WO2019244741A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019244741A1
WO2019244741A1 PCT/JP2019/023263 JP2019023263W WO2019244741A1 WO 2019244741 A1 WO2019244741 A1 WO 2019244741A1 JP 2019023263 W JP2019023263 W JP 2019023263W WO 2019244741 A1 WO2019244741 A1 WO 2019244741A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
tire
carcass
pneumatic tire
width direction
Prior art date
Application number
PCT/JP2019/023263
Other languages
French (fr)
Japanese (ja)
Inventor
崇之 藏田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020525613A priority Critical patent/JPWO2019244741A1/en
Publication of WO2019244741A1 publication Critical patent/WO2019244741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire provided with a belt layer.
  • a pneumatic tire to be mounted on an automobile includes two or more inclined belt plies including a cord inclined with respect to the tire circumferential direction on the outer side in the tire radial direction of the carcass, and a belt including a reinforcing layer and the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-244930
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2013-220743
  • Patent Documents 1 and 2 have two or more inclined belt plies to secure in-plane shear rigidity. However, since the number of plies and reinforcing layers is large, it is difficult to reduce the weight of the tires. It has become.
  • the present invention has been made in consideration of the above-described circumstances, and has as its object to provide a pneumatic tire that ensures both in-plane shear rigidity of a belt and weight reduction of the tire.
  • the pneumatic tire according to the first aspect includes a pair of bead cores, a carcass formed over the pair of bead cores, and an annular resin body that is disposed outside the carcass in the tire radial direction and formed of resin.
  • the pneumatic tire according to the first aspect includes a resin body and a belt layer having a reinforcing cord embedded in the resin body outside the carcass in the tire radial direction.
  • the reinforcing cords are spirally wound at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction, and are arranged at intervals in the tire width direction.
  • the reinforcing cord is spirally wound at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction, compared with the case where the reinforcing cord is arranged in parallel with the tire circumferential direction, The deformation of the belt layer in the tire circumferential direction is allowed. Therefore, a tensile force acts on the resin body of the belt layer in the tire circumferential direction due to the internal pressure of the tire, and a compressive force acts on the resin body in the tire width direction. Thereby, the tensile force in the tire width direction at the time of contact with the ground of the resin body of the belt layer is reduced, and tensile strain in the same direction can be suppressed. As a result, the durability of the belt layer can be improved.
  • the belt layer is formed by winding a resin-coated cord, in which the reinforcing cord is coated with a resin, outside the carcass in the tire radial direction.
  • the belt layer can be easily formed.
  • the end face in the tire width direction of the reinforcing cord is coated with a resin.
  • the pneumatic tire according to the third aspect it is possible to suppress water from entering the reinforcing cord.
  • the pneumatic tire of the present invention it is possible to achieve both in-plane shear rigidity and weight reduction of the tire.
  • FIG. 2 is a partial cross-sectional view illustrating a resin annular belt of the pneumatic tire according to the embodiment.
  • FIG. 2 is a partially cutaway view of a resin annular belt of the pneumatic tire according to the embodiment. It is sectional drawing which shows the state which cut
  • FIG. 1 shows a pneumatic tire 10 according to an embodiment of the present invention.
  • the pneumatic tire 10 shows a radial tire as an example.
  • arrow W indicates the tire width direction
  • arrow R indicates the tire radial direction.
  • the tire width direction refers to a direction parallel to the rotation axis of the pneumatic tire 10.
  • the tire radial direction refers to a direction orthogonal to the rotation axis of the pneumatic tire 10.
  • Reference symbol CL indicates the equatorial plane of the tire 10 (tire equatorial plane).
  • the grounding end E of the tread 22 and the grounding width TW mean that the pneumatic tire 10 is mounted on a standard rim specified in JATMA YEAR BOOK (2018 edition, Japan Automobile Tire Association Standard). Then, it is filled with 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (bold load in the internal pressure-load capacity correspondence table) in the applicable size ply rating in JATMA YEAR BOOK, This is one in which the rotation axis is arranged parallel to the flat plate and a mass corresponding to the maximum load capacity is added.
  • the TRA standard and the ETRTO standard are applied at the place of use or the place of manufacture, the respective standards are followed.
  • the pneumatic tire 10 includes a pair of bead portions 12 in which a bead core 12A is embedded, a pair of side portions 14 extending from the pair of bead portions 12 outward in the tire radial direction, and a crown portion 16 extending from the side portions 14 inward in the tire width direction. ,have.
  • a carcass 18 composed of one carcass ply 18A straddles between one bead portion 12 and the other bead portion 12.
