WO2019102918A1 - Run-flat tire - Google Patents

Run-flat tire Download PDF

Info

Publication number
WO2019102918A1
WO2019102918A1 PCT/JP2018/042149 JP2018042149W WO2019102918A1 WO 2019102918 A1 WO2019102918 A1 WO 2019102918A1 JP 2018042149 W JP2018042149 W JP 2018042149W WO 2019102918 A1 WO2019102918 A1 WO 2019102918A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
elastic support
run flat
width direction
radial direction
Prior art date
Application number
PCT/JP2018/042149
Other languages
French (fr)
Japanese (ja)
Inventor
龍之介 松山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019102918A1 publication Critical patent/WO2019102918A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/04Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency
    • B60C17/06Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency resilient

Definitions

  • the present disclosure relates to run flat tires.
  • Japanese Patent Application Laid-Open No. 2013-95369 discloses a side reinforced type run flat tire in which the tire side portion is reinforced with a side reinforcing rubber, and the durability during run flat running (that is, abnormal running with lowered air pressure) is secured. It is done.
  • the present disclosure provides a run flat tire in which the vertical spring during normal driving is unlikely to be large.
  • the run flat tire according to the first aspect is joined to the tire body and the inner surface of the bead portion of the tire body in the tire width direction, protrudes outward in the tire radial direction in a state of being separated from the tire side portion, and curves in the tire width direction And a fiber-reinforcing layer formed on the curved portion of the elastic support near the surface having a large radius of curvature.
  • the elastic support is joined to the inner surface in the tire width direction of the bead portion in the tire main body.
  • the elastic support protrudes in the tire radial direction and curves in the tire width direction. For this reason, when the air pressure decreases, the curved portion of the elastic support and the inner circumferential surface of the tire come into contact, and the elastic support is pressed from the tire.
  • a fiber reinforcing layer is formed on the curved portion of the elastic support near the surface having a large radius of curvature. For this reason, compared with the case where the fiber reinforcement layer is not formed, the rigidity of the elastic support is enhanced, and the elastic support is not easily deformed by the pressure from the tire. As a result, the pneumatic tire can run on a run flat.
  • the elastic support is disposed apart from the tire side portion, it is difficult to affect the rigidity of the tire side portion. For this reason, compared with the run flat tire provided with the side reinforcement rubber, the vertical spring at the time of normal running does not easily become large.
  • a run flat tire according to a second aspect is the run flat tire according to the first aspect, wherein the elastic support is annularly formed along the tire circumferential direction.
  • the elastic support is formed annularly along the tire circumferential direction.
  • the elastic support is less likely to be deformed by an external force along the tire radial direction, as compared to the case where the elastic support is not formed annularly. For this reason, the durability during run flat running is high.
  • the run flat tire according to a third aspect is the run flat tire according to the first aspect or the second aspect, wherein the elastic support is curved outward in the tire width direction.
  • the elastic support is curved outward in the tire width direction. Therefore, when the curved portion of the elastic support is pressed from the inner circumferential surface of the tire, the tire main body tends to move outward in the tire width direction by the frictional force generated between the curved portion and the inner circumferential surface of the tire. . As a result, the bead portion is pressed against the rim, and the rim removal during run flat travel is suppressed.
  • a run flat tire according to a fourth aspect is the run flat tire according to any one of the first to third aspects, wherein the elastic support is positioned on the inner side of the rim in the tire width direction of the bead portion. It is joined to the part to
  • the portion of the elastic support joined to the bead portion is located on the inner side in the tire width direction of the rim. For this reason, vibration and fluttering at the time of normal traveling are smaller than, for example, the case where the elastic support is joined to the tire side portion. This can suppress an increase in rolling resistance during normal driving.
  • a run flat tire according to a fifth aspect is the run flat tire according to any one of the first to fourth aspects, wherein the elastic support is formed using an elastomer, and the fiber reinforcing layer is formed using an organic fiber. It is formed.
  • the elastic support is formed using an elastomer. For this reason, compared with the elastic body formed using metal etc., elasticity is low and lightweight. Therefore, when the curved portion contacts the tire, the inner circumferential surface of the tire is less likely to be damaged. Moreover, since the fiber reinforcement layer is formed using organic fiber, it is lightweight compared with a steel wire etc.
  • a run flat tire according to a sixth aspect is the run flat tire according to any one of the first to fifth aspects, wherein the elastic support is formed of a single material.
  • the elastic support is formed of a single material. For this reason, compared with the case where several materials are combined and an elastic support body is formed, manufacture is easy.
  • a run flat tire according to a seventh aspect is the run flat tire according to any one of the first to sixth aspects, wherein a diameter of a fiber of the fiber forming the fiber reinforcing layer is viewed from the direction along the axial direction of the tire.
  • the inclination angle with respect to the direction is -20 ° or more and 20 ° or less.
  • the inclination angle of the fibers forming the fiber reinforcing layer with respect to the tire radial direction is set to ⁇ 20 ° or more and 20 ° or less. For this reason, compared with the case where it is smaller than -20 ° or larger than 20 °, the resistance that resists the tensile force generated in the side portion of the elastic support in the cross section along the tire width direction and the tire radial direction Is high.
  • the vertical spring during normal travel is unlikely to be large.
  • 1 is a half sectional view showing a run flat tire according to a first embodiment of the present disclosure.
  • 1 is a partial perspective view showing a run flat tire according to a first embodiment of the present disclosure.
  • 1 is a partial elevation view showing a stepping-in side of a run flat tire according to a first embodiment of the present disclosure during run flat running. It is a fragmentary sectional view showing the state at the time of run flat running of the run flat tire concerning a 1st embodiment of this indication.
  • It is a half section view showing the run flat tire concerning a 2nd embodiment of this indication.
  • It is a fragmentary sectional view showing the state at the time of run flat running of the run flat tire concerning a 2nd embodiment of this indication.
  • FIG. 1 shows a tire main body (hereinafter referred to as “tire 10”) of a pneumatic tire according to a first embodiment of the present disclosure.
  • the tire 10 is a run flat tire that can travel even in a state where the air pressure is reduced by an elastic support 40 described later.
  • FIG. 1 a cut surface (that is, a cross section seen from the direction along the tire circumferential direction) cut along the tire width direction and the tire radial direction of the tire 10 is shown.
  • arrow W indicates the width direction (tire width direction) of the tire 10
  • arrow R indicates the radial direction of the tire 10 (tire radial direction).
  • the tire width direction referred to here indicates a direction parallel to the rotation axis of the tire 10.
  • the tire radial direction means a direction orthogonal to the rotation axis of the tire 10.
  • symbol CL has shown the equatorial plane (tire equatorial plane) of the tire 10. As shown in FIG.
  • the side closer to the rotation axis of the tire 10 along the tire radial direction is “inward in the tire radial direction”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is “the outer side in the tire radial direction” And write.
  • the side closer to the tire equatorial plane CL along the tire width direction will be referred to as "the inner side in the tire width direction”
  • the side farther from the tire equatorial plane CL along the tire width direction will be referred to as "the outer side in the tire width direction”.
  • FIG. 1 shows a tire 10 assembled to a rim 30 which is a standard rim and filled with a standard air pressure.
  • standard rim refers to the rim specified in the Year Book 2017 edition of JATMA (Japan Automobile Tire Association).
  • the standard air pressure is an air pressure corresponding to the maximum load capacity of JATMA (Japan Automobile Tires Association) Year Book 2017 edition.
  • the tire 10 includes a pair of bead portions 12, a carcass 14 disposed across the bead cores 26 embedded in the bead portions 12, and a bead core 26 embedded in the bead portions 12 from the tire radial direction.
  • a bead filler 28 extending outward along the outer surface of the carcass 14, a belt layer 16 provided on the tire radial direction outer side of the carcass 14, and a tread 20 provided on the tire radial direction outer side of the belt layer 16 There is.
  • a tread 20 that constitutes an outer peripheral portion of the tire 10 is provided on the tire radial direction outer side of the belt layer 16.
  • the tire side portion 22 is configured by a sidewall lower portion 22A on the bead portion 12 side and a sidewall upper portion 22B on the tread 20 side, and connects the bead portion 12 and the tread 20.
  • Bead part Bead cores 26 which are wire bundles are embedded in the pair of bead portions 12 respectively.
  • a carcass 14 straddles these bead cores 26.
  • the bead core 26 can adopt various structures in a pneumatic tire such as a circular cross section or a polygonal shape, and for example, a hexagonal can be adopted as a polygon, but in the present embodiment, it is a quadrangle. There is.
  • An outwardly extending bead filler 28 is embedded in the region surrounded by the carcass 14 of the bead portion 12 (that is, the region outside the portion of the carcass 14 disposed inward in the tire width direction around the bead core 26.
  • the carcass (carcass ply) 14 is a tire frame member formed by covering a plurality of cords with a covering rubber.
  • the carcass 14 extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton.
  • the carcass 14 is a radial carcass.
  • the material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be adopted. In terms of weight reduction, organic fiber cords are preferred. Further, although the number of implanted carcasses is in the range of 20 to 60/50 mm, it is not limited to this range.
  • a belt layer 16 is disposed on the tire radial direction outer side of the carcass 14.
  • the belt layer 16 is composed of two belt plies 16A and 16B.
  • the belt plies 16A and 16B are each formed by coating a plurality of cords (for example, organic fiber cords and metal cords) with a covering rubber.
  • the cords constituting the belt plies 16A, 16B extend in a direction inclined with respect to the tire circumferential direction.
  • a tread 20 is provided on the outer side in the tire radial direction of the belt layer 16.
  • the tread 20 is a portion that contacts the road surface during traveling.
  • a plurality of circumferential grooves 24 extending in the tire circumferential direction are formed on the tread surface of the tread 20.
  • the shape and the number of the circumferential grooves 24 are appropriately set in accordance with the performance required for the tire 10 such as drainage performance and steering stability.
  • the elastic support 40 is a tire support member formed in an annular (i.e., annular) shape along the tire circumferential direction.
  • the elastic support body 40 is shown in FIG. 1 and 2 as being disposed on one side in the tire width direction, the elastic support 40 is similarly disposed on the other side in the tire width direction.
  • the elastic support body 40 is formed by arranging the elastic body 42 and the fiber reinforcing layer 44 in a layered manner.
  • the elastic body 42 is adhesively bonded to the bead portion 12 located in the tire width direction inner portion of the rim 30 in a cross sectional view along the tire width direction and the tire radial direction. More specifically, at least a portion of the elastic body 42 is adhesively bonded to the inner side surface of the bead portion 12 in a region radially inward of the tire N from the point N in FIG.
  • the point N is the tire width direction outer end and tire radial direction outer end of the portion where the rim 30 and the bead portion 12 are in contact.
  • the elastic body 42 extends outward in the tire radial direction from the portion joined to the bead portion 12 and is curved inward in the tire width direction. And in the curved part of elastic body 42, fiber reinforcement layer 44 is joined to the field (surface 42A on the convex side) with a large curvature radius.
  • the convex side surface (surface with a large radius of curvature) of the elastic support 40, the elastic body 42, and the fiber reinforcing layer 44 is the outer surface, and the surface with a concave side (surface with a small radius of curvature) is inner It is called the side.
  • the elastic body 42 is a main body member of the elastic support body 40, and is formed using the same rubber as the tire 10.
  • the fiber reinforcing layer 44 is a cord layer formed by coating a plurality of organic fiber cords (for example, an aromatic polyamide cord) with the same rubber as the elastic body 42.
  • the rubber constituting the fiber reinforcing layer 44 is fused with the rubber constituting the elastic body 42.
  • the elastic support body 40 has a configuration in which the organic fiber cord is embedded in the rubber.
  • the organic fiber cord is simply referred to as a cord 44A (see FIG. 3).
