JP4819713B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4819713B2
JP4819713B2 JP2007036379A JP2007036379A JP4819713B2 JP 4819713 B2 JP4819713 B2 JP 4819713B2 JP 2007036379 A JP2007036379 A JP 2007036379A JP 2007036379 A JP2007036379 A JP 2007036379A JP 4819713 B2 JP4819713 B2 JP 4819713B2
Authority
JP
Japan
Prior art keywords
tire
carcass
laminated
ply
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007036379A
Other languages
Japanese (ja)
Other versions
JP2008201159A (en
Inventor
一郎 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2007036379A priority Critical patent/JP4819713B2/en
Publication of JP2008201159A publication Critical patent/JP2008201159A/en
Application granted granted Critical
Publication of JP4819713B2 publication Critical patent/JP4819713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、空気入りタイヤに関し、より詳しくは、操縦安定性と乗り心地性とを高次元でバランスさせることができる空気入りタイヤに関する。   The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can balance steering stability and ride comfort in a high dimension.

従来、空気入りタイヤの操縦安定性向上のためには、タイヤの扁平率を小さくしてトレッド接地面積を確保したり、ビードフィラーに硬いゴム組成物を使用する、或いはサイド部〜ショルダー部間に補強材を追加配置することによりタイヤの横剛性を向上する、さらにはトレッドゴムを変更するなどの手法が取られている。また、一方で、乗り心地性の向上のためには、ベルトコードの角度変更によるトレッド部のエンベロープ性の改善やカーカスやビードフィラーの構造変更によりタイヤ縦剛性を低下させる手法が取られていた。 例えば、下記特許文献1、2には、テキスタイルコードあるいはスチールコードからなるショルダー補強層を配置したもの、ショルダー部のカーカス内側と外側に補強ゴム層を配置し操縦安定性を向上したタイヤ、また特許文献3には、カーカスに金属コードを用いて操縦安定性と振動乗り心地を同時に向上することが記載されている。   Conventionally, in order to improve the handling stability of a pneumatic tire, the tire flatness is reduced to secure a tread contact area, a hard rubber composition is used for the bead filler, or between the side part and the shoulder part. Techniques such as improving the lateral rigidity of the tire by additionally arranging a reinforcing material and changing the tread rubber have been taken. On the other hand, in order to improve ride comfort, a technique has been adopted in which the longitudinal rigidity of the tire is reduced by improving the envelope of the tread portion by changing the angle of the belt cord or by changing the structure of the carcass or bead filler. For example, in Patent Documents 1 and 2 listed below, tires with shoulder reinforcement layers made of textile cords or steel cords, tires with reinforcement rubber layers arranged on the inside and outside of the carcass of the shoulder portion, and improved steering stability, patents Document 3 describes that a metal cord is used for the carcass to simultaneously improve steering stability and vibration ride comfort.

しかしながら、上記の操縦安定性及び乗り心地性の改善方策は互いに二律背反の関係にあり、タイヤの縦、横、前後剛性の3方向の剛性は正の関係を持って変化することが一般に知られており、すなわち縦剛性を上げると横、前後剛性も上がることから、操縦安定性と乗り心地性の双方を高次元でバランスさせ向上することは困難であった。
特開平7−179101号公報 特開2001−138708号公報 特開平11−11109号公報
However, it is generally known that the above-mentioned measures for improving steering stability and riding comfort are in a trade-off relationship with each other, and that the stiffness in the three directions of the longitudinal, lateral, and longitudinal stiffness of the tire changes with a positive relationship. That is, when the longitudinal rigidity is increased, the lateral and front-rear rigidity are also increased. Therefore, it has been difficult to balance and improve both the handling stability and the ride comfort at a high level.
JP 7-179101 A JP 2001-138708 A Japanese Patent Laid-Open No. 11-11109

本発明は上記の背反事象に鑑み、その目的とするところは、操縦安定性と乗り心地性の双方を高次元でバランスさせ向上することのできる空気入りタイヤを提供するものである。   In view of the above-mentioned contradiction, the object of the present invention is to provide a pneumatic tire that can balance and improve both steering stability and riding comfort at a high level.

本発明者は上記課題を解決するため鋭意検討を行ったところ、従来のタイヤの縦方向剛性と横方向剛性の関係を変化させ、それぞれを独立し制御することで、縦方向に柔であって横方向には剛であるという、縦、横方向で互いに独立する特性をタイヤに付与することで上記課題を解決できることを見出したものである。   The present inventor conducted intensive studies to solve the above-mentioned problems, and by changing the relationship between the longitudinal stiffness and the lateral stiffness of a conventional tire and controlling each independently, the present invention is flexible in the longitudinal direction. It has been found that the above-mentioned problems can be solved by imparting to the tire the property of being rigid in the lateral direction and being independent of each other in the longitudinal and lateral directions.

すなわち本発明は、1対のビードコアを備えたビード部と、前記ビード部から各々タイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部間に設けたトレッド部とを有し、前記1対のビード部間に装架した少なくとも1層のカーカスプライからなるカーカスと、該カーカスのトレッド部における外周側に少なくとも2層のベルトプライからなるベルトを配置した空気入りタイヤにおいて、前記ベルトの両端部外側とタイヤ最大幅部の間で、前記カーカスのタイヤ径方向外側のバットレス部に、複数の円環状プレート材とゴム材とを交互に配して積層した積層構造部材を埋設したことを特徴とする空気入りタイヤである。   That is, the present invention includes a bead portion including a pair of bead cores, a sidewall portion extending outward in the tire radial direction from the bead portion, and a tread portion provided between the sidewall portions. In a pneumatic tire in which a carcass composed of at least one layer of carcass ply mounted between bead portions of the belt and a belt composed of at least two layers of belt ply are arranged on the outer peripheral side of the tread portion of the carcass, both end portions of the belt A laminated structural member in which a plurality of annular plate materials and rubber materials are alternately arranged and laminated is embedded in a buttress portion on the outer side in the tire radial direction of the carcass between an outer side and a tire maximum width portion. It is a pneumatic tire.

