WO2019117287A1 - Support and tire-rim assembly - Google Patents

Support and tire-rim assembly Download PDF

Info

Publication number
WO2019117287A1
WO2019117287A1 PCT/JP2018/046088 JP2018046088W WO2019117287A1 WO 2019117287 A1 WO2019117287 A1 WO 2019117287A1 JP 2018046088 W JP2018046088 W JP 2018046088W WO 2019117287 A1 WO2019117287 A1 WO 2019117287A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
support
elastic body
fiber
radial direction
Prior art date
Application number
PCT/JP2018/046088
Other languages
French (fr)
Japanese (ja)
Inventor
大澤 靖雄
幸恵 吉原
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019117287A1 publication Critical patent/WO2019117287A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/028Spacers between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/04Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency

Definitions

  • the present disclosure relates to a support and a tire / rim assembly.
  • Japanese Patent Application Laid-Open No. 2013-95369 discloses a side reinforced type run flat tire in which the tire side portion is reinforced with a side reinforcing rubber, and the durability during run flat running (that is, abnormal running with lowered air pressure) is secured. It is done.
  • the present disclosure provides a support that enables run-flat travel when applied to a pneumatic tire, and a tire / rim assembly in which the vertical spring during normal travel is unlikely to become large and the vertical spring during normal travel is difficult to become large. .
  • the support according to the first aspect extends from the bead portion outward in the tire radial direction, as viewed from a direction along the tire circumferential direction, in a state where the support is disposed straddling the bead portion inside the pneumatic tire.
  • the elastic body spaced apart from the part and the fiber reinforcement layer joined to the said elastic body are provided.
  • the elastic body forming the support extends outward in the tire radial direction. Therefore, when the air pressure decreases, the support and the inner circumferential surface of the pneumatic tire come in contact with each other. At this time, the elastic body is pressed from the pneumatic tire. Since the fiber reinforced layer is joined to the elastic body, the elastic body is more rigid than the case where the fiber reinforced layer is not joined, and is less likely to be deformed by the pressure from the pneumatic tire. As a result, the pneumatic tire can run on a run flat.
  • the elastic body is disposed apart from the tire side portion, it is difficult to affect the rigidity of the tire side portion. For this reason, compared with the run flat tire provided with the side reinforcement rubber, the vertical spring at the time of normal running does not easily become large.
  • a support according to a second aspect is the support according to the first aspect, wherein the fiber reinforcing layer is formed on at least a part of a portion where a tensile stress is generated during runflat running of the pneumatic tire.
  • the support In the pneumatic tire in which the support according to the second aspect is disposed, during run-flat travel, the support is pressed radially inward from the pneumatic tire. At this time, compressive stress or tensile stress is partially generated inside the elastic body. Since the fiber reinforcing layer is disposed on at least a part of the portion where tensile stress is generated, deformation of the elastic body is suppressed as compared with, for example, the case where the fiber reinforcing layer is disposed only at the portion where compressive stress is generated.
  • the support according to the third aspect is the support according to the first or second aspect, wherein the elastic body is formed using an elastomer, and the fiber reinforcing layer is formed using an organic fiber.
  • the elastic body is formed using an elastomer. For this reason, compared with the elastic body formed using metal etc., elasticity is low and lightweight. Therefore, when the elastic body comes in contact with the pneumatic tire, the inner peripheral surface of the pneumatic tire is less likely to be damaged. Moreover, since the fiber reinforcement layer is formed using organic fiber, it is lightweight compared with a steel wire etc.
  • the support according to the fourth aspect is the support according to any one of the first to third aspects, wherein the support is continuous across the bead portions of the elastic body as viewed in cross section along the width direction and the radial direction of the elastic body. At least a portion of the portion is formed of a single material.
  • At least a portion of the continuous portion across the bead portion of the elastic body is formed of a single material, and therefore, the present invention is compared to the case where a plurality of materials are combined and formed. And easy to manufacture.
  • the inclination angle of the fibers forming the fiber reinforcing layer with respect to the tire radial direction is ⁇ when viewed from the direction along the tire axial direction 20 degrees or more and 20 degrees or less.
  • the inclination angle of the fibers forming the fiber reinforced layer with respect to the tire radial direction is ⁇ 20 ° or more and 20 ° or less when viewed from the axial direction of the tire. Compared with cases smaller than ⁇ 20 ° and larger than 20 °, the resistance to the tensile force generated in the side portion of the support is high in the cross section along the tire width direction and the tire radial direction.
  • a support according to a sixth aspect is the support according to the first aspect to the fifth aspect, wherein the elastic body is provided with two protrusions projecting outward in the tire radial direction.
  • the pneumatic tire can be supported at two places during run flat traveling. For this reason, compared with the case where it supports at one place, the load which acts on the inner skin of a pneumatic tire is distributed. Thereby, damage to the inner peripheral surface of the pneumatic tire can be suppressed.
  • a support according to a seventh aspect is the support according to the first aspect to the fifth aspect, wherein the elastic body is provided with three protrusions projecting outward in the tire radial direction.
  • the pneumatic tire can be supported at three points during run-flat travel. For this reason, compared with the case where it supports at one place or two places, the load which acts on the inner skin of a pneumatic tire is distributed. Thereby, the load at the time of cornering can be supported with good balance.
  • the tire-rim assembly of the eighth aspect is formed by attaching the support of the first to seventh aspects and the pneumatic tire to a rim.
  • the tire-rim assembly according to the eighth aspect includes the support described in any one of the first to seventh aspects, and therefore can run-flat when the internal pressure decreases.
  • the support since the support is disposed apart from the side portion, the vertical spring during normal traveling is less likely to be larger than the run flat tire provided with the side reinforcing rubber.
  • a tire / rim assembly in which run-flat travel is possible when applied to a pneumatic tire, and a vertical spring during normal travel is unlikely to become large, and a vertical spring during normal travel is difficult to become large. Can be provided.
  • FIG. 1 is a cross-sectional view showing a support according to a first embodiment of the present disclosure and a tire to which the support is applied. It is a perspective view showing a support concerning a 1st embodiment of this indication.
  • 1 is a partial elevation view showing a support according to a first embodiment of the present disclosure and a tread-in side during run-flat travel of a tire to which the support is applied.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the state at the time of run flat driving
  • FIG. 7 is a cross-sectional view showing a support according to a second embodiment of the present disclosure and a tire to which the support is applied.
  • FIG. 7 is a cross-sectional view showing a support according to a second embodiment of the present disclosure and a tire to which the support is applied during run-flat travel.
  • FIG. 1 shows a pneumatic tire (hereinafter, referred to as “tire 10”) in which a support 40 and a support 40 according to a first embodiment of the present disclosure are disposed.
  • tire 10 a pneumatic tire
  • FIG. 1 a cut surface (in other words, a cross section seen from the direction along the tire circumferential direction) of the support 40 and the tire 10 along the tire width direction and the tire radial direction is shown.
  • the arrow W indicates the width direction of the tire 10 (hereinafter referred to as the tire width direction)
  • the arrow R indicates the radial direction of the tire 10 (hereinafter referred to as the tire radial direction).
  • the tire width direction referred to here indicates a direction parallel to the rotation axis of the tire 10.
  • the tire radial direction means a direction orthogonal to the rotation axis of the tire 10.
  • symbol CL has shown the equatorial plane (it is hereafter called a tire equatorial plane) of the tire 10. As shown in FIG.
  • the side closer to the rotation axis of the tire 10 along the tire radial direction is “inward in the tire radial direction”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is “the outer side in the tire radial direction” And write.
  • the side closer to the tire equatorial plane CL along the tire width direction will be referred to as "the inner side in the tire width direction”
  • the side farther from the tire equatorial plane CL along the tire width direction will be referred to as "the outer side in the tire width direction”.
  • FIG. 1 shows a tire 10 assembled to a rim 30 which is a standard rim and filled with a standard air pressure.
  • standard rim refers to the rim specified in the Year Book 2017 edition of JATMA (Japan Automobile Tire Association).
  • the standard air pressure is an air pressure corresponding to the maximum load capacity of JATMA (Japan Automobile Tires Association) Year Book 2017 edition. Assembly of the tire 10 to the rim 30 forms an example of the tire-rim assembly of the present disclosure.
  • the tire 10 includes a pair of bead portions 12, a carcass 14 disposed across the bead cores 26 embedded in the bead portions 12, and a bead core 26 embedded in the bead portions 12 from the tire radial direction.
  • a bead filler 28 extending outward along the outer surface of the carcass 14, a belt layer 16 provided on the tire radial direction outer side of the carcass 14, and a tread 20 provided on the tire radial direction outer side of the belt layer 16 There is.
  • a tread 20 that constitutes an outer peripheral portion of the tire 10 is provided on the tire radial direction outer side of the belt layer 16.
  • the tire side portion 22 is configured by a sidewall lower portion 22A on the bead portion 12 side and a sidewall upper portion 22B on the tread 20 side, and connects the bead portion 12 and the tread 20.
  • Bead part Bead cores 26 which are wire bundles are embedded in the pair of bead portions 12 respectively.
  • a carcass 14 straddles these bead cores 26.
  • the bead core 26 can adopt various structures in a pneumatic tire such as a circular cross section or a polygonal shape, and for example, a hexagonal can be adopted as a polygon, but in the present embodiment, it is a quadrangle. There is.
  • An outwardly extending bead filler 28 is embedded in the region surrounded by the carcass 14 of the bead portion 12 (that is, the region outside the portion of the carcass 14 disposed inward in the tire width direction around the bead core 26.
  • the carcass (that is, carcass ply) 14 is a tire frame member formed by covering a plurality of cords with a covering rubber.
  • the carcass 14 extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton.
  • the carcass 14 is a radial carcass.
  • the material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be adopted. In terms of weight reduction, organic fiber cords are preferred. Further, although the number of implanted carcasses is in the range of 20 to 60/50 mm, it is not limited to this range.
  • a belt layer 16 is disposed on the tire radial direction outer side of the carcass 14.
  • the belt layer 16 is composed of two belt plies 16A and 16B.
  • the belt plies 16A and 16B are each formed by coating a plurality of cords (for example, organic fiber cords and metal cords) with a covering rubber.
  • the cords constituting the belt plies 16A, 16B extend in the circumferential direction of the tire or in a direction inclined with respect to the circumferential direction.
  • a tread 20 is provided on the outer side in the tire radial direction of the belt layer 16.
  • the tread 20 is a portion that contacts the road surface during traveling, and a plurality of circumferential grooves 24 extending in the tire circumferential direction are formed on the radially outer side of the tread 20.
  • the shape and the number of the circumferential grooves 24 are appropriately set in accordance with the performance required for the tire 10 such as drainage performance and steering stability.
  • the support 40 is a tire support member formed in an annular shape as shown in FIG.
  • the support body 40 is formed by arranging the elastic body 42 and the fiber reinforcing layer 44 in layers.
  • the elastic body 42 is curved in a semicircular arc shape so as to be convex outward in the radial direction in a cross-sectional view along the width direction and the radial direction of the support body 40.
  • the fiber reinforcing layer 44 is joined along the convex surface 42A of the elastic body 42.
  • the surface on the convex side of the support 40, the elastic body 42, and the fiber reinforcing layer 44 is referred to as the outer surface
  • the surface on the concave side is referred to as the inner surface.
  • the elastic body 42 is a main body member of the support body 40, and is formed using an elastomer.
  • the fiber reinforcing layer 44 is a cord layer formed by coating a plurality of organic fiber cords (for example, an aromatic polyamide cord) with the same elastomer as the elastic body 42.
  • the elastomer constituting the fiber reinforcing layer 44 is bonded to the elastomer constituting the elastic body 42.
  • the support 40 has a configuration in which the organic fiber cord is embedded in the inside of the elastomer.
  • the organic fiber cord is simply referred to as a cord 44A (see FIG. 3).
  • the convex side surface 42A of the elastic body 42 and the fiber reinforcing layer 44 are disposed so as to face the outer side in the tire radial direction. That is, the elastic body 42 and the fiber reinforcing layer 44 are disposed so as to protrude outward in the tire radial direction.
