WO2019119492A1 - 一种列车双控制单元之间的轮换方法、系统及列车 - Google Patents

一种列车双控制单元之间的轮换方法、系统及列车 Download PDF

Info

Publication number
WO2019119492A1
WO2019119492A1 PCT/CN2017/119178 CN2017119178W WO2019119492A1 WO 2019119492 A1 WO2019119492 A1 WO 2019119492A1 CN 2017119178 W CN2017119178 W CN 2017119178W WO 2019119492 A1 WO2019119492 A1 WO 2019119492A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control unit
identification
identification number
identifications
Prior art date
Application number
PCT/CN2017/119178
Other languages
English (en)
French (fr)
Inventor
刘长青
李海龙
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Priority to EP17935390.9A priority Critical patent/EP3617032B1/en
Publication of WO2019119492A1 publication Critical patent/WO2019119492A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0063Multiple on-board control systems, e.g. "2 out of 3"-systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/202Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0018Communication with or on the vehicle or vehicle train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0081On-board diagnosis or maintenance

Definitions

  • the invention relates to the technical field of using a train control unit, in particular to a method, a system and a train for rotating between two control units of a train.
  • the train control unit For trains such as high-speed rail and motor trains, all kinds of equipment in the vehicle will be controlled by the train control unit. Considering that the only train control unit will fail when the various equipments in the train are in an abnormal situation, a new one is added.
  • the standby train control unit and in the prior art, the standby control unit is only activated if the main control unit is abnormal.
  • the abnormality of the main control unit and the abnormal state may cause the standby control unit to be used for a long time. Activation, and during this period does not pay attention to the quality of the standby control unit, while the long-term use of the same control unit will accelerate the aging of the hardware, and the control unit that is not used for a long time may also malfunction. If both control units fail to start, it may result in the cancellation of the train's original driving schedule and delays passenger travel.
  • the object of the present invention is to provide a method for rotating between two control units of a train, by alternately starting one of the dual control units when each train is powered on, so that the dual control units can be used intermittently.
  • the use of equalization is ensured, and the faulty control unit can be found in time, which significantly improves the service life of the control unit, reduces the possibility of failure of the standby control unit due to long-term failure, and improves the safety of the train.
  • Another object of the present invention is to provide a train system between train dual control units, and a train provided with a control unit applying the above-described rotation method.
  • the present invention provides a method for rotating between two control units of a train, the method including:
  • control unit If the same, perform an odd operation on the first power-on identification number and the second power-on identification number, obtain a new power-on identification number, and start corresponding according to the parity attribute of the new power-on identification number. control unit.
  • the method further includes:
  • the method further includes:
  • the corresponding control unit is activated according to the parity attribute of the number of power-on identifications after the processing.
  • obtaining the first number of power-on identifiers of the first control unit and the number of second power-on identifiers of the second control unit including:
  • the first power-on identification number and the second power-on identification number are obtained by using an MVB bus that connects the first control unit and the second control unit.
  • the rotation method further includes:
  • the present invention also provides a rotation system between train dual control units, the rotation system comprising:
  • a recording and setting module configured to record a number of power-on identifications of the first control unit and the second control unit of the train, and set the first control unit to be a control unit that is activated when the number of power-on identifications is an odd number,
  • the second control unit is a control unit that is activated when the number of power-on identifications is an even number;
  • a power-on identification number obtaining module configured to acquire a first power-on identification number of the first control unit and a second power-on identification number of the second control unit when the train is started;
  • the same judging module is configured to determine whether the number of the first power-on identification is the same as the number of the second power-on identifiers;
  • the same result execution module is configured to perform an odd operation on the first power-on identification number and the second power-on identification number to obtain a new power-on identification number, and according to the parity attribute of the new power-on identification number Start the corresponding control unit.
  • the rotation system further includes:
  • a difference judging module configured to determine a difference between the number of the first power-on identification number and the second power-on identification number if the number of the first power-on identification number is different from the number of the second power-on identification number Whether the absolute value is 1;
  • a difference processing module is configured to add 1 to the smaller number of power-on identifications, and start the control unit that performs the processing of adding 1.
  • the rotation system further includes:
  • a synchronization number module configured to synchronize the first power-on identification number and the second power-on identification number with a larger number of power-on identifications, to obtain the same number of power-on identification after synchronization
  • Adding a processing module which is used to add 1 to the number of power-on identifications after the synchronization, and obtain the number of power-on identifications after processing;
  • a startup control module configured to start a corresponding control unit according to the parity attribute of the number of power-on identifications after the processing.
  • the power-on identification number obtaining module includes:
  • the bus acquisition submodule is configured to acquire the first power-on identification number and the second power-on identification number by using an MVB bus that connects the first control unit and the second control unit.
  • the power-on identification number obtaining module further includes:
  • An Ethernet acquisition submodule configured to connect an Ethernet line of the first control unit and the second control unit when the first control unit cannot obtain the second power-on identification number through the MVB bus Obtaining the second power-on identification number.
  • the present application also provides a train including a vehicle body, a control unit, and respective execution devices, the control unit applying a rotation method as described above.
  • the method for rotating between two control units of a train records the number of power-on identifications of the first control unit and the second control unit of the train, and sets the number of power-on identifications of the first control unit to a control unit that is activated when the number is odd, and the second control unit is a control unit that is activated when the number of power-on identifications is even; when the train is started, the number of the first power-on identification of the first control unit is acquired a second number of power-on identifications of the second control unit; determining whether the number of the first power-on identification is the same as the number of the second power-on identification; if the same, the number of the first power-on identification and the number The number of power-on identifications is increased by an odd number operation, the number of new power-on identifications is obtained, and the corresponding control unit is started according to the parity attribute of the number of new power-on identifications.
  • the technical solution provided by the present invention enables the dual control unit to be used intermittently by alternately starting one of the dual control units when each train is powered on, thereby ensuring balanced use and timely discovery.
