WO2019116853A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2019116853A1
WO2019116853A1 PCT/JP2018/043172 JP2018043172W WO2019116853A1 WO 2019116853 A1 WO2019116853 A1 WO 2019116853A1 JP 2018043172 W JP2018043172 W JP 2018043172W WO 2019116853 A1 WO2019116853 A1 WO 2019116853A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold resin
semiconductor chip
mold
resin
laser
Prior art date
Application number
PCT/JP2018/043172
Other languages
French (fr)
Japanese (ja)
Inventor
和明 馬渡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019116853A1 publication Critical patent/WO2019116853A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present disclosure relates to a semiconductor device including a semiconductor chip and a mold resin for sealing a part of the semiconductor chip, and a method of manufacturing the same.
  • the semiconductor device described in Patent Document 1 is sealed in a mold resin together with a semiconductor chip including a sensor unit that outputs a signal according to a physical quantity, a mold resin, and a part of the semiconductor chip, and control of the semiconductor chip And a circuit chip for
  • the semiconductor device has a structure in which a part of the semiconductor chip is covered with the mold resin, the remaining part is a protruding part protruding from the mold resin, and the semiconductor chip is cantilevered by the mold resin.
  • the mold resin contains a filler such as SiO 2 for the purpose of reducing the difference in linear expansion coefficient between the semiconductor chip and the mold resin and relieving stress at these interfaces.
  • a filler such as SiO 2
  • the filler does not pass through the laser in the laser irradiation and remains without being removed; Can reattach and contaminate the surface.
  • a mold resin containing a filler is formed after covering a portion where resin burrs may occur with a fillerless resin not containing a filler in advance. Thereafter, the fillerless resin is subjected to laser irradiation to remove the same, whereby the semiconductor device is obtained. Therefore, even if the mold resin is configured to include a filler, a semiconductor device in which the above-mentioned failure due to the filler is suppressed and a method of manufacturing the same are provided.
  • the semiconductor chip may have a serial number, a wiring electrode, and the like formed on the surface of the protruding portion using a material such as Al.
  • a material constituting the serial number or the like may be partially damaged by absorbing the laser and generating heat.
  • the semiconductor device described in Patent Document 1 can not prevent damage to the projection due to such laser irradiation.
  • a fillerless resin to be disposed in a region to be irradiated with laser is separately required, and the cost is increased accordingly.
  • the pressure for molding resin molding is excessive for the semiconductor chip through the hard fillerless resin when forming the molding resin. It will be transmitted to you. In such a case, due to the influence of the pressure transmitted excessively, the semiconductor chip may be left as an internal stress, which may lower the reliability.
  • a semiconductor device includes a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and a mold resin that covers a part of the semiconductor chip.
  • a portion of the semiconductor chip that protrudes from the mold resin is a protrusion
  • an exposed portion of the protrusion that is exposed from the mold resin is a portion of the mold resin that covers the protrusion irradiated with a laser
  • the laser low absorption material including the laser removal area exposed from the mold resin is provided, and the exposed portion in the laser removal area has a laser absorption rate of 45% or less.
  • the semiconductor chip is a part of the projecting portion of the semiconductor chip that protrudes from the mold resin, and the portion exposed from the mold resin by the laser irradiation is made of the laser low absorption material, and the semiconductor chip resulting from the absorption of the laser Semiconductor device in which the damage of the
  • a semiconductor device includes a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and a mold resin that covers a part of the semiconductor chip.
  • a portion of the semiconductor chip that protrudes from the mold resin is a protrusion, and the protrusion has a covering portion at least a part of which is covered with the mold resin, and the mold resin contains a filler.
  • the normal direction to the one surface on which the covering portion is formed is the normal direction of one surface
  • the portion covering the covering portion in the mold resin is the thinning portion
  • the filler is the normal direction on one surface of the thinning portion
  • the particle diameter is larger than the thickness in the above, and is disposed in a portion different from the thinned portion.
  • the mold resin is formed of the resin material containing the filler, the mold resin has a thinned portion in which the filler resin is not a filler-less portion, and a defect caused by the filler in the laser processing is suppressed. It becomes a semiconductor device.
  • a method of manufacturing a semiconductor device includes preparing a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and forming a mold resin covering at least a part of the semiconductor chip. After preparing a mold to be used, setting a semiconductor chip in the mold, pouring a resin material for forming a mold resin and curing it to form a mold resin, and forming a mold resin, the semiconductor chip Among them, irradiating a part of the protrusion projecting from the mold resin with a laser to form an exposed part exposing the part from the mold resin.
  • a laser low absorption material having an absorptivity of 45% or less is disposed in a portion covered by a portion of the molding resin which is irradiated and removed by the laser.
  • the part covered with the mold resin of the said one part which is removed among semiconductor chips is It becomes a semiconductor chip comprised with laser low absorption material. Therefore, even if a part of the mold resin is irradiated with the laser to remove it, the portion of the semiconductor chip covered with the part of the mold resin is made of the laser low absorption material. Absorption is suppressed. Therefore, when removing a part of mold resin by laser irradiation, it is possible to manufacture a semiconductor device in which damage to the semiconductor chip is suppressed.
  • a method of manufacturing a semiconductor device includes preparing a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and forming a mold resin covering at least a part of the semiconductor chip. Preparing a mold to be used. In such a manufacturing method, a semiconductor chip is set in a mold, and a resin material constituting a mold resin is poured and cured to form a mold resin, and to form a mold resin, a filler is contained.
  • the gap between the die and the portion of the semiconductor chip that becomes the protrusion prepare a mold smaller than the particle size of the filler.
  • FIG. 1 is a cross-sectional view showing a semiconductor device of a first embodiment.
  • FIG. 7 is a top layout view showing a protrusion of a semiconductor chip and the vicinity thereof in the semiconductor device of the first embodiment.
  • It is a figure which shows the laser irradiation process among the manufacturing processes of the semiconductor device of 1st Embodiment.
  • It is a figure which shows an example of laser irradiation in the laser irradiation process following FIG. 3A.
  • the semiconductor device S1 of the first embodiment will be described with reference to FIGS. 1 to 3 by taking as an example a case where it is applied as a pressure sensor.
  • FIG. 2 shows an upper surface layout as viewed from the normal direction (hereinafter referred to as “one-plane normal direction”) side of the one surface 1a of the semiconductor chip 1 described later shown in FIG.
  • the outline of the supported portion 2 covered with the mold resin 6 is indicated by a broken line by a dashed line.
  • a laser low absorption material to be described later is omitted while omitting a region covering a part of the semiconductor chip 1 among the semiconductor chip 1 and the molding resin 6 and other regions other than the vicinity thereof. Among them, only those separately disposed on the second substrate 12 among 7 are shown.
  • the semiconductor device S1 of the present embodiment includes, for example, as shown in FIG. 1, a semiconductor chip 1 having a sensor unit 31 that outputs a signal corresponding to a physical quantity, a wire 4, a lead frame 5, and a mold resin 6. Prepare.
  • the sensor unit 31 outputs an electrical signal according to the physical quantity, and the electrical signal is transmitted via a pad portion 123, a wire 4, and a lead frame 5 described later via circuit wiring (not shown) formed on the semiconductor chip 1. It is configured to be sequentially transmitted to the outside.
  • the semiconductor device S1 of the present embodiment is applied, for example, as a pressure sensor that measures the pressure of intake air, engine oil, and the like in a vehicle such as an automobile.
  • a semiconductor element (not shown) for controlling an electrical signal output from the sensor unit 31 is further disposed in the mold resin 6 and disposed between the semiconductor chip 1 and the lead frame 5. May be Thus, the configuration of the transmission path of the electrical signal output from the sensor unit 31 may be changed as appropriate.
  • the semiconductor chip 1 has, for example, flat plate-like first and second substrates 11 and 12 mainly made of a semiconductor material such as Si, and these substrates 11 and 12 are It is made into the composition put together.
  • a part of the semiconductor chip 1 is mounted on the lead frame 5 and fixed by an adhesive such as silver paste or epoxy (not shown).
  • the semiconductor chip 1 is in a state of being partially covered and supported by the mold resin 6, that is, in a cantilever state.
  • a portion of the semiconductor chip 1 which is thickly covered and supported by the molding resin 6 is referred to as a “supported portion 2” and the remaining portion of the semiconductor chip 1, that is, the mold
  • the portion protruding from the resin 6 to the opposite side of the supported portion 2 is referred to as a “projected portion 3”.
  • a portion covering the portion of the mold resin 6 different from the projecting portion 3 is a “support portion 6a” and a portion covering a portion of the projecting portion 3 thinner than the supporting portion 6a. Is referred to as "thinned portion 6b".
  • the portion of the projecting portion 3 exposed from the mold resin 6 is “exposed portion 3 a”, and the portion of the projecting portion 3 covered by the thinned portion 6 b is “coated portion 3 b” It is called.
  • the laser removal area is mainly composed of the laser low absorption material 7
  • the laser removal area is composed of only the laser low absorption material 7, but also the laser low absorption material. In addition to 7, it is the meaning also included when the unavoidable impurity, the foreign material, etc. are included.
  • the laser low absorption material 7 is, for example, a material having an absorptivity of 45% or less at a wavelength of 1.5 ⁇ m to 6 ⁇ m of a laser used for laser processing described later, specifically, Si, SiO 2 , SiC, sapphire, GaN, GaAs And InP.
  • the laser low absorption material 7 is not only used as, for example, the first substrate 11 or the second substrate 12 constituting the semiconductor chip 1, but also as a material separately disposed on the second substrate 12 as shown in FIG. Used. In the latter case, the laser low absorption material 7 covers a serial number or alignment mark (not shown) formed of a material such as Al on the surface 1 a of the protrusion 3 of the semiconductor chip 1 and protects the same. It is used as a membrane.
  • the semiconductor chip 1 is covered with a material having high adhesion to the mold resin 6 or a material that provides a stress relaxation effect, and the portion of the surface to which the laser is not irradiated during laser processing and the portion covered with the mold resin 6 is covered. It may be included.
  • the material having high adhesion to the mold resin 6 include Si 3 N 4 and PIQ (Polyimide iso-indoloquinazo-linedione). Specifically, Si 3 N 4 or PIQ is disposed on a part or all of the surfaces of the supported portion 2 and the covering portion 3 b of the semiconductor chip 1, and the adhesion with the mold resin 6 is enhanced. May be
  • the semiconductor chip 1 has an arbitrary semiconductor chip configuration except that the laser removal region is formed of the laser low absorption material 7, and the configuration other than the laser low absorption material 7 may be appropriately changed. Good.
  • the first substrate 11 is bonded to the second substrate 12 such that one surface 11 a thereof faces the one surface 12 a side of the second substrate 12.
  • the first substrate 11 has a first recess 111 recessed toward the first surface 11 a on the surface opposite to the first surface 11 a and has a thin portion 112 thinned by the formation of the first recess 111.
  • the first substrate 11 is formed with a circuit wiring (not shown) extending from the thin portion 112 to the supported portion 2 side and a gauge resistor electrically connected to the first surface 11 a.
  • the gauge resistance is formed, for example, on the thin-walled portion 112, and is deformed along with the deformation of the thin-walled portion 112, and its resistance value changes due to the piezoresistance effect.
  • the second substrate 12 has a second recess 121 formed on one surface 12 a, and the second recess 121 is disposed so as to cover the thin portion 112.
  • a pressure reference chamber 122 is formed by the space formed by the second recess 121 and the first substrate 11.
  • the pressure reference chamber 122 is, for example, vacuum pressure, but may be atmospheric pressure.
  • the sensor portion 31 is formed by the thin portion 112 of the first substrate 11 and the second concave portion 121 of the second substrate 12.
  • the sensor unit 31 is an element that detects pressure, and as shown in FIG. 1, the sensor unit 31 is formed in the protrusion 3 of the semiconductor chip 1.
  • the sensor unit 31 changes the resistance value of a gauge resistance (not shown) on the thin portion 112 and outputs an electrical signal according to the pressure.
  • the electrical signal output from the sensor unit 31 is transmitted to the pad unit 123 of the semiconductor chip 1 through a circuit wiring (not shown) formed on the side of the first surface 11 a of the first substrate 11.
  • the pad portion 123 is formed in a portion to be the supported portion 2 in the semiconductor chip 1 and is electrically connected to a not-shown circuit wiring on the first surface 11 a side of the first substrate 11.
  • the pad portion 123 is made of, for example, a metal material such as Al, and as shown in FIG. 1, the inner wall of the through hole connecting one surface 12a of the second substrate 12 to the opposite surface 12b and a part of the opposite surface 12b. It is formed to cover.
  • the wire 4 is made of, for example, a metal material such as Au, and is connected to each of the pad portion 123 and the lead frame 5 by wire bonding as shown in FIG. 1 to electrically connect them.
  • the lead frame 5 is made of, for example, a metal material such as Cu, and as shown in FIG. 1, the semiconductor chip 1 is mounted on one surface and the other end opposite to the one end on which the semiconductor chip 1 is mounted. Are exposed from the mold resin 6.
  • the mold resin 6 is made of, for example, a resin material such as an epoxy resin, covers a part of the semiconductor chip 1, the wire 4 and a part of the lead frame 5, and is formed by transfer molding or the like.
  • the above is the basic configuration of the semiconductor device S1.
  • FIG. 3A and FIG. 3B as in FIG. 2, the sensor unit 31 is covered with the thinning portion 6b of the projecting portion 3 by the dashed-dotted line with an example of the portion irradiated with the laser in laser processing described later.
  • the outline of the curved portion and the laser low absorption material 7 are shown by broken lines.
  • the laser low absorption material 7 is disposed in the portion to be the protruding portion 3 of the semiconductor chip 1, and therefore the laser low absorption material 7 is related. The steps other than the above are briefly described.
  • a semiconductor chip 1 is prepared, which is manufactured by an ordinary semiconductor process and in which the laser low absorption material 7 is disposed in a portion to be the protruding portion 3 which protrudes from the mold resin 6 later.