  • the elastic support 40 is disposed such that the convex side surface 42 ⁇ / b> A of the elastic body 42 and the fiber reinforcing layer 44 face the outer side in the tire radial direction or the outer side in the width direction. Further, the elastic support 40 is disposed apart from the inner peripheral surface 22C of the tire side portion 22 except for the joint portion with the bead portion 12, and the elastic support 40 and the inner peripheral surface 22C of the tire side portion 22 are disposed. A space V is formed between them.
  • FIG. 3 shows a partially enlarged view of the tread side of the tire 10 during runflat running.
  • the cord 44A embedded in the rubber in the fiber reinforcing layer 44 is shown by a dotted line.
  • the cords 44A are formed to intersect with the radial direction of the tire 10 and the elastic support 40 at an angle ⁇ .
  • the angle ⁇ is set to ⁇ 20 ° ⁇ ⁇ ⁇ 20 ° with a positive value when the cord 44A is inclined in the rotational direction shown by the arrow R in FIG.
  • ⁇ in FIG. 3 is about ⁇ 10 °.
  • the pressing force from the tire 10 is higher than in the case where the fiber reinforcing layer 44 is not formed. It is difficult to deform against. Thus, the pneumatic tire can travel even when the internal pressure is zero. That is, run flat driving is possible.
  • compressive stress and tensile stress are generated inside the elastic support body 40 by deformation of the elastic body 42. Specifically, a compressive stress is generated at a place where the elastic body 42 is deformed in a direction in which the elastic body 42 receives an external force, and a tensile stress is generated at a place where the elastic body 42 is deformed in the extending direction.
  • the fiber reinforcing layer 44 is joined along the convexly curved outer peripheral surface of the elastic body 42. That is, the fiber reinforcing layer 44 is disposed along the outer surface of the elastic support 40.
  • the cords 44A (see FIG. 3) embedded in the fiber reinforcing layer 44 can resist the tensile stress TB.
  • the deformation of the elastic support 40 is suppressed by the cords 44A resisting the tensile stress TB. For this reason, the elastic support body 40 resists the external force P1, and the tire 10 can run run flat.
  • the elastic body 42 is formed using rubber. For this reason, compared with the case where a support body is formed using metal etc., it is hard to damage the inner peripheral surface of the tire 10, and is lightweight. Furthermore, since the fiber reinforcing layer 44 is formed using the organic fiber cord (code 44A), it is lightweight compared to the case of using a steel wire or the like.
  • the elastic body 42 is formed of a single material (rubber), it is easy to manufacture as compared with the case where a plurality of materials are combined and formed.
  • the elastic body 42 is disposed apart from the inner circumferential surface 22 C of the tire side portion 22, the rigidity of the tire side portion 22 is hardly affected. For this reason, as compared with the run flat tire provided with the side reinforcing rubber in contact with the inner circumferential surface 22C of the tire side portion 22, the vertical spring during normal running is unlikely to be large. Further, compared to a run flat tire having side reinforcing rubber in the tire side portion 22, heat is less likely to be generated from the tire side portion during run flat running, and the generated heat is less likely to be accumulated. This increases runflat durability. In addition, fuel efficiency during normal driving is improved.
  • the cords 44A forming the fiber reinforcing layer 44 are inclined with respect to the tire radial direction and the radial direction of the elastic support 40. For this reason, at the time of run flat running, it is possible to resist the tensile force TD acting along the tire circumferential direction on the tread-in side and the kick-out side. Thereby, the durability of the elastic support 40 is enhanced.
  • the inclination angle of the cord 44A with respect to the tire radial direction is set to ⁇ 20 ° or more and 20 ° or less. For this reason, compared with the case where it is smaller than ⁇ 20 ° or larger than 20 °, the resistance to the tensile stress TB (see FIG. 4) generated in the side portion 40B of the elastic support 40 is high.
  • the elastic body 42 is entirely curved, and the fiber reinforcing layer 44 is formed on substantially the entire outer surface of the elastic body 42.
  • the fiber reinforcing layer 44 is formed only on a part of the outer side surface of the elastic body 42, the deformation of the elastic support 40 can be efficiently suppressed.
  • the fiber reinforcing layer 44 may be formed at a position where the largest tensile stress may be generated during run flat travel.
  • the outer surface of the elastic body 42 may be formed at a position including a portion (point M shown in FIG. 1) at which the tangent line coincides with the tire radial direction.
  • the fiber reinforcing layer 44 By forming the fiber reinforcing layer 44 in such a position, deformation of the elastic support 40 can be efficiently suppressed.
  • the fiber reinforcing layer 44 may be embedded not in the outer surface of the elastic body 42 but in the inside as long as the elastic body 42 receives a tensile force when the elastic body 42 is pressed from the tire 10.
  • the fiber reinforcing layer 44 is embedded in the elastic body 42, the fiber reinforcing layer 44 is embedded at a position closer to the outer peripheral surface than the inner peripheral surface of the elastic body 42 (that is, closer to the surface having a large radius of curvature).
  • the inclination angle of the cord 44A with respect to the tire radial direction may be smaller than ⁇ 20 ° or larger than 20 °, as necessary. In this case, it is possible to easily resist the tensile force TD acting along the tire circumferential direction.
  • the elastic support 40 in the first embodiment is curved inward in the tire width direction.
  • the elastic support 50 in the second embodiment is curved outward in the tire width direction.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the elastic support 50 is formed by arranging the elastic body 52 and the fiber reinforcing layer 54 in layers.
  • the elastic body 52 is adhesively bonded to the bead portion 12 located at the tire radial direction outer portion of the rim 30 in a cross sectional view along the tire width direction and the tire radial direction. More specifically, at least a part of the elastic body 52 is joined to the inner side surface of the bead portion 12 in a region radially outward and inward in the tire width direction from the point N in FIG.
  • the elastic body 52 extends outward in the tire radial direction from a portion joined to the bead portion 12 and is curved outward in the tire width direction. Then, in the curved portion of the elastic body 52, the fiber reinforcing layer 54 is joined along the surface having a large radius of curvature (that is, the surface 52A on the convex side).
  • the surface on the convex side of the elastic support 50, the elastic body 52, and the fiber reinforcing layer 54 is the outer surface, and the surface on the concave side (a surface having a small radius of curvature). It is called the inner side.
  • the "outside surface” and the “inside surface” do not indicate the outer surface and the inner surface in the tire width direction.
  • the elastic body 52 is a main body member of the elastic support body 50, and is formed using the same rubber as the rubber that forms the tire 10.
  • the fiber reinforcing layer 54 is a cord layer formed by covering a plurality of organic fiber cords with the same rubber as the elastic body 52, similarly to the fiber reinforcing layer 44.
  • the elastic support 50 is disposed such that the surface 52 ⁇ / b> A on the convex side of the elastic body 52 and the fiber reinforcing layer 54 face the outer side in the tire radial direction or the inner side in the width direction. Further, the elastic support 50 is disposed apart from the inner peripheral surface 22C of the tire side portion 22, and a space V is formed between the elastic support 40 and the inner peripheral surface 22C of the tire side portion 22. There is.
  • the elastic support 50 is curved outward in the tire width direction. Therefore, when the elastic support 50 receives the external force P2 from the tire 10, as shown by the broken line and the arrow L in FIG. 6A, the elastic support 50 tries to move outward in the tire width direction, and the bead portion 12 of the tire 10 is moved to the rim 30. Press As a result, the tire 10 is less likely to come off the rim.
  • the elastic support 50 is adhesively bonded to the bead portion 12 at the tire radial direction outer portion of the rim 30. For this reason, as shown in FIG. 6B, the elastic support 50 can form a compression bundle between the rim 30 and the ground contact end of the tire 10, for example, at the time of turning operation, etc. to support the load.
  • the volumes of the elastic body 52 and the fiber reinforcing layer 54 can be reduced as compared with the case of bonding to the tire width direction inner portion of the rim 30. Thereby, the weight of the tire 10 can be reduced.
  • the elastic support 50 curved outward in the tire width direction is joined to the bead portion 12 at the tire radial direction outer portion of the rim 30, but the embodiment of the present disclosure is not limited thereto. .
  • the elastic support 60 curved outward in the tire width direction is joined to the bead portion 12 at the tire width direction inner portion of the rim 30 in the same manner as the elastic support 40 of the first embodiment. It is also good.
  • the degree of fixation to the rim 30 is higher in the tire width direction inner portion than in the tire radial direction outer portion of the rim 30, and it is difficult for the tire to scatter during normal travel. For this reason, rolling resistance can be reduced.
  • the comparative example 1 is a normal tire which does not adhere
  • the comparative example 2 is a run flat tire reinforced by bonding side reinforcing rubber to the inner peripheral surface 22C of the tire side portion 22 without using any of the elastic supports 40, 50, 60.
  • a tire having a tire size of 205/55 RF1691 V was used as the tire 10 in Example 1 and the pneumatic tire in Comparative Examples 1 and 2.
  • a drum endurance test according to ISO1692 was performed at a traveling speed of 80 km / h in a state where tire wheels with an air pressure of 0 kPa were disposed on a drum tester and a load of 4.02 kN was applied. This evaluated RF performance (ie, run flat durability). Also, a separate test was conducted to evaluate the fuel efficiency, comfort, and moment of inertia at the time of internal pressure filling. Comfort was evaluated by measuring the longitudinal spring property.
  • Example 1 and Comparative Example 2 have high RF performance compared to Comparative Example 1. And it turned out that Example 1 is high in RF performance compared with comparative example 2. In addition, it was found that the fuel efficiency, the comfort, and the moment of inertia of the example 1 are superior to those of the comparative example 2.
  • the numerical values in FIG. 7 are evaluation indexes, and the RF performance, fuel efficiency, and comfort are better as the index is larger, and the moment of inertia is better as the index is smaller.
  • the elastic supports 40 and 50 are formed in an annular shape along the tire circumferential direction, but the embodiments of the present disclosure are not limited thereto.
  • the elastic supports 40 and 50 may be formed at intervals along the circumferential direction. Thereby, the vertical spring of the tire 10 can be reduced.
  • rubber that is, vulcanized rubber
  • the embodiment of the present disclosure is not limited thereto.
  • resins such as thermoplastic resin, thermosetting resin, and (meth) acrylic resin, EVA resin, vinyl chloride resin, fluorocarbon resin, silicone resin, engineering plastics (including super engineering plastics), etc. It can be used.
  • the elastic bodies 52 and 62 and the fiber reinforcing layers 54 and 64 in the second embodiment in order to form elastic body 42, 52, 62, these materials may be used independently and may be used in combination.
  • thermoplastic resin refers to a polymer compound which softens and flows as the temperature rises and becomes relatively hard and strong when cooled.
  • the material softens and flows as temperature rises, and becomes relatively hard and strong when cooled
  • the polymer compound having rubbery elasticity is a thermoplastic elastomer, and the material increases as temperature rises.
  • the polymer compound softens, flows, cools, it becomes a relatively hard and strong state, and a polymer compound having no rubbery elasticity is distinguished as a non-elastomeric thermoplastic resin.
  • thermoplastic resins include polyolefin thermoplastic elastomer (TPO), polystyrene thermoplastic elastomer (TPS), polyamide thermoplastic elastomer (TPA), polyurethane thermoplastic elastomer (TPU), polyester And thermoplastic thermoplastic elastomers (TPV) and thermoplastic olefin resins, polystyrene thermoplastic resins, polyamide thermoplastic resins and polyester thermoplastic resins.
  • the organic fiber cord is used as a cord which forms fiber reinforcement layer 44, 54, 64 in the above-mentioned embodiment
  • an embodiment of this indication is not limited to this.
  • a steel cord may be used. This steel cord is based on steel and can contain various minor inclusions such as carbon, manganese, silicon, phosphorus, sulfur, copper, chromium and the like.
  • a monofilament cord or a cord in which a plurality of filaments are twisted can be used as the various cords.
  • Various designs can be adopted for the twist structure, and various cross-section structures, twist pitches, twist directions, and distances between adjacent filaments can be used.
  • the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and double twist can be taken.
  • the fiber reinforcing layer may be configured using FRP (fiber reinforced plastic) instead of the cord coated with resin or the like.
  • FRP fiber reinforced plastic
  • fibers applied to FRP glass fibers, carbon fibers, boron fibers, aramid fibers and the like can be appropriately selected.
  • the present disclosure can be implemented in various ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

