WO2019119291A1 - 上电缓启动装置、电池组件、无人机以及方法 - Google Patents

上电缓启动装置、电池组件、无人机以及方法 Download PDF

Info

Publication number
WO2019119291A1
WO2019119291A1 PCT/CN2017/117425 CN2017117425W WO2019119291A1 WO 2019119291 A1 WO2019119291 A1 WO 2019119291A1 CN 2017117425 W CN2017117425 W CN 2017117425W WO 2019119291 A1 WO2019119291 A1 WO 2019119291A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
battery
voltage
switch
Prior art date
Application number
PCT/CN2017/117425
Other languages
English (en)
French (fr)
Inventor
张文康
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/117425 priority Critical patent/WO2019119291A1/zh
Priority to CN201780026838.XA priority patent/CN109075593B/zh
Publication of WO2019119291A1 publication Critical patent/WO2019119291A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery

Definitions

  • the present invention relates to the field of circuit technologies, and in particular, to a power-on slow start device, a battery assembly, a drone, and a method.
  • the internal circuit of the drone (load end) has a large amount of capacitance, so that the input impedance is close to zero, and the battery terminal carries high voltage, which will occur at the contact moment.
  • Air discharge phenomenon The discharge current of this air discharge phenomenon is large, and the instantaneous power will burn the battery terminals, causing oxidation or melting.
  • the contact resistance will become significantly larger, resulting in poor contact, resulting in the risk of air interruption or spontaneous combustion.
  • the battery terminal will adopt the anti-sparking plug of the male cross-corrugated elastic structure, and the outer ring will also be provided with anti-ignition resistance to avoid the phenomenon of sparking.
  • the resilience of the crucible elastic structure may be lowered, and the position of repeated contact may easily fall outside the anti-fire ring, causing a sparking phenomenon.
  • the invention provides a power-on slow-start device, a battery assembly, a drone and a method, so as to solve the problem that the existing anti-plug can be reduced in resilience during repeated insertion and removal, and the position of repeated contact easily falls to the anti-fire ring The problem of sparking outside.
  • the present invention provides a power-on slow start device, including: a switch circuit and a processing unit connected to the switch circuit;
  • switch circuit and the processing unit are configured to be connected to the same terminal of the battery and the load, and the initial state of the switch circuit is an open state;
  • the processing unit controls the switch circuit to be turned on after delaying a preset time when comparing the same terminal voltage of the battery and the load to be less than or equal to a first preset threshold, for the battery to be The load is supplied.
  • the present invention provides a battery assembly including: a battery and a power-on slow start device;
  • the first input end of the power-on slow start device is connected to the positive end of the battery, and the first output end of the power-on slow start device is used to connect the positive end of the load, and the power-on slow start device
  • the second input end is connected to the negative end of the battery, the second output end of the power-on slow start device is used to connect the negative end of the load, and the initial state of the power-on slow start device is off ;
  • the power-on slow-start device When the power-on slow-start device connects the load and determines that the same terminal voltage of the battery and the load is less than or equal to a first preset threshold, the power-on slow-start device turns on after a preset time delay For powering the battery to the load.
  • the present invention provides a drone, including a body, a battery mounted on the body, and the drone further includes: a power-on slow-start device mounted on the body;
  • the first output end of the power-on slow-start device is connected to the positive end of the drone, and the first input end of the power-on slow-start device is used to connect the positive end of the battery, and the power-on is slowed down.
  • a second output end of the starting device is connected to the negative end of the drone, and a second input end of the power-on slow start device is used to connect the negative end of the battery, the initial state of the power-on slow-start device Is disconnected;
  • the power-on slow-start device When the power-on slow-start device connects the battery and determines that the same extreme voltage of the battery and the drone is less than or equal to a first preset threshold, the power-on slow-start device delays the preset time Turning on to power the battery to the drone.
  • the present invention provides a power-on slow-start method, including:
  • the power-on slow-start device acquires the same extreme voltage of the battery and the load, wherein the initial state of the power-on slow-start device is an off state;
  • the power-on slow start device determines whether the same extreme voltage is less than or equal to a first preset threshold
  • the power-on slow-start device is turned on after delaying a preset time for powering the battery to the load.
  • the invention provides a power-on slow-start device, a battery assembly, a drone, and a method, wherein the device is connected to the same terminal of the battery and the load through a switch circuit, and the initial state of the switch circuit is an off state. It can disconnect the battery when it is connected to the load. And connecting the processing unit to the same terminal of the battery and the load, the battery can be slowly charged to the load capacitor through the processing unit, when the processing unit compares the same terminal voltage of the battery and the load to be less than or equal to the first preset threshold, The load is in a low-resistance state, and the load has met the requirement of a large current.
  • the processing unit can control the switching circuit to be turned on after a predetermined time delay, to ensure reliable connection between the battery and the load, and the battery can supply power to the load.
  • the invention solves the problem that the existing anti-sparking measures cannot completely prevent the sparking phenomenon, realizes the power supply process of slowly starting the battery to the load, avoids the sparking phenomenon of the battery and the load, thereby eliminating the problem caused in the flammable and explosive environment.
  • the risk of fire not only prolongs the life of the battery connector, but also prevents the contact resistance caused by ignition oxidation from becoming high and affecting the safety of the load.
  • FIG. 1 is a schematic structural view 1 of a power-on slow start device provided by the present invention.
  • FIG. 2 is a schematic structural view 2 of the power-on slow start device provided by the present invention.
  • FIG. 3 is a schematic structural view 3 of the power-on slow start device provided by the present invention.
  • FIG. 4 is a schematic circuit diagram of a first voltage comparison circuit provided by the present invention.
  • FIG. 5 is a schematic circuit diagram of a slow start delay circuit provided by the present invention.
  • FIG. 6 is a circuit diagram of a first level shifting circuit provided by the present invention.
  • FIG. 7A is a schematic structural view 4 of the power-on slow start device provided by the present invention.
  • FIG. 7B is a schematic structural view 5 of the power-on slow start device provided by the present invention.
  • Figure 8 is a schematic structural view 6 of the power-on slow start device provided by the present invention.
  • FIG. 9 is a schematic circuit diagram of a second level shifting circuit provided by the present invention.
  • Figure 10 is a schematic structural view 7 of the power-on slow start device provided by the present invention.
  • Figure 11 is a schematic structural view VIII of the power-on slow start device provided by the present invention.
  • FIG. 12 is a circuit diagram of a third level shifting circuit provided by the present invention.
  • Figure 13 is a schematic structural view IX of the power-on slow start device provided by the present invention.
  • FIG. 14 is a schematic structural view of a battery assembly provided by the present invention.
  • Figure 15 is a schematic structural view of a drone provided by the present invention.
  • 16 is a schematic flowchart 1 of a power-on slow start method according to the present invention.
  • 17 is a second schematic flowchart of a power-on slow start method according to the present invention.
  • FIG. 18 is a schematic flowchart 3 of the power-on slow start method provided by the present invention.
  • the battery terminal adopts the anti-sparking plug of the male cross-corrugated elastic structure, except that the resilience of the battery terminal is easily deteriorated, and the position of repeated contact with the drone is liable to fall outside the anti-fire ring.
  • the anti-ignition resistor provided on the battery is affected by the plugging stress and environmental corrosion, causing the metal terminal of the anti-sparking plug to burn black and become quick and effective, and further Loss of anti-sparking function.
  • the drone prevents the sparking phenomenon through the ESC, but those skilled in the art can understand that the position where the most used capacitor inside the drone is the ESC. Due to its own characteristics, the ESC can only slowly start one or two large electrolytic capacitors inside, while other capacitors have a capacitance of several microfarads, but the input voltage is high and the number of parallel connections is still high. Hundreds of amps of inrush current, which causes sparking.
  • the process of powering the battery to the drone is delayed by setting the power-on slow-starting device.
  • the specific implementation structure of the power-on slow-starting device in this embodiment will be described in detail below with reference to FIG.
  • FIG. 1 is a schematic structural diagram 1 of a power-on slow-start device according to the present invention.
  • the power-on slow-start device of the embodiment may include: a switch circuit and a processing unit connected to the switch circuit.
  • the switch circuit and the processing unit are used to be connected to the same terminal of the battery and the load, and the initial state of the switch circuit is the off state.
  • the control switch circuit is turned on after delaying the preset time for the battery to supply power to the load.
  • the battery has a positive pole and a negative pole
  • the load can be equivalent to the parallel connection of the load capacitance and the load resistance
  • the load capacitance has a positive pole and a negative pole. Therefore, in the embodiment, the same level end of the battery and the load refers to The positive terminal of the battery and the positive terminal of the load capacitor, or the negative terminal of the battery and the negative terminal of the load capacitor.
  • the switch circuit in this embodiment may be respectively connected to the positive terminal of the battery and the positive terminal of the load capacitor, or may be respectively connected to the negative terminal of the battery and the load capacitor.
  • the negative terminal is connected, which is not limited in this embodiment.
  • the processing unit is connected to the same terminal of the battery and the load, the processing unit can be respectively connected to the positive terminal of the battery and the positive terminal of the load capacitor, or to the negative terminal of the battery and the negative terminal of the load capacitor, respectively. This embodiment does not limit this.
  • the switching circuit and the processing unit are respectively connected to different different ends of the battery and the load as an example.
  • the switch circuit when the battery is connected to the load, since the voltage across the load capacitor does not change, the positive terminal voltage and the load terminal voltage of the load capacitor are both the battery voltage, and the contact impedance is close to zero, so that the air is instantaneously discharged. There is a fire.
  • the initial state of the switch circuit since the initial state of the switch circuit is the off state, when the switch circuit is connected to the same terminal of the battery and the load, the switch circuit can disconnect the path between the battery and the load, so that the battery cannot supply power to the load. In turn, the battery and the load are protected.
  • the specific implementation form of the switch circuit is not limited in this embodiment.
  • the embodiment can also connect the processing unit to the same end of the battery and the load, so that the battery can be slowly charged to the load capacitor after passing through the processing unit, thereby prolonging the time when the battery is connected to the load.
  • the processing unit can also obtain the voltage of the same terminal of the battery and the load at all times, and compare the voltage of the same terminal and the magnitude of the first preset threshold voltage to determine whether the battery and the load can be connected at this time to prevent voltage and load. There is a fire between them.
  • the specific implementation form of the processing unit is not limited in this embodiment.
  • the first preset threshold in this embodiment may be determined according to the quiescent current of the processing unit and the battery voltage, which is not limited in this embodiment. Generally, the first preset threshold may be between 10V and 15V.
  • the processing unit can control the state of the switching circuit through the connection with the switching circuit.
  • the state of the switching circuit can be changed to an on state, so that the path between the battery and the load is turned on, and the battery starts to supply power to the load.
  • the power-on slow-start device provided in this embodiment is connected to the same terminal of the battery and the load through the switch circuit, and the initial state of the switch circuit is the off state, so that the battery can be disconnected when connected with the load.
  • the processing unit connecting the processing unit to the same terminal of the battery and the load, the battery can be slowly charged to the load capacitor through the processing unit, when the processing unit compares the same terminal voltage of the battery and the load to be less than or equal to the first preset threshold, The load is in a low-resistance state, and the load has met the requirement of a large current.
  • the processing unit can control the switching circuit to be turned on after a predetermined time delay, to ensure reliable connection between the battery and the load, and the battery can supply power to the load.
  • the embodiment solves the problem that the existing anti-sparking measures cannot completely prevent the sparking phenomenon, realizes the power supply process of slowly starting the battery to the load, avoids the sparking phenomenon of the battery and the load, thereby eliminating the flammable and explosive environment. Risk of fire, It not only prolongs the life of the battery connector, but also prevents the contact resistance due to ignition oxidation from becoming high and affecting the safety of the load.
  • FIG. 2 is a schematic structural diagram 2 of the power-on slow-starting device provided by the present invention.
  • the processing unit of this embodiment includes: a first resistor and a comparison delay circuit. Wherein, the two ends of the first resistor are used to connect the same terminal of the battery and the load, the comparison delay circuit is connected in parallel with the first resistor, and the comparison delay circuit obtains the voltage across the first resistor.
  • the output end of the comparison delay circuit is connected to the switch circuit.
  • the control switch circuit When the comparison delay circuit compares the voltage across the first resistor to be less than or equal to the first preset threshold, the control switch circuit is turned on after delaying the preset time, and is used for Power the battery to the load.
  • the battery when the first resistor is connected to the same terminal of the battery and the load, the battery can be slowly charged to the load capacitor via the first resistor to prevent the occurrence of a sparking phenomenon.
  • the specific types, specific numbers, and resistance values of the first resistor are not limited.
  • the first resistor is a surge resistant resistor.
  • the first resistor can have a value of 10 ohms.
  • the processing unit further needs to acquire the voltage of the same terminal of the battery and the load, and the first resistor can be connected to the same terminal of the battery and the load, the comparison delay circuit in the embodiment can pass the first resistor. Connected to obtain the voltage across the first resistor, and the voltage across the first resistor can be used as the voltage of the same terminal of the battery and the load.
