WO2019119762A1 - 一种气体发生器 - Google Patents

一种气体发生器 Download PDF

Info

Publication number
WO2019119762A1
WO2019119762A1 PCT/CN2018/092733 CN2018092733W WO2019119762A1 WO 2019119762 A1 WO2019119762 A1 WO 2019119762A1 CN 2018092733 W CN2018092733 W CN 2018092733W WO 2019119762 A1 WO2019119762 A1 WO 2019119762A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generator
generator according
nitrate
ignition
gas
Prior art date
Application number
PCT/CN2018/092733
Other languages
English (en)
French (fr)
Inventor
罗运强
任响宁
周雄
张俊
王晨
温常琰
习亮
任兴仑
阮家声
夏强
Original Assignee
湖北航鹏化学动力科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北航鹏化学动力科技有限责任公司 filed Critical 湖北航鹏化学动力科技有限责任公司
Publication of WO2019119762A1 publication Critical patent/WO2019119762A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/02Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate
    • C06B31/04Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate with carbon or sulfur

Definitions

  • the invention relates to a gas generator, in particular to a gas generator for an automobile airbag, belonging to the technical field of automobile airbags.
  • the airbag is composed of a gas generator and an air bag.
  • a very important component of the airbag system is the gas generator, which acts to produce a sufficient volume of gas at a sufficiently fast rate to supply the airbag in a short period of time.
  • a car airbag is one or more inflators that are installed inside or behind the car and inside the car interior and inside the car interior to protect the driver and the occupant from critical parts and to mitigate the damage caused by the impact.
  • the automobile airbag ignition agent is installed as a igniting agent in the gas generator, and the automobile airbag gas generating agent is charged into the gas generator as a gas generating agent, and the gas generating agent is triggered by the ignition of the igniter when needed. Produces a large amount of gas.
  • the gas generator is activated and triggered to start burning the internal gas generating agent to generate gas, inflating the air bag, and forming a cushion air cushion between the interior and the human body to protect the human body from injury.
  • the pyrotechnic gas generator is mainly composed of an ignition system, a combustion system, a filtering system and a supporting member, and has the main advantages of simple structure, rapid inflation (30ms to 50ms), good safety (normally in a normal pressure state), and long storage time. (greater than 15 years) and so on.
  • the design of the ignition system in this gas generator is a key technology.
  • the output energy of the ignition system is insufficient, so that the gas generating agent cannot be burned normally and quickly, so that the airbag cannot be normally opened to protect the occupant; on the contrary, the pressure of 10ms is too large, and the air bag is directly Fly. Therefore, it is necessary to optimize the ignition performance of the pyrotechnic gas generator, which can effectively protect the life safety of the occupants in traffic accidents, and reduce the huge losses caused by the abnormal ignition of the generators to the automobile manufacturers.
  • the ignition process of the pyrotechnic gas generator is a process from the start of the generator to the time of stable operation. It is generally divided into three parts:
  • the ignition powder generates high-temperature and high-pressure gas after combustion, which contains a certain amount of hot particles, and the pressure is about several to several tens of atmospheric pressure;
  • Ignition drugs currently have black powder type, 5AT and lanthanum nitrate type, and B/KNO 3 type. Since the ignition powder needs to ignite the gas-producing drug, there are certain requirements for the ignition temperature, energy, and residue particles of the ignition powder, so as to ensure a certain ignition reliability.
  • Black powder is a traditional ignition powder, which has the characteristics of low price, but its energy is too low, and the combustion products are mainly gas and have few residues. It is suitable for application scenarios where ignition delay time is not required, and general requirements for gas generators.
  • the delay time is less than 10ms, so black powder is rarely used as a ignition powder in gas generators; although 5AT and yttrium nitrate type ignition drugs have improved energy, since 5AT and lanthanum nitrate are temperature sensitive substances, at low temperature -35 ° C The use of ignition delay is prone to occur, and the performance of the generator at low temperatures is much different from that at high temperatures and normal temperatures. The use of such ignition drugs requires special design of the airbag gas generator to compensate for low temperature ignition through structural improvements. Delay problem; B/KNO 3 type ignition powder has the advantages of high energy, high combustion temperature, and many residual particles.
  • the above ignition powder is usually pressed into small tablets in the manufacturing process, and some need to be broken into granules, then the ignition powder formula containing aluminum powder is significantly higher than the aluminum powder-free, so that the granulation process is certain
  • the safety risk is also high in the cost of aluminum powder.
  • the aluminum oxide residue is more, and the solid content of the formulation is also increased.
  • the patent US6487974B1 mainly contains 5AT26%, bismuth nitrate 64%, aluminum powder 7%, boron nitride 1%, and 7% aluminum powder is helpful for low temperature ignition performance, but its content is high, and the sensitivity of aluminum powder is low.
  • the process especially in the tableting and granulation process, and the patent does not play a good role in film removal. Therefore, at present, for the airbag gas generator, several kinds of ignition drugs commonly used have their own defects.
  • the gas generating agent is mainly composed of a sodium azide type gas generating agent in the early stage.
  • the formula has many advantages such as stable combustion, low combustion temperature, easy ignition, low internal pressure, high gas production rate and less residue.
  • the mainstream gas generating agents in the world are cerium nitrate and basic copper nitrate gas generating agents
  • cerium nitrate is the main fuel
  • basic copper nitrate is used as the main oxidant.
  • the combustion temperature of such gas generating agents is generally high.
  • basic copper nitrate mainly forms molten copper metal, which results in the need for a multi-layer metal filter to filter and cool it, leaving it inside the generator.
  • the weight increase of the metal filter will lead to an increase in cost and an increase in the weight of the generator; on the other hand, even if a multi-layer filter is used, it is impossible to filter all the residue, and a small part of the residue can be burned through the filter bag, and more serious burns. human body.
  • the solution is generally as follows: 1. Reduce the amount of basic copper nitrate used, thereby reducing the molten copper residue formed after combustion of the gas generant composition; 2. Adding a form retaining agent to the composition formulation.
  • the form retaining agent is generally a high melting point substance, and functions to increase the viscosity of the molten residue and maintain its shape as a tablet skeleton.
  • Barium titanate is a high melting point metal compound. It has also been used in the field of airbag gas generating agents.
  • the patent CN105801326A is a gas generating agent formulation mainly containing cerium nitrate, basic copper nitrate and titanate.
  • this patent only uses titanate as the only form retaining agent, which has no obvious effect on the morphology and can not maintain a good combustion form retention, especially for the basic copper nitrate content of more than 40%, and the cerium nitrate content is greater than 40% of the gas generating agent is less able to maintain a good combustion form retention, and the gas generant formulation is not easily ignited.
  • patent CN100376515C discloses a gas generating composition
  • a gas generating composition comprising cerium nitrate, basic copper nitrate, auxiliary oxidizing agent sodium nitrate, copper oxide and iron oxide, and an ignition improver (aluminum trioxide, copper chloride, copper chromate, Potassium chromate), the gas-producing composition made of ignition improver is easier to ignite, and the ignition delay period is short, but aluminum oxide is generally used for residue agglomeration, and has little effect on ignition improvement; copper chloride is weak oxidant ignition The improvement effect is not great; copper chromate and potassium chromate are all strong oxidants containing copper, which can play a certain role in ignition improvement, but both increase the residue content, copper chromate increases the insoluble residue content, and potassium chromate increases. The content of the residue is dissolved, and the alkali metal potassium-containing substance burns to form soluble aerosol particles, which is disadvantageous for residue agglomeration.
  • an ignition improver alum
  • US Pat. No. 5,827,996, A discloses a gas generating agent for an air bag, comprising a fuel using an azole or a metal salt thereof, an oxidizing agent, a combustion catalyst, a controlling combustion agent and a slagging agent, a fuel using an azole and a metal salt, and a slag forming agent being cured.
  • An additive for the combustion residue of the gas generating agent thereby facilitating the removal of the residue from the filter in the air bag, but the patent is applicable to the formulation of the azole as a fuel, which has a higher combustion temperature than the cerium nitrate type copper nitrate type formulation. Many, even if the form of the slag forming agent tablet is not well maintained.
  • the patent CN101952227B discloses a method for preparing a gas generating agent, which comprises adding cerium nitrate, basic copper nitrate, auxiliary oxidizing agents (for example, potassium nitrate, cerium nitrate and sodium nitrate), a burning rate adjusting agent (potassium perchlorate), and slag promoting.
  • Agent sica, zinc oxide, ammonium oxide, alumina
  • tablet release aid and form retention synergist B graphite, molybdenum disulfide, tungsten disulfide, boron nitride
  • granulation used in this patent The method is spray granulation, spray granulation has higher energy consumption than wet granulation; in addition, the slag promoter used in this patent mainly comes from metal oxides such as silica, alumina, zinc oxide and cerium oxide. Metal oxide as a slag promoter can play a role in promoting slag agglomeration, but it is not obvious for the shape of the tablet.
  • the patent uses a tablet release aid such as graphite or molybdenum disulfide.
  • a tablet release aid such as graphite or molybdenum disulfide.
  • Tungsten disulfide, boron nitride, these additives only play the role of tableting aids, can not cooperate with metal oxides to promote slag agglomeration.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a gas generator which uses an igniting agent composition so that the tablet is not stuck during the tableting process, and the tablet can be well preserved after tableting.
  • Some luster and shape improve the ignition delay or fluctuation of ignition powder at low temperature -40 °C, ensuring that the ignition powder has a wider range of operation when operating at -40 ° C ⁇ +90 ° C temperature, and in the ignition gas
  • the agent is generated, the ignition is more uniform, the consistency is better, and the ignition performance is remarkably improved.
  • a gas generator comprising an ignition agent composition comprising the following components by mass percentage: 40% to 60% of cerium nitrate; 25% to 40% of 5-aminotetrazole; and 1% by weight of potassium nitrate 20%; mica powder 1% to 20%; aluminum oxide 0.5% to 10%; graphite 0.1% to 10%; boron nitride 0.1% to 10%.
  • the igniting agent composition comprises the following components by mass percentage: 40% to 60% of cerium nitrate; 30% to 40% of 5-aminotetrazole; 4% to 15% of potassium nitrate; 5% to 15% of mica powder; Aluminum oxide 0.5% to 5%; graphite 0.1% to 5%; boron nitride 0.1% to 5%.
  • the gas generator composition used in the gas generator comprises the following components in a mass percentage: cerium nitrate 40% to 60%; basic copper nitrate 25% to 40%; cerium nitrate 1% ⁇ 20%; ammonium perchlorate 1% ⁇ 10%; barium titanate 2% ⁇ 10%; talcum powder. 6% ⁇ 10%.
  • the barium titanate has a mass percentage of 5.5% to 10%.
  • the content of cerium nitrate is from 2% to 10% by mass; preferably, the mass percentage of ammonium perchlorate is from 1% to 3%; and the mass percentage of talc is preferably from 0.6% to 2%.
  • the sum of the water contents of the components of the gas generant composition is not more than 1% of the total mass of each component.
  • the basic copper nitrate has a particle diameter D90 of not more than 5 ⁇ m; and the talc has a particle diameter D90 of not more than 10 ⁇ m.
  • the gas generant composition is formed into a circular sheet structure or a circular ring-like structure, wherein the circular sheet-like structure has a diameter of 3 to 15 mm; a circular ring-shaped structure
  • the inner diameter is 1 to 3 mm and the outer diameter is 4 to 15 mm.
  • the gas generator composition used in the gas generator comprises the following components in a mass percentage content: cerium nitrate 35% to 60%; basic copper nitrate 25% to 58%; barium titanate 5.5 % to 10%; talc 0.6% to 10%.
  • the talc has a mass percentage of 0.6% to 5%.
  • the sum of the water contents of the components of the gas generant composition is not more than 1% of the total mass of each component.
  • the basic copper nitrate has a particle diameter D90 of not more than 5 ⁇ m; and the talc has a particle diameter D90 of not more than 10 ⁇ m.
  • the gas generant composition is formed into a circular sheet structure or a circular ring-like structure, wherein the circular sheet-like structure has a diameter of 3 to 15 mm; a circular ring-shaped structure
  • the inner diameter is 1 to 3 mm and the outer diameter is 4 to 15 mm.
  • the particle diameter D90 of the 5-aminotetrazole is not more than 30 ⁇ m; the particle diameter D90 of the boron nitride is not more than 3.0 ⁇ m; and the particle diameter D90 of the potassium nitrate is not more than 165 ⁇ m.
  • the sum of the water contents of the components of the igniting agent composition is not more than 1% of the total mass of each component.
  • the igniting agent composition is a circular sheet-like structure, the circular sheet-like structure has a diameter of 3 to 10 mm; the circular sheet-like structure has a thickness of 1 to 5 mm; and the mass of each of the circular sheet-like structures is 0.01 ⁇ 3g.
  • the igniting agent composition has a granular structure and has a particle diameter of 12 to 20 mesh.
  • the igniting agent composition is prepared by wet granulation, and the specific preparation method comprises the following steps:
  • the first material is added with water for wet mixing to obtain a second material, wherein the amount of water added is 3% to 15% of the total mass of the first material;
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • the fourth material is formed into a material.
  • cerium nitrate, 5-aminotetrazole, potassium nitrate, mica powder, aluminum oxide, graphite and boron nitride are mixed in a mixing device to obtain a first material.
  • the mixing time is ⁇ 20 min; the mixing device is a ribbon mixer.
  • the wet mixing time in the step (2) is 2 min to 15 min; the wet mixing device is a kneader or a mixer.
  • the fourth material is molded by a rotary tableting machine.
  • the material in the step (5) is shaped into a circular sheet structure having a diameter of 3 to 10 mm; the thickness of the circular sheet structure is 1 to 5 mm; each of the circular sheet structures The mass is 0.01 to 3 g.
  • the material in the step (5) is shaped to obtain a granular structure, and the granular structure has a particle diameter of 12 to 20 mesh; the granular structure is obtained by granulating the sheet structure and then sieving.
  • the gas generant composition is prepared by wet granulation, and the specific preparation method comprises the following steps:
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate and barium titanate are mixed in a mixing device to obtain a first material, and the mixing time is ⁇ 5 min.
  • the specific preparation method of the gas generant composition comprises the following steps:
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • the fourth material is formed into a material.
  • cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate, barium titanate and talc are mixed in a mixing device to obtain a first material, mixing time. ⁇ 5min.
  • the wet mixing time in the step (2) is 20 min to 60 min; the wet mixing device is a kneader or a mixer.
  • the gas generant composition is prepared by wet granulation, and the specific preparation method comprises the following steps:
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • cerium nitrate, basic copper nitrate and barium titanate are mixed in a mixing device to obtain a first material, and the mixing time is ⁇ 5 min.
  • the wet mixing time in the step (2) is 20 min to 60 min; the wet mixing device is a kneader or a mixer.
  • the specific preparation method of the gas generant composition comprises the following steps:
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • the fourth material is formed into a material.
  • cerium nitrate, basic copper nitrate, barium titanate and talc are mixed in a mixing device to obtain a first material, and the mixing time is ⁇ 5 min.
  • the wet mixing time in the step (2) is 20 min to 60 min; the wet mixing device is a kneader or a mixer.
  • the gas generator is a gas generator for a car airbag.
  • the invention has the following beneficial effects:
  • the gas generator provided by the present invention uses a novel ignition agent composition comprising cerium nitrate, 5-aminotetrazole, potassium nitrate, mica powder, alumina, graphite and boron nitride as an igniter,
  • the igniting agent composition makes the tablet not stick to the mold during the tableting process, and the tablet can maintain the original gloss and shape after the tableting, the surface has no pits and no burrs; and the ignition delay of the ignition powder at a low temperature of -40 ° C is improved.
  • the phenomenon of large fluctuations ensures that the ignition powder has a wider range when it is operated at a temperature of -40 ° C to +90 ° C, and the ignition is more uniform when the gas generating agent is ignited, the consistency is better, and the ignition performance is remarkably improved.
  • the igniting agent composition in the gas generator of the present invention contains graphite and boron nitride together as a process aid, and the synergistic effect of the two in the composition of the present invention is indispensable, and the ratio of the two is used.
  • the research and reasonable selection of the dosage in the composition make the tablet of the composition not stick to the mold during the tableting process, and the tablet can maintain the original gloss and shape after the tableting, and the surface has no pits and no burrs;
  • the ignition agent composition in the gas generator of the present invention contains aluminum oxide as an ignition improver, and the reasonable selection of the amount of the ignition agent improves the ignition delay or the fluctuation of the ignition powder at a low temperature of -40 ° C. It ensures that the ignition powder has a wider range when it is operated at -40 ° C ⁇ +90 ° C temperature, and the addition of aluminum oxide makes the ignition of the gas generating agent more uniform and uniform, and further improves the ignition agent.
  • the ignition performance of the composition; in addition, the present invention improves the low temperature ignition performance by adding safe and reliable aluminum oxide, thereby substantially increasing the safety performance of the formulation;
  • the igniting agent composition in the gas generator of the present invention contains a certain amount of potassium nitrate, which is used in combination with cerium nitrate and 5-aminotetrazole, and potassium nitrate and cerium nitrate are oxidizing agents, which are oxygen sources for the ignition agent formulation.
  • 1g of potassium nitrate can release 0.4g-0.5g of oxygen, and the amount of oxygen released by the oxide-based oxidant is more. The research and test, adding a reasonable amount of potassium nitrate, further improve the burning rate and flame temperature of the ignition agent;
  • the present invention performs the content ratio of each component including the cerium nitrate, 5-aminotetrazole, potassium nitrate, mica powder, aluminum oxide, graphite, and boron nitride in the ignition agent composition.
  • the design is optimized and verified by a large number of tests, so that the ignition agent composition has excellent performance and remarkable effect, and the ignition agent composition ignites more uniformly when the gas generating agent is ignited, the consistency is better, and the ignition performance is remarkably improved.
  • the igniting agent composition in the gas generator of the present invention is granulated by wet granulation before molding, and the granulation by wet granulation makes the process simpler, lower in cost, low in energy consumption, and more flexible in process. , equipment investment is low.
  • the ignition agent composition in the gas generator of the present invention can reduce the sensitivity of the formulation by using boron nitride, mica powder, aluminum oxide, graphite, etc., and enhance the safety from the essence of the formulation;
  • the present invention is used in the form of a granular structure by using an igniting agent composition to provide the maximum available combustion surface area for the fastest response, thereby rapidly igniting the gas generant composition to meet the needs of the airbag to protect the driver and the occupant. ;
  • the ignition powder composition in the gas generator of the present invention can rapidly ignite the gas generating agent in a temperature range from -40 ° C to +90 ° C; the ignition temperature of the ignition powder composition of the present invention is greater than 2500K.
  • the gas production rate of the composition of the present invention is 2.1 to 2.5 mol/100 g, and the gas yield of a typical BKNO3 enhancer composition is 1.13 mol/100 g of the reinforcing agent, and the production of the aluminum powder-containing reinforcing agent composition
  • the gas rate is 1.7 to 1.9 moles per 100 grams; in addition, the gas-generating rate of the ignition-agent composition of the present invention is increased by 69 to 110% over conventional ignition-agent compositions.