  • the support 40 extends outward in the tire radial direction and is disposed apart from the inner peripheral surface of the bead portion 12 and the inner peripheral surface 22 C of the tire side portion 22, and the support 40 and the tire side portion 22 are A space V is formed between the inner circumferential surface 22C.
  • the support body 40 is disposed across the bead portions 12 in a state of being precompressed in the tire width direction (that is, a state in which both end portions 40A of the support body 40 are deformed in a direction approaching each other).
  • the support 40 is fixed in such a manner that the both end portions 40A press the inside of the bead portion 12. Further, the support 40 is disposed in contact with the rim 30.
  • FIG. 3 shows a partially enlarged view of the tread side of the tire 10 during runflat running.
  • the cord 44A embedded in the elastomer in the fiber reinforcing layer 44 is shown by a dotted line.
  • the cords 44A are formed to intersect with the radial direction of the tire 10 and the support 40 at an angle ⁇ .
  • the angle ⁇ is set to ⁇ 20 ° ⁇ ⁇ ⁇ 20 ° with a positive value when the cord 44A is inclined in the rotational direction shown by the arrow r in FIG. 3 when viewed from the inside in the radial direction.
  • ⁇ in FIG. 3 is about ⁇ 10 °.
  • At least one through hole (not shown) passing through the elastic body 42 and the fiber reinforcing layer 44 is provided as an air hole in the central portion in the tire width direction of the support body 40 in the tire circumferential direction.
  • the support body 40 Since the fiber reinforcing layer 44 is formed on the elastic body 42 constituting the support body 40, the support body 40 is against the pressing force from the tire 10 as compared with the case where the fiber reinforcing layer 44 is not formed. Hard to deform. As a result, the pneumatic tire can run on a run flat.
  • compressive stress and tensile stress are generated inside the support body 40 by the elastic body 42 being deformed. Specifically, a compressive stress is generated at a place where the elastic body 42 is deformed in a direction in which the elastic body 42 receives an external force, and a tensile stress is generated at a place where the elastic body 42 is deformed in the extending direction.
  • a tensile stress TB is generated on the side portion 40B of the outer surface of the support 40.
  • a tensile stress TC is also generated in the central portion 40C of the inner side surface of the support 40.
  • the fiber reinforcing layer 44 is joined along the convex surface 42 ⁇ / b> A of the elastic body 42. That is, the fiber reinforcing layer 44 is disposed along the outer surface of the support 40. As a result, the cords 44A (see FIG. 3) embedded in the fiber reinforcing layer 44 can resist the tensile stress TB.
  • the elastic body 42 is formed using an elastomer. For this reason, compared with the case where a support body is formed using metal etc., it is hard to damage the inner peripheral surface of the tire 10, and is lightweight. Furthermore, when the fiber reinforcing layer 44 is formed using an organic fiber cord (code 44A), it is lightweight compared to using a steel wire or the like.
  • the elastic body 42 is formed at least in part from a single material (elastomer in this embodiment) in the direction extending from one bead to the opposite bead when viewed in width and radial cross section
  • the manufacturing is easy as compared with the case of combining and forming a plurality of materials.
  • the elastic body 42 when viewed in cross section along the width direction and the radial direction of the elastic body 42, the elastic body 42 is formed of a single material (elastomer in the present embodiment). For this reason, manufacture is easy compared with the case where it combines and forms a several material.
  • the elastic body may not necessarily be formed of a single material.
  • a continuous portion that is, a portion extending from one bead to the opposite bead
  • the elastic body is a single It should just be formed with the material of.
  • the elastic body 42 is disposed apart from the inner circumferential surface 22 C of the tire side portion 22, the rigidity of the tire side portion 22 is hardly affected. For this reason, compared with the run flat tire provided with the side reinforcement rubber, the vertical spring at the time of normal running does not easily become large.
  • the cords 44 ⁇ / b> A forming the fiber reinforcing layer 44 are inclined with respect to the tire radial direction and the radial direction of the support 40. For this reason, at the time of run flat running, it is possible to resist the tensile force TD acting along the tire circumferential direction on the tread-in side and the kick-out side. The durability of the support 40 is thereby enhanced.
  • the inclination angle of the cord 44A with respect to the tire radial direction is set to ⁇ 20 ° or more and 20 ° or less. For this reason, compared with the case where it is smaller than ⁇ 20 ° or larger than 20 °, the resistance to the tensile stress TB (see FIG. 4) generated in the side portion 40B of the support 40 is high.
  • the support 40 is disposed across the bead portions 12 in a state of being pre-compressed in the tire width direction.
  • it since it is held so as to be pressed against the bead portion 12, it is difficult to rattle during internal pressure travel (that is, during normal travel).
  • the fiber reinforcing layer 44 is formed on the outer surface of the elastic body 42 between the end portions 40A of the support 40, but the embodiment of the present disclosure is not limited thereto.
  • a fiber reinforcing layer 46 fiber reinforcing layers 46A and 46B shown in FIG. 5A
  • only the side portion 40B of the outer surface of the support 40 and the central portion 40C of the inner surface may be covered.
  • the elastic layer 42 is formed on the outer surface of the elastic body 42 so as to extend between the end portions 40A of the support 40, as in the fiber reinforcement layer 48 (fiber reinforcement layers 48A and 48B). Alternatively, it may be formed across the end 40A of the support 40. By forming the fiber reinforcing layer in this manner, it is possible to exert a resistance to external forces acting from various directions.
  • these fiber reinforcing layers 44, 46, 48 are disposed exposed on the surface of the elastic body 42
  • the embodiment of the present disclosure is not limited thereto.
  • the surface of the fiber reinforcing layers 44, 46, 48 opposite to the elastic body 42 may be coated with a protective layer.
  • the durability of the fiber reinforcing layers 44, 46, 48 can be improved.
  • a material which forms a protective layer the same material as the elastic body 42, etc. can be selected suitably.
  • fiber reinforcement layer 54, 56, 58, 60 mentioned later is applicable also to fiber reinforcement layer 54, 56, 58, 60 mentioned later.
  • the inclination angle of the cord 44A with respect to the tire radial direction may be smaller than ⁇ 20 ° or larger than 20 °, as necessary. In this case, it is possible to easily resist the tensile force TD acting along the tire circumferential direction.
  • the support body 40 in the first embodiment is formed to be curved in a semicircular arc shape so as to be convex radially outward.
  • the support 50 in the second embodiment as shown in FIG. 6, two protrusions (protrusions 50U) protruding radially outward are formed.
  • a radially inward recessed recess 50D is formed between the two protrusions 50U.
  • the protruding portion 50U of the support 50 is formed by a protruding portion 52U in which the elastic body 52 protrudes radially outward.
  • the recess 50D of the support 50 is formed by a recess 52D in which the elastic body 52 is depressed radially inward.
  • the fiber reinforcing layer 54 in the support 50 is joined along the outer surface of the elastic body 52 from each of the end portions 50A of the support 50 to the projecting portion 50U and the recess 50D.
  • the support body 50 is the same as that of the support body 40 of 1st Embodiment, and abbreviate
  • the support 50 is applied to the same tire 10 as the support 40.
  • a tensile stress TB is generated on the side portion 50B of the outer surface of the support 50 (projecting portion 50U).
  • a tensile stress TC is also generated in the central portion 50C of the inner side surface of the support 50 (recess 50D).
  • the fiber reinforcing layer 54 is joined along the outer surface of the elastic body 52. Thereby, a cord (not shown) embedded in the fiber reinforcing layer 54 can resist the tensile stress TB.
  • the fiber reinforcing layer 54 is joined along the outer side surface of the elastic body 52 from each of the end portions 50A of the support 50 to the projecting portion 50U.
  • the fiber reinforced layer is formed in part of the portion of the support 50 where tensile stress occurs, the embodiment of the present disclosure is not limited thereto.
  • a fiber reinforcing layer 56 may be provided which is joined along the inner side surface of the elastic body 52 in the recess 50D of the support 50.
  • the support 50 can resist the tensile stress TC generated in the central portion 50C of the inner surface of the recess 50D. That is, it can resist all of the main tensile stresses generated in the support 50.
  • the fiber reinforcing layer may be formed on at least a part of the portion of the support 50 where tensile stress is generated, but it is implemented in various modes in consideration of rim assembly property and run flat durability. It can. For example, as shown in FIG. 6, if the fiber reinforcing layer is not provided in the recess 50D of the support 50, the recess 50D is easily elastically deformed, so that the rim assembling property can be enhanced, and as shown in FIG. If the fiber reinforcing layer 56 is provided at 50D, run-flat durability can be enhanced.
  • it may be formed on the outer surface and the inner surface of the elastic body 52, as shown in FIG. 8B (fiber reinforced layers 58A, 58B), across the end 50A of the support 50.
  • fiber reinforced layers 58A, 58B By forming the fiber reinforcing layer in this manner, it is possible to exert a resistance to external forces acting from various directions.
  • protrusions 50U protrusions protruding outward in the tire radial direction
  • the embodiment of the present disclosure is not limited thereto.
  • three protrusions 60U may be formed.
  • the protrusion 60U is formed by a protrusion 62U in which the elastic body 62 protrudes radially outward.
  • the protruding portion 60U is provided at a position corresponding to the central portion and the shoulder portion of the tread 20.
  • the load acting on the inner peripheral surface of the tire 10 is dispersed by forming three projecting portions 60U. Damage to the inner circumferential surface of the tire 10 is thereby suppressed. Further, since the load can be supported by the shoulder portion and the center portion of the tread 20, the load at the time of cornering of the tire 10 can be supported in a well-balanced manner. For this reason, damage to the tire 10 is suppressed.
  • the fiber reinforcement layer 64 is formed in the outer surface of the elastic body 62 over the both ends 60A of the support body 60, embodiment of this indication is not restricted to this.
  • the fiber-reinforcing layer can be disposed at a necessary position as appropriate in the same manner as the supports 40, 50.
  • Example 1 is the tire 10 to which the support 50 is applied
  • Example 2 is the tire 10 to which the support 60 is applied.
  • Comparative Example 1 is a run flat tire reinforced by bonding side reinforcing rubber to the inner peripheral surface 22C of the tire side portion 22 without using any of the supports 40, 50, 60 in the above embodiment.
  • Comparative Example 2 is a run in which both ends of a curved metal plate are formed of rubber without using any of the supports 40, 50, and 60 in the above embodiment, and the rubber is disposed inside the bead portion 12. It is a flat tire.
  • the tire 10 of Example 1 and 2 and the tire of Comparative Example 2 used 205 / 55R1691V, and as the run flat tire in Comparative Example 1, the tire of tire size 205 / 55RF16 91V was used.
  • a tire wheel with an air pressure of 0 kPa was placed on a steel drum tester with a diameter of 2 m, and a load of 3.92 kN was applied, a drum endurance test according to ISO 1692 was performed at a traveling speed of 80 km / h It went by considerable. Further, a separate test was conducted to measure the vertical spring property at the time of filling the internal pressure.
  • an elastomer is used for the elastic body 42 and the fiber reinforcing layer 44, but the embodiment of the present disclosure is not limited thereto.
  • resins such as thermoplastic resin, thermosetting resin, and (meth) acrylic resin, EVA resin, vinyl chloride resin, fluorine resin, silicone resin, engineering plastics (including super engineering plastics) and additives
  • a vulcanized rubber or the like can be used.
  • thermoplastic resin refers to a polymer compound which softens and flows as the temperature rises and becomes relatively hard and strong when cooled.
  • the material softens and flows as temperature rises, and becomes relatively hard and strong when cooled
  • the polymer compound having rubbery elasticity is a thermoplastic elastomer, and the material increases as temperature rises.
  • the polymer compound softens, flows, cools, it becomes a relatively hard and strong state, and a polymer compound having no rubbery elasticity is distinguished as a non-elastomeric thermoplastic resin.
  • thermoplastic resins include polyolefin thermoplastic elastomer (TPO), polystyrene thermoplastic elastomer (TPS), polyamide thermoplastic elastomer (TPA), polyurethane thermoplastic elastomer (TPU), polyester And thermoplastic thermoplastic elastomers (TPV) and thermoplastic olefin resins, polystyrene thermoplastic resins, polyamide thermoplastic resins and polyester thermoplastic resins.
  • organic fiber cord is used as a cord which forms fiber reinforcement layer 44, 54, 64 in the above-mentioned embodiment
  • an embodiment of this indication is not limited to this.
  • inorganic fiber cords such as steel cords, glass fibers and carbon fibers may be used.
  • This steel cord is based on steel and can contain various minor inclusions such as carbon, manganese, silicon, phosphorus, sulfur, copper, chromium and the like.
  • a monofilament cord or a cord in which a plurality of filaments are twisted can be used as the various cords.
  • Various designs can be adopted for the twist structure, and various cross-section structures, twist pitches, twist directions, and distances between adjacent filaments can be used.
  • the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and double twist can be taken.
  • the fiber reinforcing layer may be configured using FRP (fiber reinforced plastic) instead of the cord coated with resin or the like.
  • FRP fiber reinforced plastic
  • fibers applied to FRP glass fibers, carbon fibers, boron fibers, aramid fibers and the like can be appropriately selected.
  • the present disclosure can be implemented in various ways.