本発明において、前記プレート材の縦弾性係数が10〜25,000kgf/mmの範囲にあることが好ましい。 In the present invention, the plate material preferably has a longitudinal elastic modulus in a range of 10 to 25,000 kgf / mm 2 .

また、前記プレート材のタイヤ径方向の配置角度が、該タイヤ回転軸から接地面に下ろした鉛直線に対して0±10°の範囲にあると効果的である。   Further, it is effective that the arrangement angle of the plate material in the tire radial direction is in a range of 0 ± 10 ° with respect to a vertical line lowered from the tire rotation axis to the ground contact surface.

さらに、本発明の空気入りタイヤは、前記カーカスの少なくとも1枚のカーカスプライが前記積層構造部材の位置において該タイヤ周上で分断され、該カーカスプライ分断端部がタイヤ周上で前記円環状プレート材間の間隙に挟持されているものとすることができる。   Further, in the pneumatic tire according to the present invention, at least one carcass ply of the carcass is divided on the circumference of the tire at the position of the laminated structural member, and the carcass ply divided end portion is annular on the tire circumference. It can be sandwiched between the gaps between the plate materials.

本発明の空気入りタイヤによれば、バットレス部に埋設された積層構造からなる積層構造部材が、荷重付加時に方向性を持ち変形することから、荷重付加時のタイヤ縦剛性と横剛性の増加率を変化させ、それぞれを独立し制御することができるようになる。すなわち、タイヤの縦方向の撓み(タイヤ径方向の入力)に対しては柔であり、横方向の撓み(タイヤ軸方向の入力)に対しては剛であることで、タイヤの操縦安定性と乗り心地性との双方を高次元でバランスさせ向上させることが可能となる。   According to the pneumatic tire of the present invention, since the laminated structure member having a laminated structure embedded in the buttress portion has a directionality and deforms when a load is applied, the rate of increase in the tire longitudinal rigidity and lateral rigidity when the load is applied. Can be controlled independently of each other. In other words, it is flexible with respect to the longitudinal deflection of the tire (input in the tire radial direction) and rigid with respect to the lateral deflection (input in the tire axial direction). It is possible to balance and improve both ride comfort and high dimension.

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の1実施形態である乗用車用の空気入りタイヤ(以下、空気入りタイヤを単に「タイヤ」ということがある)1を示す半断面図である。図2は図1におけるタイヤ1のバットレス部10を拡大した一部断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a half-sectional view showing a pneumatic tire for passenger cars (hereinafter, the pneumatic tire may be simply referred to as “tire”) 1 according to an embodiment of the present invention. FIG. 2 is an enlarged partial cross-sectional view of the buttress portion 10 of the tire 1 in FIG.

空気入りタイヤ1は、リム組される1対のビード部4と、前記ビード部4から各々タイヤ径方向外側に延びるサイドウォール部3と、前記サイドウォール部3、3間に設けた路面に接地するトレッド部2とから構成される。タイヤ1の基本構造は、図6に示す従来の一般構造を有するタイヤ30と同一である。   The pneumatic tire 1 is grounded on a road surface provided between a pair of bead portions 4 that are assembled into a rim, a sidewall portion 3 that extends outward in the tire radial direction from the bead portion 4, and the sidewall portions 3, 3. And the tread portion 2 that is configured. The basic structure of the tire 1 is the same as the tire 30 having the conventional general structure shown in FIG.

図1に示すようにタイヤ1は、タイヤ赤道線CLに対して略90°の角度で延びるポリエステル、レーヨンなどの有機繊維コードからなる2層のカーカスプライ61、62を、一対のビード部4に夫々埋設されたビードコア5の周りにタイヤ内側から外側に折り返してビードフィラー9を挟み係止されたカーカス6と、前記トレッド部2の内側に赤道線CLに対して15〜35°の角度で傾斜して延びるスチールコード、アラミド繊維などを用いた少なくとも2層の交差ベルトプライからなるベルト7と、さらにベルト7の外周にはタイヤ周方向に対しほぼ0°の角度でらせん状に巻回されたナイロンなどの有機繊維コードからなるキャッププライ8を有するラジアル構造の乗用車用タイヤであり、トレッド部2には、タイヤの要求性能や使用条件に応じてトレッド面にリブ、ブロック等の各種トレッドパターンが形成されている。   As shown in FIG. 1, the tire 1 includes two pairs of carcass plies 61 and 62 made of organic fiber cords such as polyester and rayon extending at an angle of about 90 ° with respect to the tire equator line CL. The carcass 6 is folded around from the inside of the tire to the outside around the bead core 5 embedded therein and locked with the bead filler 9 interposed therebetween, and the inside of the tread portion 2 is inclined at an angle of 15 to 35 ° with respect to the equator line CL. The belt 7 is composed of at least two layers of crossed belt plies using steel cords, aramid fibers, etc., and the outer periphery of the belt 7 is spirally wound at an angle of approximately 0 ° with respect to the tire circumferential direction. It is a tire for passenger cars with a radial structure having a cap ply 8 made of an organic fiber cord such as nylon, and the tread part 2 has the required performance and use of the tire. Ribs on the tread surface depending on the matter, various tread patterns such block is formed.