  • a vacuum film forming method such as vapor deposition or sputtering is performed using a mask (not shown) so as to cover a portion of the semiconductor chip 1 where the alignment mark or serial number is formed of Al in the region to be the projecting portion 3.
  • the laser low absorption material 7 is formed.
  • the end of the semiconductor chip 1 on the side to be the supported portion 2 is mounted on one surface of the lead frame 5 by, for example, soldering, and then the pad portion 123 of the semiconductor chip 1 and the lead frame 5 are bonded by wire bonding. Connect electrically.
  • a mold (not shown) composed of an upper mold and a lower mold is prepared, and a work in which the semiconductor chip 1, the wire 4 and the lead frame 5 are integrated is set in the mold.
  • the resin material constituting the mold resin 6 is poured into the cavity of the mold and cured to form the mold resin 6 covering the semiconductor chip 1 and a part of the lead frame 5 and the wire 4.
  • the resin material is prevented from flowing into at least the sensor portion 31 of the semiconductor chip 1.
  • another member such as a cover (not shown) which prepares a mold in which the region to be the protruding portion 3 in the opposite surface of the one surface 1a of the semiconductor chip 1 contacts the upper or lower die without a gap It may be possible to prepare it.
  • the work is released from the mold.
  • a surplus portion (hereinafter referred to as "surplus resin 8") of the mold resin 6 covering the periphery of the protrusion 3 and the like in top view remains. Is removed by laser irradiation. Specifically, light having a wavelength at which the absorptivity of the material of the mold resin 6 is high and the absorptivity of Si mainly constituting the semiconductor chip 1 is 45% or less, for example, a wavelength of 1.5 ⁇ m to 6.0 ⁇ m Is used as a laser.
  • the laser of such a wavelength is irradiated to the part which wants to remove the excessive resin 8, and this is removed.
  • a region indicated by a two-dot chain line in FIG. 3A is irradiated with a laser, as shown in FIG.
  • the process of this laser irradiation is repeated along the outer outline of the protrusion 3 in top view as shown by a two-dot chain line in FIG. 3B.
  • the excess resin 8 is removed by this laser irradiation step, the state shown in FIG. 2 is obtained.
  • the semiconductor device S1 of the present embodiment can be manufactured.
  • Examples of the laser for removing the excess resin 8 include HoYAG (wavelength: about 1.5 ⁇ m) and ErYAG (wavelength: about 3 ⁇ m).
  • the conditions for laser irradiation such as energy density, pulse width and laser irradiation diameter, may be set appropriately as long as the excess resin 8 can be removed.
  • the laser used to remove the excess resin 8 is light in a wavelength range that is well absorbed by the resin material that constitutes the mold resin 6 while not absorbed much by the laser low absorption material 7.
  • the wavelength of the laser is 90% or more in the range of 0.4 ⁇ m to 11 ⁇ m, as shown in FIG. From the viewpoint of removal, it may be in the range of 0.4 ⁇ m to 11 ⁇ m.
  • the absorptivity of Si mainly constituting the semiconductor chip 1 is 45% or less within the range of 1.5 ⁇ m to 6 ⁇ m, and 0.4 ⁇ m to 1.5 ⁇ m and 6 ⁇ m. In the range beyond, it exceeds 45%. If the Si constituting the semiconductor chip 1 absorbs the laser excessively by more than 45%, damage due to heat generation may occur. From the viewpoint of preventing this, the wavelength of the laser is in the range of 1.5 ⁇ m to 6.0 ⁇ m. It is preferable that
  • the wavelength range of the laser is set to 1.5 ⁇ m to 6.0 ⁇ m
  • a material having an absorptivity of 45% or less in the range is selected.
  • SiO 2 has an absorptivity of 45% or less in the range of 1.5 ⁇ m to 6.0 ⁇ m, so it can be said that it is preferable to use it as the laser low absorption material 7.
  • Si 3 N 4 used as the insulating film has a wavelength range in which the absorptivity exceeds 45% in the range of 1.5 ⁇ m to 6.0 ⁇ m. That is, Si 3 N 4 is a material which is not preferable to be used as the laser low absorption material 7 because Si 3 N 4 has a large absorption of light of a predetermined wavelength among lasers and may be damaged by heat generation.
  • the wavelength range of the laser for removing the excess resin 8 and the selection of the laser low absorption material 7 are performed from the above viewpoints.
  • the laser low absorption material 7 is preferably made of Si or SiO 2 , it is preferable if the material has an absorptivity of 45% or less in the range of 1.5 ⁇ m to 6.0 ⁇ m. Not limited to this.
  • serial number and the like are made of a material used in a normal semiconductor process, such as Al, but in the state of being exposed to the atmosphere, the serial number may peel off due to corrosion and the like, and thus can not be identified.
  • a material constituting a serial number or the like is usually covered with a material having corrosion resistance, for example, a material such as Si 3 N 4 .
  • the Si 3 N 4 covering the serial number etc. absorbs the laser and generates heat, and the serial number It may be destroyed every time. That is, when a material having a high absorptivity of the laser in the laser processing, for example, an absorptivity over 45% is disposed in the laser removal area, the semiconductor chip 1 may be damaged.
  • the semiconductor device S1 of the present embodiment since the laser removal region of the protrusion 3 is formed of the laser low absorption material 7 whose absorptivity of the laser is 45% or less, It is a structure that does not cause excessive absorption. As a result, the semiconductor device S1 can be prevented from damaging the semiconductor chip 1 in laser processing.
  • the semiconductor chip 1 in which the laser removal region in the protrusion 3 is made of the laser low absorption material 7 is a semiconductor device in which damage to the semiconductor chip 1 due to laser irradiation is suppressed.
  • the mold resin 6 includes the resin 61 and the filler 62, and the filler 62 is disposed in the support portion 6a.
  • the particle diameter of the filler 62 contained in the support portion 6a is larger than the thickness in the normal direction of one surface of the thinned portion 6b (hereinafter simply referred to as "thickness").
  • the semiconductor device S2 is different from the first embodiment mainly in the above points. In the present embodiment, these differences will be mainly described.
  • the mold resin 6 includes a resin 61 and a filler 62, and a supporting portion 6a that covers and supports a portion other than the projecting portion 3 in the semiconductor device S2, and a portion of the projecting portion 3 It is comprised by the thin part 6b covered thinly.
  • “covering thinly” here means covering with thickness thinner than the thickness of the part which covers the semiconductor chip 1 among the support parts 6a.
  • the resin 61 is, for example, an arbitrary resin material such as an epoxy resin.
  • the filler 62 has, for example, a spherical shape or a crushed shape, and is made of an inorganic material such as alumina or silica.
  • the filler 62 is added, for example, for the purpose of adjusting the coefficient of linear expansion of the mold resin 6, the thermal conductivity, etc., and is distributed in the support portion 6a of the mold resin 6, as shown in FIG.
  • the filler 62 has a predetermined particle diameter range, for example, ⁇ 50 ⁇ m to 200 ⁇ m, but a filler having a particle diameter larger than at least the thickness of the thinned portion 6 b is used.
  • the filler 62 remove
  • the filler 62 be used in which particles having a particle diameter of 50 ⁇ m or less are removed by filtration or the like. The reason for this will be described later in the description of the method of manufacturing the semiconductor device S2.
  • the thinned portion 6 b is mainly made of the resin 61. As shown in FIG. 6, when the thickness in the normal direction to one surface is t1 and the particle diameter of the filler 62 is t2, the thinned portion 6b has a relationship of t1 ⁇ t2. That is, the thickness of the thinned portion 6 b is less than the particle diameter of the filler 62.
  • the mold resin 6 includes the resin 61 and the filler 62 and the filler 62 is disposed in the support portion 6a. Is the same as in the first embodiment. Therefore, here, the process of forming the mold resin 6 containing the filler 62 will be mainly described.
  • a work in which the semiconductor chip 1, the wire 4 and the lead frame 5 are integrated is manufactured, and as shown in FIG. 8, a mold 200 for setting the work is prepared. Specifically, for example, as shown in FIG. 8, the first cavity 203 and the thinned portion 6b are formed by the upper mold 201 and the lower mold 202, and the supporting portion 6a of the mold resin 6 is formed. A mold 200 provided with a second cavity 204 is prepared.
  • the resin material constituting the resin 61 and the filler 62 are prepared.
  • the filler 62 having a particle diameter larger than the gap in the normal direction to one surface of the “upper mold 201” and the “upper die 201” in the one surface 1 a of the semiconductor chip 1 Prepare as.
  • the material of the mold resin 6 is injected from the injection port (not shown) into the first cavity 203 and cured to form the mold resin 6.
  • the material of the mold resin 6 flows from the first cavity 203 side toward the second cavity 204 side.
  • the filler 62 has a particle diameter larger than the gap between the “boundary portion between the first cavity 203 and the second cavity 204” and the “semiconductor chip 1” in the upper mold 201, It can not enter the space on the second cavity 204 side.
  • the filler 62 is disposed on the support portion 6 a of the mold resin 6 to be formed, but is not disposed on the thinned portion 6 b.
  • the mold resin 6 including the region partially made filler-less, that is, the thinned portion 6b is formed.
  • fillerless is not only in the state where the filler 62 is not mixed at all, it is difficult to remove by filtration etc., and a factor such as part of the filler 62 is inevitable, etc. It is the meaning also including the state where the filler of a minute particle size exists.
  • the mold resin 6 is formed and the fillerless resin is laser-processed It is something to remove.
  • the film made of the fillerless resin is thickly formed, it is difficult for the laser at the time of the laser processing to reach a portion of the fillerless resin located on the protrusion 3 side, that is, a deep portion viewed from the surface of the fillerless resin. To be concerned.
  • the temporary formation of the film made of the fillerless resin causes dimensional restriction in the subsequent step of forming the mold resin 6.
  • the portion containing the filler 62 and the portion without filler are simultaneously formed in the step of forming the mold resin 6, thus causing the above problem. There is no.
  • the effects of the first embodiment can be obtained, and the thinning portion 6b selectively made filler-less in the mold resin 6 containing the filler 62 is provided, and a filler-free resin is separately used.
  • the semiconductor device can be manufactured without manufacturing.
  • the support portion 6a containing the filler 62 and Fillerless thinned portions 6b can be formed at one time. That is, since it is possible to selectively form the filler-free thinned portion 6b without separately using the filler-less resin, it is possible to manufacture a semiconductor device in which the laser removal region or the vicinity thereof is filler-less more easily than in the prior art. .
  • the thinning portion 6 b is made of the same resin material as the mold resin 6 has been described.
  • a thin film made of a low elasticity material is formed in advance to cover the portion to be the projecting portion 3 of the semiconductor chip 1.
  • the semiconductor chip 1 may be used.
  • the low elasticity material include polyacrylics, silicone resins and polyimides. In this case, for example, as shown in FIG. 9, it is conceivable to form the mold resin 6 using the semiconductor chip 1 on which the low elastic thin film 9 of the low elastic material is formed.
  • a mold 400 and a film 500 including an upper mold 401 and a lower mold 402 are prepared.
  • the mold 400 includes a third cavity 403 forming the support portion 6 a of the molding resin 6 and a fourth cavity 404 for setting a portion to be the projecting portion 3 of the semiconductor chip 1.
  • the film 500 is disposed along the inner wall of the upper mold 401, as shown in FIG. Then, the semiconductor chip 1 is set in the mold 400, and the pressure of mold alignment is applied to the portion of the semiconductor chip 1 exposed from the mold resin 6 through the film 500. As a result, transfer of the pressure for mold alignment of the mold 400 to the semiconductor chip 1 through the film 500 is relaxed, and the residual stress of the semiconductor chip 1 can be reduced.
  • the film 500 is required separately.
  • the semiconductor chip 1 when the semiconductor chip 1 is set in the mold 300 composed of the upper mold 301 and the lower mold 302 and the molds are aligned, the semiconductor chip 1 is in contact with, for example, the upper mold 301.
  • the low elastic thin film 9 is formed.
  • the pressure due to the contact between the semiconductor chip 1 and the upper die 301 is relieved by the low elastic thin film 9. Therefore, even without using the film 500, it is possible to reduce the residual stress caused by the pressure of the mold alignment of the mold 300 being applied to the semiconductor chip 1 excessively, and the reliability in which the decrease in the reliability of the semiconductor chip 1 is suppressed.
  • a highly reliable semiconductor device can be manufactured.
  • the low elastic thin film 9 may be partially or entirely removed by laser processing, or may be left as long as the thickness of the thin elastic film 9 has a small influence on the operation of the sensor unit 31, for example, 150 ⁇ m or less.
  • the semiconductor chip 1 may be configured so as to be configured by the laser low absorption material 7 or separately disposed, and may not necessarily have a cantilever structure.
  • the semiconductor chip 1 has a structure in which one end and the other end are covered and supported by different mold resins 6, and a region between these mold resins 6 protrudes from the mold resin 6, that is, a structure It may be double-ended.
  • the portion of the semiconductor chip 1 covered by the mold resin 6 is the supported portion 2, and the remaining portion, that is, the portion protruding from the mold resin 6 corresponds to the protrusion 3.
  • the sensor back side portion may be the covering portion 3 b.
  • the thickness in the one surface normal direction of the thinned portion 6 b be, for example, 150 ⁇ m or less to such an extent that the operation of the sensor unit 31 is not affected.
  • all the protrusions 3 may be exposed from the mold resin 6.
  • the durable material is the laser low absorption material 7 when the removal means is laser processing, and when the removal means is chemical treatment, the material is insoluble with respect to the chemical solution to be used. Or it is a chemical solution durable material which is hardly soluble.
  • the mold resin removal area may be covered with the chemical durable material or may be made of the chemical durable material.
  • the example in which the laser removal region of the semiconductor chip 1 is made of the laser low absorption material 7 and the mold resin 6 containing the filler 62 is partially made fillerless has been described.
  • the semiconductor chip 1 may be configured using a semiconductor chip that is not intentionally configured by the laser low absorption material 7 as a part thereof.