Abstract

This support is provided with: an elastic body that extends outward in a tire diameter direction from bead sections and that is offset from a tire side section as viewed from a direction aligned with a tire circumference direction, when the elastic body has been disposed spanning between the bead sections inside a pneumatic tire; and a fiber-reinforced layer joined to the elastic body.

Description

支持体及びタイヤ・リム組立体Support and tire / rim assembly
 本開示は、支持体及びタイヤ・リム組立体に関する。 The present disclosure relates to a support and a tire / rim assembly.
 特開2013-95369号公報には、タイヤサイド部をサイド補強ゴムで補強し、ランフラット走行時(すなわち空気圧が低下した異常走行時)の耐久性を確保したサイド補強型のランフラットタイヤが開示されている。 Japanese Patent Application Laid-Open No. 2013-95369 discloses a side reinforced type run flat tire in which the tire side portion is reinforced with a side reinforcing rubber, and the durability during run flat running (that is, abnormal running with lowered air pressure) is secured. It is done.
 上述した特開2013-95369号公報に示されるようなサイド補強ゴムを備えたランフラットタイヤでは、ランフラット走行時のタイヤサイド部の変形が抑制されるが、通常走行時の縦バネが大きくなる傾向がある。 In the run flat tire provided with the side reinforcing rubber as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2013-95369, the deformation of the tire side portion during run flat running is suppressed, but the vertical spring during normal running becomes large Tend.
 本開示は、空気入りタイヤに適用した際にランフラット走行を可能にしつつ通常走行時の縦バネが大きくなり難い支持体及び通常走行時の縦バネが大きくなり難いタイヤ・リム組立体を提供する。 The present disclosure provides a support that enables run-flat travel when applied to a pneumatic tire, and a tire / rim assembly in which the vertical spring during normal travel is unlikely to become large and the vertical spring during normal travel is difficult to become large. .
 第1態様に係る支持体は、空気入りタイヤの内部においてビード部間に跨って配置された状態で、タイヤ周方向に沿った方向から見て、前記ビード部からタイヤ径方向外側へ延びタイヤサイド部から離間する弾性体と、前記弾性体と接合された繊維補強層と、を備えている。 The support according to the first aspect extends from the bead portion outward in the tire radial direction, as viewed from a direction along the tire circumferential direction, in a state where the support is disposed straddling the bead portion inside the pneumatic tire. The elastic body spaced apart from the part and the fiber reinforcement layer joined to the said elastic body are provided.
 第1態様に係る支持体が配置された空気入りタイヤにおいては、支持体を形成する弾性体が、タイヤ径方向外側へ延びている。このため、空気圧が低下すると、支持体と空気入りタイヤの内周面とが接触する。このとき弾性体が空気入りタイヤから押圧される。弾性体には繊維補強層が接合されているため、繊維補強層が接合されていない場合と比較して弾性体は剛性が高められ、空気入りタイヤからの押圧力に対して変形し難い。これにより空気入りタイヤはランフラット走行できる。 In the pneumatic tire in which the support according to the first aspect is disposed, the elastic body forming the support extends outward in the tire radial direction. Therefore, when the air pressure decreases, the support and the inner circumferential surface of the pneumatic tire come in contact with each other. At this time, the elastic body is pressed from the pneumatic tire. Since the fiber reinforced layer is joined to the elastic body, the elastic body is more rigid than the case where the fiber reinforced layer is not joined, and is less likely to be deformed by the pressure from the pneumatic tire. As a result, the pneumatic tire can run on a run flat.
 また、弾性体はタイヤサイド部から離間して配置されているため、タイヤサイド部の剛性に影響を与え難い。このため、サイド補強ゴムを備えたランフラットタイヤと比較して、通常走行時の縦バネが大きくなり難い。 Further, since the elastic body is disposed apart from the tire side portion, it is difficult to affect the rigidity of the tire side portion. For this reason, compared with the run flat tire provided with the side reinforcement rubber, the vertical spring at the time of normal running does not easily become large.
 第2態様に係る支持体は、第1態様の支持体において、前記繊維補強層は、前記空気入りタイヤのランフラット走行時に引張応力が発生する部分の少なくとも一部に形成されている。 A support according to a second aspect is the support according to the first aspect, wherein the fiber reinforcing layer is formed on at least a part of a portion where a tensile stress is generated during runflat running of the pneumatic tire.
 第2態様に係る支持体が配置された空気入りタイヤにおいては、ランフラット走行時、支持体は空気入りタイヤから径方向内側へ押圧される。このとき、弾性体の内部には、部分的に圧縮応力又は引張応力が発生する。繊維補強層は、引張応力が発生する部分の少なくとも一部に配置されているため、例えば圧縮応力が発生する部分のみに配置されている場合と比較して、弾性体の変形が抑制される。 In the pneumatic tire in which the support according to the second aspect is disposed, during run-flat travel, the support is pressed radially inward from the pneumatic tire. At this time, compressive stress or tensile stress is partially generated inside the elastic body. Since the fiber reinforcing layer is disposed on at least a part of the portion where tensile stress is generated, deformation of the elastic body is suppressed as compared with, for example, the case where the fiber reinforcing layer is disposed only at the portion where compressive stress is generated.
 第3態様に係る支持体は、第1態様又は第2態様に記載の支持体において、前記弾性体はエラストマーを用いて形成され、前記繊維補強層は有機繊維を用いて形成されている。 The support according to the third aspect is the support according to the first or second aspect, wherein the elastic body is formed using an elastomer, and the fiber reinforcing layer is formed using an organic fiber.
 第3態様に係る支持体においては、弾性体はエラストマーを用いて形成されている。このため金属等を用いて形成された弾性体と比較して弾性が低く軽量である。このため弾性体が空気入りタイヤと接触した際、空気入りタイヤの内周面が損傷し難い。また、繊維補強層は有機繊維を用いて形成されているため、スチールワイヤー等と比較して軽量である。 In the support according to the third aspect, the elastic body is formed using an elastomer. For this reason, compared with the elastic body formed using metal etc., elasticity is low and lightweight. Therefore, when the elastic body comes in contact with the pneumatic tire, the inner peripheral surface of the pneumatic tire is less likely to be damaged. Moreover, since the fiber reinforcement layer is formed using organic fiber, it is lightweight compared with a steel wire etc.
 第4態様に係る支持体は、第1態様~第3態様の支持体において、前記弾性体の幅方向及び径方向に沿った断面からみて、前記弾性体の前記ビード部間に跨って連続した部分の少なくとも一部が単一の材料で形成されている。 The support according to the fourth aspect is the support according to any one of the first to third aspects, wherein the support is continuous across the bead portions of the elastic body as viewed in cross section along the width direction and the radial direction of the elastic body. At least a portion of the portion is formed of a single material.
 第4態様に係る支持体においては、弾性体のビード部間に跨って連続した部分の少なくとも一部が単一の材料で形成されているため、複数の材料を組合わせて形成する場合と比較して、製造が容易である。 In the support according to the fourth aspect, at least a portion of the continuous portion across the bead portion of the elastic body is formed of a single material, and therefore, the present invention is compared to the case where a plurality of materials are combined and formed. And easy to manufacture.
 第5態様に係る支持体は、第1態様~第4態様の支持体において、タイヤ軸方向に沿った方向から見て、前記繊維補強層を形成する繊維のタイヤ径方向に対する傾斜角度は、-20°以上20°以下である。 In the support according to the fifth aspect, in the support according to the first to fourth aspects, the inclination angle of the fibers forming the fiber reinforcing layer with respect to the tire radial direction is − when viewed from the direction along the tire axial direction 20 degrees or more and 20 degrees or less.
 第5態様に係る支持体においては、タイヤ軸方向に沿った方向から見て、前記繊維補強層を形成する繊維のタイヤ径方向に対する傾斜角度は、-20°以上20°以下とされているため、-20°より小さい場合や20°より大きい場合と比較して、タイヤ幅方向及びタイヤ径方向に沿った断面内で支持体の側方部に発生する引張力に抵抗する抵抗力が高い。 In the support according to the fifth aspect, the inclination angle of the fibers forming the fiber reinforced layer with respect to the tire radial direction is −20 ° or more and 20 ° or less when viewed from the axial direction of the tire. Compared with cases smaller than −20 ° and larger than 20 °, the resistance to the tensile force generated in the side portion of the support is high in the cross section along the tire width direction and the tire radial direction.
 第6態様に係る支持体は、第1態様~第5態様の支持体において、前記弾性体は、タイヤ径方向外側へ突出する突出部を2つ備えている。 A support according to a sixth aspect is the support according to the first aspect to the fifth aspect, wherein the elastic body is provided with two protrusions projecting outward in the tire radial direction.
 第6態様に係る支持体においては、ランフラット走行時、空気入りタイヤを二箇所で支持できる。このため、一箇所で支持する場合と比較して、空気入りタイヤの内周面に作用する荷重が分散される。これにより空気入りタイヤの内周面の損傷を抑制できる。 In the support according to the sixth aspect, the pneumatic tire can be supported at two places during run flat traveling. For this reason, compared with the case where it supports at one place, the load which acts on the inner skin of a pneumatic tire is distributed. Thereby, damage to the inner peripheral surface of the pneumatic tire can be suppressed.
 第7態様に係る支持体は、第1態様~第5態様の支持体において、前記弾性体は、タイヤ径方向外側へ突出する突出部を3つ備えている。 A support according to a seventh aspect is the support according to the first aspect to the fifth aspect, wherein the elastic body is provided with three protrusions projecting outward in the tire radial direction.
 第7態様に係る支持体においては、ランフラット走行時、空気入りタイヤを三箇所で支持できる。このため、一箇所又は二箇所で支持する場合と比較して、空気入りタイヤの内周面に作用する荷重が分散される。これにより、コーナリング時における荷重をバランスよく支持できる。 In the support according to the seventh aspect, the pneumatic tire can be supported at three points during run-flat travel. For this reason, compared with the case where it supports at one place or two places, the load which acts on the inner skin of a pneumatic tire is distributed. Thereby, the load at the time of cornering can be supported with good balance.
 第8態様のタイヤ・リム組立体は、第1態様~第7態様の支持体と前記空気入りタイヤとがリムへ組みつけられて形成されている。 The tire-rim assembly of the eighth aspect is formed by attaching the support of the first to seventh aspects and the pneumatic tire to a rim.
 第8態様のタイヤ・リム組立体は、第1態様~第7態様の何れか1態様に記載の支持体を備えているため、内圧低下時にランフラット走行できる。また、支持体はサイド部から離間して配置されているため、サイド補強ゴムを備えたランフラットタイヤと比較して、通常走行時の縦バネが大きくなり難い。 The tire-rim assembly according to the eighth aspect includes the support described in any one of the first to seventh aspects, and therefore can run-flat when the internal pressure decreases. In addition, since the support is disposed apart from the side portion, the vertical spring during normal traveling is less likely to be larger than the run flat tire provided with the side reinforcing rubber.
 本開示によれば、空気入りタイヤに適用した際にランフラット走行を可能にしつつ通常走行時の縦バネが大きくなり難い支持体及び通常走行時の縦バネが大きくなり難いタイヤ・リム組立体を提供することができる。 According to the present disclosure, there is provided a tire / rim assembly in which run-flat travel is possible when applied to a pneumatic tire, and a vertical spring during normal travel is unlikely to become large, and a vertical spring during normal travel is difficult to become large. Can be provided.