  • the comparison delay circuit compares the voltage between the two ends of the first resistor and the first preset threshold, and when the voltage across the first resistor is less than or equal to the first preset threshold, the comparison delay circuit delays After the preset time, after ensuring a stable connection between the battery and the load, the state of the switching circuit is changed, so that the switching circuit is turned on, and the battery can supply power to the load.
  • the preset time in the embodiment can be comprehensively considered according to the time when the battery and the load are connected stably and the time when the load is quickly released. This embodiment does not limit this.
  • the general preset time can be selected to be 500 milliseconds.
  • the specific implementation manner of the comparison delay circuit in this embodiment includes multiple types, which is not limited in this embodiment.
  • FIG. 3 is a schematic structural diagram 3 of the power-on slow-start device provided by the present invention.
  • the comparison delay circuit in this embodiment includes: a first voltage comparison circuit and a slow start delay circuit.
  • the first voltage comparison circuit is connected in parallel with the first resistor, and the first voltage comparison circuit compares the voltage between the two ends of the first resistor and the first preset threshold.
  • the output end of the first voltage comparison circuit is connected to the input end of the slow start delay circuit, and the output end of the slow start delay circuit is connected to the switch circuit.
  • the slow start delay circuit transmits and receives the transmission signal sent by the first voltage comparison circuit, and the control switch circuit delays the preset time. After conduction, it is used to power the battery to the load.
  • the comparison delay circuit can not only obtain the voltage between the two ends of the first resistor, but also compare the voltage between the two ends of the first resistor with the first preset threshold, and can also switch the switch after delaying the preset time.
  • the state of the circuit is controlled. Therefore, the embodiment can be divided into a first voltage comparison circuit and a slow start delay circuit according to functions performed by the comparison delay circuit.
  • the first voltage comparison circuit connects the first resistor in parallel to obtain the voltage across the first resistor, and completes the comparison process between the voltage across the first resistor and the first preset threshold. And the output end of the first voltage comparison circuit is connected to the slow start delay circuit, and the comparison result can be sent to the slow start delay circuit, and the slow start delay circuit delays the preset time, and then the state of the switch circuit is performed. The change causes the switching circuit to be turned on, so that the path between the battery and the load is turned on, and the process of safely connecting the battery to the load and powering the load is realized.
  • the specific implementation form of the first voltage comparison circuit and the slow start delay circuit is not limited in this embodiment.
  • FIG. 4 is a schematic circuit diagram of a first voltage comparison circuit provided by the present invention.
  • the first voltage comparison circuit in this embodiment includes: a second resistor, a third resistor, and a second switch. .
  • the input end of the second switch tube is connected to one end of the first resistor, the control end of the second switch tube, the second resistor and the other end of the first resistor are sequentially connected, and the third resistor is connected in parallel to the input end of the second switch tube.
  • the control end, the output end of the second switch tube is connected to the input end of the slow start delay circuit.
  • the output end of the second switch sends a transmission signal to the slow start delay circuit, and the slow start delay circuit controls the switch circuit to delay the delay according to the transmission signal. Turn on after the time is set to power the battery to the load.
  • the voltage drop across the first resistor in the embodiment is gradually reduced.
  • the input end of the second switch tube is connected to one end of the first resistor, so that the voltage at the input end of the second switch tube changes, and the other end of the first resistor, the second resistor, and the second switch tube are controlled.
  • the terminals are connected in sequence, and the third resistor is connected in parallel to the input end and the control end of the second switch tube, and the voltage of the control end of the second switch tube also changes. The on/off state of the second switch can be changed.
  • the second switch when the voltage across the first resistor is less than or equal to the first preset threshold, the second switch is turned on. Since the output end of the second switch tube is connected to the input end of the slow start delay circuit, the second switch tube can output a transmission signal to the slow start delay circuit, and the slow start delay circuit can be delayed according to the transmission signal. After the preset time, the control switch circuit is turned on, so that the battery supplies power to the load.
  • the size and the specific number of the second resistor and the third resistor and the type and number of the second switch tube are not limited in this embodiment.
  • FIG. 5 is a schematic circuit diagram of a slow start delay circuit provided by the present invention.
  • the slow start delay circuit of the embodiment includes: a first level conversion circuit, a fourth resistance, and a third a switch tube, a first diode, and a first capacitor.
  • the first input end of the first level conversion circuit is connected to the first output end of the first voltage comparison circuit, and the second input end of the first level conversion circuit is connected to the positive terminal of the battery, the first level conversion circuit
  • the output terminal, the fourth resistor, the first diode, and the switch circuit are sequentially connected.
  • control end and the output end of the third switch tube are respectively connected to the positive pole and the negative pole of the first diode, and the output ends of the third switch tube are also respectively connected with the control ends of the first capacitor and the third switch tube, the first capacitor and The input ends of the third switch are connected to the ground.
  • the first level conversion circuit receives the transmission signal sent by the first voltage comparison circuit, and the first level conversion circuit is configured according to the battery.
  • the positive terminal voltage and the transmission signal obtain a turn-on voltage
  • the third switch tube is turned on according to the turn-on voltage control switch circuit after being delayed for a preset time, and is used for powering the battery to the load.
  • the first input end of the first level conversion circuit can receive the transmission signal of the first voltage comparison circuit through the connection with the first output end of the first voltage comparison circuit.
  • the second input end of the first level shifting circuit is connected to the positive terminal of the battery in the embodiment, when the voltage of the first level is less than or equal to the first preset threshold. It is possible to enable the first level shift circuit to output a turn-on voltage capable of turning on the switching circuit in accordance with the positive terminal voltage and the transfer voltage of the battery. And before the turn-on voltage is transmitted to the switch circuit, since the slow start delay circuit has a slow start function, the embodiment can ensure the first level shift through the connection of the fourth resistor and the output end of the first level shift circuit. The output voltage of the circuit is not too high and can delay the time during which the turn-on voltage is transmitted.
  • the output ends of the third switch tube are also respectively connected to the first capacitor and the third switch tube
  • the control terminal is connected, and the control end of the third switch tube is connected to the output end of the first level conversion circuit through the fourth resistor, when the first level conversion circuit compares the voltage across the first resistor to be greater than the first preset threshold
  • the voltage of the control end of the third switch tube is higher than the voltage of the output end of the third switch tube, and the third switch tube is in a reverse cut-off state and does not conduct.
  • the output voltage of the first level shifting circuit and the input terminal voltage of the switching circuit all have an impact on the slow start delay circuit.
  • the first voltage comparison circuit compares the voltage across the first resistor to be greater than the first predetermined threshold, the first voltage The comparison circuit sends a transmission signal to the slow start delay circuit, the slow start delay circuit obtains the off voltage according to the transmission signal, and the slow start delay circuit controls the switch circuit to remain off.
  • FIG. 6 is a schematic circuit diagram of a first level conversion circuit provided by the present invention.
  • the first level conversion circuit of the embodiment includes: a fifth resistor, a sixth resistor, and a seventh resistor. a second diode and a second capacitor.
  • the first output end of the first voltage comparison circuit is respectively connected to the first end of the fifth resistor and the first end of the sixth resistor, and the second end of the fifth resistor is further connected to the positive end of the battery, and the sixth resistor The second end is also connected to the ground, and the two ends of the second capacitor are connected in parallel to the first output end of the first voltage comparison circuit and the ground.
  • the first end of the fifth resistor and the first end of the sixth resistor are both connected to the first end of the seventh resistor, and the second end of the seventh resistor is respectively connected to the first end of the fourth resistor and the second diode, The second diode is connected to the ground.
  • the switching circuit is controlled to be turned on. Therefore, in the embodiment, the first voltage conversion circuit can be used to convert the first voltage comparison.
  • the output voltage of the circuit Specifically, the positive terminal voltage of the battery is used as a reference, and the output voltage of the first voltage comparison circuit is converted by the voltage division action of the fifth resistor and the sixth resistor, and the conduction of the conduction switch circuit can be obtained after the seventh resistor. Voltage.
  • the second diode acts as a voltage regulator, and the second capacitor acts as a filter.
  • FIG. 7A is a schematic structural view 4 of the power-on slow-starting device provided by the present invention
  • FIG. 7B is a schematic structural diagram 5 of the power-on slow-starting device provided by the present invention, as shown in FIG. 7A and FIG. 7B.
  • the power-on slow-starting device of the embodiment further includes: a temperature alarm unit.
  • the temperature alarm unit is connected to the comparison delay circuit; or the temperature alarm unit is connected in parallel with the first resistor.
  • the temperature alarm unit is configured to transmit a temperature signal or an alarm signal to the input end of the load during the power supply of the battery to the load to monitor whether the switch circuit is turned on.
  • the on/off state of the switch circuit affects the power supply process of the battery to the load. Therefore, in order to ensure that the switch circuit is always in the on state during the power supply process of the battery to the load, the embodiment can monitor the switch through the temperature alarm unit. Whether the circuit is turned on.
  • the temperature alarm unit can be set in this embodiment. Input a temperature signal or an alarm signal to the load.
  • the temperature alarm unit when the switch circuit in the power-on slow start device is normally turned on, the temperature alarm unit outputs a temperature signal to the load, so that the working temperature of the power-on slow start device can be obtained when the load end can be obtained.
  • the temperature alarm unit When the switch circuit in the power-on slow start device is not turned on, the temperature alarm unit outputs an alarm signal to the load, so that the person at the load end knows that the power-on slow start device is abnormal, and the load end needs to be protected.
  • the load is a drone
  • the drone when the operator detects that the power-on slow-start device is about to be effective or has been effective, the drone should be put into a protection state as soon as possible, triggering a return or forced landing to prevent the user's life and property from being lost.
  • connection manners of the temperature alarm unit there are various connection manners of the temperature alarm unit in this embodiment.
  • the specific implementation process of the temperature alarm unit is described in detail below through two different connection methods.
  • FIG. 8 is a schematic structural diagram 6 of the power-on slow-starting device provided by the present invention.
  • the temperature alarm unit of the embodiment The method includes a first temperature sensor, a second level shifting circuit, and a fourth switching tube.
  • the first temperature sensor is connected to the input end of the fourth switch tube, the output end of the fourth switch tube is connected to the input end of the load, and the first temperature sensor outputs a temperature signal to the input end of the load.
  • the output end of the comparison delay circuit is connected to the first input end of the second level conversion circuit, the second input end of the second level conversion circuit is connected to the positive terminal of the battery, and the output end of the second level conversion circuit is The control terminals of the four switch tubes are connected.
  • the driving signal output by the second level conversion circuit controls the fourth switch to be turned on, and the input of the first temperature sensor and the load The terminal is disconnected for outputting an alarm signal at the input of the load.
  • the first temperature sensor can acquire the temperature signal of the real-time monitoring power-on slow-start device in real time, and the first temperature sensor is connected to the input end of the fourth switch tube, and the output end of the fourth switch tube and the load The connection of the input terminal, the temperature signal can be transmitted to the input end of the load when the fourth switch tube is not turned on, so that the personnel at the load end can monitor the temperature of the power-on slow start device in real time, and prevent the switch circuit from being effective and causing abnormal temperature rise.
  • the specific type of the first temperature sensor is not limited in this embodiment.
  • the first input end of the second level conversion circuit is connected to the output end of the comparison delay circuit. Therefore, when the comparison delay circuit compares the voltage across the first resistor is greater than or equal to the first pre- When the threshold is set, the second input end of the second level converting circuit is connected to the positive terminal of the battery, and the second level converting circuit can convert the voltage outputted by the comparison delay circuit into a driving signal based on the positive terminal voltage of the battery. Since the output end of the second level shifting circuit is connected to the control end of the fourth switching tube, the input of the driving signal enables the fourth switching tube to be turned on, so that the first temperature sensor is disconnected from the input end of the load, The output to the input of the load becomes an alarm signal.
  • the specific type of the second level conversion circuit and the fourth switching tube are not limited in this embodiment.
  • FIG. 9 is a schematic circuit diagram of a second level conversion circuit provided by the present invention.
  • the second level conversion circuit of the embodiment includes: an eighth resistor, a ninth resistor, and a tenth resistor. a third diode and a third capacitor.
  • the output end of the comparison delay circuit is respectively connected to the first end of the eighth resistor and the first end of the ninth resistor, and the second end of the eighth resistor is further connected to the positive end of the battery, and the second end of the ninth resistor Connected to the control end of the fourth switch tube, the tenth resistor, the third capacitor and the third diode are both connected in parallel with the second end of the ninth resistor and the ground.
  • the second level conversion circuit can be used to convert and compare.
