WO2019119221A1 - 可移动平台的控制方法及可移动平台 - Google Patents
可移动平台的控制方法及可移动平台 Download PDFInfo
- Publication number
- WO2019119221A1 WO2019119221A1 PCT/CN2017/116979 CN2017116979W WO2019119221A1 WO 2019119221 A1 WO2019119221 A1 WO 2019119221A1 CN 2017116979 W CN2017116979 W CN 2017116979W WO 2019119221 A1 WO2019119221 A1 WO 2019119221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite signal
- working mode
- rtk
- current time
- positioning component
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/34—Power consumption
Definitions
- the embodiments of the present invention relate to the field of control technologies, and in particular, to a control method of a mobile platform and a mobile platform.
- Real-time kinematic is a global navigation satellite system (GNSS) high-precision positioning technology with a positioning accuracy of up to centimeter.
- GNSS global navigation satellite system
- the rover is an RTK positioning component disposed on the movable platform, and the rover can receive the satellite signal and the data transmitted by the reference station (for example, at least one of a carrier phase, pseudorange information, and coordinate information observed by the base station)
- the differential positioning is performed according to the received satellite signal and the data transmitted by the base station, thereby obtaining the precise position of the movable platform.
- the RTK component does not receive a sufficient number of satellite signals sent by the satellite, and the RTK component will remain in the star search state.
- the power consumption of the RTK component is higher, resulting in an increase in the temperature of the RTK positioning component.
- Embodiments of the present invention provide a control method of a mobile platform and a mobile platform to reduce power consumption of an RTK component in an actual application process.
- a first aspect of the embodiments of the present invention provides a method for controlling a mobile platform, including:
- a second aspect of the embodiments of the present invention provides a mobile platform, including: a memory and a processor.
- the memory is configured to store program code
- the processor calls the program code to perform the following operations when the program code is executed:
- the control method and the movable platform of the mobile platform provided by the embodiment provide a working mode for matching the satellite signal receiving state of the current time by setting the satellite signal receiving state of the movable platform at the current time, so that Effectively reduce the power consumption of RTK components.
- FIG. 1 is a flowchart of a method for controlling a mobile platform according to an embodiment of the present invention
- FIG. 2 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
- FIG. 3 is a schematic diagram of an operation mode of setting an RTK component according to information of a satellite signal receiving state of a current time sent by a positioning receiver according to an embodiment of the present invention
- FIG. 4 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
- FIG. 5 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
- FIG. 6 is a structural diagram of a mobile platform according to an embodiment of the present invention.
- a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
- FIG. 1 is a flowchart of a method for controlling a mobile platform according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
- Step S101 Determine a satellite signal receiving state of the current time of the movable platform.
- the execution body of the method of this embodiment may be a movable platform, wherein the movable platform may be any device capable of moving by a power system configured by itself or moving by means of an external force.
- the movable platform may be none One or more of a human aircraft, an unmanned vehicle, a handheld cloud platform, a handheld terminal (eg, a smart phone, etc.).
- the execution subject may be a processor of the mobile platform.
- the processor of the mobile platform can determine a satellite signal reception status of the current time of the mobile platform, wherein the reception status can characterize the reception status of the satellite signal in the environment in which the mobile platform is located at the current time.
- the receiving state may indicate that the mobile station can receive satellite signals transmitted by several satellites at the current moment, the carrier-to-noise ratio of the satellite signals transmitted by each satellite received, and whether the satellite signals received according to the current time can be realized. At least one of the positioning.
- Step S102 Set an operating mode of the RTK positioning component of the movable platform according to the satellite signal receiving state of the current moment.
- the RTK may be set according to the receiving state of the satellite signal in the environment in which the mobile platform is currently located.
- the working mode of the component makes the working mode of the RTK component match the satellite signal receiving state of the mobile platform at the current moment.
- the working mode of the RTK component matches the satellite signal receiving state of the mobile platform at the current time, the RTK component can be reduced. Power consumption.
- the working mode may include at least one of a normal working mode and a low power operating mode.
- the working mode of the RTK component is matched with the satellite signal receiving state at the current time, which can effectively reduce the power consumption of the RTK component.
- FIG. 2 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in FIG. 2, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
- Step S201 Acquire information of a satellite signal receiving state that is sent by the positioning receiver and indicates the current time.
- the unmanned aerial vehicle is schematically illustrated as a movable platform, and the movable platform may be configured with a positioning receiver 301, wherein the positioning receiver 301 may be positioned.
- the chip, the positioning receiver 301 can receive the satellite signal transmitted by the satellite 302, and the processor 303 of the mobile platform can be connected to the positioning receiver 301 by wire or wirelessly, and the positioning receiver 301 can send the current time to the processor 303.
- the satellite signal reception status information for example, the positioning receiver 301 can periodically transmit information indicating the satellite signal reception status of the current time to the processor 303 at a preset frequency, or receive the satellite signal reception transmitted by the processor 303.
- the status request information is sent to the processor 303 to transmit information indicating the satellite signal reception status at the current time.
- Step S202 Determine, according to the information, a satellite signal receiving state at a current time.