This run-flat tire includes: a tire body; an elastic support body that is joined to the inner surface of a bead portion of the tire body in the tire width direction, protrudes outward in the tire radial direction while separated from a tire side portion, and is curved in the tire width direction; and a fiber reinforcing layer formed in the curved part of the elastic support body, at a position near a surface with a large radius curvature.

Description

ランフラットタイヤRun flat tire
 本開示は、ランフラットタイヤに関する。 The present disclosure relates to run flat tires.
 特開2013-95369号公報には、タイヤサイド部をサイド補強ゴムで補強し、ランフラット走行時(すなわち空気圧が低下した異常走行時)の耐久性を確保したサイド補強型のランフラットタイヤが開示されている。 Japanese Patent Application Laid-Open No. 2013-95369 discloses a side reinforced type run flat tire in which the tire side portion is reinforced with a side reinforcing rubber, and the durability during run flat running (that is, abnormal running with lowered air pressure) is secured. It is done.
 上述した特開2013-95369号公報に示されるようなサイド補強ゴムを備えたランフラットタイヤでは、ランフラット走行時のタイヤサイド部のバックリングが抑制されるが、通常走行時の縦バネが大きくなる傾向がある。 In the run flat tire provided with the side reinforcing rubber as shown in the above-mentioned Japanese Patent Application Laid-Open No. 2013-95369, the buckling of the tire side portion during run flat running is suppressed, but the vertical spring during running is large. Tend to be
 本開示は、通常走行時の縦バネが大きくなり難いランフラットタイヤを提供する。 The present disclosure provides a run flat tire in which the vertical spring during normal driving is unlikely to be large.
 第1態様に係るランフラットタイヤは、タイヤ本体と、前記タイヤ本体におけるビード部のタイヤ幅方向内側面に接合され、タイヤサイド部から離間した状態でタイヤ径方向外側へ突出し、タイヤ幅方向へ湾曲した弾性支持体と、前記弾性支持体の湾曲部分において曲率半径が大きい面寄りに形成された繊維補強層と、を備えている。 The run flat tire according to the first aspect is joined to the tire body and the inner surface of the bead portion of the tire body in the tire width direction, protrudes outward in the tire radial direction in a state of being separated from the tire side portion, and curves in the tire width direction And a fiber-reinforcing layer formed on the curved portion of the elastic support near the surface having a large radius of curvature.
 第1態様に係るランフラットタイヤにおいては、弾性支持体が、タイヤ本体におけるビード部のタイヤ幅方向内側面に接合されている。この弾性支持体は、タイヤ径方向へ突出し、タイヤ幅方向へ湾曲している。このため、空気圧が低下すると、弾性支持体の湾曲部分とタイヤの内周面とが接触し、弾性支持体はタイヤから押圧される。弾性支持体の湾曲部分において曲率半径が大きい面寄りには繊維補強層が形成されている。このため、繊維補強層が形成されていない場合と比較して弾性支持体は剛性が高められ、タイヤからの押圧力に対して変形し難い。これにより空気入りタイヤはランフラット走行できる。 In the run flat tire according to the first aspect, the elastic support is joined to the inner surface in the tire width direction of the bead portion in the tire main body. The elastic support protrudes in the tire radial direction and curves in the tire width direction. For this reason, when the air pressure decreases, the curved portion of the elastic support and the inner circumferential surface of the tire come into contact, and the elastic support is pressed from the tire. A fiber reinforcing layer is formed on the curved portion of the elastic support near the surface having a large radius of curvature. For this reason, compared with the case where the fiber reinforcement layer is not formed, the rigidity of the elastic support is enhanced, and the elastic support is not easily deformed by the pressure from the tire. As a result, the pneumatic tire can run on a run flat.
 また、弾性支持体はタイヤサイド部から離間して配置されているため、タイヤサイド部の剛性に影響を与え難い。このため、サイド補強ゴムを備えたランフラットタイヤと比較して、通常走行時の縦バネが大きくなり難い。 Further, since the elastic support is disposed apart from the tire side portion, it is difficult to affect the rigidity of the tire side portion. For this reason, compared with the run flat tire provided with the side reinforcement rubber, the vertical spring at the time of normal running does not easily become large.
 第2態様に係るランフラットタイヤは、第1態様のランフラットタイヤにおいて、前記弾性支持体は、タイヤ周方向に沿って環状に形成されている。 A run flat tire according to a second aspect is the run flat tire according to the first aspect, wherein the elastic support is annularly formed along the tire circumferential direction.
 第2態様に係るランフラットタイヤにおいては、弾性支持体がタイヤ周方向に沿って環状に形成されている。これにより弾性支持体は環状に形成されていない場合と比較して、タイヤ径方向に沿った外力に対して変形し難い。このため、ランフラット走行時の耐久性が高い。 In the run flat tire according to the second aspect, the elastic support is formed annularly along the tire circumferential direction. Thus, the elastic support is less likely to be deformed by an external force along the tire radial direction, as compared to the case where the elastic support is not formed annularly. For this reason, the durability during run flat running is high.
 第3態様に係るランフラットタイヤは、第1態様又は第2態様に記載のランフラットタイヤにおいて、前記弾性支持体は、タイヤ幅方向外側へ湾曲している。 The run flat tire according to a third aspect is the run flat tire according to the first aspect or the second aspect, wherein the elastic support is curved outward in the tire width direction.
 第3態様に係るランフラットタイヤにおいては、弾性支持体がタイヤ幅方向外側へ湾曲している。このため、弾性支持体の湾曲部分がタイヤの内周面から押圧されると、湾曲部分とタイヤの内周面との間に生じる摩擦力によって、タイヤ本体がタイヤ幅方向外側へ移動しようとする。これによりビード部がリムに押し付けられ、ランフラット走行時のリム外れが抑制される。 In the run flat tire according to the third aspect, the elastic support is curved outward in the tire width direction. Therefore, when the curved portion of the elastic support is pressed from the inner circumferential surface of the tire, the tire main body tends to move outward in the tire width direction by the frictional force generated between the curved portion and the inner circumferential surface of the tire. . As a result, the bead portion is pressed against the rim, and the rim removal during run flat travel is suppressed.
 第4態様に係るランフラットタイヤは、第1態様~第3態様の何れか1態様に記載のランフラットタイヤにおいて、前記弾性支持体は、前記ビード部のうち前記リムのタイヤ幅方向内側に位置する部分に接合される。 A run flat tire according to a fourth aspect is the run flat tire according to any one of the first to third aspects, wherein the elastic support is positioned on the inner side of the rim in the tire width direction of the bead portion. It is joined to the part to
 第4態様に係るランフラットタイヤにおいては、弾性支持体においてビード部に接合された部分が、リムのタイヤ幅方向内側に位置する。このため、通常走行時の振動やバタつきが、例えばタイヤサイド部に弾性支持体が接合される場合と比較して小さい。これにより通常走行時における転がり抵抗の増加を抑制できる。 In the run-flat tire according to the fourth aspect, the portion of the elastic support joined to the bead portion is located on the inner side in the tire width direction of the rim. For this reason, vibration and fluttering at the time of normal traveling are smaller than, for example, the case where the elastic support is joined to the tire side portion. This can suppress an increase in rolling resistance during normal driving.
 第5態様に係るランフラットタイヤは、第1態様~第4態様の何れか1態様のランフラットタイヤにおいて、前記弾性支持体はエラストマーを用いて形成され、前記繊維補強層は有機繊維を用いて形成されている。 A run flat tire according to a fifth aspect is the run flat tire according to any one of the first to fourth aspects, wherein the elastic support is formed using an elastomer, and the fiber reinforcing layer is formed using an organic fiber. It is formed.
 第5態様に係るランフラットタイヤにおいては、弾性支持体はエラストマーを用いて形成されている。このため金属等を用いて形成された弾性体と比較して弾性が低く軽量である。このため湾曲部分がタイヤと接触した際、タイヤの内周面が損傷し難い。また、繊維補強層は有機繊維を用いて形成されているため、スチールワイヤー等と比較して軽量である。 In the run flat tire according to the fifth aspect, the elastic support is formed using an elastomer. For this reason, compared with the elastic body formed using metal etc., elasticity is low and lightweight. Therefore, when the curved portion contacts the tire, the inner circumferential surface of the tire is less likely to be damaged. Moreover, since the fiber reinforcement layer is formed using organic fiber, it is lightweight compared with a steel wire etc.
 第6態様に係るランフラットタイヤは、第1態様~第5態様の何れか1態様のランフラットタイヤにおいて、弾性支持体が単一の材料で形成されている。 A run flat tire according to a sixth aspect is the run flat tire according to any one of the first to fifth aspects, wherein the elastic support is formed of a single material.
 第6態様に係るランフラットタイヤにおいては、弾性支持体が単一の材料で形成されている。このため複数の材料を組合わせて弾性支持体を形成する場合と比較して、製造が容易である。 In the run flat tire according to the sixth aspect, the elastic support is formed of a single material. For this reason, compared with the case where several materials are combined and an elastic support body is formed, manufacture is easy.
 第7態様に係るランフラットタイヤは、第1態様~第6態様の何れか1態様のランフラットタイヤにおいて、タイヤ軸方向に沿った方向から見て、前記繊維補強層を形成する繊維のタイヤ径方向に対する傾斜角度は、-20°以上20°以下である。 A run flat tire according to a seventh aspect is the run flat tire according to any one of the first to sixth aspects, wherein a diameter of a fiber of the fiber forming the fiber reinforcing layer is viewed from the direction along the axial direction of the tire. The inclination angle with respect to the direction is -20 ° or more and 20 ° or less.
 第7態様に係るランフラットタイヤにおいては、繊維補強層を形成する繊維のタイヤ径方向に対する傾斜角度が-20°以上20°以下とされている。このため、-20°より小さい場合や20°より大きい場合と比較して、タイヤ幅方向及びタイヤ径方向に沿った断面内で弾性支持体の側方部に発生する引張力に抵抗する抵抗力が高い。 In the run-flat tire according to the seventh aspect, the inclination angle of the fibers forming the fiber reinforcing layer with respect to the tire radial direction is set to −20 ° or more and 20 ° or less. For this reason, compared with the case where it is smaller than -20 ° or larger than 20 °, the resistance that resists the tensile force generated in the side portion of the elastic support in the cross section along the tire width direction and the tire radial direction Is high.
 本開示に係るランフラットタイヤによれば、通常走行時の縦バネが大きくなり難い。 According to the run flat tire according to the present disclosure, the vertical spring during normal travel is unlikely to be large.
本開示の第1実施形態に係るランフラットタイヤを示す半断面図である。1 is a half sectional view showing a run flat tire according to a first embodiment of the present disclosure. 本開示の第1実施形態に係るランフラットタイヤを示す部分斜視図である。1 is a partial perspective view showing a run flat tire according to a first embodiment of the present disclosure. 本開示の第1実施形態に係るランフラットタイヤのランフラット走行時における踏み込み側を示す部分立面図である。1 is a partial elevation view showing a stepping-in side of a run flat tire according to a first embodiment of the present disclosure during run flat running. 本開示の第1実施形態に係るランフラットタイヤのランフラット走行時における状態を示す部分断面図である。It is a fragmentary sectional view showing the state at the time of run flat running of the run flat tire concerning a 1st embodiment of this indication. 本開示の第2実施形態に係るランフラットタイヤを示す半断面図である。It is a half section view showing the run flat tire concerning a 2nd embodiment of this indication. 本開示の第2実施形態に係るランフラットタイヤのランフラット走行時における状態を示す部分断面図である。It is a fragmentary sectional view showing the state at the time of run flat running of the run flat tire concerning a 2nd embodiment of this indication. 本開示の第2実施形態に係るランフラットタイヤがランフラット走行時に旋回走行している状態を示す部分断面図である。It is a fragmentary sectional view showing the state where a run flat tire concerning a 2nd embodiment of this indication is turning run at the time of run flat running. 本開示の第2実施形態に係るランフラットタイヤにおいて、弾性支持体をリムのタイヤ幅方向内側部分においてビード部に接合した変形例を示す半断面図である。The run flat tire which concerns on 2nd Embodiment of this indication WHEREIN: It is a half cross-sectional view which shows the modification which joined the elastic support body to the bead part in the tire width direction inner part of a rim | limb. 本開示の第1実施形態に係る支持体が適用されたタイヤと比較例に係るタイヤの性能試験結果を示す表である。It is a table | surface which shows the performance test result of the tire to which the support body which concerns on 1st Embodiment of this indication was applied, and the tire which concerns on a comparative example.
[第1実施形態]
 以下、本開示に係る空気入りタイヤの一例である実施形態について、図面を適宜参照しながら詳細に説明する。各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。また、各構成要素は1つに限定されず、複数存在してもよい。なお、以下に説明する実施形態において重複する説明及び符号については、省略する場合がある。なお、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
First Embodiment