  • the output voltage of the delay circuit Specifically, the positive terminal voltage of the battery can be used as a reference, and the output voltage of the comparison delay circuit is converted by the voltage division action of the eighth resistor and the ninth resistor, and the turn-on voltage of the conduction switch circuit can be obtained after the tenth resistor. .
  • the third diode acts as a voltage regulator, and the third capacitor acts as a filter.
  • FIG. 10 is a schematic structural diagram of the power-on slow-starting device provided by the present invention.
  • the temperature alarm unit of the embodiment when the temperature alarm unit is connected to the first resistor, the temperature alarm unit of the embodiment includes a second voltage comparison circuit, a second temperature sensor, a third level conversion circuit, and a fifth switching transistor.
  • the second voltage comparison circuit is connected in parallel with the first resistor, and the second voltage is compared
  • the circuit compares the voltage between the two ends of the first resistor and the second preset threshold, and the second preset threshold is greater than the first preset threshold.
  • the output end of the second voltage comparison circuit is connected to the first input end of the third level conversion circuit, the second input end of the third level conversion circuit is connected to the positive terminal of the battery, and the output end of the third level conversion circuit is The control end of the fifth switch tube is connected.
  • the second temperature sensor is connected to the input end of the fifth switch tube, the output end of the fifth switch tube is connected to the input end of the load, and the second temperature sensor outputs a temperature signal to the input end of the load.
  • the driving signal output by the third level converting circuit controls the fifth switch to be turned on, and the second temperature sensor and the load are The input is disconnected and is used to cause the input of the load to output an alarm signal.
  • the second temperature sensor can obtain the real-time monitoring temperature signal of the power-on slow-start device, and the second temperature sensor is connected to the input end of the fifth switch tube, and the output end of the fifth switch tube and the load
  • the connection of the input terminal, the temperature signal can be transmitted to the input end of the load when the fifth switch tube is not turned on, so that the personnel at the load end can monitor the temperature of the power-on slow start device in real time, and prevent the switch circuit from being effective and causing abnormal temperature rise.
  • the specific type of the second temperature sensor is not limited in this embodiment.
  • a new second voltage comparison circuit may be added in this embodiment to determine the second voltage during the power supply process of the battery to the load.
  • the comparison circuit determines whether the switch circuit is abnormal by comparing the voltage between the two ends of the first resistor and the second preset threshold.
  • the first preset threshold is a maximum threshold for slowly starting the battery to supply power to the load. Therefore, in this embodiment, the second preset value may be set to be greater than the first preset threshold, so that the load end can display the switch circuit disconnection in time. The abnormal situation, and the corresponding operation.
  • the first input end of the third level conversion circuit is connected to the output end of the second voltage comparison circuit. Therefore, when the second voltage comparison circuit compares the voltage across the first resistor to be greater than or equal to the first
  • the second input end of the third level converting circuit is connected to the positive terminal of the battery, and the second level converting circuit can convert the voltage outputted by the second voltage comparing circuit with the positive terminal voltage of the battery as a reference.
  • the driving signal since the output end of the third level converting circuit is connected to the control end of the fifth switching tube, the input of the driving signal enables the fifth switching tube to be turned on, so that the second temperature sensor and the input end of the load are broken. Open connection, output to the input of the load becomes an alarm signal.
  • the specific type of the third level conversion circuit and the fifth switch tube are not limited in this embodiment.
  • FIG. 11 is a schematic structural diagram of the power-on slow-starting device provided by the present invention.
  • the second voltage comparison circuit includes: an eleventh resistor, a twelfth resistor, and a sixth switch.
  • the input end of the sixth switch tube is connected to one end of the first resistor, the control end of the sixth switch tube, the eleventh resistor and the other end of the first resistor are sequentially connected, and the twelfth resistor is connected in parallel to the sixth switch tube.
  • the input end and the control end, the output end of the sixth switch tube is connected to the first input end of the third level shifting circuit.
  • the driving signal output by the third level converting circuit controls the fifth switch to be turned on, and the second temperature sensor and the load are The input is disconnected and is used to cause the input of the load to output an alarm signal.
  • the input end of the sixth switch passes through one end of the eleventh resistor. Connecting, the voltage of the input end of the sixth switch tube is changed, and the other end of the first resistor, the eleventh resistor and the control end of the sixth switch tube are sequentially connected, and the twelfth resistor is connected in parallel to the input end of the sixth switch tube And the control terminal further changes the voltage of the control terminal of the sixth switch tube, thereby changing the on-off state of the sixth switch tube.
  • the sixth switch tube when the input voltage of the input end of the sixth switch tube is greater than or equal to the second preset threshold, the sixth switch tube is turned on. Since the output end of the sixth switching transistor is connected to the first input end of the third level converting circuit, the sixth light emitting tube can output a transmission signal to the third level converting circuit, and the third level converting circuit can output the driving.
  • the signal controls the fifth switch to be turned on, and the second temperature sensor is disconnected from the input end of the load, so that the output signal to the input end of the load is an alarm signal to prompt the power-on slow start device to be abnormal, and the person in the load segment is informed Repair or replacement work.
  • the value of the resistance value and the specific number of the eleventh resistor and the twelfth resistor and the type and number of the sixth switch tube are not limited in this embodiment.
  • FIG. 12 is a schematic circuit diagram of a third level conversion circuit provided by the present invention.
  • the third level conversion circuit of the embodiment includes: a thirteenth resistor, a fourteenth resistor, and a third Fifteen resistors, a fourth diode, and a fourth capacitor.
  • the output end of the second voltage comparison circuit is respectively connected to the first end of the thirteenth resistor and the first end of the fourteenth resistor, and the second end of the thirteenth resistor is also connected to the positive end of the battery, the fourteenth
  • the second end of the resistor is connected to the control end of the fifth switch tube,
  • the fifteenth resistor, the fourth capacitor and the fourth diode are each connected in parallel to the second end of the fourteenth resistor and the ground.
  • the third level conversion circuit can be used for conversion.
  • the output voltage of the second voltage comparison circuit Specifically, the positive terminal voltage of the battery can be used as a reference, and the output voltage of the second voltage comparison circuit is converted by the voltage division action of the thirteenth resistor and the fourteenth resistor, and the conduction switch circuit can be obtained after the fifteenth resistor. Turn-on voltage.
  • the fourth diode acts as a voltage regulator, and the fourth capacitor acts as a filter.
  • FIG. 13 is a schematic structural diagram 9 of the power-on slow start device provided by the present invention.
  • the switch circuit in the power slow start device of the embodiment includes: a first switch tube.
  • the input end and the output end of the first switch tube are used to connect the same terminal of the battery and the load.
  • the initial state of the first switch tube is an open state, and the processing unit is connected to the control end of the first switch tube.
  • the processing unit compares the same extreme voltage of the battery and the load to be less than or equal to the first preset threshold, the processing unit controls the first switch to be turned on after delaying the preset time for powering the battery to the load.
  • the specific type of the first switch tube is not limited in this embodiment.
  • the first switch transistor is any one of a metal oxide semiconductor (MOS) transistor, a crystal diode, and an IGBT.
  • MOS metal oxide semiconductor
  • the first switch tube is taken as a MOS tube as an example for detailed description.
  • the first switch tube is a P-channel MOS tube; when the input end and the output end of the first switch tube are connected in series with the battery And the negative terminal of the load, the first switching transistor is an N-channel MOS transistor.
  • the input end and the output end of the first switch tube are respectively connected to the positive end of the battery and the positive end of the load, or through the input end and the output end of the first switch tube respectively to the negative end of the battery and the load
  • the negative terminal is connected, and the initial state of the first switch is an open state to control the disconnection of the path between the battery and the load.
  • the processing unit is further connected to the control end of the first switch tube, so that when the processing unit compares the same terminal voltage of the battery and the load to be less than or equal to the first preset threshold, the processing unit can delay the preset After the time, the first switch tube is controlled to be turned on by the control end of the first switch tube, so that the battery can supply power to the load.
  • the fourth switch tube and the fifth switch tube can be any one of a MOS tube, a crystal diode, and an IGBT, which is not limited in this embodiment.
  • FIG. 14 is a schematic structural view of a battery assembly according to the present invention.
  • the battery assembly of the present embodiment includes: a battery and a power-on slow start device as described above.
  • the first input end of the power-on slow start device is connected to the positive end of the battery, and the first output end of the power-on slow start device is used to connect the positive end of the load, and the second input end of the power-on slow start device and the battery
  • the negative terminal is connected, and the second output end of the power-on slow-start device is used to connect the negative terminal of the load, and the initial state of the power-on slow-start device is the disconnected state.
  • the power-on slow-start device When the power-on slow-start device is connected to the load and determines that the same extreme voltage of the battery and the load is less than or equal to the first preset threshold, the power-on slow-start device is turned on after being delayed for a preset time, and is used for powering the battery to the load.
  • the battery assembly provided by the embodiment of the present invention includes the power-on and slow-starting device as described above, and the foregoing embodiment can be implemented.
  • the specific implementation principle and technical effects can be referred to the foregoing method embodiments, and details are not described herein again.
  • the drone includes a body and a battery mounted on the body.
  • the drone of the embodiment further includes: The power-on slow start device as described above.
  • the first output end of the power-on slow start device is connected to the positive end of the drone, and the first input end of the power-on slow start device is used to connect the positive end of the battery, and the second output end of the power-on slow start device
  • the negative end of the drone is connected, and the second input end of the power-on slow start device is used to connect the negative end of the battery, and the initial state of the power-on slow start device is the off state.
  • the power-on slow-start device When the power-on slow-start device is connected to the battery and determines that the same extreme voltage of the battery and the drone is less than or equal to the first preset threshold, the power-on slow-start device is turned on after being delayed for a preset time, and is used to make the battery to the unmanned Machine power supply.
  • the drone provided by the embodiment of the invention may be a plant protection drone applied to the protection of agricultural and forestry plants, and the drone is generally loaded with a certain weight of load, such as a pesticide for pest control or a seed for seeding. This type of drone is more in need of a large voltage and high capacity battery to drive.
  • the unmanned aerial vehicle provided by the embodiment of the present invention adopts the power-on slow-starting device as described above, and the foregoing embodiment can be implemented. The specific implementation principle and technical effects can be seen in the foregoing method embodiment. .
  • FIG. 16 is a schematic flowchart 1 of the power-on slow-starting method provided by the present invention.
  • the method in this embodiment is performed by a power-on slow-start device for slowly starting the power supply process of the battery to the load; the embodiment only describes the method briefly.
  • the specific implementation principle may be as described in the device embodiment.
  • the power-on slow-start method of the embodiment includes:
  • the power-on slow-start device acquires the same extreme voltage of the battery and the load, wherein the initial state of the power-on slow-start device is an off state.
  • the power-on slow-starting device determines whether the same extreme voltage is less than or equal to a first preset threshold.
  • the power-on slow-starting device is turned on after being delayed for a preset time, and is used for powering the battery to the load.
  • FIG. 17 is a schematic flowchart 2 of the power-on slow-starting method provided by the present invention.
  • the method in this embodiment is performed by a power-on slow-start device for slowly starting the power supply process of the battery to the load.
  • This embodiment only describes the method briefly.
  • the specific implementation principle may be as described in the device embodiment.
  • the power-on slow-start method in this embodiment includes:
  • the power-on slow-start device acquires the same extreme voltage of the battery and the load, wherein the initial state of the power-on slow-start device is an off state.
  • the power-on slow-starting device determines whether the same extreme voltage is less than or equal to a first preset threshold. If yes, execute S203; if no, execute S204.
  • the power-on slow-starting device is turned on after being delayed for a preset time, and is used for powering the battery to the load.
  • the S201, S202, and S203 are similar to the implementations of S101, S102, and S103 in the embodiment of the present invention, and are not described herein again.
  • the power-on slow-start device is kept in an off state.
  • FIG. 18 is a schematic flowchart 3 of the power-on slow-start method provided by the present invention.
  • the method in this embodiment is performed by a power-on slow-start device for monitoring whether a switch circuit is normally turned on.
  • This embodiment only briefly describes the method. The specific implementation principle can be combined with the description of the device embodiment.
  • the power-on slow-start method of the embodiment includes:
  • the power-on slow-starting device determines whether the same extreme voltage is greater than or equal to a second preset threshold, where the second preset threshold is greater than or equal to the first preset threshold. If yes, execute S302; if no, execute S303.
  • the power-on slow-starting device transmits an alarm signal to the input end of the load.
  • the power-on slow-start device transmits a temperature signal to the input end of the load.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (English: Read-Only Memory, ROM for short), random access memory (English: Random Access Memory, RAM), disk or A variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种上电缓启动装置,包括:开关电路以及与开关电路连接的处理单元。其中,开关电路和处理单元用于连接在电池和负载的同极端,开关电路的初始状态为断开状态。处理单元在比较出电池和负载的同极端电压小于或等于第一预设阈值时,控制开关电路在延迟预设时间后导通,用于使电池向负载供电。在实际使用中,实现了对负载向无人机供电的缓启动,从而避免了放电打火现象。还涉及一种电池组件、无人机以及上电缓启动方法。

