 25B. Referring to FIG.
  • FIG. 23A and FIG. 23B a schematic diagram of the return loss of the antenna 1 and the antenna 2 in the embodiment of the present application, and a current distribution diagram of the antenna 1 and the antenna 2 at a center frequency of 3.5 GHz are as shown in FIG. 23A and FIG. 23B, and the antenna 2 is inverted. There are only three points. Therefore, when antenna 2 is operating in a frequency band with a center frequency of 3.5G, the length of the antenna is 4 and a half wavelengths of the band, which will cause the main beam of the Band42 band to be out of the horizontal plane, and the antenna 1 is at 2.6 GHz and 3.5. The resonant ratio of GHz is lower.
  • a schematic diagram of the vertical direction of the antenna 1 and the antenna 2 in the center frequency of the 3.5 GHz band is shown in FIG.
  • the antenna 1 is radiated in the horizontal direction, and the main beam of the antenna 2 is not in the horizontal plane.
  • the antenna with 5 bending points has an antenna with 4 bending points relative to the inverting unit, and the band of Band 42 is radiated closer to the horizontal direction.
  • FIG. 28A is an antenna with a bottom radiating unit width of 14 mm
  • FIG. 28B is bottom radiating.
  • the return loss of an antenna with a cell width of 9 mm and a bottom radiating cell width of 14 mm and 9 mm is shown in FIG. 28A, 28B, and 29, the bandwidth of the antenna having a bottom radiating element width of 14 mm is significantly larger than the bandwidth of the antenna having a bottom radiating element of 9 mm. Therefore, the wider the width of the bottom radiating element of the antenna in the embodiment of the present application, the wider the bandwidth of the antenna covering the frequency band.
  • the width of the bottom radiating element can be adjusted according to the actual design requirements.
  • the width of the bottom radiating element can be designed according to the total width of the antenna, the width of the bottom radiating element does not exceed the total width of the antenna, or the bottom radiating is designed according to the required bandwidth.
  • the unit width is such that the frequency range of the antenna covers the required frequency band, which is not limited herein.
  • the antennas in the embodiments of the present application are described in detail.
  • the antenna return loss provided in the embodiment of the present application is as shown in FIG.
  • the antenna generates six resonances with resonant frequencies of 0.94 GHz, 2.12 GHz, 2.65 GHz, 3.0 GHz, 3.42 GHz, and 3.94 GHz, respectively, and the current modes are corresponding half wavelengths and two and a half wavelengths, respectively. 3 times half wavelength, 4 times half wavelength, 5 times half wavelength, and 6 times half wavelength, it should be understood that the half wavelength corresponding to each resonance frequency is one-half of the wavelength of each resonance frequency.
  • the half-wavelength mode is a low frequency band with a center frequency of 0.94 GHz, and can cover the LTE Band8 (880MHz-960MHz) receiving frequency band (925MHz-960MHz). If the capacitor or the inductor matched with the antenna is connected, the Band8 signal radiation can also be realized. Can be adjusted according to actual design needs.
  • the 2x and a half wavelengths are the operating mode of the center frequency of 2.12GHz, which can cover the receiving band of LTE Band1 (1920MHz-2170MHz) (2110MHz-2170MHz). If the capacitive inductance matched with the antenna is connected, Band1 signal radiation can also be realized. Can be adjusted according to actual design needs.
  • the 3x half-wavelength mode fully covers Band41's frequency band and features horizontal omnidirectional high gain.
  • the antenna provided by the embodiment of the present application can implement radiation or receive signals of multiple LTE frequency bands on one antenna body, and can be applied to various network devices, so that the network device can implement radiation of multiple LTE frequency band signals through the one antenna. With receiving. It can reduce the size of network equipment and reduce the cost of network equipment.
  • the CPE product adopts the LTE low-frequency and high-frequency split antenna design, and the high-frequency antenna, that is, the antenna provided by the embodiment of the present application is 2 and a half times.
  • the working frequency band of the wavelength is low frequency 1 GHz, which may absorb the efficiency of the LTE low frequency antenna in the system.
  • a high-pass filter circuit can be added to the high-frequency antenna feeding path to filter out the low-frequency signal and reduce the influence on the LTE low-frequency antenna.
  • the antenna provided by the embodiment of the present application may be a feedforward antenna in addition to the bottom feed antenna.
  • the antenna is a feedforward antenna
  • the upper portion of the antenna is similar to the bottom feed antenna, and the lower portion and the upper portion are similar.
  • the specific working principle of the feed-forward antenna is similar to that of the feed-forward antenna, and details are not described herein.
  • the antenna provided in the embodiment of the present application is described in detail.
  • the antenna provided in the embodiment of the present application may be applied to a network device, for example, a CPE, a router, a terminal device, and the like.
  • a network device for example, a CPE, a router, a terminal device, and the like.
  • FIG. 30 a schematic diagram of an embodiment of a CPE in the embodiment of the present application.
  • FIG. 31 is a schematic structural diagram of a hardware device of a CPE in the present application.
  • the CPE 3100 includes a processor 3110, a memory 3120, a baseband circuit 3130, a radio frequency circuit 3140, an antenna 3150, and a bus 3160.
  • the processor 3110 and the memory 3120 are configured.
  • the baseband circuit 3130, the radio frequency circuit 3140 and the antenna 3150 are connected by a bus 3160;
  • the memory 3120 stores corresponding operation instructions;
  • the processor 3110 controls the radio frequency circuit 3140, the baseband circuit 3130 and the antenna 3150 to perform corresponding operations by executing the above operation instructions. Operation.
  • the processor 3110 can control the radio frequency circuit to generate a composite signal, and then radiate the first signal in the first frequency band and the second signal in the second frequency band through the antenna.
  • the embodiment of the present application further provides a terminal device.
  • a terminal device As shown in FIG. 32, for the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the terminal may be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an in-vehicle computer, and the terminal is a mobile phone as an example:
  • FIG. 32 is a block diagram showing a partial structure of a mobile phone related to a terminal provided by an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 3210, a memory 3220, an input unit 3230, a display unit 3240, a sensor 3250, an audio circuit 3260, a wireless fidelity (WiFi) module 3270, and a processor 3280. And power supply 3290 and other components.
  • RF radio frequency
  • the RF circuit 3210 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. Specifically, after receiving the downlink information of the base station, the processor 3280 processes the data. In addition, the uplink data is designed to be sent to the base station.
  • RF circuit 3210 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • the antenna can radiate signals in at least two frequency bands. For example, the antenna can simultaneously radiate signals in the Band41, Band42, and Band43 bands in the LTE system.
  • RF circuitry 3210 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E-mail Short Messaging Service
  • the memory 3220 can be used to store software programs and modules, and the processor 3280 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 3220.
  • the memory 3220 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 3220 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 3230 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 3230 may include a touch panel 3231 and other input devices 3232.
  • the touch panel 3231 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 3231 or near the touch panel 3231. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 3231 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 3280 is provided and can receive commands from the processor 3280 and execute them.
  • the touch panel 3231 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 3230 may also include other input devices 3232.
  • other input devices 3232 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 3240 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 3240 can include a display panel 3241.
  • the display panel 3241 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 3231 can cover the display panel 3241. When the touch panel 3231 detects a touch operation on or near the touch panel 3231, the touch panel 3231 transmits to the processor 3280 to determine the type of the touch event, and then the processor 3280 according to the touch event. The type provides a corresponding visual output on display panel 3241.
  • the touch panel 3231 and the display panel 3241 are used as two independent components to implement the input and input functions of the mobile phone, in some embodiments, the touch panel 3231 and the display panel 3241 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 3250, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 3241 according to the brightness of the ambient light, and the proximity sensor may close the display panel 3241 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 3260, a speaker 3261, and a microphone 3262 can provide an audio interface between the user and the handset.
  • the audio circuit 3260 can transmit the converted electrical data of the received audio data to the speaker 3261, and convert it into a sound signal output by the speaker 3261; on the other hand, the microphone 3262 converts the collected sound signal into an electrical signal, by the audio circuit 3260. After receiving, it is converted into audio data, and then processed by the audio data output processor 3280, transmitted to the mobile phone 3210 via the RF circuit 3210, or outputted to the memory 3220 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 3270. It provides users with wireless broadband Internet access.
  • FIG. 32 shows the WiFi module 3270, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 3280 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 3220, and invoking data stored in the memory 3220, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 3280 may include one or more processing units; preferably, the processor 3280 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 3280.
  • the mobile phone also includes a power supply 3290 (such as a battery) for powering various components.
  • a power supply 3290 (such as a battery) for powering various components.
  • the power supply can be logically coupled to the processor 3280 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请实施例提供一种天线和终端,该天线辐射Band41的信号与Band 42的信号,Band41的信号的中心频率对应的波长为λ 1,Band42的信号的中心频率的波长为λ 2,该天线包括:介质基板,顶部辐射单元,反相单元以及底部辐射单元;该介质基板作为该顶部辐射单元,该反相单元,以及所述底部辐射单元的载体;该顶部辐射单元的一端与该反相单元的一端连接;该反相单元的另一端与该底部辐射单元的一端连接,该反相单元的长度为3λ 2/2,该反相单元的长度大于λ 1/2;该反相单元包括至少两个电流反相点,该至少两个电流反相点之间的部分不产生辐射,该顶部辐射单元与该底部辐射单元水平全向辐射Band41的信号与Band 42的信号。