本開示の第1実施形態に係る支持体及び支持体が適用されたタイヤを示す断面図である。1 is a cross-sectional view showing a support according to a first embodiment of the present disclosure and a tire to which the support is applied. 本開示の第1実施形態に係る支持体を示す斜視図である。It is a perspective view showing a support concerning a 1st embodiment of this indication. 本開示の第1実施形態に係る支持体及び支持体が適用されたタイヤのランフラット走行時における踏み込み側を示す部分立面図である。1 is a partial elevation view showing a support according to a first embodiment of the present disclosure and a tread-in side during run-flat travel of a tire to which the support is applied. FIG. 本開示の第1実施形態に係る支持体及び支持体が適用されたタイヤのランフラット走行時における状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the state at the time of run flat driving | running | working of the tire by which the support body which concerns on 1st Embodiment of this indication was applied. 本開示の第1実施形態に係る支持体において繊維補強層を支持体の引張応力が発生する部分のみに適用した変形例を示す断面図である。It is sectional drawing which shows the modification which applied the fiber reinforcement layer only to the part which the tensile stress of a support generate | occur | produces in the support body which concerns on 1st Embodiment of this indication. 本開示の第1実施形態に係る支持体において繊維補強層を支持体の外側面及び内側面の全体に適用した変形例を示す断面図である。It is sectional drawing which shows the modification which applied the fiber reinforcement layer to the whole outer surface and inner surface of a support body in the support body which concerns on 1st Embodiment of this indication. 本開示の第2実施形態に係る支持体及び支持体が適用されたタイヤを示す断面図である。FIG. 7 is a cross-sectional view showing a support according to a second embodiment of the present disclosure and a tire to which the support is applied. 本開示の第2実施形態に係る支持体及び支持体が適用されたタイヤのランフラット走行時における状態を示す断面図である。FIG. 7 is a cross-sectional view showing a support according to a second embodiment of the present disclosure and a tire to which the support is applied during run-flat travel. 本開示の第2実施形態に係る支持体において繊維補強層を支持体の引張応力が発生する部分のみに適用した変形例を示す断面図である。It is sectional drawing which shows the modification which applied the fiber reinforcement layer only to the part which the tensile stress of a support generate | occur | produces in the support body which concerns on 2nd Embodiment of this indication. 本開示の第2実施形態に係る支持体において繊維補強層を支持体の外側面及び内側面の全体に適用した変形例を示す断面図である。It is sectional drawing which shows the modification which applied the fiber reinforcement layer to the whole outer surface and inner surface of a support body in the support body which concerns on 2nd Embodiment of this indication. 本開示の第2実施形態に係る支持体においてタイヤ径方向に突出する突出部を3つ形成した変形例を示す断面図である。It is sectional drawing which shows the modification which formed three protrusion parts which protrude in a tire radial direction in the support body which concerns on 2nd Embodiment of this indication. 本開示の第2実施形態に係る支持体が適用されたタイヤと比較例に係るタイヤの性能試験結果を示す表である。It is a table | surface which shows the performance test result of the tire to which the support body which concerns on 2nd Embodiment of this indication was applied, and the tire which concerns on a comparative example.
[第1実施形態]
 図1には、本開示の第1実施形態に係る支持体40及び支持体40が配置された空気入りタイヤ(以下、「タイヤ10」と称する。)が示されている。図1においては、支持体40及びタイヤ10のタイヤ幅方向及びタイヤ径方向に沿って切断した切断面(換言するとタイヤ周方向に沿った方向から見た断面)が示されている。なお、図中矢印Wはタイヤ10の幅方向(以下、タイヤ幅方向と称す)を示し、矢印Rはタイヤ10の径方向(以下、タイヤ径方向と称す)を示す。ここでいうタイヤ幅方向とは、タイヤ10の回転軸と平行な方向を指している。また、タイヤ径方向とは、タイヤ10の回転軸と直交する方向をいう。また、符号CLはタイヤ10の赤道面(以下、タイヤ赤道面と称す)を示している。
First Embodiment
FIG. 1 shows a pneumatic tire (hereinafter, referred to as “tire 10”) in which a support 40 and a support 40 according to a first embodiment of the present disclosure are disposed. In FIG. 1, a cut surface (in other words, a cross section seen from the direction along the tire circumferential direction) of the support 40 and the tire 10 along the tire width direction and the tire radial direction is shown. In the drawings, the arrow W indicates the width direction of the tire 10 (hereinafter referred to as the tire width direction), and the arrow R indicates the radial direction of the tire 10 (hereinafter referred to as the tire radial direction). The tire width direction referred to here indicates a direction parallel to the rotation axis of the tire 10. Further, the tire radial direction means a direction orthogonal to the rotation axis of the tire 10. Moreover, the code | symbol CL has shown the equatorial plane (it is hereafter called a tire equatorial plane) of the tire 10. As shown in FIG.
 また、本実施形態では、タイヤ径方向に沿ってタイヤ10の回転軸に近い側を「タイヤ径方向内側」、タイヤ径方向に沿ってタイヤ10の回転軸から遠い側を「タイヤ径方向外側」と記載する。一方、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。 Further, in the present embodiment, the side closer to the rotation axis of the tire 10 along the tire radial direction is “inward in the tire radial direction”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is “the outer side in the tire radial direction” And write. On the other hand, the side closer to the tire equatorial plane CL along the tire width direction will be referred to as "the inner side in the tire width direction", and the side farther from the tire equatorial plane CL along the tire width direction will be referred to as "the outer side in the tire width direction".
<タイヤ>
 図1には、標準リムであるリム30に組み付けて標準空気圧を充填したときのタイヤ10が示されている。なお、ここでいう「標準リム」とは、JATMA(日本自動車タイヤ協会)のYear Book2017年版規定のリムを指す。また、上記標準空気圧とは、JATMA(日本自動車タイヤ協会)のYear Book2017年版の最大負荷能力に対応する空気圧である。タイヤ10をリム30に組み付けることにより、本開示のタイヤ・リム組立体の一例が形成される。
<Tire>
FIG. 1 shows a tire 10 assembled to a rim 30 which is a standard rim and filled with a standard air pressure. The term "standard rim" as used herein refers to the rim specified in the Year Book 2017 edition of JATMA (Japan Automobile Tire Association). Further, the standard air pressure is an air pressure corresponding to the maximum load capacity of JATMA (Japan Automobile Tires Association) Year Book 2017 edition. Assembly of the tire 10 to the rim 30 forms an example of the tire-rim assembly of the present disclosure.
 図1に示されるように、タイヤ10は、一対のビード部12と、ビード部12に埋設されたビードコア26に跨って配置されたカーカス14と、ビード部12に埋設されビードコア26からタイヤ径方向外側へカーカス14の外面に沿って伸びるビードフィラー28と、カーカス14のタイヤ径方向外側に設けられたベルト層16と、ベルト層16のタイヤ径方向外側に設けられたトレッド20と、を備えている。 As shown in FIG. 1, the tire 10 includes a pair of bead portions 12, a carcass 14 disposed across the bead cores 26 embedded in the bead portions 12, and a bead core 26 embedded in the bead portions 12 from the tire radial direction. A bead filler 28 extending outward along the outer surface of the carcass 14, a belt layer 16 provided on the tire radial direction outer side of the carcass 14, and a tread 20 provided on the tire radial direction outer side of the belt layer 16 There is.
 ベルト層16のタイヤ径方向外側には、タイヤ10の外周部を構成するトレッド20が設けられている。タイヤサイド部22は、ビード部12側のサイドウォール下部22Aと、トレッド20側のサイドウォール上部22Bとで構成され、ビード部12とトレッド20とを連結している。 A tread 20 that constitutes an outer peripheral portion of the tire 10 is provided on the tire radial direction outer side of the belt layer 16. The tire side portion 22 is configured by a sidewall lower portion 22A on the bead portion 12 side and a sidewall upper portion 22B on the tread 20 side, and connects the bead portion 12 and the tread 20.
(ビード部)
 一対のビード部12には、ワイヤ束であるビードコア26がそれぞれ埋設されている。これらのビードコア26には、カーカス14が跨っている。ビードコア26は、断面が円形や多角形状など、空気入りタイヤにおけるさまざまな構造を採用することができ、多角形としては例えば六角形を採用することができるが、本実施形態においては四角形とされている。
(Bead part)
Bead cores 26 which are wire bundles are embedded in the pair of bead portions 12 respectively. A carcass 14 straddles these bead cores 26. The bead core 26 can adopt various structures in a pneumatic tire such as a circular cross section or a polygonal shape, and for example, a hexagonal can be adopted as a polygon, but in the present embodiment, it is a quadrangle. There is.
 図1に示すように、ビード部12のカーカス14で囲まれた領域(すなわちカーカス14においてビードコア26周りにタイヤ幅方向内側に配置された部分の外側の領域)には、ビードコア26からタイヤ径方向外側へ延びるビードフィラー28が埋設されている。 As shown in FIG. 1, in the region surrounded by the carcass 14 of the bead portion 12 (that is, the region outside the portion of the carcass 14 disposed inward in the tire width direction around the bead core 26), An outwardly extending bead filler 28 is embedded.
(カーカス)
 カーカス(すなわちカーカスプライ)14は、複数本のコードを被覆ゴムで被覆して形成されたタイヤ骨格部材である。カーカス14は、一方のビードコア26から他方のビードコア26へトロイド状に延びてタイヤの骨格を構成している。
(Carcass)
The carcass (that is, carcass ply) 14 is a tire frame member formed by covering a plurality of cords with a covering rubber. The carcass 14 extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton.
 なお、本実施形態においてカーカス14はラジアルカーカスとされている。また、カーカス14の材質は特に限定されず、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。なお、軽量化の点からは、有機繊維コードが好ましい。また、カーカスの打ち込み数は20~60本/50mmの範囲とされているが、この範囲に限定されるものではない。 In the present embodiment, the carcass 14 is a radial carcass. The material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be adopted. In terms of weight reduction, organic fiber cords are preferred. Further, although the number of implanted carcasses is in the range of 20 to 60/50 mm, it is not limited to this range.
(ベルト層)
 カーカス14のタイヤ径方向外側には、ベルト層16が配設されている。ベルト層16は、2枚のベルトプライ16A、16Bによって構成されている。ベルトプライ16A、16Bはそれぞれ、複数本のコード(例えば、有機繊維コードや金属コードなど)を被覆ゴムで被覆して形成されている。ベルトプライ16A、16Bを構成するコードは、タイヤ周方向、または周方向に対して傾斜する方向に延びている。
(Belt layer)
A belt layer 16 is disposed on the tire radial direction outer side of the carcass 14. The belt layer 16 is composed of two belt plies 16A and 16B. The belt plies 16A and 16B are each formed by coating a plurality of cords (for example, organic fiber cords and metal cords) with a covering rubber. The cords constituting the belt plies 16A, 16B extend in the circumferential direction of the tire or in a direction inclined with respect to the circumferential direction.
(トレッド)
 ベルト層16のタイヤ径方向外側には、トレッド20が設けられている。トレッド20は、走行中に路面に接地する部位であり、トレッド20の径方向外側には、タイヤ周方向に延びる周方向溝24が複数本形成されている。周方向溝24の形状や本数は、タイヤ10に要求される排水性や操縦安定性等の性能に応じて適宜設定される。
(tread)
A tread 20 is provided on the outer side in the tire radial direction of the belt layer 16. The tread 20 is a portion that contacts the road surface during traveling, and a plurality of circumferential grooves 24 extending in the tire circumferential direction are formed on the radially outer side of the tread 20. The shape and the number of the circumferential grooves 24 are appropriately set in accordance with the performance required for the tire 10 such as drainage performance and steering stability.
<支持体>
 支持体40は、図2に示すように、円環状に形成されたタイヤ支持部材である。支持体40は、弾性体42と繊維補強層44とが層状に配置されて形成されている。弾性体42は、支持体40の幅方向及び径方向に沿った断面視において、径方向外側へ凸となるように半円弧状に湾曲して形成されている。そして、繊維補強層44が弾性体42の凸側の表面42Aに沿って接合されている。なお、以下の説明においては、支持体40、弾性体42、繊維補強層44の凸側の表面を外側面、凹側の表面を内側面と称す。