  • the inner liner 17 made of rubber is disposed inside the tire of the carcass 18.
  • the side rubber layer 13 is disposed outside the carcass 18 in the tire width direction.
  • a resin annular belt 20 is disposed on the crown portion 16 on the outside of the carcass 18 in the tire radial direction.
  • the resin annular belt 20 has an annular shape. The details of the resin annular belt 20 will be described later.
  • a tread 22 is disposed outside the resin annular belt 20 in the tire radial direction.
  • the tread 22 has a plurality of main grooves 22A formed along the tire circumferential direction.
  • the resin annular belt 20 has a reinforcing cord 20A spirally wound along the tire circumferential direction, and a resin main body 20B of a resin material covering the reinforcing cord 20A.
  • the resin annular belt 20 can be formed of a ring-shaped hoop in which a resin-coated cord 20C in which a reinforcing cord 20A is coated with a resin main body 20B is spirally wound and integrated.
  • the resin-coated cord 20C is a long strip-shaped member in which a plurality of reinforcing cords 20A are arranged in parallel.
  • the resin-coated cord 20C is configured such that ten reinforcing cords 20A are arranged in parallel and covered with a resin body 20B. .
  • the reinforcing cord 20A is arranged at an inclination angle ⁇ with respect to the tire circumferential direction S, as shown in FIG. Is set to 5 ° or more and 20 ° or less.
  • the angle ⁇ is preferably 10 ° or more and 15 ° or less.
  • a resin material having a higher tensile modulus than the rubber material forming the side rubber layer 13 and the rubber material forming the tread 22 is used for the resin body 20B.
  • the tensile modulus of the resin body 20B (defined in JIS K7113: 1995) is preferably 100 MPa or more.
  • the upper limit of the tensile modulus of the resin main body 20B is preferably set to 1000 MPa or less.
  • the tensile modulus of the resin body 20B is particularly preferably in the range of 200 to 700 MPa.
  • Examples of the material of the resin body 20B include general-purpose resins such as thermoplastic resins, thermoplastic elastomers, thermosetting resins, and (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins.
  • general-purpose resins such as thermoplastic resins, thermoplastic elastomers, thermosetting resins, and (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins.
  • engineering plastics including super engineering plastics
  • the resin material here does not include vulcanized rubber.
  • thermoplastic resin refers to a polymer compound in which a material softens and flows with an increase in temperature and becomes relatively hard and strong when cooled.
  • the material softens and flows with an increase in temperature, becomes a relatively hard and strong state when cooled, and a polymer compound having rubber-like elasticity is made into a thermoplastic elastomer, and the material with the increase in temperature becomes a material.
  • thermoplastic resins include polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), and polyester Thermoplastic elastomer (TPC), dynamically crosslinked thermoplastic elastomer (TPV), polyolefin thermoplastic resin, polystyrene thermoplastic resin, polyamide thermoplastic resin, polyester thermoplastic resin, etc. No.
  • Thermosetting resin refers to a polymer compound that forms a three-dimensional network structure with a rise in temperature and cures, and examples thereof include a phenol resin, an epoxy resin, a melamine resin, and a urea resin.
  • the reinforcing cord 20A can be composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers.
  • the reinforcing cord 20A is a steel cord.
  • the steel cord is mainly composed of steel, and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium.
  • the resin annular belt 20 is formed with a constant diameter and a constant thickness, and is linear when viewed in a cross section along the tire axis.
  • the resin annular belt 20 has an outer diameter at a central portion in the tire width direction larger than outer diameters at both end portions in the tire width direction. When viewed in a cross section along the tire axis, the central portion in the tire width direction has a tire.
  • the shape may be a gentle arc that protrudes radially outward.
  • the width BW of the resin annular belt 20 is preferably 75% or more and 110% or less with respect to the contact width TW (distance between the contact ends E) of the tread 22 measured along the tire axial direction.
  • the crown portion 16 of the carcass 18 is reinforced by the resin annular belt 20.
  • the resin annular belt 20 is formed by covering a reinforcing cord 20A with a resin main body 20B. Therefore, a higher in-plane shear rigidity can be obtained as compared with a belt in which rubber is disposed between the reinforcing cords. Further, the weight of the tire can be reduced.
  • the resin annular belt 20 secures out-of-plane bending rigidity, and when a large lateral force is applied to the pneumatic tire 10, buckling of the tread 22 (the surface of the tread 22 is wavy and a part of the tread 22 is separated from the road surface). Phenomenon).
  • the reinforcing cord 20A is spirally wound at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction, it is compared with the case where the reinforcing cord 20A is arranged in parallel with the tire circumferential direction.