  • the faulty control unit significantly increases the service life of the control unit, reduces the possibility of failure of the standby control unit due to long-term failure, and improves the safety of the train.
  • the present invention also provides a train system between train dual control units, and a train provided with a control unit applying the above-described rotation method, which has the above-mentioned advantageous effects, and will not be described herein.
  • FIG. 1 is a flow chart of a method for rotating between two control units of a train according to an embodiment of the present invention
  • FIG. 3 is a flowchart of still another method for rotating between two control units of a train according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of a rotation system between two control units of a train according to an embodiment of the present invention.
  • the core of the invention is to provide a method, a system and a train for switching between two control units of a train, by alternately starting one of the dual control units when each train is powered on, so that the dual control unit is intermittent
  • the use can not only ensure the use of balance, but also can detect the faulty control unit in time, significantly improve the service life of the control unit, reduce the possibility of the standby control unit failing due to long-term failure, and improve the safety of the train.
  • FIG. 1 is a flowchart of a method for rotating between two control units of a train according to an embodiment of the present invention.
  • S101 Record the number of power-on identifications of the first control unit and the second control unit of the train, and set the first control unit to be the control unit that is started when the number of power-on identifications is an odd number, and the second control unit is when the number of power-on identifications is even Startup control unit;
  • This step is to record the number of power-on identifications of the dual control units on the train, and set one of them to be the control unit that should be activated when the number of power-on identifications is odd, and the other is when the number of power-on identifications is even.
  • the control unit should be activated when it is started.
  • the reason why the number of unified power-on identifications is determined is because the value of the power-on identification number of the two control units is the same by default in this embodiment.
  • the control unit having a smaller number of power-on identifications may be activated on the basis of the difference of 1, and each time Start to add 2 to the smaller number of power-on identifications, so that the difference is still 1, but the number of power-on identifications of another control unit is smaller, so the control according to the number of power-on identifications is small.
  • the principle of the unit can be judged very well according to the size of the power-on identification number, which is very simple and easy.
  • S102 Acquire a first power-on identification number of the first control unit and a second power-on identification number of the second control unit when the train is started;
  • this step is to obtain the respective number of power-on identifications from the first control unit and the second control unit, which are the first power-on identification number and the second power-on identification number respectively.
  • S103 Determine whether the number of the first power-on identification is the same as the number of the second power-on identification
  • this step is to determine whether the values of the two power-on identification numbers are the same.
  • the values of the two power-on identification numbers should be the same under normal conditions, because the situation in which the failure needs to be replaced is still relatively normal compared with the normal situation. Less appearing.
  • S104 Perform an odd operation on the first power-on identification number and the second power-on identification number to obtain a new power-on identification number, and start the corresponding control unit according to the parity attribute of the new power-on identification number.
  • the result of the determination in S103 is that the number of the first power-on identification number is the same as the number of the second power-on identification number, and the odd number operation is performed on the same power-on identification number to obtain the new power-on identification number, and Which control unit should be activated is determined according to the parity attribute of the new power-on identification number.
  • the odd number is increased because a number is consecutively added with an identical odd number twice, and an odd number and an even number are obtained.
  • the most obvious way is to set the odd number to 1, then 1 plus 1 equals 2, 2 plus. 1 is equal to 3. 2 and 3, which are the two results, are even and odd, respectively, so that it is possible to determine which control unit should be activated based on the parity of the number of new power-on identifications obtained after the addition of the odd operation.
  • the odd number as the addend can also be 3, 5, 7, etc., but usually the addend is not set too large, 1 is the most commonly used.
  • the principle of judgment has been initially set in S101. It can be clearly seen that the first control unit is only one of the two control units, and it is impossible to know which control unit is, which means that which control unit can be identified. For the first control unit, the first control unit is only one way different from the second control unit, and the two control units can be distinguished according to the naming convention of the actual situation.
  • the first control unit is a control unit that should be activated when the number of power-on identifications is an odd number
  • the second control unit is a control unit that should be activated when the number of power-on identifications is an even number.
  • both power-on identification numbers are 28, and the addend is an odd number 1
  • the operation is performed by adding 1 to obtain a new power-on identification number of 29, and 29 is an odd number, and should be set according to the setting.
  • the first control unit is activated to control each of the execution devices in the train.
  • the second control unit should be started in a new sequence to control each of the trains.
  • the execution device, and so on, can maintain the rotation of the two control units without replacing the control unit.
  • the two control units are used interchangeably. It is possible to find out at the first time whether the control unit to be started has failed. If a fault occurs, because another control unit has just been used last time. In this case, the damage of both control units is a small probability event, which can be neglected. Secondly, the alternate use can keep both control units in a good state of operation, effectively extending the service life of the equipment, etc. benefit.
  • This embodiment illustrates the rotation scheme in the normal case where the control unit is not replaced, and in the actual operation process, the equipment failure is inevitably caused by various reasons, and needs to be replaced, which will be in the following embodiments.
  • a corresponding solution is given for the case where the number of power-on identifications caused by the replacement is inconsistent.
  • an embodiment of the present invention provides a method for rotating between two control units of a train, by alternately starting one of the dual control units when each train is powered on, so that the dual control unit is intermittent.
  • the use can not only ensure the use of balance, but also find the faulty control unit in time, significantly improve the service life of the control unit, reduce the possibility of the standby control unit failing due to long-term failure, and improve the safety of the train.
  • FIG. 2 is a flowchart of another method for rotating between two train control units according to an embodiment of the present invention.
  • This embodiment is a supplementary description of other possibilities in the judgment of S103 in the previous embodiment.
  • the other steps are substantially the same as those in the previous embodiment.
  • S201 acquiring, when the train is started, the first power-on identification number of the first control unit and the second power-on identification number of the second control unit;
  • S202 Determine whether the number of the first power-on identification is the same as the number of the second power-on identification.