<Support>
The support 40 is a tire support member formed in an annular shape as shown in FIG. The support body 40 is formed by arranging the elastic body 42 and the fiber reinforcing layer 44 in layers. The elastic body 42 is curved in a semicircular arc shape so as to be convex outward in the radial direction in a cross-sectional view along the width direction and the radial direction of the support body 40. The fiber reinforcing layer 44 is joined along the convex surface 42A of the elastic body 42. In the following description, the surface on the convex side of the support 40, the elastic body 42, and the fiber reinforcing layer 44 is referred to as the outer surface, and the surface on the concave side is referred to as the inner surface.
 弾性体42は、支持体40の本体部材であり、エラストマーを用いて形成されている。繊維補強層44は、複数本の有機繊維コード(例えば芳香族ポリアミドコード)を弾性体42と同じエラストマーで被覆して形成されたコード層である。繊維補強層44を構成するエラストマーは、弾性体42を構成するエラストマーと接合されている。これにより、支持体40は、エラストマーの内部に有機繊維コードが埋設された構成となっている。なお、以下の説明においては、有機繊維コードを単にコード44A(図3参照)と称す。 The elastic body 42 is a main body member of the support body 40, and is formed using an elastomer. The fiber reinforcing layer 44 is a cord layer formed by coating a plurality of organic fiber cords (for example, an aromatic polyamide cord) with the same elastomer as the elastic body 42. The elastomer constituting the fiber reinforcing layer 44 is bonded to the elastomer constituting the elastic body 42. Thus, the support 40 has a configuration in which the organic fiber cord is embedded in the inside of the elastomer. In the following description, the organic fiber cord is simply referred to as a cord 44A (see FIG. 3).
 図1に示すように、支持体40は、タイヤ10の内部に配置された状態では、弾性体42の凸側の表面42A及び繊維補強層44がタイヤ径方向外側を向くように配置される。すなわち、弾性体42及び繊維補強層44が、タイヤ径方向外側へ突出するように配置される。また、支持体40は、タイヤ径方向外側へ延びつつ、ビード部12の内周面及びタイヤサイド部22の内周面22Cから離間して配置されており、支持体40とタイヤサイド部22の内周面22Cの間には空間Vが形成されている。 As shown in FIG. 1, in the state where the support body 40 is disposed inside the tire 10, the convex side surface 42A of the elastic body 42 and the fiber reinforcing layer 44 are disposed so as to face the outer side in the tire radial direction. That is, the elastic body 42 and the fiber reinforcing layer 44 are disposed so as to protrude outward in the tire radial direction. The support 40 extends outward in the tire radial direction and is disposed apart from the inner peripheral surface of the bead portion 12 and the inner peripheral surface 22 C of the tire side portion 22, and the support 40 and the tire side portion 22 are A space V is formed between the inner circumferential surface 22C.
 さらに、支持体40は、タイヤ幅方向に予圧縮された状態(すなわち、支持体40の両端部40Aを互いに近づける方向に変形させた状態)で、ビード部12間に跨って配置されている。これにより、支持体40は両端部40Aがビード部12の内側を押圧するようにして固定される。また、支持体40は、リム30に当接するようにして配置される。 Furthermore, the support body 40 is disposed across the bead portions 12 in a state of being precompressed in the tire width direction (that is, a state in which both end portions 40A of the support body 40 are deformed in a direction approaching each other). Thus, the support 40 is fixed in such a manner that the both end portions 40A press the inside of the bead portion 12. Further, the support 40 is disposed in contact with the rim 30.
 図3には、タイヤ10のランフラット走行時における踏み込み側の部分拡大図が示されている。また、図3には、繊維補強層44においてエラストマーに埋設されたコード44Aが点線で示されている。コード44Aは、タイヤ10及び支持体40の径方向に対して角度θで交わるように形成されている。角度θは、コード44Aを径方向内側から見て図3に矢印rで示す回転方向に傾斜する場合を正の値として、-20°≦θ≦20°とされている。例えば図3におけるθは、約-10°である。 FIG. 3 shows a partially enlarged view of the tread side of the tire 10 during runflat running. Also, in FIG. 3, the cord 44A embedded in the elastomer in the fiber reinforcing layer 44 is shown by a dotted line. The cords 44A are formed to intersect with the radial direction of the tire 10 and the support 40 at an angle θ. The angle θ is set to −20 ° ≦ θ ≦ 20 ° with a positive value when the cord 44A is inclined in the rotational direction shown by the arrow r in FIG. 3 when viewed from the inside in the radial direction. For example, θ in FIG. 3 is about −10 °.
 なお、支持体40のタイヤ幅方向中央部には、空気孔として、弾性体42及び繊維補強層44を貫通する貫通孔(不図示)が、タイヤ周方向において少なくとも一つ設けられている。 In addition, at least one through hole (not shown) passing through the elastic body 42 and the fiber reinforcing layer 44 is provided as an air hole in the central portion in the tire width direction of the support body 40 in the tire circumferential direction.
<作用>
 際1実施形態に係る支持体40が適用されたタイヤ10においては、図4に示すように、空気圧が低下すると、支持体40の外周面とタイヤ10の内周面とが接触する。このとき支持体40は、タイヤ10からタイヤ径方向内側へ押圧される。
<Function>
In the tire 10 to which the support 40 according to one embodiment is applied, as shown in FIG. 4, when the air pressure decreases, the outer peripheral surface of the support 40 contacts the inner peripheral surface of the tire 10. At this time, the support 40 is pressed inward in the tire radial direction from the tire 10.
 支持体40を構成する弾性体42には、繊維補強層44が形成されているため、繊維補強層44が形成されていない場合と比較して、支持体40はタイヤ10からの押圧力に対して変形し難い。これにより空気入りタイヤはランフラット走行できる。 Since the fiber reinforcing layer 44 is formed on the elastic body 42 constituting the support body 40, the support body 40 is against the pressing force from the tire 10 as compared with the case where the fiber reinforcing layer 44 is not formed. Hard to deform. As a result, the pneumatic tire can run on a run flat.
 また、支持体40の内部には、弾性体42が変形することにより圧縮応力及び引張応力が発生する。具体的には、弾性体42が外力を受けて縮む方向に変形する場所には圧縮応力が発生し、伸びる方向に変形する場所には引張応力が発生する。 In addition, compressive stress and tensile stress are generated inside the support body 40 by the elastic body 42 being deformed. Specifically, a compressive stress is generated at a place where the elastic body 42 is deformed in a direction in which the elastic body 42 receives an external force, and a tensile stress is generated at a place where the elastic body 42 is deformed in the extending direction.
 例えば図4に示すように支持体40がタイヤ10からタイヤ径方向に沿う方向の外力P1を受けた際、支持体40の外側面の側方部40Bには引張応力TBが発生する。また、支持体40の内側面の中央部40Cにも引張応力TCが発生する。 For example, as shown in FIG. 4, when the support 40 receives an external force P1 in a direction along the tire radial direction from the tire 10, a tensile stress TB is generated on the side portion 40B of the outer surface of the support 40. In addition, a tensile stress TC is also generated in the central portion 40C of the inner side surface of the support 40.
 本実施形態に係る支持体40においては、繊維補強層44が弾性体42の凸側の表面42Aに沿って接合されている。すなわち、繊維補強層44が支持体40の外側面に沿って配置されている。これにより繊維補強層44に埋設されたコード44A(図3参照)が引張応力TBに抵抗することができる。 In the support body 40 according to the present embodiment, the fiber reinforcing layer 44 is joined along the convex surface 42 </ b> A of the elastic body 42. That is, the fiber reinforcing layer 44 is disposed along the outer surface of the support 40. As a result, the cords 44A (see FIG. 3) embedded in the fiber reinforcing layer 44 can resist the tensile stress TB.
 コード44Aが引張応力TBに抵抗することにより、支持体40の変形が抑制されるため、支持体40は外力P1に抵抗し、タイヤ10はランフラット走行できる。 Since the cord 44A resists the tensile stress TB, deformation of the support 40 is suppressed, so the support 40 resists the external force P1 and the tire 10 can run flat.
 また、弾性体42はエラストマーを用いて形成されている。このため金属等を用いて支持体を形成する場合と比較して、タイヤ10の内周面が損傷し難く、軽量である。さらに、繊維補強層44は有機繊維コード(コード44A)を用いて形成されている場合、スチールワイヤー等を用いる場合と比較して軽量である。 In addition, the elastic body 42 is formed using an elastomer. For this reason, compared with the case where a support body is formed using metal etc., it is hard to damage the inner peripheral surface of the tire 10, and is lightweight. Furthermore, when the fiber reinforcing layer 44 is formed using an organic fiber cord (code 44A), it is lightweight compared to using a steel wire or the like.
 また、弾性体42は幅と径方向断面で見た場合、片方のビードから反対側のビードへ伸びる方向で、少なくとも一部分は単一の材料(本実施形態においてはエラストマー)で形成されているため、複数の材料を組合わせて形成する場合と比較して、製造が容易である。 Further, since the elastic body 42 is formed at least in part from a single material (elastomer in this embodiment) in the direction extending from one bead to the opposite bead when viewed in width and radial cross section The manufacturing is easy as compared with the case of combining and forming a plurality of materials.
 また、弾性体42の幅方向及び径方向に沿った断面からみて、弾性体42は、単一の材料(本実施形態においてはエラストマー)で形成されている。このため、複数の材料を組合わせて形成する場合と比較して、製造が容易である。 Further, when viewed in cross section along the width direction and the radial direction of the elastic body 42, the elastic body 42 is formed of a single material (elastomer in the present embodiment). For this reason, manufacture is easy compared with the case where it combines and forms a several material.
 なお、弾性体は、必ずしも単一の材料で形成しなくてもよい。例えば弾性体の幅方向及び径方向に沿った断面からみて、弾性体のビード部間に跨って連続した部分(すなわち片方のビードから反対側のビードへ伸びる部分)の少なくとも一部が、単一の材料で形成されていればよい。 The elastic body may not necessarily be formed of a single material. For example, viewed in cross section along the width and radial directions of the elastic body, at least a part of a continuous portion (that is, a portion extending from one bead to the opposite bead) across the bead portions of the elastic body is a single It should just be formed with the material of.
 また、図1に示すように、弾性体42はタイヤサイド部22の内周面22Cから離間して配置されているため、タイヤサイド部22の剛性に影響を与え難い。このため、サイド補強ゴムを備えたランフラットタイヤと比較して、通常走行時の縦バネが大きくなり難い。 Further, as shown in FIG. 1, since the elastic body 42 is disposed apart from the inner circumferential surface 22 C of the tire side portion 22, the rigidity of the tire side portion 22 is hardly affected. For this reason, compared with the run flat tire provided with the side reinforcement rubber, the vertical spring at the time of normal running does not easily become large.
 また、図3に示すように、繊維補強層44を形成するコード44Aが、タイヤ径方向及び支持体40の径方向に対して傾斜している。このため、ランフラット走行時、踏み込み側と蹴り出し側においてタイヤ周方向に沿って作用する引張力TDに抵抗することができる。これにより支持体40の耐久性が高められる。 Further, as shown in FIG. 3, the cords 44 </ b> A forming the fiber reinforcing layer 44 are inclined with respect to the tire radial direction and the radial direction of the support 40. For this reason, at the time of run flat running, it is possible to resist the tensile force TD acting along the tire circumferential direction on the tread-in side and the kick-out side. The durability of the support 40 is thereby enhanced.
 また、コード44Aのタイヤ径方向に対する傾斜角は-20°以上20°以下とされている。このため、-20°より小さい場合や20°より大きい場合と比較して、支持体40の側方部40Bに発生する引張応力TB(図4参照)に抵抗する抵抗力が高い。 Further, the inclination angle of the cord 44A with respect to the tire radial direction is set to −20 ° or more and 20 ° or less. For this reason, compared with the case where it is smaller than −20 ° or larger than 20 °, the resistance to the tensile stress TB (see FIG. 4) generated in the side portion 40B of the support 40 is high.