  • the mold resin 6 is configured to include the filler 62, the support portion 6a containing the filler 62 at one time and the thinned portion 6b of the fillerless at one time at the time of molding of the mold resin 6 collectively. Because it is formed, it can be manufactured more easily than in the prior art.
  • the semiconductor chip 1 is a pressure sensor.
  • the semiconductor chip 1 may be, for example, a magnetic sensor, an optical sensor, or another semiconductor sensor .

Abstract

This semiconductor device is provided with a semiconductor chip (1) including a sensor portion (31) which outputs a signal corresponding to a physical quantity, and molded resin (6) covering a portion of the semiconductor chip, wherein a part of the semiconductor chip which protrudes from the molded resin is a protruding portion (3), an exposed portion (3a) of the protruding portion that is exposed from the molded resin includes a laser-removed region that is caused to be exposed from the molded resin by removing a part of the molded resin covering the protruding portion by laser irradiation, and a laser low-absorption material (7) having a absorption rate of the laser at most equal to 45% is disposed in the exposed portion of the laser-removed region.

Description

半導体装置およびその製造方法Semiconductor device and method of manufacturing the same 関連出願への相互参照Cross-reference to related applications
 本出願は、2017年12月15日に出願された日本特許出願番号2017-240911号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-240911 filed on Dec. 15, 2017, the contents of which are incorporated herein by reference.
 本開示は、半導体チップとその一部を封止するモールド樹脂を備える半導体装置およびその製造方法に関する。 The present disclosure relates to a semiconductor device including a semiconductor chip and a mold resin for sealing a part of the semiconductor chip, and a method of manufacturing the same.
 従来、この種の半導体装置においては、半導体チップのうちモールド樹脂から突出した突出部における応力緩和や樹脂バリの除去などの目的で、突出部を覆う樹脂材料をレーザ照射などにより部分的に除去することが行われている。このような半導体装置やその製造方法としては、例えば特許文献1に記載のものが挙げられる。 Conventionally, in a semiconductor device of this type, a resin material covering a protrusion is partially removed by laser irradiation or the like for the purpose of stress relaxation in a protrusion protruding from a mold resin and removal of a resin burr in a semiconductor chip. The thing is done. As such a semiconductor device and its manufacturing method, for example, the one described in Patent Document 1 can be mentioned.
 特許文献1に記載の半導体装置は、物理量に応じた信号を出力するセンサ部を備える半導体チップと、モールド樹脂と、該半導体チップの一部と共にモールド樹脂内に封止され、該半導体チップの制御を行う回路チップとを備える。この半導体装置は、半導体チップの一部がモールド樹脂に覆われると共に、残部がモールド樹脂から突出した突出部であり、半導体チップがモールド樹脂により片持ちされた構造とされている。 The semiconductor device described in Patent Document 1 is sealed in a mold resin together with a semiconductor chip including a sensor unit that outputs a signal according to a physical quantity, a mold resin, and a part of the semiconductor chip, and control of the semiconductor chip And a circuit chip for The semiconductor device has a structure in which a part of the semiconductor chip is covered with the mold resin, the remaining part is a protruding part protruding from the mold resin, and the semiconductor chip is cantilevered by the mold resin.
 ここで、この種の半導体装置は、モールド樹脂の形成に伴い、半導体チップのうち突出部において、樹脂バリが形成されたり、半導体チップとモールド樹脂との線膨張係数差に起因する応力が集中したりする。これらの問題の対応策として、半導体チップのうち突出部に形成された樹脂バリや該突出部を覆う樹脂材料をレーザ照射などで除去することが行われる。 Here, in the semiconductor device of this type, with the formation of the mold resin, resin burrs are formed in the projecting portion of the semiconductor chip, and stress caused by the difference in linear expansion coefficient between the semiconductor chip and the mold resin is concentrated. To In order to solve these problems, it is performed to remove resin burrs formed on the projecting portions of the semiconductor chip and a resin material covering the projecting portions by laser irradiation or the like.
 また、この種の半導体装置は、半導体チップとモールド樹脂との線膨張係数差を小さくしてこれらの界面における応力を緩和する目的で、モールド樹脂がSiOなどのフィラーを含む構成とされることがある。このようにモールド樹脂がフィラーを含む構成とされた場合において、このような樹脂材料によりなる樹脂バリを除去するとき、このフィラーがレーザ照射におけるレーザを透過して除去されずに残留したり、フィラーが再付着して表面を汚染したりし得る。 Further, in the semiconductor device of this type, the mold resin contains a filler such as SiO 2 for the purpose of reducing the difference in linear expansion coefficient between the semiconductor chip and the mold resin and relieving stress at these interfaces. There is. As described above, when the mold resin is configured to include the filler, when removing the resin burr made of such a resin material, the filler does not pass through the laser in the laser irradiation and remains without being removed; Can reattach and contaminate the surface.
 特許文献1に記載の半導体装置は、上記のような不具合を防止するため、樹脂バリが生じ得る箇所をあらかじめフィラーを含有しないフィラーレス樹脂で覆った後に、フィラーを含有するモールド樹脂が形成される。その後、フィラーレス樹脂にレーザ照射を行ってこれを除去することで、この半導体装置が得られる。そのため、モールド樹脂がフィラーを含む構成とされていても、このフィラーによる上記の不具合が抑制された半導体装置およびその製造方法となる。 In the semiconductor device described in Patent Document 1, in order to prevent the problems as described above, a mold resin containing a filler is formed after covering a portion where resin burrs may occur with a fillerless resin not containing a filler in advance. . Thereafter, the fillerless resin is subjected to laser irradiation to remove the same, whereby the semiconductor device is obtained. Therefore, even if the mold resin is configured to include a filler, a semiconductor device in which the above-mentioned failure due to the filler is suppressed and a method of manufacturing the same are provided.
特許第6090041号公報Patent No. 6090041
 ところで、この種の半導体装置では、半導体チップは、突出部の表面にシリアルナンバーや配線電極などがAlなどの材料により形成されていることがある。このような場合に、半導体チップの突出部近傍にレーザ照射を行うと、シリアルナンバーなどを構成する材料がレーザを吸収し発熱することでその一部が損傷することがある。しかしながら、特許文献1に記載の半導体装置は、このようなレーザ照射による突出部における損傷を防ぐことができない構成である。 By the way, in this type of semiconductor device, the semiconductor chip may have a serial number, a wiring electrode, and the like formed on the surface of the protruding portion using a material such as Al. In such a case, when laser irradiation is performed in the vicinity of the protruding portion of the semiconductor chip, a material constituting the serial number or the like may be partially damaged by absorbing the laser and generating heat. However, the semiconductor device described in Patent Document 1 can not prevent damage to the projection due to such laser irradiation.
 また、この半導体装置は、その製造工程において、フィラーを含有する樹脂材料に加えて、レーザ照射を行う領域に配置するフィラーレス樹脂が別途必要となり、その分だけコストがかかってしまう。 Further, in this semiconductor device, in addition to the resin material containing the filler in the manufacturing process, a fillerless resin to be disposed in a region to be irradiated with laser is separately required, and the cost is increased accordingly.
 さらに、フィラーレス樹脂を用いる工程を採用した場合において、該フィラーレス樹脂が硬い材料であるときには、モールド樹脂の形成時に硬いフィラーレス樹脂を介して半導体チップに必要以上にモールド樹脂成形の圧力が過剰に伝わってしまう。このような場合、過剰に伝わった圧力の影響により、半導体チップに内部応力として残ってしまい、信頼性が低下するおそれがある。 Furthermore, in the case of employing a process using a fillerless resin, when the fillerless resin is a hard material, the pressure for molding resin molding is excessive for the semiconductor chip through the hard fillerless resin when forming the molding resin. It will be transmitted to you. In such a case, due to the influence of the pressure transmitted excessively, the semiconductor chip may be left as an internal stress, which may lower the reliability.
 本開示は、半導体チップのうちモールド樹脂から突出した突出部における樹脂材料の除去の際に、突出部の表面における損傷が抑制される半導体装置およびその製造方法を提供することを目的とする。また、本開示は、モールド樹脂がフィラーを含む構成とされながらも、別途フィラーレス樹脂を用いることなく、簡便に製造できる構成の半導体装置およびその製造方法を提供することを目的とする。 An object of the present disclosure is to provide a semiconductor device in which damage on the surface of a protrusion is suppressed when removing a resin material in the protrusion protruding from a mold resin in a semiconductor chip, and a method of manufacturing the same. Another object of the present disclosure is to provide a semiconductor device having a configuration that can be easily manufactured without using a fillerless resin separately even though the mold resin includes the filler, and a method for manufacturing the semiconductor device.
 上記目的を達成するため、本開示の第1の観点による半導体装置は、物理量に応じた信号を出力するセンサ部を有する半導体チップと、半導体チップのうち一部を覆うモールド樹脂と、を備える。このような構成において、半導体チップのうちモールド樹脂から突出した部分を突出部として、突出部のうちモールド樹脂から露出する露出部は、モールド樹脂のうち突出部を覆う部分の一部がレーザを照射されて除去されることで、モールド樹脂から露出させられたレーザ除去領域を含み、レーザ除去領域における露出部は、レーザの吸収率が45%以下であるレーザ低吸収材料が配置されている。 In order to achieve the above object, a semiconductor device according to a first aspect of the present disclosure includes a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and a mold resin that covers a part of the semiconductor chip. In such a configuration, a portion of the semiconductor chip that protrudes from the mold resin is a protrusion, and an exposed portion of the protrusion that is exposed from the mold resin is a portion of the mold resin that covers the protrusion irradiated with a laser As a result, the laser low absorption material including the laser removal area exposed from the mold resin is provided, and the exposed portion in the laser removal area has a laser absorption rate of 45% or less.
 これにより、半導体チップのうちモールド樹脂から突出する突出部の一部であって、レーザ照射によりモールド樹脂から露出した部分がレーザ低吸収材料により構成されたものとなり、レーザの吸収に起因する半導体チップの損傷が抑制された半導体装置となる。 As a result, the semiconductor chip is a part of the projecting portion of the semiconductor chip that protrudes from the mold resin, and the portion exposed from the mold resin by the laser irradiation is made of the laser low absorption material, and the semiconductor chip resulting from the absorption of the laser Semiconductor device in which the damage of the
 本開示の第2の観点による半導体装置は、物理量に応じた信号を出力するセンサ部を有する半導体チップと、半導体チップのうち一部を覆うモールド樹脂と、を備える。このような構成において、半導体チップのうちモールド樹脂から突出した部分を突出部として、突出部は、少なくとも一部がモールド樹脂に覆われた被覆部を有し、モールド樹脂は、フィラーを含有しており、半導体チップのうち被覆部が形成された一面に対する法線方向を一面法線方向とし、モールド樹脂のうち被覆部を覆う部分を薄化部として、フィラーは、薄化部の一面法線方向における厚みよりも粒径が大きく、かつ、薄化部と異なる部分に配置されている。 A semiconductor device according to a second aspect of the present disclosure includes a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and a mold resin that covers a part of the semiconductor chip. In such a configuration, a portion of the semiconductor chip that protrudes from the mold resin is a protrusion, and the protrusion has a covering portion at least a part of which is covered with the mold resin, and the mold resin contains a filler. In the semiconductor chip, the normal direction to the one surface on which the covering portion is formed is the normal direction of one surface, the portion covering the covering portion in the mold resin is the thinning portion, and the filler is the normal direction on one surface of the thinning portion The particle diameter is larger than the thickness in the above, and is disposed in a portion different from the thinned portion.
 これにより、フィラーを含有する樹脂材料によりモールド樹脂が構成されつつも、モールド樹脂がフィラーレスの部分とされた薄化部を有する構成となり、レーザ加工におけるフィラーに起因する不具合が抑制される構造の半導体装置となる。 As a result, while the mold resin is formed of the resin material containing the filler, the mold resin has a thinned portion in which the filler resin is not a filler-less portion, and a defect caused by the filler in the laser processing is suppressed. It becomes a semiconductor device.
 本開示の第3の観点による半導体装置の製造方法は、物理量に応じた信号を出力するセンサ部を有する半導体チップを用意することと、半導体チップの少なくとも一部を覆うモールド樹脂を形成するために用いる金型を用意することと、金型内に半導体チップをセットしてモールド樹脂を構成する樹脂材料を流し込んで硬化させ、モールド樹脂を形成することと、モールド樹脂を形成した後に、半導体チップのうちモールド樹脂から突出する突出部の一部にレーザを照射することで、当該一部をモールド樹脂から露出する露出部を形成することと、を含む。このような方法において、半導体チップを用意することにおいては、モールド樹脂のうちレーザが照射されて除去される部分によって覆われる部分に、レーザの吸収率が45%以下のレーザ低吸収材料が配置された半導体チップを用意する。 A method of manufacturing a semiconductor device according to a third aspect of the present disclosure includes preparing a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and forming a mold resin covering at least a part of the semiconductor chip. After preparing a mold to be used, setting a semiconductor chip in the mold, pouring a resin material for forming a mold resin and curing it to form a mold resin, and forming a mold resin, the semiconductor chip Among them, irradiating a part of the protrusion projecting from the mold resin with a laser to form an exposed part exposing the part from the mold resin. In such a method, when preparing a semiconductor chip, a laser low absorption material having an absorptivity of 45% or less is disposed in a portion covered by a portion of the molding resin which is irradiated and removed by the laser. Prepare a semiconductor chip.