  • the determination result of the step S202 is that the first power-on identification number is different from the second power-on identification number, and the purpose is to distinguish the difference between the two power-on identification numbers.
  • replacing a new control unit will definitely have a large difference from the number of power-on identifications of the original remaining control unit. Because the size of this difference is uncertain, if the simple start is small, The new control unit of the power-on identification number increases the count of the number of the smaller power-on identifications. It may be possible to continuously start the newly-replaced control unit many times under this principle, which is contrary to the intention of the rotation mechanism.
  • S204 Perform an odd operation on the first power-on identification number and the second power-on identification number, obtain a new power-on identification number, and start a corresponding control unit according to the parity attribute of the new power-on identification number;
  • This step is based on the determination result of S203 that the absolute value of the difference is 1, and is designed to use the small difference to process, so that the number of power-on identifications of the two control units tends to be consistent as soon as possible, so that After being consistent, the rotation can be performed according to the normal rotation mechanism.
  • the number of power-on identifications of the replaced control unit is one or greater than the number of power-on identifications of the remaining control units on the train, it is likely to be activated according to the mechanism for starting the number of power-on identifications.
  • the control unit has been started continuously, but this will only happen once and then the normal rotation process will take place.
  • This step is established on the basis of the determination result of S203 that the absolute value of the difference is not 1, and the purpose is to compare the number of power-on identifications with two large values, and select a larger number of power-on identifiers. The purpose is to select a larger number of power-on identifications as the number of trusted power-on identifications for subsequent processing.
  • S207 Synchronize the first power-on identification number and the second power-on identification number with a larger number of power-on identifications to obtain the same number of power-on identification after synchronization;
  • this step is to synchronize the obtained number of power-on identifications to the original number of first power-on identifications and the number of original second power-on identifications, and obtain the same number of power-on identifications after synchronization. It is understood that the value of the new power-on identification number covers the value of the original power-on identification number.
  • FIG. 3 is a flowchart of still another method for rotating between two control units of a train according to an embodiment of the present invention.
  • This embodiment is directed to how the first power-on identification number and the second power-on identification number are obtained in S102 in the previous embodiment.
  • the other steps are substantially the same as the previous embodiment.
  • the same part can be referred to the previous one.
  • Related parts of the embodiment are not described herein again.
  • This embodiment is to explain how to obtain the first power-on identification number and the second power-on identification number.
  • the MVB bus that is necessarily present in the train is used to obtain the power-on identification number, and the MVB bus is connected to the control. Units and each execution device in the train.
  • This step is based on the fact that the acquisition of the number of power-on identifications cannot be achieved through the MVB bus of S301, and the communication between the two control units is performed by using an Ethernet line connecting the two control units. Because on the train, the MVB bus is not easy to be damaged, and there is a high probability that the control unit does not start up normally, so the power-on identification number cannot be obtained through the intact MVB bus. Even if the MVB bus is damaged, it can also pass the Ethernet line. The acquisition of the number of power-on identification is carried out and transmitted through the train content network.
  • FIG. 4 is a schematic diagram of a connection between train control units according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a rotation system between train dual control units according to an embodiment of the present invention.
  • the rotation system can include:
  • the recording and setting module 100 is configured to record the number of power-on identifications of the first control unit and the second control unit of the train, and set the first control unit to be a control unit that is activated when the number of power-on identifications is an odd number, and the second control unit is a control unit that is activated when the number of power-on identifications is even;
  • the power-on identification number obtaining module 200 is configured to acquire, when the train starts, the first power-on identification number of the first control unit and the second power-on identification number of the second control unit;
  • the same judging module 300 is configured to determine whether the number of the first power-on identification is the same as the number of the second power-on identification;
  • the same result execution module 400 is configured to perform an odd operation on the first power-on identification number and the second power-on identification number to obtain a new power-on identification number, and start the corresponding control unit according to the parity attribute of the new power-on identification number.
  • the rotation system may further include:
  • the difference judging module is configured to determine whether the absolute value of the difference between the first power-on identification number and the second power-on identification number is 1 if the number of the first power-on identification number is different from the second power-on identification number;
  • a difference processing module is configured to add 1 to the smaller number of power-on identifications, and start a control unit that performs the addition of 1 processing.
  • the rotation system may further include:
  • the synchronization number module is configured to synchronize the number of the first power-on identification number and the second power-on identification number with a larger number of power-on identifications to obtain the same number of power-on identification after synchronization;
  • Adding a processing module which is used to add 1 to the number of power-on identifications after synchronization, and obtain the number of power-on identifications after processing;
  • the startup control module is configured to start the corresponding control unit according to the parity attribute of the number of power-on identifications after processing.
  • the power-on identification number obtaining module 200 includes:
  • the bus acquisition submodule is configured to acquire the first power-on identification number and the second power-on identification number by using an MVB bus that connects the first control unit and the second control unit.
  • the power-on identification number obtaining module 200 may further include:
  • the Ethernet acquisition sub-module is configured to obtain the second power-on identification number by connecting an Ethernet line connecting the first control unit and the second control unit when the first control unit cannot obtain the second power-on identification number through the MVB bus.
  • an embodiment of the present invention provides a rotation system between two control units of a train, by alternately starting one of the dual control units when each train is powered on, so that the dual control units are intermittent. It can not only ensure the use of balance, but also find the faulty control unit in time, significantly improve the service life of the control unit, reduce the possibility of the standby control unit failing due to long-term failure, and improve the safety of the train. And the passenger's ride experience.
  • the present application further provides a train, and the present application further provides a train, including a vehicle body, a control unit, and each execution device, wherein the control unit applies the rotation method as described above, and has the same beneficial The effect will not be described here.