Hereinafter, an embodiment which is an example of a pneumatic tire according to the present disclosure will be described in detail with reference to the drawings as appropriate. Components indicated by the same reference numerals in the drawings mean that they are the same components. Further, each component is not limited to one, and a plurality of components may exist. Note that duplicate explanations and symbols in the embodiments described below may be omitted. Note that the present disclosure is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the purpose of the present disclosure.
 図1には、本開示の第1実施形態に係る空気入りタイヤのタイヤ本体(以下、「タイヤ10」と称する。)が示されている。タイヤ10は、後述する弾性支持体40によって、空気圧が低下した状態でも走行可能なランフラットタイヤである。 FIG. 1 shows a tire main body (hereinafter referred to as “tire 10”) of a pneumatic tire according to a first embodiment of the present disclosure. The tire 10 is a run flat tire that can travel even in a state where the air pressure is reduced by an elastic support 40 described later.
 図1においては、タイヤ10のタイヤ幅方向及びタイヤ径方向に沿って切断した切断面(すなわちタイヤ周方向に沿った方向から見た断面)が示されている。なお、図中矢印Wはタイヤ10の幅方向(タイヤ幅方向)を示し、矢印Rはタイヤ10の径方向(タイヤ径方向)を示す。ここでいうタイヤ幅方向とは、タイヤ10の回転軸と平行な方向を指している。また、タイヤ径方向とは、タイヤ10の回転軸と直交する方向をいう。また、符号CLはタイヤ10の赤道面(タイヤ赤道面)を示している。 In FIG. 1, a cut surface (that is, a cross section seen from the direction along the tire circumferential direction) cut along the tire width direction and the tire radial direction of the tire 10 is shown. In the drawings, arrow W indicates the width direction (tire width direction) of the tire 10, and arrow R indicates the radial direction of the tire 10 (tire radial direction). The tire width direction referred to here indicates a direction parallel to the rotation axis of the tire 10. Further, the tire radial direction means a direction orthogonal to the rotation axis of the tire 10. Moreover, the code | symbol CL has shown the equatorial plane (tire equatorial plane) of the tire 10. As shown in FIG.
 また、本実施形態では、タイヤ径方向に沿ってタイヤ10の回転軸に近い側を「タイヤ径方向内側」、タイヤ径方向に沿ってタイヤ10の回転軸から遠い側を「タイヤ径方向外側」と記載する。一方、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。 Further, in the present embodiment, the side closer to the rotation axis of the tire 10 along the tire radial direction is “inward in the tire radial direction”, and the side farther from the rotation axis of the tire 10 along the tire radial direction is “the outer side in the tire radial direction” And write. On the other hand, the side closer to the tire equatorial plane CL along the tire width direction will be referred to as "the inner side in the tire width direction", and the side farther from the tire equatorial plane CL along the tire width direction will be referred to as "the outer side in the tire width direction".
<タイヤ>
 図1には、標準リムであるリム30に組み付けて標準空気圧を充填したときのタイヤ10が示されている。なお、ここでいう「標準リム」とは、JATMA(日本自動車タイヤ協会)のYear Book2017年版規定のリムを指す。また、上記標準空気圧とは、JATMA(日本自動車タイヤ協会)のYear Book2017年版の最大負荷能力に対応する空気圧である。
<Tire>
FIG. 1 shows a tire 10 assembled to a rim 30 which is a standard rim and filled with a standard air pressure. The term "standard rim" as used herein refers to the rim specified in the Year Book 2017 edition of JATMA (Japan Automobile Tire Association). Further, the standard air pressure is an air pressure corresponding to the maximum load capacity of JATMA (Japan Automobile Tires Association) Year Book 2017 edition.
 図1に示されるように、タイヤ10は、一対のビード部12と、ビード部12に埋設されたビードコア26に跨って配置されたカーカス14と、ビード部12に埋設されビードコア26からタイヤ径方向外側へカーカス14の外面に沿って伸びるビードフィラー28と、カーカス14のタイヤ径方向外側に設けられたベルト層16と、ベルト層16のタイヤ径方向外側に設けられたトレッド20と、を備えている。 As shown in FIG. 1, the tire 10 includes a pair of bead portions 12, a carcass 14 disposed across the bead cores 26 embedded in the bead portions 12, and a bead core 26 embedded in the bead portions 12 from the tire radial direction. A bead filler 28 extending outward along the outer surface of the carcass 14, a belt layer 16 provided on the tire radial direction outer side of the carcass 14, and a tread 20 provided on the tire radial direction outer side of the belt layer 16 There is.
 ベルト層16のタイヤ径方向外側には、タイヤ10の外周部を構成するトレッド20が設けられている。タイヤサイド部22は、ビード部12側のサイドウォール下部22Aと、トレッド20側のサイドウォール上部22Bとで構成され、ビード部12とトレッド20とを連結している。 A tread 20 that constitutes an outer peripheral portion of the tire 10 is provided on the tire radial direction outer side of the belt layer 16. The tire side portion 22 is configured by a sidewall lower portion 22A on the bead portion 12 side and a sidewall upper portion 22B on the tread 20 side, and connects the bead portion 12 and the tread 20.
(ビード部)
 一対のビード部12には、ワイヤ束であるビードコア26がそれぞれ埋設されている。これらのビードコア26には、カーカス14が跨っている。ビードコア26は、断面が円形や多角形状など、空気入りタイヤにおけるさまざまな構造を採用することができ、多角形としては例えば六角形を採用することができるが、本実施形態においては四角形とされている。
(Bead part)
Bead cores 26 which are wire bundles are embedded in the pair of bead portions 12 respectively. A carcass 14 straddles these bead cores 26. The bead core 26 can adopt various structures in a pneumatic tire such as a circular cross section or a polygonal shape, and for example, a hexagonal can be adopted as a polygon, but in the present embodiment, it is a quadrangle. There is.
 図1に示すように、ビード部12のカーカス14で囲まれた領域(すなわちカーカス14においてビードコア26周りにタイヤ幅方向内側に配置された部分の外側の領域)には、ビードコア26からタイヤ径方向外側へ延びるビードフィラー28が埋設されている。 As shown in FIG. 1, in the region surrounded by the carcass 14 of the bead portion 12 (that is, the region outside the portion of the carcass 14 disposed inward in the tire width direction around the bead core 26), An outwardly extending bead filler 28 is embedded.
(カーカス)
 カーカス(カーカスプライ)14は、複数本のコードを被覆ゴムで被覆して形成されたタイヤ骨格部材である。カーカス14は、一方のビードコア26から他方のビードコア26へトロイド状に延びてタイヤの骨格を構成している。
(Carcass)
The carcass (carcass ply) 14 is a tire frame member formed by covering a plurality of cords with a covering rubber. The carcass 14 extends in a toroidal shape from one bead core 26 to the other bead core 26 to form a tire skeleton.
 なお、本実施形態においてカーカス14はラジアルカーカスとされている。カーカス14の材質は特に限定されず、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。なお、軽量化の点からは、有機繊維コードが好ましい。また、カーカスの打ち込み数は20~60本/50mmの範囲とされているが、この範囲に限定されるのもではない。 In the present embodiment, the carcass 14 is a radial carcass. The material of the carcass 14 is not particularly limited, and rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, steel or the like can be adopted. In terms of weight reduction, organic fiber cords are preferred. Further, although the number of implanted carcasses is in the range of 20 to 60/50 mm, it is not limited to this range.
(ベルト層)
 カーカス14のタイヤ径方向外側には、ベルト層16が配設されている。ベルト層16は、2枚のベルトプライ16A、16Bによって構成されている。ベルトプライ16A、16Bはそれぞれ、複数本のコード(例えば、有機繊維コードや金属コードなど)を被覆ゴムで被覆して形成されている。ベルトプライ16A、16Bを構成するコードは、タイヤ周方向に対して傾斜する方向に延びている。
(Belt layer)
A belt layer 16 is disposed on the tire radial direction outer side of the carcass 14. The belt layer 16 is composed of two belt plies 16A and 16B. The belt plies 16A and 16B are each formed by coating a plurality of cords (for example, organic fiber cords and metal cords) with a covering rubber. The cords constituting the belt plies 16A, 16B extend in a direction inclined with respect to the tire circumferential direction.
(トレッド)
 ベルト層16のタイヤ径方向外側には、トレッド20が設けられている。トレッド20は、走行中に路面に接地する部位である。トレッド20の踏面には、タイヤ周方向に延びる周方向溝24が複数本形成されている。周方向溝24の形状や本数は、タイヤ10に要求される排水性や操縦安定性等の性能に応じて適宜設定される。
(tread)
A tread 20 is provided on the outer side in the tire radial direction of the belt layer 16. The tread 20 is a portion that contacts the road surface during traveling. A plurality of circumferential grooves 24 extending in the tire circumferential direction are formed on the tread surface of the tread 20. The shape and the number of the circumferential grooves 24 are appropriately set in accordance with the performance required for the tire 10 such as drainage performance and steering stability.
<弾性支持体>
 弾性支持体40は、図2に示すように、タイヤ周方向に沿って環状(すなわち円環状)に形成されたタイヤ支持部材である。図1、2において弾性支持体40はタイヤ幅方向の一方側に配置されている状態が示されているが、タイヤ幅方向の他方側にも同様に配置されている。
<Elastic support>
As shown in FIG. 2, the elastic support 40 is a tire support member formed in an annular (i.e., annular) shape along the tire circumferential direction. Although the elastic support body 40 is shown in FIG. 1 and 2 as being disposed on one side in the tire width direction, the elastic support 40 is similarly disposed on the other side in the tire width direction.
 弾性支持体40は、弾性体42と繊維補強層44とが層状に配置されて形成されている。弾性体42は、タイヤ幅方向及びタイヤ径方向に沿った断面視において、リム30のタイヤ幅方向内側部分に位置するビード部12に接着接合されている。より具体的には、図1における点Nよりタイヤ径方向内側かつタイヤ幅方向内側の領域内で、弾性体42の少なくとも一部がビード部12の内側面に接着接合されている。点Nは、リム30とビード部12とが接触している部分のタイヤ幅方向外側端かつタイヤ径方向外側端である。 The elastic support body 40 is formed by arranging the elastic body 42 and the fiber reinforcing layer 44 in a layered manner. The elastic body 42 is adhesively bonded to the bead portion 12 located in the tire width direction inner portion of the rim 30 in a cross sectional view along the tire width direction and the tire radial direction. More specifically, at least a portion of the elastic body 42 is adhesively bonded to the inner side surface of the bead portion 12 in a region radially inward of the tire N from the point N in FIG. The point N is the tire width direction outer end and tire radial direction outer end of the portion where the rim 30 and the bead portion 12 are in contact.
 弾性体42は、ビード部12に接合された部分からタイヤ径方向外側へ延出され、タイヤ幅方向内側へ湾曲している。そして、弾性体42の湾曲部分において、曲率半径が大きい面(凸側の表面42A)に繊維補強層44が接合されている。 The elastic body 42 extends outward in the tire radial direction from the portion joined to the bead portion 12 and is curved inward in the tire width direction. And in the curved part of elastic body 42, fiber reinforcement layer 44 is joined to the field (surface 42A on the convex side) with a large curvature radius.
 なお、以下の説明においては、弾性支持体40、弾性体42、繊維補強層44の凸側の表面(曲率半径が大きい面)を外側面、凹側の表面(曲率半径が小さい面)を内側面と称す。 In the following description, the convex side surface (surface with a large radius of curvature) of the elastic support 40, the elastic body 42, and the fiber reinforcing layer 44 is the outer surface, and the surface with a concave side (surface with a small radius of curvature) is inner It is called the side.
 弾性体42は、弾性支持体40の本体部材であり、タイヤ10と同素材のゴムを用いて形成されている。繊維補強層44は、複数本の有機繊維コード(例えば芳香族ポリアミドコード)を弾性体42と同じゴムで被覆して形成されたコード層である。繊維補強層44を構成するゴムは、弾性体42を構成するゴムと融着されている。これにより、弾性支持体40は、ゴムの内部に有機繊維コードが埋設された構成となっている。なお、以下の説明においては、有機繊維コードを単にコード44A(図3参照)と称す。 The elastic body 42 is a main body member of the elastic support body 40, and is formed using the same rubber as the tire 10. The fiber reinforcing layer 44 is a cord layer formed by coating a plurality of organic fiber cords (for example, an aromatic polyamide cord) with the same rubber as the elastic body 42. The rubber constituting the fiber reinforcing layer 44 is fused with the rubber constituting the elastic body 42. Thereby, the elastic support body 40 has a configuration in which the organic fiber cord is embedded in the rubber. In the following description, the organic fiber cord is simply referred to as a cord 44A (see FIG. 3).
 図1に示すように、弾性支持体40は、弾性体42の凸側の表面42A及び繊維補強層44がタイヤ径方向外側又は幅方向外側を向くように配置される。また、弾性支持体40は、ビード部12との接合部を除き、タイヤサイド部22の内周面22Cから離間して配置されており、弾性支持体40とタイヤサイド部22の内周面22Cの間には空間Vが形成されている。 As shown in FIG. 1, the elastic support 40 is disposed such that the convex side surface 42 </ b> A of the elastic body 42 and the fiber reinforcing layer 44 face the outer side in the tire radial direction or the outer side in the width direction. Further, the elastic support 40 is disposed apart from the inner peripheral surface 22C of the tire side portion 22 except for the joint portion with the bead portion 12, and the elastic support 40 and the inner peripheral surface 22C of the tire side portion 22 are disposed. A space V is formed between them.