Description

上电缓启动装置、电池组件、无人机以及方法 技术领域
本发明涉及电路技术领域,尤其涉及一种上电缓启动装置、电池组件、无人机以及方法。
背景技术
大部分重型无人机(起飞重量大于等于20kg)多数采用大电压高容量的电池,且电池的放电电流巨大,一般接近几百安培。因此,无人机所需电池具有高压大电流的特性,使得电池多数采用非智能电池,无法进行开关功能,造成电池长期带电,这样在电池接入无人机时,易出现热插拔的场景。
当电池端子接近无人机的母线端子时,由于无人机(负载端)内部电路系统存在大量的电容,使得输入端阻抗接近为零,而电池端子携带高压,此时就会在接触时刻发生空气放电现象。这种空气放电现象的放电电流较大,瞬间功率就会灼伤电池端子,造成氧化或熔融。且在多次插拔后,接触电阻会明显变大,造成接触不良,导致空中断电或自燃的风险。
目前,电池端子会采用公头的十字花弹性结构的防打火插头,其外圈还会设置防打火电阻,从而避免打火现象。然而,在反复插拔防打火插头后,其十字花弹性结构的回弹性能会降低,且反复接触的位置很容易落到防打火圈之外,造成打火现象。
发明内容
本发明提供一种上电缓启动装置、电池组件、无人机以及方法,以解决现有防打插头因反复插拔过程中回弹性会降低,且反复接触的位置容易落到防打火圈之外而造成打火现象的问题。
第一方面,本发明提供一种上电缓启动装置,包括:开关电路以及与所述开关电路连接的处理单元;
其中,所述开关电路和所述处理单元用于连接在电池和负载的同极端,所述开关电路的初始状态为断开状态;
所述处理单元在比较出所述电池和所述负载的同极端电压小于或等于第一预设阈值时,控制所述开关电路在延迟预设时间后导通,用于使所述电池向所述负载供电。
第二方面,本发明提供一种电池组件,包括:电池和上电缓启动装置;
其中,所述上电缓启动装置的第一输入端与所述电池的正极端连接,所述上电缓启动装置的第一输出端用于连接负载的正极端,所述上电缓启动装置的第二输入端与所述电池的负极端连接,所述上电缓启动装置的第二输出端用于连接所述负载的负极端,所述上电缓启动装置的初始状态为断开状态;
当所述上电缓启动装置连接所述负载并确定所述电池与所述负载的同极端电压小于或等于第一预设阈值时,所述上电缓启动装置在延迟预设时间后导通,用于使所述电池向所述负载供电。
第三方面,本发明提供一种无人机,包括机身、装设于所述机身的电池,所述无人机还包括:装设于所述机身上的上电缓启动装置;
其中,所述上电缓启动装置的第一输出端与所述无人机的正极端连接,所述上电缓启动装置的第一输入端用于连接电池的正极端,所述上电缓启动装置的第二输出端与所述无人机的负极端连接,所述上电缓启动装置的第二输入端用于连接所述电池的负极端,所述上电缓启动装置的初始状态为断开状态;
当所述上电缓启动装置连接所述电池并确定所述电池与所述无人机的同极端电压小于或等于第一预设阈值时,所述上电缓启动装置在延迟预设时间后导通,用于使所述电池向所述无人机供电。
第四方面,本发明提供一种上电缓启动方法,包括:
上电缓启动装置获取电池和负载的同极端电压,其中所述上电缓启动装置的初始状态为断开状态;
所述上电缓启动装置判断所述同极端电压是否小于或等于第一预设阈值;
若是,则所述上电缓启动装置在延迟预设时间后导通,用于使所述电池向所述负载供电。
本发明提供的上电缓启动装置、电池组件、无人机以及方法,该装置通过开关电路连接在电池和负载的同极端,且开关电路的初始状态为断开状态, 能够使得电池与负载连接时处于断开状态。且通过处理单元连接在电池和负载的同极端,能够使得电池通过处理单元缓慢向负载的电容进行充电,当处理单元在比较出电池和负载的同极端电压小于或等于第一预设阈值时,使得负载处于低阻状态,负载已经满足大电流的要求,处理单元便可控制开关电路在延迟预设时间后导通,保证电池与负载连接可靠,电池就能向负载供电。本发明解决了现有防打火措施无法完全防止打火现象的问题,实现了缓慢启动电池向负载的供电过程,避免了电池与负载的打火现象,从而消除在易燃易爆环境下引起火灾的风险,不仅能够延长电池接插件的寿命,还能防止由于打火氧化所带来的接触阻抗变高而影响负载的安全性能。
附图说明
图1为本发明提供的上电缓启动装置的结构示意图一;
图2为本发明提供的上电缓启动装置的结构示意图二;
图3为本发明提供的上电缓启动装置的结构示意图三;
图4为本发明提供的第一电压比较电路的电路示意图;
图5为本发明提供的缓启动延时电路的电路示意图;
图6为本发明提供的第一电平转换电路的电路示意图;
图7A为本发明提供的上电缓启动装置的结构示意图四;
图7B为本发明提供的上电缓启动装置的结构示意图五;
图8为本发明提供的上电缓启动装置的结构示意图六;
图9为本发明提供的第二电平转换电路的电路示意图;
图10为本发明提供的上电缓启动装置的结构示意图七;
图11为本发明提供的上电缓启动装置的结构示意图八;
图12为本发明提供的第三电平转换电路的电路示意图;
图13为本发明提供的上电缓启动装置的结构示意图九;
图14为本发明提供的电池组件的结构示意图;
图15为本发明提供的无人机的结构示意图;
图16为本发明提供的上电缓启动方法的流程示意图一;
图17为本发明提供的上电缓启动方法的流程示意图二;
图18为本发明提供的上电缓启动方法的流程示意图三。
具体实施方式
目前,电池端子采用公头的十字花弹性结构的防打火插头,除了由于其电池端子的回弹性能易变差,且与无人机反复接触的位置易落到防打火圈外而造成打火现象以外,在长期作业过程中,电池上设有的防打火电阻因受到插拔应力和环境腐蚀的影响,造成防打火插头的金属端子灼烧变黑,且会快速实效,进而丧失防打火功能。
进一步地,无人机通过电调板来防止打火现象,但本领域技术人员可以理解,无人机内部使用电容最多的位置是电调板。电调板由于其自身特性,只能对其内部的1到2个大电解电容进行缓启动,而其他电容虽然容值都在数微法拉,但输入电压高,并联数量多,仍会带来数百安培的冲击电流,从而引发打火现象。
综上,无论上述哪种防打火措施皆不能完全解决打火现象,因此,本实施例中通过设置上电缓启动装置来延时启动电池向无人机供电的过程。下面结合图1,对本实施例中上电缓启动装置的具体实现结构进行详细的说明。
图1为本发明提供的上电缓启动装置的结构示意图一,如图1所示,本实施例的上电缓启动装置可以包括:开关电路以及与开关电路连接的处理单元。其中,开关电路和处理单元用于连接在电池和负载的同极端,开关电路的初始状态为断开状态。处理单元在比较出电池和负载的同极端电压小于或等于第一预设阈值时,控制开关电路在延迟预设时间后导通,用于使电池向负载供电。
具体地,本实施例中电池有正极和负极,可将负载等效为负载电容和负载电阻的并联,负载电容有正极和负极,因此,本实施例中电池和负载的同级端指的是电池的正极端和负载电容的正极端,或者,电池的负极端和负载电容的负极端。
进一步地,由于开关电路与电池和负载的同级端连接,因此,本实施例中开关电路可分别与电池的正极端和负载电容的正极端连接,也可分别与电池的负极端和负载电容的负极端连接,本实施例对此不做限定。又由于处理单元与电池和负载的同级端连接,因此,处理单元可分别与电池的正极端和负载电容的正极端连接,也可分别与电池的负极端和负载电容的负极端连接, 本实施例对此不做限定。为了便于说明,本实施例皆以开关电路和处理单元分别连接在电池和负载的不同的同级端为例。
进一步地,当电池与负载连接时,由于负载电容两端的电压不会突变,因此,负载电容的正极端电压和负载端电压皆为电池电压,接触阻抗接近为零,这样就会瞬间对空气放电,出现打火现象。本实施例中由于开关电路的初始状态为断开状态,因此,当开关电路连接电池和负载的同级端时,开关电路能够断开电池与负载之间的通路,使得电池无法向负载供电,进而对电池和负载实现保护作用。其中,本实施例对开关电路的具体实现形式不做限定。
进一步地,本实施例还可通过处理单元与电池和负载的同级端的连接,使得电池经由处理单元后能够缓慢向负载电容充电,延长电池与负载接通的时间。而且,处理单元还可时刻获取电池和负载的同级端电压,通过比较同级端电压和第一预设阈值电压的大小,来判断此时电池与负载之间是否能够连接,防止电压和负载之间出现打火现象。其中,本实施例对处理单元的具体实现形式不做限定。且本实施例中第一预设阈值可根据处理单元的静态电流和电池电压来确定,本实施例对此不做限定。一般第一预设阈值可取值为10V到15V之间。
进一步地,本实施例中处理单元通过与开关电路的连接,能够控制开关电路的状态。在处理单元确定同级端电压小于或等于第一预设阈值时,便可将开关电路的状态变为导通状态,使得电池与负载之间的通路导通,电池便开始向负载供电。
本实施例提供的上电缓启动装置,通过开关电路连接在电池和负载的同极端,且开关电路的初始状态为断开状态,能够使得电池与负载连接时处于断开状态。且通过处理单元连接在电池和负载的同极端,能够使得电池通过处理单元缓慢向负载的电容进行充电,当处理单元在比较出电池和负载的同极端电压小于或等于第一预设阈值时,使得负载处于低阻状态,负载已经满足大电流的要求,处理单元便可控制开关电路在延迟预设时间后导通,保证电池与负载连接可靠,电池就能向负载供电。本实施例解决了现有防打火措施无法完全防止打火现象的问题,实现了缓慢启动电池向负载的供电过程,避免了电池与负载的打火现象,从而消除在易燃易爆环境下引起火灾的风险, 不仅能够延长电池接插件的寿命,还能防止由于打火氧化所带来的接触阻抗变高而影响负载的安全性能。
在上述实施例的基础上,对本实施例中上电缓启动装置的具体实现结构进行详细的说明。
首先,图2为本发明提供的上电缓启动装置的结构示意图二,如图2所示,本实施例的处理单元包括:第一电阻和比较延时电路。其中,第一电阻的两端用于连接电池和负载的同极端,比较延时电路与第一电阻并联连接,比较延时电路获取第一电阻的两端电压。
比较延时电路的输出端与开关电路连接,当比较延时电路比较出第一电阻的两端电压小于或等于第一预设阈值时,控制开关电路在延迟预设时间后导通,用于使电池向负载供电。
具体地,当第一电阻与电池和负载的同级端连接时,电池可经由第一电阻向负载电容进行缓慢充电,防止打火现象的发生。本实施例对第一电阻的具体类型、具体个数和阻值大小皆不做限定。可选地,第一电阻为抗浪涌电阻。一般第一电阻可取值为10欧姆。
进一步地,由于处理单元还需要获取电池和负载的同级端电压,且第一电阻能够连接在电池和负载的同级端,因此,本实施例中比较延时电路可通过与第一电阻的连接,获取第一电阻的两端电压,且第一电阻的两端电压可作为电池和负载的同级端电压。
进一步地,比较延时电路比较第一电阻的两端电压和第一预设阈值的大小,并当第一电阻的两端电压是否小于等于第一预设阈值时,比较延时电路会延时预设时间之后,保证电池与负载之间稳定连接之后,再改变开关电路的状态,使得开关电路导通,进而电池便可向负载供电。其中,本实施例中预设时间可根据电池和负载连接稳固的时间以及负载快速泄放的时间进行综合考虑,本实施例对此不做限定。一般预设时间可选为500毫秒。且本实施例中比较延时电路的具体实现方式包括多种,本实施例对此也不做限定。
可选地,图3为本发明提供的上电缓启动装置的结构示意图三,如图3所示,本实施例中的比较延时电路包括:第一电压比较电路和缓启动延时电路。其中,第一电压比较电路与第一电阻并联连接,第一电压比较电路比较第一电阻的两端电压和第一预设阈值。
第一电压比较电路的输出端与缓启动延时电路的输入端连接,缓启动延时电路的输出端与开关电路连接。
当第一电压比较电路比较出第一电阻的两端电压小于或等于第一预设阈值时,缓启动延时电路传输接收第一电压比较电路发送的传输信号,控制开关电路在延迟预设时间后导通,用于使电池向负载供电。
具体地,本实施例中比较延时电路不仅能够获取第一电阻的两端电压,并对第一电阻的两端电压和第一预设阈值进行比较,还能够在延迟预设时间后对开关电路的状态进行控制。因此,本实施例可根据比较延时电路完成的功能分为第一电压比较电路和缓启动延时电路。
进一步地,本实施例中第一电压比较电路通过并联连接第一电阻,便可获得第一电阻的两端电压,完成第一电阻的两端电压和第一预设阈值的比较过程。且第一电压比较电路的输出端通过与缓启动延时电路的连接,便可将比较结果发送给缓启动延时电路,缓启动延时电路延迟预设时间后,再将开关电路的状态进行改变,使得开关电路导通,使得电池和负载之间的通路导通,实现电池安全连接负载并对负载供电的过程。其中,本实施例对第一电压比较电路和缓启动延时电路的具体实现形式不做限定。
可选地,图4为本发明提供的第一电压比较电路的电路示意图,如图4所示,本实施例中的第一电压比较电路包括:第二电阻、第三电阻以及第二开关管。其中,第二开关管的输入端与第一电阻的一端连接,第二开关管的控制端、第二电阻和第一电阻的另一端依次连接,第三电阻并联连接第二开关管的输入端和控制端,第二开关管的输出端与缓启动延时电路的输入端连接。
当第一电阻的两端电压小于或等于第一预设阈值时,第二开关管的输出端向缓启动延时电路发送传输信号,缓启动延时电路根据传输信号,控制开关电路在延迟预设时间后导通,用于使电池向负载供电。
具体地,由于第一电阻的两端电压会逐渐减小,因此,本实施例中第一电阻的两端压降会逐渐减小。本实施例中第二开关管的输入端通过与第一电阻的一端连接,使得第二开关管的输入端的电压发生变化,且第一电阻的另一端、第二电阻和第二开关管的控制端依次连接,第三电阻并联连接第二开关管的输入端和控制端,还使得第二开关管的控制端的电压也发生变化,进 而可改变第二开关管的通断状态。
进一步地,在第一电阻的两端电压小于或等于第一预设阈值时,第二开关管导通。由于第二开关管的输出端与缓启动延时电路的输入端连接,因此,第二开关管能够向缓启动延时电路输出传输信号,缓启动延时电路便可根据传输信号便可在延迟预设时间后控制开关电路导通,使得电池向负载供电。其中,本实施例中对第二电阻和第三电阻的阻值大小和具体个数以及第二开关管的类型和个数皆不做限定。
可选地,图5为本发明提供的缓启动延时电路的电路示意图,如图5所示,本实施例的缓启动延时电路包括:第一电平转换电路、第四电阻、第三开关管、第一二极管以及第一电容。其中,第一电平转换电路的第一输入端与第一电压比较电路的第一输出端连接,第一电平转换电路的第二输入端与电池的正极端连接,第一电平转换电路的输出端、第四电阻、第一二级管和开关电路依次连接。
第三开关管的控制端和输出端分别与第一二极管的正极和负极连接,第三开关管的输出端还分别与第一电容和第三开关管的控制端连接,第一电容与第三开关管的输入端皆与地连接。
当第一电压比较电路比较出第一电阻的两端电压小于或等于第一预设阈值时,第一电平转换电路接收第一电压比较电路发送的传输信号,第一电平转换电路根据电池的正极端电压和传输信号得到导通电压,第三开关管根据导通电压控制开关电路在延迟预设时间后导通,用于使电池向负载供电。
具体地,本实施例中第一电平转换电路的第一输入端通过与第一电压比较电路的第一输出端的连接,能够接收第一电压比较电路的传输信号。且当第一电平转换电路比较出第一电阻的两端电压小于或等于第一预设阈值时,本实施例中第一电平转换电路的第二输入端通过与电池的正极端连接,能够使得第一电平转换电路能够根据电池的正极端电压和传输电压,输出能够导通开关电路的导通电压。且在导通电压传输到开关电路之前,由于缓启动延时电路具有缓启动的功能,本实施例可通过第四电阻与第一电平转换电路的输出端的连接,不仅保证第一电平转换电路的输出电压不会过高,且能够延迟传输导通电压的时间。
进一步地,由于第三开关管的输出端还分别与第一电容和第三开关管的 控制端连接,第三开关管的控制端通过第四电阻与第一电平转换电路的输出端连接,当第一电平转换电路比较出第一电阻的两端电压大于第一预设阈值时,第三开关管的控制端的电压高于第三开关管的输出端的电压,第三开关管会处于反向截止的状态,不会导通。且第一电平转换电路的输出端电压和开关电路的输入端电压皆会对缓启动延时电路产生冲击,因此,本实施例中通过第一电容的一端分别与第三开关管的输出端和第一二极管的负极连接,第一电容的另一端与地连接,能够对第一电平转换电路的输出端电压和开关电路的输入端电压起到快速泄放的作用。