タイヤ1には、ベルト7両側のベルト端部7aから外れたタイヤ軸方向接地領域の外側とタイヤ最大幅部Wの間に位置するバットレス部10で、前記カーカス6のタイヤ径方向外側のバットレス部10に、複数の円環状プレート材12を積層した積層構造部材11が埋設されている。   The tire 1 includes a buttress portion 10 positioned between the outer side of the tire axial ground contact region and the maximum tire width portion W that is disengaged from the belt end portions 7a on both sides of the belt 7, and a buttress portion on the outer side in the tire radial direction of the carcass 6. In FIG. 10, a laminated structural member 11 in which a plurality of annular plate members 12 are laminated is embedded.

積層構造部材11は、図3のプレート材12の正面図及び側面図に示すように、円環状に周方向に連続する断面板状をなすプレート材12を、その複数枚を該プレート材12とゴム材とを交互に配して積層した積層構造体である。   As shown in the front view and the side view of the plate member 12 in FIG. 3, the laminated structural member 11 includes a plate member 12 having a circular cross-section that is continuous in the circumferential direction, and a plurality of the plate members 12 and the plate member 12. It is a laminated structure in which rubber materials are alternately arranged and laminated.

前記プレート材12の寸法、プレート材12相互間のゴム厚み、積層枚数等は、特に制限されることはなく、タイヤサイズ、バットレス部の断面形状、そのゴム厚み等により適宜決めることができる。   The dimensions of the plate member 12, the rubber thickness between the plate members 12, the number of laminated layers, etc. are not particularly limited, and can be appropriately determined depending on the tire size, the cross-sectional shape of the buttress portion, the rubber thickness thereof, and the like.

例えば、乗用車用タイヤの場合、プレート材12の厚みWは、0.1〜2.0mm、好ましくは0.2〜1.5mmの範囲が例示される。厚みWが薄すぎるとプレート材が柔軟となり必要な縦剛性、横剛性が得られず、厚くなりすぎると縦、横方向共に高剛性となって操縦安定性、乗り心地性の確保が困難となり、また隣接ゴム材との剛性差により動的接着性が低下するようになる。また、プレート幅Hと外径Dはタイヤサイズ、要求特性等により適宜決められるが、例えばプレート厚みWと幅Hの比は、H/W=5〜30程度であり、H/W=8〜20の範囲がより好ましい。積層枚数の上限は特に制限されないが、乗用車用タイヤの場合は10枚程度である。   For example, in the case of a passenger car tire, the thickness W of the plate member 12 is 0.1 to 2.0 mm, preferably 0.2 to 1.5 mm. If the thickness W is too thin, the plate material will be flexible and the required vertical and lateral rigidity will not be obtained, and if it is too thick, it will be difficult to ensure steering stability and ride comfort due to high rigidity in both the vertical and horizontal directions. Further, the dynamic adhesiveness is lowered due to the difference in rigidity with the adjacent rubber material. Further, the plate width H and the outer diameter D are appropriately determined depending on the tire size, required characteristics, etc. For example, the ratio of the plate thickness W to the width H is about H / W = 5 to 30, and H / W = 8 to A range of 20 is more preferred. The upper limit of the number of stacked sheets is not particularly limited, but is about 10 in the case of passenger car tires.

上記プレート材12は、図4に示すように、バットレス部10の断面形状に合わせて、外径D及び内径dを漸次減径した複数本(図では4枚のプレート材12a〜12dの場合を示す)をそれぞれの相互間に間隙S1、S2、S3を空けて階段状に平行に積層されている。加硫後タイヤでは、この間隙Sにはそれぞれゴム材が充填され複数のプレート材12を互いに接着し積層構造部材11を形成するとともにバットレス部10のゴム中に積層構造部材11を埋設し固定される。この間隙S1、S2、S3の距離は、特に限定されないが、例えば、0.2〜3.0mm程度、好ましくは0.2〜2.0mmである。間隙Sの距離が狭いと隣接するプレート材間での変位が充分得られず、特に積層構造部材11の縦方向での変形量が小さくなり剛性の制御が困難になる。また、間隙Sが広くなると、プレート材12間の変位が大きくなり、特に斜め入力時にプレート材12間の変位にバラツキを生じやすくなり操縦安定性を低下させるおそれがある。間隙S1〜S3の各距離は、等間隔でもよいし、異なっていてもよい。   As shown in FIG. 4, the plate material 12 has a plurality of plates (in the case of four plate materials 12 a to 12 d in the figure) in which the outer diameter D and the inner diameter d are gradually reduced in accordance with the cross-sectional shape of the buttress portion 10. Are stacked in parallel in a stepped manner with gaps S1, S2 and S3 between them. In the vulcanized tire, each of the gaps S is filled with a rubber material, and a plurality of plate members 12 are bonded to each other to form a laminated structural member 11, and the laminated structural member 11 is embedded and fixed in the rubber of the buttress portion 10. The The distance between the gaps S1, S2, and S3 is not particularly limited, but is, for example, about 0.2 to 3.0 mm, preferably 0.2 to 2.0 mm. If the distance between the gaps S is narrow, sufficient displacement between adjacent plate members cannot be obtained, and the amount of deformation in the longitudinal direction of the laminated structural member 11 is particularly small, making it difficult to control the rigidity. In addition, when the gap S is widened, the displacement between the plate members 12 increases, and in particular, the displacement between the plate members 12 is likely to vary during oblique input, which may reduce the steering stability. The distances between the gaps S1 to S3 may be equal or different.