  • deformation of the resin annular belt 20 in the tire circumferential direction is allowed. Therefore, a tensile force acts in the tire circumferential direction due to the internal pressure of the tire and a compressive force acts in the tire width direction on the resin main body 20B of the resin annular belt 20.
  • a resin layer 30 may be arranged outside the resin annular belt 20 in the tire width direction so as to cover the outer end surface.
  • the resin layer 30 can be formed of the same material as the resin main body 20B.
  • Both end surfaces in the tire width direction of the resin annular belt 20 are covered with a resin layer 30.
  • both end surfaces in the tire width direction of the resin annular belt 20 may be covered with a resin other than the resin layer 30.
  • the end face of the reinforcing cord 20A may be covered by melting the resin at both ends in the tire width direction of the resin annular belt 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A pneumatic tire 10 equipped with: a pair of bead cores 12A; a carcass 18 formed so as to span the interval between the pair of bead cores 12A; and a belt layer which has a ring-shaped resin main body 12B formed from a resin and positioned to the inside of the carcass 18 in the tire radial direction, and also has reinforcing cords 20A which are spirally wound at an angle which slants 5-20°, inclusive, relative to the tire circumferential direction and are embedded in the resin main body 20B with intervals interposed therebetween in the tire widthwise direction.

Description

空気入りタイヤPneumatic tire
 本発明は、ベルト層を備えた空気入りタイヤに関する。 The present invention relates to a pneumatic tire provided with a belt layer.
 自動車に装着する空気入りタイヤとしては、カーカスのタイヤ径方向外側にタイヤ周方向に対して傾斜したコードを含んで構成された2枚以上の傾斜ベルトプライ、及び補強層等を備えたベルトを備えた構造が一般的である(例えば、特開2013-244930号公報(特許文献1)、特開2013-220741号公報(特許文献2)参照)。 A pneumatic tire to be mounted on an automobile includes two or more inclined belt plies including a cord inclined with respect to the tire circumferential direction on the outer side in the tire radial direction of the carcass, and a belt including a reinforcing layer and the like. (See, for example, Japanese Patent Application Laid-Open No. 2013-244930 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2013-220743 (Patent Document 2)).
 特許文献1、2の空気入りタイヤは、2枚以上の傾斜ベルトプライを備えることにより面内剪断剛性を確保しているが、プライや補強層の層数が多いため、タイヤの軽量化は困難となっている。 The pneumatic tires of Patent Documents 1 and 2 have two or more inclined belt plies to secure in-plane shear rigidity. However, since the number of plies and reinforcing layers is large, it is difficult to reduce the weight of the tires. It has become.
 本発明は上記事実を考慮し、ベルトの面内剪断剛性の確保とタイヤ軽量化の両立を図った空気入りタイヤの提供を目的とする。 The present invention has been made in consideration of the above-described circumstances, and has as its object to provide a pneumatic tire that ensures both in-plane shear rigidity of a belt and weight reduction of the tire.
 第1の態様に係る空気入りタイヤは、一対のビードコアと、前記一対のビードコアに跨って形成されたカーカスと、前記カーカスのタイヤ径方向外側に配置され、樹脂で形成された環状の樹脂本体、及び、タイヤ周方向に対して5°以上20°以下の傾斜角度で螺旋状に巻回されると共にタイヤ幅方向に間隔をあけて並び前記樹脂本体に埋設された補強コード、を有するベルト層と、を備えている。 The pneumatic tire according to the first aspect includes a pair of bead cores, a carcass formed over the pair of bead cores, and an annular resin body that is disposed outside the carcass in the tire radial direction and formed of resin. A belt layer having a reinforcing cord wound spirally at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction and arranged at intervals in the tire width direction and embedded in the resin body. , Is provided.
 第1の態様に係る空気入りタイヤは、カーカスのタイヤ径方向外側に、樹脂本体及び樹脂本体に埋設された補強コードを有するベルト層を備えている。ベルト層では、補強コードがタイヤ周方向に対して5°以上20°以下の傾斜角度で螺旋状に巻回されると共にタイヤ幅方向に間隔をあけて並んでいる。 空 気 The pneumatic tire according to the first aspect includes a resin body and a belt layer having a reinforcing cord embedded in the resin body outside the carcass in the tire radial direction. In the belt layer, the reinforcing cords are spirally wound at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction, and are arranged at intervals in the tire width direction.
 このように、補強コード間に樹脂本体を配置することにより、補強コード間にゴムを配置する場合と比較して高い面内剪断剛性を得ることができると共に、タイヤの軽量化も図ることができる。 By arranging the resin main body between the reinforcing cords as described above, it is possible to obtain a higher in-plane shear rigidity as compared with a case where rubber is arranged between the reinforcing cords, and it is possible to reduce the weight of the tire. .