 これにより、半導体チップのうちモールド樹脂から突出する突出部の一部を覆うモールド樹脂の一部をレーザ照射で除去するにあたり、半導体チップのうち除去される該一部のモールド樹脂に覆われる部分がレーザ低吸収材料で構成された半導体チップとなる。そのため、一部のモールド樹脂にレーザを照射してこれを除去したとしても、半導体チップのうち該一部のモールド樹脂に覆われている部分がレーザ低吸収材料で構成されているため、レーザの吸収が抑制される。よって、一部のモールド樹脂をレーザ照射で除去する際に、半導体チップの損傷が抑えられた半導体装置を製造することができる。 Thereby, when removing a part of mold resin which covers a part of projection part which protrudes from mold resin among semiconductor chips by laser irradiation, the part covered with the mold resin of the said one part which is removed among semiconductor chips is It becomes a semiconductor chip comprised with laser low absorption material. Therefore, even if a part of the mold resin is irradiated with the laser to remove it, the portion of the semiconductor chip covered with the part of the mold resin is made of the laser low absorption material. Absorption is suppressed. Therefore, when removing a part of mold resin by laser irradiation, it is possible to manufacture a semiconductor device in which damage to the semiconductor chip is suppressed.
 本開示の第4の観点による半導体装置の製造方法は、物理量に応じた信号を出力するセンサ部を有する半導体チップを用意することと、半導体チップの少なくとも一部を覆うモールド樹脂を形成するために用いる金型を用意することと、を含む。このような製造方法において、金型内に半導体チップをセットしてモールド樹脂を構成する樹脂材料を流し込んで硬化させ、モールド樹脂を形成することと、モールド樹脂を形成することにおいては、フィラーを含有した樹脂材料を用い、半導体チップのうちモールド樹脂の形成後にモールド樹脂から突出する部分を突出部として、金型を用意することにおいては、金型と半導体チップのうち突出部となる部分との隙間がフィラーの粒径よりも小さい金型を用意する。 A method of manufacturing a semiconductor device according to a fourth aspect of the present disclosure includes preparing a semiconductor chip having a sensor unit that outputs a signal according to a physical quantity, and forming a mold resin covering at least a part of the semiconductor chip. Preparing a mold to be used. In such a manufacturing method, a semiconductor chip is set in a mold, and a resin material constituting a mold resin is poured and cured to form a mold resin, and to form a mold resin, a filler is contained. In preparing the die using the resin material and the portion of the semiconductor chip that protrudes from the mold resin after the formation of the mold resin as a protrusion, the gap between the die and the portion of the semiconductor chip that becomes the protrusion Prepare a mold smaller than the particle size of the filler.
 これにより、フィラーを含有する樹脂材料を用いてモールド樹脂を形成しつつも、部分的にフィラーレスの部分とされたモールド樹脂を形成することができ、レーザ加工の際にフィラーに起因する不具合が抑制された半導体装置を製造することができる。 Thereby, while forming mold resin using the resin material containing a filler, mold resin made into the part of a fillerless part can be formed, and the fault resulting from a filler at the time of laser processing A suppressed semiconductor device can be manufactured.
第1実施形態の半導体装置を示す断面図である。1 is a cross-sectional view showing a semiconductor device of a first embodiment. 第1実施形態の半導体装置のうち半導体チップの突出部およびその近傍を示す上面レイアウト図である。FIG. 7 is a top layout view showing a protrusion of a semiconductor chip and the vicinity thereof in the semiconductor device of the first embodiment. 第1実施形態の半導体装置の製造工程のうちレーザ照射工程を示す図である。It is a figure which shows the laser irradiation process among the manufacturing processes of the semiconductor device of 1st Embodiment. 図3Aに続くレーザ照射工程におけるレーザ照射の一例を示す図である。It is a figure which shows an example of laser irradiation in the laser irradiation process following FIG. 3A. 波長に対するSiの吸収率を示す図である。It is a figure which shows the absorptivity of Si with respect to a wavelength. 波長に対するSiOの吸収率を示す図である。Shows the absorption rate of SiO 2 with respect to the wavelength. 波長に対するSiの吸収率を示す図である。Shows the absorption rate the Si 3 N 4 with respect to wavelength. 波長に対するエポキシ樹脂系の樹脂材料の吸収率を示す図である。It is a figure which shows the absorptivity of the resin material of the epoxy resin type with respect to a wavelength. 第2実施形態の半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device of 2nd Embodiment. 図5中の破線で示す領域の拡大断面図である。It is an expanded sectional view of the area | region shown with the broken line in FIG. フィラーの粒径分布の一例を示す図である。It is a figure which shows an example of the particle size distribution of a filler. 第2実施形態の半導体装置の製造工程のうちモールド樹脂成形について示す図である。It is a figure shown about mold resin molding among manufacturing processes of a semiconductor device of a 2nd embodiment. 他の実施形態における半導体装置の製造工程のうちモールド樹脂成形について示す図である。It is a figure shown about mold resin molding among manufacturing processes of a semiconductor device in other embodiments. 金型とフィルムを用いた従来の半導体装置におけるモールド樹脂成形について示す図である。It is a figure shown about mold resin molding in the conventional semiconductor device using a metallic mold and a film.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts that are the same as or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 第1実施形態の半導体装置S1について、圧力センサとして適用された場合を例に、図1~図3を参照して説明する。
First Embodiment
The semiconductor device S1 of the first embodiment will be described with reference to FIGS. 1 to 3 by taking as an example a case where it is applied as a pressure sensor.
 図2では、図1に示す後述する半導体チップ1のうち一面1aに対する法線方向(以下「一面法線方向」という)側から見たときの上面レイアウトを示すと共に、センサ部31の外郭を一点鎖線で、モールド樹脂6に覆われた被支持部2の外郭を破線で示している。また、図2では、構成を分かり易くするため、半導体チップ1、モールド樹脂6のうち半導体チップ1の一部を覆う部分およびその近傍以外の他の領域を省略しつつ、後述するレーザ低吸収材料7のうち第2基板12上に別途配置されるもののみを示している。 2 shows an upper surface layout as viewed from the normal direction (hereinafter referred to as “one-plane normal direction”) side of the one surface 1a of the semiconductor chip 1 described later shown in FIG. The outline of the supported portion 2 covered with the mold resin 6 is indicated by a broken line by a dashed line. Further, in FIG. 2, in order to make the configuration easy to understand, a laser low absorption material to be described later is omitted while omitting a region covering a part of the semiconductor chip 1 among the semiconductor chip 1 and the molding resin 6 and other regions other than the vicinity thereof. Among them, only those separately disposed on the second substrate 12 among 7 are shown.
 本実施形態の半導体装置S1は、例えば、図1に示すように、物理量に応じた信号を出力するセンサ部31を有する半導体チップ1と、ワイヤ4と、リードフレーム5と、モールド樹脂6とを備える。半導体装置S1は、センサ部31が物理量に応じた電気信号を出力し、当該電気信号が半導体チップ1に形成された図示しない回路配線を介して後述するパッド部123、ワイヤ4、リードフレーム5の順に外部へと伝達される構成とされている。本実施形態の半導体装置S1は、例えば、自動車などの車両における吸気やエンジンオイルなどの圧力を測定する圧力センサとして適用される。 The semiconductor device S1 of the present embodiment includes, for example, as shown in FIG. 1, a semiconductor chip 1 having a sensor unit 31 that outputs a signal corresponding to a physical quantity, a wire 4, a lead frame 5, and a mold resin 6. Prepare. In the semiconductor device S1, the sensor unit 31 outputs an electrical signal according to the physical quantity, and the electrical signal is transmitted via a pad portion 123, a wire 4, and a lead frame 5 described later via circuit wiring (not shown) formed on the semiconductor chip 1. It is configured to be sequentially transmitted to the outside. The semiconductor device S1 of the present embodiment is applied, for example, as a pressure sensor that measures the pressure of intake air, engine oil, and the like in a vehicle such as an automobile.
 なお、半導体装置S1は、センサ部31が出力する電気信号を制御する図示しない半導体素子が、さらにモールド樹脂6内に配置され、半導体チップ1およびリードフレーム5の間に配置された構成とされていてもよい。このように、センサ部31から出力される電気信号の伝達経路における構成については、適宜変更されてもよい。 In the semiconductor device S1, a semiconductor element (not shown) for controlling an electrical signal output from the sensor unit 31 is further disposed in the mold resin 6 and disposed between the semiconductor chip 1 and the lead frame 5. May be Thus, the configuration of the transmission path of the electrical signal output from the sensor unit 31 may be changed as appropriate.
 半導体チップ1は、図1に示すように、例えば、主にSiなどの半導体材料により構成された平板状の第1基板11および第2基板12を有してなり、これらの基板11、12が貼り合された構成とされている。半導体チップ1は、図1に示すように、その一部がリードフレーム5上に搭載され、図示しない銀ペーストやエポキシなどの接着剤により固定されている。半導体チップ1は、本実施形態では、図1に示すように、モールド樹脂6により一部が覆われて支持された状態、すなわち片持ちの状態とされている。 As shown in FIG. 1, the semiconductor chip 1 has, for example, flat plate-like first and second substrates 11 and 12 mainly made of a semiconductor material such as Si, and these substrates 11 and 12 are It is made into the composition put together. As shown in FIG. 1, a part of the semiconductor chip 1 is mounted on the lead frame 5 and fixed by an adhesive such as silver paste or epoxy (not shown). In the present embodiment, as shown in FIG. 1, the semiconductor chip 1 is in a state of being partially covered and supported by the mold resin 6, that is, in a cantilever state.
 なお、以降の説明では、図1に示すように、半導体チップ1のうちモールド樹脂6に厚く覆われて支持されている部位を「被支持部2」と、半導体チップ1のうち残部、すなわちモールド樹脂6から被支持部2の反対側に突き出す部分を「突出部3」と称する。また、図2に示すように、モールド樹脂6のうち突出部3と異なる部分を覆う部分を「支持部6a」と、突出部3の一部を支持部6aよりも薄い厚みで覆っている部分を「薄化部6b」と称する。さらに、図2に示すように、突出部3のうちモールド樹脂6から露出している部分を「露出部3a」と、突出部3のうち薄化部6bにより覆われる部分を「被覆部3b」と称する。 In the following description, as shown in FIG. 1, a portion of the semiconductor chip 1 which is thickly covered and supported by the molding resin 6 is referred to as a “supported portion 2” and the remaining portion of the semiconductor chip 1, that is, the mold The portion protruding from the resin 6 to the opposite side of the supported portion 2 is referred to as a “projected portion 3”. Further, as shown in FIG. 2, a portion covering the portion of the mold resin 6 different from the projecting portion 3 is a “support portion 6a” and a portion covering a portion of the projecting portion 3 thinner than the supporting portion 6a. Is referred to as "thinned portion 6b". Furthermore, as shown in FIG. 2, the portion of the projecting portion 3 exposed from the mold resin 6 is “exposed portion 3 a”, and the portion of the projecting portion 3 covered by the thinned portion 6 b is “coated portion 3 b” It is called.
 半導体チップ1は、本実施形態では、図2に示すように、突出部3のうちセンサ部31が形成された面の反対側の一面1a上の一部に、後述する製造工程におけるレーザの吸収率が45%以下であるレーザ低吸収材料7が配置されている。言い換えると、後述する製造工程でのモールド樹脂6の形成からレーザ加工までの間、半導体チップ1のうちレーザ加工により除去される一部のモールド樹脂6に覆われている領域(以下「レーザ除去領域」という)は、主にレーザ低吸収材料7で構成されている。 In the present embodiment, as shown in FIG. 2, in the semiconductor chip 1, absorption of a laser in a manufacturing process to be described later is performed on a part of one surface 1 a of the protrusion 3 opposite to the surface on which the sensor portion 31 is formed. A laser low absorption material 7 having a rate of 45% or less is disposed. In other words, a region covered by a part of the mold resin 6 which is removed by the laser processing of the semiconductor chip 1 during the period from the formation of the mold resin 6 in the manufacturing process to be described later to the laser processing Is mainly composed of the laser low absorption material 7.
 なお、ここでいう「レーザ除去領域が主にレーザ低吸収材料7で構成されている」とは、レーザ除去領域がレーザ低吸収材料7のみで構成されている場合だけでなく、レーザ低吸収材料7に加えて不可避の不純物や異物などを含んでいる場合も含む意味である。 Here, "the laser removal area is mainly composed of the laser low absorption material 7" means not only the case where the laser removal area is composed of only the laser low absorption material 7, but also the laser low absorption material. In addition to 7, it is the meaning also included when the unavoidable impurity, the foreign material, etc. are included.
 レーザ低吸収材料7は、例えば、後述するレーザ加工に用いるレーザの波長1.5μm~6μmにおける吸収率が45%以下である材料、具体的にはSi、SiO、SiC、サファイア、GaN、GaAsやInPなどで構成される。レーザ低吸収材料7は、例えば、半導体チップ1を構成する第1基板11や第2基板12として用いられるだけでなく、図2に示すように第2基板12上に別途配置される材料としても用いられる。後者の場合、レーザ低吸収材料7は、半導体チップ1のうち突出部3の一面1a上にAlなどの材料で形成される図示しないシリアルナンバーやアライメントマークなどを覆い、これらを保護するための保護膜として用いられる。 The laser low absorption material 7 is, for example, a material having an absorptivity of 45% or less at a wavelength of 1.5 μm to 6 μm of a laser used for laser processing described later, specifically, Si, SiO 2 , SiC, sapphire, GaN, GaAs And InP. The laser low absorption material 7 is not only used as, for example, the first substrate 11 or the second substrate 12 constituting the semiconductor chip 1, but also as a material separately disposed on the second substrate 12 as shown in FIG. Used. In the latter case, the laser low absorption material 7 covers a serial number or alignment mark (not shown) formed of a material such as Al on the surface 1 a of the protrusion 3 of the semiconductor chip 1 and protects the same. It is used as a membrane.