  • the present invention is directed to the prior art that the gas generating agent composition adopts a single form retaining agent and does not have a good combustion form retaining effect. Through research and a large number of tests, it is proposed to use barium titanate and talc together.
  • the form retaining agent gives the amount of the two, and through the synergistic action of the two, the gas generating agent tablet can maintain the shape before burning after burning, and avoids the burning of the tablet after burning to burn the air bag.
  • the gas generant composition in the gas generator of the present invention uses a certain amount of cerium nitrate as an auxiliary oxidizing agent, and on the one hand, can reduce the amount of basic copper nitrate used in the composition (for example, the use of basic copper nitrate can be reduced)
  • the amount of molten copper residue formed after burning and decomposing basic copper nitrate is reduced.
  • the melting point of cerium oxide after combustion of cerium nitrate is 2430 ° C, which is much larger than the melting point of metallic copper, which can be decomposed after basic copper nitrate.
  • the formed metallic copper melt forms a good coagulation effect, further reducing the molten copper residue.
  • the gas generant composition in the gas generator of the present invention uses cerium nitrate as an auxiliary oxidizing agent, and the high melting point product cerium oxide formed by the decomposition of cerium nitrate and strontium titanate and talc together act as a form retaining agent to promote the burning of the tablet. Better maintain the shape before burning, avoid burning the pill and burn the air bag after burning.
  • the gas generant composition in the gas generator of the present invention uses a certain amount of ammonium perchlorate as an ignition performance modifier, and is used together with other components to improve the low-temperature ignition performance of the composition while improving combustion. speed.
  • the present invention optimizes the design of the content ratio of each component in the gas generant composition, and verifies by a large number of tests, so that the gas generant composition has excellent performance and remarkable effect, the gas generating agent After the tablet is burned, the form before combustion can be well maintained, and the molten copper residue formed after the combustion of the basic copper nitrate is significantly reduced, and the low-temperature ignition performance of the composition is improved while the burning speed is improved.
  • the gas generant composition in the gas generator of the present invention is granulated by wet granulation before molding, and the granulation by wet granulation makes the process simpler, the cost is lower, the energy consumption is lower, and the process is more Flexible and low equipment investment;
  • the invention optimizes the process and process conditions of the gas generating agent composition in the gas generator by wet granulation, so that the preparation process is simple and easy to realize, and the talcum powder can be prepared in the preparation method of the invention.
  • the wet preparation is carried out before mixing with the other components, and the talcum powder can also be added at the end, and the preparation method is more flexible.
  • Figure 1 is a view showing the surface morphology of an ignition agent composition tablet of Comparative Example 1 of the present invention
  • Figure 2 is a view showing the surface morphology of the ignition agent composition tablet of Comparative Example 2;
  • Figure 3 is a graph showing the time and pressure of the ignition agent composition of Comparative Example 3 of the present invention.
  • Figure 4 is a view showing the surface morphology of an ignition agent composition tablet in Example 1 of the present invention.
  • Figure 5 is a graph showing the time and pressure of the ignition agent composition in Example 1 of the present invention.
  • Figure 6 is a view showing the surface morphology of an ignition agent composition tablet in Example 2 of the present invention.
  • Figure 7 is a graph showing the time and pressure of the ignition agent composition in Example 2 of the present invention.
  • Figure 8 is a view showing the surface morphology of an ignition agent composition tablet in Example 3 of the present invention.
  • Figure 9 is a graph showing the time and pressure of the ignition agent composition in Example 3 of the present invention.
  • Figure 10 is a view showing the surface morphology of an ignition agent composition tablet in Example 4 of the present invention.
  • Figure 11 is a graph showing time and pressure of an ignition agent composition in Example 4 of the present invention.
  • Figure 12 is a view showing the surface morphology of an ignition agent composition tablet in Example 5 of the present invention.
  • Figure 13 is a graph showing time and pressure of an ignition agent composition in Example 5 of the present invention.
  • Figure 14 is a view showing the form of residue after burning of the gas generating agent composition of Comparative Example 11;
  • Figure 15 is a view showing the form of residue after burning of the gas generating agent composition of Comparative Example 12;
  • Figure 16 is a view showing the form of a residue of a gas generating agent composition after burning in Example 11 of the present invention.
  • Figure 17 is a view showing the form of a residue of a gas generating agent composition after burning in Example 12 of the present invention.
  • Figure 18 is a view showing the form of residue after burning of a gas generating agent composition in Example 13 of the present invention.
  • Figure 19 is a view showing the form of a residue of a gas generating agent composition after burning in Example 14 of the present invention.
  • Figure 20 is a view showing the form of a residue of a gas generating agent composition after combustion in Example 15 of the present invention.
  • Figure 21 is a view showing the form of the residue of the gas generating agent composition after burning in Comparative Example 21;
  • Figure 22 is a view showing the form of residue after burning of the gas generating agent composition of Comparative Example 22;
  • Figure 23 is a view showing the form of a residue of a gas generating agent composition after burning in Example 21 of the present invention.
  • Figure 24 is a view showing the form of residue after burning of the gas generating agent composition in Example 22 of the present invention.
  • Figure 25 is a view showing the form of residue after burning of a gas generating agent composition in Example 23 of the present invention.
  • Figure 26 is a view showing the form of residue after burning of a gas generating agent composition in Example 24 of the present invention.
  • the ignition agent composition with reliable ignition performance of the present invention comprises the following components in mass percentage:
  • a component having the following mass percentage cerium nitrate 40% to 60%; 5-aminotetrazole (5-AT) 30% to 40%; potassium nitrate 4% to 15%; Mica powder 5% ⁇ 15%; aluminum oxide 0.5% ⁇ 5%; graphite 0.1% ⁇ 5%; boron nitride 0.1% ⁇ 5%.
  • the particle diameter D90 of the above 5-aminotetrazole is not more than 30 ⁇ m; the particle diameter D90 of the above boron nitride is not more than 3.0 ⁇ m; and the particle diameter D90 of the above potassium nitrate is not more than 165 ⁇ m.
  • the sum of the water contents of the components of the above igniting agent composition is not more than 1% of the total mass of each component.
  • the above component mixtures are prepared into particles having a water content of less than 0.5% prior to compression molding.
  • the igniting agent composition may be a circular sheet structure having a diameter of 3 to 10 mm; a circular sheet structure having a thickness of 1 to 5 mm; and a weight of each of the circular sheet structures being 0.01 ⁇ 3g.
  • the igniting agent composition may also have a granular structure, which is obtained by granulating and sieving the sheet-like structure, and has a particle diameter of 12 to 20 mesh. It is preferred to use a granular structure.
  • the invention adopts the method of wet granulation to prepare the igniting agent composition, and the specific preparation method comprises the following steps:
  • the wet mixing device It is a kneading machine or a mixer.
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • the fourth material is formed into a material, and the material can be formed by a molding method of a rotary tableting machine, and then formed into a granular material by a rocking type particle machine.
  • the material in the step (5) is formed into a circular sheet structure or a granular structure, wherein the circular sheet structure has a diameter of 3 to 10 mm; the circular sheet structure has a thickness of 1 to 5 mm; each of the circular sheet structures
  • the mass is 0.01 to 3 g; wherein the granular structure is obtained by granulating the flaky structure and sieving, and the particle size is 12 to 20 mesh.
  • the igniting agent composition prepared by the present invention is mainly used for a car airbag gas generator.
  • the present invention also provides a gas generator using the above-described ignition-safety ignition composition as an ignition agent.
  • the igniting agent composition comprises the following components in mass percent:
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate, mica powder, aluminum oxide and graphite through a ribbon mixer to obtain a first material; adding the first material to the 8 % of distilled water is wet-kneaded for 20 min to obtain a second material, and the second material is passed through a 10-mesh screen to obtain a third material; the third material is dried and dried to a water content of less than 0.5% of the total mass of the third material. The fourth material is obtained again through the 10-mesh screen; the fourth material is formed into a material by a rotary tableting machine.
  • Fig. 1 is a view showing the surface morphology of the igniting agent composition of Comparative Example 1 of the present invention; in this comparative example, only graphite was added as a releasing agent, and boron nitride was not added. After being pressed by the rotary tableting machine, the surface of the tablet has a sticking mold, and the tablet does not maintain the original gloss and shape well, and the surface has pits and burrs.
  • the igniting agent composition comprises the following components in mass percent:
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate, mica powder, aluminum oxide and boron nitride through a ribbon mixer to obtain a first material; Adding 8% distilled water for wet kneading for 20 min to obtain a second material, and passing the second material through a 10-mesh sieve to obtain a third material; drying the third material to dryness until the water content is less than the total mass of the third material 0.5%, the fourth material was again obtained through a 10-mesh screen; the fourth material was subjected to material forming by a rotary tableting machine.
  • Fig. 2 is a view showing the surface morphology of the igniting agent composition of Comparative Example 2 of the present invention; in this comparative example, only boron nitride was added as a releasing agent, and no graphite was added. After being pressed into a tablet by a rotary press, the surface of the tablet has a sticking mold, and the tablet does not maintain the original gloss and shape well, and the surface has pits and burrs.
  • the igniting agent composition comprises the following components in mass percent:
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate and mica powder through a ribbon mixer to obtain a first material; adding the first material to 8% distilled water for wet kneading 20min, the second material is obtained, and the second material is passed through the 10-mesh screen to obtain the third material; the third material is dried, dried to a water content of less than 0.5% of the total mass of the third material, and passed through the 10-mesh screen again.
  • a fourth material is obtained; the fourth material is formed by a rotary tableting machine.
  • Figure 3 is a graph showing the time and pressure of the ignition agent composition of Comparative Example 3 of the present invention
  • Table 1 is a time and pressure data table of the ignition agent composition of Comparative Example 3 of the present invention, including ignition time TTFG data statistics. It can be seen from Fig. 3 and Table 1 that the ignition composition has ignition delay at room temperature +23 ° C, high temperature +85 ° C, and low temperature -40 ° C, which affects the overall pressure performance and burning rate of the generator, and low temperature ignition. The time does not meet the requirement of less than 7ms.
  • the igniting agent composition comprises the following components in mass percent:
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate, mica powder, aluminum oxide, graphite and boron nitride through a ribbon mixer to obtain a first material; A material is added to 10% (mass percentage content, the same below) distilled water for wet kneading for 12 min to obtain a second material, and the second material is passed through a 10-mesh sieve to obtain a third material; the third material is dried and dried. The water content is less than 0.5% of the total mass of the third material, and the fourth material is again obtained through the 20 mesh screen; the fourth material is formed by a rotary tableting machine to obtain a circular sheet structure.
  • FIG. 4 is a view showing the surface morphology of the igniting agent composition in the first embodiment of the present invention; in this comparative example, graphite and boron nitride are simultaneously added as a releasing agent, and the two perform a good synergistic action and rotate. After the press is pressed into a tablet, the surface of the tablet is not stuck, and the tablet can maintain the original luster and shape well, and the surface has no pits and no burrs.
  • FIG. 5 is a graph showing the time and pressure of the ignition agent composition in Example 1 of the present invention
  • Table 2 is a time and pressure data table of the ignition agent composition in Example 1 of the present invention, including the ignition time TTFG data statistics. From Fig. 5 and Table 2, it can be seen that the ignition agent composition is normally ignited under normal temperature + 23 ° C, high temperature + 85 ° C, low temperature - 40 ° C, and the pressure is normal, and the ignition time TTFG and the pressure performance of the gas generator satisfy the gas.
  • the generator standard requires that the low temperature ignition time meet the requirement of less than 7ms.
  • the igniting agent composition comprises the following components in mass percent:
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate, mica powder, aluminum oxide, graphite and boron nitride through a ribbon mixer to obtain a first material; One material is added with 6% distilled water for wet kneading for 10 min to obtain a second material, and the second material is passed through a 10-mesh sieve to obtain a third material; the third material is dried and dried until the water content is less than the third material. 0.5% of the mass was again passed through a 10-mesh screen to obtain a fourth material; the fourth material was subjected to material molding by a rotary tableting machine to obtain a circular sheet-like structure.
  • FIG. 6 is a view showing the surface morphology of the igniting agent composition in Example 2 of the present invention; in this comparative example, graphite and boron nitride are simultaneously added as a releasing agent, and the two perform a good synergistic action and rotate. After the press is pressed into a tablet, the surface of the tablet is not stuck, and the tablet can maintain the original luster and shape well, and the surface has no pits and no burrs.
  • FIG. 7 is a graph showing the time and pressure of the ignition agent composition in Example 2 of the present invention
  • Table 3 is a time and pressure data table of the ignition agent composition in Example 2 of the present invention, including the ignition time TTFG data statistics. From Fig. 7 and Table 3, it can be seen that the ignition agent composition is normally ignited under normal temperature + 23 ° C, high temperature + 85 ° C, low temperature - 40 ° C, and the pressure is normal, and the ignition time TTFG and the pressure performance of the gas generator satisfy the gas.
  • the generator standard requires that the low temperature ignition time meet the requirement of less than 7ms.
  • the igniting agent composition comprises the following components in mass percent:
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate, mica powder, aluminum oxide, graphite and boron nitride through a ribbon mixer to obtain a first material; One material is added to 5% distilled water for wet kneading for 5 min to obtain a second material, and the second material is passed through a 20-mesh sieve to obtain a third material; the third material is dried and dried to a water content smaller than the third material. 0.5% of the mass was again passed through a 10-mesh screen to obtain a fourth material; the fourth material was subjected to material molding by a rotary tableting machine to obtain a circular sheet-like structure.
  • FIG. 8 is a view showing the surface morphology of the igniting agent composition in Example 3 of the present invention; in this comparative example, graphite and boron nitride are simultaneously added as a releasing agent, and the two perform a good synergistic action and rotate. After the press is pressed into a tablet, the surface of the tablet is not stuck, and the tablet can maintain the original luster and shape well, and the surface has no pits and no burrs.
  • the circular sheet-like structure tablet was granulated and sieved to obtain a granular structure having a particle diameter of 12 to 20, and the test was carried out.
  • a graph of time and pressure of the ignition agent composition in Example 3 of the present invention Table 4 is a time and pressure data table of the ignition agent composition in Example 3 of the present invention, including ignition time TTFG data statistics. From Fig. 9 and Table 4, it is known that the ignition agent composition is at a normal temperature of +23 ° C, a high temperature of +85 ° C, and a low temperature.
  • the ignition is normal, the pressure is normal, and the ignition time TTFG and the pressure performance of the gas generator meet the requirements of the gas generator standard, and the low-temperature ignition time satisfies the requirement of less than 7 ms.
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate, mica powder, aluminum oxide, graphite and boron nitride through a ribbon mixer to obtain a first material; One material is added to 4% distilled water for wet kneading for 5 min to obtain a second material, and the second material is passed through a 10-mesh sieve to obtain a third material; the third material is dried and dried to a water content smaller than the third material. 0.5% of the mass, the fourth material was again obtained through a 20-mesh screen; the fourth material was subjected to material molding by a rotary tableting machine to obtain a circular sheet structure.
  • FIG. 10 is a view showing the surface morphology of the igniting agent composition in Example 4 of the present invention; in this comparative example, graphite and boron nitride are simultaneously added as a releasing agent, and the two perform a good synergistic action and rotate. After the press is pressed into a tablet, the surface of the tablet is not stuck, and the tablet can maintain the original luster and shape well, and the surface has no pits and no burrs.
  • the circular sheet-like structure tablet was granulated and sieved to obtain a granular structure having a particle size of 12 to 20, and the test was carried out.
  • FIG. 11 a graph of time and pressure of the ignition agent composition in Example 4 of the present invention
  • Table 5 is a time and pressure data table of the ignition agent composition in Example 4 of the present invention, including ignition time TTFG data statistics. From Fig. 11 and Table 5, it can be seen that the ignition agent composition is at a normal temperature of +23 ° C, a high temperature of +85 ° C, and a low temperature.
  • the ignition is normal, the pressure is normal, and the ignition time TTFG and the pressure performance of the gas generator meet the requirements of the gas generator standard, and the low-temperature ignition time satisfies the requirement of less than 7 ms.
  • the specific preparation method comprises the following steps: mixing cerium nitrate, 5-aminotetrazole (5-AT), potassium nitrate, mica powder, aluminum oxide, graphite and boron nitride through a ribbon mixer to obtain a first material; One material is added to 12% distilled water for wet kneading for 4 minutes to obtain a second material, and the second material is passed through a 20-mesh screen to obtain a third material; the third material is dried and dried until the water content is less than the total amount of the third material. 0.5% of the mass was again passed through a 30-mesh screen to obtain a fourth material; the fourth material was subjected to material molding by a rotary tableting machine to obtain a circular sheet-like structure.
  • FIG. 12 is a view showing the surface morphology of the igniting agent composition in Example 5 of the present invention; in this comparative example, graphite and boron nitride are simultaneously added as a releasing agent, and the two perform a good synergistic action and rotate. After the press is pressed into a tablet, the surface of the tablet is not stuck, and the tablet can maintain the original luster and shape well, and the surface has no pits and no burrs.
  • the circular sheet-like structure tablet was granulated and sieved to obtain a granular structure having a particle size of 12 to 20, and the test was carried out.
  • FIG. 13 it is a graph showing the time and pressure of the ignition agent composition in Example 5 of the present invention
  • Table 6 is a time and pressure data table of the ignition agent composition in Example 5 of the present invention, including ignition time TTFG data statistics. From Fig. 13 and Table 6, it can be seen that the ignition agent composition is at normal temperature + 23 ° C, high temperature + 85 ° C, low temperature.
  • the ignition is normal, the pressure is normal, and the ignition time TTFG and the pressure performance of the gas generator meet the requirements of the gas generator standard, and the low-temperature ignition time satisfies the requirement of less than 7 ms.
  • a method for preparing a gas generant composition according to the present invention comprises the following steps:
  • a first material is obtained by mixing cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate and barium titanate.