 また、補強コードがタイヤ周方向に対して5°以上20°以下の傾斜角度で螺旋状に巻回されているので、補強コードがタイヤ周方向と平行に配置されている場合と比較して、ベルト層のタイヤ周方向への変形が許容される。したがって、ベルト層の樹脂本体には、タイヤの内圧によりタイヤ周方向への引張力が作用すると共に、タイヤ幅方向には圧縮力が作用する。これにより、ベルト層の樹脂本体に対して、接地時におけるタイヤ幅方向への引張力が緩和され、同方向における引張り歪みを抑制することができる。その結果、ベルト層の耐久性を向上させることができる。 Further, since the reinforcing cord is spirally wound at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction, compared with the case where the reinforcing cord is arranged in parallel with the tire circumferential direction, The deformation of the belt layer in the tire circumferential direction is allowed. Therefore, a tensile force acts on the resin body of the belt layer in the tire circumferential direction due to the internal pressure of the tire, and a compressive force acts on the resin body in the tire width direction. Thereby, the tensile force in the tire width direction at the time of contact with the ground of the resin body of the belt layer is reduced, and tensile strain in the same direction can be suppressed. As a result, the durability of the belt layer can be improved.
 第2の態様に係る空気入りタイヤは、前記ベルト層が、前記補強コードが樹脂で被覆された樹脂被覆コードを前記カーカスのタイヤ径方向外側に巻回して形成されている。 は In the pneumatic tire according to the second aspect, the belt layer is formed by winding a resin-coated cord, in which the reinforcing cord is coated with a resin, outside the carcass in the tire radial direction.
 第2の態様に係る空気入りタイヤによれば、容易にベルト層を形成することができる。 According to the pneumatic tire according to the second aspect, the belt layer can be easily formed.
 第3の態様に係る空気入りタイヤは、前記補強コードのタイヤ幅方向端面は、樹脂被覆されている。 In the pneumatic tire according to the third aspect, the end face in the tire width direction of the reinforcing cord is coated with a resin.
 第3の態様に係る空気入りタイヤによれば、補強コードへの水の浸入を抑制することができる。 According to the pneumatic tire according to the third aspect, it is possible to suppress water from entering the reinforcing cord.
 本発明に係る空気入りタイヤによれば、面内剪断剛性の確保とタイヤ軽量化の両立を図ることができる。 According to the pneumatic tire of the present invention, it is possible to achieve both in-plane shear rigidity and weight reduction of the tire.
本実施形態に係る空気入りタイヤを、タイヤ幅方向及びタイヤ径方向に沿って切断した状態を示す断面図である。It is a sectional view showing the state where the pneumatic tire concerning this embodiment was cut along the tire width direction and the tire radial direction. 本実施形態に係る空気入りタイヤの樹脂環状ベルトを示す一部断面図である。FIG. 2 is a partial cross-sectional view illustrating a resin annular belt of the pneumatic tire according to the embodiment. 本実施形態に係る空気入りタイヤの樹脂環状ベルトの一部破断図である。FIG. 2 is a partially cutaway view of a resin annular belt of the pneumatic tire according to the embodiment. 本実施形態の変形例に係る空気入りタイヤを、タイヤ幅方向及びタイヤ径方向に沿って切断した状態を示す断面図である。It is sectional drawing which shows the state which cut | disconnected the pneumatic tire which concerns on the modification of this embodiment along a tire width direction and a tire radial direction.
 図1には、本発明の実施形態に係る空気入りタイヤ10が示されている。空気入りタイヤ10は、一例としてラジアルタイヤを示している。なお、図中矢印Wはタイヤ幅方向を示し、矢印Rはタイヤ径方向を示す。ここでいうタイヤ幅方向とは、空気入りタイヤ10の回転軸と平行な方向を指している。また、タイヤ径方向とは、空気入りタイヤ10の回転軸と直交する方向をいう。また、符号CLはタイヤ10の赤道面(タイヤ赤道面)を示している。 FIG. 1 shows a pneumatic tire 10 according to an embodiment of the present invention. The pneumatic tire 10 shows a radial tire as an example. In the drawings, arrow W indicates the tire width direction, and arrow R indicates the tire radial direction. Here, the tire width direction refers to a direction parallel to the rotation axis of the pneumatic tire 10. The tire radial direction refers to a direction orthogonal to the rotation axis of the pneumatic tire 10. Reference symbol CL indicates the equatorial plane of the tire 10 (tire equatorial plane).