 なお、半導体チップ1は、その表面のうちレーザ加工の際にレーザが照射されず、かつモールド樹脂6に覆われる部分がモールド樹脂6との密着性の高い材料や応力緩和効果をもたらす材料で覆われていてもよい。モールド樹脂6との密着性の高い材料としては、例えばSiやPIQ(Polyimideiso-indoloquinazo-linedione)等が挙げられる。具体的には、半導体チップ1のうち被支持部2および被覆部3bの表面の一部もしくは全部にSiやPIQが配置され、モールド樹脂6との密着が高められた構造とされていてもよい。 The semiconductor chip 1 is covered with a material having high adhesion to the mold resin 6 or a material that provides a stress relaxation effect, and the portion of the surface to which the laser is not irradiated during laser processing and the portion covered with the mold resin 6 is covered. It may be included. Examples of the material having high adhesion to the mold resin 6 include Si 3 N 4 and PIQ (Polyimide iso-indoloquinazo-linedione). Specifically, Si 3 N 4 or PIQ is disposed on a part or all of the surfaces of the supported portion 2 and the covering portion 3 b of the semiconductor chip 1, and the adhesion with the mold resin 6 is enhanced. May be
 また、半導体チップ1は、レーザ除去領域がレーザ低吸収材料7で構成されていることを除き、任意の半導体チップの構成とされており、レーザ低吸収材料7以外の構成が適宜変更されてもよい。 Further, the semiconductor chip 1 has an arbitrary semiconductor chip configuration except that the laser removal region is formed of the laser low absorption material 7, and the configuration other than the laser low absorption material 7 may be appropriately changed. Good.
 第1基板11は、図1に示すように、その一面11aが第2基板12の一面12a側と向き合う状態で第2基板12と貼り合せされている。第1基板11は、一面11aの反対側の面に一面11a側に向かって凹んだ第1凹部111が形成されると共に、第1凹部111の形成により薄肉化された薄肉部112を有する。第1基板11は、一面11a側に、薄肉部112から被支持部2側に延設された図示しない回路配線と、これに電気的に接続されたゲージ抵抗とが形成されている。このゲージ抵抗は、例えば薄肉部112上に形成されており、薄肉部112の変形に伴って変形し、ピエゾ抵抗効果によりその抵抗値が変化するものである。 As shown in FIG. 1, the first substrate 11 is bonded to the second substrate 12 such that one surface 11 a thereof faces the one surface 12 a side of the second substrate 12. The first substrate 11 has a first recess 111 recessed toward the first surface 11 a on the surface opposite to the first surface 11 a and has a thin portion 112 thinned by the formation of the first recess 111. The first substrate 11 is formed with a circuit wiring (not shown) extending from the thin portion 112 to the supported portion 2 side and a gauge resistor electrically connected to the first surface 11 a. The gauge resistance is formed, for example, on the thin-walled portion 112, and is deformed along with the deformation of the thin-walled portion 112, and its resistance value changes due to the piezoresistance effect.
 第2基板12は、図1に示すように、一面12aに第2凹部121が形成されると共に、第2凹部121が薄肉部112を覆うように配置されている。この第2凹部121と第1基板11とがなす空間により、圧力基準室122が形成されている。圧力基準室122は、例えば真空圧とされているが、大気圧とされてもよい。このように第1基板11の薄肉部112と第2基板12の第2凹部121とにより、センサ部31が形成されている。 As shown in FIG. 1, the second substrate 12 has a second recess 121 formed on one surface 12 a, and the second recess 121 is disposed so as to cover the thin portion 112. A pressure reference chamber 122 is formed by the space formed by the second recess 121 and the first substrate 11. The pressure reference chamber 122 is, for example, vacuum pressure, but may be atmospheric pressure. As described above, the sensor portion 31 is formed by the thin portion 112 of the first substrate 11 and the second concave portion 121 of the second substrate 12.
 センサ部31は、本実施形態では、圧力を検出する素子であり、図1に示すように、半導体チップ1のうち突出部3に形成されている。センサ部31は、例えば空気などの気体もしくはオイルなどの液体から外圧が加えられると、薄肉部112上の図示しないゲージ抵抗の抵抗値が変化することで、圧力に応じた電気信号を出力する。センサ部31から出力された電気信号は、第1基板11の一面11a側に形成された図示しない回路配線を介して半導体チップ1のパッド部123に伝達される。 In the present embodiment, the sensor unit 31 is an element that detects pressure, and as shown in FIG. 1, the sensor unit 31 is formed in the protrusion 3 of the semiconductor chip 1. For example, when an external pressure is applied from a gas such as air or a liquid such as oil, the sensor unit 31 changes the resistance value of a gauge resistance (not shown) on the thin portion 112 and outputs an electrical signal according to the pressure. The electrical signal output from the sensor unit 31 is transmitted to the pad unit 123 of the semiconductor chip 1 through a circuit wiring (not shown) formed on the side of the first surface 11 a of the first substrate 11.
 パッド部123は、図1に示すように、半導体チップ1のうち被支持部2となる部分に形成され、第1基板11の一面11a側の図示しない回路配線と電気的に接続されている。パッド部123は、例えば、Alなどの金属材料により構成され、図1に示すように、第2基板12の一面12aとその反対面12bとを繋ぐ貫通孔の内壁および反対面12bの一部を覆うように形成されている。 As shown in FIG. 1, the pad portion 123 is formed in a portion to be the supported portion 2 in the semiconductor chip 1 and is electrically connected to a not-shown circuit wiring on the first surface 11 a side of the first substrate 11. The pad portion 123 is made of, for example, a metal material such as Al, and as shown in FIG. 1, the inner wall of the through hole connecting one surface 12a of the second substrate 12 to the opposite surface 12b and a part of the opposite surface 12b. It is formed to cover.
 ワイヤ4は、例えば、Auなどの金属材料により構成され、図1に示すように、パッド部123およびリードフレーム5それぞれにワイヤボンディングにより接続され、これらを電気的に接続している。 The wire 4 is made of, for example, a metal material such as Au, and is connected to each of the pad portion 123 and the lead frame 5 by wire bonding as shown in FIG. 1 to electrically connect them.
 リードフレーム5は、例えば、Cuなどの金属材料により構成され、図1に示すように、その一面上に半導体チップ1が搭載されると共に、半導体チップ1が搭載された一端の反対側の他端がモールド樹脂6から露出している。 The lead frame 5 is made of, for example, a metal material such as Cu, and as shown in FIG. 1, the semiconductor chip 1 is mounted on one surface and the other end opposite to the one end on which the semiconductor chip 1 is mounted. Are exposed from the mold resin 6.
 モールド樹脂6は、例えば、エポキシ樹脂などの樹脂材料により構成され、半導体チップ1の一部、ワイヤ4、リードフレーム5の一部を覆っており、トランスファー成形などにより形成される。 The mold resin 6 is made of, for example, a resin material such as an epoxy resin, covers a part of the semiconductor chip 1, the wire 4 and a part of the lead frame 5, and is formed by transfer molding or the like.
 以上が、半導体装置S1の基本的な構成である。 The above is the basic configuration of the semiconductor device S1.
 次に、半導体装置S1の製造方法の一例について、図3A、図3Bを参照して述べる。図3A、図3Bでは、図2と同様に、センサ部31を一点鎖線で、後述するレーザ加工におけるレーザを照射部分の一例を二点鎖線で、突出部3のうち薄化部6bで覆われた部分の外郭線およびレーザ低吸収材料7を破線で示している。 Next, an example of a method of manufacturing the semiconductor device S1 will be described with reference to FIGS. 3A and 3B. In FIG. 3A and FIG. 3B, as in FIG. 2, the sensor unit 31 is covered with the thinning portion 6b of the projecting portion 3 by the dashed-dotted line with an example of the portion irradiated with the laser in laser processing described later. The outline of the curved portion and the laser low absorption material 7 are shown by broken lines.
 なお、半導体装置S1の製造工程では、半導体チップ1の突出部3となる部分にレーザ低吸収材料7を配置する点を除いて、任意の半導体プロセスを採用できるため、レーザ低吸収材料7に関連する工程以外については、簡単に説明する。 In the manufacturing process of the semiconductor device S1, an arbitrary semiconductor process can be adopted except that the laser low absorption material 7 is disposed in the portion to be the protruding portion 3 of the semiconductor chip 1, and therefore the laser low absorption material 7 is related. The steps other than the above are briefly described.
 まず、通常の半導体プロセスにより製造され、後ほどモールド樹脂6から突出する突出部3となる部分にレーザ低吸収材料7が配置された半導体チップ1を用意する。例えば、半導体チップ1のうち突出部3となる領域においてAlにより形成されたアライメントマークやシリアルナンバーが形成された部分を覆うように、図示しないマスクを用いて、蒸着やスパッタリングなどの真空成膜法によりレーザ低吸収材料7を形成する。 First, a semiconductor chip 1 is prepared, which is manufactured by an ordinary semiconductor process and in which the laser low absorption material 7 is disposed in a portion to be the protruding portion 3 which protrudes from the mold resin 6 later. For example, a vacuum film forming method such as vapor deposition or sputtering is performed using a mask (not shown) so as to cover a portion of the semiconductor chip 1 where the alignment mark or serial number is formed of Al in the region to be the projecting portion 3. Thus, the laser low absorption material 7 is formed.
 次いで、半導体チップ1のうち被支持部2となる部分側の端部をリードフレーム5の一面上に例えばはんだ付けにより搭載した後、ワイヤボンディングにより半導体チップ1のパッド部123とリードフレーム5とを電気的に接続する。そして、例えば上型と下型とによりなる図示しない金型を用意し、半導体チップ1、ワイヤ4およびリードフレーム5が一体化されたワークを当該金型にセットする。 Next, the end of the semiconductor chip 1 on the side to be the supported portion 2 is mounted on one surface of the lead frame 5 by, for example, soldering, and then the pad portion 123 of the semiconductor chip 1 and the lead frame 5 are bonded by wire bonding. Connect electrically. Then, for example, a mold (not shown) composed of an upper mold and a lower mold is prepared, and a work in which the semiconductor chip 1, the wire 4 and the lead frame 5 are integrated is set in the mold.
 続けて、金型のキャビティ内にモールド樹脂6を構成する樹脂材料を流し込んで硬化させ、半導体チップ1およびリードフレーム5の一部並びにワイヤ4を覆うモールド樹脂6を形成する。 Subsequently, the resin material constituting the mold resin 6 is poured into the cavity of the mold and cured to form the mold resin 6 covering the semiconductor chip 1 and a part of the lead frame 5 and the wire 4.
 なお、モールド樹脂6の形成の際、半導体チップ1のうち少なくともセンサ部31に樹脂材料が流れ込まないようにする。例えば、半導体チップ1の一面1aの反対面のうち突出部3となる領域が上型もしくは下型と隙間なく接触する金型を用意したり、センサ部31を覆う図示しないカバーなどの別部材を用意したりすることなどが考えられる。 When forming the mold resin 6, the resin material is prevented from flowing into at least the sensor portion 31 of the semiconductor chip 1. For example, another member such as a cover (not shown) which prepares a mold in which the region to be the protruding portion 3 in the opposite surface of the one surface 1a of the semiconductor chip 1 contacts the upper or lower die without a gap It may be possible to prepare it.
 モールド樹脂6の形成後、ワークを金型から離型する。モールド樹脂6の形成後のワークには、図3Aに示すように、上面視にて突出部3の周囲などを覆うモールド樹脂6の余剰分(以下「余剰樹脂8」という)が残るため、これをレーザ照射により除去する。具体的には、モールド樹脂6の材料における吸収率が高く、かつ、半導体チップ1を主に構成するSiにおける吸収率が45%以下となる波長、例えば1.5μm~6.0μmの波長の光をレーザとして用いる。 After forming the mold resin 6, the work is released from the mold. In the work after formation of the mold resin 6, as shown in FIG. 3A, a surplus portion (hereinafter referred to as "surplus resin 8") of the mold resin 6 covering the periphery of the protrusion 3 and the like in top view remains. Is removed by laser irradiation. Specifically, light having a wavelength at which the absorptivity of the material of the mold resin 6 is high and the absorptivity of Si mainly constituting the semiconductor chip 1 is 45% or less, for example, a wavelength of 1.5 μm to 6.0 μm Is used as a laser.
 そして、余剰樹脂8を除去したい部分にこのような波長のレーザを照射し、これを除去する。例えば、図3Aの二点鎖線で示す領域にレーザを照射すると、図3Bに示すように、余剰樹脂8の一部が除去され、この部分が露出部3aとなる。このレーザ照射の工程を図3Bの二点鎖線で示すように、上面視にて突出部3の外郭線に沿って繰り返す。このレーザ照射工程により余剰樹脂8を除去すると、図2に示す状態となる。このようにして、本実施形態の半導体装置S1を製造することができる。 And the laser of such a wavelength is irradiated to the part which wants to remove the excessive resin 8, and this is removed. For example, when a region indicated by a two-dot chain line in FIG. 3A is irradiated with a laser, as shown in FIG. The process of this laser irradiation is repeated along the outer outline of the protrusion 3 in top view as shown by a two-dot chain line in FIG. 3B. When the excess resin 8 is removed by this laser irradiation step, the state shown in FIG. 2 is obtained. Thus, the semiconductor device S1 of the present embodiment can be manufactured.
 なお、余剰樹脂8を除去するレーザとしては、例えば、HoYAG(波長:約1.5μm)やErYAG(波長:約3μm)などが挙げられる。また、レーザ照射の条件、例えばエネルギー密度、パルス幅やレーザ照射径などについては、余剰樹脂8を除去できればよく、適宜設定される。 Examples of the laser for removing the excess resin 8 include HoYAG (wavelength: about 1.5 μm) and ErYAG (wavelength: about 3 μm). The conditions for laser irradiation, such as energy density, pulse width and laser irradiation diameter, may be set appropriately as long as the excess resin 8 can be removed.
 次に、レーザの好ましい波長範囲およびレーザ低吸収材料7について図4A~図4Dを参照して説明する。 Next, a preferred wavelength range of the laser and the laser low absorption material 7 will be described with reference to FIGS. 4A to 4D.