 図3には、タイヤ10のランフラット走行時における踏み込み側の部分拡大図が示されている。また、図3には、繊維補強層44においてゴムに埋設されたコード44Aが点線で示されている。コード44Aは、タイヤ10及び弾性支持体40の径方向に対して角度θで交わるように形成されている。角度θは、コード44Aを径方向内側から見て図3に矢印Rで示す回転方向に傾斜する場合を正の値として、-20°≦θ≦20°とされている。例えば図3におけるθは、約-10°である。 FIG. 3 shows a partially enlarged view of the tread side of the tire 10 during runflat running. Also, in FIG. 3, the cord 44A embedded in the rubber in the fiber reinforcing layer 44 is shown by a dotted line. The cords 44A are formed to intersect with the radial direction of the tire 10 and the elastic support 40 at an angle θ. The angle θ is set to −20 ° ≦ θ ≦ 20 ° with a positive value when the cord 44A is inclined in the rotational direction shown by the arrow R in FIG. For example, θ in FIG. 3 is about −10 °.
<作用>
 第1実施形態に係る弾性支持体40が適用されたタイヤ10においては、図4に示すように、空気圧が低下すると、弾性支持体40において凸状に湾曲した外周面とタイヤ10の内周面とが接触する。このとき弾性支持体40は、タイヤ10からタイヤ径方向内側へ押圧される。
<Function>
In the tire 10 to which the elastic support 40 according to the first embodiment is applied, as shown in FIG. 4, when the air pressure decreases, the outer peripheral surface of the elastic support 40 and the inner peripheral surface of the tire 10 are curved in a convex shape. And contact. At this time, the elastic support 40 is pressed inward in the tire radial direction from the tire 10.
 弾性支持体40を構成する弾性体42には、繊維補強層44が形成されているため、繊維補強層44が形成されていない場合と比較して、弾性支持体40はタイヤ10からの押圧力に対して変形し難い。これにより空気入りタイヤは内圧がゼロの状態でも走行できる。すなわち、ランフラット走行できる。 Since the fiber reinforcing layer 44 is formed on the elastic body 42 constituting the elastic support body 40, the pressing force from the tire 10 is higher than in the case where the fiber reinforcing layer 44 is not formed. It is difficult to deform against. Thus, the pneumatic tire can travel even when the internal pressure is zero. That is, run flat driving is possible.
 また、弾性支持体40の内部には、弾性体42が変形することにより圧縮応力及び引張応力が発生する。具体的には、弾性体42が外力を受けて縮む方向に変形する場所には圧縮応力が発生し、伸びる方向に変形する場所には引張応力が発生する。 In addition, compressive stress and tensile stress are generated inside the elastic support body 40 by deformation of the elastic body 42. Specifically, a compressive stress is generated at a place where the elastic body 42 is deformed in a direction in which the elastic body 42 receives an external force, and a tensile stress is generated at a place where the elastic body 42 is deformed in the extending direction.
 例えば図4に示すように弾性支持体40がタイヤ10からタイヤ径方向に沿う方向の外力P1を受けた際、弾性支持体40の外側面の側方部40Bには引張応力TBが発生する。 For example, as shown in FIG. 4, when the elastic support 40 receives an external force P1 in a direction along the tire radial direction from the tire 10, a tensile stress TB is generated on the side portion 40B of the outer surface of the elastic support 40.
 本実施形態に係る弾性支持体40においては、繊維補強層44が弾性体42の凸状に湾曲した外周面に沿って接合されている。すなわち、繊維補強層44が弾性支持体40の外側面に沿って配置されている。これにより繊維補強層44に埋設されたコード44A(図3参照)が引張応力TBに抵抗することができる。 In the elastic support 40 according to the present embodiment, the fiber reinforcing layer 44 is joined along the convexly curved outer peripheral surface of the elastic body 42. That is, the fiber reinforcing layer 44 is disposed along the outer surface of the elastic support 40. As a result, the cords 44A (see FIG. 3) embedded in the fiber reinforcing layer 44 can resist the tensile stress TB.
 コード44Aが引張応力TBに抵抗することにより、弾性支持体40の変形が抑制される。このため弾性支持体40が外力P1に抵抗し、タイヤ10はランフラット走行できる。 The deformation of the elastic support 40 is suppressed by the cords 44A resisting the tensile stress TB. For this reason, the elastic support body 40 resists the external force P1, and the tire 10 can run run flat.
 また、弾性体42はゴムを用いて形成されている。このため金属等を用いて支持体を形成する場合と比較して、タイヤ10の内周面が損傷し難く、軽量である。さらに、繊維補強層44は有機繊維コード(コード44A)を用いて形成されているため、スチールワイヤー等を用いる場合と比較して軽量である。 Further, the elastic body 42 is formed using rubber. For this reason, compared with the case where a support body is formed using metal etc., it is hard to damage the inner peripheral surface of the tire 10, and is lightweight. Furthermore, since the fiber reinforcing layer 44 is formed using the organic fiber cord (code 44A), it is lightweight compared to the case of using a steel wire or the like.
 また、弾性体42は単一の材料(ゴム)で形成されているため、複数の材料を組合わせて形成する場合と比較して、製造が容易である。 In addition, since the elastic body 42 is formed of a single material (rubber), it is easy to manufacture as compared with the case where a plurality of materials are combined and formed.
 また、図1に示すように、弾性体42はタイヤサイド部22の内周面22Cから離間して配置されているため、タイヤサイド部22の剛性に影響を与え難い。このため、タイヤサイド部22の内周面22Cと接するサイド補強ゴムを備えたランフラットタイヤと比較して、通常走行時の縦バネが大きくなり難い。また、タイヤサイド部22にサイド補強ゴムを備えたランフラットタイヤと比較して、ランフラット走行時、タイヤサイド部から熱が発生し難く、また、発生した熱が溜まりにくい。これによりランフラット耐久性が高くなる。また、通常走行時の燃費が良くなる。 Further, as shown in FIG. 1, since the elastic body 42 is disposed apart from the inner circumferential surface 22 C of the tire side portion 22, the rigidity of the tire side portion 22 is hardly affected. For this reason, as compared with the run flat tire provided with the side reinforcing rubber in contact with the inner circumferential surface 22C of the tire side portion 22, the vertical spring during normal running is unlikely to be large. Further, compared to a run flat tire having side reinforcing rubber in the tire side portion 22, heat is less likely to be generated from the tire side portion during run flat running, and the generated heat is less likely to be accumulated. This increases runflat durability. In addition, fuel efficiency during normal driving is improved.
 また、図3に示すように、繊維補強層44を形成するコード44Aが、タイヤ径方向及び弾性支持体40の径方向に対して傾斜している。このため、ランフラット走行時、踏み込み側と蹴り出し側においてタイヤ周方向に沿って作用する引張力TDに抵抗することができる。これにより弾性支持体40の耐久性が高められる。 Further, as shown in FIG. 3, the cords 44A forming the fiber reinforcing layer 44 are inclined with respect to the tire radial direction and the radial direction of the elastic support 40. For this reason, at the time of run flat running, it is possible to resist the tensile force TD acting along the tire circumferential direction on the tread-in side and the kick-out side. Thereby, the durability of the elastic support 40 is enhanced.
 また、コード44Aのタイヤ径方向に対する傾斜角は-20°以上20°以下とされている。このため、-20°より小さい場合や20°より大きい場合と比較して、弾性支持体40の側方部40Bに発生する引張応力TB(図4参照)に抵抗する抵抗力が高い。 Further, the inclination angle of the cord 44A with respect to the tire radial direction is set to −20 ° or more and 20 ° or less. For this reason, compared with the case where it is smaller than −20 ° or larger than 20 °, the resistance to the tensile stress TB (see FIG. 4) generated in the side portion 40B of the elastic support 40 is high.
 なお、本実施形態において弾性体42は全体に亘って湾曲しており、繊維補強層44は弾性体42の外側面の略全面に形成されている。これにより、繊維補強層44が弾性体42の外側面の一部にしか形成されていない場合と比較して、弾性支持体40の変形を効率的に抑制することができる。 In the present embodiment, the elastic body 42 is entirely curved, and the fiber reinforcing layer 44 is formed on substantially the entire outer surface of the elastic body 42. Thereby, as compared with the case where the fiber reinforcing layer 44 is formed only on a part of the outer side surface of the elastic body 42, the deformation of the elastic support 40 can be efficiently suppressed.
 しかし、本開示の実施形態はこれに限らず、繊維補強層44は、ランフラット走行時に最も大きな引張応力が発生する可能性がある位置に形成すればよい。具体的には、例えば弾性体42の外側面において、接線がタイヤ径方向と一致する部分(図1に示す点M)を含む位置に形成すればよい。 However, the embodiment of the present disclosure is not limited thereto, and the fiber reinforcing layer 44 may be formed at a position where the largest tensile stress may be generated during run flat travel. Specifically, for example, the outer surface of the elastic body 42 may be formed at a position including a portion (point M shown in FIG. 1) at which the tangent line coincides with the tire radial direction.
 繊維補強層44をこのような位置に形成することにより、弾性支持体40の変形を効率良く抑制できる。また、繊維補強層44は、弾性体42がタイヤ10から押圧された際に引張力を受ける部分であれば、弾性体42の外側面ではなく内部に埋設してもよい。繊維補強層44を弾性体42に埋設する場合は、繊維補強層44は、弾性体42の内周面より外周面に近い位置(すなわち曲率半径が大きい面寄り)に埋設する。 By forming the fiber reinforcing layer 44 in such a position, deformation of the elastic support 40 can be efficiently suppressed. In addition, the fiber reinforcing layer 44 may be embedded not in the outer surface of the elastic body 42 but in the inside as long as the elastic body 42 receives a tensile force when the elastic body 42 is pressed from the tire 10. When the fiber reinforcing layer 44 is embedded in the elastic body 42, the fiber reinforcing layer 44 is embedded at a position closer to the outer peripheral surface than the inner peripheral surface of the elastic body 42 (that is, closer to the surface having a large radius of curvature).
 さらに、コード44Aのタイヤ径方向に対する傾斜角は、必要に応じて、-20°より小さくしたり20°より大きくしてもよい。この場合、タイヤ周方向に沿って作用する引張力TDに抵抗しやすくできる。 Furthermore, the inclination angle of the cord 44A with respect to the tire radial direction may be smaller than −20 ° or larger than 20 °, as necessary. In this case, it is possible to easily resist the tensile force TD acting along the tire circumferential direction.
[第2実施形態]
<支持体>
 第1実施形態における弾性支持体40は、図1に示すように、タイヤ幅方向内側へ湾曲している。これに対し、第2実施形態における弾性支持体50は、図5に示すように、タイヤ幅方向外側へ湾曲している。なお、第1実施形態と同様の構成については同一の符合を付し、適宜説明を省略するものとする。
Second Embodiment
<Support>
As shown in FIG. 1, the elastic support 40 in the first embodiment is curved inward in the tire width direction. On the other hand, as shown in FIG. 5, the elastic support 50 in the second embodiment is curved outward in the tire width direction. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 弾性支持体50は、弾性体52と繊維補強層54とが層状に配置されて形成されている。弾性体52は、タイヤ幅方向及びタイヤ径方向に沿った断面視において、リム30のタイヤ径方向外側部分に位置するビード部12に接着接合されている。より具体的には、図5における点Nよりタイヤ径方向外側かつタイヤ幅方向内側の領域内で、弾性体52の少なくとも一部がビード部12の内側面に接合されている。 The elastic support 50 is formed by arranging the elastic body 52 and the fiber reinforcing layer 54 in layers. The elastic body 52 is adhesively bonded to the bead portion 12 located at the tire radial direction outer portion of the rim 30 in a cross sectional view along the tire width direction and the tire radial direction. More specifically, at least a part of the elastic body 52 is joined to the inner side surface of the bead portion 12 in a region radially outward and inward in the tire width direction from the point N in FIG.
 弾性体52は、ビード部12に接合された部分からタイヤ径方向外側へ延出され、タイヤ幅方向外側へ湾曲している。そして、弾性体52の湾曲部分において、曲率半径が大きい面(すなわち凸側の表面52A)に沿って繊維補強層54が接合されている。 The elastic body 52 extends outward in the tire radial direction from a portion joined to the bead portion 12 and is curved outward in the tire width direction. Then, in the curved portion of the elastic body 52, the fiber reinforcing layer 54 is joined along the surface having a large radius of curvature (that is, the surface 52A on the convex side).
 なお、以下の説明においては、弾性支持体50、弾性体52、繊維補強層54の凸側の表面(すなわち曲率半径が大きい面)を外側面、凹側の表面(曲率半径が小さい面)を内側面と称す。この「外側面」及び「内側面」は、タイヤ幅方向における外側の面及び内側の面を示すものではない。 In the following description, the surface on the convex side of the elastic support 50, the elastic body 52, and the fiber reinforcing layer 54 (that is, the surface having a large radius of curvature) is the outer surface, and the surface on the concave side (a surface having a small radius of curvature). It is called the inner side. The "outside surface" and the "inside surface" do not indicate the outer surface and the inner surface in the tire width direction.
 弾性体52は、弾性体42と同様、弾性支持体50の本体部材であり、タイヤ10を形成するゴムと同一のゴムを用いて形成されている。また、繊維補強層54は、繊維補強層44と同様、複数本の有機繊維コードを弾性体52と同じゴムで被覆して形成されたコード層である。 Like the elastic body 42, the elastic body 52 is a main body member of the elastic support body 50, and is formed using the same rubber as the rubber that forms the tire 10. Further, the fiber reinforcing layer 54 is a cord layer formed by covering a plurality of organic fiber cords with the same rubber as the elastic body 52, similarly to the fiber reinforcing layer 44.
 図5に示すように、弾性支持体50は、弾性体52の凸側の表面52A及び繊維補強層54がタイヤ径方向外側又は幅方向内側を向くように配置される。また、弾性支持体50は、タイヤサイド部22の内周面22Cから離間して配置されており、弾性支持体40とタイヤサイド部22の内周面22Cの間には空間Vが形成されている。 As shown in FIG. 5, the elastic support 50 is disposed such that the surface 52 </ b> A on the convex side of the elastic body 52 and the fiber reinforcing layer 54 face the outer side in the tire radial direction or the inner side in the width direction. Further, the elastic support 50 is disposed apart from the inner peripheral surface 22C of the tire side portion 22, and a space V is formed between the elastic support 40 and the inner peripheral surface 22C of the tire side portion 22. There is.
<作用>
 図6Aに示すように、第2実施形態における弾性支持体50がタイヤ10からタイヤ径方向に沿う方向の外力P2を受けた際、弾性支持体50の外側面の側方部50Bには引張応力TBが発生する。このとき、繊維補強層54に埋設されたコードは引張応力TBに抵抗することができる。これにより弾性支持体50の変形が抑制されるため、弾性支持体50は外力P2に抵抗し、タイヤ10はランフラット走行できる。
<Function>
As shown in FIG. 6A, when the elastic support 50 in the second embodiment receives an external force P2 in a direction along the tire radial direction from the tire 10, tensile stress is applied to the side portion 50B of the outer surface of the elastic support 50. TB occurs. At this time, the cord embedded in the fiber reinforcing layer 54 can resist the tensile stress TB. Since the deformation of the elastic support 50 is thereby suppressed, the elastic support 50 resists the external force P2, and the tire 10 can run flat.
 また、弾性支持体50は、タイヤ幅方向外側へ湾曲している。このため、弾性支持体50は、タイヤ10から外力P2を受けた際、図6Aに破線及び矢印Lで示すように、タイヤ幅方向外側へ移動しようして、タイヤ10のビード部12をリム30へ押し付ける。これによりタイヤ10がリム外れしにくくなる。 In addition, the elastic support 50 is curved outward in the tire width direction. Therefore, when the elastic support 50 receives the external force P2 from the tire 10, as shown by the broken line and the arrow L in FIG. 6A, the elastic support 50 tries to move outward in the tire width direction, and the bead portion 12 of the tire 10 is moved to the rim 30. Press As a result, the tire 10 is less likely to come off the rim.
 また、第2実施形態において、弾性支持体50は、リム30のタイヤ径方向外側部分において、ビード部12に接着接合されている。このため、図6Bに示すように、例えば旋回運転時などにおいてリム30とタイヤ10の接地端との間で弾性支持体50が圧縮束を形成し、荷重を支持することができる。 In the second embodiment, the elastic support 50 is adhesively bonded to the bead portion 12 at the tire radial direction outer portion of the rim 30. For this reason, as shown in FIG. 6B, the elastic support 50 can form a compression bundle between the rim 30 and the ground contact end of the tire 10, for example, at the time of turning operation, etc. to support the load.
 また、弾性支持体50をタイヤ径方向外側部分に接合することで、リム30のタイヤ幅方向内側部分に接合する場合と比較して、弾性体52及び繊維補強層54の体積を小さくできる。これによりタイヤ10を軽量化できる。 Further, by bonding the elastic support 50 to the tire radial direction outer portion, the volumes of the elastic body 52 and the fiber reinforcing layer 54 can be reduced as compared with the case of bonding to the tire width direction inner portion of the rim 30. Thereby, the weight of the tire 10 can be reduced.
 なお、本実施形態においては、タイヤ幅方向外側へ湾曲した弾性支持体50を、リム30のタイヤ径方向外側部分においてビード部12に接合しているが、本開示の実施形態はこれに限らない。 In the present embodiment, the elastic support 50 curved outward in the tire width direction is joined to the bead portion 12 at the tire radial direction outer portion of the rim 30, but the embodiment of the present disclosure is not limited thereto. .
 例えば図7に示すように、タイヤ幅方向外側へ湾曲した弾性支持体60を、第1実施形態の弾性支持体40と同様に、リム30のタイヤ幅方向内側部分においてビード部12に接合してもよい。ビード部12においては、リム30のタイヤ径方向外側部分よりタイヤ幅方向内側部分のほうが、リム30への固定度が高く、通常走行時にバタつきにくい。このため転がり抵抗を低減できる。 For example, as shown in FIG. 7, the elastic support 60 curved outward in the tire width direction is joined to the bead portion 12 at the tire width direction inner portion of the rim 30 in the same manner as the elastic support 40 of the first embodiment. It is also good. In the bead portion 12, the degree of fixation to the rim 30 is higher in the tire width direction inner portion than in the tire radial direction outer portion of the rim 30, and it is difficult for the tire to scatter during normal travel. For this reason, rolling resistance can be reduced.
[性能試験]
 上記実施形態における弾性支持体40が適用されたタイヤ10の性能を確かめるために、以下の実施例1の空気入りタイヤと、本開示に含まれない比較例1、2の空気入りタイヤを用意して試験を実施した。
[performance test]
In order to verify the performance of the tire 10 to which the elastic support 40 in the above embodiment is applied, the pneumatic tire of Example 1 below and the pneumatic tires of Comparative Examples 1 and 2 not included in the present disclosure are prepared. Test was conducted.
 比較例1は、上記実施形態における弾性支持体40、50、60の何れも用いず、タイヤサイド部へサイド補強ゴムを接着しないノーマルタイヤである。比較例2は、弾性支持体40、50、60の何れも用いず、タイヤサイド部22の内周面22Cにサイド補強ゴムを接着して補強したランフラットタイヤである。 The comparative example 1 is a normal tire which does not adhere | attach a side reinforcement rubber to a tire side part, without using any of the elastic support bodies 40, 50, and 60 in the said embodiment. The comparative example 2 is a run flat tire reinforced by bonding side reinforcing rubber to the inner peripheral surface 22C of the tire side portion 22 without using any of the elastic supports 40, 50, 60.
 実施例1におけるタイヤ10、比較例1、2における空気入りタイヤとしては、タイヤサイズ205/55RF16 91Vのタイヤを用いた。試験は、空気圧を0kPaとしたタイヤ車輪をドラム試験機上に配置して、4.02kNの荷重を作用させた状態で、ISO1692に準じたドラム耐久試験を走行速度80km/h相当で行った。これにより、RF性能(すなわちランフラット耐久性)を評価した。また、別途試験を行って、内圧充填時の燃費性、快適性、慣性モーメントを評価した。快適性は、縦バネ性を測定することにより評価した。 A tire having a tire size of 205/55 RF1691 V was used as the tire 10 in Example 1 and the pneumatic tire in Comparative Examples 1 and 2. In the test, a drum endurance test according to ISO1692 was performed at a traveling speed of 80 km / h in a state where tire wheels with an air pressure of 0 kPa were disposed on a drum tester and a load of 4.02 kN was applied. This evaluated RF performance (ie, run flat durability). Also, a separate test was conducted to evaluate the fuel efficiency, comfort, and moment of inertia at the time of internal pressure filling. Comfort was evaluated by measuring the longitudinal spring property.
 図8に示すように、実施例1、比較例2は、比較例1と比較してRF性能が高い。そして、実施例1は、比較例2と比較してRF性能が高いことがわかった。また、実施例1は、比較例2と比較して、燃費性、快適性、慣性モーメントが優れていることがわかった。なお、図7における数値は評価指数であり、RF性能、燃費性及び快適性は指数が大きいほうが優れており、慣性モーメントは指数が小さいほうが優れている。 As shown in FIG. 8, Example 1 and Comparative Example 2 have high RF performance compared to Comparative Example 1. And it turned out that Example 1 is high in RF performance compared with comparative example 2. In addition, it was found that the fuel efficiency, the comfort, and the moment of inertia of the example 1 are superior to those of the comparative example 2. The numerical values in FIG. 7 are evaluation indexes, and the RF performance, fuel efficiency, and comfort are better as the index is larger, and the moment of inertia is better as the index is smaller.
[変形例]
 上記各実施形態において、弾性支持体40、50はタイヤ周方向に沿って環状に連なった形状で形成されているが、本開示の実施形態はこれに限らない。例えば弾性支持体40、50は、周方向に沿って間隔を空けて形成してもよい。これによりタイヤ10の縦バネを小さくすることができる。
[Modification]
In each of the above embodiments, the elastic supports 40 and 50 are formed in an annular shape along the tire circumferential direction, but the embodiments of the present disclosure are not limited thereto. For example, the elastic supports 40 and 50 may be formed at intervals along the circumferential direction. Thereby, the vertical spring of the tire 10 can be reduced.
 第1実施形態においては、弾性体42及び繊維補強層44にゴム(すなわち加硫ゴム)が用いられているが、本開示の実施形態はこれに限らない。例えば熱可塑性樹脂、熱硬化性樹脂、及び(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂のほか、エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)等を用いることができる。第2実施形態における弾性体52、62、繊維補強層54、64についても同様である。なお、弾性体42、52、62を形成するためにはこれらの材料を単独で用いてもよいし、複数組合わせて用いてもよい。 In the first embodiment, rubber (that is, vulcanized rubber) is used for the elastic body 42 and the fiber reinforcing layer 44, but the embodiment of the present disclosure is not limited thereto. For example, in addition to general purpose resins such as thermoplastic resin, thermosetting resin, and (meth) acrylic resin, EVA resin, vinyl chloride resin, fluorocarbon resin, silicone resin, engineering plastics (including super engineering plastics), etc. It can be used. The same applies to the elastic bodies 52 and 62 and the fiber reinforcing layers 54 and 64 in the second embodiment. In addition, in order to form elastic body 42, 52, 62, these materials may be used independently and may be used in combination.
 熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとし、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として、区別する。 A thermoplastic resin (including a thermoplastic elastomer) refers to a polymer compound which softens and flows as the temperature rises and becomes relatively hard and strong when cooled. In the present specification, among these, the material softens and flows as temperature rises, and becomes relatively hard and strong when cooled, and the polymer compound having rubbery elasticity is a thermoplastic elastomer, and the material increases as temperature rises. When the polymer compound softens, flows, cools, it becomes a relatively hard and strong state, and a polymer compound having no rubbery elasticity is distinguished as a non-elastomeric thermoplastic resin.
 熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)及び動的架橋型熱可塑性エラストマー(TPV)並びにリオレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリアミド系熱可塑性樹脂及びポリエステル系熱可塑性樹脂等が挙げられる。 Examples of thermoplastic resins (including thermoplastic elastomers) include polyolefin thermoplastic elastomer (TPO), polystyrene thermoplastic elastomer (TPS), polyamide thermoplastic elastomer (TPA), polyurethane thermoplastic elastomer (TPU), polyester And thermoplastic thermoplastic elastomers (TPV) and thermoplastic olefin resins, polystyrene thermoplastic resins, polyamide thermoplastic resins and polyester thermoplastic resins.
 また、上記実施形態において、繊維補強層44、54、64を形成するコードとして有機繊維コードを用いているが、本開示の実施形態はこれに限らない。例えばスチールコードを用いてもよい。このスチールコードは、スチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。 Moreover, although the organic fiber cord is used as a cord which forms fiber reinforcement layer 44, 54, 64 in the above-mentioned embodiment, an embodiment of this indication is not limited to this. For example, a steel cord may be used. This steel cord is based on steel and can contain various minor inclusions such as carbon, manganese, silicon, phosphorus, sulfur, copper, chromium and the like.
 また、各種コードは、モノフィラメントコードや、複数のフィラメントを撚り合せたコードを用いることができる。撚り構造も種々の設計が採用可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものが使用できる。更には異なる材質のフィラメントを撚り合せたコードを採用することもで、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。 In addition, as the various cords, a monofilament cord or a cord in which a plurality of filaments are twisted can be used. Various designs can be adopted for the twist structure, and various cross-section structures, twist pitches, twist directions, and distances between adjacent filaments can be used. Furthermore, by adopting a cord in which filaments of different materials are twisted, the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and double twist can be taken.
 またさらに、繊維補強層は、コードを樹脂等で被覆した構成ではなく、FRP(繊維強化プラスチック)を用いた構成としてもよい。FRPに適用される繊維としては、ガラス繊維、炭素繊維、ボロン繊維、アラミド繊維等を適宜選択できる。このように、本開示は様々な態様で実施することができる。 Furthermore, the fiber reinforcing layer may be configured using FRP (fiber reinforced plastic) instead of the cord coated with resin or the like. As fibers applied to FRP, glass fibers, carbon fibers, boron fibers, aramid fibers and the like can be appropriately selected. Thus, the present disclosure can be implemented in various ways.
 2017年11月27日に出願された日本国特許出願2017-227007号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application 2017-227007 filed November 27, 2017 is incorporated herein by reference in its entirety. All documents, patent applications and technical standards described herein are as specific and individually as individual documents, patent applications and technical standards are incorporated by reference. Incorporated herein by reference.

Claims (7)

  1.  タイヤ本体と、
     前記タイヤ本体におけるビード部のタイヤ幅方向内側面に接合され、タイヤサイド部から離間した状態でタイヤ径方向外側へ突出し、タイヤ幅方向へ湾曲した弾性支持体と、
     前記弾性支持体の湾曲部分において曲率半径が大きい面寄りに形成された繊維補強層と、
     を備えたランフラットタイヤ。
    The tire body,
    An elastic support that is joined to the tire width direction inner side surface of the bead portion in the tire main body, protrudes outward in the tire radial direction in a state of being separated from the tire side portion, and curves in the tire width direction;
    A fiber reinforcing layer formed in the curved portion of the elastic support near the surface having a large radius of curvature;
    Run flat tires with
  2.  前記弾性支持体は、タイヤ周方向に沿って環状に形成されている、請求項1に記載のランフラットタイヤ。 The run flat tire according to claim 1, wherein the elastic support is annularly formed along the tire circumferential direction.
  3.  前記弾性支持体は、タイヤ幅方向外側へ湾曲している、請求項1又は請求項2に記載のランフラットタイヤ。 The run flat tire according to claim 1, wherein the elastic support is curved outward in the tire width direction.
  4.  前記弾性支持体は、前記タイヤ本体がリムに組みつけられた状態において、前記ビード部のうち前記リムのタイヤ幅方向内側に位置する部分に接合される、請求項1~3の何れか1項に記載のランフラットタイヤ。 The elastic support is joined to a portion of the bead portion located on the inner side in the tire width direction of the rim in a state where the tire main body is assembled to the rim. Run flat tires described in.
  5.  前記弾性支持体はエラストマーを用いて形成され、前記繊維補強層は有機繊維を用いて形成されている、請求項1~4の何れか1項に記載のランフラットタイヤ。 The run flat tire according to any one of claims 1 to 4, wherein the elastic support is formed using an elastomer, and the fiber reinforcing layer is formed using an organic fiber.
  6.  前記弾性支持体が単一の材料で形成されている、請求項1~5の何れか1項に記載のランフラットタイヤ。 The run flat tire according to any one of claims 1 to 5, wherein the elastic support is formed of a single material.
  7.  タイヤ軸方向に沿った方向から見て、前記繊維補強層を形成する繊維のタイヤ径方向に対する傾斜角度は、-20°以上20°以下である、請求項1~6の何れか1項に記載のランフラットタイヤ。 The inclination angle with respect to the tire radial direction of the fiber which forms the said fiber reinforcement layer seeing from the direction along a tire axial direction is -20 degrees or more, 20 degrees or less, It is described in any one of Claims 1-6. Run flat tires.
PCT/JP2018/042149 2017-11-27 2018-11-14 Run-flat tire WO2019102918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017227007A JP6909715B2 (en) 2017-11-27 2017-11-27 Run flat tire
JP2017-227007 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019102918A1 true WO2019102918A1 (en) 2019-05-31