 また、支持体40は、タイヤ幅方向に予圧縮された状態で、ビード部12間に跨って配置されている。また、ビード部12に押し付けられるように保持されるため、内圧走行時(すなわち通常走行時)にガタつき難い。 Further, the support 40 is disposed across the bead portions 12 in a state of being pre-compressed in the tire width direction. In addition, since it is held so as to be pressed against the bead portion 12, it is difficult to rattle during internal pressure travel (that is, during normal travel).
 なお、本実施形態において、繊維補強層44は、支持体40の両端部40A間に亘って弾性体42の外側面に形成されているが、本開示の実施形態はこれに限らない。例えば図5Aに示す繊維補強層46(繊維補強層46A、46B)のように、支持体40の外側面の側方部40B及び内側面の中央部40Cだけを覆うように配置してもよい。このように配置することで、側方部40Bに発生する引張応力TB及び中央部40Cに発生する引張応力TCを効率的に処理できる。 In the present embodiment, the fiber reinforcing layer 44 is formed on the outer surface of the elastic body 42 between the end portions 40A of the support 40, but the embodiment of the present disclosure is not limited thereto. For example, as in a fiber reinforcing layer 46 ( fiber reinforcing layers 46A and 46B) shown in FIG. 5A, only the side portion 40B of the outer surface of the support 40 and the central portion 40C of the inner surface may be covered. By arranging in this manner, the tensile stress TB generated in the side portion 40B and the tensile stress TC generated in the central portion 40C can be efficiently processed.
 又は、図5Bに示す繊維補強層48(繊維補強層48A、48B)のように、弾性体42の外側面に支持体40の両端部40A間に亘って形成するほか、弾性体42の内側面に、支持体40の両端部40A間に亘って形成してもよい。繊維補強層をこのように形成することで、様々な方向から作用する外力に対して抵抗力を発揮できる。 Alternatively, as shown in FIG. 5B, the elastic layer 42 is formed on the outer surface of the elastic body 42 so as to extend between the end portions 40A of the support 40, as in the fiber reinforcement layer 48 ( fiber reinforcement layers 48A and 48B). Alternatively, it may be formed across the end 40A of the support 40. By forming the fiber reinforcing layer in this manner, it is possible to exert a resistance to external forces acting from various directions.
 さらに、これらの繊維補強層44、46、48は、弾性体42の表面に露出して配置されているが、本開示の実施形態はこれに限らない。たとえば、繊維補強層44、46、48における弾性体42と反対側の表面を、保護層で被覆してもよい。保護層を設けることで、繊維補強層44、46、48の耐久性を向上できる。なお、保護層を形成する材料としては、弾性体42と同じ材料等、適宜選択することができる。また、この保護層を設ける構成については、後述する繊維補強層54、56、58、60にも適用できる。 Furthermore, although these fiber reinforcing layers 44, 46, 48 are disposed exposed on the surface of the elastic body 42, the embodiment of the present disclosure is not limited thereto. For example, the surface of the fiber reinforcing layers 44, 46, 48 opposite to the elastic body 42 may be coated with a protective layer. By providing the protective layer, the durability of the fiber reinforcing layers 44, 46, 48 can be improved. In addition, as a material which forms a protective layer, the same material as the elastic body 42, etc. can be selected suitably. Moreover, about the structure which provides this protective layer, it is applicable also to fiber reinforcement layer 54, 56, 58, 60 mentioned later.
 さらに、コード44Aのタイヤ径方向に対する傾斜角は、必要に応じて、-20°より小さくしたり20°より大きくしてもよい。この場合、タイヤ周方向に沿って作用する引張力TDに抵抗しやすくできる。 Furthermore, the inclination angle of the cord 44A with respect to the tire radial direction may be smaller than −20 ° or larger than 20 °, as necessary. In this case, it is possible to easily resist the tensile force TD acting along the tire circumferential direction.
[第2実施形態]
<支持体>
 第1実施形態における支持体40は、図2及び図1に示すように、径方向外側へ凸となるように半円弧状に湾曲して形成されている。これに対し、第2実施形態における支持体50は、図6に示すように、径方向外側へ突出する突出部(突出部50U)が2つ形成されている。2つの突出部50Uの間には、径方向内側へ陥没した凹部50Dが形成される。
Second Embodiment
<Support>
As shown in FIGS. 2 and 1, the support body 40 in the first embodiment is formed to be curved in a semicircular arc shape so as to be convex radially outward. On the other hand, in the support 50 in the second embodiment, as shown in FIG. 6, two protrusions (protrusions 50U) protruding radially outward are formed. A radially inward recessed recess 50D is formed between the two protrusions 50U.
 なお、支持体50の突出部50Uは、弾性体52が径方向外側へ突出した突出部52Uによって形成されている。同様に、支持体50の凹部50Dは、弾性体52が径方向内側へ陥没した凹部52Dによって形成されている。 The protruding portion 50U of the support 50 is formed by a protruding portion 52U in which the elastic body 52 protrudes radially outward. Similarly, the recess 50D of the support 50 is formed by a recess 52D in which the elastic body 52 is depressed radially inward.
 支持体50における繊維補強層54は、支持体50の両端部50Aのそれぞれから突出部50U、さらに凹部50Dにかけて、弾性体52の外側面に沿って接合されている。 The fiber reinforcing layer 54 in the support 50 is joined along the outer surface of the elastic body 52 from each of the end portions 50A of the support 50 to the projecting portion 50U and the recess 50D.
 支持体50のその他の構成については、第1実施形態の支持体40と同様であり説明を省略する。また、支持体50は、支持体40と同様のタイヤ10に適用されている。 About the other structure of the support body 50, it is the same as that of the support body 40 of 1st Embodiment, and abbreviate | omits description. In addition, the support 50 is applied to the same tire 10 as the support 40.
<作用>
 第2実施形態における支持体50が適用されたタイヤ10においては、図7に示すように、空気圧が低下すると、支持体50における突出部50Uの外周面とタイヤ10の内周面とが接触する。このときタイヤ10は、2つの突出部50Uによって支持されるため、1つの突出部によって支持される場合と比較して、内周面に作用する荷重が分散される。これによりタイヤ10の内周面の損傷が抑制される。
<Function>
In the tire 10 to which the support 50 in the second embodiment is applied, as shown in FIG. 7, when the air pressure decreases, the outer peripheral surface of the protrusion 50U of the support 50 contacts the inner peripheral surface of the tire 10 . At this time, since the tire 10 is supported by the two protrusions 50U, the load acting on the inner circumferential surface is dispersed as compared with the case where the tire 10 is supported by one protrusion. Damage to the inner circumferential surface of the tire 10 is thereby suppressed.
 支持体50がタイヤ10からタイヤ径方向に沿う方向の外力P2を受けた際、支持体50(突出部50U)の外側面の側方部50Bには引張応力TBが発生する。また、支持体50(凹部50D)の内側面の中央部50Cにも引張応力TCが発生する。 When the support 50 receives an external force P2 in a direction along the tire radial direction from the tire 10, a tensile stress TB is generated on the side portion 50B of the outer surface of the support 50 (projecting portion 50U). In addition, a tensile stress TC is also generated in the central portion 50C of the inner side surface of the support 50 (recess 50D).
 本実施形態に係る支持体50においては、繊維補強層54が弾性体52の外側面に沿って接合されている。これにより繊維補強層54に埋設されたコード(不図示)が引張応力TBに抵抗することができる。 In the support 50 according to the present embodiment, the fiber reinforcing layer 54 is joined along the outer surface of the elastic body 52. Thereby, a cord (not shown) embedded in the fiber reinforcing layer 54 can resist the tensile stress TB.
 なお、本実施形態において繊維補強層54は、支持体50の両端部50Aのそれぞれから突出部50Uにかけて、弾性体52の外側面に沿って接合されている。換言すると、支持体50において引張応力が発生する部分の一部に繊維補強層が形成されているが、本開示の実施形態はこれに限らない。 In the present embodiment, the fiber reinforcing layer 54 is joined along the outer side surface of the elastic body 52 from each of the end portions 50A of the support 50 to the projecting portion 50U. In other words, although the fiber reinforced layer is formed in part of the portion of the support 50 where tensile stress occurs, the embodiment of the present disclosure is not limited thereto.
 例えば図8Aに示すように、繊維補強層54に加えて、支持体50の凹部50Dにおける弾性体52の内側面に沿って接合する繊維補強層56を設けてもよい。繊維補強層56を設けることで、支持体50は、凹部50Dの内側面の中央部50Cに発生する引張応力TCに抵抗することができる。すなわち、支持体50において発生する主な引張応力の全てに抵抗することができる。 For example, as shown in FIG. 8A, in addition to the fiber reinforcing layer 54, a fiber reinforcing layer 56 may be provided which is joined along the inner side surface of the elastic body 52 in the recess 50D of the support 50. By providing the fiber reinforcing layer 56, the support 50 can resist the tensile stress TC generated in the central portion 50C of the inner surface of the recess 50D. That is, it can resist all of the main tensile stresses generated in the support 50.
 このように、本開示において繊維補強層は、支持体50において引張応力が発生する部分の少なくとも一部に形成すればよいが、リム組み性やランフラット耐久性を考慮して様々な態様で実施し得る。例えば図6に示すように支持体50の凹部50Dに繊維補強層を設けなければ凹部50Dが弾性変形しやすいためリム組性を高くでき、図8(A)に示すように支持体50の凹部50Dに繊維補強層56を設ければランフラット耐久性を高くできる。 As described above, in the present disclosure, the fiber reinforcing layer may be formed on at least a part of the portion of the support 50 where tensile stress is generated, but it is implemented in various modes in consideration of rim assembly property and run flat durability. It can. For example, as shown in FIG. 6, if the fiber reinforcing layer is not provided in the recess 50D of the support 50, the recess 50D is easily elastically deformed, so that the rim assembling property can be enhanced, and as shown in FIG. If the fiber reinforcing layer 56 is provided at 50D, run-flat durability can be enhanced.
 又は、図8Bに示す繊維補強層58(繊維補強層58A、58B)のように、弾性体52の外側面及び内側面に、支持体50の両端部50A間に亘って形成してもよい。繊維補強層をこのように形成することで、様々な方向から作用する外力に対して抵抗力を発揮できる。 Alternatively, it may be formed on the outer surface and the inner surface of the elastic body 52, as shown in FIG. 8B (fiber reinforced layers 58A, 58B), across the end 50A of the support 50. By forming the fiber reinforcing layer in this manner, it is possible to exert a resistance to external forces acting from various directions.
 また、本実施形態おける支持体50は、タイヤ径方向外側へ突出する突出部(突出部50U)が2つ形成されているが、本開示の実施形態はこれに限らない。例えば図9に示す支持体60のように、突出部60Uを3つ形成してもよい。突出部60Uは、弾性体62が径方向外側へ突出した突出部62Uによって形成されている。また、突出部60Uは、トレッド20における中央部とショルダー部に対応する位置に設けられる。 Further, in the support 50 in the present embodiment, two protrusions (protrusions 50U) protruding outward in the tire radial direction are formed, but the embodiment of the present disclosure is not limited thereto. For example, as in a support 60 shown in FIG. 9, three protrusions 60U may be formed. The protrusion 60U is formed by a protrusion 62U in which the elastic body 62 protrudes radially outward. Further, the protruding portion 60U is provided at a position corresponding to the central portion and the shoulder portion of the tread 20.
 突出部60Uを3つ形成することで、タイヤ10の内周面に作用する荷重が分散される。これによりタイヤ10の内周面の損傷が抑制される。また、トレッド20のショルダー部とセンター部とで荷重を支持できるため、タイヤ10のコーナリング時における荷重をバランスよく支持できる。このため、タイヤ10の損傷が抑制される。 The load acting on the inner peripheral surface of the tire 10 is dispersed by forming three projecting portions 60U. Damage to the inner circumferential surface of the tire 10 is thereby suppressed. Further, since the load can be supported by the shoulder portion and the center portion of the tread 20, the load at the time of cornering of the tire 10 can be supported in a well-balanced manner. For this reason, damage to the tire 10 is suppressed.