積層構造部材11は、タイヤ成型時にバットレス部10に複数のプレート材12とシート状ゴム材を交互に配して積層し成形することができる。   The laminated structural member 11 can be formed by laminating a plurality of plate materials 12 and sheet-like rubber materials alternately on the buttress portion 10 during tire molding.

また、積層構造部材11は、複数の円環状プレート材12と複数のシート状ゴム材とを交互に積層してなる成形体を予め形成し、タイヤ成型時にこの成形体をバットレス部10に配設することもできる。   The laminated structural member 11 is formed in advance with a molded body formed by alternately laminating a plurality of annular plate materials 12 and a plurality of sheet-like rubber materials, and this molded body is disposed in the buttress portion 10 during tire molding. You can also

この積層構造部材11は、タイヤ1にタイヤ径方向、軸方向あるいは両方向同時に外力が入力されると、積層されたプレート材12が積層構造部材11内で縦、横方向に段階的に変位することで、タイヤの縦方向及び横方向の剛性をそれぞれ独立して制御することができる。特に、タイヤ径方向の入力に対する変位を生じやすくすることで、タイヤの径方向の入力に対しては柔であり、軸方向の入力に対しては剛であることで、バットレス部10の縦、横方向の撓み(剛性)を制御しタイヤの操縦安定性と乗り心地性を両立させることができる。   In the laminated structural member 11, when an external force is input to the tire 1 in the tire radial direction, the axial direction, or both directions simultaneously, the laminated plate material 12 is displaced stepwise in the longitudinal and lateral directions within the laminated structural member 11. Thus, the longitudinal and lateral rigidity of the tire can be controlled independently. In particular, by facilitating displacement with respect to the tire radial direction input, it is flexible with respect to the tire radial direction input and rigid with respect to the axial input, so that The lateral deflection (rigidity) can be controlled to achieve both tire handling stability and ride comfort.

また、前記プレート材12としては、その材質は特に制限されないが、その材料の縦弾性係数(ヤング率)が10〜25,000kgf/mmの範囲にあるものが好ましく、特に1,000〜25,000kgf/mmの範囲にあるものが好ましい。 Further, the material of the plate material 12 is not particularly limited, but a material having a longitudinal elastic modulus (Young's modulus) in the range of 10 to 25,000 kgf / mm 2 is preferable, and 1,000 to 25 is particularly preferable. Those in the range of 1,000 kgf / mm 2 are preferred.

上記ヤング率の範囲にあるプレート材12の材料としては、例えば、炭素鋼、ステンレス鋼、モリブデン、ニッケル、クロムなどの合金鋼、軟鉄、アルミニウム、アルミニウム合金、銅、鉛等の金属が挙げられる。   Examples of the material of the plate material 12 in the range of the Young's modulus include metals such as carbon steel, stainless steel, alloy steel such as molybdenum, nickel, and chromium, soft iron, aluminum, aluminum alloy, copper, and lead.

また、樹脂として、ポリアミド系樹脂(ナイロン6、ナイロン66等)、ポリエステル系樹脂(PET、PBN,PEN等)、ポリニトリル系樹脂(PAN、AS等)、ポリ(メタ)アクリレート系樹脂(PMMA、EEA等)、ポリビニル系樹脂(EVA、PVA、PVC等)、セルロース系樹脂(酢酸セルロース等)、フッ素系樹脂(ポリフッ化ビニリデン、ポリフッ化ビニル等)等の熱可塑性樹脂、また、スチレン系、オレフィン系、ポリエステル系、ウレタン系、ポリアミド系等の熱可塑性エラストマーが挙げられ、これらの複数樹脂のブレンド材でもよい。   Further, as resins, polyamide resins (nylon 6, nylon 66, etc.), polyester resins (PET, PBN, PEN, etc.), polynitrile resins (PAN, AS, etc.), poly (meth) acrylate resins (PMMA, EEA) Etc.), thermoplastic resins such as polyvinyl resins (EVA, PVA, PVC, etc.), cellulose resins (cellulose acetate, etc.), fluororesins (polyvinylidene fluoride, polyvinyl fluoride, etc.), styrenes, olefins, etc. , Polyester-based, urethane-based, polyamide-based thermoplastic elastomers, and the like, and blend materials of these plural resins may be used.

また、尿素系樹脂、エポキシ系樹脂、フェノール系樹脂等の熱硬化性樹脂を使用することもできる。   In addition, thermosetting resins such as urea resins, epoxy resins, and phenol resins can be used.

さらに、樹脂類としては、ステンレス等の金属フィラメントやナイロン、PET、ガラス繊維、炭素繊維等の有機、無機繊維で強化された強化プラスチック(MRP、FRP)でもよい。   Further, the resin may be a metal filament such as stainless steel or a reinforced plastic (MRP or FRP) reinforced with organic or inorganic fibers such as nylon, PET, glass fiber, or carbon fiber.

積層構造部材11は、上記の2種以上の材質からなるプレート材を組み合わせて形成してもよい。   The laminated structural member 11 may be formed by combining the plate materials made of the above two or more kinds of materials.