 また、本実施形態において、後述するトレッド22の接地端E、接地幅TWとは、空気入りタイヤ10をJATMA YEAR BOOK(2018年度版、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMA YEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧-負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%の内圧を充填し、静止した状態で水平な平板に対して回転軸が平行となるように配置し、最大の負荷能力に対応する質量を加えたときのものである。なお、使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は各々の規格に従う。 In the present embodiment, the grounding end E of the tread 22 and the grounding width TW, which will be described later, mean that the pneumatic tire 10 is mounted on a standard rim specified in JATMA YEAR BOOK (2018 edition, Japan Automobile Tire Association Standard). Then, it is filled with 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (bold load in the internal pressure-load capacity correspondence table) in the applicable size ply rating in JATMA YEAR BOOK, This is one in which the rotation axis is arranged parallel to the flat plate and a mass corresponding to the maximum load capacity is added. When the TRA standard and the ETRTO standard are applied at the place of use or the place of manufacture, the respective standards are followed.
 空気入りタイヤ10は、ビードコア12Aが埋設された一対のビード部12、一対のビード部12からそれぞれタイヤ径方向外側に延びる一対のサイド部14、サイド部14からタイヤ幅方向内側に延びるクラウン部16、を有している。一方のビード部12と他方のビード部12との間には、1枚のカーカスプライ18Aからなるカーカス18が跨っている。 The pneumatic tire 10 includes a pair of bead portions 12 in which a bead core 12A is embedded, a pair of side portions 14 extending from the pair of bead portions 12 outward in the tire radial direction, and a crown portion 16 extending from the side portions 14 inward in the tire width direction. ,have. A carcass 18 composed of one carcass ply 18A straddles between one bead portion 12 and the other bead portion 12.
 カーカス18のタイヤ内側には、ゴムからなるインナーライナー17が配置されている。また、カーカス18のタイヤ幅方向外側には、サイドゴム層13が配置されている。 The inner liner 17 made of rubber is disposed inside the tire of the carcass 18. The side rubber layer 13 is disposed outside the carcass 18 in the tire width direction.
 カーカス18のタイヤ径方向外側のクラウン部16には、樹脂環状ベルト20が配置されている。樹脂環状ベルト20は円環状とされている。樹脂環状ベルト20の詳細については、後述する。樹脂環状ベルト20のタイヤ径方向外側には、トレッド22が配置されている。トレッド22には、タイヤ周方向に沿って複数の主溝22Aが形成されている。 A resin annular belt 20 is disposed on the crown portion 16 on the outside of the carcass 18 in the tire radial direction. The resin annular belt 20 has an annular shape. The details of the resin annular belt 20 will be described later. A tread 22 is disposed outside the resin annular belt 20 in the tire radial direction. The tread 22 has a plurality of main grooves 22A formed along the tire circumferential direction.
 図2及び図3に示すように、樹脂環状ベルト20は、タイヤ周方向に沿って螺旋状に巻回された補強コード20Aと、補強コード20Aを被覆する樹脂材料の樹脂本体20Bを有している。樹脂環状ベルト20は、補強コード20Aが樹脂本体20Bで被覆された樹脂被覆コード20Cを螺旋状に巻回して一体化させたリング状の箍(たが)で構成することができる。樹脂被覆コード20Cは、複数本の補強コード20Aが平行に並ぶ長尺帯状の部材であり、本実施形態では、10本の補強コード20Aが平行に並び樹脂本体20Bで被覆されて構成されている。 As shown in FIGS. 2 and 3, the resin annular belt 20 has a reinforcing cord 20A spirally wound along the tire circumferential direction, and a resin main body 20B of a resin material covering the reinforcing cord 20A. I have. The resin annular belt 20 can be formed of a ring-shaped hoop in which a resin-coated cord 20C in which a reinforcing cord 20A is coated with a resin main body 20B is spirally wound and integrated. The resin-coated cord 20C is a long strip-shaped member in which a plurality of reinforcing cords 20A are arranged in parallel. In the present embodiment, the resin-coated cord 20C is configured such that ten reinforcing cords 20A are arranged in parallel and covered with a resin body 20B. .
 補強コード20Aは、図3に示されるように、タイヤ周方向Sに対して傾斜角度θで配置されている。角度θは、5°以上20°以下とされている。なお、角度θは、10°以上15°以下が好ましい。 The reinforcing cord 20A is arranged at an inclination angle θ with respect to the tire circumferential direction S, as shown in FIG. Is set to 5 ° or more and 20 ° or less. The angle θ is preferably 10 ° or more and 15 ° or less.