  • the first material is added with water for wet mixing for 20 min to 60 min to obtain a second material, wherein the amount of water added is 8% to 15% of the total mass of the first material, preferably distilled water is added.
  • the apparatus for wet mixing is a kneader or a mixer, and for example, a horizontal kneader, a vertical kneader, a ribbon mixer or an acoustic resonance mixer can be selected.
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • the drying device may be an electric heating oven or oil. Bath oven, steam oven, double cone oven, vibrating fluidized bed or belt vacuum dryer.
  • Adding talc powder to the fourth material to form the material may be a hydraulic press, a rotary tablet press or a powder molding machine.
  • the material is formed into a circular sheet structure or a circular ring-shaped structure, wherein the circular sheet-like structure has a diameter of 3 to 15 mm; the annular annular sheet-like structure has an inner diameter of 1 to 3 mm and an outer diameter of 4 to 15 mm.
  • the invention can also mix the talc powder with the remaining components at the same time before the preparation, that is, the mixture of lanthanum nitrate, basic copper nitrate, lanthanum nitrate, ammonium perchlorate, barium titanate and talc to obtain the first material, and then start Subsequent preparation processes, subsequent preparation methods are identical to the above methods.
  • the gas generant composition prepared by the present invention is mainly used for a car airbag gas generator.
  • the mixing device used in the following examples is a three-dimensional multi-motion kinematic mixer, the kneading machine is a horizontal kneading machine, the drying device is a vacuum oven, and the molding device is a rotary tableting machine.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: mixing cerium nitrate, basic copper nitrate and barium titanate by mixing equipment. After the first material is obtained; the first material is added to 8% distilled water for wet kneading for 20 min to obtain a second material, and the second material is passed through a 10-mesh sieve to obtain a third material; the third material is dried and dried. The water content is less than 0.5% of the total mass of the third material, and the fourth material is again obtained through the 10-mesh screen; the fourth material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Fig. 14 is a view showing the form of the residue of the gas generating agent composition after burning in the comparative example of the present invention
  • Table 7 below is the weight of the soluble residue and the insoluble residue of the effluent of the gas generating agent composition after burning in the comparative example 11 of the present invention.
  • the low-temperature ignition delay time statistics it can be seen from Fig. 14 and Table 7 that the shape of the tablet is not maintained, and most of the residue flies out of the generator, and the low-temperature ignition delay time exceeds 7 ms.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: mixing cerium nitrate, basic copper nitrate and barium titanate by mixing equipment. After the first material is obtained; the first material is added to 15% distilled water for wet kneading for 60 minutes to obtain a second material, and the second material is passed through a 40 mesh screen to obtain a third material; the third material is dried and dried. The water content is less than 0.5% of the total mass of the third material, and the fourth material is again obtained through the 40 mesh screen; the talc powder is added to the fourth material, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Fig. 15 is a view showing the form of the residue of the gas generating agent composition after burning in the comparative example 12 of the present invention
  • Table 8 below is the soluble residue and insoluble residue of the effluent of the gas generating agent composition after burning in the comparative example 12 of the present invention.
  • Weight and low-temperature ignition delay time statistics in this comparative example, barium titanate and talc powder were added together as a form-retaining agent. After the airbag generator test, the form of the tablet was maintained to a certain extent. As can be seen from Table 8, the fly-out The residual content of the generator is slightly higher, the composition burns at a slower rate, and the ignition time is greater than 7 ms.
  • the gas generant composition comprises components in the following percentage by mass:
  • Talc powder 0.75%.
  • the preparation method was as follows: cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate.
  • the barium titanate is mixed by a mixing device to obtain a first material; the first material is added to 8% distilled water for wet kneading for 20 minutes to obtain a second material, and the second material is passed through a 10-mesh sieve to obtain a third material; The three materials are dried, dried to a water content of less than 0.5% of the total mass of the third material, and again passed through a 10-mesh screen to obtain a fourth material; the fourth material is added with talc powder, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Figure 16 is a view showing the form of the residue of the gas generating agent composition after burning in the first embodiment of the present invention
  • Table 9 below is the soluble residue and insoluble residue of the effluent of the gas generating agent composition after burning in the first embodiment of the present invention.
  • barium titanate and talc powder are added together and used as a form retaining agent, and the two play a good synergistic effect.
  • cerium nitrate and ammonium perchlorate are added, and the basic copper nitrate content is reduced to less than 35%.
  • the high melting point product cerium oxide is combined with strontium titanate and talc as a form retaining agent.
  • the tablet form is well maintained, and the burning rate of the composition is increased, and the molten copper residue is reduced. .
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate.
  • the barium titanate is mixed by a mixing device to obtain a first material; the first material is added to 15% distilled water for wet kneading for 60 minutes to obtain a second material, and the second material is passed through a 40 mesh sieve to obtain a third material; The three materials are dried, dried to a water content of less than 0.5% of the total mass of the third material, and again passed through a 40-mesh screen to obtain a fourth material; the fourth material is added with talc powder, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Figure 17 is a view showing the form of the residue after burning of the gas generating agent composition in the twelfth embodiment of the present invention
  • Table 10 is the soluble residue and the insoluble residue of the discharged product of the gas generating agent composition after burning in the embodiment 12 of the present invention
  • the weight and low-temperature ignition delay time statistics from Fig. 17 and Table 10, it can be seen that the shape of the tablet is well maintained, the fly-out generator has less residue, and the low-temperature ignition time satisfies the requirement of less than 7 ms.
  • barium titanate and talc powder are added together and used as a form retaining agent, and the two play a good synergistic effect.
  • cerium nitrate and ammonium perchlorate are added, and the basic copper nitrate content is reduced to less than 40%.
  • the high melting point product cerium oxide is combined with strontium titanate and talc as a form retaining agent.
  • the tablet form is well maintained, and the burning rate of the composition is increased, and the molten copper residue is reduced. .
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate.
  • the barium titanate is mixed by a mixing device to obtain a first material; the first material is added to 10% distilled water for wet kneading for 40 minutes to obtain a second material, and the second material is passed through a 20-mesh sieve to obtain a third material; The three materials are dried, dried to a water content of less than 0.5% of the total mass of the third material, and again passed through a 20-mesh screen to obtain a fourth material; the fourth material is added with talc powder, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • FIG. 18 is a view showing the form of the residue after burning of the gas generating agent composition in Example 13 of the present invention
  • Table 11 below is the soluble residue and insoluble residue of the discharged product of the gas generating agent composition after burning in the thirteenth embodiment of the present invention.
  • barium titanate and talc powder are added together and used as a form retaining agent, and the two play a good synergistic effect.
  • cerium nitrate and ammonium perchlorate are added, and the basic copper nitrate content is reduced to 30% or less.
  • the high melting point product cerium oxide is combined with strontium titanate and talc as a form retaining agent.
  • the tablet form is well maintained, and the burning rate of the composition is increased, and the molten copper residue is reduced. .
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate.
  • the barium titanate is mixed by a mixing device to obtain a first material; the first material is added to 12% distilled water for wet kneading for 30 minutes to obtain a second material, and the second material is passed through a 30 mesh sieve to obtain a third material; The three materials are dried, dried to a water content of less than 0.5% of the total mass of the third material, and again passed through a 30-mesh screen to obtain a fourth material; the fourth material is added with talc powder, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • FIG. 19 is a view showing the form of the residue after burning of the gas generating agent composition in Example 14 of the present invention.
  • Table 12 below is the soluble residue and insoluble residue of the effluent after burning of the gas generating agent composition in Example 14 of the present invention.
  • the weight and low-temperature ignition delay time statistics show that the shape of the tablet is well maintained, the fly-out generator has less residue, and the low-temperature ignition time satisfies the requirement of less than 7 ms.
  • barium titanate and talc powder are added together and used as a form retaining agent, and the two play a good synergistic effect.
  • cerium nitrate and ammonium perchlorate are added, and the basic copper nitrate content is reduced to less than 35%.
  • the high melting point product cerium oxide is combined with strontium titanate and talc as a form retaining agent.
  • the tablet form is well maintained, and the burning rate of the composition is increased, and the molten copper residue is reduced. .
  • the preparation method was as follows: cerium nitrate, basic copper nitrate, cerium nitrate, ammonium perchlorate.
  • the barium titanate and the talc powder are mixed by a mixing device to obtain a first material; the first material is added to 12% distilled water for wet kneading for 40 minutes to obtain a second material, and the second material is passed through a 25 mesh sieve to obtain a third material.
  • the third material is dried, dried to a water content of less than 0.5% of the total mass of the third material, and the fourth material is again obtained through a 25-mesh screen; the fourth material is directly formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • FIG. 20 is a view showing the form of the residue after burning of the gas generating agent composition in Example 15 of the present invention; and Table 13 below is the soluble residue and insoluble residue of the discharged product of the gas generating agent composition after burning in the fifteenth embodiment of the present invention.
  • Weight and low temperature ignition delay time statistics It can be seen from Fig. 20 that the tablet form is well maintained after the airbag generator test.
  • the total weight of the effluent residue in Table 13 is less than 1 gram, the fly-out generator residue is less, and the low-temperature ignition time satisfies the requirement of less than 7 ms.
  • barium titanate and talc powder are added together and used as a form retaining agent, and the two play a good synergistic effect.
  • cerium nitrate and ammonium perchlorate are added, and the basic copper nitrate content is reduced to 36%.
  • the high melting point product cerium oxide is used as a form retaining agent together with strontium titanate and talc.
  • the tablet form is well maintained, and the burning rate of the composition is increased, and the molten copper residue is reduced.
  • the preparation method of another gas generant composition of the present invention specifically comprises the following steps:
  • the first material is obtained by mixing cerium nitrate, basic copper nitrate and barium titanate. Mixing in mixing equipment, mixing time ⁇ 5min; mixing equipment can be V-type mixer, 3D multi-directional motion mixer, automatic lifting hopper mixer, vibration mill, ribbon mixer or acoustic resonance mixer.
  • the first material is added with water for wet mixing for 20 min to 60 min to obtain a second material, wherein the amount of water added is 8% to 15% of the total mass of the first material, preferably distilled water is added.
  • the apparatus for wet mixing is a kneader or a mixer, and for example, a horizontal kneader, a vertical kneader, a ribbon mixer or an acoustic resonance mixer can be selected.
  • the second material is passed through a screen of 10 to 40 mesh to obtain a third material
  • the drying device may be an electric heating oven or oil. Bath oven, steam oven, double cone oven, vibrating fluidized bed or belt vacuum dryer.
  • Adding talc powder to the fourth material to form the material may be a hydraulic press, a rotary tablet press or a powder molding machine.
  • the material is formed into a circular sheet structure or a circular ring-shaped structure, wherein the circular sheet-like structure has a diameter of 3 to 15 mm; the annular annular sheet-like structure has an inner diameter of 1 to 3 mm and an outer diameter of 4 to 15 mm.
  • the invention can also mix the talc powder with the remaining components at the same time before the preparation, that is, the cerium nitrate, the basic copper nitrate, the barium titanate and the talc powder are mixed to obtain the first material, and then the subsequent preparation process is started, and the subsequent preparation method It's exactly the same.
  • the gas generant composition prepared by the present invention is mainly used for a car airbag gas generator.
  • the mixing device used in the following examples is a three-dimensional multi-motion kinematic mixer, the kneading machine is a horizontal kneading machine, the drying device is a vacuum oven, and the molding device is a rotary tableting machine.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: mixing cerium nitrate, basic copper nitrate and barium titanate by mixing equipment. After the first material is obtained; the first material is added to 8% distilled water for wet kneading for 20 min to obtain a second material, and the second material is passed through a 10-mesh sieve to obtain a third material; the third material is dried and dried. The water content is less than 0.5% of the total mass of the third material, and the fourth material is again obtained through the 10-mesh screen; the fourth material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • FIG. 21 is a view showing the form of the residue of the gas generating agent composition after burning in the comparative example 21 of the present invention; in this comparative example, only barium titanate is added as a form retaining agent, and it can be seen from the figure that after the airbag generator test is performed, The form of the tablets is not well maintained.
  • Table 14 shows the weight statistics of the soluble residue and the insoluble residue of the effluent of the gas generating agent composition after burning in the comparative example 21 of the present invention; the total weight of the effluent residue in Table 14 exceeds 1 gram.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method is as follows: the cerium nitrate and the basic copper nitrate are mixed by a mixing device to obtain the first The first material is added to 15% distilled water for wet kneading for 60 minutes to obtain a second material, and the second material is passed through a 40 mesh screen to obtain a third material; the third material is dried and dried until the water content is less than 0.5% of the total mass of the third material, the fourth material is again obtained through the 40 mesh screen; the talc powder is added to the fourth material, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Fig. 22 is a view showing the form of the residue after burning of the gas generating agent composition of Comparative Example 22 of the present invention; in this comparative example, only talc powder was added as a form retaining agent. It can be seen from the figure that the tablet form is not well maintained after the airbag generator test.
  • Table 15 shows the weight of the soluble residue and the insoluble residue of the effluent after burning of the gas generating agent composition in Comparative Example 22 of the present invention.
  • the total weight of the effluent residue in Table 15 greatly exceeds 1 gram.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: mixing cerium nitrate, basic copper nitrate and barium titanate by mixing equipment. After the first material is obtained; the first material is added to 8% distilled water for wet kneading for 20 min to obtain a second material, and the second material is passed through a 10-mesh sieve to obtain a third material; the third material is dried and dried. The water content is less than 0.5% of the total mass of the third material, and the fourth material is obtained again through the 10-mesh screen; the talc powder is added to the fourth material, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Figure 23 is a view showing the form of the residue of the gas generating agent composition after burning in Example 21 of the present invention
  • Table 16 below is the soluble residue and insoluble residue of the effluent after burning of the gas generating agent composition in Example 21 of the present invention.
  • the total effluent residue in Table 16 is less than 1 gram.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: mixing cerium nitrate, basic copper nitrate and barium titanate by mixing equipment. After the first material is obtained; the first material is added to 15% distilled water for wet kneading for 60 minutes to obtain a second material, and the second material is passed through a 40 mesh screen to obtain a third material; the third material is dried and dried. The water content is less than 0.5% of the total mass of the third material, and the fourth material is again obtained through the 40 mesh screen; the talc powder is added to the fourth material, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Figure 24 is a view showing the form of the residue after burning of the gas generating agent composition in Example 22 of the present invention
  • Table 17 below is the soluble residue and insoluble residue of the effluent after burning of the gas generating agent composition in Example 22 of the present invention.
  • Weight statistics in the present embodiment, the addition of barium titanate and talc together as a form retaining agent, the two play a very good synergistic effect, as shown in Fig. 24, after the test of the airbag generator, the form of the tablet is very good. maintain.
  • the total weight of the effluent residue in Table 17 was only 0.330 g.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: mixing cerium nitrate, basic copper nitrate and barium titanate by mixing equipment. After the first material is obtained; the first material is added to 10% distilled water for wet kneading for 30 minutes to obtain a second material, and the second material is passed through a 20 mesh screen to obtain a third material; the third material is dried and dried. The water content is less than 0.5% of the total mass of the third material, and the fourth material is again obtained through the 20 mesh screen; the talc powder is added to the fourth material, and the material is formed by a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the anatomy of the generator was observed to observe the shape of the tablet after burning.
  • FIG. 25 is a view showing the form of the residue of the gas generating agent composition after burning in Example 23 of the present invention; and Table 18 below is the soluble residue and insoluble residue of the effluent after burning of the gas generating agent composition in Example 23 of the present invention.
  • Weight statistics In the present embodiment, barium titanate and talc powder are simultaneously added as a form retaining agent, and the two play a good synergistic effect. From Fig. 25, it can be seen that the tablet form is well maintained after the airbag generator test.
  • the total effluent residue in Table 18 is less than 1 gram.
  • the gas generant composition comprises components in the following percentage by mass:
  • the preparation method was as follows: cerium nitrate, basic copper nitrate, barium titanate and talc powder were passed through.
  • the mixing device obtains the first material after mixing; the first material is added to 12% distilled water for wet kneading for 40 minutes to obtain a second material, and the second material is passed through a 25 mesh screen to obtain a third material; the third material is dried. Drying to a moisture content of less than 0.5% of the total mass of the third material, again obtaining a fourth material through a 25-mesh screen; and forming the fourth material directly through a rotary tableting machine.
  • the prepared wafer was placed in a test generator and subjected to an ignition combustion test. After the test, the generator was dissected and the morphology of the tablets after burning was observed.
  • Figure 26 is a view showing the form of the residue after burning of the gas generating agent composition in Example 24 of the present invention; and Table 19 below is the soluble residue and insoluble residue of the discharged product of the gas generating agent composition after burning in the embodiment 24 of the present invention.
  • Weight statistics In the present embodiment, the barium titanate and the talc powder are simultaneously added and weighed together, and together as a form retaining agent, the two play a good synergistic effect. As shown in Fig. 26, after the airbag generator test, the form of the tablet is very good. Good to keep.
  • the total effluent residue in Table 19 is less than 1 gram.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)