なお、プレート材12の表面は、ゴムとの接着性を向上する目的で、研磨やブラスト法による物理的表面処理、各種ゴム糊やレゾルシン−ホルムアルデヒド−ラテックス液等の接着剤の塗布、真鍮や亜鉛等の金属めっき処理を施すことが好ましい。   The surface of the plate material 12 is for the purpose of improving the adhesiveness to rubber, physical surface treatment by polishing or blasting, application of adhesives such as various rubber pastes and resorcin-formaldehyde-latex liquid, brass and zinc It is preferable to perform metal plating treatment such as.

ここで、プレート材12とその間隙S内に配されるゴム材料とは、両者のヤング率との差が大きい程好ましい。これにより、タイヤ1にかかる入力に対して各プレート材12が積層構造部材11の層間で変位しやすくなり、その結果積層構造部材11が撓みやすくなることで縦剛性と横剛性を制御しやすくなる。タイヤ用の加硫ゴム材料のヤング率は一般的に0.1〜0.5kgf/mmの範囲にあるので、この観点からプレート材12のヤング率は上記1,000kgf/mm以上にあることが好ましい。ヤング率が10kgf/mm未満の場合、バットレス部10のゴムの動きと同化して積層構造部材11が動くようになり本発明の効果が充分得られなくなる。 Here, the larger the difference between the Young's modulus of the plate material 12 and the rubber material disposed in the gap S, the better. Thereby, each plate member 12 is easily displaced between the layers of the laminated structural member 11 with respect to the input applied to the tire 1, and as a result, the laminated structural member 11 is easily bent, thereby making it easy to control the longitudinal rigidity and the lateral rigidity. . Since the Young's modulus of the vulcanized rubber material for tires is generally in the range of 0.1 to 0.5 kgf / mm 2 , the Young's modulus of the plate material 12 is not less than 1,000 kgf / mm 2 from this viewpoint. It is preferable. When the Young's modulus is less than 10 kgf / mm 2, the laminated structure member 11 moves assimilating to the movement of the rubber of the buttress portion 10 and the effect of the present invention cannot be sufficiently obtained.

また、前記積層構造部材11における円環状プレート材12のタイヤ径方向の配置角度は、JIS規定の標準リムを使用し、規定内圧、最大荷重付加時に、タイヤ回転軸から接地面に下ろした鉛直線に対して0±10°の範囲に配置されていることが好ましい。   Further, the arrangement angle in the tire radial direction of the annular plate member 12 in the laminated structural member 11 is a vertical line that is lowered from the tire rotation shaft to the ground surface when a specified internal pressure and maximum load are applied using a standard rim specified by JIS. It is preferable to arrange in the range of 0 ± 10 °.

前記プレート材12の配置角度が前記鉛直線に対して±10°の範囲を外れると、タイヤ1への径方向及び軸方向の入力が積層構造部材11に対して傾斜してかかるようになり、特に積層構造部材11の縦方向入力に対する減衰性能が低下し、タイヤ1の縦剛性及び横剛性のバランスが得難くなる。   When the arrangement angle of the plate material 12 deviates from the range of ± 10 ° with respect to the vertical line, the radial and axial inputs to the tire 1 are inclined with respect to the laminated structural member 11, Particularly, the damping performance of the laminated structural member 11 with respect to the longitudinal input is lowered, and it becomes difficult to obtain a balance between the longitudinal rigidity and the lateral rigidity of the tire 1.

また、本発明では、図5に示すタイヤ20のように、カーカス6の少なくとも1枚のカーカスプライが積層構造部材11の位置でタイヤ周上で分断され、そのカーカスプライ分断端部がタイヤ周上で積層構造部材11の円環状プレート材12間の間隙Sに挟持されているものでもよい。   Further, in the present invention, as in the tire 20 shown in FIG. 5, at least one carcass ply of the carcass 6 is divided on the tire circumference at the position of the laminated structure member 11, and the carcass ply divided end portion is the tire circumference. It may be sandwiched in the gap S between the annular plate members 12 of the laminated structural member 11.

図5に示すタイヤ20は、カーカス6が2プライ構造のタイヤであり、カーカスプライの内で2ndプライ62がタイヤ両サイドにおいて積層構造部材11の位置でタイヤ周上で分断され、そのトレッド2側のプライ分断端部62aがプレート材12bと12cの間にタイヤ周上で挟持され、サイドウォール部3側のプライ分断端部62bがプレート材12cと12dの間に挟持され、プレート材12cを介してカーカス6の2ndプライ62を一体に形成している。また、図の例では、1stプライ61は積層構造部材11の位置でプライが分断されずに連続したカーカスを形成しているが、1stプライ61も2ndプライと同様に分断構造にすることができる。   The tire 20 shown in FIG. 5 is a tire in which the carcass 6 has a two-ply structure, and in the carcass ply, the 2nd ply 62 is divided on the tire circumference at the position of the laminated structural member 11 on both sides of the tire. The ply split end portion 62a is sandwiched between the plate members 12b and 12c on the tire circumference, and the ply split end portion 62b on the side wall portion 3 side is sandwiched between the plate members 12c and 12d. The 2nd ply 62 of the carcass 6 is integrally formed through the. In the example shown in the figure, the 1st ply 61 forms a continuous carcass without being divided at the position of the laminated structure member 11, but the 1st ply 61 can also have a divided structure in the same manner as the 2nd ply. .