进一步地,由于第一电阻的两端电压不会瞬时下降为第一预设阈值,因此,当第一电压比较电路比较出第一电阻的两端电压大于第一预设阈值时,第一电压比较电路向缓启动延时电路发送传输信号,缓启动延时电路根据传输信号得到断开电压,缓启动延时电路控制开关电路保持断开状态。
本实施例中第一电平转换电路的具体实现形式有多种,本实施例对此不做限定。可选地,图6为本发明提供的第一电平转换电路的电路示意图,如图6所示,本实施例的第一电平转换电路包括:第五电阻、第六电阻、第七电阻、第二二极管以及第二电容。其中,第一电压比较电路的第一输出端分别与第五电阻的第一端和第六电阻的第一端连接,第五电阻的第二端还与电池的正极端连接,第六电阻的第二端还与所地连接,第二电容的两端并联连接第一电压比较电路的第一输出端和地。
第五电阻的第一端和第六电阻的第一端皆与第七电阻的第一端连接,第七电阻的第二端分别与第四电阻和第二二极管的第一端连接,第二二极管与地连接。
具体地,由于无法直接采用第一电压比较电路输出的电压作为开关电路的导通电压,来控制开关电路导通,因此,本实施例中可通过第一电平转换电路来转换第一电压比较电路的输出电压。具体可将电池的正极端电压作为基准,通过第五电阻和第六电阻的分压作用,对第一电压比较电路的输出电压进行转换,经过第七电阻后能够得到导通开关电路的导通电压。其中,第二二极管起到稳压的作用,第二电容起到滤波的作用。
其次,图7A为本发明提供的上电缓启动装置的结构示意图四,图7B为本发明提供的上电缓启动装置的结构示意图五,如图7A和图7B所示,本实 施例的上电缓启动装置还包括:温度告警单元。其中,温度告警单元与比较延时电路连接;或者,温度告警单元与第一电阻并联连接。温度告警单元用于在电池向负载的供电过程中,向负载的输入端传输温度信号或告警信号,以监测开关电路是否导通。
具体地,开关电路的通断状态影响着电池向负载进行的供电过程,因此,为了保证在电池向负载的供电过程中开关电路一直处于导通状态,本实施例可通过温度告警单元来监测开关电路是否导通。
进一步地,由于在开关电路不导通时,第一电阻的两端电压会异常高,上电缓启动装置的温度也随之升高而变得异常,因此,本实施例可设置温度告警单元向负载输入温度信号或告警信号。
进一步地,当上电缓启动装置中开关电路正常导通时,温度告警单元向负载输出的是温度信号,便于在负载端能够时获取上电缓启动装置的工作温度。当上电缓启动装置中的开关电路未导通时,温度告警单元向负载输出的是告警信号,使得负载端的人员知道上电缓启动装置出现异常,且需要对负载端进行保护。当负载为无人机时,操作人员检测到上电缓启动装置即将实效或者已经实效时,应尽快使得无人机进入保护状态,触发返航或者迫降,以防止用户的生命财产受到损失。
进一步地,本实施例中温度告警单元的连接方式有多种。下面通过两种不同的连接方式对温度告警单元的具体实现过程进行详细的说明。
第一种可行的实现方式,图8为本发明提供的上电缓启动装置的结构示意图六,如图8所示,当温度告警单元与比较延时电路连接时,本实施例的温度告警单元包括:第一温度传感器、第二电平转换电路和第四开关管。其中,第一温度传感器与第四开关管的输入端连接,第四开关管的输出端与负载的输入端连接,第一温度传感器向负载的输入端输出温度信号。
比较延时电路的输出端与第二电平转换电路的第一输入端连接,第二电平转换电路的第二输入端与电池的正极端连接,第二电平转换电路的输出端与第四开关管的控制端连接。
当比较延时电路比较出第一电阻的两端电压大于或等于第一预设阈值时,第二电平转换电路输出的驱动信号控制第四开关管导通,第一温度传感器与负载的输入端断开连接,用于使负载的输入端输出告警信号。
具体地,本实施例中第一温度传感器能够实时获取实时监控上电缓启动装置的温度信号,且第一温度传感器通过与第四开关管的输入端的连接,第四开关管的输出端与负载的输入端的连接,温度信号能够在第四开关管未导通时,传输到负载的输入端,使得负载端的人员实时监控上电缓启动装置的温度,防止开关电路实效而导致异常升温。其中,本实施例对第一温度传感器的具体类型不做限定。
进一步地,本实施例中第二电平转换电路的第一输入端与比较延时电路的输出端连接,因此,当比较延时电路比较出第一电阻的两端电压大于或等于第一预设阈值时,第二电平转换电路的第二输入端与电池的正极端连接,第二电平转换电路能够以电池的正极端电压为基准,对比较延时电路输出的电压转换为驱动信号,由于第二电平转换电路的输出端与第四开关管的控制端连接,因此,驱动信号的输入能够使得第四开关管导通,这样第一温度传感器与负载的输入端断开连接,向负载的输入端输出变为告警信号。其中,本实施例对第二电平转换电路和第四开关管的具体类型皆不做限定。
可选地,图9为本发明提供的第二电平转换电路的电路示意图,如图9所示,本实施例的第二电平转换电路包括:第八电阻、第九电阻、第十电阻、第三二极管以及第三电容。其中,比较延时电路的输出端分别与第八电阻的第一端和第九电阻的第一端连接,第八电阻的第二端还与电池的正极端连接,第九电阻的第二端与第四开关管的控制端连接,第十电阻、第三电容和第三二极管均并联连接第九电阻的第二端和地。
具体地,由于无法直接采用比较延时电路输出的电压作为第四开关管的导通电压,来控制第四开关管导通,因此,本实施例中可通过第二电平转换电路来转换比较延时电路的输出电压。具体可将电池的正极端电压作为基准,通过第八电阻和第九电阻的分压作用,对比较延时电路的输出电压进行转换,经过第十电阻后能够得到导通开关电路的导通电压。其中,第三二极管起到稳压的作用,第三电容起到滤波的作用。
第二种可行的实现方式,图10为本发明提供的上电缓启动装置的结构示意图七,如图10所示,当温度告警单元与第一电阻连接时,本实施例的温度告警单元包括:第二电压比较电路、第二温度传感器、第三电平转换电路和第五开关管。其中,第二电压比较电路与第一电阻并联连接,第二电压比较 电路比较第一电阻的两端电压和第二预设阈值,第二预设阈值大于第一预设阈值。
第二电压比较电路的输出端与第三电平转换电路的第一输入端连接,第三电平转换电路的第二输入端与电池的正极端连接,第三电平转换电路的输出端与第五开关管的控制端连接。
第二温度传感器与第五开关管的输入端连接,第五开关管的输出端与负载的输入端连接,第二温度传感器向负载的输入端输出温度信号。
当第二电压比较电路比较出第一电阻的两端电压大于或等于第二预设阈值时,第三电平转换电路输出的驱动信号控制第五开关管导通,第二温度传感器与负载的输入端断开连接,用于使负载的输入端输出告警信号。
具体地,本实施例中第二温度传感器能够实时获取实时监控上电缓启动装置的温度信号,且第二温度传感器通过与第五开关管的输入端的连接,第五开关管的输出端与负载的输入端的连接,温度信号能够在第五开关管未导通时,传输到负载的输入端,使得负载端的人员实时监控上电缓启动装置的温度,防止开关电路实效而导致异常升温。其中,本实施例对第二温度传感器的具体类型不做限定。
进一步地,在电池向负载的供电过程中,为了及时且精准反映开关电路是否出现异常,本实施例中可添加新的第二电压比较电路来判断在电池向负载的供电过程中,第二电压比较电路通过比较第一电阻的两端电压与第二预设阈值的大小,来判断开关电路是否出现异常。由于第一预设阈值是缓慢启动电池向负载供电的最大临界值,因此,本实施例中可设置第二预设值大于第一预设阈值,使得负载端能够及时显示出开关电路出现断开的异常情况,而进行相应的操作。
进一步地,本实施例中第三电平转换电路的第一输入端与第二电压比较电路的输出端连接,因此,当第二电压比较电路比较出第一电阻的两端电压大于或等于第二预设阈值时,第三电平转换电路的第二输入端与电池的正极端连接,第二电平转换电路能够以电池的正极端电压为基准,对第二电压比较电路输出的电压转换为驱动信号,由于第三电平转换电路的输出端与第五开关管的控制端连接,因此,驱动信号的输入能够使得第五开关管导通,这样第二温度传感器与负载的输入端断开连接,向负载的输入端输出变为告警 信号。其中,本实施例对第三电平转换电路和第五开关管的具体类型皆不做限定。
可选地,图11为本发明提供的上电缓启动装置的结构示意图八,如图11所示,第二电压比较电路包括:第十一电阻、第十二电阻以及第六开关管。其中,第六开关管的输入端与第一电阻的一端连接,第六开关管的控制端、第十一电阻和第一电阻的另一端依次连接,第十二电阻并联连接第六开关管的输入端和控制端,第六开关管的输出端与第三电平转换电路的第一输入端连接。
当第二电压比较电路比较出第一电阻的两端电压大于或等于第二预设阈值时,第三电平转换电路输出的驱动信号控制第五开关管导通,第二温度传感器与负载的输入端断开连接,用于使负载的输入端输出告警信号。
具体地,在电池向负载供电过程中,若开关电路断开,则第一电阻的两端电压会异常高,因此,本实施例中第六开关管的输入端通过与第十一电阻的一端连接,使得第六开关管的输入端的电压发生变化,且第一电阻的另一端、第十一电阻和第六开关管的控制端依次连接,第十二电阻并联连接第六开关管的输入端和控制端,还使得第六开关管的控制端的电压也发生变化,进而可改变第六开关管的通断状态。
进一步地,在第六开关管的输入端的输入电压大于或等于第二预设阈值时,第六开关管导通。由于第六开关管的输出端与第三电平转换电路的第一输入端连接,因此,第六开光管能够向第三电平转换电路输出传输信号,第三电平转换电路便可输出驱动信号控制第五开关管导通,第二温度传感器便与负载的输入端断开连接,使得向负载的输入端输出的为告警信号,以提示上电缓启动装置异常,告知负载段的人员进行检修或更换的工作。其中,本实施例中对第十一电阻和第十二电阻的阻值大小和具体个数以及第六开关管的类型和个数皆不做限定。
可选地,图12为本发明提供的第三电平转换电路的电路示意图,如图12所示,本实施例的第三电平转换电路包括:第十三电阻、第十四电阻、第十五电阻、第四二极管以及第四电容。其中,第二电压比较电路的输出端分别与第十三电阻的第一端和第十四电阻的第一端连接,第十三电阻的第二端还与电池的正极端连接,第十四电阻的第二端与第五开关管的控制端连接, 第十五电阻、第四电容和第四二极管均并联连接第十四电阻的第二端和地。
具体地,由于无法直接采用第二电压比较电路输出的电压作为第五开关管的导通电压,来控制第五开关管导通,因此,本实施例中可通过第三电平转换电路来转换第二电压比较电路的输出电压。具体可将电池的正极端电压作为基准,通过第十三电阻和第十四电阻的分压作用,对第二电压比较电路的输出电压进行转换,经过第十五电阻后能够得到导通开关电路的导通电压。其中,第四二极管起到稳压的作用,第四电容起到滤波的作用。
最后,图13为本发明提供的上电缓启动装置的结构示意图九,如图13所示,本实施例上电缓启动装置中的开关电路包括:第一开关管。其中,第一开关管的输入端和输出端用于连接电池和负载的同极端,第一开关管的初始状态为断开状态,处理单元与第一开关管的控制端连接。
当处理单元比较出电池和负载的同极端电压小于或等于第一预设阈值时,处理单元控制第一开关管在延迟预设时间后导通,用于使电池向负载供电。
具体地,本实施例对第一开关管的具体类型不做限定。可选地,第一开关管为金属—氧化物—半导体(metal oxide semiconductor,MOS)管、晶体二极管和IGBT中的任一种。为了便于说明,本实施例以第一开关管为MOS管为例进行详细的说明。可选地,当第一开关管的输入端和输出端串联连接电池和负载的正极端时,第一开关管为P沟道MOS管;当第一开关管的输入端和输出端串联连接电池和负载的负极端时,第一开关管为N沟道MOS管。
进一步地,通过第一开关管的输入端和输出端分别与电池的正极端和负载的正级端连接,或者,通过第一开关管的输入端和输出端分别与电池的负极端和负载的负级端连接,且第一开关管的初始状态为断开状态,来控制电池与负载之间的通路断开。
进一步地,本实施例中处理单元还与第一开关管的控制端连接,使得当处理单元比较出电池和负载的同极端电压小于或等于第一预设阈值时,处理单元能够在延迟预设时间后,通过第一开关管的控制端控制第一开关管导通,使得电池能够向负载供电。
此处需要说明的是,本实施例中第一开关管、第二开关管、第三开关管、 第四开关管以及第五开关管皆可采用MOS管、晶体二极管和IGBT中的任一,本实施例对此不做限定。
图14为本发明提供的电池组件的结构示意图,如图14所示,本实施例的电池组件包括:电池和如上述的上电缓启动装置。其中,上电缓启动装置的第一输入端与电池的正极端连接,上电缓启动装置的第一输出端用于连接负载的正极端,上电缓启动装置的第二输入端与电池的负极端连接,上电缓启动装置的第二输出端用于连接负载的负极端,上电缓启动装置的初始状态为断开状态。
当上电缓启动装置连接负载并确定电池与负载的同极端电压小于或等于第一预设阈值时,上电缓启动装置在延迟预设时间后导通,用于使电池向负载供电。
本发明实施例提供的电池组件包括如上述所述的上电缓启动装置,可执行上述实施例,其具体实现原理和技术效果,可参见上述方法实施例,本实施例此处不再赘述。
图15为本发明提供的无人机的结构示意图,如图15所示,无人机包括机身、装设于机身的电池,本实施例的无人机还包括:装设于机身上的如上述的上电缓启动装置。
其中,上电缓启动装置的第一输出端与无人机的正极端连接,上电缓启动装置的第一输入端用于连接电池的正极端,上电缓启动装置的第二输出端与无人机的负极端连接,上电缓启动装置的第二输入端用于连接电池的负极端,上电缓启动装置的初始状态为断开状态。
当上电缓启动装置连接电池并确定电池与无人机的同极端电压小于或等于第一预设阈值时,上电缓启动装置在延迟预设时间后导通,用于使电池向无人机供电。
本发明实施例提供的无人机可以为应用于农林植物保护作业的植保无人机,这种无人机一般装载有一定重量的负重,例如用于除病虫害的农药或者用于播种的种子,而这种无人机则更加需要大电压高容量的电池来驱动。本发明实施例提供的无人机采用如上述所述的上电缓启动装置,可执行上述实施例,其具体实现原理和技术效果,可参见上述方法实施例,本实施例此处不再赘述。
图16为本发明提供的上电缓启动方法的流程示意图一,本实施例的方法是由为缓慢启动电池向负载的供电过程的上电缓启动装置执行;本实施例对方法仅做简单描述,具体的执行原理可以结合参见设备实施例所述,如图16所示,本实施例的上电缓启动方法,包括:
S101、上电缓启动装置获取电池和负载的同极端电压,其中上电缓启动装置的初始状态为断开状态。
S102、上电缓启动装置判断同极端电压是否小于或等于第一预设阈值。
S103、若同极端电压小于或等于第一预设阈值,则上电缓启动装置在延迟预设时间后导通,用于使电池向负载供电。
图17为本发明提供的上电缓启动方法的流程示意图二,本实施例的方法是由为缓慢启动电池向负载的供电过程的上电缓启动装置执行;本实施例对方法仅做简单描述,具体的执行原理可以结合参见设备实施例所述,如图17所示,本实施例的上电缓启动方法包括:
S201、上电缓启动装置获取电池和负载的同极端电压,其中上电缓启动装置的初始状态为断开状态。
S202、上电缓启动装置判断同极端电压是否小于或等于第一预设阈值。若是,则执行S203;若否,则执行S204。
S203、上电缓启动装置在延迟预设时间后导通,用于使电池向负载供电。
其中,S201、S202、S203分别与图16实施例中的S101、S102、S103等实现方式类似,本实施例此处不再赘述。
S204、上电缓启动装置保持断开状态。
图18为本发明提供的上电缓启动方法的流程示意图三,本实施例的方法是由为监测包含开关电路是否正常导通的上电缓启动装置执行;本实施例对方法仅做简单描述,具体的执行原理可以结合参见设备实施例所述。如图18所示,在电池向负载的供电过程中,本实施例的上电缓启动方法包括:
S301、上电缓启动装置判断同极端电压是否大于或等于第二预设阈值,其中第二预设阈值大于或等于第一预设阈值。若是,则执行S302;若否,则执行S303。
S302、上电缓启动装置向负载的输入端传输告警信号。
S303、上电缓启动装置向负载的输入端传输温度信号。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (57)