Abstract

一种列车双控制单元之间的轮换方法、轮换系统和一种设置有应用轮换方法的控制单元的列车,列车双控制单元之间的轮换方法通过在每次列车上电启动时,轮换交替的启动双控制单元中的其中一个,使得双控制单元间歇式使用,既能保证使用均衡,又能及时发现出现故障的控制单元,显著提升了控制单元的使用寿命,减少了备用控制单元因长久未启动出现故障的可能性,提升了列车的安全性。

Description

一种列车双控制单元之间的轮换方法、系统及列车
本申请要求于2017年12月20日提交中国专利局、申请号为CN201711387429.0、申请名称为“一种列车双控制单元之间的轮换方法、系统及列车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及列车控制单元使用技术领域,特别涉及一种列车双控制单元之间的轮换方法、系统及列车。
背景技术
随着我国在动车、高铁领域的不断发展,乘坐的人次和开设的车次也越来越多,因为人们都在追求着更加便利、更加快捷以及更加舒适和安全的出行方式,因此,如何针对可能存在的安全隐患不断做出改善是本领域技术人员的研究重点。
诸如高铁、动车等类型的列车,车内的各种设备都会受控于列车控制单元,而考虑到唯一的列车控制单元在异常时列车内的各种设备也就失效的情况下,增设了一个备用列车控制单元,而在现有技术中,仅在主控制单元出现异常的情况下才会去启用备用控制单元,由于主控制单元出现异常并非常态,导致备用控制单元可能很长时间才会被激活,而在这期间并不关注备用控制单元的好坏,同时长期使用同一控制单元会加速硬件的老化,长期不使用的控制单元也可能出现故障。若两个控制单元都无法启动,可能会造成列车原定行驶计划取消,延误旅客出行等一系列后果。
所以,如何在设置有两控制单元的情况下,提供一种更加合理、使得控制单元使用寿命更长、更及时发现异常情况的控制单元轮换机制是本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种列车双控制单元之间的轮换方法,通过在每次列车上电启动时,轮换交替的启动双控制单元中的其中一个,使得双控制单元间 歇式使用,既能保证使用均衡,又能及时发现出现故障的控制单元,显著提升了控制单元的使用寿命,减少了备用控制单元因长久未启动出现故障的可能性,提升了列车的安全性。
本发明的另一目的是提供一种列车双控制单元之间的轮换系统,以及一种设置有应用上述轮换方法的控制单元的列车。
为实现上述目的,本发明提供一种列车双控制单元之间的轮换方法,该轮换方法包括:
记录列车第一控制单元和第二控制单元的上电标识数,并设置所述第一控制单元为所述上电标识数为奇数时启动的控制单元、所述第二控制单元为所述上电标识数为偶数时启动的控制单元;
在列车启动时,获取所述第一控制单元的第一上电标识数和所述第二控制单元的第二上电标识数;
判断所述第一上电标识数是否与所述第二上电标识数相同;
若相同,则对所述第一上电标识数和所述第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据所述新上电标识数的奇偶属性启动相应的控制单元。
可选的,在判断所述第一上电标识数是否与所述第二上电标识数相同之后,还包括:
若所述第一上电标识数与所述第二上电标识数不同,判断所述第一上电标识数与所述第二上电标识数之间差值的绝对值是否为1;
若所述差值的绝对值为1,则对较小的上电标识数进行加1处理,并启动进行了所述加1处理的控制单元。
可选的,在判断所述第一上电标识数与所述第二上电标识数之间差值的绝对值是否为1之后,还包括:
若所述差值的绝对值不为1,则通过比较得到所述第一上电标识数和所述第二上电标识数中较大的上电标识数;
利用较大的上电标识数同步所述第一上电标识数和所述第二上电标识数,得到相同的同步后上电标识数;
对所述同步后上电标识数进行加1处理,得到处理后上电标识数;
根据所述处理后上电标识数的奇偶属性启动相应的控制单元。
可选的,获取所述第一控制单元的第一上电标识数和所述第二控制单元的第二上电标识数,包括:
利用连接所述第一控制单元和所述第二控制单元的MVB总线获取所述第一上电标识数和所述第二上电标识数。
可选的,该轮换方法还包括:
在所述第一控制单元无法通过所述MVB总线获取所述第二上电标识数时,通过连接所述第一控制单元和所述第二控制单元的以太网线获取所述第二上电标识数。
为实现上述目的,本发明还提供了一种列车双控制单元之间的轮换系统,该轮换系统包括:
记录及设定模块,用于记录列车第一控制单元和第二控制单元的上电标识数,并设置所述第一控制单元为所述上电标识数为奇数时启动的控制单元、所述第二控制单元为所述上电标识数为偶数时启动的控制单元;
上电标识数获取模块,用于在列车启动时,获取所述第一控制单元的第一上电标识数和所述第二控制单元的第二上电标识数;
相同判断模块,用于判断所述第一上电标识数是否与所述第二上电标识数相同;
相同结果执行模块,用于对所述第一上电标识数和所述第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据所述新上电标识数的奇偶属性启动相应的控制单元。
可选的,该轮换系统还包括:
差值判断模块,用于若所述第一上电标识数与所述第二上电标识数不同,判断所述第一上电标识数与所述第二上电标识数之间差值的绝对值是否为1;
1差值处理模块,用于对较小的上电标识数进行加1处理,并启动进行了所述加1处理的控制单元。
可选的,该轮换系统还包括:
较大次数选取模块,用于若所述差值的绝对值不为1,则通过比较得到所述第一上电标识数和所述第二上电标识数中较大的上电标识数;
同步次数模块,用于利用较大的上电标识数同步所述第一上电标识数和所述第二上电标识数,得到相同的同步后上电标识数;
加1处理模块,用于对所述同步后上电标识数进行加1处理,得到处理后上电标识数;
启动控制模块,用于根据所述处理后上电标识数的奇偶属性启动相应的控制单元。
可选的,所述上电标识数获取模块包括:
总线获取子模块,用于利用连接所述第一控制单元和所述第二控制单元的MVB总线获取所述第一上电标识数和所述第二上电标识数。
可选的,所述上电标识数获取模块还包括:
以太网获取子模块,用于在所述第一控制单元无法通过所述MVB总线获取所述第二上电标识数时,通过连接所述第一控制单元和所述第二控制单元的以太网线获取所述第二上电标识数。
为实现上述目的,本申请还提供一种列车,包括车体、控制单元以及各执行设备,所述控制单元应用有如上述内容所述的轮换方法。
本发明所提供的一种列车双控制单元之间的轮换方法,记录列车第一控制单元和第二控制单元的上电标识数,并设置所述第一控制单元为所述上电标识数为奇数时启动的控制单元、所述第二控制单元为所述上电标识数为偶数时启动的控制单元;在列车启动时,获取所述第一控制单元的第一上电标识数和所述第二控制单元的第二上电标识数;判断所述第一上电标识数是否与所述第二上电标识数相同;若相同,则对所述第一上电标识数和所述第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据所述新上电标识数的奇偶属性启动相应的控制单元。
显然,本发明所提供的技术方案,通过在每次列车上电启动时,轮换交替的启动双控制单元中的其中一个,使得双控制单元间歇式使用,既能保证使用均衡,又能及时发现出现故障的控制单元,显著提升了控制单元的使用寿命,减少了备用控制单元因长久未启动出现故障的可能性,提升了列车的安全性。本发明同时还提供了一种列车双控制单元之间的轮换系统,以及一种设置有应用上述轮换方法的控制单元的列车,具有上述有益效果,在此不再赘述。
附图说明
图1为本发明实施例所提供的一种列车双控制单元之间的轮换方法的流程 图;
图2为本发明实施例所提供的另一种列车双控制单元之间的轮换方法的流程图;
图3为本发明实施例所提供的又一种列车双控制单元之间的轮换方法的流程图;
图4为本发明实施例所提供的一种列车控制单元间的连接示意图;
图5为本发明实施例所提供的一种列车双控制单元之间的轮换系统的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种列车双控制单元之间的轮换方法、系统及列车,通过在每次列车上电启动时,轮换交替的启动双控制单元中的其中一个,使得双控制单元间歇式使用,既能保证使用均衡,又能及时发现出现故障的控制单元,显著提升了控制单元的使用寿命,减少了备用控制单元因长久未启动出现故障的可能性,提升了列车的安全性。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
以下结合图1,图1为本发明实施例所提供的一种列车双控制单元之间的轮换方法的流程图。
其具体包括以下步骤:
S101:记录列车第一控制单元和第二控制单元的上电标识数,并设置第一控制单元为上电标识数为奇数时启动的控制单元、第二控制单元为上电标识数为偶数时启动的控制单元;
本步骤旨在记录列车上双控制单元各自的上电标识数,并分别设置其中的一个为当该上电标识数为奇数时应启动的控制单元,另一个为当该上电标识数为偶数时应启动的控制单元。之所以会由统一的上电标识数的判断,是因为本实施例默认为两个控制单元的上电标识数的数值相同。
当然,并不是不能只为启动的控制单元的上电标识数加1,以形成两个上电标识数之间的差值,在下次启动时,启动具有较小上电标识数的控制单元,来消除该差值的存在。而在两个上电标识数相同的情况下,可以引入另一判断机制来选择其中一个控制单元作为下次应启动的控制单元,这也可以是一种轮换的方法。
进一步的,为消除在上电标识数存在差值的情况时需要另外引入判断机制的缺点,可以在差值为1的基础上,启动具有较小的上电标识数的控制单元,并每次启动将该较小的上电标识数进行加2处理,这样一来差值依然为1,但变为了另一控制单元的上电标识数较小,故按照启动上电标识数较小的控制单元的原则,可以很好的依照上电标识数的大小进行启动的判断,十分简便易行。
但上述的几种情况都建立在两个控制单元所记录的上电标识数的数值相差不大,而之所以可能出现较大的差值的原因包括:列车上的某个控制单元损坏至无法使用,更换了另一个控制单元,这个更换来的控制单元可能是全新的,也可能是从其它列车上拆下来的,不管来源如何,这个更换来的控制单元所记录的上电标识数很大概率上大于或显著小于该列车上剩余的另一控制单元。在两个上电标识数相差较大的情况下,很难在遵循上述的轮换启动方式,需要引入额外的解决机制,会在后续的步骤中进行详细说明。
S102:在列车启动时,获取第一控制单元的第一上电标识数和第二控制单元的第二上电标识数;
在S101的基础上,本步骤旨在从第一控制单元和第二控制单元上获取各自的上电标识数,分别为第一上电标识数和第二上电标识数。
当然,如何获取到该第一上电标识数和第二上电标识数的方式多种多样,例如通过MVB(Multifunction Vehicle Bus,多功能车辆总线)总线进行获取,也可以根据各列车生产制造厂家的设置习惯采用相应的获取手段进行,此处并不做具体限定,应视具体情况选择最合适的方式。
S103:判断第一上电标识数是否与第二上电标识数相同;
在S102的基础上,本步骤旨在判断两个上电标识数的数值是否相同。因为根据S101中所阐述的内容,依照本实施例的判断原则下,正常情况下两个上电标识数的数值应该是相同的,因为出现故障需要更换的情况相对于正常的情况来说还是较少出现的。
S104:对第一上电标识数和第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据新上电标识数的奇偶属性启动相应的控制单元。
本步骤建立在S103的判断结果为第一上电标识数与第二上电标识数相同的基础上,通过对相同的上电标识数均执行增加奇数操作,以得到新上电标识数,并依据该新上电标识数的奇偶属性来判断应启动哪个控制单元。
之所以是增加奇数,是因为一个数连续加上一个相同的奇数两次,会得到一个奇数和一个偶数,最明显的方式就是将该奇数设定为1,则1加1等于2,2加1等于3。作为两次结果的2和3,分别是偶数和奇数,这样一来就可以根据执行完该增加奇数操作后得到的新上电标识数的奇偶性来判断应启动哪个控制单元。当然,还作为加数的奇数还可以为3、5、7等等,但是通常不将该加数设定的过大,1是最常用的。
而判断的原则在S101中进行过最初的设定,可以明显看出,第一控制单元只是两个控制单元中的一个,并无法明确是哪个控制单元,意味着哪一个控制单元都可以被认定为第一控制单元,第一控制单元只是区别于第二控制单元的一种方式,可以根据实际情况的命名习惯对两个控制单元做出区别即可。
举个例子,根据S101的设定,第一控制单元为上电标识数为奇数时应启动的控制单元,相对应的,第二控制单元为上电标识数为偶数时应启动的控制单元,当两个上电标识数均为28时,且该加数为奇数1时,即经过执行加1操作,得到均为29的新上电标识数,而29为奇数,根据设定就应在本次启动第一控制单元来控制列车中的各执行设备。在下次启动时,在经过对29执行加1操作,得到均为30的新上电标识数,而30为偶数,根据设定就应在新的依次启动第二控制单元来控制列车中的各执行设备,依次类推就能够在不进行更换控制单元的前提下保持两个控制单元的轮换使用。
轮换使用所带来的好处是明显的,其一,两个控制单元交替使用,能够在第一时间发现要启动的控制单元是否出现故障,若出现故障,因为上次刚刚使用过另一控制单元,在本次两个控制单元均损坏是一个小概率事件,几乎可以 忽略不计;其二,交替使用可以使两个控制单元均保持一个较好的设备运行状态,有效的延长设备的使用寿命等好处。
本实施例阐述了在不进行控制单元更换这一通常情况下的轮换方案,而在实际运行过程中,不可避免的会因各种原因出现设备的故障而需要更换,会在后续的实施例中针对出现更换导致的上电标识数不一致的情况给出相应的解决方案。
基于上述技术方案,本发明实施例提供的一种列车双控制单元之间的轮换方法,通过在每次列车上电启动时,轮换交替的启动双控制单元中的其中一个,使得双控制单元间歇式使用,既能保证使用均衡,又能及时发现出现故障的控制单元,显著提升了控制单元的使用寿命,减少了备用控制单元因长久未启动出现故障的可能性,提升了列车的安全性。
以下结合图2,图2为本发明实施例所提供的另一种列车双控制单元之间的轮换方法的流程图。
本实施例是针对上一实施例中S103的判断下对其它可能性做出的补充说明,其它步骤与上一实施例大体相同,相同部分可参见上一实施例相关部分,在此不再赘述。
其具体包括以下步骤:
S201:在列车启动时,获取第一控制单元的第一上电标识数和第二控制单元的第二上电标识数;
S202:判断第一上电标识数是否与第二上电标识数相同;
S203:判断第一上电标识数与第二上电标识数之间差值的绝对值是否为1;
本步骤建立在S202的判断结果为第一上电标识数不同于第二上电标识数的基础上,目的在于区别两个上电标识数之间差值的大小。
就如S101中所考虑的那样,更换一个新的控制单元,一定会与原剩余的控制单元的上电标识数存在较大的差异,因这个差异的大小不确定,若简单的启动具有较小上电标识数的新控制单元并增加该较小上电标识数的计数,可能在此原则下会连续启动很多次新更换来的控制单元,有违轮换机制的本意。
S204:对第一上电标识数和第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据新上电标识数的奇偶属性启动相应的控制单元;
本步骤与S104的内容相同,相关描述内容可参见S104,在此不再赘述。
S205:对较小的上电标识数进行加1处理,并启动进行了加1处理的控制单元;
本步骤建立在S203的判断结果为差值的绝对值为1的基础上,旨在利用这一很小的差值进行处理,以让两个控制单元的上电标识数尽快趋于一致,使得在保持一致后可以按照正常的轮换的机制进行轮换操作。
当然,更换过来的控制单元的上电标识数虽比列车上原剩余的控制单元的上电标识数小1或大1,依照启动具有较小上电标识数的机制,很有可能本次启动的控制单元已经是连续启动了,但是这种情况只会出现一次,之后就会进行正常的轮换流程。
S206:通过比较得到第一上电标识数和第二上电标识数中较大的上电标识数;
本步骤建立在S203的判断结果为该差值的绝对值不为1的基础上,旨在将两个数值相差较大的上电标识数进行比较,选出其中较大的上电标识数,目的在于选用较大的上电标识数作为可信上电标识数,以供后续步骤进行处理。
当然,也可以不选用较大的上电标识数作为可信,也可以选用较小的上电标识数作为可信,或者通过计算得到两个上电标识数的平均值作为可信上电标识数等等,此处并不做具体限定,可以根据实际情况、设置习惯以及特殊要求做出相应的选择。
S207:利用较大的上电标识数同步第一上电标识数和第二上电标识数,得到相同的同步后上电标识数;
在S206的基础上,本步骤旨在将得到的较大的上电标识数同步至原第一上电标识数和原第二上电标识数,得到相同的同步后上电标识数,也可以理解为新的上电标识数数值覆盖原上电标识数数值。
S208:对同步后上电标识数进行加1处理,得到处理后上电标识数,根据处理后上电标识数的奇偶属性启动相应的控制单元。
在S207的基础上,因为经过了同步处理,得到了相同的同步后上电标识数,而相同的同步后上电标识数就可以按照正常的轮换机制进行判断。
以下结合图3,图3为本发明实施例所提供的又一种列车双控制单元之间的 轮换方法的流程图。
本实施例是针对上一实施例中S102中如何获取到第一上电标识数和第二上电标识数所做出的说明,其它步骤与上一实施例大体相同,相同部分可参见上一实施例相关部分,在此不再赘述。
其具体包括以下步骤:
S301:在列车启动时,利用连接第一控制单元和第二控制单元的MVB总线获取第一上电标识数和第二上电标识数;
本实施例旨在阐述如何获取到第一上电标识数和第二上电标识数,首先在本步骤中利用列车中一定存在的MVB总线进行上电标识数的获取,该MVB总线连接着控制单元和列车中的各执行设备。
S302:在第一控制单元无法通过MVB总线获取第二上电标识数时,通过连接第一控制单元和第二控制单元的以太网线获取第二上电标识数。
本步骤建立在无法通过S301的MVB总线实现上电标识数的获取的基础上,旨在利用连接两个控制单元的以太网线进行两个控制单元间的通信。因为在列车上来说,MVB总线不易损坏,而存在很大概率是控制单元没有正常上电启动,故无法通过完好的MVB总线进行上电标识数的获取,即使MVB总线损坏,还可以通过以太网线进行上电标识数的获取,并通过列车内容网络传递。
以上连接关系可以参见图4,图4为本发明实施例所提供的一种列车控制单元间的连接示意图。
下面请参见图5,图5为本发明实施例所提供的一种列车双控制单元之间的轮换系统的结构框图。
该轮换系统可以包括:
记录及设定模块100,用于记录列车第一控制单元和第二控制单元的上电标识数,并设置第一控制单元为上电标识数为奇数时启动的控制单元、第二控制单元为上电标识数为偶数时启动的控制单元;
上电标识数获取模块200,用于在列车启动时,获取第一控制单元的第一上电标识数和第二控制单元的第二上电标识数;
相同判断模块300,用于判断第一上电标识数是否与第二上电标识数相同;
相同结果执行模块400,用于对第一上电标识数和第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据新上电标识数的奇偶属性启动相应的控制单元。
进一步的,该轮换系统还可以包括:
差值判断模块,用于若第一上电标识数与第二上电标识数不同,判断第一上电标识数与第二上电标识数之间差值的绝对值是否为1;
1差值处理模块,用于对较小的上电标识数进行加1处理,并启动进行了加1处理的控制单元。
进一步的,该轮换系统还可以包括:
较大次数选取模块,用于若差值的绝对值不为1,则通过比较得到第一上电标识数和第二上电标识数中较大的上电标识数;
同步次数模块,用于利用较大的上电标识数同步第一上电标识数和第二上电标识数,得到相同的同步后上电标识数;
加1处理模块,用于对同步后上电标识数进行加1处理,得到处理后上电标识数;
启动控制模块,用于根据处理后上电标识数的奇偶属性启动相应的控制单元。
其中,上电标识数获取模块200包括:
总线获取子模块,用于利用连接第一控制单元和第二控制单元的MVB总线获取第一上电标识数和第二上电标识数。
进一步的,上电标识数获取模块200还可以包括:
以太网获取子模块,用于在第一控制单元无法通过MVB总线获取第二上电标识数时,通过连接第一控制单元和第二控制单元的以太网线获取第二上电标识数。
基于上述技术方案,本发明实施例提供的一种列车双控制单元之间的轮换系统,通过在每次列车上电启动时,轮换交替的启动双控制单元中的其中一个,使得双控制单元间歇的进行使用,既能保证使用均衡,又能及时发现出现故障的控制单元,显著提升了控制单元的使用寿命,减少了备用控制单元因长久未启动出现故障的可能性,提升了列车的安全性和乘客的乘车体验。
基于上述实施例,本申请还提供了一种列车,本申请还提供一种列车,包括车体、控制单元以及各执行设备,其中控制单元应用有如上述内容所述的轮换方法,具有相同的有益效果,在此不再赘述。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (11)