 また、図9においては、繊維補強層64が、弾性体62の外側面に、支持体60の両端部60A間に亘って形成されているが、本開示の実施形態はこれに限らない。繊維補強層は、支持体40、50と同様に、適宜必要な位置に配置することができる。 Moreover, in FIG. 9, although the fiber reinforcement layer 64 is formed in the outer surface of the elastic body 62 over the both ends 60A of the support body 60, embodiment of this indication is not restricted to this. The fiber-reinforcing layer can be disposed at a necessary position as appropriate in the same manner as the supports 40, 50.
[性能試験]
 上記実施形態における支持体50が適用されたタイヤ10及び支持体60が適用されたタイヤ10の性能を確かめるために、以下の実施例1、2の空気入りタイヤと、本開示に含まれない比較例1、2のランフラットタイヤを用意して試験を実施した。
[performance test]
In order to confirm the performance of the tire 10 to which the support 50 in the above embodiment is applied and the tire 10 to which the support 60 is applied, comparison is made with the pneumatic tires of Examples 1 and 2 below and not included in the present disclosure The run flat tires of Examples 1 and 2 were prepared and tested.
 実施例1は支持体50が適用されたタイヤ10であり、実施例2は支持体60が適用されたタイヤ10である。また、比較例1は、上記実施形態における支持体40、50、60の何れも用いず、タイヤサイド部22の内周面22Cにサイド補強ゴムを接着して補強したランフラットタイヤである。比較例2は、上記実施形態における支持体40、50、60の何れも用いず、湾曲させた金属製の板材の両端部をゴムで形成し、当該ゴムをビード部12の内側に配置したランフラットタイヤである。 Example 1 is the tire 10 to which the support 50 is applied, and Example 2 is the tire 10 to which the support 60 is applied. Further, Comparative Example 1 is a run flat tire reinforced by bonding side reinforcing rubber to the inner peripheral surface 22C of the tire side portion 22 without using any of the supports 40, 50, 60 in the above embodiment. Comparative Example 2 is a run in which both ends of a curved metal plate are formed of rubber without using any of the supports 40, 50, and 60 in the above embodiment, and the rubber is disposed inside the bead portion 12. It is a flat tire.
 実施例1、2におけるタイヤ10と比較例2のタイヤは205/55R16 91V、比較例1におけるランフラットタイヤとしては、タイヤサイズ205/55RF16 91Vのタイヤを用いた。試験は、空気圧を0kPaとしたタイヤ車輪を直径2mのスチール製ドラム試験機上に配置して、3.92kNの荷重を作用させた状態で、ISO1692に準じたドラム耐久試験を走行速度80km/h相当で行った。また、別途試験を行って、内圧充填時の縦バネ性を測定した。 The tire 10 of Example 1 and 2 and the tire of Comparative Example 2 used 205 / 55R1691V, and as the run flat tire in Comparative Example 1, the tire of tire size 205 / 55RF16 91V was used. In the test, a tire wheel with an air pressure of 0 kPa was placed on a steel drum tester with a diameter of 2 m, and a load of 3.92 kN was applied, a drum endurance test according to ISO 1692 was performed at a traveling speed of 80 km / h It went by considerable. Further, a separate test was conducted to measure the vertical spring property at the time of filling the internal pressure.
 図6に示すように、実施例1、2のタイヤ10は、比較例2と比較して、ドラム走行距離が長いことがわかった。また、実施例1、2のタイヤ10は、比較例1と比較して、縦バネを低減できることが分かった As shown in FIG. 6, it was found that the tire 10 of Examples 1 and 2 had a long drum travel distance as compared with Comparative Example 2. Moreover, it was found that the tire 10 of Examples 1 and 2 can reduce the longitudinal spring as compared with Comparative Example 1.
[変形例]
 第1実施形態においては、弾性体42及び繊維補強層44にエラストマーが用いられているが、本開示の実施形態はこれに限らない。例えば熱可塑性樹脂、熱硬化性樹脂、及び(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂のほか、エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)や加硫ゴム等を用いることができる。第2実施形態における弾性体52、62、繊維補強層54、64についても同様である。
[Modification]
In the first embodiment, an elastomer is used for the elastic body 42 and the fiber reinforcing layer 44, but the embodiment of the present disclosure is not limited thereto. For example, in addition to general purpose resins such as thermoplastic resin, thermosetting resin, and (meth) acrylic resin, EVA resin, vinyl chloride resin, fluorine resin, silicone resin, engineering plastics (including super engineering plastics) and additives A vulcanized rubber or the like can be used. The same applies to the elastic bodies 52 and 62 and the fiber reinforcing layers 54 and 64 in the second embodiment.
 熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとし、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として、区別する。 A thermoplastic resin (including a thermoplastic elastomer) refers to a polymer compound which softens and flows as the temperature rises and becomes relatively hard and strong when cooled. In the present specification, among these, the material softens and flows as temperature rises, and becomes relatively hard and strong when cooled, and the polymer compound having rubbery elasticity is a thermoplastic elastomer, and the material increases as temperature rises. When the polymer compound softens, flows, cools, it becomes a relatively hard and strong state, and a polymer compound having no rubbery elasticity is distinguished as a non-elastomeric thermoplastic resin.
 熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)及び動的架橋型熱可塑性エラストマー(TPV)並びにリオレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリアミド系熱可塑性樹脂及びポリエステル系熱可塑性樹脂等が挙げられる。 Examples of thermoplastic resins (including thermoplastic elastomers) include polyolefin thermoplastic elastomer (TPO), polystyrene thermoplastic elastomer (TPS), polyamide thermoplastic elastomer (TPA), polyurethane thermoplastic elastomer (TPU), polyester And thermoplastic thermoplastic elastomers (TPV) and thermoplastic olefin resins, polystyrene thermoplastic resins, polyamide thermoplastic resins and polyester thermoplastic resins.
 また、上記実施形態において、繊維補強層44、54、64を形成するコードとして有機繊維コードを用いているが、本開示の実施形態はこれに限らない。例えばスチールコード、ガラスファイバー、カーボンファイバーなどの無機繊維コードを用いてもよい。このスチールコードは、スチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。 Moreover, although the organic fiber cord is used as a cord which forms fiber reinforcement layer 44, 54, 64 in the above-mentioned embodiment, an embodiment of this indication is not limited to this. For example, inorganic fiber cords such as steel cords, glass fibers and carbon fibers may be used. This steel cord is based on steel and can contain various minor inclusions such as carbon, manganese, silicon, phosphorus, sulfur, copper, chromium and the like.
 また、各種コードは、モノフィラメントコードや、複数のフィラメントを撚り合せたコードを用いることができる。撚り構造も種々の設計が採用可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものが使用できる。更には異なる材質のフィラメントを撚り合せたコードを採用することもで、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。 In addition, as the various cords, a monofilament cord or a cord in which a plurality of filaments are twisted can be used. Various designs can be adopted for the twist structure, and various cross-section structures, twist pitches, twist directions, and distances between adjacent filaments can be used. Furthermore, by adopting a cord in which filaments of different materials are twisted, the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and double twist can be taken.
 またさらに、繊維補強層は、コードを樹脂等で被覆した構成ではなく、FRP(繊維強化プラスチック)を用いた構成としてもよい。FRPに適用される繊維としては、ガラス繊維、炭素繊維、ボロン繊維、アラミド繊維等を適宜選択できる。このように、本開示は様々な態様で実施することができる。 Furthermore, the fiber reinforcing layer may be configured using FRP (fiber reinforced plastic) instead of the cord coated with resin or the like. As fibers applied to FRP, glass fibers, carbon fibers, boron fibers, aramid fibers and the like can be appropriately selected. Thus, the present disclosure can be implemented in various ways.
 2017年12月14日に出願された日本国特許出願2017-239789号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2017-239789, filed on Dec. 14, 2017, is incorporated herein by reference in its entirety. All documents, patent applications and technical standards described herein are as specific and individually as individual documents, patent applications and technical standards are incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  空気入りタイヤの内部においてビード部間に跨って配置された状態で、タイヤ周方向に沿った方向から見て、前記ビード部からタイヤ径方向外側へ延びタイヤサイド部から離間する弾性体と、
     前記弾性体と接合された繊維補強層と、
     を備えた支持体。
    An elastic body extending outward from the bead portion in the radial direction of the tire and separated from the tire side portion as viewed from a direction along the circumferential direction of the tire in a state of being disposed across the bead portions inside the pneumatic tire;
    A fiber reinforced layer joined to the elastic body,
    Support.
  2.  前記繊維補強層は、前記空気入りタイヤのランフラット走行時に引張応力が発生する部分の少なくとも一部に形成されている、請求項1に記載の支持体。 The support according to claim 1, wherein the fiber reinforcing layer is formed on at least a part of a portion where a tensile stress is generated during runflat running of the pneumatic tire.
  3.  前記弾性体はエラストマーを用いて形成され、前記繊維補強層は有機繊維を用いて形成されている、請求項1又は請求項2に記載の支持体。 The support according to claim 1 or 2, wherein the elastic body is formed using an elastomer, and the fiber reinforcing layer is formed using an organic fiber.
  4.  前記弾性体の幅方向及び径方向に沿った断面からみて、前記弾性体の前記ビード部間に跨って連続した部分の少なくとも一部が単一の材料で形成されている、請求項1~3の何れか1項に記載の支持体。 4. The elastic body according to claim 1, wherein at least a part of the continuous portion across the bead portions of the elastic body is formed of a single material in a cross section along the width direction and the radial direction of the elastic body. The support according to any one of the above.
  5.  タイヤ軸方向に沿った方向から見て、前記繊維補強層を形成する繊維のタイヤ径方向に対する傾斜角度は、-20°以上20°以下である、請求項1~4の何れか1項に記載の支持体。 The inclination angle with respect to the tire radial direction of the fiber which forms the said fiber reinforcement layer seeing from the direction along a tire axial direction is -20 degrees or more, 20 degrees or less, It is described in any one of Claims 1-4. Support.
  6.  前記弾性体は、タイヤ径方向外側へ突出する突出部を2つ備えている、請求項1~5の何れか1項に記載の支持体。 The support according to any one of claims 1 to 5, wherein the elastic body is provided with two protrusions projecting outward in the tire radial direction.
  7.  前記弾性体は、タイヤ径方向外側へ突出する突出部を3つ備えている、請求項1~5の何れか1項に記載の支持体。 The support according to any one of claims 1 to 5, wherein the elastic body is provided with three protrusions projecting outward in the tire radial direction.
  8.  請求項1~7の何れか1項に記載の支持体と前記空気入りタイヤとがリムへ組みつけられて形成されている、タイヤ・リム組立体。 A tire / rim assembly comprising the support according to any one of claims 1 to 7 and the pneumatic tire assembled to a rim.
PCT/JP2018/046088 2017-12-14 2018-12-14 Support and tire-rim assembly WO2019117287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-239789 2017-12-14
JP2017239789A JP2019104458A (en) 2017-12-14 2017-12-14 Support body and tire/wheel rim assembly