Abstract

本发明涉及一种气体发生器,该气体发生器采用的点火药剂组合物包括如下质量百分比含量的组分:硝酸锶 40%~60%;5 -氨基四唑 5-AT25%~40%;硝酸钾 1%~20%;云母粉 1%~20%;三氧化二铝 0.5%~10%;石墨 0.1%~10%;氮化硼 0.1%~10%;该点火药剂组合物使得药片压片过程中不粘模,压片后药片能够很好的保持原有的光泽和形态,改善了点火药在低温 -40℃存在点火延迟或波动大的现象,保证了点火药在-40℃~+90℃温度下工作时波及的范围更广,并且在点燃气体发生剂时点火更均匀,一致性更好,显著提升了点火性能;此外本发明气体发生器采用的气体发生剂组合物,使药片燃烧后能够很好的保持燃烧前的形态,避免燃烧后药片熔融飞溅烧伤气袋,并且显著提高了组合物的低温点火性能同时提高燃烧速度。

Description

一种气体发生器
本申请要求于2017年12月20日提交中国专利局的申请号为201711386653.8、发明名称为“一种气体发生器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种气体发生器,尤其涉及一种汽车安全气囊用气体发生器,属于汽车安全气囊技术领域。
背景技术
众所周知,随着高速公路的发展和汽车性能的提高,汽车行驶速度越来越快,使得车辆的交通事故发生更为频繁,所以作为汽车被动安全重要组成部分的安全气囊系统显得尤为重要。安全气囊由气体发生器和气袋组成。安全气囊系统中一个非常重要的部件是气体发生器,它的作用是在短时间内以足够快的速度产生足够体积的气体来供给气囊。汽车安全气囊是安装在汽车正副驾驶或者座椅内部以及汽车内饰内部的用于保护驾驶员和乘员关键部位免受以及减轻撞击带来的伤害的一个或多个充气装置。
汽车安全气囊点火药剂是作为一种点火剂装入气体发生器中,汽车安全气囊气体发生剂是作为一种产气药剂装入气体发生器中,需要的时候由点火剂点火引发气体发生剂,产生大量的气体。一般碰撞超出预设强度时,气体发生器被激活触发,开始燃烧内部的气体发生剂产生气体,向气袋充气,在内饰和人体之间形成一个缓冲气垫,保护人体免受伤害。
烟火式气体发生器主要由点火系统、燃烧系统、过滤系统和支撑构件所组成,其主要优点是结构简单,充气迅速(30ms~50ms),安全性好(平时处于常压状态),贮存时间长(大于15年)等。这种气体发生器中点火系统的设计是关键技术,点火系统输出能量不足,易使产气剂无法正常快速燃烧,从而无法使气囊正常打开保护乘员;相反则使10ms压力过大,气袋直接打飞。因此,优化烟火式气体发生器的点火性能是非常必要的,既能有效保护交通事故中乘员的生命安全,又能减少因发生器点火异常给汽车生产商带来的巨额损失。
烟火式气体发生器点火过程为从发生器启动到进入稳定工作之前的一段历程,一般分为三部分:
a)电爆管发火阶段:接到汽车碰撞时所输出的点火指令,桥丝发热,点燃热敏火药,点燃加强药;
b)发火阶段产生的火焰点燃点火药:点火药燃烧后产生高温高压气体,其中含有一定数量的炽热粒子,压力约为几个到几十个大气压;
c)点火药燃气与产气剂表面接触:提高产气剂表面温度,首先从加热到发火温度的地方开始点火,直至产气剂正常燃烧,点火过程即完成。
点火药目前按照类型有黑火药类型、5AT和硝酸锶类型、B/KNO 3类型。由于点火药需要将产气药点燃,所以点火药的燃温、能量、残渣粒子有一定的要求,这样才能保证一定的点火可靠性。黑火药是传统的点火药,具有价格便宜的特点,但是其能量太低,而且燃烧产物以气体为主,残渣较少,其适合对于点火延迟时间没有要求的应用场景,对于气体发生器一般要求延迟时间小于10ms,所以气体发生器中很少使用黑火药作为点火药;5AT和硝酸锶类型点火药虽然能量有所提高,但是由于5AT和硝酸锶都是温度敏感物质,在低温-35℃下使用容易出现点火延迟问题,而且低温下发生器性能与高温、常温下性能相比有太大差异,使用此类点火药需要对安全气囊气体发生器进行特殊设计,通过结构的改善抵消低温下点火延迟问题;B/KNO 3类型点火药具有能量高、燃温高、残渣粒子多等优点,目前是安全气囊气体发生器上广泛使用的点火药,但是其价格昂贵,同时配方中硝酸钾含量通常可以达到70%以上,燃烧后大量的钾氧化物排出气体发生器,容易导致气体成分中有害物质超标。此类配方摩擦撞击感度均非常高,容易爆发,在成型过程中安全性较差。同时由于硼的硬度高这一特性,导致成型非常困难,模具磨损严重,制造成本高。以上点火药在制造工艺中通常都是压制成型的小药片,有的还需打碎成粒状物,则含有铝粉的点火药配方比不含铝粉的感度明显高,使打粒工艺存在一定的安全风险,其铝粉的成本也高,另外在点火药燃烧后,铝的氧化物残渣较多,其配方的固含量也会增加。
例如专利US6487974B1主要含有5AT26%,硝酸锶64%,铝粉7%,氮化硼1%,含7%的铝粉虽然对低温点火性能有帮助,但是其含量较多,加之铝粉的感度低,在工艺处理特别是在压片和打粒工艺过程中存在一定的风险,另外该专利不能起到很好的脱膜作用。所以目前对于安全气囊气 体发生器,常用的几种点火药都有自身缺陷。
气体发生剂前期主要是叠氮化钠类型的气体发生剂配方,此配方具有燃烧稳定、燃温低、易点火、内压低、产气率高、残渣少等很多优点。但是由于环保、对于人体健康安全方面的问题,现在很少用在汽车安全气囊方面。
目前世界范围内主流的气体发生剂为硝酸胍和碱式硝酸铜类气体发生剂,硝酸胍作为主要燃料,碱式硝酸铜作为主要氧化剂。这类气体发生剂的燃温普遍较高,燃烧后碱式硝酸铜主要生成熔融的铜金属,这导致通常需要多层金属过滤网对其进行过滤和降温,将其留在发生器内部。一方面金属过滤网重量增加会导致成本增加和发生器重量增大;另外一方面,即使使用多层过滤网也不能过滤所有残渣,少部分残渣可以通过过滤网烫伤气袋,更严重的会烫伤人体。
所以解决方式一般为:1.减少碱式硝酸铜的使用量,从而减少气体发生剂组合物燃烧后形成的熔融铜残渣;2.在组合物配方中加入形态保持剂。形态保持剂一般为高熔点物质,起到增大熔融残渣粘度和作为药片骨架维持自身形状的作用。
钛酸锶是一种高熔点的金属化合物。之前在安全气囊气体发生剂领域也有使用,例如专利CN105801326A就是主要含有硝酸胍、碱式硝酸铜、钛酸盐的气体发生剂配方。但是该专利仅仅使用钛酸盐作为唯一的形态保持剂,对形态保持作用并不明显,不能起到很好的燃烧形态保持作用,尤其是对于碱式硝酸铜含量大于40%,硝酸胍含量大于40%的气体发生剂更不能起到很好的燃烧形态保持作用,并且该气体发生剂配方不容易被点燃。
例如专利CN100376515C公开了一种产气组合物,包括硝酸胍、碱式硝酸铜、辅助氧化剂硝酸钠、氧化铜及氧化铁,以及点火改良剂(三氧化二铝、氯化铜、铬酸铜、铬酸钾),采用点火改良剂使的产气组合物更易于点火,点火延迟期短,但是三氧化二铝一般用于残渣结团,对于点火改良作用不大;氯化铜为弱氧化剂点火改良作用不大;铬酸铜、铬酸钾都是含铜类的强氧化剂,能起到一定的点火改良作用,但是均会增加残渣含量,铬酸铜增加不溶残渣含量,铬酸钾增加可溶残渣含量,且含碱金属钾类的物质燃烧后会形成可溶性的气溶胶微粒,对残渣结团不利。
再例如专利US5827996A公开了一种气囊用气体发生剂,包括燃料采用唑类或其金属盐,氧化剂,燃烧催化剂,控制燃烧剂和造渣剂,燃料采 用唑类和金属盐,造渣剂是固化气体发生剂的燃烧残留物的添加剂,从而有利于气囊中的过滤器除去残留物,但是该专利适用于唑类作为燃料的配方,该类配方燃温比硝酸胍碱式硝酸铜类型配方高的多,即使加入造渣剂药片形态也不能很好保持。
此外专利CN101952227B公开了一种制备气体发生剂的方法,添加了硝酸胍、碱式硝酸铜、辅助氧化剂(例如硝酸钾、硝酸锶和硝酸钠)、燃速调节剂(高氯酸钾)、熔渣促进剂(二氧化硅、氧化锌、氧化铵、氧化铝)、压片脱模助剂兼形态保持协同助剂B(石墨、二硫化钼、二硫化钨、氮化硼),该专利所用制粒方式为喷雾制粒方式,喷雾制粒与湿法制粒相比能耗较高;另外,该专利所用熔渣促进剂主要来之金属氧化物,如二氧化硅、氧化铝、氧化锌、氧化铈,金属氧化物作为熔渣促进剂可以起到一定的促进熔渣结团作用,但是对于药片形态保持作用并不明显;同时该专利使用了压片脱模助剂如:石墨、二硫化钼、二硫化钨、氮化硼,这些助剂仅仅起到压片助剂的作用,不能与金属氧化物配合促进熔渣结团。
发明内容
本发明的目的在于克服现有技术的上述缺陷,提供一种气体发生器,该气体发生器采用的点火药剂组合物使得药片压片过程中不粘模,压片后药片能够很好的保持原有的光泽和形态,改善了点火药在低温-40℃存在点火延迟或波动大的现象,保证了点火药在-40℃~+90℃温度下工作时波及的范围更广,并且在点燃气体发生剂时点火更均匀,一致性更好,显著提升了点火性能。
本发明的上述目的主要是通过如下技术方案予以实现的:
一种气体发生器,所述气体发生器采用的点火药剂组合物包括如下质量百分比含量的组分:硝酸锶40%~60%;5-氨基四唑25%~40%;硝酸钾1%~20%;云母粉1%~20%;三氧化二铝0.5%~10%;石墨0.1%~10%;氮化硼0.1%~10%。
优选点火药剂组合物包括如下质量百分比含量的组分:硝酸锶40%~60%;5-氨基四唑30%~40%;硝酸钾4%~15%;云母粉5%~15%;三氧化二铝0.5%~5%;石墨0.1%~5%;氮化硼0.1%~5%。
在上述气体发生器中,所述气体发生器采用的气体发生剂组合物包括如下质量百分比含量的组分:硝酸胍40%~60%;碱式硝酸铜25%~40%;硝酸锶1%~20%;高氯酸铵1%~10%;钛酸锶2%~10%;滑石粉.6%~10%。
在上述气体发生器中,优选钛酸锶的质量百分比含量为5.5%~10%。优选硝酸锶的质量百分比含量为2%-10%;优选高氯酸铵的质量百分比含量为1%-3%;优选滑石粉的质量百分比含量为0.6%-2%。
在上述气体发生器中,所述气体发生剂组合物的各组分含水量之和不大于各组分总质量的1%。所述碱式硝酸铜的粒径D90不大于5μm;所述滑石粉的粒径D90不大于10μm。
在上述气体发生器中,所述气体发生剂组合物成型后为圆形片状结构或者圆环形片状结构,其中圆形片状结构的直径为3~15mm;圆环形片状结构的内径为1~3mm,外径为4~15mm。
在上述气体发生器中,所述气体发生器采用的气体发生剂组合物包括如下质量百分比含量的组分:硝酸胍35%~60%;碱式硝酸铜25%~58%;钛酸锶5.5%~10%;滑石粉0.6%~10%。优选滑石粉的质量百分比含量为0.6%~5%。
在上述气体发生器中,所述气体发生剂组合物的各组分含水量之和不大于各组分总质量的1%。所述碱式硝酸铜的粒径D90不大于5μm;所述滑石粉的粒径D90不大于10μm。
在上述气体发生器中,所述气体发生剂组合物成型后为圆形片状结构或者圆环形片状结构,其中圆形片状结构的直径为3~15mm;圆环形片状结构的内径为1~3mm,外径为4~15mm。
在上述气体发生器中,所述5-氨基四唑的粒径D90不大于30μm;所述氮化硼的粒径D90不大于3.0μm;所述硝酸钾的粒径D90不大于165μm。所述点火药剂组合物的各组分含水量之和不大于各组分总质量的1%。所述点火药剂组合物为圆形片状结构,所述圆形片状结构的直径为3~10mm;圆形片状结构的厚度为1~5mm;每个圆形片状结构的质量为0.01~3g。所述点火药剂组合物为粒状结构,粒径为12~20目。
在上述气体发生器中,所述点火药剂组合物采用湿法制粒的方式制备,具体制备方法包括如下步骤:
(1)、将硝酸锶、5-氨基四唑、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼混合后得到第一物料;
(2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的3%~15%;
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
(5)、将第四物料进行物料成型。
在上述气体发生器中,所述步骤(1)中将硝酸锶、5-氨基四唑、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼在混合设备中进行混合得到第一物料,混合时间为≤20min;所述混合设备为螺带混合机。所述步骤(2)中湿法混合的时间为2min~15min;湿法混合的设备为捏合机或混合机。所述步骤(5)中将第四物料通过旋转压片机模压的方法进行物料成型。所述步骤(5)中物料成型得到圆形片状结构,所述圆形片状结构的直径为3~10mm;圆形片状结构的厚度为1~5mm;每个圆形片状结构的质量为0.01~3g。所述步骤(5)中物料成型得到粒状结构,所述粒状结构的粒径为12~20目;所述粒状结构为将片状结构打粒后过筛得到。
在上述气体发生器中,所述气体发生剂组合物采用湿法制粒的方式制备,具体制备方法包括如下步骤:
(1)、将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶混合后得到第一物料;
(2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
(5)、将第四物料中加入滑石粉,进行物料成型。
在上述气体发生器中,所述步骤(1)中将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶在混合设备中进行混合得到第一物料,混合时间≥5min。
在上述气体发生器中,所述气体发生剂组合物的具体制备方法包括如下步骤:
(1)、将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵、钛酸锶和滑石粉混合后得到第一物料;
(2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
(5)、将第四物料进行物料成型。
在上述气体发生器中,所述步骤(1)中将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵、钛酸锶和滑石粉在混合设备中进行混合得到第一物料,混合时间≥5min。所述步骤(2)中湿法混合的时间为20min~60min;湿法混合的设备为捏合机或混合机。
在上述气体发生器中,所述气体发生剂组合物采用湿法制粒的方式制备,具体制备方法包括如下步骤:
(1)、将硝酸胍、碱式硝酸铜和钛酸锶混合后得到第一物料;
(2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
(5)、将第四物料中加入滑石粉,进行物料成型。
在上述气体发生器中,所述步骤(1)中将硝酸胍、碱式硝酸铜和钛酸锶在混合设备中进行混合得到第一物料,混合时间≥5min。所述步骤(2)中湿法混合的时间为20min~60min;湿法混合的设备为捏合机或混合机。
在上述气体发生器中,所述气体发生剂组合物的具体制备方法包括如下步骤:
(1)、将硝酸胍、碱式硝酸铜、钛酸锶和滑石粉混合后得到第一物料;
(2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
(5)、将第四物料进行物料成型。
在上述气体发生器中,所述步骤(1)中将硝酸胍、碱式硝酸铜、钛酸锶和滑石粉在混合设备中进行混合得到第一物料,混合时间≥5min。所述步骤(2)中湿法混合的时间为20min~60min;湿法混合的设备为捏合机或混合机。
在上述气体发生器中,所述气体发生器为汽车安全气囊用气体发生器。
本发明与现有技术相比具有如下有益效果:
(1)、本发明提供的气体发生器,采用包含硝酸锶、5-氨基四唑、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼的新型点火药剂组合物作为点火剂,该点火药剂组合物使得药片压片过程中不粘模,压片后药片能够很好的保持原有的光泽和形态,表面无凹坑,无毛刺;改善了点火药在低温-40℃存在点火延迟或波动大的现象,保证了点火药在-40℃~+90℃温度下工作时波及的范围更广,并且在点燃气体发生剂时点火更均匀,一致性更好,显著提升了点火性能。
(2)、本发明气体发生器中的点火药剂组合物含有石墨和氮化硼共同作为工艺助剂,在本发明组合物配方中二者协同作用,缺一不可,并且通过对二者用量比例的研究以及在组合物中用量的合理选择,使的组合物药片压片过程中不粘模,压片后药片能够很好的保持原有的光泽和形态,表面无凹坑,无毛刺;
(3)、本发明气体发生器中的点火药剂组合物含有三氧化二铝作为点火改良剂,通过对用量的合理选择,改善了点火药在低温-40℃存在点火延迟或波动大的现象,保证了点火药在-40℃~+90℃温度下工作时波及的范围更广,同时三氧化二铝的加入,使得点燃气体发生剂时点火更加均匀,一致性更好,进一步提高了点火剂组合物的点火性能;此外本发明通过添加安全可靠的三氧化二铝来改善低温点火性能,从本质上增加了配方的安全性能;
(4)、本发明气体发生器中的点火药剂组合物含有一定量的硝酸钾,与硝酸锶、5-氨基四唑配合使用,硝酸钾和硝酸锶是氧化剂,是点火药剂配方的氧源,1g的硝酸钾可放出0.4g~0.5g氧,比氧化物类氧化剂放出的氧气量更多,本发明通过研究和试验,加入合理量的硝酸钾,进一步提高点火药剂的燃速和火焰温度;
(5)、本发明通过对点火药剂组合物中包括硝酸锶、5-氨基四唑、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼在内的各组份的含量配比进行优化设计,并通过大量试验进行验证,使得点火药剂组合物具有优异的性能和显著的效果,点火药剂组合物在点燃气体发生剂时点火更均匀,一致性更好,显著提升了点火性能。
(6)、本发明气体发生器中的点火药剂组合物在成型之前,使用湿法制 粒的方式进行制粒,通过湿法制粒使得工艺更加简单、成本较低、能耗低,工艺更为灵活,设备投入低。
(7)、本发明气体发生器中的点火药剂组合物通过采用氮化硼、云母粉、三氧化二铝、石墨等可以降低配方的感度,从配方的本质上提升其安全度;
(8)、本发明通过采用点火药剂组合物以粒状结构的形式使用,以提供最大可用的燃烧表面积以获得最快响应,从而快速点燃气体发生剂组合物,满足安全气囊保护司机和乘员的需求;
(9)、大量试验表明,本发明气体发生器中的点火药组合物能够在从-40℃到+90℃的温度范围内快速点燃气体发生剂;本发明的点火药组合物燃温大于2500K;本发明的组合物的产气率为2.1至2.5摩尔/100克,而典型的BKNO3增强剂组合物的气体产率为1.13摩尔/100克增强剂,含铝粉的增强剂组合物的产气率为1.7至1.9摩尔/100克;此外本发明的点火药剂组合物的产气率比常规的点火药剂组合物增加69至110%。
(10)、本发明针对现有技术中气体发生剂组合物采用单一形态保持剂不能起到很好的燃烧形态保持作用的缺陷,通过研究和大量试验,提出使用钛酸锶和滑石粉共同作为形态保持剂,同时给出了二者的用量,通过二者协同作用,使得气体发生剂药片燃烧后能够很好的保持燃烧前的形态,避免燃烧后药片熔融飞溅烧伤气袋。
(11)、本发明气体发生器中的气体发生剂组合物采用一定量的硝酸锶作为辅助氧化剂,一方面可以降低组合物中碱式硝酸铜的使用量(例如可以降低碱式硝酸铜的使用量到40%以下),减少碱式硝酸铜燃烧分解后形成的熔融铜残渣;同时硝酸锶燃烧后产物氧化锶熔点为2430℃,远远大于金属铜的熔点,可以对碱式硝酸铜分解后形成的金属铜熔液形成很好的凝结作用,进一步减少熔融铜残渣。