 樹脂本体20Bには、サイドゴム層13を構成するゴム材料、及びトレッド22を形成するゴム材料よりも引張弾性率の高い樹脂材料が用いられている。樹脂本体20Bの引張弾性率(JIS K7113:1995に規定される)は、100MPa以上が好ましい。また、樹脂本体20Bの引張弾性率の上限は、1000MPa以下とすることが好ましい。なお、樹脂本体20Bの引張弾性率は、200~700MPaの範囲内が特に好ましい。 ゴ ム A resin material having a higher tensile modulus than the rubber material forming the side rubber layer 13 and the rubber material forming the tread 22 is used for the resin body 20B. The tensile modulus of the resin body 20B (defined in JIS K7113: 1995) is preferably 100 MPa or more. The upper limit of the tensile modulus of the resin main body 20B is preferably set to 1000 MPa or less. The tensile modulus of the resin body 20B is particularly preferably in the range of 200 to 700 MPa.
 樹脂本体20Bの材料としては、例えば、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂、及び(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂のほか、エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)等を用いることができる。なお、ここでの樹脂材料には、加硫ゴムは含まれない。 Examples of the material of the resin body 20B include general-purpose resins such as thermoplastic resins, thermoplastic elastomers, thermosetting resins, and (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, and silicone resins. In addition, engineering plastics (including super engineering plastics) and the like can be used. The resin material here does not include vulcanized rubber.
 熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとし、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として、区別する。 A thermoplastic resin (including a thermoplastic elastomer) refers to a polymer compound in which a material softens and flows with an increase in temperature and becomes relatively hard and strong when cooled. In the present specification, among these materials, the material softens and flows with an increase in temperature, becomes a relatively hard and strong state when cooled, and a polymer compound having rubber-like elasticity is made into a thermoplastic elastomer, and the material with the increase in temperature becomes a material. Softens, flows, and becomes relatively hard and strong when cooled, and distinguishes a polymer compound having no rubber-like elasticity as a non-elastomer thermoplastic resin.
 熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、及び、動的架橋型熱可塑性エラストマー(TPV)、ならびに、ポリオレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、及び、ポリエステル系熱可塑性樹脂等が挙げられる。 Examples of thermoplastic resins (including thermoplastic elastomers) include polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), and polyester Thermoplastic elastomer (TPC), dynamically crosslinked thermoplastic elastomer (TPV), polyolefin thermoplastic resin, polystyrene thermoplastic resin, polyamide thermoplastic resin, polyester thermoplastic resin, etc. No.
 熱硬化性樹脂とは、温度上昇と共に3次元的網目構造を形成し、硬化する高分子化合物をいい、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。 Thermosetting resin refers to a polymer compound that forms a three-dimensional network structure with a rise in temperature and cures, and examples thereof include a phenol resin, an epoxy resin, a melamine resin, and a urea resin.
 補強コード20Aは、カーカスプライ18Aのコードよりも太く、かつ、強力(引張強度)が大きいものを用いることが好ましい。補強コード20Aは、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成することができる。本実施形態では、また、補強コード20Aはスチールコードとされている。このスチールコードは、スチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。 It is preferable to use a reinforcing cord 20A that is thicker than the cord of the carcass ply 18A and has high strength (tensile strength). The reinforcing cord 20A can be composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers. In the present embodiment, the reinforcing cord 20A is a steel cord. The steel cord is mainly composed of steel, and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium.
 樹脂環状ベルト20は、一定径、一定厚さで形成されており、タイヤ軸線に沿った断面で見たときに一直線状とされている。なお、樹脂環状ベルト20は、タイヤ幅方向中央部の外径をタイヤ幅方向両端部の外径よりも大径とし、タイヤ軸線に沿った断面で見たときに、タイヤ幅方向中央部がタイヤ径方向外側へ凸となる緩やかな円弧状とされていてもよい。 環状 The resin annular belt 20 is formed with a constant diameter and a constant thickness, and is linear when viewed in a cross section along the tire axis. The resin annular belt 20 has an outer diameter at a central portion in the tire width direction larger than outer diameters at both end portions in the tire width direction. When viewed in a cross section along the tire axis, the central portion in the tire width direction has a tire. The shape may be a gentle arc that protrudes radially outward.
 樹脂環状ベルト20の幅BWは、タイヤ軸方向に沿って計測するトレッド22の接地幅TW(接地端E間の距離)に対して75%以上、110%以下とすることが好ましい。 幅 The width BW of the resin annular belt 20 is preferably 75% or more and 110% or less with respect to the contact width TW (distance between the contact ends E) of the tread 22 measured along the tire axial direction.