Publications (1)

Publication Number Publication Date
WO2019117287A1 true WO2019117287A1 (en) 2019-06-20

Family

ID=66820414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046088 WO2019117287A1 (en) 2017-12-14 2018-12-14 Support and tire-rim assembly

Country Status (2)

Country Link
JP (1) JP2019104458A (en)
WO (1) WO2019117287A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170604A (en) * 1982-03-19 1983-10-07 ザ・グツドイア−・タイヤ・アンド・ラバ−・コンパニ− Tire and safety support system for rim assembly
JPS63251306A (en) * 1987-04-07 1988-10-18 Yokohama Rubber Co Ltd:The Pneumatic tire wheel
JP2004175258A (en) * 2002-11-28 2004-06-24 Bridgestone Corp Supporting body and pneumatic run-flat tire
JP2005035474A (en) * 2003-07-18 2005-02-10 Bridgestone Corp Pneumatic run flat tire
JP2007191086A (en) * 2006-01-20 2007-08-02 Yokohama Rubber Co Ltd:The Runflat support for pneumatic tire
JP2008001311A (en) * 2006-06-26 2008-01-10 Bridgestone Corp Air sack for safety tire, and safety tire having the air sack
JP2008018799A (en) * 2006-07-12 2008-01-31 Yokohama Rubber Co Ltd:The Run-flat supporting element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170604A (en) * 1982-03-19 1983-10-07 ザ・グツドイア−・タイヤ・アンド・ラバ−・コンパニ− Tire and safety support system for rim assembly
JPS63251306A (en) * 1987-04-07 1988-10-18 Yokohama Rubber Co Ltd:The Pneumatic tire wheel
JP2004175258A (en) * 2002-11-28 2004-06-24 Bridgestone Corp Supporting body and pneumatic run-flat tire
JP2005035474A (en) * 2003-07-18 2005-02-10 Bridgestone Corp Pneumatic run flat tire
JP2007191086A (en) * 2006-01-20 2007-08-02 Yokohama Rubber Co Ltd:The Runflat support for pneumatic tire
JP2008001311A (en) * 2006-06-26 2008-01-10 Bridgestone Corp Air sack for safety tire, and safety tire having the air sack
JP2008018799A (en) * 2006-07-12 2008-01-31 Yokohama Rubber Co Ltd:The Run-flat supporting element

Also Published As

Publication number Publication date
JP2019104458A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP5485255B2 (en) tire
EP3785934B1 (en) Non-pneumatic tire
US20210213783A1 (en) Pneumatic tire
EP3459762A1 (en) Tire
WO2019220888A1 (en) Pneumatic tire
JP2019217899A (en) Pneumatic tire
US20200130430A1 (en) Run-flat tire
WO2019117287A1 (en) Support and tire-rim assembly
EP3643539B1 (en) Run-flat tire
WO2019102918A1 (en) Run-flat tire
US20200130429A1 (en) Run-flat tire
WO2019220889A1 (en) Pneumatic tire
US20210229500A1 (en) Resin-covered cord and pneumatic tire
JP2016113089A (en) Assembled tire
WO2019230811A1 (en) Pneumatic tire
EP3808574B1 (en) Pneumatic tire
WO2019244773A1 (en) Pneumatic tire
CN111936326B (en) Rolling assembly
JP2021154753A (en) Pneumatic tire
WO2019230812A1 (en) Pneumatic tire
WO2019244741A1 (en) Pneumatic tire
JP2019217851A (en) Pneumatic tire
JP2019217852A (en) Pneumatic tire
JP2017197133A (en) Run-flat radial tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888612

Country of ref document: EP

Kind code of ref document: A1