  1. 一种列车双控制单元之间的轮换方法,其特征在于,包括:
    记录列车第一控制单元和第二控制单元的上电标识数,并设置所述第一控制单元为所述上电标识数为奇数时启动的控制单元、所述第二控制单元为所述上电标识数为偶数时启动的控制单元;
    在列车启动时,获取所述第一控制单元的第一上电标识数和所述第二控制单元的第二上电标识数;
    判断所述第一上电标识数是否与所述第二上电标识数相同;
    若相同,则对所述第一上电标识数和所述第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据所述新上电标识数的奇偶属性启动相应的控制单元。
  2. 根据权利要求1所述的轮换方法,其特征在于,在判断所述第一上电标识数是否与所述第二上电标识数相同之后,还包括:
    若所述第一上电标识数与所述第二上电标识数不同,判断所述第一上电标识数与所述第二上电标识数之间差值的绝对值是否为1;
    若所述差值的绝对值为1,则对较小的上电标识数进行加1处理,并启动进行了所述加1处理的控制单元。
  3. 根据权利要求2所述的轮换方法,其特征在于,在判断所述第一上电标识数与所述第二上电标识数之间差值的绝对值是否为1之后,还包括:
    若所述差值的绝对值不为1,则通过比较得到所述第一上电标识数和所述第二上电标识数中较大的上电标识数;
    利用较大的上电标识数同步所述第一上电标识数和所述第二上电标识数,得到相同的同步后上电标识数;
    对所述同步后上电标识数进行加1处理,得到处理后上电标识数;
    根据所述处理后上电标识数的奇偶属性启动相应的控制单元。
  4. 根据权利要求1至3任一项所述的轮换方法,其特征在于,获取所述第一控制单元的第一上电标识数和所述第二控制单元的第二上电标识数,包括:
    利用连接所述第一控制单元和所述第二控制单元的MVB总线获取所述第一上电标识数和所述第二上电标识数。
  5. 根据权利要求4所述的轮换方法,其特征在于,还包括:
    在所述第一控制单元无法通过所述MVB总线获取所述第二上电标识数时,通过连接所述第一控制单元和所述第二控制单元的以太网线获取所述第二上电标识数。
  6. 一种列车双控制单元之间的轮换系统,其特征在于,包括:
    记录及设定模块,用于记录列车第一控制单元和第二控制单元的上电标识数,并设置所述第一控制单元为所述上电标识数为奇数时启动的控制单元、所述第二控制单元为所述上电标识数为偶数时启动的控制单元;
    上电标识数获取模块,用于在列车启动时,获取所述第一控制单元的第一上电标识数和所述第二控制单元的第二上电标识数;
    相同判断模块,用于判断所述第一上电标识数是否与所述第二上电标识数相同;
    相同结果执行模块,用于对所述第一上电标识数和所述第二上电标识数均执行增加奇数操作,得到新上电标识数,并根据所述新上电标识数的奇偶属性启动相应的控制单元。
  7. 根据权利要求6所述的轮换系统,其特征在于,还包括:
    差值判断模块,用于若所述第一上电标识数与所述第二上电标识数不同,判断所述第一上电标识数与所述第二上电标识数之间差值的绝对值是否为1;
    1差值处理模块,用于对较小的上电标识数进行加1处理,并启动进行了所述加1处理的控制单元。
  8. 根据权利要求7所述的轮换系统,其特征在于,还包括:
    较大次数选取模块,用于若所述差值的绝对值不为1,则通过比较得到所述第一上电标识数和所述第二上电标识数中较大的上电标识数;
    同步次数模块,用于利用较大的上电标识数同步所述第一上电标识数和所述第二上电标识数,得到相同的同步后上电标识数;
    加1处理模块,用于对所述同步后上电标识数进行加1处理,得到处理后上电标识数;
    启动控制模块,用于根据所述处理后上电标识数的奇偶属性启动相应的控制单元。
  9. 根据权利要求6至8任一项所述的轮换系统,其特征在于,所述上电 标识数获取模块包括:
    总线获取子模块,用于利用连接所述第一控制单元和所述第二控制单元的MVB总线获取所述第一上电标识数和所述第二上电标识数。
  10. 根据权利要求9所述的轮换系统,其特征在于,所述上电标识数获取模块还包括:
    以太网获取子模块,用于在所述第一控制单元无法通过所述MVB总线获取所述第二上电标识数时,通过连接所述第一控制单元和所述第二控制单元的以太网线获取所述第二上电标识数。
  11. 一种列车,包括车体、控制单元以及各执行设备,其特征在于,所述控制单元应用有如权利要求1至5所述的轮换方法。
PCT/CN2017/119178 2017-12-20 2017-12-28 一种列车双控制单元之间的轮换方法、系统及列车 WO2019119492A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17935390.9A EP3617032B1 (en) 2017-12-20 2017-12-28 Method and system for alternatingly activating two control units of train, and train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711387429.0A CN109318911B (zh) 2017-12-20 2017-12-20 一种列车双控制单元之间的轮换方法、系统及列车
CN201711387429.0 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019119492A1 true WO2019119492A1 (zh) 2019-06-27