(作用、効果)
 次に、本実施形態のタイヤ10の作用、効果を説明する。
(Action, effect)
Next, the operation and effect of the tire 10 of the present embodiment will be described.
 本実施形態のタイヤ10では、カーカス18のクラウン部16が、樹脂環状ベルト20で補強されている。樹脂環状ベルト20は、補強コード20Aが樹脂本体20Bで被覆されて形成されている。したがって、補強コード間にゴムが配置されたベルトに比較して高い面内剪断剛性を得ることができる。また、タイヤの軽量化も図ることができる。 ク ラ ウ ン In the tire 10 of the present embodiment, the crown portion 16 of the carcass 18 is reinforced by the resin annular belt 20. The resin annular belt 20 is formed by covering a reinforcing cord 20A with a resin main body 20B. Therefore, a higher in-plane shear rigidity can be obtained as compared with a belt in which rubber is disposed between the reinforcing cords. Further, the weight of the tire can be reduced.
 樹脂環状ベルト20の面内剪断剛性が確保されることで、空気入りタイヤ10にスリップ角を付与した場合の横力を十分に発生させることができ、操縦安定性を確保することができ、また、応答性も向上させることができる。 By securing the in-plane shear rigidity of the resin annular belt 20, lateral force when a slip angle is given to the pneumatic tire 10 can be sufficiently generated, and steering stability can be secured. Also, the responsiveness can be improved.
 また、樹脂環状ベルト20により、面外曲げ剛性も確保され、空気入りタイヤ10に大きな横力が入力した際、トレッド22のバックリング(トレッド22の表面が波打って、一部が路面から離間する現象)を抑制することができる。 In addition, the resin annular belt 20 secures out-of-plane bending rigidity, and when a large lateral force is applied to the pneumatic tire 10, buckling of the tread 22 (the surface of the tread 22 is wavy and a part of the tread 22 is separated from the road surface). Phenomenon).
 また、補強コード20Aがタイヤ周方向に対して5°以上20°以下の傾斜角度で螺旋状に巻回されているので、補強コード20Aがタイヤ周方向と平行に配置されている場合と比較して、樹脂環状ベルト20のタイヤ周方向への変形が許容される。したがって、樹脂環状ベルト20の樹脂本体20Bには、タイヤの内圧によりタイヤ周方向への引張力が作用すると共に、タイヤ幅方向には圧縮力が作用する。これにより、樹脂環状ベルト20の樹脂本体20Bに対して、接地時におけるタイヤ幅方向への引張力が緩和され、同方向における樹脂本体20Bの引張り歪みを抑制することができる。その結果、樹脂環状ベルト20の耐久性を向上させることができる。 Further, since the reinforcing cord 20A is spirally wound at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction, it is compared with the case where the reinforcing cord 20A is arranged in parallel with the tire circumferential direction. Thus, deformation of the resin annular belt 20 in the tire circumferential direction is allowed. Therefore, a tensile force acts in the tire circumferential direction due to the internal pressure of the tire and a compressive force acts in the tire width direction on the resin main body 20B of the resin annular belt 20. Thereby, the tensile force in the tire width direction at the time of ground contact with the resin main body 20B of the resin annular belt 20 is reduced, and the tensile strain of the resin main body 20B in the same direction can be suppressed. As a result, the durability of the resin annular belt 20 can be improved.
 なお、樹脂環状ベルト20のタイヤ幅方向外側には、外端面を覆うように、図4に示すように、樹脂レイヤー30を配置してもよい。樹脂レイヤー30は、樹脂本体20Bと同様の材料で形成することができる。樹脂環状ベルト20のタイヤ幅方向両端面は、樹脂レイヤー30で樹脂被覆されている。樹脂レイヤー30で、樹脂環状ベルト20のタイヤ幅方向両端面を覆うことにより、補強コード20Aへの水の浸入を抑制することができる。また、樹脂環状ベルト20とトレッド22との間の剛性段差を緩和することもできる。
 なお、樹脂環状ベルト20のタイヤ幅方向両端面は、樹脂レイヤー30以外の樹脂で被覆されていてもよい。例えば、樹脂環状ベルト20のタイヤ幅方向両端部の樹脂を溶融させることにより補強コード20Aの端面を被覆してもよい。
As shown in FIG. 4, a resin layer 30 may be arranged outside the resin annular belt 20 in the tire width direction so as to cover the outer end surface. The resin layer 30 can be formed of the same material as the resin main body 20B. Both end surfaces in the tire width direction of the resin annular belt 20 are covered with a resin layer 30. By covering both end surfaces in the tire width direction of the resin annular belt 20 with the resin layer 30, it is possible to suppress water from entering the reinforcing cord 20A. Further, the rigidity step between the resin annular belt 20 and the tread 22 can be reduced.