  1. 一种上电缓启动装置,其特征在于,包括:开关电路以及与所述开关电路连接的处理单元;
    其中,所述开关电路和所述处理单元用于连接在电池和负载的同极端,所述开关电路的初始状态为断开状态;
    所述处理单元在比较出所述电池和所述负载的同极端电压小于或等于第一预设阈值时,控制所述开关电路在延迟预设时间后导通,用于使所述电池向所述负载供电。
  2. 根据权利要求1所述的上电缓启动装置,其特征在于,所述处理单元包括:第一电阻和比较延时电路;
    其中,所述第一电阻的两端用于连接所述电池和所述负载的同极端,所述比较延时电路与所述第一电阻并联连接,所述比较延时电路获取所述第一电阻的两端电压;
    所述比较延时电路的输出端与所述开关电路连接,当所述比较延时电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  3. 根据权利要求2所述的上电缓启动装置,其特征在于,所述比较延时电路包括:第一电压比较电路和缓启动延时电路;
    其中,所述第一电压比较电路与所述第一电阻并联连接,所述第一电压比较电路比较所述第一电阻的两端电压和所述第一预设阈值;
    所述第一电压比较电路的输出端与所述缓启动延时电路的输入端连接,所述缓启动延时电路的输出端与所述开关电路连接;
    当所述第一电压比较电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述缓启动延时电路传输接收所述第一电压比较电路发送的传输信号,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  4. 根据权利要求3所述的上电缓启动装置,其特征在于,所述第一电压比较电路包括:第二电阻、第三电阻以及第二开关管;
    其中,所述第二开关管的输入端与所述第一电阻的一端连接,所述第二开关管的控制端、所述第二电阻和所述第一电阻的另一端依次连接,所述第 三电阻并联连接所述第二开关管的输入端和控制端,所述第二开关管的输出端与所述缓启动延时电路的输入端连接;
    当所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述第二开关管的输出端向所述缓启动延时电路发送所述传输信号,所述缓启动延时电路根据所述传输信号,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  5. 根据权利要求3所述的上电缓启动装置,其特征在于,所述缓启动延时电路包括:第一电平转换电路、第四电阻、第三开关管、第一二极管以及第一电容;
    其中,所述第一电平转换电路的第一输入端与所述第一电压比较电路的第一输出端连接,所述第一电平转换电路的第二输入端与所述电池的正极端连接,所述第一电平转换电路的输出端、所述第四电阻和所述开关电路依次连接;
    所述第三开关管的控制端和输出端分别与所述第一二极管的正极和负极连接,所述第三开关管的输出端还分别与所述第一电容和所述第三开关管的控制端连接,所述第一电容与所述第三开关管的输入端皆与地连接;
    当所述第一电压比较电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述第一电平转换电路接收所述第一电压比较电路发送的所述传输信号,所述第一电平转换电路根据所述电池的正极端电压和所述传输信号得到导通电压,所述第三开关管根据所述导通电压控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  6. 根据权利要求5所述的上电缓启动装置,其特征在于,所述第一电平转换电路包括:第五电阻、第六电阻、第七电阻、第二二极管以及第二电容;
    其中,所述第一电压比较电路的第一输出端分别与所述第五电阻的第一端和所述第六电阻的第一端连接,所述第五电阻的第二端还与所述电池的正极端连接,所述第六电阻的第二端还与所地连接,所述第二电容的两端并联连接所述第一电压比较电路的第一输出端和所述地;
    所述第五电阻的第一端和所述第六电阻的第一端皆与所述第七电阻的第一端连接,所述第七电阻的第二端分别与所述第四电阻和所述第二二极管的第一端连接,所述第二二极管与所述地连接。
  7. 根据权利要求3所述的上电缓启动装置,其特征在于,当所述第一电压比较电路比较出所述第一电阻的两端电压大于所述第一预设阈值时,所述第一电压比较电路向所述缓启动延时电路发送所述传输信号,所述缓启动延时电路根据所述传输信号得到断开电压,所述缓启动延时电路控制所述开关电路保持断开状态。
  8. 根据权利要求2所述的上电缓启动装置,其特征在于,所述装置还包括:温度告警单元;
    其中,所述温度告警单元与所述比较延时电路连接;或者,
    所述温度告警单元与所述第一电阻连接;
    所述温度告警单元用于在所述电池向所述负载的供电过程中,向所述负载的输入端传输温度信号或告警信号,以监测所述开关电路是否导通。
  9. 根据权利要求8所述的上电缓启动装置,其特征在于,当所述温度告警单元与所述比较延时电路连接时,所述温度告警单元包括:第一温度传感器、第二电平转换电路和第四开关管;
    其中,所述第一温度传感器与所述第四开关管的输入端连接,所述第四开关管的输出端与所述负载的输入端连接,所述第一温度传感器向所述负载的输入端输出温度信号;
    所述比较延时电路的输出端、所述第二电平转换电路的第一输入端与所述第四开关管的控制端依次连接,所述第二电平转换电路的第二输入端与所述电池的正极端连接;
    当所述比较延时电路比较出所述第一电阻的两端电压大于或等于所述第一预设阈值时,所述第二电平转换电路输出的驱动信号控制所述第四开关管导通,所述第一温度传感器与所述负载的输入端断开连接,用于使所述负载的输入端输出所述告警信号。
  10. 根据权利要求9所述的上电缓启动装置,其特征在于,所述第二电平转换电路包括:第八电阻、第九电阻、第十电阻、第三二极管以及第三电容;
    其中,所述比较延时电路的输出端分别与所述第八电阻的第一端和所述第九电阻的第一端连接,所述第八电阻的第二端还与所述电池的正极端连接,所述第九电阻的第二端与所述第四开关管的控制端连接,第十电阻、所述第 三电容和第三二极管均并联连接所述第九电阻的第二端和地。
  11. 根据权利要求8所述的上电缓启动装置,其特征在于,当所述温度告警单元与所述第一电阻连接时,所述温度告警单元包括:第二电压比较电路、第二温度传感器、第三电平转换电路和第五开关管;
    其中,所述第二电压比较电路与所述第一电阻并联连接,所述第二电压比较电路比较所述第一电阻的两端电压和第二预设阈值,所述第二预设阈值大于所述第一预设阈值;
    所述第二电压比较电路的输出端、所述第三电平转换电路的第一输入端与所述第五开关管的控制端依次连接,所述第三电平转换电路的第二输入端与所述电池的正极端连接;
    所述第二温度传感器与所述第五开关管的输入端连接,所述第五开关管的输出端与所述负载的输入端连接,所述第二温度传感器向所述负载的输入端输出温度信号;
    当所述第二电压比较电路比较出所述第一电阻的两端电压大于或等于所述第二预设阈值时,所述第三电平转换电路输出的驱动信号控制所述第五开关管导通,所述第二温度传感器与所述负载的输入端断开连接,用于使所述负载的输入端输出所述告警信号。
  12. 根据权利要求11所述的上电缓启动装置,其特征在于,所述第二电压比较电路包括:第十一电阻、第十二电阻以及第六开关管;
    其中,所述第六开关管的输入端与所述第一电阻的一端连接,所述第六开关管的控制端、所述第十一电阻和所述第一电阻的另一端依次连接,所述第十二电阻并联连接所述第六开关管的输入端和控制端,所述第六开关管的输出端与所述第三电平转换电路的第一输入端连接;
    当所述第二电压比较电路比较出所述第一电阻的两端电压大于或等于所述第二预设阈值时,所述第三电平转换电路输出的驱动信号控制所述第五开关管导通,所述第二温度传感器与所述负载的输入端断开连接,用于使所述负载的输入端输出所述告警信号。
  13. 根据权利要求11所述的上电缓启动装置,其特征在于,所述第三电平转换电路包括:第十三电阻、第十四电阻、第十五电阻、第四二极管以及第四电容;
    其中,所述第二电压比较电路的输出端分别与所述第十三电阻的第一端和所述第十四电阻的第一端连接,所述第十三电阻的第二端还与所述电池的正极端连接,所述第十四电阻的第二端与所述第五开关管的控制端连接,所述第十五电阻、第四电容和第四二极管均并联连接所述第十四电阻的第二端和地。
  14. 根据权利要求1所述的上电缓启动装置,其特征在于,所述开关电路包括:第一开关管;
    其中,所述第一开关管的输入端和输出端用于连接所述电池和所述负载的同极端,所述第一开关管的初始状态为断开状态,所述处理单元与所述第一开关管的控制端连接;
    当所述处理单元比较出所述电池和所述负载的同极端电压小于或等于第一预设阈值时,所述处理单元控制所述第一开关管在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  15. 根据权利要求14所述的上电缓启动装置,其特征在于,所述第一开关管为MOS管、晶体二极管和IGBT中的任一。
  16. 根据权利要求15所述的上电缓启动装置,其特征在于,
    当所述第一开关管的输入端和输出端串联连接所述电池和所述负载的正极端时,所述第一开关管为P沟道MOS管;
    当所述第一开关管的输入端和输出端串联连接所述电池和所述负载的负极端时,所述第一开关管为N沟道MOS管。
  17. 根据权利要求2-5任一项所述的上电缓启动装置,其特征在于,所述第一电阻为抗浪涌电阻。
  18. 一种电池组件,其特征在于,包括:电池和上电缓启动装置;
    其中,所述上电缓启动装置的第一输入端与所述电池的正极端连接,所述上电缓启动装置的第一输出端用于连接负载的正极端,所述上电缓启动装置的第二输入端与所述电池的负极端连接,所述上电缓启动装置的第二输出端用于连接所述负载的负极端,所述上电缓启动装置的初始状态为断开状态;
    当所述上电缓启动装置连接所述负载并确定所述电池与所述负载的同极端电压小于或等于第一预设阈值时,所述上电缓启动装置在延迟预设时间后导通,用于使所述电池向所述负载供电。
  19. 根据权利要求18所述的电池组件,其特征在于,所述上电缓启动装置包括:开关电路以及与所述开关电路连接的处理单元;
    其中,所述开关电路的输入端与所述电池的第一极端连接,所述开关电路的输出端用于连接所述负载的第一极端,所述负载的第一极端与所述电池的第一极端为同极端,所述开关电路的初始状态为断开状态;
    所述处理单元的第一端与所述电池的第二极端连接,所述处理单元的第二端用于连接所述负载的第二极端,所述负载的第二极端与所述电池的第二极端为同极端,所述第一极端和第二极端为相同极端或不同极端;
    所述处理单元在比较出所述电池和所述负载的同极端电压小于或等于所述第一预设阈值时,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  20. 根据权利要求19所述的电池组件,其特征在于,所述处理单元包括:第一电阻和比较延时电路;
    其中,所述第一电阻的第一端与所述电池的第二极端连接,所述第一电阻的第二端用于连接所述负载的第二极端,所述比较延时电路与所述第一电阻并联连接,所述比较延时电路获取所述第一电阻的两端电压;
    所述比较延时电路的输出端与所述开关电路连接,当所述比较延时电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  21. 根据权利要求20所述的电池组件,其特征在于,所述比较延时电路包括:第一电压比较电路和缓启动延时电路;
    其中,所述第一电压比较电路与所述第一电阻并联连接,所述第一电压比较电路比较所述第一电阻的两端电压和所述第一预设阈值;
    所述第一电压比较电路的输出端与所述缓启动延时电路的输入端连接,所述缓启动延时电路的输出端与所述开关电路连接;
    当所述第一电压比较电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述缓启动延时电路传输接收所述第一电压比较电路发送的传输信号,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  22. 根据权利要求21所述的电池组件,其特征在于,所述第一电压比较 电路包括:第二电阻、第三电阻以及第二开关管;
    其中,所述第二开关管的输入端与所述第一电阻的一端连接,所述第二开关管的控制端、所述第二电阻和所述第一电阻的另一端依次连接,所述第三电阻并联连接所述第二开关管的输入端和控制端,所述第二开关管的输出端与所述缓启动延时电路的输入端连接;
    当所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述第二开关管的输出端向所述缓启动延时电路发送所述传输信号,所述缓启动延时电路根据所述传输信号,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  23. 根据权利要求21所述的电池组件,其特征在于,所述缓启动延时电路包括:第一电平转换电路、第四电阻、第三开关管、第一二极管以及第一电容;
    其中,所述第一电平转换电路的第一输入端与所述第一电压比较电路的第一输出端连接,所述第一电平转换电路的第二输入端与所述电池的正极端连接,所述第一电平转换电路的输出端、所述第四电阻和所述开关电路依次连接;
    所述第三开关管的控制端和输出端分别与所述第一二极管的正极和负极连接,所述第三开关管的输出端还分别与所述第一电容和所述第三开关管的控制端连接,所述第一电容与所述第三开关管的输入端皆与地连接;
    当所述第一电压比较电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述第一电平转换电路接收所述第一电压比较电路发送的所述传输信号,所述第一电平转换电路根据所述电池的正极端电压和所述传输信号得到导通电压,所述第三开关管根据所述导通电压控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  24. 根据权利要求23所述的电池组件,其特征在于,所述第一电平转换电路包括:第五电阻、第六电阻、第七电阻、第二二极管以及第二电容;
    其中,所述第一电压比较电路的第一输出端分别与所述第五电阻的第一端和所述第六电阻的第一端连接,所述第五电阻的第二端还与所述电池的正极端连接,所述第六电阻的第二端还与所地连接,所述第二电容的两端并联连接所述第一电压比较电路的第一输出端和所述地;
    所述第五电阻的第一端和所述第六电阻的第一端皆与所述第七电阻的第一端连接,所述第七电阻的第二端分别与所述第四电阻和所述第二二极管的第一端连接,所述第二二极管与所述地连接。
  25. 根据权利要求21所述的电池组件,其特征在于,当所述第一电压比较电路比较出所述第一电阻的两端电压大于所述第一预设阈值时,所述第一电压比较电路向所述缓启动延时电路发送所述传输信号,所述缓启动延时电路根据所述传输信号得到断开电压,所述缓启动延时电路控制所述开关电路保持断开状态。
  26. 根据权利要求20所述的电池组件,其特征在于,所述上电缓启动装置还包括:温度告警单元;
    其中,所述温度告警单元与所述比较延时电路连接;或者,
    所述温度告警单元与所述第一电阻连接;
    所述温度告警单元用于在所述电池向所述负载的供电过程中,向所述负载的输入端传输温度信号或告警信号,以监测所述开关电路是否导通。
  27. 根据权利要求26所述的电池组件,其特征在于,当所述温度告警单元与所述比较延时电路连接时,所述温度告警单元包括:第一温度传感器、第二电平转换电路和第四开关管;
    其中,所述第一温度传感器与所述第四开关管的输入端连接,所述第四开关管的输出端与所述负载的输入端连接,所述第一温度传感器向所述负载的输入端输出温度信号;
    所述比较延时电路的输出端、所述第二电平转换电路的第一输入端与所述第四开关管的控制端依次连接,所述第二电平转换电路的第二输入端与所述电池的正极端连接;
    当所述比较延时电路比较出所述第一电阻的两端电压大于或等于所述第一预设阈值时,所述第二电平转换电路输出的驱动信号控制所述第四开关管导通,所述第一温度传感器与所述负载的输入端断开连接,用于使所述负载的输入端输出所述告警信号。