(12)、本发明气体发生器中的气体发生剂组合物采用硝酸锶作为辅助氧化剂,硝酸锶分解形成的高熔点产物氧化锶及钛酸锶和滑石粉共同作为形态保持剂,促使药片燃烧后更好的保持燃烧前的形态,避免燃烧后药片熔融飞溅烧伤气袋。
(13)、本发明气体发生器中的气体发生剂组合物采用一定量的高氯酸铵作为点火性能调节剂,与其它各组份配合使用,在提高组合物的低温点火性能同时提高了燃烧速度。
(14)、本发明通过对气体发生剂组合物中各组份的含量配比进行优化 设计,并通过大量试验进行验证,使得气体发生剂组合物具有优异的性能和显著的效果,气体发生剂药片燃烧后能够很好的保持燃烧前的形态,并且显著减少碱式硝酸铜燃烧分解后形成的熔融铜残渣,在提高组合物的低温点火性能同时提高了燃烧速度。
(15)、本发明气体发生器中的气体发生剂组合物在成型之前,使用湿法制粒的方式进行制粒,通过湿法制粒使得工艺更加简单、成本较低、能耗低,工艺更为灵活,设备投入低;
(16)、本发明对气体发生器中的气体发生剂组合物采用湿法制粒的工艺过程及工艺条件进行优化设计,使得制备工艺简单、易于实现,同时本发明制备方法中滑石粉可以在制备之前同其余组份一起混合后进行湿法制备,也可以在最后加入滑石粉,制备方法更加灵活。
附图说明
图1为本发明对比例1中点火药剂组合物药片表面形态图;
图2为本发明对比例2中点火药剂组合物药片表面形态图;
图3为本发明对比例3中点火药剂组合物的时间和压力的曲线图;
图4为本发明实施例1中点火药剂组合物药片表面形态图;
图5为本发明实施例1中点火药剂组合物的时间和压力的曲线图;
图6为本发明实施例2中点火药剂组合物药片表面形态图;
图7为本发明实施例2中点火药剂组合物的时间和压力的曲线图;
图8为本发明实施例3中点火药剂组合物药片表面形态图;
图9为本发明实施例3中点火药剂组合物的时间和压力的曲线图;
图10为本发明实施例4中点火药剂组合物药片表面形态图;
图11为本发明实施例4中点火药剂组合物的时间和压力的曲线图;
图12为本发明实施例5中点火药剂组合物药片表面形态图;
图13为本发明实施例5中点火药剂组合物的时间和压力的曲线图;
图14为本发明对比例11中气体发生剂组合物药片燃烧后残渣形态图;
图15为本发明对比例12中气体发生剂组合物药片燃烧后残渣形态图;
图16为本发明实施例11中气体发生剂组合物药片燃烧后残渣形态图;
图17为本发明实施例12中气体发生剂组合物药片燃烧后残渣形态图;
图18为本发明实施例13中气体发生剂组合物药片燃烧后残渣形态图;
图19为本发明实施例14中气体发生剂组合物药片燃烧后残渣形态图;
图20为本发明实施例15中气体发生剂组合物药片燃烧后残渣形态图;
图21为本发明对比例21中气体发生剂组合物药片燃烧后残渣形态图;
图22为本发明对比例22中气体发生剂组合物药片燃烧后残渣形态图;
图23为本发明实施例21中气体发生剂组合物药片燃烧后残渣形态图;
图24为本发明实施例22中气体发生剂组合物药片燃烧后残渣形态图;
图25为本发明实施例23中气体发生剂组合物药片燃烧后残渣形态图。
图26为本发明实施例24中气体发生剂组合物药片燃烧后残渣形态图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
本发明点火性能可靠的点火药剂组合物,包括如下质量百分比含量的组分:
Figure PCTCN2018092733-appb-000001
在上述点火药剂组合物中,优选采用如下质量百分比含量的组分:硝酸锶40%~60%;5-氨基四唑(5-AT)30%~40%;硝酸钾4%~15%;云母粉5%~15%;三氧化二铝0.5%~5%;石墨0.1%~5%;氮化硼0.1%~5%。
上述5氨基四唑的粒径D90不大于30μm;上述氮化硼的粒径D90不大于3.0μm;上述硝酸钾的粒径D90不大于165μm。
上述点火药剂组合物的各组分含水量之和不大于各组分总质量的1%。
上述各组分混合物在模压成型之前,制成含水量小于0.5%的粒子。
上述点火药剂组合物可以为圆形片状结构,所述圆形片状结构的直径为3~10mm;圆形片状结构的厚度为1~5mm;每个圆形片状结构的重量为0.01~3g。
上述点火药剂组合物还可以为粒状结构,通过将片状结构打粒后过筛得到,粒径为12~20目。优选采用粒状结构。
本发明采用湿法制粒的方式制备点火药剂组合物,具体制备方法包括如下步骤:
(1)、将硝酸锶、5-氨基四唑、硝酸钾、云母粉、三氧化二铝、石墨和 氮化硼混合后得到第一物料;可以在混合设备中进行混合得到第一物料,混合时间为≤20min;混合设备可以采用螺带混合机。
(2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的3%~15%;湿法混合的时间为2min~15min;湿法混合的设备为捏合机或混合机。
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
(5)、将第四物料进行物料成型,可以通过旋转压片机模压的方法进行物料成型,再通过摇摆式颗粒机制成粒状物。
步骤(5)中物料成型得到圆形片状结构或粒状结构,其中圆形片状结构的直径为3~10mm;圆形片状结构的厚度为1~5mm;每个圆形片状结构的质量为0.01~3g;其中粒状结构为将片状结构打粒后过筛得到,粒径为12~20目。
本发明制备得到的点火药剂组合物主要用于汽车安全气囊气体发生器。
本发明还提供一种气体发生器,使用上述点火性能可靠的点火药剂组合物作为点火药剂。
对比例1:
点火药剂组合物包括如下质量百分比含量的组分:
Figure PCTCN2018092733-appb-000002
上述组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、硝酸钾、云母粉、三氧化二铝和石墨通过螺带混合机混合后得到第一物料;将第一物料加入8%的蒸馏水进行湿法捏合20min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第 四物料通过旋转压片机进行物料成型。
如图1所示为本发明对比例1中点火药剂组合物药片表面形态图;在此对比例中仅仅加入石墨作为脱模剂,没有加入氮化硼。在进行旋转压片机压制后,药片表面有粘模,药片不能够很好的保持原有的光泽和形态,表面有凹坑,有毛刺。
对比例2
点火药剂组合物包括如下质量百分比含量的组分:
Figure PCTCN2018092733-appb-000003
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、硝酸钾、云母粉、三氧化二铝和氮化硼通过螺带混合机混合后得到第一物料;将第一物料加入8%的蒸馏水进行湿法捏合20min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型。
如图2所示为本发明对比例2中点火药剂组合物药片表面形态图;在此对比例中仅仅加入氮化硼作为脱模剂,没有加入石墨。进行旋转压机压制成药片后,药片表面有粘模,药片不能够很好的保持原有的光泽和形态,表面有凹坑,有毛刺。
对比例3
点火药剂组合物包括如下质量百分比含量的组分:
Figure PCTCN2018092733-appb-000004
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、 硝酸钾、云母粉通过螺带混合机混合后得到第一物料;将第一物料加入8%的蒸馏水进行湿法捏合20min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型。
如图3所示为本发明对比例3中点火药剂组合物的时间和压力的曲线图;表1为本发明对比例3中点火药剂组合物的时间和压力数据表,包含点火时间TTFG数据统计,由图3和表1可知点火药剂组合物在常温+23℃,高温+85℃,低温-40℃的条件下,均出现点火延迟,影响了发生器的整体压力性能及燃速,低温点火时间不满足小于7ms的要求。
表1
Figure PCTCN2018092733-appb-000005
在此对比例中没有加入三氧化二铝,也没有加入石墨和氮化硼。进行试车试验后,从-40℃至+90℃均出现点火延迟。并且在进行旋转压片机压制后,药片表面有粘模,药片不能够很好的保持原有的光泽和形态,表面有凹坑,有毛刺。
实施例1
点火药剂组合物包括如下质量百分比含量的组分:
Figure PCTCN2018092733-appb-000006
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼通过螺带混合机混合后得到第一物料;将第一物料加入10%(质量百分比含量,下同)的蒸馏水进行湿法捏合12min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过20目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型,得到圆形片状结构。
如图4所示为本发明实施例1中点火药剂组合物药片表面形态图;在此对比例中同时加入石墨和氮化硼作为脱模剂,两者起到很好的协同作用,进行旋转压机压制成药片后,药片表面不粘模,药片能够很好的保持原有的光泽和形态,表面无凹坑,无毛刺。
将圆形片状结构药片打粒后过筛得到粒径为12~20目的粒状结构,进行试验。如图5所示为本发明实施例1中点火药剂组合物的时间和压力的曲线图;表2为本发明实施例1中点火药剂组合物的时间和压力数据表,包含点火时间TTFG数据统计,由图5和表2可知点火药剂组合物在常温+23℃,高温+85℃,低温-40℃的条件下,点火正常,压力正常,且点火时间TTFG及气体发生器的压力性能满足气体发生器标准要求,低温点火时间满足小于7ms的要求。
表2
Figure PCTCN2018092733-appb-000007
实施例2
点火药剂组合物包括如下质量百分比含量的组分:
Figure PCTCN2018092733-appb-000008
Figure PCTCN2018092733-appb-000009
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼通过螺带混合机混合后得到第一物料;将第一物料加入6%的蒸馏水进行湿法捏合10min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型,得到圆形片状结构。
如图6所示为本发明实施例2中点火药剂组合物药片表面形态图;在此对比例中同时加入石墨和氮化硼作为脱模剂,两者起到很好的协同作用,进行旋转压机压制成药片后,药片表面不粘模,药片能够很好的保持原有的光泽和形态,表面无凹坑,无毛刺。
将圆形片状结构药片打粒后过筛得到粒径为12~20目的粒状结构,进行试验。如图7所示为本发明实施例2中点火药剂组合物的时间和压力的曲线图;表3为本发明实施例2中点火药剂组合物的时间和压力数据表,包含点火时间TTFG数据统计,由图7和表3可知点火药剂组合物在常温+23℃,高温+85℃,低温-40℃的条件下,点火正常,压力正常,且点火时间TTFG及气体发生器的压力性能满足气体发生器标准要求,低温点火时间满足小于7ms的要求。
表3
Figure PCTCN2018092733-appb-000010
Figure PCTCN2018092733-appb-000011
实施例3
点火药剂组合物包括如下质量百分比含量的组分:
Figure PCTCN2018092733-appb-000012
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼通过螺带混合机混合后得到第一物料;将第一物料加入5%的蒸馏水进行湿法捏合5min,得到第二物料,将第二物料通过20目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型,得到圆形片状结构。
如图8所示为本发明实施例3中点火药剂组合物药片表面形态图;在此对比例中同时加入石墨和氮化硼作为脱模剂,两者起到很好的协同作用,进行旋转压机压制成药片后,药片表面不粘模,药片能够很好的保持原有的光泽和形态,表面无凹坑,无毛刺。
将圆形片状结构药片打粒后过筛得到粒径为12~20目的粒状结构,进行试验,如图9所示为本发明实施例3中点火药剂组合物的时间和压力的曲线图;表4为本发明实施例3中点火药剂组合物的时间和压力数据表,包含点火时间TTFG数据统计,由图9和表4可知点火药剂组合物在常温+23℃,高温+85℃,低温-40℃的条件下,点火正常,压力正常,且点火时间TTFG及气体发生器的压力性能满足气体发生器标准要求,低温点火时间满足小于7ms的要求。
表4
Figure PCTCN2018092733-appb-000013
Figure PCTCN2018092733-appb-000014
实施例4
Figure PCTCN2018092733-appb-000015
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼通过螺带混合机混合后得到第一物料;将第一物料加入4%的蒸馏水进行湿法捏合5min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过20目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型,得到圆形片状结构。
如图10所示为本发明实施例4中点火药剂组合物药片表面形态图;在此对比例中同时加入石墨和氮化硼作为脱模剂,两者起到很好的协同作用,进行旋转压机压制成药片后,药片表面不粘模,药片能够很好的保持原有的光泽和形态,表面无凹坑,无毛刺。
将圆形片状结构药片打粒后过筛得到粒径为12~20目的粒状结构,进行试验,如图11所示为本发明实施例4中点火药剂组合物的时间和压力的曲线图;表5为本发明实施例4中点火药剂组合物的时间和压力数据表,包含点火时间TTFG数据统计,由图11和表5可知点火药剂组合物在常温+23℃,高温+85℃,低温-40℃的条件下,点火正常,压力正常,且点火时间TTFG及气体发生器的压力性能满足气体发生器标准要求,低温点火时间满足小于7ms的要求。
表5
Figure PCTCN2018092733-appb-000016
Figure PCTCN2018092733-appb-000017
实施例5
Figure PCTCN2018092733-appb-000018
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径6.4mm,厚度2.7~3.1mm的圆片。具体制备方法为:将硝酸锶、5-氨基四唑(5-AT)、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼通过螺带混合机混合后得到第一物料;将第一物料加入12%的蒸馏水进行湿法捏合4min,得到第二物料,将第二物料通过20目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过30目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型,得到圆形片状结构。
如图12所示为本发明实施例5中点火药剂组合物药片表面形态图;在此对比例中同时加入石墨和氮化硼作为脱模剂,两者起到很好的协同作用,进行旋转压机压制成药片后,药片表面不粘模,药片能够很好的保持原有的光泽和形态,表面无凹坑,无毛刺。
将圆形片状结构药片打粒后过筛得到粒径为12~20目的粒状结构,进行试验,如图13所示为本发明实施例5中点火药剂组合物的时间和压力的曲线图;表6为本发明实施例5中点火药剂组合物的时间和压力数据表,包含点火时间TTFG数据统计,由图13和表6可知点火药剂组合物在常温+23℃,高温+85℃,低温-40℃的条件下,点火正常,压力正常,且点火时间TTFG及气体发生器的压力性能满足气体发生器标准要求,低温点火 时间满足小于7ms的要求。
表6
Figure PCTCN2018092733-appb-000019
本发明一种气体发生剂组合物的制备方法,具体包括如下步骤:
(1)、将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶混合后得到第一物料。在混合设备中进行混合,混合时间≥5min;混合设备可以为V型混合机、三维多向运动混合机、自动提升料斗混合机、振动磨、螺带混合机或声共振混合机。
(2)、将第一物料加水进行湿法混合20min-60min,得到第二物料,其中加水量为第一物料总质量的8%~15%,优选采用加入蒸馏水。湿法混合的设备为捏合机或混合机,例如可以选择卧式捏合机、立式捏合机、螺带混合机或声共振混合机。
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;烘干设备可以为电加热烘箱、油浴烘箱、蒸汽烘箱、双锥烘箱、振动流化床或带式真空干燥机。
(5)、将第四物料中加入滑石粉,进行物料成型,成型设备可以为油压机、旋转压片机或粉末成型机。物料成型得到圆形片状结构或者圆环形片状结构,其中圆形片状结构的直径为3~15mm;圆环形片状结构的内径为1~3mm,外径为4~15mm。
本发明也可以在制备开始之前将滑石粉与其余组份同时混合,即将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵、钛酸锶和滑石粉混合后得到第一物料,之后开始后续的制备过程,后续制备方法同上述方法完全相同。
本发明制备得到的气体发生剂组合物主要用于汽车安全气囊气体发生器。
以下实施例中采用的混合设备为三维多项运动混合机,捏合机为卧式捏合机,烘干设备为真空烘箱,成型设备为旋转压片机。
对比例11
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍50%
碱式硝酸铜44.5%
钛酸锶5.5%
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入8%的蒸馏水进行湿法捏合20min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图14所示为本发明对比例中气体发生剂组合物药片燃烧后残渣形态图;如下表7为本发明对比例11中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量及低温点火延迟时间统计,由图14及表7可知药片形态没有保持,残渣大部分飞出发生器,低温点火延迟时间超过7ms。
表7
Figure PCTCN2018092733-appb-000020
对比例12
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍40%
碱式硝酸铜52.75%
钛酸锶6.5%
滑石粉0.75%
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜和钛酸锶通过 混合设备混合后得到第一物料;将第一物料加入15%的蒸馏水进行湿法捏合60min,得到第二物料,将第二物料通过40目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过40目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图15所示为本发明对比例12中气体发生剂组合物药片燃烧后残渣形态图;如下表8为本发明对比例12中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量及低温点火延迟时间统计;本对比例中加入钛酸锶及滑石粉一起作为形态保持剂,进行安全气囊发生器试验后,药片形态得到一定程度的保持,由表8可以看出,飞出发生器的残渣含量稍高,组合物燃速较慢,点火时间大于7ms。
表8
Figure PCTCN2018092733-appb-000021
实施例11
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍50%
碱式硝酸铜31.75%
硝酸锶10%
高氯酸铵2%
钛酸锶5.5%
滑石粉0.75%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入8%的蒸馏水进行湿法捏合20min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量 的0.5%,再次通过10目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图16所示为本发明实施例1中气体发生剂组合物药片燃烧后残渣形态图;如下表9为本发明实施例1中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量及低温点火延迟时间统计;由图16及表9可知药片形态得到很好保持,飞出发生器残渣较少,低温点火时间满足小于7ms的要求。
表9
Figure PCTCN2018092733-appb-000022
本实施例中加入钛酸锶和滑石粉一起混合,共同作为形态保持剂,两者起到很好的协同作用,同时加入硝酸锶和高氯酸铵,碱式硝酸铜含量减低到35%以下,硝酸锶燃烧后高熔点产物氧化锶和钛酸锶及滑石粉一起作为形态保持剂,进行安全气囊发生器试验后,药片形态得到很好的保持,同时组合物燃烧速度提高,熔融铜残渣减少。
实施例12
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍40%
碱式硝酸铜40%
硝酸锶12.75%
高氯酸铵1%
钛酸锶5.5%
滑石粉0.75%
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入15%的蒸馏水进行湿法捏合60min,得到第二物料,将第二物料通过40目的筛 网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过40目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图17所示为本发明实施例12中气体发生剂组合物药片燃烧后残渣形态图;如下表10为本发明实施例12中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量及低温点火延迟时间统计;由图17和表10可知药片形态得到很好保持,飞出发生器残渣较少,低温点火时间满足小于7ms的要求。
表10
Figure PCTCN2018092733-appb-000023
本实施例中加入钛酸锶和滑石粉一起混合,共同作为形态保持剂,两者起到很好的协同作用,同时加入硝酸锶和高氯酸铵,碱式硝酸铜含量减低到40%以下,硝酸锶燃烧后高熔点产物氧化锶和钛酸锶及滑石粉一起作为形态保持剂,进行安全气囊发生器试验后,药片形态得到很好的保持,同时组合物燃烧速度提高,熔融铜残渣减少。
实施例13
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍60%
碱式硝酸铜25%
硝酸锶1%
高氯酸铵2%
钛酸锶10%
滑石粉2%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入10% 的蒸馏水进行湿法捏合40min,得到第二物料,将第二物料通过20目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过20目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图18所示为本发明实施例13中气体发生剂组合物药片燃烧后残渣形态图;如下表11为本发明实施例13中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量及低温点火延迟时间统计;由图18和表11可知药片形态得到很好保持,飞出发生器残渣较少,低温点火时间满足小于7ms的要求。
表11
Figure PCTCN2018092733-appb-000024
本实施例中加入钛酸锶和滑石粉一起混合,共同作为形态保持剂,两者起到很好的协同作用,同时加入硝酸锶和高氯酸铵,碱式硝酸铜含量减低到30%以下,硝酸锶燃烧后高熔点产物氧化锶和钛酸锶及滑石粉一起作为形态保持剂,进行安全气囊发生器试验后,药片形态得到很好的保持,同时组合物燃烧速度提高,熔融铜残渣减少。
实施例14
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍45%
碱式硝酸铜32%
硝酸锶8%
高氯酸铵2%
钛酸锶3%
滑石粉10%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜、硝酸锶、高 氯酸铵和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入12%的蒸馏水进行湿法捏合30min,得到第二物料,将第二物料通过30目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过30目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图19所示为本发明实施例14中气体发生剂组合物药片燃烧后残渣形态图;如下表12为本发明实施例14中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量及低温点火延迟时间统计,由图19和表12可知药片形态得到很好保持,飞出发生器残渣较少,低温点火时间满足小于7ms的要求。
表12
Figure PCTCN2018092733-appb-000025
本实施例中加入钛酸锶和滑石粉一起混合,共同作为形态保持剂,两者起到很好的协同作用,同时加入硝酸锶和高氯酸铵,碱式硝酸铜含量减低到35%以下,硝酸锶燃烧后高熔点产物氧化锶和钛酸锶及滑石粉一起作为形态保持剂,进行安全气囊发生器试验后,药片形态得到很好的保持,同时组合物燃烧速度提高,熔融铜残渣减少。
实施例15
硝酸胍51%
碱式硝酸铜36%
硝酸锶3%;
高氯酸铵2%;
钛酸锶7%
滑石粉1%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜、硝酸锶、高 氯酸铵、钛酸锶和滑石粉通过混合设备混合后得到第一物料;将第一物料加入12%的蒸馏水进行湿法捏合40min,得到第二物料,将第二物料通过25目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过25目的筛网得到第四物料;将第四物料直接通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图20所示为本发明实施例15中气体发生剂组合物药片燃烧后残渣形态图;如下表13为本发明实施例15中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量及低温点火延迟时间统计。由图20可知进行安全气囊发生器试验后,药片形态得到很好的保持。表13中排出物残渣总重量低于1克,飞出发生器残渣较少,低温点火时间满足小于7ms的要求。
表13
Figure PCTCN2018092733-appb-000026
本实施例中加入钛酸锶和滑石粉一起混合,共同作为形态保持剂,两者起到很好的协同作用,同时加入硝酸锶和高氯酸铵,碱式硝酸铜含量减低到36%,硝酸锶燃烧后高熔点产物氧化锶和钛酸锶及滑石粉一起作为形态保持剂,进行安全气囊发生器试验后,药片形态得到很好的保持,同时组合物燃烧速度提高,熔融铜残渣减少。
本发明上述对比例及实施例中均作了三组平行试验并取平均值。
本发明另一种气体发生剂组合物的制备方法,具体包括如下步骤:
(1)、将硝酸胍、碱式硝酸铜和钛酸锶混合后得到第一物料。在混合设备中进行混合,混合时间≥5min;混合设备可以为V型混合机、三维多向运动混合机、自动提升料斗混合机、振动磨、螺带混合机或声共振混合机。
(2)、将第一物料加水进行湿法混合20min-60min,得到第二物料,其中加水量为第一物料总质量的8%~15%,优选采用加入蒸馏水。湿法混合的设备为捏合机或混合机,例如可以选择卧式捏合机、立式捏合机、螺带混合机或声共振混合机。
(3)、将第二物料通过10~40目的筛网得到第三物料;
(4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;烘干设备可以为电加热烘箱、油浴烘箱、蒸汽烘箱、双锥烘箱、振动流化床或带式真空干燥机。
(5)、将第四物料中加入滑石粉,进行物料成型,成型设备可以为油压机、旋转压片机或粉末成型机。物料成型得到圆形片状结构或者圆环形片状结构,其中圆形片状结构的直径为3~15mm;圆环形片状结构的内径为1~3mm,外径为4~15mm。
本发明也可以在制备开始之前将滑石粉与其余组份同时混合,即将硝酸胍、碱式硝酸铜、钛酸锶和滑石粉混合后得到第一物料,之后开始后续的制备过程,后续制备方法完全相同。
本发明制备得到的气体发生剂组合物主要用于汽车安全气囊气体发生器。
以下实施例中采用的混合设备为三维多项运动混合机,捏合机为卧式捏合机,烘干设备为真空烘箱,成型设备为旋转压片机。
对比例21
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍35%
碱式硝酸铜59.5%
钛酸锶5.5%
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入8%的蒸馏水进行湿法捏合20min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第四物料通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图21所示为本发明对比例21中气体发生剂组合物药片燃烧后残渣形态图;在此对比例中仅仅加入钛酸锶作为形态保持剂,由图可知进行安全气囊发生器试验后,药片形态没有很好的保持。
如下表14为本发明对比例21中气体发生剂组合物药片燃烧后排出物 可溶残渣与不溶残渣重量统计;表14中排出物残渣总重量超过1克。
表14
序号 PH值 水溶物重量(g) 不溶物重量(g) 总重(g)
001 5.56 1.056 0.197 1.253
002 5.58 0.993 0.216 1.209
003 5.92 1.257 0.182 1.439
AVE 5.69 1.102 0.198 1.300
对比例22
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍39.4%
碱式硝酸铜60%
滑石粉0.6%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜通过混合设备混合后得到第一物料;将第一物料加入15%的蒸馏水进行湿法捏合60min,得到第二物料,将第二物料通过40目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过40目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图22所示为本发明对比例22中气体发生剂组合物药片燃烧后残渣形态图;在此对比例中仅仅加入滑石粉作为形态保持剂。由图可知进行安全气囊发生器试验后,药片形态没有很好的保持。
如下表15为本发明对比例22中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量统计,表15中排出物残渣总重量大大超过1克。
表15
序号 PH值 水溶物重量(g) 不溶物重量(g) 总重(g)
001 5.35 1.125 0.205 1.330
002 5.29 1.036 0.216 1.252
003 5.63 1.356 0.238 1.594
AVE 5.42 1.172 0.220 1.392
实施例21
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍35%
碱式硝酸铜58%
钛酸锶5.5%
滑石粉1.5%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入8%的蒸馏水进行湿法捏合20min,得到第二物料,将第二物料通过10目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图23所示为本发明实施例21中气体发生剂组合物药片燃烧后残渣形态图;如下表16为本发明实施例21中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量统计;在本实施例中同时加入钛酸锶和滑石粉共同作为形态保持剂,两者起到很好的协同作用,由图23可知进行安全气囊发生器试验后,药片形态得到很好的保持。表16中排出物残渣总重量低于1克。
表16
序号 PH值 水溶物重量(g) 不溶物重量(g) 总重(g)
001 5.81 0.842 0.061 0.903
002 5.73 0.778 0.022 0.800
003 6.02 0.863 0.056 0.919
AVE 5.85 0.828 0.046 0.874
实施例22
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍60%
碱式硝酸铜25%
钛酸锶10%
滑石粉5%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜和钛酸锶通过 混合设备混合后得到第一物料;将第一物料加入15%的蒸馏水进行湿法捏合60min,得到第二物料,将第二物料通过40目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过40目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图24所示为本发明实施例22中气体发生剂组合物药片燃烧后残渣形态图;如下表17为本发明实施例22中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量统计;在本实施例中同时加入钛酸锶和滑石粉共同作为形态保持剂,两者起到很好的协同作用,由图24可知进行安全气囊发生器试验后,药片形态得到很好的保持。表17中排出物残渣总重量仅为0.330克。
表17
序号 PH值 水溶物重量(g) 不溶物重量(g) 总重(g)
001 6.15 0.339 0.015 0.354
002 5.96 0.335 0.026 0.361
003 5.81 0.256 0.018 0.274
AVE 5.97 0.310 0.020 0.330
实施例23
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍50%
碱式硝酸铜40%
钛酸锶9.4%
滑石粉0.6%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜和钛酸锶通过混合设备混合后得到第一物料;将第一物料加入10%的蒸馏水进行湿法捏合30min,得到第二物料,将第二物料通过20目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过20目的筛网得到第四物料;将第四物料中加入滑石粉,通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生 器解剖,观察药片燃烧后的形态。
如图25所示为本发明实施例23中气体发生剂组合物药片燃烧后残渣形态图;如下表18为本发明实施例23中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量统计。在本实施例中同时加入钛酸锶和滑石粉共同作为形态保持剂,两者起到很好的协同作用,由图25可知进行安全气囊发生器试验后,药片形态得到很好的保持。表18中排出物残渣总重量低于1克。
表18
序号 PH值 水溶物重量(g) 不溶物重量(g) 总重(g)
001 5.68 0.653 0.056 0.709
002 5.77 0.558 0.020 0.578
003 5.63 0.762 0.059 0.821
AVE 5.69 0.658 0.045 0.703
实施例24
气体发生剂组合物包含如下质量百分比含量的组份:
硝酸胍49%
碱式硝酸铜41%
钛酸锶7.5%
滑石粉2.5%。
这些组分被称量后,通过湿法制粒和旋转压片机压制成直径5mm,厚度1.9mm的圆片,具体制备方法为:将硝酸胍、碱式硝酸铜、钛酸锶和滑石粉通过混合设备混合后得到第一物料;将第一物料加入12%的蒸馏水进行湿法捏合40min,得到第二物料,将第二物料通过25目的筛网得到第三物料;将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过25目的筛网得到第四物料;将第四物料直接通过旋转压片机进行物料成型。
将制备的圆片装入试验发生器中,进行点火燃烧试验。试验后将发生器解剖,观察药片燃烧后的形态。
如图26所示为本发明实施例24中气体发生剂组合物药片燃烧后残渣形态图;如下表19为本发明实施例24中气体发生剂组合物药片燃烧后排出物可溶残渣与不溶残渣重量统计。在本实施例中同时加入钛酸锶和滑石粉一起称量混合,共同作为形态保持剂,两者起到很好的协同作用,由图 26可知进行安全气囊发生器试验后,药片形态得到很好的保持。表19中排出物残渣总重量低于1克。
表19
序号 PH值 水溶物重量(g) 不溶物重量(g) 总重(g)
001 5.68 0.356 0.033 0.389
002 5.23 0.505 0.028 0.533
003 5.56 0.439 0.048 0.487
AVE 5.49 0.433 0.036 0.470
本发明上述对比例及实施例中均作了三组平行试验并取平均值。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (37)