- the processor 303 may determine, according to the information, a satellite signal receiving state in an environment in which the mobile platform is located at the current time.
- the preset field in the information indicating the satellite signal receiving status of the current time may indicate the satellite signal receiving status at the current time, and the processor 303 may be in the information indicating the satellite signal receiving status at the current time.
- the preset field is read, and the satellite signal receiving state of the current time of the movable platform is determined according to the information in the preset field.
- the positioning receiver includes one or more of a GPS positioning receiver, a Beidou positioning receiver, a Galileo positioning receiver, and a GLONAS positioning receiver. In some cases, the positioning receiver can be a multi-mode positioning receiver.
- Step S203 Set an operation mode of the RTK positioning component of the movable platform according to the satellite signal receiving state of the current time.
- the processor 303 may determine, according to the received information, a receiving state of the satellite signal that is currently movable in the environment, and further, according to the receiving state, It is assumed that the RTK component 304 sets an operation mode corresponding to the reception state.
- the satellite signal receiving state of the mobile platform at the current time is determined by acquiring information of the satellite signal receiving state of the current time, which is sent by the positioning receiver, and setting an operating mode that matches the satellite signal receiving state for the RTK component. It can effectively reduce the power consumption of RTK components.
- FIG. 4 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in FIG. 4, on the basis of the embodiment shown in FIG. 1 or 2, the method in this embodiment may include:
- Step S401 Determine a satellite signal receiving state of the current time of the movable platform.
- Step S401 is consistent with S101, and the specific method is not described herein again.
- Step S402 When the satellite signal receiving state of the current time meets the preset state requirement, set the working mode of the RTK positioning component to the low power working mode.
- the processor may determine whether the satellite signal receiving state at the current time meets the preset state requirement, and when the preset state requirement is met, the satellite signal receiving state at the current time may be considered to be poor, and the RTK component receives the satellite signal at the current time. In this state, it may be in the search state for a long time, and the power consumption is high during operation.
- the processor can set the RTK working mode to the low power mode. In this way, the RTK component can be prevented from working for a long period of time. In high-power operation mode, this can reduce the power consumption of RTK components and reduce the heating of RTK components.
- setting the operating mode of the RTK positioning component to a low power operating mode comprises setting an operating mode of the RTK positioning component to a sleep mode.
- the processor can set the RTK component to the sleep mode, and when the RTK component enters the sleep mode, the power consumption can be effectively reduced.
- setting the operating mode of the RTK positioning component to a low power operating mode includes shutting down the RTK positioning component.
- the processor may turn off the RTK component, for example, switch the power supply to the RTK component, so that the RTK component does not work.
- setting the operating mode of the RTK positioning component to a low power operating mode includes resetting the RTK component at a preset frequency.
- the processor may reset the RTK component at the preset frequency.
- the pass frequency A complex reset can prevent the RTK component from being in the star search state for a long time, which can reduce the power consumption of the RTK component.
- setting the working mode of the RTK positioning component to the low power working mode includes: receiving the satellite signal at the current time at most When the satellite signals are transmitted by three satellites, the working mode of the RTK positioning component is set to a low power working mode.
- the receiving state may indicate that the satellite signals sent by several satellites are received at the current time
- the processor may determine that the mobile station can receive satellite signals sent by several satellites at the current moment, and when the current time is determined, the maximum number of three satellites is received.
- the RTK component may be in the star search state. At this time, the RTK component consumes a large amount of power, and the operating mode of the RTK positioning component can be set to a low power operation mode to reduce power consumption.
- the operating mode of the RTK positioning component when the carrier-to-noise ratio of the satellite signals transmitted by up to three satellites in the received satellite signal is greater than a preset threshold, the operating mode of the RTK positioning component is set to a low power operation. mode.
- the receiving state may indicate that the satellite signal sent by several satellites is received at the current time, and may also indicate the carrier-to-noise ratio of the satellite signal sent by each satellite received, that is, the processor may determine the current time mobile platform. It can receive satellite signals transmitted by several satellites, and further can determine the carrier-to-noise ratio of the satellite signals transmitted by each satellite received, and determine that the carrier-to-noise ratio of the satellite signals transmitted by the received satellites is greater than a preset threshold.
- the RTK component may be in the star search state. At this time, the RTK component consumes a large amount of power, and the operating mode of the RTK positioning component can be set to a low-power working mode to reduce power consumption.
- setting an operating mode of the RTK positioning component to a low power operating mode includes: when receiving the satellite according to the current time When the signal cannot be positioned, the operating mode of the RTK positioning component is set to the low power working mode.
- the receiving state may indicate whether the satellite signal received at the current time can be positioned, and the processor may determine whether the satellite signal received at the current time can achieve positioning of the movable platform, when the positioning of the movable platform cannot be achieved.
- the RTK component may be in the search state. At this time, the RTK component consumes a large amount of power, and the processor can set the working mode of the RTK positioning component to a low-power working mode to reduce power consumption.
- FIG. 5 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in FIG. 5, on the basis of the embodiment shown in FIG. 4, the method in this embodiment may include:
- Step S501 Determine a satellite signal receiving state of the current time of the movable platform.
- Step S501 is the same as step S401 or S101, and the specific method is not described herein again. .
- Step S502 When the satellite signal receiving state of the current time does not meet the preset requirement, set the working mode of the RTK positioning component to the normal working mode.
- the processor determines that the satellite signal receiving state at the current moment does not meet the preset requirement, the satellite receiving state at the current moment can be considered to be good, and the RTK component can quickly enter the positioning state from the star search state, and the RTK component does not have a comparison. Large power consumption. Therefore, when the processor determines that the satellite signal receiving state at the current moment does not meet the preset requirement, the working mode of the RTK positioning component can be set to the normal working mode, and after the processor sets the RTK component to the normal working mode, the RTK component enters. In the search star state, when the satellite signal is in good reception state, the RTK component enters the positioning mode, that is, the positioning information is output according to the received satellite signal. In this way, it can be ensured that the normal working mode is only entered when the receiving state of the satellite signal is good, which can effectively avoid the problem that the RTK component is in the star search mode for a long time and causes a large power consumption.
- the method further includes: acquiring positioning information output by the RTK component in a normal working mode, and controlling the movable platform according to the positioning information.
- the RTK component searches the satellite and determines the positioning information according to the received satellite signal, and according to the data acquired from the base station (for example, the carrier phase observed by the base station, The at least one of the pseudorange information and the coordinate information is differentially located with the received satellite signal, and the positioning signal is output, and the processor of the movable platform can acquire the positioning information output by the RTK component, and according to the positioning information,
- the mobile platform performs control.
- the processor controls the movable platform to perform preset tasks according to the positioning information, such as a survey job task, an agricultural work task, a shooting job task, and the like.
- FIG. 6 is a structural diagram of a mobile platform according to an embodiment of the present invention. As shown in FIG. 6, the mobile platform 600 includes: a memory and a processor.
- the memory is configured to store program code
- the processor calls the program code to perform the following operations when the program code is executed:
- the processor determines the satellite signal reception status of the mobile station at the current time, specifically for:
- the satellite signal reception state at the current time is determined based on the information.
- the positioning receiver comprises one or more of a GPS positioning receiver, a Beidou positioning receiver, a Galileo positioning receiver, and a GLONAS positioning receiver.
- the processor when the processor sets the working mode of the RTK positioning component of the mobile platform according to the satellite signal receiving state of the current moment, the processor is specifically configured to:
- the working mode of the RTK positioning component is set to the low power working mode.
- the processor sets the working mode of the RTK positioning component to the low power working mode, specifically:
- the processor sets the working mode of the RTK positioning component to the low power working mode, specifically:
- the processor sets the working mode of the RTK positioning component to the low power working mode, specifically:
- the RTK component is reset at a preset frequency.
- the processor when the satellite signal receiving state of the current time meets a preset state requirement, when the working mode of the RTK positioning component is set to a low power working mode, the processor is specifically configured to:
- the operating mode of the RTK positioning component is set to a low power operation mode.
- the processor when the satellite signal receiving state of the current time meets a preset state requirement, when the working mode of the RTK positioning component is set to a low power working mode, the processor is specifically configured to:
- the operating mode of the RTK positioning component is set to a low power operation mode.
- the processor when the satellite signal receiving state of the current time meets a preset state requirement, when the working mode of the RTK positioning component is set to a low power working mode, the processor is specifically configured to:
- the operating mode of the RTK positioning component is set to the low power working mode.
- the processor when the processor sets the working mode of the RTK positioning component of the mobile platform according to the satellite signal receiving state of the current moment, the processor is specifically configured to:
- the working mode of the RTK positioning component is set to the normal working mode.
- the processor is further configured to:
- the movable platform is controlled according to the positioning information.
- the movable platform is an unmanned aerial vehicle.
- an operating mode matching the satellite signal receiving state of the current time is set for the RTK component, which can effectively reduce the power consumption of the RTK component.
- the disclosed apparatus and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separate,
- the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
- the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
- the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明实施例提供一种可移动平台的控制方法及可移动平台,该方法包括:确定可移动平台当前时刻的卫星信号接收状态,根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。本发明实施例通过为RTK组件设置与当前时刻的卫星信号接收状态匹配的工作模式,可以降低RTK组件的功耗。
Description
本发明实施例涉控制技术领域,尤其涉及一种可移动平台的控制方法及可移动平台。
实时动态载波差分定位(Real-time kinematic,RTK)是一种全球卫星导航系统(Global Navigation Satellite System,GNSS)高精度定位技术,其定位精度可以达到厘米级。基于RTK的定位作业方案中需要两个站点:基准站和流动站。其中,流动站为配置在可移动平台上的RTK定位组件,流动站可以接收卫星信号和基准站传输的数据(例如基准站观测到的载波相位、伪距信息、坐标信息中的至少一种),根据接收到的卫星信号和基准站传输的数据完成差分定位,从而获取到可移动平台的精确位置。
在实际应用中,由于某些原因(例如建筑物遮挡、信号干扰等等),RTK组件接收不到足够数量的卫星发送的卫星信号,RTK组件会一直处于搜星状态。然而,当RTK定位组件处于搜星状态时,RTK组件的功耗较高,导致RTK定位组件的温度升高。
发明内容
本发明实施例提供一种可移动平台的控制方法及可移动平台,以降低RTK组件在实际应用过程中的功耗。
本发明实施例的第一方面是提供一种可移动平台的控制方法,包括:
确定可移动平台当前时刻的卫星信号接收状态;
根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。
本发明实施例的第二方面是提供一种可移动平台,包括:存储器和处理器,
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
确定可移动平台当前时刻的卫星信号接收状态;
根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。
本实施例提供的可移动平台的控制方法及可移动平台,通过确定可移动平台在当前时刻的卫星信号接收状态,为RTK组件设置与当前时刻的卫星信号接收状态相匹配的工作模式,这样可以有效地降低RTK组件的功耗。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的可移动平台的控制方法的流程图;
图2为本发明另一实施例提供的可移动平台的控制方法的流程图;
图3为本发明实施例提供的根据定位接收机发送的指示当前时刻的卫星信号接收状态的信息设定RTK组件的工作模式的示意图;
图4为本发明另一实施例提供的可移动平台的控制方法的流程图;
图5为本发明另一实施例提供的可移动平台的控制方法的流程图;
图6为本发明实施例提供的可移动平台的结构图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种可移动平台的控制方法。图1为本发明实施例提供的可移动平台的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:
步骤S101、确定可移动平台当前时刻的卫星信号接收状态。
本实施例方法的执行主体可以是可移动平台,其中,可移动平台可以为任何能够移动通过自身配置的动力系统来移动或者借助于外力移动的设备,在实际应用中,可移动平台可以为无人飞行器、无人车、手持云台、手持式终端(例如智能手机等)中的一种或多种。具体地,执行主体可以为可移动平台的处理器。可移动平台的处理器可以确定可移动平台当前时刻的卫星信号接收状态,其中,所述接收状态可以表征在当前时刻可移动平台在所处的环境中对卫星信号的接收状态。所述接收状态可以表示在当前时刻可移动平台可以接收到几颗卫星发送的卫星信号、接收到的每一颗卫星发送的卫星信号的载噪比、根据当前时刻接收到的卫星信号能否实现定位中的至少一种。
步骤S102、根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。
具体地,可移动平台的处理器即确定当前时刻可移动平台所处的环境中的卫星信号接收状态之后,可以根据当前时刻可移动平台所处的环境中对卫星信号的接收状态来设定RTK组件的工作模式,使得RTK组件的工作模式与可移动平台当前时刻的卫星信号接收状态匹配,当RTK组件的工作模式与当前时刻可移动平台的卫星信号接收状态相匹配时,可以减低RTK组件的功耗。其中,所述工作模式可以包括正常工作模式、低功耗工作模式中的至少一种。
本实施例中,通过确定可移动平台在当前时刻的卫星信号接收状态,
为RTK组件设置与当前时刻的卫星信号接收状态相匹配的工作模式,这样可以有效地降低RTK组件的功耗。
本发明实施例提供一种可移动平台的控制方法。图2为本发明另一实施例提供的可移动平台的控制方法的流程图。如图2所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S201、获取定位接收机发送的指示当前时刻的卫星信号接收状态的信息。
具体地,如图3所示,为了方便进行说明,以无人飞行器为可移动平台来进行示意性说明,可移动平台可以配置有定位接收机301,其中,所述定位接收机301可以为定位芯片,定位接收机301可以接收卫星302发送的卫星信号,可移动平台的处理器303可以通过有线或者无线的方式与定位接收机301通讯连接,定位接收机301可以向处理器303发送指示当前时刻的卫星信号接收状态的信息,例如,定位接收机301可以以预设频率向处理器303周期性地发送指示当前时刻的卫星信号接收状态的信息,或者在接收到处理器303发送的卫星信号接收状态请求信息后向处理器303发送指示当前时刻的卫星信号接收状态的信息。
步骤S202、根据所述信息确定当前时刻的卫星信号接收状态。
具体地,处理器303在接收到所述指示当前时刻的卫星信号接收状态的信息后,即可以根据所述信息确定在当前时刻可移动平台所处的环境中的卫星信号接收状态。在某些情况中,所述指示当前时刻的卫星信号接收状态的信息中预设字段可以指示当前时刻的卫星信号接收状态,处理器303可以对所述指示当前时刻的卫星信号接收状态的信息中的预设字段进行读取,根据预设字段中的信息来确定可移动平台当前时刻的卫星信号接收状态。在实际应用中,所述定位接收机包括GPS定位接收机、北斗定位接收机、伽利略定位接收机、格洛纳斯定位接收中的一种或多种。在某些情况中,所述定位接收机可以为多模定位接收机。
步骤S203、根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。
具体地,处理器303根据接收到的所述信息可以确定当前时刻可移动在所处的环境中对卫星信号的接收状态,进一步地,根据所述接收状态可
以为RTK组件304设置对应于所述接收状态的工作模式。
本实施例通过获取定位接收机发送的指示当前时刻的卫星信号接收状态的信息来确定可移动平台在当前时刻的卫星信号接收状态,为RTK组件设置与所述卫星信号接收状态匹配的工作模式,可以有效地降低RTK组件的功耗。
本发明实施例提供一种可移动平台的控制方法。图4为本发明另一实施例提供的可移动平台的控制方法的流程图。如图4所示,在图1或2所示实施例的基础上,本实施例中的方法,可以包括:
步骤S401、确定可移动平台当前时刻的卫星信号接收状态。
步骤S401与S101一致,具体方法此处不再赘述。
步骤S402、当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式。
具体地,处理器可以判断当前时刻的卫星信号接收状态是否满足预设状态要求,当满足预设状态要求时,可以认为当前时刻的卫星信号接收状态不佳,RTK组件在当前时刻的卫星信号接收状态下可能会长时间地处于搜星状态,工作时功耗较高,处理器可以将RTK的工作模式设置为低功耗模式,通过这样方式,可以防止RTK组件在较长的时间段内工作在高功耗工作模式,这样可以降低RTK组件的功耗,降低RTK组件的发热情况。
在某些实施例中,将RTK定位组件的工作模式设置为低功耗工作模式包括:将RTK定位组件的工作模式设置为休眠模式。具体地,在当前时刻的卫星信号接收状态满足预设状态要求时,处理器可以将RTK组件设置为休眠模式,RTK组件进入休眠模式时,可以有效地降低功耗。
在某些实施例中,将RTK定位组件的工作模式设置为低功耗工作模式包括:将RTK定位组件关闭。具体地,在当前时刻的卫星信号接收状态满足预设状态要求时,处理器可以将RTK组件关闭,例如切换对RTK组件的电力供给,使得RTK组件不工作。
在某些实施例中,将RTK定位组件的工作模式设置为低功耗工作模式包括:以预设频率对RTK组件进行复位。具体地,在当前时刻的卫星信号接收状态满足预设状态要求时,处理器可以以预设频率对RTK组件进行复位。这样,在当前时刻的卫星信号接收状态满足预设状态要求时,通过频
繁的复位可以避免RTK组件长时间处于搜星状态,这样可以降低RTK组件的功耗。
在某些实施例中,所述当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式包括:当前时刻接收到卫星信号至多包括3颗卫星发送的卫星信号时,将RTK定位组件的工作模式设置为低功耗工作模式。具体地,所述接收状态可以指示当前时刻接收到几颗卫星发送的卫星信号,处理器可以确定当前时刻可移动平台可以接收到几颗卫星发送的卫星信号,当确定当前时刻最多接收到3颗卫星发送的卫星信号时,RTK组件可能会处于搜星状态,此时RTK组件功耗较大,可以将RTK定位组件的工作模式设置为低功耗工作模式以降低功耗。
在某些实施例中,所述当所述当前时刻接收到卫星信号中至多3颗卫星发送的卫星信号的载噪比大于预设阈值时,将RTK定位组件的工作模式设置为低功耗工作模式。具体地,所述接收状态可以指示当前时刻接收到几颗卫星发送的卫星信号,还可以指示接收到的每一颗卫星发送的卫星信号的载噪比,即处理器可以确定当前时刻可移动平台可以接收到几颗卫星发送的卫星信号,进一步地可以确定接收到的每一颗卫星发送的卫星信号的载噪比,确定接收到的几颗卫星发送的卫星信号的载噪比大于预设阈值,例如载噪比是否大于或等于25dB/HZ,当确定当前时刻接收到的卫星信号中最多只有3颗卫星发送的卫星信号的载噪比大于预设阈值时,RTK组件可能会处于搜星状态,此时RTK组件功耗较大,可以将RTK定位组件的工作模式设置为低功耗工作模式以降低功耗。
在某些实施例中,所述当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式包括:当根据当前时刻接收到的卫星信号不能够实现定位时,将RTK定位组件的工作模式设置为低功耗工作模式。具体地,所述接收状态可以指示当前时刻接收到的卫星信号能否实现定位,处理器可以判断当前时刻接收到的卫星信号是否能够实现可移动平台的定位,当不能实现可移动平台的定位时,RTK组件可能会处于搜星状态,此时RTK组件功耗较大,处理器可以将RTK定位组件的工作模式设置为低功耗工作模式以降低功耗。
本实施例中,在确定当前时刻的卫星信号接收状态满足预设状态要求
时,将RTK组件设置为低功耗模式,这样可以避免长时间处于搜星状态,通过这种方式可以有效地降低RTK组件的功耗。
本发明实施例提供一种可移动平台的控制方法。图5为本发明另一实施例提供的可移动平台的控制方法的流程图。如图5所示,在图4所示实施例的基础上,本实施例中的方法,可以包括:
步骤S501、确定可移动平台当前时刻的卫星信号接收状态。
步骤S501与步骤S401或S101一致,具体方法此处不再赘述。。
步骤S502、当所述当前时刻的卫星信号接收状态不满足预设要求时,将RTK定位组件的工作模式设置为正常工作模式。
具体地,当处理器判断当前时刻的卫星信号接收状态不满足预设要求时,可以认为当前时刻的卫星接收状态良好,RTK组件可以快速地从搜星状态进入定位状态,RTK组件不会有较大的功耗。因此,当处理器确定当前时刻的卫星信号接收状态不满足预设要求时,可以将RTK定位组件的工作模式设置为正常工作模式,处理器将RTK组件设置成正常工作模式之后,RTK组件会进入搜星状态,当卫星信号的接收状态良好时,RTK组件会进入定位模式,即根据接收到的卫星信号输出定位信息。通过这种方式可以保证只有当卫星信号的接收状态良好时才进入正常工作模式,这样可以有效地避免RTK组件长时间处于搜星模式而导致功耗较大的问题。
在某些实施例中,所述方法还包括:获取RTK组件在正常工作模式下输出的定位信息,根据所述定位信息对可移动平台进行控制。具体地,当RTK组件工作正常工作模式下时,RTK组件会对卫星进行搜索,并根据接收到的卫星信号确定定位信息,并根据从基准站获取的数据(例如基准站观测到的载波相位、伪距信息、坐标信息中的至少一种)和接收到的卫星信号进行差分定位并将定位信号输出,可移动平台的处理器可以获取RTK组件输出的定位信息,并根据所述定位信息对可移动平台进行控制,具体地,处理器根据所述定位信息控制可移动平台执行预设任务,例如勘测作业任务、农业作业任务、拍摄作业任务等等。
本发明实施例提供一种可移动平台。图6为本发明实施例提供的可移动平台的结构图,如图6所示可移动平台600包括:存储器和处理器,
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
确定可移动平台当前时刻的卫星信号接收状态;
根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。
在某些实施例中,所述处理器确定可移动平台当前时刻的卫星信号接收状态时,具体用于:
获取可移动平台的定位接收机发送的指示当前时刻的卫星信号接收状态的信息;
根据所述信息确定当前时刻的卫星信号接收状态。
在某些实施例中,所述定位接收机包括GPS定位接收机、北斗定位接收机、伽利略定位接收机、格洛纳斯定位接收中的一种或多种。
在某些实施例中,所述处理器根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式时,具体用于:
当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式。
在某些实施例中,所述处理器将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:
将RTK定位组件的工作模式设置为休眠模式。
在某些实施例中,所述处理器将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:
将RTK定位组件关闭。
在某些实施例中,所述处理器将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:
以预设频率对RTK组件进行复位。
在某些实施例中,所述处理器在当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:
当所述当前时刻接收到卫星信号至多包括3颗卫星发送的卫星信号时,将RTK定位组件的工作模式设置为低功耗工作模式。
在某些实施例中,所述处理器在当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:
当所述当前时刻接收到卫星信号中至多3颗卫星发送的卫星信号的载噪比大于预设阈值时,将RTK定位组件的工作模式设置为低功耗工作模式。
在某些实施例中,所述处理器在当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:
当根据当前时刻接收到的卫星信号不能够实现定位时,将RTK定位组件的工作模式设置为低功耗工作模式。
在某些实施例中,所述处理器根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式时,具体用于:
当所述当前时刻的卫星信号接收状态不满足预设要求时,将RTK定位组件的工作模式设置为正常工作模式。
在某些实施例中,所述处理器还用于:
获取RTK组件在正常工作模式下输出的定位信息;
根据所述定位信息对可移动平台进行控制。
在某些实施例中,所述可移动平台为无人飞行器。
本实施例中,通过确定可移动平台在当前时刻的卫星信号接收状态,为RTK组件设置与当前时刻的卫星信号接收状态相匹配的工作模式,这样可以有效地降低RTK组件的功耗。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,
作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (26)
- 一种可移动平台的控制方法,其特征在于,包括:确定可移动平台当前时刻的卫星信号接收状态;根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。
- 根据权利要求1所述的方法,其特征在于,所述确定可移动平台当前时刻的卫星信号接收状态包括:获取可移动平台的定位接收机发送的指示当前时刻的卫星信号接收状态的信息;根据所述信息确定当前时刻的卫星信号接收状态。
- 根据权利要求2所述的方法,其特征在于,所述定位接收机包括GPS定位接收机、北斗定位接收机、伽利略定位接收机、格洛纳斯定位接收中的一种或多种。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式包括:当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式。
- 根据权利要求4所述的方法,其特征在于,所述将RTK定位组件的工作模式设置为低功耗工作模式包括:将RTK定位组件的工作模式设置为休眠模式。
- 根据权利要求4所述的方法,其特征在于,所述将RTK定位组件的工作模式设置为低功耗工作模式包括:将RTK定位组件关闭。
- 根据权利要求4所述的方法,其特征在于,所述将RTK定位组件的工作模式设置为低功耗工作模式包括:以预设频率对RTK组件进行复位。
- 根据权利要求4-7任一项所述的方法,其特征在于,所述当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式包括:当所述当前时刻接收到卫星信号至多包括3颗卫星发送的卫星信号时,将RTK定位组件的工作模式设置为低功耗工作模式。
- 根据权利要求4-7任一项所述的方法,其特征在于,所述当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式包括:当所述当前时刻接收到卫星信号中至多3颗卫星发送的卫星信号的载噪比大于预设阈值时,将RTK定位组件的工作模式设置为低功耗工作模式。
- 根据权利要求4-7任一项所述的方法,其特征在于,所述当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式包括:当根据当前时刻接收到的卫星信号不能够实现定位时,将RTK定位组件的工作模式设置为低功耗工作模式。
- 根据权利要求4-10任一项所述的方法,其特征在于,所述根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式包括:当所述当前时刻的卫星信号接收状态不满足预设要求时,将RTK定位组件的工作模式设置为正常工作模式。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:获取RTK组件在正常工作模式下输出的定位信息;根据所述定位信息对可移动平台进行控制。
- 根据权利要求1-12任一项所述的方法,其特征在于,所述可移动平台为无人飞行器。
- 一种可移动平台,其特征在于,包括:存储器和处理器,所述存储器,用于存储程序代码;所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:确定可移动平台当前时刻的卫星信号接收状态;根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式。