  28. 根据权利要求27所述的电池组件,其特征在于,所述第二电平转换电路包括:第八电阻、第九电阻、第十电阻、第三二极管以及第三电容;
    其中,所述比较延时电路的输出端分别与所述第八电阻的第一端和所述 第九电阻的第一端连接,所述第八电阻的第二端还与所述电池的正极端连接,所述第九电阻的第二端与所述第四开关管的控制端连接,第十电阻、所述第三电容和第三二极管均并联连接所述第九电阻的第二端和地。
  29. 根据权利要求26所述的电池组件,其特征在于,当所述温度告警单元与所述第一电阻连接时,所述温度告警单元包括:第二电压比较电路、第二温度传感器、第三电平转换电路和第五开关管;
    其中,所述第二电压比较电路与所述第一电阻并联连接,所述第二电压比较电路比较所述第一电阻的两端电压和第二预设阈值,所述第二预设阈值大于所述第一预设阈值;
    所述第二电压比较电路的输出端、所述第三电平转换电路的第一输入端与所述第五开关管的控制端依次连接,所述第三电平转换电路的第二输入端与所述电池的正极端连接;
    所述第二温度传感器与所述第五开关管的输入端连接,所述第五开关管的输出端与所述负载的输入端连接,所述第二温度传感器向所述负载的输入端输出温度信号;
    当所述第二电压比较电路比较出所述第一电阻的两端电压大于或等于所述第二预设阈值时,所述第三电平转换电路输出的驱动信号控制所述第五开关管导通,所述第二温度传感器与所述负载的输入端断开连接,用于使所述负载的输入端输出所述告警信号。
  30. 根据权利要求29所述的电池组件,其特征在于,所述第二电压比较电路包括:第十一电阻、第十二电阻以及第六开关管;
    其中,所述第六开关管的输入端与所述第一电阻的一端连接,所述第六开关管的控制端、所述第十一电阻和所述第一电阻的另一端依次连接,所述第十二电阻并联连接所述第六开关管的输入端和控制端,所述第六开关管的输出端与所述第三电平转换电路的第一输入端连接;
    当所述第二电压比较电路比较出所述第一电阻的两端电压大于或等于所述第二预设阈值时,所述第三电平转换电路输出的驱动信号控制所述第五开关管导通,所述第二温度传感器与所述负载的输入端断开连接,用于使所述负载的输入端输出所述告警信号。
  31. 根据权利要求29所述的电池组件,其特征在于,所述第三电平转换 电路包括:第十三电阻、第十四电阻、第十五电阻、第四二极管以及第四电容;
    其中,所述第二电压比较电路的输出端分别与所述第十三电阻的第一端和所述第十四电阻的第一端连接,所述第十三电阻的第二端还与所述电池的正极端连接,所述第十四电阻的第二端与所述第五开关管的控制端连接,所述第十五电阻、第四电容和第四二极管均并联连接所述第十四电阻的第二端和地。
  32. 根据权利要求19所述的电池组件,其特征在于,所述开关电路包括:第一开关管;
    其中,所述第一开关管的输入端和输出端用于连接所述电池和所述负载的同极端,所述第一开关管的初始状态为断开状态,所述处理单元与所述第一开关管的控制端连接;
    当所述处理单元比较出所述电池和所述负载的同极端电压小于或等于第一预设阈值时,所述处理单元控制所述第一开关管在延迟所述预设时间后导通,用于使所述电池向所述负载供电。
  33. 根据权利要求32所述的电池组件,其特征在于,所述第一开关管为MOS管、晶体二极管和IGBT中的任一。
  34. 根据权利要求33所述的电池组件,其特征在于,
    当所述第一开关管的输入端和输出端串联连接所述电池和所述负载的正极端时,所述第一开关管为P沟道MOS管;
    当所述第一开关管的输入端和输出端串联连接所述电池和所述负载的负极端时,所述第一开关管为N沟道MOS管。
  35. 根据权利要求20-23任一项所述的电池组件,其特征在于,所述第一电阻为抗浪涌电阻。
  36. 一种无人机,包括机身、装设于所述机身的电池,其特征在于,所述无人机还包括:装设于所述机身上的上电缓启动装置;
    其中,所述上电缓启动装置的第一输出端与所述无人机的正极端连接,所述上电缓启动装置的第一输入端用于连接电池的正极端,所述上电缓启动装置的第二输出端与所述无人机的负极端连接,所述上电缓启动装置的第二输入端用于连接所述电池的负极端,所述上电缓启动装置的初始状态为断开 状态;
    当所述上电缓启动装置连接所述电池并确定所述电池与所述无人机的同极端电压小于或等于第一预设阈值时,所述上电缓启动装置在延迟预设时间后导通,用于使所述电池向所述无人机供电。
  37. 根据权利要求36所述的无人机,其特征在于,所述上电缓启动装置包括:开关电路以及与所述开关电路连接的处理单元;
    其中,所述开关电路的输入端用于连接所述电池的第一极端,所述开关电路的输出端与所述无人机的第一极端连接,所述无人机的第一极端与所述电池的第一极端为同极端,所述开关电路的初始状态为断开状态;
    所述处理单元的第一端用于连接所述电池的第二极端,所述处理单元的第二端与所述无人机的第二极端连接,所述无人机的第二极端与所述电池的第二极端为同极端,所述第一极端和第二极端为相同极端或不同极端;
    所述处理单元在比较出所述电池和所述无人机的同极端电压小于或等于所述第一预设阈值时,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述无人机供电。
  38. 根据权利要求37所述的无人机,其特征在于,所述处理单元包括:第一电阻和比较延时电路;
    其中,所述第一电阻的第一端用于连接所述电池的第二极端,所述第一电阻的第二端与所述无人机的第二极端连接,所述比较延时电路与所述第一电阻并联连接,所述比较延时电路获取所述第一电阻的两端电压;
    所述比较延时电路的输出端与所述开关电路连接,当所述比较延时电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述无人机供电。
  39. 根据权利要求38所述的无人机,其特征在于,所述比较延时电路包括:第一电压比较电路和缓启动延时电路;
    其中,所述第一电压比较电路与所述第一电阻并联连接,所述第一电压比较电路比较所述第一电阻的两端电压和所述第一预设阈值;
    所述第一电压比较电路的输出端与所述缓启动延时电路的输入端连接,所述缓启动延时电路的输出端与所述开关电路连接;
    当所述第一电压比较电路比较出所述第一电阻的两端电压小于或等于所 述第一预设阈值时,所述缓启动延时电路传输接收所述第一电压比较电路发送的传输信号,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述无人机供电。
  40. 根据权利要求39所述的无人机,其特征在于,所述第一电压比较电路包括:第二电阻、第三电阻以及第二开关管;
    其中,所述第二开关管的输入端与所述第一电阻的一端连接,所述第二开关管的控制端、所述第二电阻和所述第一电阻的另一端依次连接,所述第三电阻并联连接所述第二开关管的输入端和控制端,所述第二开关管的输出端与所述缓启动延时电路的输入端连接;
    当所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述第二开关管的输出端向所述缓启动延时电路发送所述传输信号,所述缓启动延时电路根据所述传输信号,控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述无人机供电。
  41. 根据权利要求39所述的无人机,其特征在于,所述缓启动延时电路包括:第一电平转换电路、第四电阻、第三开关管、第一二极管以及第一电容;
    其中,所述第一电平转换电路的第一输入端与所述第一电压比较电路的第一输出端连接,所述第一电平转换电路的第二输入端与所述电池的正极端连接,所述第一电平转换电路的输出端、所述第四电阻和所述开关电路依次连接;
    所述第三开关管的控制端和输出端分别与所述第一二极管的正极和负极连接,所述第三开关管的输出端还分别与所述第一电容和所述第三开关管的控制端连接,所述第一电容与所述第三开关管的输入端皆与地连接;
    当所述第一电压比较电路比较出所述第一电阻的两端电压小于或等于所述第一预设阈值时,所述第一电平转换电路接收所述第一电压比较电路发送的所述传输信号,所述第一电平转换电路根据所述电池的正极端电压和所述传输信号得到导通电压,所述第三开关管根据所述导通电压控制所述开关电路在延迟所述预设时间后导通,用于使所述电池向所述无人机供电。
  42. 根据权利要求41所述的无人机,其特征在于,所述第一电平转换电路包括:第五电阻、第六电阻、第七电阻、第二二极管以及第二电容;
    其中,所述第一电压比较电路的第一输出端分别与所述第五电阻的第一端和所述第六电阻的第一端连接,所述第五电阻的第二端还与所述电池的正极端连接,所述第六电阻的第二端还与所地连接,所述第二电容的两端并联连接所述第一电压比较电路的第一输出端和所述地;
    所述第五电阻的第一端和所述第六电阻的第一端皆与所述第七电阻的第一端连接,所述第七电阻的第二端分别与所述第四电阻和所述第二二极管的第一端连接,所述第二二极管与所述地连接。
  43. 根据权利要求39所述的无人机,其特征在于,当所述第一电压比较电路比较出所述第一电阻的两端电压大于所述第一预设阈值时,所述第一电压比较电路向所述缓启动延时电路发送所述传输信号,所述缓启动延时电路根据所述传输信号得到断开电压,所述缓启动延时电路控制所述开关电路保持断开状态。
  44. 根据权利要求38所述的无人机,其特征在于,所述上电缓启动装置还包括:温度告警单元;
    其中,所述温度告警单元与所述比较延时电路连接;或者,
    所述温度告警单元与所述第一电阻连接;
    所述温度告警单元用于在所述电池向所述无人机的供电过程中,向所述无人机的输入端传输温度信号或告警信号,以监测所述开关电路是否导通。
  45. 根据权利要求44所述的无人机,其特征在于,当所述温度告警单元与所述比较延时电路连接时,所述温度告警单元包括:第一温度传感器、第二电平转换电路和第四开关管;
    其中,所述第一温度传感器与所述第四开关管的输入端连接,所述第四开关管的输出端与所述无人机的输入端连接,所述第一温度传感器向所述无人机的输入端输出温度信号;
    所述比较延时电路的输出端、所述第二电平转换电路的第一输入端与所述第四开关管的控制端依次连接,所述第二电平转换电路的第二输入端与所述电池的正极端连接;
    当所述比较延时电路比较出所述第一电阻的两端电压大于或等于所述第一预设阈值时,所述第二电平转换电路输出的驱动信号控制所述第四开关管导通,所述第一温度传感器与所述无人机的输入端断开连接,用于使所述无 人机的输入端输出所述告警信号。
  46. 根据权利要求45所述的无人机,其特征在于,所述第二电平转换电路包括:第八电阻、第九电阻、第十电阻、第三二极管以及第三电容;
    其中,所述比较延时电路的输出端分别与所述第八电阻的第一端和所述第九电阻的第一端连接,所述第八电阻的第二端还与所述电池的正极端连接,所述第九电阻的第二端与所述第四开关管的控制端连接,第十电阻、所述第三电容和第三二极管均并联连接所述第九电阻的第二端和地。
  47. 根据权利要求44所述的无人机,其特征在于,当所述温度告警单元与所述第一电阻连接时,所述温度告警单元包括:第二电压比较电路、第二温度传感器、第三电平转换电路和第五开关管;
    其中,所述第二电压比较电路与所述第一电阻并联连接,所述第二电压比较电路比较所述第一电阻的两端电压和第二预设阈值,所述第二预设阈值大于所述第一预设阈值;
    所述第二电压比较电路的输出端、所述第三电平转换电路的第一输入端与所述第五开关管的控制端依次连接,所述第三电平转换电路的第二输入端与所述电池的正极端连接;
    所述第二温度传感器与所述第五开关管的输入端连接,所述第五开关管的输出端与所述无人机的输入端连接,所述第二温度传感器向所述无人机的输入端输出温度信号;
    当所述第二电压比较电路比较出所述第一电阻的两端电压大于或等于所述第二预设阈值时,所述第三电平转换电路输出的驱动信号控制所述第五开关管导通,所述第二温度传感器与所述无人机的输入端断开连接,用于使所述无人机的输入端输出所述告警信号。
  48. 根据权利要求47所述的无人机,其特征在于,所述第二电压比较电路包括:第十一电阻、第十二电阻以及第六开关管;
    其中,所述第六开关管的输入端与所述第一电阻的一端连接,所述第六开关管的控制端、所述第十一电阻和所述第一电阻的另一端依次连接,所述第十二电阻并联连接所述第六开关管的输入端和控制端,所述第六开关管的输出端与所述第三电平转换电路的第一输入端连接;
    当所述第二电压比较电路比较出所述第一电阻的两端电压大于或等于所 述第二预设阈值时,所述第三电平转换电路输出的驱动信号控制所述第五开关管导通,所述第二温度传感器与所述无人机的输入端断开连接,用于使所述无人机的输入端输出所述告警信号。
  49. 根据权利要求47所述的无人机,其特征在于,所述第三电平转换电路包括:第十三电阻、第十四电阻、第十五电阻、第四二极管以及第四电容;
    其中,所述第二电压比较电路的输出端分别与所述第十三电阻的第一端和所述第十四电阻的第一端连接,所述第十三电阻的第二端还与所述电池的正极端连接,所述第十四电阻的第二端与所述第五开关管的控制端连接,所述第十五电阻、第四电容和第四二极管均并联连接所述第十四电阻的第二端和地。
  50. 根据权利要求37所述的无人机,其特征在于,所述开关电路包括:第一开关管;
    其中,所述第一开关管的输入端和输出端用于连接所述电池和所述无人机的同极端,所述第一开关管的初始状态为断开状态,所述处理单元与所述第一开关管的控制端连接;
    当所述处理单元比较出所述电池和所述无人机的同极端电压小于或等于第一预设阈值时,所述处理单元控制所述第一开关管在延迟所述预设时间后导通,用于使所述电池向所述无人机供电。
  51. 根据权利要求50所述的无人机,其特征在于,所述第一开关管为MOS管、晶体二极管和IGBT中的任一。
  52. 根据权利要求51所述的无人机,其特征在于,
    当所述第一开关管的输入端和输出端串联连接所述电池和所述无人机的正极端时,所述第一开关管为P沟道MOS管;
    当所述第一开关管的输入端和输出端串联连接所述电池和所述无人机的负极端时,所述第一开关管为N沟道MOS管。
  53. 根据权利要求38-41任一项所述的无人机,其特征在于,所述第一电阻为抗浪涌电阻。
  54. 一种上电缓启动方法,其特征在于,包括:
    上电缓启动装置获取电池和负载的同极端电压,其中所述上电缓启动装置的初始状态为断开状态;
    所述上电缓启动装置判断所述同极端电压是否小于或等于第一预设阈值;
    若是,则所述上电缓启动装置在延迟预设时间后导通,用于使所述电池向所述负载供电。
  55. 根据权利要求54所述的上电缓启动方法,其特征在于,当所述同极端电压大于所述第一预设阈值时,所述方法还包括:
    所述上电缓启动装置保持断开状态。
  56. 根据权利要求54所述的上电缓启动方法,其特征在于,在所述电池向所述负载的供电过程中,所述方法还包括:
    所述上电缓启动装置判断所述同极端电压是否大于或等于第二预设阈值,其中所述第二预设阈值大于或等于所述第一预设阈值;
    若是,则所述上电缓启动装置向所述负载的输入端传输告警信号。
  57. 根据权利要求56所述的上电缓启动方法,其特征在于,所述上电缓启动装置判断所述同极端电压小于第二预设阈值时,所述方法包括:
    所述上电缓启动装置向所述负载的输入端传输温度信号。
PCT/CN2017/117425 2017-12-20 2017-12-20 上电缓启动装置、电池组件、无人机以及方法 WO2019119291A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/117425 WO2019119291A1 (zh) 2017-12-20 2017-12-20 上电缓启动装置、电池组件、无人机以及方法
CN201780026838.XA CN109075593B (zh) 2017-12-20 2017-12-20 上电缓启动装置、电池组件、无人机以及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117425 WO2019119291A1 (zh) 2017-12-20 2017-12-20 上电缓启动装置、电池组件、无人机以及方法