 余剰樹脂8の除去に用いるレーザは、モールド樹脂6を構成する樹脂材料によく吸収される一方で、レーザ低吸収材料7にあまり吸収されない波長範囲の光とされる。具体的には、レーザの波長は、一般的なエポキシ樹脂系の光の吸収率が、図4Dに示すように、0.4μm~11μmの範囲においては90%以上であるため、余剰樹脂8の除去の観点では、0.4μm~11μmの範囲内であればよい。一方、半導体チップ1を主に構成するSiの吸収率は、図4Aに示すように、1.5μm以上6μm以下の範囲内では45%以下であり、0.4μm以上1.5μm未満および6μmを超える範囲では、45%を超えている。半導体チップ1を構成するSiが45%を超えて過剰にレーザを吸収すると、発熱による損傷が起き得るため、これを防止する観点から、レーザの波長は、1.5μm~6.0μmの範囲内とされることが好ましい。 The laser used to remove the excess resin 8 is light in a wavelength range that is well absorbed by the resin material that constitutes the mold resin 6 while not absorbed much by the laser low absorption material 7. Specifically, the wavelength of the laser is 90% or more in the range of 0.4 μm to 11 μm, as shown in FIG. From the viewpoint of removal, it may be in the range of 0.4 μm to 11 μm. On the other hand, as shown in FIG. 4A, the absorptivity of Si mainly constituting the semiconductor chip 1 is 45% or less within the range of 1.5 μm to 6 μm, and 0.4 μm to 1.5 μm and 6 μm. In the range beyond, it exceeds 45%. If the Si constituting the semiconductor chip 1 absorbs the laser excessively by more than 45%, damage due to heat generation may occur. From the viewpoint of preventing this, the wavelength of the laser is in the range of 1.5 μm to 6.0 μm. It is preferable that
 レーザ低吸収材料7は、例えばレーザの波長範囲を1.5μm~6.0μmとした場合、当該範囲内においてレーザの吸収率が45%以下の材料が選定される。例えば、SiOは、図4Bに示すように、1.5μm~6.0μmの範囲では、吸収率が45%以下であるため、レーザ低吸収材料7として用いられることが好ましい材料と言える。 For example, when the wavelength range of the laser is set to 1.5 μm to 6.0 μm, for the laser low absorption material 7, a material having an absorptivity of 45% or less in the range is selected. For example, as shown in FIG. 4B, SiO 2 has an absorptivity of 45% or less in the range of 1.5 μm to 6.0 μm, so it can be said that it is preferable to use it as the laser low absorption material 7.
 一方、絶縁膜として用いられるSiは、図4Cに示すように、1.5μm~6.0μmの範囲において、吸収率が45%を超える波長範囲が存在する。つまり、Siは、レーザのうち所定の波長の光の吸収が大きく、発熱により損傷するおそれがあるため、レーザ低吸収材料7として用いられることが好ましくない材料と言える。 On the other hand, as shown in FIG. 4C, Si 3 N 4 used as the insulating film has a wavelength range in which the absorptivity exceeds 45% in the range of 1.5 μm to 6.0 μm. That is, Si 3 N 4 is a material which is not preferable to be used as the laser low absorption material 7 because Si 3 N 4 has a large absorption of light of a predetermined wavelength among lasers and may be damaged by heat generation.
 余剰樹脂8を除去するレーザの波長範囲とレーザ低吸収材料7の選定は、上記のような観点で行われる。なお、レーザ低吸収材料7は、SiやSiOとされることが好ましい旨を説明したが、1.5μm~6.0μmの範囲において吸収率が45%以下となる材料とされていればよく、これに限定されるものではない。 The wavelength range of the laser for removing the excess resin 8 and the selection of the laser low absorption material 7 are performed from the above viewpoints. Although it has been described that the laser low absorption material 7 is preferably made of Si or SiO 2 , it is preferable if the material has an absorptivity of 45% or less in the range of 1.5 μm to 6.0 μm. Not limited to this.
 次に、半導体チップ1のうちレーザ除去領域がレーザ低吸収材料7で構成されることによる効果について説明する。なお、以下の説明においては、従来の半導体装置の構成要素のうち、本実施形態の半導体装置S1の構成要素に相当するものについては、便宜的に同じ参照符号を付している。 Next, an effect of forming the laser removal region of the semiconductor chip 1 with the laser low absorption material 7 will be described. In the following description, among the components of the conventional semiconductor device, those corresponding to the components of the semiconductor device S1 of the present embodiment are given the same reference numerals for convenience.
 従来の半導体装置では、半導体チップ1のうち突出部3に相当する部分の表面に、製造工程における位置合わせ用のアライメントマークや半導体チップのシリアルナンバーが刻印されているものがある。このシリアルナンバーなどは、通常の半導体プロセスに用いられる材料、例えばAlなどにより構成されるが、大気に暴露された状態では腐食などにより剥離して識別できなくなり得る。このような事態を防止するため、通常、シリアルナンバーなどを構成する材料が耐腐食性のある材料、例えばSiなどの材料で覆われた構造とされる。 Among conventional semiconductor devices, there are semiconductor devices in which an alignment mark for alignment in the manufacturing process and a serial number of the semiconductor chip are imprinted on the surface of a portion corresponding to the protrusion 3 in the semiconductor chip 1. The serial number and the like are made of a material used in a normal semiconductor process, such as Al, but in the state of being exposed to the atmosphere, the serial number may peel off due to corrosion and the like, and thus can not be identified. In order to prevent such a situation, a material constituting a serial number or the like is usually covered with a material having corrosion resistance, for example, a material such as Si 3 N 4 .
 しかしながら、樹脂材料の除去などの目的で、このような構成とされた半導体チップ1にレーザ照射を行うと、シリアルナンバーなどを覆うSiは、当該レーザを吸収して発熱し、シリアルナンバーなどごと破壊されてしまうことがある。つまり、レーザ加工におけるレーザの吸収率が高い、例えば45%を超える吸収率である材料がレーザ除去領域に配置されている場合には、半導体チップ1の損傷が起こり得る。 However, if laser irradiation is performed on the semiconductor chip 1 having such a configuration for the purpose of removing the resin material, etc., the Si 3 N 4 covering the serial number etc. absorbs the laser and generates heat, and the serial number It may be destroyed every time. That is, when a material having a high absorptivity of the laser in the laser processing, for example, an absorptivity over 45% is disposed in the laser removal area, the semiconductor chip 1 may be damaged.
 一方、本実施形態の半導体装置S1は、突出部3のうちレーザ除去領域が当該レーザの吸収率が45%以下であるレーザ低吸収材料7で構成されているため、レーザ除去領域における当該レーザの過剰吸収が生じない構造である。これにより、レーザ加工における半導体チップ1の損傷を抑制できる半導体装置S1となる。 On the other hand, in the semiconductor device S1 of the present embodiment, since the laser removal region of the protrusion 3 is formed of the laser low absorption material 7 whose absorptivity of the laser is 45% or less, It is a structure that does not cause excessive absorption. As a result, the semiconductor device S1 can be prevented from damaging the semiconductor chip 1 in laser processing.
 本実施形態によれば、突出部3のうちレーザ除去領域がレーザ低吸収材料7で構成された半導体チップ1であるため、レーザ照射による半導体チップ1の損傷が抑制される半導体装置となる。 According to the present embodiment, the semiconductor chip 1 in which the laser removal region in the protrusion 3 is made of the laser low absorption material 7 is a semiconductor device in which damage to the semiconductor chip 1 due to laser irradiation is suppressed.
 また、半導体チップ1のうちレーザ除去領域がレーザ低吸収材料7で構成されたものを用意し、これを用いることでレーザ加工における半導体チップ1の損傷が抑えられた半導体装置を製造することができる。 In addition, it is possible to manufacture a semiconductor device in which damage to the semiconductor chip 1 in laser processing is suppressed by preparing one of the semiconductor chips 1 in which the laser removal region is made of the laser low absorption material 7 and using this. .
 (第2実施形態)
 第2実施形態の半導体装置S2について、図5~図8を参照して述べる。
Second Embodiment
The semiconductor device S2 of the second embodiment will be described with reference to FIGS. 5 to 8.
 本実施形態の半導体装置S2は、図5に示すように、モールド樹脂6が樹脂61とフィラー62とを有してなり、フィラー62が支持部6aに配置されている。また、半導体装置S2は、図6に示すように、支持部6aに含まれるフィラー62の粒径が、薄化部6bの一面法線方向における厚み(以下、単に「厚み」という)よりも大きい。半導体装置S2は、主に上記の点において上記第1実施形態と相違する。本実施形態では、これらの相違点を中心に説明する。 As shown in FIG. 5, in the semiconductor device S2 of the present embodiment, the mold resin 6 includes the resin 61 and the filler 62, and the filler 62 is disposed in the support portion 6a. In the semiconductor device S2, as shown in FIG. 6, the particle diameter of the filler 62 contained in the support portion 6a is larger than the thickness in the normal direction of one surface of the thinned portion 6b (hereinafter simply referred to as "thickness"). . The semiconductor device S2 is different from the first embodiment mainly in the above points. In the present embodiment, these differences will be mainly described.
 モールド樹脂6は、本実施形態では、樹脂61とフィラー62とを有してなり、半導体装置S2のうち突出部3以外の部分を覆って支持する支持部6aと、突出部3の一部を薄く覆う薄化部6bとにより構成されている。なお、ここでいう「薄く覆う」とは、支持部6aのうち半導体チップ1を覆う部分の厚みよりも薄い厚みで覆っていることを意味する。 In the present embodiment, the mold resin 6 includes a resin 61 and a filler 62, and a supporting portion 6a that covers and supports a portion other than the projecting portion 3 in the semiconductor device S2, and a portion of the projecting portion 3 It is comprised by the thin part 6b covered thinly. In addition, "covering thinly" here means covering with thickness thinner than the thickness of the part which covers the semiconductor chip 1 among the support parts 6a.
 樹脂61は、例えば、エポキシ樹脂などの任意の樹脂材料である。 The resin 61 is, for example, an arbitrary resin material such as an epoxy resin.
 フィラー62は、例えば、球形状や破砕形状とされ、アルミナやシリカなどの無機材料により構成されている。フィラー62は、例えばモールド樹脂6の線膨張係数や熱伝導率等の調整の目的で添加され、図5に示すように、モールド樹脂6のうち支持部6aに分布している。フィラー62は、図7に示すように、所定の粒径範囲、例えばφ50μm~200μmとされるが、少なくとも薄化部6bの厚みよりも粒径が大きいものが用いられる。フィラー62は、図7に示すように、薄化部6bの厚みよりも粒径が小さい粒子を除去したものが用いられることが好ましい。例えば、フィラー62は、薄化部6bの厚みが50μmである場合、粒径50μm以下の粒子がろ過等により除去されているものが用いられることが好ましい。この理由は、半導体装置S2の製造方法の説明にて後述する。 The filler 62 has, for example, a spherical shape or a crushed shape, and is made of an inorganic material such as alumina or silica. The filler 62 is added, for example, for the purpose of adjusting the coefficient of linear expansion of the mold resin 6, the thermal conductivity, etc., and is distributed in the support portion 6a of the mold resin 6, as shown in FIG. As shown in FIG. 7, the filler 62 has a predetermined particle diameter range, for example, φ 50 μm to 200 μm, but a filler having a particle diameter larger than at least the thickness of the thinned portion 6 b is used. It is preferable that the filler 62 remove | eliminates the particle | grains whose particle size is smaller than the thickness of the thinning part 6b as shown in FIG. For example, when the thickness of the thinned portion 6 b is 50 μm, it is preferable that the filler 62 be used in which particles having a particle diameter of 50 μm or less are removed by filtration or the like. The reason for this will be described later in the description of the method of manufacturing the semiconductor device S2.
 薄化部6bは、主に樹脂61により構成されている。薄化部6bは、図6に示すように、一面法線方向における厚みをt1とし、フィラー62の粒径をt2としたとき、t1<t2の関係が成立している。つまり、薄化部6bの厚みは、フィラー62の粒径未満とされている。 The thinned portion 6 b is mainly made of the resin 61. As shown in FIG. 6, when the thickness in the normal direction to one surface is t1 and the particle diameter of the filler 62 is t2, the thinned portion 6b has a relationship of t1 <t2. That is, the thickness of the thinned portion 6 b is less than the particle diameter of the filler 62.
 次に、半導体装置S2の製造方法の一例について、図8を参照して述べるが、モールド樹脂6を樹脂61およびフィラー62を含んだ構成とする点およびフィラー62を支持部6aに配置する点以外は上記第1実施形態と同様である。そのため、ここでは、フィラー62を含有するモールド樹脂6の形成工程について主に説明する。 Next, an example of a method of manufacturing the semiconductor device S2 will be described with reference to FIG. 8 except that the mold resin 6 includes the resin 61 and the filler 62 and the filler 62 is disposed in the support portion 6a. Is the same as in the first embodiment. Therefore, here, the process of forming the mold resin 6 containing the filler 62 will be mainly described.
 半導体チップ1、ワイヤ4およびリードフレーム5を一体化したワークを作製し、図8に示すように、このワークをセットする金型200を用意する。具体的には、例えば、図8に示すように、上型201と下型202とによりなり、モールド樹脂6の支持部6aが形成される第1のキャビティ203と薄化部6bが形成される第2のキャビティ204を備える金型200を用意する。 A work in which the semiconductor chip 1, the wire 4 and the lead frame 5 are integrated is manufactured, and as shown in FIG. 8, a mold 200 for setting the work is prepared. Specifically, for example, as shown in FIG. 8, the first cavity 203 and the thinned portion 6b are formed by the upper mold 201 and the lower mold 202, and the supporting portion 6a of the mold resin 6 is formed. A mold 200 provided with a second cavity 204 is prepared.
 次いで、樹脂61を構成する樹脂材料、およびフィラー62を用意する。このとき、半導体チップ1の一面1aのうち「モールド樹脂6の形成後に突出部3を構成する部分」と「上型201」との一面法線方向における隙間よりも大きい粒径のものをフィラー62として用意する。そして、図8に示すように、モールド樹脂6の材料を図示しない注入口から第1のキャビティ203に注入して硬化させ、モールド樹脂6を形成する。 Next, the resin material constituting the resin 61 and the filler 62 are prepared. At this time, the filler 62 having a particle diameter larger than the gap in the normal direction to one surface of the “upper mold 201” and the “upper die 201” in the one surface 1 a of the semiconductor chip 1 Prepare as. Then, as shown in FIG. 8, the material of the mold resin 6 is injected from the injection port (not shown) into the first cavity 203 and cured to form the mold resin 6.