  1. 一种气体发生器,其特征在于:所述气体发生器采用的点火药剂组合物包括如下质量百分比含量的组分:
    Figure PCTCN2018092733-appb-100001
  2. 根据权利要求1所述的气体发生器,其特征在于:所述点火药剂组合物包括如下质量百分比含量的组分:
    Figure PCTCN2018092733-appb-100002
  3. 根据权利要求1或2所述的气体发生器,其特征在于:所述气体发生器采用的气体发生剂组合物包括如下质量百分比含量的组分:
    Figure PCTCN2018092733-appb-100003
  4. 根据权利要求1或2所述的气体发生器,其特征在于:所述气体发生器采用的气体发生剂组合物包括如下质量百分比含量的组分:
    Figure PCTCN2018092733-appb-100004
    Figure PCTCN2018092733-appb-100005
  5. 根据权利要求3所述的气体发生器,其特征在于:所述钛酸锶的质量百分比含量为5.5%~10%。
  6. 根据权利要求3所述的气体发生器,其特征在于:所述硝酸锶的质量百分比含量为2%-10%;所述高氯酸铵的质量百分比含量为1%-3%;所述滑石粉的质量百分比含量为0.6%-2%。
  7. 根据权利要求3所述的气体发生器,其特征在于:所述气体发生剂组合物的各组分含水量之和不大于各组分总质量的1%。
  8. 根据权利要求3所述的气体发生器,其特征在于:所述碱式硝酸铜的粒径D90不大于5μm;所述滑石粉的粒径D90不大于10μm。
  9. 根据权利要求3所述的气体发生器,其特征在于:所述气体发生剂组合物成型后为圆形片状结构或者圆环形片状结构,其中圆形片状结构的直径为3~15mm;圆环形片状结构的内径为1~3mm,外径为4~15mm。
  10. 根据权利要求4所述的气体发生器,其特征在于:所述滑石粉的质量百分比含量为0.6%~5%。
  11. 根据权利要求4所述的气体发生器,其特征在于:所述气体发生剂组合物的各组分含水量之和不大于各组分总质量的1%。
  12. 根据权利要求4所述的气体发生器,其特征在于:所述碱式硝酸铜的粒径D90不大于5μm;所述滑石粉的粒径D90不大于10μm。
  13. 根据权利要求4所述的气体发生器,其特征在于:所述气体发生剂组合物成型后为圆形片状结构或者圆环形片状结构,其中圆形片状结构的直径为3~15mm;圆环形片状结构的内径为1~3mm,外径为4~15mm。
  14. 根据权利要求1或2所述的气体发生器,其特征在于:所述5-氨基四唑的粒径D90不大于30μm;所述氮化硼的粒径D90不大于3.0μm;所述硝酸钾的粒径D90不大于165μm。
  15. 根据权利要求1或2所述的气体发生器,其特征在于:所述点火药剂组合物的各组分含水量之和不大于各组分总质量的1%。
  16. 根据权利要求1或2所述的气体发生器,其特征在于:所述点火药剂组合物为圆形片状结构,所述圆形片状结构的直径为3~10mm;圆形 片状结构的厚度为1~5mm;每个圆形片状结构的质量为0.01~3g。
  17. 根据权利要求1或2所述的气体发生器,其特征在于:所述点火药剂组合物为粒状结构,粒径为12~20目。
  18. 根据权利要求1~2,5~13之一所述的气体发生器,其特征在于:所述点火药剂组合物采用湿法制粒的方式制备。
  19. 根据权利要求18所述的气体发生器,其特征在于:所述点火药剂组合物的具体制备方法包括如下步骤:
    (1)、将硝酸锶、5-氨基四唑、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼混合后得到第一物料;
    (2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的3%~15%;
    (3)、将第二物料通过10~40目的筛网得到第三物料;
    (4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
    (5)、将第四物料进行物料成型。
  20. 根据权利要求19所述的气体发生器,其特征在于:所述步骤(1)中将硝酸锶、5-氨基四唑、硝酸钾、云母粉、三氧化二铝、石墨和氮化硼在混合设备中进行混合得到第一物料,混合时间为≤20min;所述混合设备为螺带混合机。
  21. 根据权利要求19所述的气体发生器,其特征在于:所述步骤(2)中湿法混合的时间为2min~15min;湿法混合的设备为捏合机或混合机。
  22. 根据权利要求19所述的气体发生器,其特征在于:所述步骤(5)中将第四物料通过旋转压片机模压的方法进行物料成型。
  23. 根据权利要求19所述的气体发生器,其特征在于:所述步骤(5)中物料成型得到圆形片状结构,所述圆形片状结构的直径为3~10mm;圆形片状结构的厚度为1~5mm;每个圆形片状结构的质量为0.01~3g。
  24. 根据权利要求19所述的气体发生器,其特征在于:所述步骤(5)中物料成型得到粒状结构,所述粒状结构的粒径为12~20目;所述粒状结构为将片状结构打粒后过筛得到。
  25. 根据权利要求3所述的气体发生器,其特征在于:所述气体发生剂组合物采用湿法制粒的方式制备。
  26. 根据权利要求25所述的气体发生器,其特征在于:所述气体发生剂组合物的具体制备方法包括如下步骤:
    (1)、将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶混合后得到第一物料;
    (2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
    (3)、将第二物料通过10~40目的筛网得到第三物料;
    (4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
    (5)、将第四物料中加入滑石粉,进行物料成型。
  27. 根据权利要求26所述的气体发生器,其特征在于:所述步骤(1)中将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵和钛酸锶在混合设备中进行混合得到第一物料,混合时间≥5min。
  28. 根据权利要求25所述的气体发生器,其特征在于:所述气体发生剂组合物的具体制备方法包括如下步骤:
    (1)、将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵、钛酸锶和滑石粉混合后得到第一物料;
    (2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
    (3)、将第二物料通过10~40目的筛网得到第三物料;
    (4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
    (5)、将第四物料进行物料成型。
  29. 根据权利要求28所述的气体发生器,其特征在于:所述步骤(1)中将硝酸胍、碱式硝酸铜、硝酸锶、高氯酸铵、钛酸锶和滑石粉在混合设备中进行混合得到第一物料,混合时间≥5min。
  30. 根据权利要求26~29之一所述的气体发生器,其特征在于:所述步骤(2)中湿法混合的时间为20min~60min;湿法混合的设备为捏合机或混合机。
  31. 根据权利要求4所述的气体发生器,其特征在于:所述气体发生剂组合物采用湿法制粒的方式制备。
  32. 根据权利要求31所述的气体发生器,其特征在于:所述气体发生剂组合物的具体制备方法包括如下步骤:
    (1)、将硝酸胍、碱式硝酸铜和钛酸锶混合后得到第一物料;
    (2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
    (3)、将第二物料通过10~40目的筛网得到第三物料;
    (4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
    (5)、将第四物料中加入滑石粉,进行物料成型。
  33. 根据权利要求32所述的所述的气体发生器,其特征在于:所述步骤(1)中将硝酸胍、碱式硝酸铜和钛酸锶在混合设备中进行混合得到第一物料,混合时间≥5min。
  34. 根据权利要求31所述的气体发生器,其特征在于:所述气体发生剂组合物的具体制备方法包括如下步骤:
    (1)、将硝酸胍、碱式硝酸铜、钛酸锶和滑石粉混合后得到第一物料;
    (2)、将第一物料加水进行湿法混合,得到第二物料,其中加水量为第一物料总质量的8%~15%;
    (3)、将第二物料通过10~40目的筛网得到第三物料;
    (4)、将第三物料进行烘干,烘干至含水量小于第三物料总质量的0.5%,再次通过10~40目的筛网得到第四物料;
    (5)、将第四物料进行物料成型。
  35. 根据权利要求34所述的所述的气体发生器,其特征在于:所述步骤(1)中将硝酸胍、碱式硝酸铜、钛酸锶和滑石粉在混合设备中进行混合得到第一物料,混合时间≥5min。
  36. 根据权利要求32~35之一所述的气体发生器,其特征在于:所述步骤(2)中湿法混合的时间为20min~60min;湿法混合的设备为捏合机或混合机。
  37. 根据权利要求1~2、5~13、19~29、31~35之一所述的气体发生器,其特征在于:所述气体发生器为汽车安全气囊用气体发生器。
PCT/CN2018/092733 2017-12-20 2018-06-26 一种气体发生器 WO2019119762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711386653.8A CN108218648B (zh) 2017-12-20 2017-12-20 一种气体发生器
CN201711386653.8 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019119762A1 true WO2019119762A1 (zh) 2019-06-27