このようにカーカスプライが積層構造部材11の部位で分断されることで、バットレス部10の縦方向の変形量を大きくすることで乗り心地性をより改善することができる。   As described above, the carcass ply is divided at the portion of the laminated structural member 11, so that the ride comfort can be further improved by increasing the amount of deformation of the buttress portion 10 in the vertical direction.

また、本発明のタイヤ1、20は、積層構造部材11が、バットレス部10の縦方向変形量を従来より大きくすることで、従来のタイヤ変形に寄与していたタイヤ最大幅W付近のサイド部の変形を抑えることができ、これによりサイド部のカーカス張力の低下を抑制する効果が得られるようになり、コーナリング時のハンドル応答性に優れるものとなる。   Further, in the tires 1 and 20 of the present invention, the laminated structural member 11 has a side portion in the vicinity of the maximum tire width W that has contributed to the conventional tire deformation by making the longitudinal deformation amount of the buttress portion 10 larger than the conventional one. Thus, the effect of suppressing the decrease in the carcass tension of the side portion can be obtained, and the handle responsiveness during cornering is excellent.

以下に、本発明を実施例に基づき具体的に説明するが、本発明はこの実施例により限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the examples.

タイヤサイズを215/60R16(主溝4本のリブパターン)とし、厚み0.5mmのプレート材4枚の間に厚み0.5mmのゴム材を交互に配して積層構造を形成した積層構造部材をバットレス部に埋設した図2、図5に示す実施例1〜4のタイヤを試作した。実施例1、2のプレート材には、炭素0.33%含有炭素鋼板(ヤング率210,000kgf/mm)、実施例3のプレート材はアルミニウム合金(ヤング率6,000kgf/mm)、実施例4のプレート材はナイロン6樹脂(ヤング率110kgf/mm)を使用した。比較例タイヤは図8に示す従来構造のタイヤである。 Laminated structure member in which the tire size is 215 / 60R16 (rib pattern of 4 main grooves), and a rubber material having a thickness of 0.5 mm is alternately arranged between four plate materials having a thickness of 0.5 mm. Tires of Examples 1 to 4 shown in FIG. 2 and FIG. In the plate materials of Examples 1 and 2, a carbon steel sheet containing 0.33% carbon (Young's modulus 210,000 kgf / mm 2 ), the plate material of Example 3 is an aluminum alloy (Young's modulus 6,000 kgf / mm 2 ), As the plate material of Example 4, nylon 6 resin (Young's modulus 110 kgf / mm 2 ) was used. The comparative example tire is a tire having a conventional structure shown in FIG.

使用リム16×6.5JJ、空気圧200kPa、縦荷重480kgf、横荷重120kgfの条件にて、縦剛性と横剛性を測定した。縦、横剛性は、その方向の付加荷重(kgf)/その方向の変形量(mm)で求められる。   The longitudinal stiffness and lateral stiffness were measured under the conditions of a used rim 16 × 6.5 JJ, an air pressure of 200 kPa, a longitudinal load of 480 kgf, and a lateral load of 120 kgf. Longitudinal and lateral rigidity can be obtained by adding load in the direction (kgf) / deformation amount in the direction (mm).

また、接地特性として、縦荷重付加時と(縦荷重+横荷重)付加時におけるタイヤ接地面でのトレッド接地長及び平均接地圧を測定した。実施例1、2のトレッド接地形状を図6、図7に例示する。図6は縦荷重480kgfを付加した時、図7は縦荷重480kgfと横荷重120kgf(横荷重は図において右側から付加)を同時に付加した時のトレッド接地形状を示し、接地長(タイヤ周方向の接地長さ)及び平均接地圧(付加荷重/接地面積)はこれらの接地形状から、トレッドセンター部(C部と表示)とショルダー部(横荷重付加側をA部、その反対側をB部と表示)について求めた。いずれも比較例を基準とし指数100とする指数表示で示した。   Further, as the ground contact characteristics, the tread contact length and the average contact pressure on the tire contact surface when a longitudinal load was applied and when a (longitudinal load + lateral load) was applied were measured. The tread grounding shapes of Examples 1 and 2 are illustrated in FIGS. 6 shows a tread contact shape when a longitudinal load of 480 kgf is applied, and FIG. 7 shows a tread contact shape when a longitudinal load of 480 kgf and a lateral load of 120 kgf (the lateral load is added from the right side in the figure) are applied simultaneously. The grounding length) and average grounding pressure (additional load / grounding area) are based on these grounding shapes, tread center part (indicated as C part) and shoulder part (the lateral load addition side is A part, and the opposite side is B part. Display). All are shown in index notation with index 100 based on the comparative example.

次に、各タイヤ4本を車両(排気量2500ccの国産乗用車、FRタイプ)に装着し、下記条件で操縦安定性及び乗り心地性の評価を行った。いずれも結果を表1に示す。   Next, four tires were mounted on a vehicle (a domestic passenger car with a displacement of 2500 cc, FR type), and steering stability and ride comfort were evaluated under the following conditions. The results are shown in Table 1.

なお、各タイヤのカーカスはポリエステルコード1,100dtex/2(打ち込み密度23本/25mm)の2プライ、ベルトはスチールコード2+2×0.25mm(打ち込み密度25本/25mm)の2プライ、キャッププライはナイロン66コード940dtex/2(打ち込み密度21本/25mm)の1プライとし、実施例と比較例で同一とした。   The carcass of each tire is 2 plies of polyester cord 1,100 dtex / 2 (drive density 23/25 mm), the belt is steel cord 2 + 2 × 0.25 mm (drive density 25/25 mm) 2 plies, and the cap ply is One ply of nylon 66 cord 940 dtex / 2 (injection density of 21/25 mm) was used, and was the same in the examples and comparative examples.