Publications (1)

Publication Number Publication Date
WO2019119291A1 true WO2019119291A1 (zh) 2019-06-27

Family

ID=64822090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117425 WO2019119291A1 (zh) 2017-12-20 2017-12-20 上电缓启动装置、电池组件、无人机以及方法

Country Status (2)

Country Link
CN (1) CN109075593B (zh)
WO (1) WO2019119291A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110442057A (zh) * 2019-07-31 2019-11-12 中国航天空气动力技术研究院 一种灭火航弹的延时引爆控制系统及控制方法
CN113016116A (zh) * 2020-05-07 2021-06-22 深圳市大疆创新科技有限公司 供电电路、电源装置、移动平台和剩余电量的调节方法
CN114114034A (zh) * 2021-11-23 2022-03-01 深圳市欣旺达综合能源服务有限公司 电池包短路测试装置
CN114180094A (zh) * 2021-12-08 2022-03-15 中国兵器装备集团自动化研究所有限公司 一种系留多旋翼无人机电源管理装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266085A (zh) * 2019-07-17 2019-09-20 深圳市超力源科技有限公司 一种无人机电池管理放电防打火方法
CN113734330B (zh) * 2021-08-24 2022-11-01 宁波道一能源技术有限公司 一种两轮电动车的电池组保护方法及保护电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455607A (en) * 2007-12-10 2009-06-17 Visteon Global Tech Inc Overvoltage Protection
CN202906501U (zh) * 2012-08-29 2013-04-24 陈侃黎 一种具有自关断功能的智能手机充电器
CN103178498A (zh) * 2011-12-20 2013-06-26 科勒公司 过压保护系统和方法
WO2014037292A1 (de) * 2012-09-06 2014-03-13 Continental Automotive Gmbh Batterieanordnung zum betrieb elektrischer verbraucher in einem fahrzeug zur gefahrgutbeförderung
CN103699169A (zh) * 2012-09-27 2014-04-02 株式会社理光 电源电路
CN104810878A (zh) * 2014-01-28 2015-07-29 广东欧珀移动通信有限公司 过压过流保护电路和移动终端
CN205407576U (zh) * 2016-02-17 2016-07-27 广州广电运通金融电子股份有限公司 电源缓启动控制装置与电源供电电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098032B (zh) * 2011-02-23 2014-02-12 海能达通信股份有限公司 一种抑制上电脉冲电流的延迟开关电路
US9954353B2 (en) * 2015-11-05 2018-04-24 GM Global Technology Operations LLC Self turn-on and turn-off pre-charge circuit to limit bulk capacitor inrush current
CN205489605U (zh) * 2016-01-14 2016-08-17 深圳市创维群欣安防科技股份有限公司 一种延时启动电路和车载设备
CN206481214U (zh) * 2017-02-07 2017-09-08 北京百卓网络技术有限公司 开关电源缓启动电路
CN206506281U (zh) * 2017-02-17 2017-09-19 深圳市拓普泰克电子有限公司 电池低电压保护电路及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455607A (en) * 2007-12-10 2009-06-17 Visteon Global Tech Inc Overvoltage Protection
CN103178498A (zh) * 2011-12-20 2013-06-26 科勒公司 过压保护系统和方法
CN202906501U (zh) * 2012-08-29 2013-04-24 陈侃黎 一种具有自关断功能的智能手机充电器
WO2014037292A1 (de) * 2012-09-06 2014-03-13 Continental Automotive Gmbh Batterieanordnung zum betrieb elektrischer verbraucher in einem fahrzeug zur gefahrgutbeförderung
CN103699169A (zh) * 2012-09-27 2014-04-02 株式会社理光 电源电路
CN104810878A (zh) * 2014-01-28 2015-07-29 广东欧珀移动通信有限公司 过压过流保护电路和移动终端
CN205407576U (zh) * 2016-02-17 2016-07-27 广州广电运通金融电子股份有限公司 电源缓启动控制装置与电源供电电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110442057A (zh) * 2019-07-31 2019-11-12 中国航天空气动力技术研究院 一种灭火航弹的延时引爆控制系统及控制方法
CN113016116A (zh) * 2020-05-07 2021-06-22 深圳市大疆创新科技有限公司 供电电路、电源装置、移动平台和剩余电量的调节方法
CN114114034A (zh) * 2021-11-23 2022-03-01 深圳市欣旺达综合能源服务有限公司 电池包短路测试装置
CN114180094A (zh) * 2021-12-08 2022-03-15 中国兵器装备集团自动化研究所有限公司 一种系留多旋翼无人机电源管理装置及方法
CN114180094B (zh) * 2021-12-08 2024-02-09 中国兵器装备集团自动化研究所有限公司 一种系留多旋翼无人机电源管理装置及方法

Also Published As

Publication number Publication date
CN109075593A (zh) 2018-12-21
CN109075593B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2019119291A1 (zh) 上电缓启动装置、电池组件、无人机以及方法
WO2017000238A1 (zh) 一种电池管理方法、单体电池、飞行控制系统及无人机
WO2015172710A1 (zh) 电池防爆电路、充电电路以及充、放电保护电路
WO2018090438A1 (zh) 一种高压锂电池包故障的安全管理系统
EP3836345A1 (en) High-voltage driver switch system and switching method
CN210652733U (zh) 一种安全防护的充电桩
CN102629751A (zh) 一种过流保护电路
CN108242794B (zh) 一种控制感性负载的继电器触点保护电路
US11380942B2 (en) High voltage battery module with series connected cells and internal relays
CN112186844A (zh) 蓄电池测试维护装置和控制方法以及数据中心的配电站
CN104640293A (zh) 一种保护电路
JP2010130738A (ja) 二次電池パック
CN102611052B (zh) 接线盒、电力系统及其控制方法
CN103956721A (zh) 电池防爆电路以及电池充电电路
EP4060858A1 (en) Charging base and charging system
CN204858537U (zh) 一种电池放电短路保护电路
CN104051812A (zh) 具有热触发元件的蓄电池
CN216649257U (zh) 一种电池短路保护电路、电池和无人机
WO2021223172A1 (zh) 供电电路、电源装置、移动平台和剩余电量的调节方法
CN207835034U (zh) 一种控制感性负载的继电器触点保护电路
CN211089990U (zh) 一种加热膜控制电路和锂电池
CN102882251A (zh) 锂离子蓄电池组充电反馈控制系统及其控制方法
CN111106595A (zh) 电源的过温保护电路、方法及系统
KR102196261B1 (ko) 순간 고전압 방지 회로
US11996722B2 (en) Electrochemical apparatus, electrical apparatus, electric vehicle, and power supply control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935175

Country of ref document: EP

Kind code of ref document: A1