Family

ID=62649957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092733 WO2019119762A1 (zh) 2017-12-20 2018-06-26 一种气体发生器

Country Status (2)

Country Link
CN (1) CN108218648B (zh)
WO (1) WO2019119762A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871111B (zh) * 2018-07-16 2020-05-26 湖北三江航天红林探控有限公司 一种大径长比装药结构及装药方法
CN109092175A (zh) * 2018-09-29 2018-12-28 湖北航鹏化学动力科技有限责任公司 一种点火药的振动混合方法及设备
CN109438150B (zh) * 2018-11-30 2021-07-13 湖北航鹏化学动力科技有限责任公司 一种自动点火药剂组合物、制备方法、应用及气体发生器
CN110317120B (zh) * 2019-05-30 2020-10-20 湖北航鹏化学动力科技有限责任公司 点火药及其制备方法与应用以及安全气囊气体发生器
CN111548242B (zh) * 2020-05-15 2021-09-03 湖北航鹏化学动力科技有限责任公司 气体发生器
CN111675589B (zh) * 2020-05-15 2021-08-06 湖北航鹏化学动力科技有限责任公司 一种气体发生剂组合物、制备方法及其应用
CN115974632A (zh) * 2022-12-27 2023-04-18 河北东方久乐瑞丰汽车安全部件有限公司 汽车安全气囊气体发生器用产气药及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183758A (zh) * 1995-02-18 1998-06-03 狄纳米特诺贝尔爆炸材料和系统技术股份有限公司 产生气体的混合物
US20070277915A1 (en) * 2006-05-31 2007-12-06 Hordos Deborah L Gas generant compositions
CN101687722A (zh) * 2007-07-16 2010-03-31 关键安全体系股份有限公司 产气组合物和气囊充气机
CN106699490A (zh) * 2016-01-25 2017-05-24 湖北航天化学技术研究所 一种安全气囊点火药组合物及其制备方法
CN108083959A (zh) * 2017-12-20 2018-05-29 湖北航鹏化学动力科技有限责任公司 一种点火性能可靠的点火药剂组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183758A (zh) * 1995-02-18 1998-06-03 狄纳米特诺贝尔爆炸材料和系统技术股份有限公司 产生气体的混合物
US20070277915A1 (en) * 2006-05-31 2007-12-06 Hordos Deborah L Gas generant compositions
CN101687722A (zh) * 2007-07-16 2010-03-31 关键安全体系股份有限公司 产气组合物和气囊充气机
CN106699490A (zh) * 2016-01-25 2017-05-24 湖北航天化学技术研究所 一种安全气囊点火药组合物及其制备方法
CN108083959A (zh) * 2017-12-20 2018-05-29 湖北航鹏化学动力科技有限责任公司 一种点火性能可靠的点火药剂组合物及其制备方法

Also Published As

Publication number Publication date
CN108218648A (zh) 2018-06-29
CN108218648B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2019119762A1 (zh) 一种气体发生器
WO2021227577A1 (zh) 一种气体发生剂组合物、制备方法及其应用
WO2021227578A1 (zh) 气体发生器
JPH0233646B2 (zh)
WO2020107869A1 (zh) 一种自动点火药剂组合物、制备方法、应用及气体发生器
WO2019119763A1 (zh) 一种点火性能可靠的点火药剂组合物及其制备方法
AU620703B2 (en) Gas generant compositions containing salts of 5-n1 trobarbituric acid, salts of nitroorotic acid, or 5-nitrouracil
JP2014517803A (ja) 火工ガス発生化合物
WO2019080395A1 (zh) 一种气体发生剂组合物、制备方法、应用及气体发生器
KR100420563B1 (ko) 가스 발생제 조성물
JP5689065B2 (ja) ガス発生剤組成物及びその成型体、並びにこれを用いたガス発生器
WO2019153624A1 (zh) 降低燃温保持形貌的气体发生剂组合物、制备方法、应用及气体发生器
JP2001192288A (ja) ガス発生剤組成物
WO2023087570A1 (zh) 一种气体发生剂组合物、气体发生剂及制备方法与应用
JP6995006B2 (ja) ガス発生剤組成物
CN115503646A (zh) 混合式气体发生器
JP2022040125A (ja) ガス発生剤組成物
JP2005219987A (ja) 伝火薬成形体及びこれを有するガス発生器
WO2019080396A1 (zh) 气体发生剂组合物、制备方法、应用及气体发生器
JP2015086095A (ja) ガス発生剤組成物
CN108911936A (zh) 一种安全气囊气体发生器的点火药及其制备方法
CN111978136B (zh) 一种改进的气体发生剂及其制备方法
JPH0365584A (ja) 無毒性ガスを発生する固体組成物の填装薬を製造するための方法
JPH08283090A (ja) ガス発生剤組成物
JPH0426579A (ja) ガス発生組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892558

Country of ref document: EP

Kind code of ref document: A1