[操縦安定性]
出願人所有の操縦安定性評価用のテストコース(アスファルト乾燥路面)において、時速80〜100km/hでの直進性、レーンチェンジ性、及びコーナリング時のハンドリング性を3名のテストドライバーのフィーリングで総合評価し、平均をとった。比較例を基準とし指数100とした指数表示で示した。指数が大きいほど良好である。
[Steering stability]
In the test course (asphalt dry road surface) for handling stability evaluation owned by the applicant, it is possible for three test drivers to feel the straightness, lane change, and cornering handling at 80-100 km / h. Overall evaluation and averaged. The comparative example is indicated by an index display with an index of 100. The higher the index, the better.

[乗り心地性]
出願人所有の良路、不整路及び突起段差路の3種のテストコースを時速60km/hで走行し、それぞれの走行路について、ゴツゴツ感、ブルブル感、突起乗り越え時のショック吸収性及びダンピング等を総合して3名のテストドライバーのフィーリングで評価し、平均をとった。比較例を基準とし指数100とした指数表示で示した。指数が大きいほど良好である。
[Ride comfort]
Drive the three types of test courses of the applicant's good road, rough road and bump step road at a speed of 60 km / h. Overall, they were evaluated by the feeling of three test drivers, and the average was taken. The comparative example is indicated by an index display with an index of 100. The higher the index, the better.

Figure 0004819713
Figure 0004819713

表1に示されるように、比較例タイヤでは縦剛性を増加するとそれに伴い横剛性も増加する(横剛性/縦剛性が0.5に近い値を示す)が、本発明に係る実施例1〜4のタイヤでは縦剛性と横剛性の増加率を変化させることができ、縦剛性の増加に対して横剛性の増加が高く得られ、横剛性/縦剛性を制御することができる。   As shown in Table 1, in the comparative example tire, when the longitudinal stiffness is increased, the lateral stiffness is also increased accordingly (the lateral stiffness / longitudinal stiffness is a value close to 0.5). In the tire No. 4, the increase rate of the longitudinal rigidity and the lateral rigidity can be changed, and the increase in the lateral rigidity is obtained with respect to the increase in the longitudinal rigidity, and the lateral rigidity / the longitudinal rigidity can be controlled.

すなわち、表1、及び図6、7から、縦荷重付加のみの接地特性は各実施例において大きな変化は無く、車両の通常走行時のタイヤ特性は比較例および実施例の各タイヤで類似していると判断される。これに対し、縦及び横荷重を付加するとタイヤの接地形状は一般的に台形形状に変化するが、実施例タイヤにおいては、比較例タイヤの接地長が短くなる側(B部側ショルダー部)の接地長が維持され、同様に比較例タイヤの接地長が長くなる側(A部側ショルダー部)の接地長の増加が比較例に対して小さく保たれている。このことは実施例タイヤのコーナリング特性が優れていることを示すものである。   That is, from Table 1 and FIGS. 6 and 7, there is no significant change in the grounding characteristics with only the longitudinal load applied in each example, and the tire characteristics during normal running of the vehicle are similar between the tires of the comparative example and the examples. It is judged that On the other hand, when the vertical and lateral loads are applied, the ground contact shape of the tire generally changes to a trapezoidal shape. However, in the example tire, the contact length of the comparative tire becomes shorter (the B portion side shoulder portion). The contact length is maintained, and similarly, the increase in the contact length on the side where the contact length of the comparative tire becomes longer (the A-side shoulder portion) is kept small compared to the comparative example. This indicates that the cornering characteristics of the example tires are excellent.

これにより、操縦安定性と乗り心地性の評価結果から知られるように、操縦安定性の上昇が大きく得られ、対して乗り心地性の低下代は小さく、操縦安定性と乗り心地性をバランス良く両立させるタイヤを、本発明に係る積層構造部材を採用しプレート材のヤング率、寸法形状、積層枚数等を設計することで容易に見積もることができるようになる。   As a result, as can be seen from the evaluation results of steering stability and riding comfort, a significant increase in handling stability can be obtained, while there is a small reduction in riding comfort, with a good balance between handling stability and riding comfort. The tire to be made compatible can be easily estimated by adopting the laminated structure member according to the present invention and designing the Young's modulus, dimension and shape of the plate material, the number of laminated sheets, and the like.

本発明は、乗用車用を始めとして、ライトトラック、バスやトラック用の大型タイヤなど各種サイズ、用途の空気入りタイヤに適用することができる。   The present invention can be applied to pneumatic tires for various sizes and uses such as for passenger cars, light trucks, large tires for buses and trucks.

実施形態の空気入りタイヤの半断面図である。It is a half sectional view of the pneumatic tire of an embodiment. 同上タイヤのバットレス部の拡大断面図である。It is an expanded sectional view of the buttress part of a tire same as the above. プレート材の正面図及び側面図である。It is the front view and side view of a plate material. 積層構造部材の側面図である。It is a side view of a laminated structure member. 他の実施形態のタイヤのバットレス部の拡大断面図である。It is an expanded sectional view of the buttress part of the tire of other embodiments. 縦荷重付加時のトレッド接地形状の説明図である。It is explanatory drawing of the tread grounding shape at the time of a longitudinal load addition. 縦荷重と横荷重付加時のトレッド接地形状の説明図である。It is explanatory drawing of the tread grounding shape at the time of a vertical load and a lateral load addition. 従来例の空気入りタイヤの半断面図である。It is a half sectional view of a pneumatic tire of a conventional example.