Family

ID=65245396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119178 WO2019119492A1 (zh) 2017-12-20 2017-12-28 一种列车双控制单元之间的轮换方法、系统及列车

Country Status (4)

Country Link
EP (1) EP3617032B1 (zh)
CN (1) CN109318911B (zh)
RU (1) RU2678460C1 (zh)
WO (1) WO2019119492A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1692337A (zh) * 2002-12-20 2005-11-02 国际商业机器公司 用于交替激活可更换硬件单元的方法和系统
US20060271810A1 (en) * 2004-09-03 2006-11-30 Inventec Corporation & 3Up Systems, Inc. Backup control system and method
US20100198991A1 (en) * 2009-02-05 2010-08-05 Yokogawa Electric Corporation Duplexed field controller
CN101902069A (zh) * 2010-07-21 2010-12-01 中国航天科技集团公司第九研究院第七七一研究所 一种冷备份双机切换电路
CN103389668A (zh) * 2013-07-26 2013-11-13 宁波南车时代传感技术有限公司 用于屏蔽门的热备份冗余中央控制盘
CN203930399U (zh) * 2014-06-30 2014-11-05 中南大学 一种crh2型动车组无触点逻辑控制单元
CN107264572A (zh) * 2017-06-23 2017-10-20 成都运达科技股份有限公司 一种具备热冗余能力的无触点逻辑控制系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3013061C2 (de) * 1980-04-03 1986-09-18 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren und Vorrichtung zum Betrieb redundanter Steuerungseinrichtungen
JPS5720848A (en) * 1980-07-14 1982-02-03 Nissin Electric Co Ltd Automatic switching device for double system device
JPS6180303A (ja) * 1984-09-28 1986-04-23 Japanese National Railways<Jnr> 二重系の切換制御方式
RU41693U1 (ru) * 2004-07-02 2004-11-10 Московский государственный университет путей сообщения (МИИТ) Дублированное микропроцессорное устройство для систем управления движением поездов
US8260487B2 (en) * 2008-01-08 2012-09-04 General Electric Company Methods and systems for vital bus architecture
CN101794142B (zh) * 2009-11-02 2012-06-13 三一重机有限公司 一种双机冗余控制方法及其控制装置
RU2525478C2 (ru) * 2012-12-25 2014-08-20 Федор Иванович Шаровар Система пожарно-охранной предупредительной сигнализации для железнодорожных электропоездов
CN103057554B (zh) * 2013-01-06 2015-02-25 株洲南车时代电气股份有限公司 一种交流传动轨道车的控制装置
KR101590721B1 (ko) * 2014-08-27 2016-02-02 현대로템 주식회사 고속철도차량의 주회로차단기 제어회로
CN105460025B (zh) * 2014-09-12 2018-05-18 中车大连电力牵引研发中心有限公司 电力机车换端控制方法和控制系统
CN105034813B (zh) * 2015-07-03 2018-04-10 株洲南车时代电气股份有限公司 列车供电控制装置
CN206374742U (zh) * 2016-12-23 2017-08-04 比亚迪股份有限公司 冗余控制电路及轨道车辆
CN107135102B (zh) * 2017-05-05 2020-07-17 中车信息技术有限公司 一种列车uic网关冗余切换装置及其控制方法
CN107100741B (zh) * 2017-05-08 2019-05-10 南京航空航天大学 一种提高涡扇发动机控制系统性能的方法及其系统
CN107187465B (zh) * 2017-06-09 2020-06-02 湖南中车时代通信信号有限公司 一种单元级热备冗余的ato系统架构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1692337A (zh) * 2002-12-20 2005-11-02 国际商业机器公司 用于交替激活可更换硬件单元的方法和系统
US20060271810A1 (en) * 2004-09-03 2006-11-30 Inventec Corporation & 3Up Systems, Inc. Backup control system and method
US20100198991A1 (en) * 2009-02-05 2010-08-05 Yokogawa Electric Corporation Duplexed field controller
CN101902069A (zh) * 2010-07-21 2010-12-01 中国航天科技集团公司第九研究院第七七一研究所 一种冷备份双机切换电路
CN103389668A (zh) * 2013-07-26 2013-11-13 宁波南车时代传感技术有限公司 用于屏蔽门的热备份冗余中央控制盘
CN203930399U (zh) * 2014-06-30 2014-11-05 中南大学 一种crh2型动车组无触点逻辑控制单元
CN107264572A (zh) * 2017-06-23 2017-10-20 成都运达科技股份有限公司 一种具备热冗余能力的无触点逻辑控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617032A4

Also Published As

Publication number Publication date
EP3617032A1 (en) 2020-03-04
CN109318911A (zh) 2019-02-12
CN109318911B (zh) 2020-05-29
RU2678460C1 (ru) 2019-01-29
EP3617032A4 (en) 2021-01-20
EP3617032B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP5836539B2 (ja) 通信装置および車両伝送システム
CN104503350B (zh) 双冗余can总线的实现方法和控制器
EP2632081B1 (en) Path switch-back method and apparatus in transport network
JP2010218277A5 (zh)
CN107135102A (zh) 一种列车uic网关冗余切换装置及其控制方法
WO2017215430A1 (zh) 一种集群内的节点管理方法及节点设备
CN105216631A (zh) 列车多台辅助逆变器正常启动顺序的恢复方法
CN102111281A (zh) 一种实现双机热备系统的热备方法
CN105812161A (zh) 一种控制器故障备份方法和系统
JP2005258946A (ja) 分散システム及び多重化制御方法
WO2019119492A1 (zh) 一种列车双控制单元之间的轮换方法、系统及列车
AU2012323190B2 (en) Method for operating a control network, and control network
CN109213066A (zh) 基于区块链技术的plc冗余控制数据备份方法及系统
CN107491344B (zh) 一种实现虚拟机高可用性的方法及装置
IN2015DN02698A (zh)
CN103414706A (zh) 双机防火墙系统的管理方法和装置
CN113625540A (zh) 双机热备控制方法、装置及双机热备系统
CN107959626B (zh) 数据中心的通信方法、装置及系统
CN107087021B (zh) 主从服务器确定方法及装置
JP2009003491A (ja) クラスタシステムにおけるサーバ切り替え方法
CN114840495A (zh) 一种数据库集群防脑裂的方法、存储介质与设备
CN104601350A (zh) 一种自动容灾切换方法及装置
CN109361781B (zh) 报文转发方法、装置、服务器、系统及存储介质
CN113114800A (zh) 一种资源处理方法及装置
CN102111313A (zh) 接入用户表的自动恢复方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017935390

Country of ref document: EP

Effective date: 20191128

NENP Non-entry into the national phase

Ref country code: DE