 このモールド樹脂6の形成時には、モールド樹脂6の材料が第1のキャビティ203側から第2のキャビティ204側へ向かって流れる。このとき、フィラー62は、その粒径が上型201のうち「第1のキャビティ203と第2のキャビティ204との境界部」と「半導体チップ1」との隙間よりも大きいため、この隙間より第2のキャビティ204側の空間には入り込めない。その結果、フィラー62は、形成されるモールド樹脂6のうち支持部6aに配置される一方で、薄化部6bには配置されない。言い換えると、樹脂61とフィラー62とを含有する材料を用いつつも、部分的にフィラーレスとされた領域、すなわち薄化部6bを備えるモールド樹脂6が形成される。 At the time of forming the mold resin 6, the material of the mold resin 6 flows from the first cavity 203 side toward the second cavity 204 side. At this time, since the filler 62 has a particle diameter larger than the gap between the “boundary portion between the first cavity 203 and the second cavity 204” and the “semiconductor chip 1” in the upper mold 201, It can not enter the space on the second cavity 204 side. As a result, the filler 62 is disposed on the support portion 6 a of the mold resin 6 to be formed, but is not disposed on the thinned portion 6 b. In other words, while using the material containing the resin 61 and the filler 62, the mold resin 6 including the region partially made filler-less, that is, the thinned portion 6b is formed.
 なお、ここでいう「フィラーレス」とは、フィラー62が全く混入していない状態だけでなく、ろ過等による除去が困難であったり、フィラー62の一部が欠けたりするなどの要因により不可避の微小粒径のフィラーが存在する状態も含む意味である。 In addition, "fillerless" mentioned here is not only in the state where the filler 62 is not mixed at all, it is difficult to remove by filtration etc., and a factor such as part of the filler 62 is inevitable, etc. It is the meaning also including the state where the filler of a minute particle size exists.
 ここで、従来のフィラーレス樹脂を別途用いる製造方法は、突出部3の一部にフィラーレス樹脂による膜を例えばディスペンサー塗布により形成した後、モールド樹脂6を形成し、フィラーレス樹脂をレーザ加工により除去するものである。しかし、フィラーレス樹脂による膜が厚く形成されてしまうと、フィラーレス樹脂のうち突出部3側に位置する部分、すなわちフィラーレス樹脂の表面から見て深い部分にレーザ加工の際のレーザが届きにくくなることが懸念される。また、フィラーレス樹脂による膜が一時的に形成されることによって、その後のモールド樹脂6を形成する工程における寸法的な制約が生じる。 Here, in the manufacturing method using the conventional fillerless resin separately, after a film made of the fillerless resin is formed on a part of the projecting portion 3 by dispenser coating, for example, the mold resin 6 is formed and the fillerless resin is laser-processed It is something to remove. However, when the film made of the fillerless resin is thickly formed, it is difficult for the laser at the time of the laser processing to reach a portion of the fillerless resin located on the protrusion 3 side, that is, a deep portion viewed from the surface of the fillerless resin. To be concerned. In addition, the temporary formation of the film made of the fillerless resin causes dimensional restriction in the subsequent step of forming the mold resin 6.
 これに対して、本実施形態の半導体装置の製造方法の場合、モールド樹脂6の形成工程においてフィラー62を含有する部分とフィラーレスの部分とが一括で形成されるため、上記の問題が生じることはない。 On the other hand, in the case of the method of manufacturing a semiconductor device according to the present embodiment, the portion containing the filler 62 and the portion without filler are simultaneously formed in the step of forming the mold resin 6, thus causing the above problem. There is no.
 本実施形態によれば、上記第1実施形態の効果が得られると共に、フィラー62を含有するモールド樹脂6のうち選択的にフィラーレスとされた薄化部6bを備え、別途フィラーレス樹脂を用いることなく製造できる構成とされた半導体装置となる。 According to the present embodiment, the effects of the first embodiment can be obtained, and the thinning portion 6b selectively made filler-less in the mold resin 6 containing the filler 62 is provided, and a filler-free resin is separately used. Thus, the semiconductor device can be manufactured without manufacturing.
 また、半導体チップ1のうち突出部3を構成する部分と金型200との隙間を、モールド樹脂6に含まれるフィラー62の粒径よりも小さくすることで、フィラー62を含有する支持部6aとフィラーレスとされた薄化部6bとを一括形成することができる。つまり、フィラーレス樹脂を別途用いることなく、選択的にフィラーレスとされた薄化部6bを形成できるため、従来よりも簡便にレーザ除去領域もしくはその近傍がフィラーレスとされた半導体装置を製造できる。 Further, by making the gap between the portion of the semiconductor chip 1 which constitutes the projecting portion 3 and the mold 200 smaller than the particle diameter of the filler 62 contained in the mold resin 6, the support portion 6a containing the filler 62 and Fillerless thinned portions 6b can be formed at one time. That is, since it is possible to selectively form the filler-free thinned portion 6b without separately using the filler-less resin, it is possible to manufacture a semiconductor device in which the laser removal region or the vicinity thereof is filler-less more easily than in the prior art. .
 (他の実施形態)
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらの一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and also other combinations and forms including only one element or more or less thereof are also within the scope and the scope of the present disclosure.
 (1)上記第1実施形態では、薄化部6bがモールド樹脂6の樹脂材料と同じもので構成された場合について説明した。しかし、半導体チップ1へのモールド樹脂6の成形圧力を緩和し、半導体チップ1の残留応力を低減する目的で、半導体チップ1の突出部3となる部分を覆う低弾性材料によりなる薄膜があらかじめ形成された半導体チップ1が用いられてもよい。この低弾性材料としては、例えば、ポリアクリル、シリコーン樹脂やポリイミドなどが挙げられる。この場合、例えば、図9に示すように、低弾性材料による低弾性薄膜9が形成された半導体チップ1を用いてモールド樹脂6を形成することが考えられる。 (1) In the first embodiment, the case where the thinning portion 6 b is made of the same resin material as the mold resin 6 has been described. However, for the purpose of relieving the molding pressure of the mold resin 6 on the semiconductor chip 1 and reducing the residual stress of the semiconductor chip 1, a thin film made of a low elasticity material is formed in advance to cover the portion to be the projecting portion 3 of the semiconductor chip 1. The semiconductor chip 1 may be used. Examples of the low elasticity material include polyacrylics, silicone resins and polyimides. In this case, for example, as shown in FIG. 9, it is conceivable to form the mold resin 6 using the semiconductor chip 1 on which the low elastic thin film 9 of the low elastic material is formed.
 ここで、従来の半導体装置の製造方法としては、図10に示すように、具体的には、図9に示すように、上型401および下型402によりなる金型400とフィルム500を用意する。この金型400は、モールド樹脂6のうち支持部6aを形成する第3のキャビティ403と、半導体チップ1のうち突出部3となる部分をセットするための第4のキャビティ404を備える。フィルム500は、図10に示すように、上型401の内壁に沿って配置される。そして、金型400内に半導体チップ1をセットし、半導体チップ1のうちモールド樹脂6から露出させる部分にフィルム500を介して型合わせの圧力がかかるようにする。これにより、フィルム500を介して金型400の型合わせの圧力が半導体チップ1に伝わるのが緩和され、半導体チップ1の残留応力を低減できる。しかしながら、この方法では、金型400のほか、フィルム500が別途必要となってしまう。 Here, as a conventional method of manufacturing a semiconductor device, as shown in FIG. 10, specifically, as shown in FIG. 9, a mold 400 and a film 500 including an upper mold 401 and a lower mold 402 are prepared. . The mold 400 includes a third cavity 403 forming the support portion 6 a of the molding resin 6 and a fourth cavity 404 for setting a portion to be the projecting portion 3 of the semiconductor chip 1. The film 500 is disposed along the inner wall of the upper mold 401, as shown in FIG. Then, the semiconductor chip 1 is set in the mold 400, and the pressure of mold alignment is applied to the portion of the semiconductor chip 1 exposed from the mold resin 6 through the film 500. As a result, transfer of the pressure for mold alignment of the mold 400 to the semiconductor chip 1 through the film 500 is relaxed, and the residual stress of the semiconductor chip 1 can be reduced. However, in this method, in addition to the mold 400, the film 500 is required separately.
 そこで、図9に示すように、上型301および下型302によりなる金型300内に半導体チップ1をセットして型合わせしたときに、半導体チップ1のうち例えば上型301と圧接する部分に低弾性薄膜9を形成しておく。これにより、半導体チップ1と上型301との当接による圧力が低弾性薄膜9を介することで緩和される。そのため、フィルム500を用いなくとも、金型300の型合わせの圧力が半導体チップ1に過剰にかかることに起因する残留応力を低減でき、これによる半導体チップ1の信頼性の低下が抑制された信頼性の高い半導体装置を製造することができる。 Therefore, as shown in FIG. 9, when the semiconductor chip 1 is set in the mold 300 composed of the upper mold 301 and the lower mold 302 and the molds are aligned, the semiconductor chip 1 is in contact with, for example, the upper mold 301. The low elastic thin film 9 is formed. Thereby, the pressure due to the contact between the semiconductor chip 1 and the upper die 301 is relieved by the low elastic thin film 9. Therefore, even without using the film 500, it is possible to reduce the residual stress caused by the pressure of the mold alignment of the mold 300 being applied to the semiconductor chip 1 excessively, and the reliability in which the decrease in the reliability of the semiconductor chip 1 is suppressed. A highly reliable semiconductor device can be manufactured.
 なお、低弾性薄膜9は、レーザ加工によってその一部もしくは全部が除去されてもよいし、センサ部31の動作に対する影響が小さい厚み、例えば150μm以下であれば残されていてよい。 The low elastic thin film 9 may be partially or entirely removed by laser processing, or may be left as long as the thickness of the thin elastic film 9 has a small influence on the operation of the sensor unit 31, for example, 150 μm or less.
 (2)上記各実施形態では、半導体チップ1の一端がモールド樹脂6によって支持され、他端が自由端とされた片持ち構造とされた例について説明した。しかし、半導体チップ1は、レーザ除去領域がレーザ低吸収材料7で構成もしくは別途配置された構成とされていればよく、必ずしも片持ち構造でなくてもよい。具体的には、半導体チップ1は、その一端および他端がそれぞれ別のモールド樹脂6により覆われて支持されると共に、これらのモールド樹脂6の間の領域がモールド樹脂6から突き出した構造、すなわち両持ち構造とされてもよい。 (2) In each of the above embodiments, an example in which one end of the semiconductor chip 1 is supported by the mold resin 6 and the other end is a free end is described as an example having a cantilever structure. However, the semiconductor chip 1 may be configured so as to be configured by the laser low absorption material 7 or separately disposed, and may not necessarily have a cantilever structure. Specifically, the semiconductor chip 1 has a structure in which one end and the other end are covered and supported by different mold resins 6, and a region between these mold resins 6 protrudes from the mold resin 6, that is, a structure It may be double-ended.
 なお、この場合、半導体チップ1のうちこれらのモールド樹脂6に覆われた部分が被支持部2となり、残部、すなわちこれらのモールド樹脂6から突出する部分が突出部3に相当する。 In this case, the portion of the semiconductor chip 1 covered by the mold resin 6 is the supported portion 2, and the remaining portion, that is, the portion protruding from the mold resin 6 corresponds to the protrusion 3.
 (3)上記各実施形態では、図2に示すように、半導体チップ1の一面1aのうちセンサ部31の裏側に位置する部分(以下「センサ裏側部」という)がモールド樹脂6から露出した露出部3aとされた例について説明した。しかし、センサ裏側部が被覆部3bとされていてもよい。このとき、薄化部6bの一面法線方向における厚みは、センサ部31の動作に影響しない程度、例えば150μm以下とされることが好ましい。逆に、突出部3は、すべてモールド樹脂6から露出していてもよい。 (3) In each of the above embodiments, as shown in FIG. 2, a portion of the surface 1 a of the semiconductor chip 1 located on the back side of the sensor unit 31 (hereinafter referred to as “sensor back side”) is exposed from the mold resin 6 The example made into the part 3a was demonstrated. However, the sensor back side portion may be the covering portion 3 b. At this time, it is preferable that the thickness in the one surface normal direction of the thinned portion 6 b be, for example, 150 μm or less to such an extent that the operation of the sensor unit 31 is not affected. Conversely, all the protrusions 3 may be exposed from the mold resin 6.
 (4)上記各実施形態では、レーザ照射により一部のモールド樹脂6、すなわち余剰樹脂8を除去する例について説明したが、必ずしもこれに限られず、薬液処理などの他の処理により除去してもよい。この場合、レーザ低吸収材料7の代わりに、薬液処理に用いる薬液に対して耐久性のある材料を用いればよい。つまり、半導体チップ1は、突出部3のうちモールド樹脂6の一部を除去することで露出部3aの一部となる領域、すなわちモールド樹脂除去領域が、レーザ加工等の該モールド樹脂6の一部の除去手段に対して耐久性のある材料が配置されていればよい。具体的には、耐久性のある材料は、上記の除去手段がレーザ加工の場合には、レーザ低吸収材料7であり、上記の除去手段が薬液処理の場合には、用いる薬液に対して不溶もしくは難溶の薬液耐久材料である。仮に薬液処理の場合には、モールド樹脂除去領域が薬液耐久材料で覆われるか、もしくは薬液耐久材料で構成されていればよい。 (4) In each of the above embodiments, an example of removing a part of the mold resin 6, that is, the excess resin 8 by laser irradiation has been described. However, the present invention is not necessarily limited thereto. Good. In this case, instead of the laser low absorption material 7, a material having durability to the chemical solution used for the chemical treatment may be used. That is, in the semiconductor chip 1, an area which becomes a part of the exposed part 3 a by removing a part of the mold resin 6 in the projecting part 3, that is, an area where the mold resin removed is one of the mold resin 6 such as laser processing. A durable material may be disposed for the removal means of the part. Specifically, the durable material is the laser low absorption material 7 when the removal means is laser processing, and when the removal means is chemical treatment, the material is insoluble with respect to the chemical solution to be used. Or it is a chemical solution durable material which is hardly soluble. In the case of the chemical treatment, the mold resin removal area may be covered with the chemical durable material or may be made of the chemical durable material.