- 根据权利要求14所述的可移动平台,其特征在于,所述处理器确定可移动平台当前时刻的卫星信号接收状态时,具体用于:获取可移动平台的定位接收机发送的指示当前时刻的卫星信号接收状态的信息;根据所述信息确定当前时刻的卫星信号接收状态。
- 根据权利要求15所述的可移动平台,其特征在于,所述定位接收机包括GPS定位接收机、北斗定位接收机、伽利略定位接收机、格洛纳斯定位接收中的一种或多种。
- 根据权利要求14-16任一项所述的可移动平台,其特征在于,所述处理器根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式时,具体用于:当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式。
- 根据权利要求17所述的可移动平台,其特征在于,所述处理器将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:将RTK定位组件的工作模式设置为休眠模式。
- 根据权利要求17所述的可移动平台,其特征在于,所述处理器将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:将RTK定位组件关闭。
- 根据权利要求17所述的可移动平台,其特征在于,所述处理器将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:以预设频率对RTK组件进行复位。
- 根据权利要求17-20任一项所述的可移动平台,其特征在于,所述处理器在当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:当所述当前时刻接收到卫星信号至多包括3颗卫星发送的卫星信号时,将RTK定位组件的工作模式设置为低功耗工作模式。
- 根据权利要求17-20任一项所述的可移动平台,其特征在于,所述处理器在当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:当所述当前时刻接收到卫星信号中至多3颗卫星发送的卫星信号的载噪比大于预设阈值时,将RTK定位组件的工作模式设置为低功耗工作模式。
- 根据权利要求17-20任一项所述的可移动平台,其特征在于,所述处理器在当所述当前时刻的卫星信号接收状态满足预设状态要求时,将RTK定位组件的工作模式设置为低功耗工作模式时,具体用于:当根据当前时刻接收到的卫星信号不能够实现定位时,将RTK定位组 件的工作模式设置为低功耗工作模式。
- 根据权利要求17-23任一项所述的可移动平台,其特征在于,所述处理器根据所述当前时刻的卫星信号接收状态设定可移动平台的RTK定位组件的工作模式时,具体用于:当所述当前时刻的卫星信号接收状态不满足预设要求时,将RTK定位组件的工作模式设置为正常工作模式。
- 根据权利要求24所述的可移动平台,其特征在于,所述处理器还用于:获取RTK组件在正常工作模式下输出的定位信息;根据所述定位信息对可移动平台进行控制。
- 根据权利要求14-25任一项所述的可移动平台,其特征在于,所述可移动平台为无人飞行器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/116979 WO2019119221A1 (zh) | 2017-12-18 | 2017-12-18 | 可移动平台的控制方法及可移动平台 |
CN201780034923.0A CN109496275A (zh) | 2017-12-18 | 2017-12-18 | 可移动平台的控制方法及可移动平台 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/116979 WO2019119221A1 (zh) | 2017-12-18 | 2017-12-18 | 可移动平台的控制方法及可移动平台 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019119221A1 true WO2019119221A1 (zh) | 2019-06-27 |
Family
ID=65689067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/116979 WO2019119221A1 (zh) | 2017-12-18 | 2017-12-18 | 可移动平台的控制方法及可移动平台 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109496275A (zh) |
WO (1) | WO2019119221A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021195971A1 (zh) * | 2020-03-31 | 2021-10-07 | 深圳市大疆创新科技有限公司 | 定位方法、控制方法、控制终端及可移动平台 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1896765A (zh) * | 2005-07-11 | 2007-01-17 | 佛山市顺德区顺达电脑厂有限公司 | 全球定位系统天线调整系统和方法及信号强度显示模块和方法 |
CN101907716A (zh) * | 2010-07-29 | 2010-12-08 | 东莞市泰斗微电子科技有限公司 | 一种双模或者多模定位卫星信号接收模式选择方法及装置 |
CN103427856A (zh) * | 2012-05-21 | 2013-12-04 | 安凯(广州)微电子技术有限公司 | 一种gps接收机的功耗控制方法 |
US20150341862A1 (en) * | 2014-05-23 | 2015-11-26 | General Motors Llc | Vehicle telematics unit power management |
CN105676242A (zh) * | 2016-04-14 | 2016-06-15 | 和芯星通科技(北京)有限公司 | 一种卫星导航装置及其低功耗处理方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592173A (en) * | 1994-07-18 | 1997-01-07 | Trimble Navigation, Ltd | GPS receiver having a low power standby mode |
TWI408396B (zh) * | 2007-11-27 | 2013-09-11 | Mediatek Inc | 具有省電功能之電子裝置及其操作方法 |