Description

一种天线和终端 技术领域
本申请涉及通信领域,尤其涉及一种天线和终端。
背景技术
随着通信技术的发展,各种天线,例如富兰克林天线,应用于各种网络设备中,天线用于无线信号的发射以及接收。富兰克林天线的辐射体由反相单元与直立的辐射单元连接组成,反相单元部分因被折叠,内部电流抵消,不进行辐射,因此只有辐射单元进行辐射。
在实际通信应用中,网络设备通常需要辐射或接收至少两个频段的信号,该至少两个频段的信号的中心频率比值通常为接近1.5。现有方案中的富兰克林天线只能水平辐射一个频段的信号,不能由一个富兰克林天线完全覆盖该至少两个频段,只能辐射该至少两个频段中的其中一个。例如,以长期演进(Long Term Evolution,LTE)系统中工作频段Band41(2496MHz-2690MHz)和Band42(3400MHz-3600MHz)为例,支持Band41频段高增益水平全向辐射的富兰克林天线不能水平辐射Band42频段的信号。若网络设备需要辐射至少两个频段的信号,那么当网络设备使用一个富兰克林天线时,无法辐射该至少两个频段的信号,因此网络设备需要包括与该至少两个频段对应的至少两个天线,因此增加了该至少两个天线所占网络设备的体积,同时提高了网络设备使用天线进行数据传输的成本,如何通过一个富兰克林天线实现水平全向辐射与接收该至少两个频段的信号成为了一个亟待解决的问题。
发明内容
本申请实施例提供了一种天线和终端,用于通过一个天线同时辐射至少两个频段的信号,降低网络设备的体积以及成本。
有鉴于此,本申请提供一种天线,所述天线辐射Band41的信号与Band 42的信号,所述Band41的信号的中心频率对应的波长为λ 1,所述Band42的信号的中心频率的波长为λ 2,所述天线包括:介质基板,顶部辐射单元,反相单元以及底部辐射单元;
所述介质基板作为所述顶部辐射单元,所述反相单元,以及所述底部辐射单元的载体;
所述顶部辐射单元的一端与所述反相单元的一端连接;
所述反相单元的另一端与所述底部辐射单元的一端连接,所述反相单元的长度为3λ 2/2,所述反相单元的长度大于λ 1/2;
所述反相单元包括至少两个电流反相点,所述至少两个电流反相点之间的部分不产生辐射,所述顶部辐射单元与所述底部辐射单元水平全向辐射所述Band41的信号与所述Band 42的信号。
本申请还提供一种天线,该天线辐射第一信号与第二信号,该第一信号与该第二信号处于不同频段,该第一信号对应第一半波长,该第二信号对应第二半波长,该天线包括:介质基板,顶部辐射单元,反相单元以及底部辐射单元;该介质基板作为该顶部辐射单元,该反相单元,以及该底部辐射单元的载体;该顶部辐射单元的一端与该反相单元的一端连接;该反相单元的另一端与该底部辐射单元的一端连接,该反相单元的长度为该第二半波长的第一奇数倍,该反相单元的长度大于该第一半波长的第二奇数倍;该反相单元包括至少两个电流反相点,该至少两个电流反相点之间的部分不产生辐射,该顶部辐射单元与该底部辐射单元水平全向辐射该第一信号与该第二信号。
在本申请实施例中,通过改变天线的长度,使天线的反相单元为第二半波长的第一奇数 倍,且反相单元的长度大于第一半波长的第二奇数倍,使天线在工作时,反相单元部分的反相点之间不产生辐射,顶部辐射单元与底部辐射单元辐射该第一信号与第二信号,因此,本申请提供的天线可以实现由一个直立天线辐射处于至少两个频段的信号。
一种实施方式中,该顶部辐射单元与该底部辐射单元水平全向辐射该第一信号和该第二信号,包括:
该反相单元中该第一半波长的第二奇数倍长度的部分所包括的至少两个电流反相点之间电流抵消,使得该反相单元中第一半波长的第二奇数倍长度的部分不产生辐射,由该反相单元中除该第一半波长的奇数倍长度部分外的部分,该顶部辐射单元以及该底部辐射单元水平全向辐射该第一信号;以及该反相单元中该第二半波长的第一奇数倍长度的部分所包括的至少两个电流反相点之间电流抵消,使得该反相单元不产生辐射,由该顶部辐射单元与该底部辐射单元水平全向辐射该第二信号。
在本申请实施方式中,当天线辐射第一信号时,反相单元中第一半波长的第二奇数倍长度的部分由于电流方向相反,互相抵消,不产生辐射,由反相单元中除该第一半波长的奇数倍长度部分外的部分、底部辐射单元与顶部辐射单元辐射该第一信号,当天线辐射第一信号时,反相单元中由于电流方向相反,互相抵消,不产生辐射,由底部辐射单元与顶部辐射单元辐射该第二信号,因此,该天线可以辐射该第一信号与第二信号,本申请实施方式为该天线辐射第一信号与第二信号的具体实施方式。
一种实施方式中,该反相单元包括折叠走线部分与直立部分,该直立部分包括第一缝隙与第二缝隙,该第一缝隙与该第二缝隙平行,该第一缝隙与该第二缝隙将该反相单元中与该第一缝隙以及该第二缝隙对应的长度范围分为第一微带线、第二微带线与第三微带线,该第一微带线与该第三微带线分别位于该第二微带线的两侧,当该天线辐射该第二信号时,该第一微带线与该第二微带线电流方向相反,该第二微带线的电流方向与该第三微带线的电流方向相反,以使得该第二微带线不产生辐射。
在本申请实施方式中,为进一步使天线辐射的信号更趋近于水平,在反相单元的直立部分添加两个缝隙,使缝隙两侧的微带线与缝隙中间的微带线电流方向相反,使缝隙两侧的微带线电流与缝隙中间的微带线的电流互相抵消,可以减小天线在辐射第二信号时反相单元部分产生的辐射,抑制天线在辐射第二信号时的天线旁瓣。
一种实施方式中,该第二信号与该第一信号的频率比值范围为1.3-1.6。
在本申请实施方式中,第二信号与第一信号的频率比值范围为1.3-1.6,可以使本申请中天线辐射处于至少两个频段的信号。
一种实施方式中,该第一信号处于2496MHz-2690MHz,该第二信号处于3400MHz-3800MHz。
一种实施方式中,该天线的长度为99mm,该天线的长度为该第一半波长的3倍,以及该天线的长度为该第二半波长的5倍。
在本申请实施方式中,该天线的长度为第一半波长的3倍以及该天线的长度为该第二半波长的5倍,因此,结合实际情况,该天线的反相单元可以包括该第一半波长的1倍,且该天线的反相单元的长度可以为第二半波长的3倍,可以使天线实现高增益辐射第一信号与第二信号。
一种实施方式中,该第一微带线的最低宽度为2mm,该第三微带线的宽度为最低2mm。
在本申请实施方式中,该第一微带线与第三微带线的宽度最低为2mm,可以足够抵消第二 微带线产生的电流,使反向单元的直立部分在天线辐射第二信号时不产生辐射,使该天线辐射的第二信号更趋近于水平全向。
一种实施方式中,该第一缝隙的宽度范围为0.5mm-3.8mm,该第二缝隙的宽度范围为0.5mm-3.8mm。
一种实施方式中,该第一缝隙的长度为8mm,该第二缝隙的长度为8mm。
一种实施方式中,该底部辐射单元包括:上辐射模块与下辐射模块,该上辐射模块通过同轴线与该下辐射模块连接,该下辐射模块包括空隙部分,该同轴线置于该下辐射模块的空隙部分,该同轴线用于对该天线进行馈电。
在本申请实施方式中,上辐射模块与下辐射模块通过同轴线连接,下辐射模块包括空隙部分,该同轴线可以从该下辐射模块的空隙部分穿过,可以减小同轴线对天线辐射的影响。
本申请还提供一种CPE,该CPE包括:
天线,处理器、存储器、总线以及输入输出接口;该存储器中存储有代码,该天线可以是第一方面与第一方面中任一实施方式中的天线;该存储器中存储有程序代码;该处理器调用该存储器中的程序代码时向该天线发送控制信号,该控制信号用于控制该天线发送第一信号或第二信号。
本申请还提供一种终端,该终端设备包括:
天线,处理器、存储器、总线以及输入输出接口;该存储器中存储有代码,该天线可以是第一方面与第一方面中任一实施方式中的天线;该存储器中存储有程序代码;该处理器调用该存储器中的程序代码时向该天线发送控制信号,该控制信号用于控制该天线发送第一信号或第二信号。
通过以上技术方案可以看出,本申请实施例中具有以下优点:
本申请实施例中的天线可以包括介质基板,顶部辐射单元,反相单元以及底部辐射单元,该反相单元的长度为第二半波长的第一奇数倍,且该反相单元的长度大于第一半波长的第二奇数倍,该第一半波长为第一信号所对应的波长的一半,该第二半波长为第二信号所对应的波长的一半。因此,当天线处于工作状态时,反相单元可以包括至少两个电流反相点,且该至少两个电流反相点之间不产生辐射,顶部辐射单元与底部辐射单元水平全向辐射第一信号与第二信号,且该第一信号与第二信号处于不同的频段,因此,本申请实施例提供的天线可以辐射至少两个处于不同频段的信号。
附图说明
图1为本申请实施例中的一个系统架构示意图;
图2为本申请实施例中的一个应用场景示意图;
图3为本申请实施例中天线的一种实施例示意图;
图4为本申请实施例中天线的另一种实施例示意图;
图5为本申请实施例中天线的另一种实施例示意图;
图6为本申请实施例中天线的另一种实施例示意图;
图7为本申请实施例中天线的另一种实施例示意图;
图8为本申请实施例中天线的另一种实施例示意图;
图9A为本申请实施例中天线的一种电流分布图;
图9B为本申请实施例中天线的另一种电流分布图;
图10A为本申请实施例中天线的另一种电流分布图;
图10B为本申请实施例中天线的另一种电流分布图;
图11A为本申请实施例中天线的另一种电流分布图;
图11B为本申请实施例中天线的另一种电流分布图;
图12为本申请实施例中的天线的一种回波损耗示意图;
图13A为本申请实施例中天线的另一种电流分布图;
图13B为本申请实施例中天线的另一种电流分布图;
图14为本申请实施例中天线的一种辐射方向图;
图15A为本申请实施例中天线的另一种电流分布图;
图15B为本申请实施例中天线的另一种电流分布图;
图16为本申请实施例中天线的另一种辐射方向图;
图17A为本申请实施例中天线的另一种电流分布图;
图17B为本申请实施例中天线的另一种电流分布图;
图18为本申请实施例中天线的另一种辐射方向图;
图19为本申请实施例中天线的另一种辐射方向图;
图20A为本申请实施例中天线的另一种实施例示意图;
图20B为本申请实施例中天线的另一种实施例示意图;
图20C为本申请实施例中天线的另一种实施例示意图;
图21A为本申请实施例中天线的另一种电流分布图;
图21B为本申请实施例中天线的另一种电流分布图;
图21C为本申请实施例中天线的另一种电流分布图;
图22A为本申请实施例中天线的另一种电流分布图;
图22B为本申请实施例中天线的另一种电流分布图;
图22C为本申请实施例中天线的另一种电流分布图;
图23为本申请实施例中的天线的另一种回波损耗示意图;
图24A为本申请实施例中天线的另一种实施例示意图;
图24B为本申请实施例中天线的另一种实施例示意图;
图25A为本申请实施例中天线的另一种电流分布图;
图25B为本申请实施例中天线的另一种电流分布图;
图26为本申请实施例中的天线的另一种回波损耗示意图;
图27为本申请实施例中天线的另一种辐射方向图;
图28A为本申请实施例中天线的另一种实施例示意图;
图28B为本申请实施例中天线的另一种实施例示意图;
图29为本申请实施例中的天线的另一种回波损耗示意图;
图30为本申请实施例中的天线的另一种回波损耗示意图;
图31为本申请实施例中的客户端设备CPE的一种实施例示意图;
图32为本申请实施例中的终端设备的一种实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的 实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,本申请实施例提供的天线的系统架构。其中,网络设备可以通过天线发送或接收无线信号,终端设备1、终端设备2、终端设备3以及终端设备4可以通过无线信号连接到网络设备,该网络设备可以是客户终端设备(customer premises equipment,CPE)、路由器、移动台(mobile station,MS)、用户站(subscriber station,SS)等。该CPE可以是将移动蜂窝信号,例如LTE、宽带码分多址(wideband code division multiple access,W-CDMA)或全球移动通信(global system for mobile communication,GSM)系统中的信号,转换为无线保真(wireless fidelity,Wi-Fi)信号或无线局域网(wireless local area networks,WLAN)信号的网络设备。CPE产品通常需要进行远距离通信,因此CPE产品使用的天线通常需要实现高增益水平全向辐射,而随着通信领域的技术发展,越来越多的CPE产品的工作频段需要同时包括LTE系统中的Band41(2496MHz-2690MHz)以及Band42(3400MHz-3600MHz),甚至同时包括更多的频段,例如,CPE需要支持Band41、Band42以及Band43(3600MHz-3800MHz)。同时,越来越多的路由器的工作频段也需要同时包括Band41以及Band42,或同时包括Band41、Band42以及Band43等。因此,本申请实施例提供的天线的工作频段包括至少两个频段,使网络设备可以使用一个天线进行至少两个频段的信号辐射或接收,可以降低网络设备使用天线进行信号发射或接收的成本。同时,因至少两个频段的天线在同一天线辐射或接收,对比使用两个天线分别进行两个频段的信号的发射与接收,一个天线的体积明显小于两个天线的体积,进而减小了使用该天线的网络设备的体积。
具体地,本申请实施例提供的天线可以应用于CPE。请参阅图2,本申请实施例中的一个应用场景示意图。在LTE系统中,基站(evolved nodeB,eNB)与核心网(evolved packet core,EPC)连接,用于传输快速传输语音、文本、视频和图像信息等信息,该EPC可以由MME、SGW、PGW、PCRF等网元构成;eNB可以辐射无线信号,CPE产品上设置了天线,可以通过接收eNB辐射的无线信号接入eNB,CPE将eNB辐射的信号转换为Wifi信号,并经由CPE上设置的天线辐射该Wifi信号;电脑、智能电话或笔记本电脑等终端设备可通过Wifi信号连接该CPE产品,并进行通信等。因此,若该CPE产品上设置了本申请实施例提供的天线,可以通过一个天线辐射多个频段的信号,例如同时辐射Band41、Band42以及Band43等,终端设备等也可以通过RJ(registered jack)45接口接入CPE,通过LTE无线接入功能接入互联网,收发邮件、浏览网页或下载文件等。相对于一个天线辐射一个频段的信号,多个频段需要由多个天线辐射,本申请实施例是实现了由一个天线辐射多个频段的信号,减小了天线的占用体积,因此减小了CPE产品的体积。
网络设备与其他设备进行通信的无线信号通常由网络设备上的天线进行发射或接收。因此,一些网络设备中的天线的工作频率也需要同时包括Band41以及Band42,或同时包括Band41、Band42以及Band43等。本申请实施例提供的天线可以由一个天线实现多个频段的发送与接收,且可以实现高增益与水平全向的辐射。本申请实施提供的天线可以应用于网络设备,包括路由器、CPE、MS、SS或移动电话。请参阅图3,本申请实施例中天线的一种实施例示意图,包括:
顶部辐射单元301,反相单元302,底部辐射单元303,以及介质基板304,底部辐射单元303包括上辐射模块3031、下辐射模块3032。
其中,介质基板304作为顶部辐射单元301、反相单元302以及底部辐射单元303的载体,介质基板的介电常数可以对天线的辐射信号造成影响,可以根据实际设备需求选择介质基板。顶部辐射单元301的一端与反相单元302一端连接,反相单元302的另一端与上辐射模块3031的一端连接,反相单元302包括折叠走线的部分以及直立的部分,该折叠走线的部分可以通过螺旋走线折叠,下辐射模块3032与上辐射模块3031包括于底部辐射单元303,上辐射模块3021的另一端与下辐射模块3032的一端通过同轴线连接。
当天线工作时,该天线可以辐射第一信号与第二信号,该第一信号处于第一频段,该第二信号处于第二频段,其中,顶部辐射单元301与底部辐射单元303的电流同向,并辐射或接收处于天线工作频率的信号,反相单元302内部的电流因螺旋走线而各部分之间电流方向相反,互相抵消,不辐射信号。反相单元302不产生辐射可以降低对顶部辐射单元301与底部辐射单元301辐射的信号的影响。反相单元302的长度可以是第二半波长的奇数倍,且反相单元302的长度大于第一半波长的奇数倍,该第一半波长为第一信号的频率所对应的波长的一半,该第一半波长可以为第一频段中心频率波长的二分之一,该第二半波长为第二信号的频率所对应的波长的一半,该第二半波长可以为第二频段中心频率波长的二分之一,该第一频段与第二频段为不同的频段,该第二频段的中心频率与第一频段的中心频率比值范围可以是1.3至1.6。顶部辐射单元301与底部辐射单元303的长度可以包括是第一半波长以及第二半波长,或第一半波长以及第二半波长分别对应的奇数倍长度,使该天线辐射至少两个频段的信号,使得网络设备可以使用一个天线进行至少两个频段的信号的发射以及接收。
本申请实施例提供的天线的工作频率覆盖了至少两个频段的频率范围,包括第一频段以及第二频段,反相单元302的长度可以是第二半波长的长度,且大于第一半波长的长度。因此在天线工作时,顶部辐射单元301与底部辐射单元303的电流同相,可以实现至少两个频段的水平全向高增益辐射。
需要说明的是,本申请实施例中仅以1*2偶极子阵列天线为例进行说明,其中1代表天线的直线阵列,2代表两个直立的辐射单元,即顶部辐射单元301与底部辐射单元303,该两个直立的辐射单元由反相单元连接,即反相单元302,该天线还可以是1*4或1*5等天线,辐射单元之间由反相单元连接,当有至少3个辐射单元时,可以包括至少2个对应的反相单元,辐射单元的数量越多,天线的辐射增益越大,辐射的信号强度越强,具体可以根据实际设计需求调整,此处不作限定。
对于天线的不同工作频段,天线内部具体的电流流向不同,若该天线的覆盖范围包括Band41以及Band42,其中,Band41的工作模式可以如图4所示,Band41中心频率的波长为λ 1,天线总长度可以为Band41中心频率的3倍半波长,即图中所示3λ 1/2,该半波长为Band41中心频率的波长,即λ 1的二分之一。其中,反相单元302包括两个电流反相点,即图中所示的反相点405以及反相点406,该两个反相点处的电流为0,该两个反相点之间的长度为Band41的一个半波长的长度,即λ 1/2。可以理解为,该天线处于Band41的工作模式时,可以将该天线分为三个部分,反相点405与反相点406之间因被折叠,因此反相点405与反相点406之间的电流互相抵消,不产生辐射,由除反相点405与反相点406之间的部分外的其他两个部分辐射信号,即由顶部辐射单元301与底部辐射单元303,该两个部分中的辐射信号的长度都可以包括Band41的半波长的长度。
Band42的工作模式可以如图5所示,Band42中心频率的波长为λ 2,天线的总长度可以 是Band42的5倍半波长,即图中所示5λ 2/2,该半波长为Band42中心频率的波长的一半,即图中所示λ 2的二分之一。其中反相单元302部分包括4个电流反相点,即图中所示反相点507、反相点508、反相点509以及反相点510。该4个电流反相点处的电流为0,反相点507与反相点510之间的长度为Band42的三个半波长的长度,即图中所示3λ 2/2。可以理解为,该天线处于Band42的工作模式时,可以将该天线分为三个部分,即顶部辐射单元301、底部辐射单元303以及反相单元302,反相单元302因折叠,且内部电流方向相反,电流互相抵消,不产生辐射,因此由除反相单元302外的顶部辐射单元301与底部辐射单元303辐射信号,该两个部分中辐射信号的长度都可以包括Band42的半波长的长度,即图中所示λ 2/2。
因此,本申请实施例提供的天线可以辐射至少两个频段,可以包括LTE系统中的Band41以及Band42频段。实现了由一个天线辐射水平方向的至少两个频段,相对于现有方案中的一个天线辐射一个频段,至少两个频段需要对应的至少两个天线,本申请实施例提供的天线可以减小实现至少两个频段的辐射时的体积,减少网络设备使用天线的成本。
此外,为进一步使Band42的天线辐射更趋于水平方向,还可以在反相单元302部分增加缝隙,具体可以如图6所示,增加了缝隙611,即第一缝隙,以及缝隙612,即第二缝隙,得到了微带线613,即第一微带线、微带线614,即第二微带线以及微带线615,即第三微带线。因缝隙611以及缝隙612的产生,微带线613与微带线615可以产生与微带线614方向相反的电流,微带线613与微带线615的电流在天线工作时可以抵消微带线614的电流,即使微带线614在天线处于Band42的工作模式时不产生辐射。即微带线613与微带线615可以产生与反相点510与反相点509之间的电流方向相反的电流,可以抵消部分反相点510与反相点509之间的部分电流,减少反相点510与反相点509之间的部分产生的辐射,以抑制天线工作在Band42模式时的天线旁瓣。而当天线工作在Band41模式时,该缝隙611以及缝隙612未处于反相点405与反相点406之间,因此对Band41模式并未产生影响。
下面对通过具体实施例对本申请实施例提供的天线进行具体说明,首先,对本申请实施例中天线的长度进行举例说明,请参阅图7,本申请实施例中天线的另一个实施例。
可以根据天线工作频段的波长确定天线的长度,具体计算的方法可以是λ=v/f,其中,λ为工作频段对应的中心频率的波长,v为电磁波在介质中的传播速度,f为当前工作频段对应的中心频率。因此,通过对Band41频段以及Band42频段进行计算可以得到,该天线的总长度可以是99mm,顶部辐射单元301的长度为32mm,反相单元302的折叠部分的长度为15mm,反相单元302的直立部分与上辐射模块3031的长度和为30.75mm,下辐射模块3032的长度为19.75mm。此外,若反相单元302包括缝隙611以及缝隙612,则缝隙611以及缝隙612的高度可以是8mm,缝隙611以及缝隙612在反相单元302上的深度可以至反相点510,以在天线的Band42模式抵消反相点510至反相点509的部分电流,减少天线工作在Band42模式时的天线旁瓣。
该天线可以采用同轴线进行馈电,上辐射模块3031与同轴线716内的导体连接,可以将同轴线内的导体焊接在上辐射模块3031。因下辐射模块4062的形状为“L”形,同轴线716的线体可以置于下辐射模块3032的空白部分,可以减少同轴线716与天线本体的接触,减少同轴线716对天线辐射或接收的信号的影响。
此外,下辐射模块3032的形状除了可以是“L”形外,还可以是“W”形的,或其他形状,具体此处不作限定。“W”形如图8所示,同轴线716的导体与3031连接,屏蔽层靠近下辐射 模块3033。同轴线716尽量置于底部下辐射模块3033的空白处,通过减少同轴线716与天线本体的接触,减少同轴线716对天线发射或接收的信号的影响。
需要说明的是,本申请实施例仅提供了一个天线长度的示意图,该天线的总长度为Band41中心频率的3倍半波长,Band42中心频率的5倍半波长,此外,该天线的长度还可以是Band41中心频率的5倍半波长,Band42中心频率的7倍半波长等,具体此处不作限定。
具体地,下面通过实际仿真对本申请实施例提供的天线进行详细说明。
请参阅图9A以及图9B,图9A为本申请实施例中天线的工作中心频率为2.6GHz时的电流分布图,图9B为本申请实施例中天线的工作中心频率为2.6GHz时的反相单元电流分布图。由图9A以及图9B可知,反相点405以及反相点406都为电流反相的点,反相电流进行抵消后的电流为0。顶部辐射单元301与底部辐射单元303的电流方向相同,反相单元302由于被折叠,因此内部电流方向相反,互相抵消,不产生辐射。因此该天线可以提高在辐射Band41频段的信号时的天线增益,且缝隙周围的电流与底部辐射单元303的电流方向一致,因此缝隙对该天线的Band41工作模式影响很小。
本申请实施例中的天线反相单元302中是否有缝隙对中心频率为3.5GHz的频段的影响较大,下面对本申请实施例中的天线的反相单元中的缝隙对中心频率为3.5GHz频段的影响进行说明。请参阅图10A以及图10B,图10A为本申请实施例中带缝隙的天线在中心频率为3.5GHz的电流分布图,图10B为本申请实施例中带缝隙的天线中心频率为3.5GHz的反相单元的电流分布图。其中,由图10A以及图10B可知,顶部辐射单元301与底部辐射单元303的电流同相,并辐射中心频率为3.5GHz的信号,反相单元302因折叠而内部电流反相,互相抵消。在缝隙两侧,即微带线613以及微带线615上产生了与微带线614方向相反的电流,使反相单元510上的微带线614的反相电流变窄,且微带线613与微带线615上的电流与微带线614上的电流方向相反,微带线613与微带线615上的电流与微带线614上的电流反相的部分可以抵消,减小微带线615产生的辐射。
前述对带缝隙的天线在中心频率为3.5GHz的频段的电流分布图,下面对本申请实施例中不带缝隙的天线在中心频率为3.5GHz的频段的电流分布进行说明,以对缝隙产生的影响作更详细的对比。请参阅图11A以及图11B,图11A为本申请实施例中不带缝隙的天线在中心频率为3.5GHz的电流分布图,图11B为本申请实施例中不带缝隙的天线中心频率为3.5GHz的反相单元的电流分布图。由图11A以及图11B可知,不带缝隙的天线在中心频率为3.5GHz的频段时,反相单元302的微带线部分,对比带缝隙的天线的微带线615部分,微带线1117的反相电流在天线上的宽度更宽,对比微带线614,微带线1117的电长度更短,且该微带线1117的电流与顶部辐射单元301以及底部辐射单元303的电流方向相反,在天线处于中心频率为3.5GHz的频段的工作模式时,该微带线1117将产生辐射,影响在中心频率为3.5GHz的频段的信号辐射。
因此,通过以上图9至图11B提供的仿真图的对比,缝隙611以及缝隙612对Band42模式的水平辐射影响较大,可以使天线对Band42频段的信号辐射更趋向于水平,减少天线的旁瓣,下面对该缝隙611以及缝隙612对本申请实施例中的天线的影响进行详细说明。请参阅图12,本申请实施例中的天线的回波损耗对比图。
由图12可知,本申请实施例中的天线在Band41、Band42以及Band43频段的回波损耗都小于-10dB,因此该天线在Band41、Band42以及Band43频段都可以处于工作状态。对比可知, 带缝隙的天线在2.6GHz与3.5GHz附近的谐振频率较不带缝隙的天线更低,不带缝隙的天线覆盖的谐振频率较带缝隙的天线覆盖的谐振频率更高,存在无法全部覆盖Band42频段的情况,而带缝隙的天线则可以完全覆盖Band42频段,因此在反相单元上增加缝隙可以使天线完全覆盖Band42频段。为进一步使本申请实施例中天线的辐射方向更趋近于水平方向,下面结合图12、图13A以及图13B,通过具体仿真图对本申请实施例中在Band41频段时缝隙对天线进行进一步说明。
Band41频段,即中心频率为2.6G的带缝隙的电流分布仿真图如图13A所示,Band41频段不带缝隙的电流分布仿真图如图13B所示,由图13A与图13B可知,带缝隙的天线在Band41频段以及不带缝隙的天线在Band41频段的电流分布与前述图9A与图9B中类似。其中,在图13A与图13B圈出的电流反相点中,带缝隙天线的反相点与不带缝隙天线的反相点也一致。本申请实施例中的天线Band41频段带缝隙与不带缝隙的垂直方向的对比如图14所示,由图14可知,带缝隙天线的垂直方向的辐射图与不带缝隙天线的垂直方向的辐射图类似。因此,在反相单元302上增加缝隙611与缝隙612对天线的Band41工作模式影响很小。
Band42频段中心频率为3.4GHz带缝隙天线的电流分布仿真图如图15A所示,不带缝隙天线的电流分布仿真图如图15B所示,由图15A与图15B可知,不带缝隙的天线微带线1117比带缝隙的天线的微带线614的宽度更宽,且不带缝隙的天线微带线1117比带缝隙的天线微带线614的电长度更短。其中,图15A与图15B圈出部分为电流反相点。带缝隙的天线在缝隙两侧,即微带线613与微带线615产生了与微带线614方向相反的电流,使反相单元中微带线614上的反相电流宽度减小,微带线614上的反相电流分部更均匀,微带线614的电长度延长,阻抗更匹配,可以起感性加载的作用。而相比不带缝隙的天线,5倍半波长模的谐振频率向低频偏移,因此可以完全覆盖Band42频段。本申请实施例中的天线Band42频段中3.4GHz带缝隙与不带缝隙的垂直方向的对比如图16所示,由图16可知,带缝隙天线的垂直方向的辐射图与不带缝隙天线的垂直方向的辐射图相比,减少了天线旁瓣,且主瓣的辐射更倾向于水平方向。因此,带缝隙的天线与不带缝隙的天线相比,中心频率为3.4GHz时的天线辐射方向更倾向于水平方向,带缝隙的天线可以减少中心频率为3.4GHz频段的天线旁瓣。
Band42频段中心频率为3.45GHz带缝隙的电流分布仿真图如图17A所示,不带缝隙的电流分布仿真图如图17B所示,由图17A与图17B可知,不带缝隙的天线微带线1117更宽,且微带线1117比带缝隙的天线的微带线614的电长度更短。其中,图17A与图17B圈出部分为电流反相点。带缝隙的天线在缝隙两侧产生了方向相反的电流,使反相单元中微带线614上的反相电流宽度减小,反相单元上的反相电流分部更均匀,相当于电长度延长,阻抗更匹配,可以起感性加载的作用。而相比不带缝隙的天线,5倍半波长模的谐振向低频偏移,因此可以完全覆盖Band42频段。本申请实施例中的天线Band42频段中3.45GHz带缝隙与不带缝隙的垂直方向的对比如图18所示,由图18可知,带缝隙天线的垂直方向的辐射图与不带缝隙天线的垂直方向的辐射图相比,减少了天线旁瓣,且主瓣的辐射更倾向于水平方向。因此,带缝隙的天线与不带缝隙的天线相比,中心频率为3.45GHz时的天线辐射方向更倾向于水平方向,带缝隙的天线可以减少中心频率为3.45GHz频段的天线旁瓣。
本申请实施例中带缝隙的天线在Band41与Band42的水平方向辐射图可参阅图19,由图19可知,本申请实施例提供的天线可在Band41与Band42实现水平方向的全向辐射。本申请实施例通过一个天线实现了Band41与Band42双频段的辐射,该天线可应用于各种网络设备, 包括CPE、路由器或移动电话等网络设备。可以使网络设备在使用一个天线的情况下,也能实现多个频段的信号的水平全向的发射或接收。
前述对本申请实施例中带缝隙的天线与不带缝隙的天线进行了详细的对比说明,此外,本申请还对带缝隙的天线的缝隙宽度进行了对比,下面对本申请实施例中不同缝隙宽度的天线进行具体说明。请参阅图20A、图20B以及图20C,图20A为本申请中缝隙611与缝隙612宽度为0.5mm的天线的实施例示意图,图20B为书本申请实施例中缝隙611与缝隙612宽度为2.7mm的天线的实施例示意图,图20C为书本申请实施例中缝隙611与缝隙612宽度为3.8mm的天线的实施例示意图。需要说明的是,本申请实施例图20A、图20B以及图20C中的天线,除了缝隙的宽度不同外,其他部分例如顶部辐射单元301、顶部辐射单元303等与前述图2-7中顶部辐射单元301以及顶部辐射单元303等的长度类似,具体此处不作赘述。
图21A、图21B以及图21C分别为缝隙宽度为0.5mm、2.7mm以及3.8mm的天线在中心频率为2.6GHz的频段时的电流分布图,通过仿真可以得到,宽度为0.5mm、2.7mm以及3.8mm的天线分别在中心频率为2.6GHz的频段时的电流分布类似。图22A、图22B以及图22C分别为缝隙宽度为0.5mm、2.7mm以及3.8mm的天线在中心频率为3.5GHz的频段时的电流分布图,通过仿真可以得到,宽度为0.5mm、2.7mm以及3.8mm的天线在中心频率为3.5GHz的频段时的电流分布类似。
图23为本申请实施例中不同缝隙宽度的天线的回波损耗图,由图23可知,本申请实施例中不同缝隙宽度的天线在各个频段的回波损耗类似,即缝隙的宽度对本申请实施例中的天线的各个频段的水平方向影响不大。此外,缝隙外侧的微带线613以及微带线615的宽度不能太窄,避免因缝隙外侧的微带线613以及微带线615太窄而失去对以及微带线614上的反相电流的抵消作用,例如,微带线613以及微带线615的宽度最低可以为2mm,可以抵消微带线614部分的反相电流。
前述对本申请实施例中天线的缝隙宽度对工作频段的影响,此外,天线的各个辐射单元与反相单元的长度对天线的工作频段也将产生影响,例如,反相单元的折叠部分的弯折点数量将对天线的工作频段产生影响,本申请实施例中5个弯折点的天线1如图24A所示,4个弯折点的天线2如图24B所示。图24A中的天线1反相单元的折叠部分包括5个弯折点,图24B的天线2具有4个弯折点,天线1与天线2的总长度相同。天线1的顶部辐射单元长度为32mm,天线2的顶部辐射单元长度为34mm,天线1与天线2的底部辐射单元长度相同,天线1与天线2反相单元的缝隙部分长度都为8mm,天线1与天线2的宽度也同时为15mm。天线1在中心频率为3.5GHz的频段的电流分布图如图25A所示,天线2在中心频率为3.5GHz的频段的电流分布图如图25B所示。结合图26,本申请实施例中天线1与天线2的回波损耗示意图,以及天线1与天线2在中心频率为3.5GHz频段的电流分布图如图23A以及图23B可知,天线2的反相点只有3个,因此,天线2工作在中心频率为3.5G的频段时,天线的长为该频段的4个半波长,将导致Band42频段的主波束不在水平面,且天线1在2.6GHz以及3.5GHz的谐振比值更低。天线1与天线2在中心频率为3.5GHz频段的垂直方向示意图如图27所示,由图27可知,天线1为水平方向辐射,天线2的主波束不在水平面,因此本申请实施例中反相单元具有5个弯折点的天线相对于反相单元具有4个弯折点的天线,辐射Band42的频段时更接近水平方向。
另外,本申请实施例中的天线的底部辐射单元的宽度对该天线的带宽也将产生影响,请 参阅图28A以及图28B,图28A为底部辐射单元宽度为14mm的天线,图28B为底部辐射单元宽度为9mm的天线,底部辐射单元宽度为14mm以及9mm的天线的回波损耗如图29所示。通过图28A、图28B以及图29可知,底部辐射单元宽度为14mm的天线的带宽明显大于底部辐射单元为9mm的天线的带宽。因此本申请实施例中的天线的底部辐射单元的宽度越宽,该天线覆盖频段的带宽越宽。在实际设计中,可根据实际设计需求调整底部辐射单元的宽度,例如,可以根据天线的总宽度设计底部辐射单元的宽度,底部辐射单元的宽度不超过天线总宽度,或根据需求带宽设计底部辐射单元宽度,使天线的频率范围覆盖需求频段,具体此处不作限定。
以上对本申请实施例中的天线进行了详细的对比说明,本申请实施例提供的天线回波损耗如图30所示。由图30可知,该天线产生了6个谐振,谐振频率分别为0.94GHz、2.12GHz、2.65GHz、3.0GHz、3.42GHz和3.94GHz,电流的模式分别为对应的半波长、2倍半波长,3倍半波长、4倍半波长、5倍半波长以及6倍半波长,应理解,每个谐振频率对应的半波长为每个谐振频率的波长的二分之一。其中,半波长模式为中心频率为0.94GHz的低频段,可以覆盖LTE Band8(880MHz-960MHz)接收频段(925MHz-960MHz),若与天线连接匹配的电容或电感,也可以实现Band8信号辐射,具体可根据实际设计需求调整。2倍半波长为中心频率为2.12GHz频段的工作模式,可以覆盖LTE Band1(1920MHz-2170MHz)的接收频段(2110MHz-2170MHz),若与天线连接匹配的电容电感,也可以实现Band1信号辐射,具体可根据实际设计需求调整。3倍半波长的工作模式完全覆盖Band41的频段,且具有水平全向的高增益的特点。5倍半波长的带宽较宽,覆盖的范围为3.4GHz-3.8GHz,可以对应LTE系统中的Band42以及Band43,且具有水平全向的高增益的特点。因此,本申请实施例提供的天线可以实现在一个天线体上辐射或接收多个LTE频段的信号,可以应用于各种网络设备中,使网络设备通过该一个天线实现多个LTE频段信号的辐射与接收。可以减小网络设备的体积,降低网络设备的成本。
此外,在实际设计中,若在CPE中使用本申请实施例提供的天线,该CPE产品采用LTE低频与高频拆分天线设计,高频天线,即本申请实施例提供的天线的2倍半波长的工作的频段为低频1GHz,可能会吸收系统中LTE低频天线的效率,可以在该高频天线馈电通路上增加高通滤波电路,过滤掉低频信号,降低对LTE低频天线的影响。
此外,本申请实施例提供的天线除了可以是底馈的天线外,还可以是中馈天线,当该天线为中馈天线时,天线的上部分为与底馈天线类似,下部分与上部分为对称的形状。该中馈天线的具体工作原理与该底馈天线类似,具体此处不再赘述。
前述对本申请实施例中提供的天线进行了详细说明,此外,本申请实施例提供的天线还可以应用于网络设备,例如,CPE、路由器、终端设备等,下面对本申请实施例提供的设备进行说明,请参阅图30,本申请实施例中CPE的一个实施例示意图,
如图31所示为本申请中CPE的一个硬件装置结构示意图,CPE3100包括:处理器3110、存储器3120、基带电路3130、射频电路3140、天线3150和总线3160;其中,处理器3110、存储器3120、基带电路3130、射频电路3140和天线3150通过总线3160相连接;存储器3120中存储有相应的操作指令;处理器3110通过执行上述操作指令,控制射频电路3140、基带电路3130和天线3150工作从而执行对应的操作。例如,处理器3110可以控制射频电路产生合成信号,然后通过天线辐射处于第一频段的第一信号与处于第二频段的第二信号。
此外,除了CPE,本申请实施例还提供了一种终端设备,如图32所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以终端为手机为例:
图32示出的是与本发明实施例提供的终端相关的手机的部分结构的框图。参考图32,手机包括:射频(Radio Frequency,RF)电路3210、存储器3220、输入单元3230、显示单元3240、传感器3250、音频电路3260、无线保真(wireless fidelity,WiFi)模块3270、处理器3280、以及电源3290等部件。本领域技术人员可以理解,图32中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图32对手机的各个构成部件进行具体的介绍:
RF电路3210可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器3280处理;另外,将设计上行的数据发送给基站。通常,RF电路3210包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。其中,该天线可以辐射处于至少两个频段的信号,例如,该天线可以同时辐射处于LTE系统中Band41、Band42与Band43频段的信号。此外,RF电路3210还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器3220可用于存储软件程序以及模块,处理器3280通过运行存储在存储器3220的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器3220可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器3220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元3230可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元3230可包括触控面板3231以及其他输入设备3232。触控面板3231,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板3231上或在触控面板3231附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板3231可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器3280,并能接收处理器3280发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板3231。除了触控面板3231,输入单元3230还可以包括其他输入设备3232。具体地,其他输入设备3232可以包括但不限于物理键 盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元3240可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元3240可包括显示面板3241,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板3241。进一步的,触控面板3231可覆盖显示面板3241,当触控面板3231检测到在其上或附近的触摸操作后,传送给处理器3280以确定触摸事件的类型,随后处理器3280根据触摸事件的类型在显示面板3241上提供相应的视觉输出。虽然在图32中,触控面板3231与显示面板3241是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板3231与显示面板3241集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器3250,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板3241的亮度,接近传感器可在手机移动到耳边时,关闭显示面板3241和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路3260、扬声器3261,传声器3262可提供用户与手机之间的音频接口。音频电路3260可将接收到的音频数据转换后的电信号,传输到扬声器3261,由扬声器3261转换为声音信号输出;另一方面,传声器3262将收集的声音信号转换为电信号,由音频电路3260接收后转换为音频数据,再将音频数据输出处理器3280处理后,经RF电路3210以发送给比如另一手机,或者将音频数据输出至存储器3220以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块3270可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图32示出了WiFi模块3270,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器3280是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器3220内的软件程序和/或模块,以及调用存储在存储器3220内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器3280可包括一个或多个处理单元;优选的,处理器3280可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器3280中。
手机还包括给各个部件供电的电源3290(比如电池),优选的,电源可以通过电源管理系统与处理器3280逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种天线,其特征在于,所述天线辐射Band41的信号与Band 42的信号,所述Band41的信号的中心频率对应的波长为λ 1,所述Band42的信号的中心频率的波长为λ 2,所述天线包括:介质基板,顶部辐射单元,反相单元以及底部辐射单元;
    所述介质基板作为所述顶部辐射单元,所述反相单元,以及所述底部辐射单元的载体;
    所述顶部辐射单元的一端与所述反相单元的一端连接;
    所述反相单元的另一端与所述底部辐射单元的一端连接,所述反相单元的长度为3λ 2/2,所述反相单元的长度大于λ 1/2;
    所述反相单元包括至少两个电流反相点,所述至少两个电流反相点之间的部分不产生辐射,所述顶部辐射单元与所述底部辐射单元水平全向辐射所述Band41的信号与所述Band 42的信号。
  2. 一种天线,其特征在于,所述天线辐射第一信号与第二信号,所述第一信号与所述第二信号处于不同频段,第一半波长为所述第一信号对应波长的一半,第二半波长为所述第二信号对应波长的一半,所述天线包括:介质基板,顶部辐射单元,反相单元以及底部辐射单元;
    所述介质基板作为所述顶部辐射单元,所述反相单元,以及所述底部辐射单元的载体;
    所述顶部辐射单元的一端与所述反相单元的一端连接;
    所述反相单元的另一端与所述底部辐射单元的一端连接,所述反相单元的长度为所述第二半波长的第一奇数倍,所述反相单元的长度大于所述第一半波长的第二奇数倍;
    所述反相单元包括至少两个电流反相点,所述至少两个电流反相点之间的部分不产生辐射,所述顶部辐射单元与所述底部辐射单元水平全向辐射所述第一信号与所述第二信号。
  3. 根据权利要求2所述的天线,其特征在于,所述顶部辐射单元与所述底部辐射单元水平全向辐射所述第一信号和所述第二信号,包括:
    所述反相单元中所述第一半波长的第二奇数倍长度的部分所包括的至少两个电流反相点之间电流抵消,使得所述反相单元中第一半波长的第二奇数倍长度的部分不产生辐射,由所述反相单元中除所述第一半波长的奇数倍长度部分外的部分,所述顶部辐射单元以及所述底部辐射单元水平全向辐射所述第一信号;
    和,
    所述反相单元中所述第二半波长的第一奇数倍长度的部分所包括的至少两个电流反相点之间电流抵消,使得所述反相单元不产生辐射,由所述顶部辐射单元与所述底部辐射单元水平全向辐射所述第二信号。
  4. 根据权利要求3所述的天线,其特征在于,所述反相单元包括折叠走线部分与直立部分,所述直立部分包括第一缝隙与第二缝隙,所述第一缝隙与所述第二缝隙平行,所述第一缝隙与所述第二缝隙将所述反相单元中与所述第一缝隙以及所述第二缝隙对应的长度范围分为第一微带线、第二微带线与第三微带线,所述第一微带线与所述第三微带线分别位于所述第二微带线的两侧,当所述天线辐射所述第二信号时,所述第一微带线与所述第二微带线电流方向相反,所述第二微带线的电流方向与所述第三微带线的电流方向相反,以使得所述第二微带线不产生辐射。
  5. 根据权利要求4所述的天线,其特征在于,所述第二信号与所述第一信号的频率比值范围为1.3-1.6。
  6. 根据权利要求5所述的天线,其特征在于,所述第一信号处于2496MHz-2690MHz,所述第二信号处于3400MHz-3800MHz。
  7. 根据权利要求6所述的天线,其特征在于,所述天线的长度为99mm,所述天线的长度为所述第一半波长的3倍,以及所述天线的长度为所述第二半波长的5倍。
  8. 根据权利要求7所述的方法,其特征在于,所述第一微带线的最低宽度为2mm,所述第三微带线的宽度为最低2mm。
  9. 根据权利要求4-8中任一项所述的天线,其特征在于,所述第一缝隙的宽度范围为0.5mm-3.8mm,所述第二缝隙的宽度范围为0.5mm-3.8mm。
  10. 根据权利要求4-9中任一项所述的天线,其特征在于,所述第一缝隙的长度为8mm,所述第二缝隙的长度为8mm。
  11. 根据权利要求2-10中任一项所述的天线,其特征在于,所述底部辐射单元包括:上辐射模块与下辐射模块,所述上辐射模块通过同轴线与所述下辐射模块连接,所述下辐射模块包括空隙部分,所述同轴线置于所述下辐射模块的空隙部分,所述同轴线用于对所述天线进行馈电。
  12. 一种终端设备,其特征在于,所述终端设备包括:
    天线,处理器、存储器、总线以及输入输出接口;
    所述天线包括权利要求1-11中任一项所述的天线;
    所述存储器中存储有程序代码;
    所述处理器调用所述存储器中的程序代码时向所述天线发送控制信号,所述控制信号用于控制所述天线发送第一信号或第二信号。
PCT/CN2018/101975 2017-12-21 2018-08-23 一种天线和终端 WO2019119843A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/956,188 US11251534B2 (en) 2017-12-21 2018-08-23 Antenna and terminal
AU2018386614A AU2018386614B2 (en) 2017-12-21 2018-08-23 Antenna and terminal
JP2020528266A JP7001313B2 (ja) 2017-12-21 2018-08-23 アンテナおよび端末
EP18892342.9A EP3706241A4 (en) 2017-12-21 2018-08-23 ANTENNA AND TERMINAL
CN201880022588.7A CN110731031B (zh) 2017-12-21 2018-08-23 一种天线和终端

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711398107 2017-12-21
CN201711398107.6 2017-12-21
CN201810142705.5 2018-02-11
CN201810142705.5A CN109950690B (zh) 2017-12-21 2018-02-11 一种天线和终端

Publications (1)

Publication Number Publication Date
WO2019119843A1 true WO2019119843A1 (zh) 2019-06-27

Family

ID=66993031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101975 WO2019119843A1 (zh) 2017-12-21 2018-08-23 一种天线和终端

Country Status (1)

Country Link
WO (1) WO2019119843A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568161A (en) * 1994-08-05 1996-10-22 Glassmaster Company Sectionalized antenna
CN101399395A (zh) * 2007-09-29 2009-04-01 富士康(昆山)电脑接插件有限公司 复合天线
CN203456585U (zh) * 2013-09-23 2014-02-26 深圳光启创新技术有限公司 一种无线通信装置及其通信天线和通信天线用组件
CN203721885U (zh) * 2014-01-24 2014-07-16 周兰枚 一种4dbi的wlan天线
CN104078770A (zh) * 2013-03-29 2014-10-01 深圳光启创新技术有限公司 一种天线及其无线通讯设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568161A (en) * 1994-08-05 1996-10-22 Glassmaster Company Sectionalized antenna
CN101399395A (zh) * 2007-09-29 2009-04-01 富士康(昆山)电脑接插件有限公司 复合天线
CN104078770A (zh) * 2013-03-29 2014-10-01 深圳光启创新技术有限公司 一种天线及其无线通讯设备
CN203456585U (zh) * 2013-09-23 2014-02-26 深圳光启创新技术有限公司 一种无线通信装置及其通信天线和通信天线用组件
CN203721885U (zh) * 2014-01-24 2014-07-16 周兰枚 一种4dbi的wlan天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706241A4 *

Similar Documents

Publication Publication Date Title
US11251534B2 (en) Antenna and terminal
WO2020187146A1 (zh) 毫米波模组和电子设备
EP2779307B1 (en) Flex PCB folded antennas
AU2015101429B4 (en) Electronic device cavity antennas with slots and monopoles
EP2650969B1 (en) Compact broadband antenna
WO2020187119A1 (zh) 毫米波天线模组和电子设备
WO2021128552A1 (zh) 一种 mimo 天线装置及移动终端
WO2019219054A1 (zh) 一种多频带天线及移动终端
WO2024078533A1 (zh) 可折叠电子设备
CN113644436A (zh) 天线系统和电子设备
WO2019119843A1 (zh) 一种天线和终端
WO2021109248A1 (zh) 天线阻抗匹配电路、天线系统、印刷电路板和移动终端
WO2018068344A1 (zh) 一种天线装置及移动终端
CN111082205B (zh) 天线及电子设备
KR20220008036A (ko) 안테나를 포함하는 전자 장치
CN110311226A (zh) 一种天线装置及移动终端
WO2023236120A1 (zh) 天线结构、天线阵列及终端设备
WO2023130418A1 (en) Antenna assembly capable of proxmity sensing and electronic device with the antenna assembly
JP2020519082A (ja) ミリ波アンテナ
CN112510348A (zh) 天线及电子设备
CN117594976A (zh) 天线、封装天线模组及智能终端
CN114336060A (zh) 无线通信组件及移动终端
CN113764873A (zh) 天线系统及移动终端
JP2024509287A (ja) アンテナを含むフォルダブル電子装置
WO2018058477A1 (zh) 一种终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528266

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018386614

Country of ref document: AU

Date of ref document: 20180823

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018892342

Country of ref document: EP

Effective date: 20200604

NENP Non-entry into the national phase

Ref country code: DE