 (5)上記第2実施形態では、半導体チップ1のうちレーザ除去領域がレーザ低吸収材料7で構成され、かつフィラー62を含有するモールド樹脂6が部分的にフィラーレスとされた例について説明した。しかし、レーザ加工を行わずに、フィラーレス部分を残す場合には、半導体チップ1として意図的にその一部をレーザ低吸収材料7で構成したものでない半導体チップを用いた構成とされてもよい。このような構成であっても、モールド樹脂6をフィラー62が含まれた構成としつつ、モールド樹脂6の成形時に一括でフィラー62を含有する支持部6aとフィラーレスの薄化部6bとが一括形成されるため、従来に比べて簡便に製造することができる。 (5) In the second embodiment, the example in which the laser removal region of the semiconductor chip 1 is made of the laser low absorption material 7 and the mold resin 6 containing the filler 62 is partially made fillerless has been described. . However, in the case where the fillerless portion is left without performing the laser processing, the semiconductor chip 1 may be configured using a semiconductor chip that is not intentionally configured by the laser low absorption material 7 as a part thereof. . Even with such a configuration, while the mold resin 6 is configured to include the filler 62, the support portion 6a containing the filler 62 at one time and the thinned portion 6b of the fillerless at one time at the time of molding of the mold resin 6 collectively. Because it is formed, it can be manufactured more easily than in the prior art.
 (6)上記各実施形態では、半導体チップ1が圧力センサとされた例について説明したが、これに限られず、半導体チップ1は、例えば磁気センサや光センサ、他の半導体センサであってもよい。 (6) In the above embodiments, the example in which the semiconductor chip 1 is a pressure sensor has been described. However, the present invention is not limited to this. The semiconductor chip 1 may be, for example, a magnetic sensor, an optical sensor, or another semiconductor sensor .

Claims (9)

  1.  物理量に応じた信号を出力するセンサ部(31)を有する半導体チップ(1)と、
     前記半導体チップのうち一部を覆うモールド樹脂(6)と、を備える半導体装置であって、
     前記半導体チップのうち前記モールド樹脂から突出した部分を突出部(3)として、前記突出部のうち前記モールド樹脂から露出する露出部(3a)は、前記モールド樹脂のうち前記突出部を覆う部分の一部がレーザを照射されて除去されることで、前記モールド樹脂から露出させられたレーザ除去領域を含み、
     前記レーザ除去領域における前記露出部は、前記レーザの吸収率が45%以下であるレーザ低吸収材料(7)が配置されている半導体装置。
    A semiconductor chip (1) having a sensor unit (31) for outputting a signal according to a physical quantity;
    It is a semiconductor device provided with mold resin (6) which covers a part of said semiconductor chips,
    A portion of the semiconductor chip that protrudes from the mold resin is a protrusion (3), and an exposed portion (3a) of the protrusion exposed from the mold resin is a portion of the mold resin that covers the protrusion A part is irradiated with a laser and removed to include a laser removal area exposed from the mold resin,
    The semiconductor device in which the laser low absorption material (7) in which the absorptivity of the laser is 45% or less is disposed in the exposed portion in the laser removal area.
  2.  前記レーザ低吸収材料は、1.5μm以上6.0μm以下の範囲内における吸収率が45%以下である請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the laser low absorption material has an absorptivity of 45% or less in a range of 1.5 μm to 6.0 μm.
  3.  前記レーザ低吸収材料は、Si、SiO、SiC、サファイア、GaN、GaAsおよびInPのうちのいずれかである請求項2に記載の半導体装置。 The semiconductor device according to claim 2, wherein the laser low absorption material is any one of Si, SiO 2 , SiC, sapphire, GaN, GaAs and InP.
  4.  前記突出部は、少なくとも一部が前記モールド樹脂に覆われた被覆部(3b)を有し、
     前記モールド樹脂は、フィラー(62)を含有しており、
     前記半導体チップのうち前記被覆部が形成された一面に対する法線方向を一面法線方向とし、前記モールド樹脂のうち前記被覆部を覆う部分を薄化部(6b)として、
     前記フィラーは、前記薄化部の前記一面法線方向における厚みよりも粒径が大きく、かつ、前記薄化部と異なる部分に配置されている請求項1ないし3のいずれか1つに記載の半導体装置。
    The protrusion has a covering portion (3b) at least a part of which is covered by the mold resin,
    The mold resin contains a filler (62),
    In the semiconductor chip, the normal direction to one surface on which the covering portion is formed is taken as a normal direction, and a portion covering the covering portion in the mold resin is used as a thinning portion (6b).
    The particle size is larger than the thickness in the said 1 surface normal direction of the said thinning part, and the said filler is arrange | positioned in the part different from the said thinning part in any one of Claim 1 thru | or 3 Semiconductor device.
  5.  物理量に応じた信号を出力するセンサ部(31)を有する半導体チップ(1)と、
     前記半導体チップのうち一部を覆うモールド樹脂(6)と、を備える半導体装置であって、
     前記半導体チップのうち前記モールド樹脂から突出した部分を突出部(3)として、前記突出部は、少なくとも一部が前記モールド樹脂に覆われた被覆部(3b)を有し、
     前記モールド樹脂は、フィラー(62)を含有しており、
     前記半導体チップのうち前記被覆部が形成された一面に対する法線方向を一面法線方向とし、前記モールド樹脂のうち前記被覆部を覆う部分を薄化部(6b)として、
     前記フィラーは、前記薄化部の前記一面法線方向における厚みよりも粒径が大きく、かつ、前記薄化部と異なる部分に配置されている半導体装置。
    A semiconductor chip (1) having a sensor unit (31) for outputting a signal according to a physical quantity;
    It is a semiconductor device provided with mold resin (6) which covers a part of said semiconductor chips,
    In the semiconductor chip, a portion protruding from the mold resin is a protruding portion (3), and the protruding portion has a covering portion (3b) at least a part of which is covered by the molding resin.
    The mold resin contains a filler (62),
    In the semiconductor chip, the normal direction to one surface on which the covering portion is formed is taken as a normal direction, and a portion covering the covering portion in the mold resin is used as a thinning portion (6b).
    The semiconductor device wherein the filler has a particle diameter larger than a thickness of the thinned portion in the one surface normal direction, and is disposed in a portion different from the thinned portion.
  6.  物理量に応じた信号を出力するセンサ部(31)を有する半導体チップ(1)を用意することと、
     前記半導体チップの少なくとも一部を覆うモールド樹脂(6)を形成するために用いる金型(200)を用意することと、
     前記金型内に前記半導体チップをセットして前記モールド樹脂を構成する樹脂材料を流し込んで硬化させ、前記モールド樹脂を形成することと、
     前記モールド樹脂を形成した後に、前記半導体チップのうち前記モールド樹脂から突出する突出部(3)の一部にレーザを照射することで、当該一部を前記モールド樹脂から露出する露出部(3a)を形成することと、を含み、
     前記半導体チップを用意することにおいては、前記モールド樹脂のうち前記レーザが照射されて除去される部分によって覆われる部分に、前記レーザの吸収率が45%以下のレーザ低吸収材料(7)が配置された前記半導体チップを用意する半導体装置の製造方法。
    Preparing a semiconductor chip (1) having a sensor unit (31) for outputting a signal according to a physical quantity;
    Preparing a mold (200) used to form a mold resin (6) covering at least a part of the semiconductor chip;
    Setting the semiconductor chip in the mold, pouring a resin material constituting the mold resin into the mold resin, and curing the resin material to form the mold resin;
    Exposed part (3a) which exposes the said part from the said mold resin by irradiating a part of protrusion part (3) which protrudes from the said mold resin among the said semiconductor chips after forming the said mold resin Forming, and
    In preparing the semiconductor chip, a laser low absorption material (7) having an absorptivity of 45% or less is disposed in a portion of the mold resin which is covered by the portion irradiated and removed by the laser. A semiconductor device manufacturing method for preparing the semiconductor chip.
  7.  前記露出部を形成することにおいては、前記レーザとして波長が1.5μm以上6.0μm以下の範囲内のものを用いる請求項6に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 6, wherein a wavelength of the laser is in a range of 1.5 μm or more and 6.0 μm or less in forming the exposed portion.
  8.  前記モールド樹脂を形成することにおいては、フィラー(62)を含有した前記樹脂材料を用い、
     前記金型を用意することにおいては、前記金型と前記半導体チップのうち前記モールド樹脂の形成後に前記突出部となる部分との隙間が前記フィラーの粒径よりも小さい前記金型を用意する請求項6または7に記載の半導体装置の製造方法。
    In forming the mold resin, the resin material containing a filler (62) is used,
    In preparing the mold, preparing the mold in which the gap between the mold and the portion to be the projecting portion after the formation of the mold resin in the semiconductor chip is smaller than the particle diameter of the filler. 8. A method of manufacturing a semiconductor device according to item 6 or 7.
  9.  物理量に応じた信号を出力するセンサ部(31)を有する半導体チップ(1)を用意することと、
     前記半導体チップの少なくとも一部を覆うモールド樹脂(6)を形成するために用いる金型(200)を用意することと、
     前記金型内に前記半導体チップをセットして前記モールド樹脂を構成する樹脂材料を流し込んで硬化させ、前記モールド樹脂を形成することと、を含み、
     前記モールド樹脂を形成することにおいては、フィラー(62)を含有した前記樹脂材料を用い、
     前記半導体チップのうち前記モールド樹脂の形成後に前記モールド樹脂から突出する部分を突出部(3)として、前記金型を用意することにおいては、前記金型と前記半導体チップのうち前記突出部となる部分との隙間が前記フィラーの粒径よりも小さい前記金型を用意する半導体装置の製造方法。
     
    Preparing a semiconductor chip (1) having a sensor unit (31) for outputting a signal according to a physical quantity;
    Preparing a mold (200) used to form a mold resin (6) covering at least a part of the semiconductor chip;
    Setting the semiconductor chip in the mold, pouring the resin material constituting the mold resin into the mold resin, and curing the resin material to form the mold resin.
    In forming the mold resin, the resin material containing a filler (62) is used,
    In preparing the mold with the portion protruding from the mold resin after the formation of the mold resin in the semiconductor chip as the projecting portion (3), it becomes the projection of the mold and the semiconductor chip A manufacturing method of a semiconductor device which prepares the above-mentioned metallic mold whose crevice with a part is smaller than the particle size of the filler.
PCT/JP2018/043172 2017-12-15 2018-11-22 Semiconductor device and method for manufacturing same WO2019116853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017240911A JP6930412B2 (en) 2017-12-15 2017-12-15 Semiconductor devices and their manufacturing methods
JP2017-240911 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019116853A1 true WO2019116853A1 (en) 2019-06-20

Family

ID=66819193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043172 WO2019116853A1 (en) 2017-12-15 2018-11-22 Semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6930412B2 (en)
WO (1) WO2019116853A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193399A (en) * 2002-12-12 2004-07-08 Denso Corp Semiconductor device and its manufacturing method
US20120074598A1 (en) * 2010-09-29 2012-03-29 Infineon Technologies Ag Chip, method for producing a chip and device for laser ablation
WO2013080472A1 (en) * 2011-12-01 2013-06-06 株式会社デンソー Semiconductor device and method for manufacturing same
JP2016025202A (en) * 2014-07-18 2016-02-08 株式会社デンソー Semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193399A (en) * 2002-12-12 2004-07-08 Denso Corp Semiconductor device and its manufacturing method
US20120074598A1 (en) * 2010-09-29 2012-03-29 Infineon Technologies Ag Chip, method for producing a chip and device for laser ablation
WO2013080472A1 (en) * 2011-12-01 2013-06-06 株式会社デンソー Semiconductor device and method for manufacturing same
JP2016025202A (en) * 2014-07-18 2016-02-08 株式会社デンソー Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP6930412B2 (en) 2021-09-01
JP2019109084A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US10615056B2 (en) Method of packaging chip and chip package structure
JP5318737B2 (en) Sensor device and manufacturing method thereof
IT201800002903A1 (en) PROCEDURE FOR MANUFACTURING SEMICONDUCTOR DEVICES AND CORRESPONDING SEMICONDUCTOR DEVICE
JP2006003260A (en) Sensor device and its manufacturing method
JP2002289733A (en) Semiconductor device
TWI414028B (en) Injection molding system and method of chip package
JP2001230347A (en) Semiconductor device and method of manufacturing the same
JP2016018846A (en) Semiconductor package, and method of manufacturing the same
WO2019116853A1 (en) Semiconductor device and method for manufacturing same
US10818566B2 (en) Circuit module
CN109637982B (en) Semiconductor element and method for manufacturing semiconductor element
JP2007165692A (en) Method for manufacturing electronic equipment
JP5949667B2 (en) Mold package and manufacturing method thereof
JP2006191143A (en) Semiconductor device
JP3820674B2 (en) Resin-sealed electronic device and manufacturing method thereof
JPH08130267A (en) Resin sealed semiconductor package, resin sealed semiconductor device and manufacture thereof
US7998794B2 (en) Resin molded semiconductor device and manufacturing method thereof
JP3233990B2 (en) Semiconductor device and manufacturing method thereof
JPH0778910A (en) Semiconductor device
JP6090041B2 (en) Electronic device and manufacturing method thereof
JP4308698B2 (en) Semiconductor device
JP2771475B2 (en) Semiconductor device
JP2016062932A (en) Semiconductor device and manufacturing method of the same
WO2015052884A1 (en) Molded package
JP2012186388A (en) Lead frame substrate for led element and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888595

Country of ref document: EP

Kind code of ref document: A1