Note that both end surfaces in the tire width direction of the resin annular belt 20 may be covered with a resin other than the resin layer 30. For example, the end face of the reinforcing cord 20A may be covered by melting the resin at both ends in the tire width direction of the resin annular belt 20.
 2018年6月18日に出願された日本国特許出願2018-115417号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-115417 filed on June 18, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (3)

  1.  一対のビードコアと、
     前記一対のビードコアに跨って形成されたカーカスと、
     前記カーカスのタイヤ径方向外側に配置され、樹脂で形成された環状の樹脂本体、及び、タイヤ周方向に対して5°以上20°以下の傾斜角度で螺旋状に巻回されると共にタイヤ幅方向に間隔をあけて並び前記樹脂本体に埋設された補強コード、を有するベルト層と、
     を備えた空気入りタイヤ。
    A pair of bead cores,
    A carcass formed over the pair of bead cores,
    An annular resin main body formed of resin, which is disposed outside the carcass in the tire radial direction, and wound spirally at an inclination angle of 5 ° or more and 20 ° or less with respect to the tire circumferential direction and in the tire width direction. A belt layer having reinforcing cords arranged at intervals in the resin body,
    Pneumatic tire with.
  2.  前記ベルト層は、前記補強コードが樹脂で被覆された樹脂被覆コードを前記カーカスのタイヤ径方向外側に巻回して形成されている、請求項1に記載の空気入りタイヤ。 2. The pneumatic tire according to claim 1, wherein the belt layer is formed by winding a resin-coated cord in which the reinforcing cord is coated with a resin around the carcass in the tire radial direction. 3.
  3.  前記補強コードのタイヤ幅方向端面は、樹脂被覆されている、請求項1または請求項2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein an end face in the tire width direction of the reinforcing cord is coated with a resin.
PCT/JP2019/023263 2018-06-18 2019-06-12 Pneumatic tire WO2019244741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525613A JPWO2019244741A1 (en) 2018-06-18 2019-06-12 Pneumatic tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018115417 2018-06-18
JP2018-115417 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019244741A1 true WO2019244741A1 (en) 2019-12-26

Family

ID=68983388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023263 WO2019244741A1 (en) 2018-06-18 2019-06-12 Pneumatic tire

Country Status (2)

Country Link
JP (1) JPWO2019244741A1 (en)
WO (1) WO2019244741A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2016017556A1 (en) * 2014-07-30 2016-02-04 株式会社ブリヂストン Tire
JP2017206210A (en) * 2016-05-20 2017-11-24 株式会社ブリヂストン tire
JP2018079901A (en) * 2016-11-18 2018-05-24 株式会社ブリヂストン tire
JP2018090056A (en) * 2016-12-01 2018-06-14 株式会社ブリヂストン tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2016017556A1 (en) * 2014-07-30 2016-02-04 株式会社ブリヂストン Tire
JP2017206210A (en) * 2016-05-20 2017-11-24 株式会社ブリヂストン tire
JP2018079901A (en) * 2016-11-18 2018-05-24 株式会社ブリヂストン tire
JP2018090056A (en) * 2016-12-01 2018-06-14 株式会社ブリヂストン tire

Also Published As

Publication number Publication date
JPWO2019244741A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2019244738A1 (en) Pneumatic tire
EP3795379A1 (en) Pneumatic tire
WO2015005171A1 (en) Tire
EP3725547B1 (en) Tire
EP3795380A1 (en) Pneumatic tire
JP6875209B2 (en) Run flat tire
WO2019244741A1 (en) Pneumatic tire
JP6831300B2 (en) Run flat tire
JP6781671B2 (en) Run flat tire
EP3812167A1 (en) Resin-covered cords and pneumatic tire
WO2019244737A1 (en) Pneumatic tire
WO2019220889A1 (en) Pneumatic tire
WO2019244770A1 (en) Tire
WO2019239898A1 (en) Pneumatic tire
WO2019244740A1 (en) Pneumatic tire
WO2019244739A1 (en) Pneumatic tire
WO2019235323A1 (en) Pneumatic tire
WO2019244773A1 (en) Pneumatic tire
WO2019230811A1 (en) Pneumatic tire
WO2019244851A1 (en) Pneumatic tire
WO2020004040A1 (en) Pneumatic tire
JP2019217798A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822982

Country of ref document: EP

Kind code of ref document: A1