US8188917B2 (en) * | 2008-02-25 | 2012-05-29 | CSR Technology Holdings Inc. | System and method for operating a GPS device in a micro power mode |
CN101762802B (zh) * | 2008-10-21 | 2013-04-10 | 凹凸电子(武汉)有限公司 | 卫星导航设备、卫星导航接收装置及其控制方法 |
CN101902765B (zh) * | 2010-03-29 | 2016-05-04 | 北京冠图创新信息技术有限公司 | 一种控制移动台gps工作的方法和系统 |
CN102062862B (zh) * | 2010-12-14 | 2012-11-14 | 东莞市泰斗微电子科技有限公司 | 一种导航卫星混合定位或授时的模式选择方法 |
CN105589085B (zh) * | 2014-10-24 | 2021-05-14 | 深圳开阳电子股份有限公司 | 一种低功耗的北斗定位通讯装置及控制方法 |
US10539677B2 (en) * | 2015-06-04 | 2020-01-21 | Huawei Technologies Co., Ltd. | Method for setting positioning mode and mobile terminal |
CN106855627A (zh) * | 2016-12-29 | 2017-06-16 | 湖南国科微电子股份有限公司 | 一种降低gnss接收机功耗的方法、装置及接收机 |
-
2017
- 2017-12-18 CN CN201780034923.0A patent/CN109496275A/zh active Pending
- 2017-12-18 WO PCT/CN2017/116979 patent/WO2019119221A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1896765A (zh) * | 2005-07-11 | 2007-01-17 | 佛山市顺德区顺达电脑厂有限公司 | 全球定位系统天线调整系统和方法及信号强度显示模块和方法 |
CN101907716A (zh) * | 2010-07-29 | 2010-12-08 | 东莞市泰斗微电子科技有限公司 | 一种双模或者多模定位卫星信号接收模式选择方法及装置 |
CN103427856A (zh) * | 2012-05-21 | 2013-12-04 | 安凯(广州)微电子技术有限公司 | 一种gps接收机的功耗控制方法 |
US20150341862A1 (en) * | 2014-05-23 | 2015-11-26 | General Motors Llc | Vehicle telematics unit power management |
CN105676242A (zh) * | 2016-04-14 | 2016-06-15 | 和芯星通科技(北京)有限公司 | 一种卫星导航装置及其低功耗处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109496275A (zh) | 2019-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9749794B2 (en) | Scalability and reliability of hardware geo-fencing with failover support | |
EP2870803B1 (en) | Power efficient location notification | |
US9191781B2 (en) | Use of wireless access point ID for position determination | |
KR101148290B1 (ko) | 위치 모니터링 시스템 | |
CN108780155B (zh) | 一种定位方法、终端及服务器 | |
WO2017177439A1 (zh) | 一种功能状态控制的方法及相关设备 | |
JP5910153B2 (ja) | 情報処理システムの制御方法、サーバ装置、サーバ装置の制御プログラム、クライアント装置及びクライアント装置の制御プログラム | |
TWI486613B (zh) | 定位資訊處理方法、電子裝置與電腦可讀記錄媒體 | |
US9103901B2 (en) | Position determination methodology selection | |
CN105929423A (zh) | 穿戴式装置以及控制方法 | |
JP5249808B2 (ja) | 位置送信装置、位置追跡システムおよび位置送信方法 | |
WO2019071838A1 (zh) | 一种定位方法及设备 | |
WO2019119221A1 (zh) | 可移动平台的控制方法及可移动平台 | |
CN108156650B (zh) | 定位模块的控制方法、装置、存储介质及终端 | |
CN108112061B (zh) | 定位控制方法、装置、存储介质及终端设备 | |
KR20180052428A (ko) | 위치 정보 획득을 위한 보조 데이터를 획득하는 전자 장치 및 방법 | |
WO2018176673A1 (zh) | 一种调整定位方式的方法及终端 | |
US20240176027A1 (en) | Method for positioning smart wearable device, and device | |
KR102356997B1 (ko) | 위치 기반 서비스를 제공하는 통신 단말기 및 그 제어방법 | |
CN110649958B (zh) | 用于处理卫星数据的方法、装置、设备和介质 | |
CN114449647B (zh) | 定位方法及装置 | |
KR20190017249A (ko) | 저전력 측위 방법, 단말 및 시스템 | |
KR102652360B1 (ko) | 외부 전자 장치에게 위치 정보를 제공하기 위한 방법 및 이를 지원하는 전자 장치 | |
CN118732004A (zh) | 移动设备的定位方法、装置、移动设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17935413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17935413 Country of ref document: EP Kind code of ref document: A1 |