Family

ID=66630965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042149 WO2019102918A1 (en) 2017-11-27 2018-11-14 Run-flat tire

Country Status (2)

Country Link
JP (1) JP6909715B2 (en)
WO (1) WO2019102918A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262206A (en) * 1988-04-14 1989-10-19 Bridgestone Corp Run flat tire assembly
JP2002172918A (en) * 2000-09-29 2002-06-18 Bridgestone Corp Safety pneumatic tire
JP2004058865A (en) * 2002-07-30 2004-02-26 Bridgestone Corp Support body and pneumatic run-flat tire
JP2004161161A (en) * 2002-11-14 2004-06-10 Yokohama Rubber Co Ltd:The Tire/wheel assembly
JP2004168152A (en) * 2002-11-19 2004-06-17 Yokohama Rubber Co Ltd:The Automobile wheel with emergency travel support and emergency travel support
WO2007083630A1 (en) * 2006-01-20 2007-07-26 The Yokohama Rubber Co., Ltd. Run-flat support for pneumatic tire
US20130056124A1 (en) * 2011-09-02 2013-03-07 Bing Jiang Self-supporting pneumatic tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262202A (en) * 1988-04-13 1989-10-19 Bridgestone Corp Tire assembly for bicycle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262206A (en) * 1988-04-14 1989-10-19 Bridgestone Corp Run flat tire assembly
JP2002172918A (en) * 2000-09-29 2002-06-18 Bridgestone Corp Safety pneumatic tire
JP2004058865A (en) * 2002-07-30 2004-02-26 Bridgestone Corp Support body and pneumatic run-flat tire
JP2004161161A (en) * 2002-11-14 2004-06-10 Yokohama Rubber Co Ltd:The Tire/wheel assembly
JP2004168152A (en) * 2002-11-19 2004-06-17 Yokohama Rubber Co Ltd:The Automobile wheel with emergency travel support and emergency travel support
WO2007083630A1 (en) * 2006-01-20 2007-07-26 The Yokohama Rubber Co., Ltd. Run-flat support for pneumatic tire
US20130056124A1 (en) * 2011-09-02 2013-03-07 Bing Jiang Self-supporting pneumatic tire

Also Published As

Publication number Publication date
JP6909715B2 (en) 2021-07-28
JP2019094017A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US20190152260A1 (en) Tire
WO2019220888A1 (en) Pneumatic tire
JP2019217899A (en) Pneumatic tire
US20200130430A1 (en) Run-flat tire
EP3081396A1 (en) A bidirectional monobelt construction for a pneumatic tire
WO2018230146A1 (en) Pneumatic tire with noise absorbing member, and tire rim assembly
WO2019102918A1 (en) Run-flat tire
EP3643539B1 (en) Run-flat tire
JP6586081B2 (en) tire
US20200130429A1 (en) Run-flat tire
WO2019220889A1 (en) Pneumatic tire
US20210229500A1 (en) Resin-covered cord and pneumatic tire
WO2019117287A1 (en) Support and tire-rim assembly
JP4855972B2 (en) Pneumatic tire
WO2019244773A1 (en) Pneumatic tire
WO2019230811A1 (en) Pneumatic tire
JP4819713B2 (en) Pneumatic tire
US20210260923A1 (en) Pneumatic tire
JPWO2019003738A1 (en) Reinforcing member for tire and tire using the same
JP2017197133A (en) Run-flat radial tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881627

Country of ref document: EP

Kind code of ref document: A1