符号の説明Explanation of symbols

1……空気入りタイヤ
2……トレッド部
3……サイドウォール部
4……ビード部
5……ビードコア
6……カーカス
7……ベルト
10……バットレス部
11……積層構造部材
12……プレート材
W……タイヤ最大幅部
DESCRIPTION OF SYMBOLS 1 ... Pneumatic tire 2 ... Tread part 3 ... Side wall part 4 ... Bead part 5 ... Bead core 6 ... Carcass 7 ... Belt 10 ... Buttress part 11 ... Laminated structural member 12 ... Plate material W: Maximum width of tire

Claims (4)

1対のビードコアを備えたビード部と、前記ビード部から各々タイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部間に設けたトレッド部とを有し、前記1対のビード部間に装架した少なくとも1層のカーカスプライからなるカーカスと、該カーカスのトレッド部における外周側に少なくとも2層のベルトプライからなるベルトを配置した空気入りタイヤにおいて、
前記ベルトの両端部外側とタイヤ最大幅部の間で、前記カーカスのタイヤ径方向外側のバットレス部に、複数の円環状プレート材とゴム材とを交互に配して積層した積層構造部材を埋設した
ことを特徴とする空気入りタイヤ。
A bead portion having a pair of bead cores, a sidewall portion extending outward in the tire radial direction from the bead portion, and a tread portion provided between the sidewall portions, and between the pair of bead portions In a pneumatic tire in which a carcass composed of at least one layer of carcass ply mounted and a belt composed of at least two layers of belt ply are arranged on the outer peripheral side of the tread portion of the carcass,
A laminated structural member in which a plurality of annular plate materials and rubber materials are alternately arranged and laminated in the buttress portion on the outer side in the tire radial direction of the carcass between the outer ends of both ends of the belt and the maximum tire width portion. Pneumatic tire characterized by that.
前記プレート材の縦弾性係数が10〜25,000kgf/mmの範囲にある
ことを特徴とする請求項1に記載の空気入りタイヤ。
2. The pneumatic tire according to claim 1, wherein the plate member has a longitudinal elastic modulus in a range of 10 to 25,000 kgf / mm 2 .
前記プレート材のタイヤ径方向の配置角度が、該タイヤ回転軸から接地面に下ろした鉛直線に対して0±10°の範囲にある
ことを特徴とする請求項1又は2に記載の空気入りタイヤ。
3. The pneumatic according to claim 1, wherein an arrangement angle of the plate material in a tire radial direction is in a range of 0 ± 10 ° with respect to a vertical line extending from the tire rotation axis to the ground contact surface. tire.
前記カーカスの少なくとも1枚のカーカスプライが前記積層構造部材の位置において該タイヤ周上で分断され、該カーカスプライ分断端部がタイヤ周上で前記円環状プレート材間の間隙に挟持されている
ことを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。
At least one carcass ply of the carcass is divided on the tire circumference at the position of the laminated structural member, and the carcass ply dividing end portion is sandwiched between the annular plate members on the tire circumference. The pneumatic tire according to any one of claims 1 to 3.
JP2007036379A 2007-02-16 2007-02-16 Pneumatic tire Expired - Fee Related JP4819713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036379A JP4819713B2 (en) 2007-02-16 2007-02-16 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036379A JP4819713B2 (en) 2007-02-16 2007-02-16 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2008201159A JP2008201159A (en) 2008-09-04
JP4819713B2 true JP4819713B2 (en) 2011-11-24

Family

ID=39779106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036379A Expired - Fee Related JP4819713B2 (en) 2007-02-16 2007-02-16 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4819713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855972B2 (en) * 2007-02-21 2012-01-18 東洋ゴム工業株式会社 Pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583452B2 (en) * 1993-12-24 2004-11-04 株式会社ブリヂストン Pneumatic tire
JP4056155B2 (en) * 1999-01-08 2008-03-05 横浜ゴム株式会社 Pneumatic tire
JP4348582B2 (en) * 1999-11-15 2009-10-21 東洋ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2008201159A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP6092046B2 (en) Non-pneumatic tire
JP6099519B2 (en) Non-pneumatic tire
JP4377933B2 (en) Pneumatic tire
JP4295795B2 (en) Pneumatic tire
JP6159234B2 (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP2014218132A (en) Airless tire
JP6076704B2 (en) Non-pneumatic tire
JP2022173595A (en) Automobile pneumatic radial tire
WO2022270094A1 (en) Tire
JP4377934B2 (en) Pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP6025498B2 (en) Non-pneumatic tire
JP4819713B2 (en) Pneumatic tire
JP2022164929A (en) Automobile pneumatic radial tire
JP6709675B2 (en) Runflat radial tires
JP4855972B2 (en) Pneumatic tire
JP6586081B2 (en) tire
JP4391105B2 (en) Pneumatic tire
JP2008001168A (en) Pneumatic tire
JP7198071B2 (en) Pneumatic radial tires for passenger cars
JP2013018427A (en) Non-pneumatic tire
JP2008254532A (en) Pneumatic tire
JP7162515B2 (en) Pneumatic radial tires for passenger cars
JP6909715B2 (en) Run flat tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees