WO2019116802A1 - Particle analyzing device - Google Patents

Particle analyzing device Download PDF

Info

Publication number
WO2019116802A1
WO2019116802A1 PCT/JP2018/041753 JP2018041753W WO2019116802A1 WO 2019116802 A1 WO2019116802 A1 WO 2019116802A1 JP 2018041753 W JP2018041753 W JP 2018041753W WO 2019116802 A1 WO2019116802 A1 WO 2019116802A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
imaging
lens
wavelength range
optical element
Prior art date
Application number
PCT/JP2018/041753
Other languages
French (fr)
Japanese (ja)
Inventor
長岡 英一
久 秋山
正章 鉤
淳一 青山
慎作 日浦
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2019558975A priority Critical patent/JPWO2019116802A1/en
Publication of WO2019116802A1 publication Critical patent/WO2019116802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present invention relates to a particle analyzer that analyzes particles by imaging the particles.
  • Patent Document 1 As an apparatus for measuring the particle size distribution, particle shape and the like of particles, as shown in Patent Document 1, a device for imaging a sample flowing in a flow path with a camera and analyzing and processing the image is considered.
  • the depth of field of the imaging lens becomes shallow (small), and particles at a position deviated in the optical axis direction with respect to the focusing plane of the imaging lens There is a problem that it can not measure.
  • the particle analysis device is a particle analysis device for imaging a sample in which particles are dispersed in a dispersion medium to analyze the particles, and an imaging unit for imaging the sample, and the imaging unit An image processing unit configured to process the obtained image data, wherein the imaging unit includes an imaging lens, and a first light receiving element configured to receive light of a first wavelength range of light imaged by the imaging lens; An axis is formed between a second light receiving element for receiving light of a second wavelength range in the light imaged by the imaging lens, an imaging system according to the first wavelength range, and an imaging system according to the second wavelength range And an optical element for enlarging the upper chromatic aberration.
  • the axial chromatic aberration is expanded between the imaging system in the first wavelength range and the imaging system in the second wavelength range by the optical element.
  • the focal length of the imaging lens is different for light in the two wavelength range.
  • the optical element of the present invention In the case where the optical element of the present invention is not used, if the optical magnification is low, the outline of small particles can not be obtained, and the measurement accuracy is degraded. In addition, when the magnification is increased, not only the field of view becomes narrow, but also the depth of field becomes shallow, so the number of particles that can be shot at one time decreases, and the number of shots that only satisfy statistical conditions is required. turn into. That is, it takes time to perform measurement with high accuracy, and shortening the time will deteriorate the measurement accuracy. On the other hand, by using the optical element of the present invention, particles in a position shifted in the optical axis direction of the imaging lens can be measured, so that not only measurement can be performed with high accuracy, but also the measurement time can be shortened.
  • the particle analysis device is provided between the imaging lens and each of the light receiving elements, and is a spectral element that separates light imaged in the imaging lens into light in the first wavelength range and light in the second wavelength range. It is possible to further provide. For example, it is conceivable to use a dichroic prism as the spectral element. Compared to the case where a color filter is provided in front of a light receiving element to receive light in a desired wavelength range by using such a spectral element, the color separation accuracy is high and the light can be easily obtained. Have the advantages of high durability and high resistance to aging.
  • the optical element is an approximately afocal system (an optical system with an infinite focal distance) as a whole.
  • the optical element is a flat plate made of a high dispersion glass material.
  • the optical element is a lens system including a first lens having at least a positive refractive power and a second lens having a negative refractive power.
  • at least one of the first lens and the second lens is made of a high dispersion glass material.
  • the first lens having positive refractive power is a plano-convex lens
  • the second lens having negative refractive power is a plano-concave lens.
  • the optical element is a diffractive optical element that expands chromatic aberration using a diffraction phenomenon.
  • the diffractive optical element is considered to be a lens system including a diffractive optical element in which a diffraction grating is formed on the surface or in the inside.
  • a light irradiator that irradiates the light of the first wavelength range and the second wavelength range to the sample.
  • the wavelength purity can be increased by arbitrarily selecting the wavelength range on the light source side, so that a clearer image can be obtained.
  • chromatic aberration of magnification, distortion and the like can be easily corrected by image processing.
  • the particle analysis device has a flow path through which the sample flows, and the imaging unit images the sample flowing through the flow path.
  • the imaging unit images the sample flowing through the flow path.
  • the focal plane of the imaging unit be disposed to be inclined with respect to the flow path.
  • the imaging unit has a tilt lens, and the focusing surface of the imaging unit be inclined by the tilt lens. With this configuration, there is no need to incline the entire imaging unit with respect to the flow path, and the entire particle analysis device can be miniaturized.
  • the focusing surface of the imaging unit has a substantially rectangular shape
  • the long side of the focusing surface is inclined with respect to the flow direction, so that the inclination angle of the focusing surface can be reduced.
  • the particle analysis device can select the optical magnification of the imaging lens according to the size of the particle.
  • the depth of field changes according to the optical magnification of the imaging lens. Therefore, it is desirable that the inclination angle of the focusing surface be adjustable in accordance with the depth of field of the imaging lens. With this configuration, highly accurate measurement can be performed regardless of the particle size.
  • the imaging unit 3 includes an imaging lens 31 and an imaging element 32 that receives light focused by the imaging lens 31.
  • the imaging device 32 receives a plurality of first light receiving elements 321 that receive light in a first wavelength range, a plurality of second light receiving elements 322 that receive light in a second wavelength range, and light that receives light in a third wavelength range.
  • a plurality of third light receiving elements 323 are provided.
  • the light in the first wavelength range is red light (R)
  • the light in the second wavelength range is green light (G)
  • the light in the third wavelength range is blue light (B) It is.
  • the plurality of first to third light receiving elements 321, 322, and 323 of the present embodiment are arranged in a matrix on a single substrate, and each of the imaging elements 32 is provided.
  • Each image data obtained by the light receiving elements 321, 322, 323 is analyzed by the image processing unit 4.
  • the optical element 33 may be selected as needed so that the distance between the focusing planes F1, F2, and F3 (the distance in the optical axis direction) can be arbitrarily set according to the size and specific gravity of the particles to be measured.
  • an optical element 33 capable of adjusting the amount of axial chromatic aberration (the distance between the focal planes F1, F2, and F3) may be used.
  • the dichroic prism is for separating the incident light into red light, green light and blue light, and the first imaging element 32a comprising a plurality of first light receiving elements 321 on the light emission surface of each light, A second imaging element 32 b including a plurality of second light receiving elements 322 and a third imaging element 32 c including a plurality of third light receiving elements 323 are provided.
  • the optical element 33 is provided between the imaging lens 31 and the spectral element 34.
  • the optical element 33 may be constituted by a lens system including a first lens 33a having at least positive refractive power and a second lens 33b having negative refractive power.
  • the first lens 33a is a plano-convex lens
  • the second lens 33b is a plano-concave lens.
  • the optical element 33 is configured such that the plano-convex lens 33a and the plano-concave lens 33b are disposed close to each other.
  • plano-convex lens 33a and the plano-concave lens 33b order of the concavo-convex surface and the plane
  • a plano-concave, plano-convex lens in which the surface on one side is a plane is advantageous in order to ensure the perpendicularity to the optical axis as the assembly accuracy.
  • a biconvex lens having positive refractive power or a biconcave lens having negative refractive power may be used, and the same performance can be achieved using a meniscus lens having positive or negative refractive power.
  • a cemented lens in which these lenses (plano-concave, plano-convex, biconcave, biconvex, meniscus) are pasted together by adhesion or the like may be used.
  • a high dispersion glass material may be used for the plano-convex lens 33a, or a high dispersion glass material may be used for both the plano-convex lens 33a and the plano-concave lens 33b.
  • the imaging unit 3 of the present embodiment is disposed such that its focal planes F1 to F3 are inclined with respect to the flow path S.
  • the flow channel direction in the present embodiment is the vertical direction, and the focus planes F1 to F3 are inclined with respect to the vertical direction.
  • the light irradiation unit 2 is also disposed to be inclined with respect to the flow path S and is opposed to the imaging unit 3.
  • the inclination angle ⁇ of the focus planes F1 to F3 is the depth dimension D of the flow path S, the length L of the measurement area (long sides of the focus planes F1 to F3), and the depth of field d of the imaging lens 31
  • the relationship with is the following equation. sin ⁇ ⁇ (D ⁇ d) / L
  • the depth of field d of the imaging lens 31 is the depth of field in a single light receiving element (for example, the first light receiving element 321).
  • the observation distance C in one frame of the imaging unit 3 is as follows.
  • C d / sin ⁇
  • imaging can be performed without leaking the particles P in the sample flowing through the flow path S.
  • t C / v t ⁇ (d / sin ⁇ ) / v
  • v is the flow velocity (dropping velocity) of the sample.
  • the particles P shifted in the depth direction orthogonal to the flow channel direction of the flow channel S can be measured. Thereby, measurement can be performed over a wider range in the optical axis direction than in the first embodiment.
  • the optical magnification of the imaging lens 31 may be selectable according to the size of the particle size.
  • the depth of field d changes in accordance with the optical magnification of the imaging lens 31. Therefore, it is desirable that the inclination angle ⁇ of the focus planes F1 to F3 be adjustable in accordance with the depth of field d of the imaging lens 31. With this configuration, highly accurate measurement can be performed regardless of the particle size.
  • the imaging device 32 of the imaging unit 3 may not be provided with a transmission filter or the like that transmits light of a specific wavelength.
  • the imaging unit 3 having such a configuration is generally referred to as a monochrome camera, and a transmission filter is not necessary, so the imaging sensitivity is increased. Further, since each pixel can be photographed under the same condition, more accurate measurement becomes possible.
  • the central part of the particles captured in the image is a bright area (hereinafter referred to as bright area S1), and the outer peripheral part is a dark area (hereinafter referred to as dark area S2).
  • the dark area S2 is an identifiable area.
  • the focal length EFL of these particles is the diameter D of the particles, the refraction of the particles It can be calculated by the following calculation formula using the ratio n1 and the refractive index n2 of the medium in which the particles are dispersed as parameters.
  • EFL n1 ⁇ D / 4 (n1-n2)

Abstract

The present invention provides a particle analyzing device 100 which measures particles displaced in the direction of an optical axis, and which analyzes particles P by capturing images of a sample in which the particles P are dispersed in a dispersion medium, wherein the particle analyzing device 100 is provided with an image capturing unit 3 which captures images of the sample, and an image processing unit 4 which processes image data obtained by the image capturing unit 3, and wherein the image capturing unit 3 comprises: an imaging lens 31; a first light receiving element 321 which receives light in a first wavelength range, from among light image-formed by the imaging lens 31; a second light receiving element 322 which receives light in a second wavelength range, from among the light image-formed by the imaging lens 31; and an optical element 33 which enlarges an axial chromatic aberration, between an image-forming system for the first wavelength range and an image-forming system for the second wavelength range.

Description

粒子分析装置Particle analyzer
 本発明は、粒子を撮像することにより粒子を分析する粒子分析装置に関するものである。 The present invention relates to a particle analyzer that analyzes particles by imaging the particles.
 従来、粒子の粒度分布や粒子形状などを測定する装置として、特許文献1に示すように、流路を流れる試料をカメラで撮像し、その画像を分析処理するものが考えられている。 Conventionally, as an apparatus for measuring the particle size distribution, particle shape and the like of particles, as shown in Patent Document 1, a device for imaging a sample flowing in a flow path with a camera and analyzing and processing the image is considered.
 この粒子分析装置において、小さい粒径の粒子を計測するためには、カメラの撮像レンズの光学倍率を大きくすることが考えられる。 In this particle analyzer, in order to measure particles with a small particle diameter, it is conceivable to increase the optical magnification of the imaging lens of the camera.
 しかしながら、撮像レンズの光学倍率を大きくしてしまうと、当該撮像レンズの被写界深度が浅く(小さく)なってしまい、撮像レンズのピント面に対して光軸方向にずれた位置にある粒子を計測することができないという問題がある。 However, if the optical magnification of the imaging lens is increased, the depth of field of the imaging lens becomes shallow (small), and particles at a position deviated in the optical axis direction with respect to the focusing plane of the imaging lens There is a problem that it can not measure.
特開平11-316184号公報Japanese Patent Application Laid-Open No. 11-316184
 そこで本発明は上記問題点を解決すべくなされたものであり、光軸方向にずれた粒子を計測することをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and its main object is to measure particles shifted in the optical axis direction.
 すなわち本発明に係る粒子分析装置は、分散媒中に粒子が分散してなる試料を撮像して前記粒子を分析する粒子分析装置であって、前記試料を撮像する撮像部と、前記撮像部により得られた画像データを処理する画像処理部とを備え、前記撮像部は、撮像レンズと、前記撮像レンズにより結像される光のうち第1波長域の光を受光する第1受光素子と、前記撮像レンズにより結像される光のうち第2波長域の光を受光する第2受光素子と、前記第1波長域による結像系と前記第2波長域による結像系との間で軸上色収差を拡大させる光学素子とを有することを特徴とする。 That is, the particle analysis device according to the present invention is a particle analysis device for imaging a sample in which particles are dispersed in a dispersion medium to analyze the particles, and an imaging unit for imaging the sample, and the imaging unit An image processing unit configured to process the obtained image data, wherein the imaging unit includes an imaging lens, and a first light receiving element configured to receive light of a first wavelength range of light imaged by the imaging lens; An axis is formed between a second light receiving element for receiving light of a second wavelength range in the light imaged by the imaging lens, an imaging system according to the first wavelength range, and an imaging system according to the second wavelength range And an optical element for enlarging the upper chromatic aberration.
 このようなものであれば、光学素子によって第1波長域による結像系と第2波長域による結像系との間で軸上色収差を拡大させているので、第1波長域の光と第2波長域の光とで撮像レンズによる焦点距離が異なることになる。これらを第1受光素子及び第2受光素子で受光することによって、撮像レンズの光軸方向にずれた位置の粒子を計測することができる。また、各受光素子により得られた画像を深度合成などの処理により1枚の画像に合成することで、撮像部の被写界深度を深くすることができ、光軸方向にずれた位置の粒子を計測することができる。 In such a case, the axial chromatic aberration is expanded between the imaging system in the first wavelength range and the imaging system in the second wavelength range by the optical element. The focal length of the imaging lens is different for light in the two wavelength range. By receiving these by the first light receiving element and the second light receiving element, it is possible to measure particles at a position shifted in the optical axis direction of the imaging lens. In addition, by combining the images obtained by the respective light receiving elements into one image by processing such as depth combination, the depth of field of the imaging unit can be deepened, and particles at positions shifted in the optical axis direction can be obtained. Can be measured.
 なお、本発明の光学素子を用いない場合には、光学倍率が低倍率だと小さな粒子の輪郭が取れないので計測精度が悪くなってしまう。また、高倍率にすると視野が狭くなってしまうだけでなく、被写界深度も浅くなってしまい、一度に撮影できる粒子の個数が少なくなり、統計的な条件を満たすだけの撮影数が必要となってしまう。つまり、高精度に計測するためには時間がかかってしまうし、時間を短くしようとすると計測精度が悪くなってしまう。一方、本発明の光学素子を用いることによって、撮像レンズの光軸方向にずれた位置の粒子を計測することができるので、高精度に計測できるだけでなく、その計測時間を短くすることができる。 In the case where the optical element of the present invention is not used, if the optical magnification is low, the outline of small particles can not be obtained, and the measurement accuracy is degraded. In addition, when the magnification is increased, not only the field of view becomes narrow, but also the depth of field becomes shallow, so the number of particles that can be shot at one time decreases, and the number of shots that only satisfy statistical conditions is required. turn into. That is, it takes time to perform measurement with high accuracy, and shortening the time will deteriorate the measurement accuracy. On the other hand, by using the optical element of the present invention, particles in a position shifted in the optical axis direction of the imaging lens can be measured, so that not only measurement can be performed with high accuracy, but also the measurement time can be shortened.
 粒子分析装置は、前記撮像レンズと前記各受光素子の間に設けられ、前記撮像レンズにより結像される光から前記第1波長域の光及び前記第2波長域の光に分離する分光素子をさらに備えることが考えられる。分光素子としては、例えばダイクロイックプリズムを用いることが考えられる。
 このような分光素子を用いることによって、受光素子の前にカラーフィルタを設けて所望の波長域の光を受光する場合に比べて、光の透過性が高く強い光を得やすい、色分離の精度が高い、耐久性が高く経年劣化を起こしにくいといった利点がある。
The particle analysis device is provided between the imaging lens and each of the light receiving elements, and is a spectral element that separates light imaged in the imaging lens into light in the first wavelength range and light in the second wavelength range. It is possible to further provide. For example, it is conceivable to use a dichroic prism as the spectral element.
Compared to the case where a color filter is provided in front of a light receiving element to receive light in a desired wavelength range by using such a spectral element, the color separation accuracy is high and the light can be easily obtained. Have the advantages of high durability and high resistance to aging.
 光学素子の具体的な実施の態様としては、全体として略アフォーカル系(焦点距離が無限遠にある光学系)となる光学素子であることが考えられる。例えば、前記光学素子は、高分散硝材からなる平板であることが考えられる。また、前記光学素子は、少なくとも正の屈折力を有する第1レンズと負の屈折力を有する第2レンズからなるレンズ系でることが考えられる。ここで、前記第1レンズ又は前記第2レンズの少なくとも一方が高分散硝材からなることが考えられる。また、第1レンズ及び第2レンズの焦点距離の絶対値を略同一にすることが望ましい。例えば正の屈折力を有する第1レンズは平凸レンズであり、負の屈折力を有する第2レンズは平凹レンズである。さらに、前記光学素子は、回折現象を利用して色収差を拡大する回折光学素子であることが考えられる。前記回折光学素子は、表面又は内部に回折格子を形成した回折光学素子を含むレンズ系となることが考えられる。 As a specific embodiment of the optical element, it is conceivable that the optical element is an approximately afocal system (an optical system with an infinite focal distance) as a whole. For example, it is conceivable that the optical element is a flat plate made of a high dispersion glass material. Further, it is conceivable that the optical element is a lens system including a first lens having at least a positive refractive power and a second lens having a negative refractive power. Here, it is considered that at least one of the first lens and the second lens is made of a high dispersion glass material. Further, it is desirable that the absolute values of the focal lengths of the first lens and the second lens be substantially the same. For example, the first lens having positive refractive power is a plano-convex lens, and the second lens having negative refractive power is a plano-concave lens. Furthermore, it is conceivable that the optical element is a diffractive optical element that expands chromatic aberration using a diffraction phenomenon. The diffractive optical element is considered to be a lens system including a diffractive optical element in which a diffraction grating is formed on the surface or in the inside.
 前記試料に対して前記第1波長域及び前記第2波長域の光を照射する光照射部をさらに備えることが望ましい。
 このように第1波長域及び第2波長域の光を照射することによって、光源側で波長域を任意に選択することにより、波長純度を上げることができるので、より鮮明な画像を取得することができる。また、倍率色収差や歪曲などを画像処理で容易に補正できるようになる。
It is preferable to further include a light irradiator that irradiates the light of the first wavelength range and the second wavelength range to the sample.
Thus, by irradiating the light of the first wavelength range and the second wavelength range, the wavelength purity can be increased by arbitrarily selecting the wavelength range on the light source side, so that a clearer image can be obtained. Can. In addition, chromatic aberration of magnification, distortion and the like can be easily corrected by image processing.
 粒子分析装置としては、前記試料が流れる流路を有し、前記撮像部が当該流路を流れる前記試料を撮像する構成とすることが考えられる。このとき流路内で分布が不均一である可能性があった場合、奥行き方向へずれた粒子を計測できず粒度分布としては不十分となってしまう。また、被写界深度が狭いと、一部の分布域の粒子しか計測することができない。
 この問題を解決するためには、前記撮像部のピント面が前記流路に対して傾斜するように配置されていることが望ましい。
 この構成であれば、流路の流路方向に直交する奥行方向にずれた粒子を計測することができる。
It is conceivable that the particle analysis device has a flow path through which the sample flows, and the imaging unit images the sample flowing through the flow path. At this time, if there is a possibility that the distribution is not uniform in the flow channel, particles shifted in the depth direction can not be measured, and the particle size distribution becomes insufficient. Also, if the depth of field is narrow, only particles in some distribution areas can be measured.
In order to solve this problem, it is desirable that the focal plane of the imaging unit be disposed to be inclined with respect to the flow path.
With this configuration, particles shifted in the depth direction orthogonal to the flow channel direction of the flow channel can be measured.
 前記撮像部はティルトレンズを有しており、当該ティルトレンズにより前記撮像部のピント面が傾斜されていることが望ましい。
 この構成であれば、撮像部全体を流路に対して傾斜させる必要が無く、粒子分析装置全体の小型化が可能となる。
It is desirable that the imaging unit has a tilt lens, and the focusing surface of the imaging unit be inclined by the tilt lens.
With this configuration, there is no need to incline the entire imaging unit with respect to the flow path, and the entire particle analysis device can be miniaturized.
 前記撮像部のピント面が概略矩形状をなすものの場合には、前記ピント面の短辺と略平行な軸を回転中心として、前記ピント面が所定角度傾斜していることが望ましい。
 この構成であれば、ピント面の長辺が流路方向に対して傾斜するので、ピント面の傾斜角度を小さくすることができる。
In the case where the focusing surface of the imaging unit has a substantially rectangular shape, it is preferable that the focusing surface be inclined at a predetermined angle with an axis substantially parallel to the short side of the focusing surface as a rotation center.
With this configuration, the long side of the focusing surface is inclined with respect to the flow direction, so that the inclination angle of the focusing surface can be reduced.
 前記撮像部のピント面の傾斜態様としては、前記ピント面が前記流路の流路方向に対して傾斜していること、又は、前記ピント面が前記流路の流路方向を回転中心として傾斜していることが考えられる。
 前記ピント面が前記流路の流路方向に対して傾斜している構成の場合には、前記撮像部の撮像間隔tが以下を満たすようにすることが望ましい。
  t≦(d/sinθ)/v
  ここで、dは前記撮像レンズによる被写界深度、θは前記ピント面の傾斜角度、vは前記試料の流速である。
 この構成であれば、流路を流れる試料中の粒子を漏らすことなく撮像して計測することができる。
As the inclination mode of the focusing surface of the imaging unit, the focusing surface is inclined with respect to the flow channel direction of the flow channel, or the focusing surface is inclined with the flow channel direction of the flow channel as a rotation center It is thought that you are doing.
In the case where the focusing surface is inclined with respect to the flow channel direction of the flow channel, it is preferable that the imaging interval t of the image pickup unit satisfy the following.
t ≦ (d / sin θ) / v
Here, d is the depth of field by the imaging lens, θ is the inclination angle of the focusing surface, and v is the flow velocity of the sample.
With this configuration, it is possible to image and measure the particles in the sample flowing in the flow path without leaking.
 粒子分析装置は、粒子サイズの大小に応じて撮像レンズの光学倍率を選択可能にすることが考えられる。この場合、撮像レンズの光学倍率に応じて被写界深度が変化する。そのため、前記撮像レンズによる被写界深度に応じて、前記ピント面の傾斜角度が調整可能に構成されていることが望ましい。
 この構成であれば、粒子サイズの大小に関わらず、高精度な計測が可能となる。
It is conceivable that the particle analysis device can select the optical magnification of the imaging lens according to the size of the particle. In this case, the depth of field changes according to the optical magnification of the imaging lens. Therefore, it is desirable that the inclination angle of the focusing surface be adjustable in accordance with the depth of field of the imaging lens.
With this configuration, highly accurate measurement can be performed regardless of the particle size.
 以上に述べた本発明によれば、光学素子によって第1波長域の光と第2波長域の光とに軸上色収差を発生させて、これらを第1受光素子及び第2受光素子で受光しているので、撮像レンズの光軸方向にずれた位置の粒子を計測することができる。 According to the present invention described above, axial chromatic aberration is generated between the light of the first wavelength range and the light of the second wavelength range by the optical element, and these are received by the first light receiving element and the second light receiving element. Therefore, it is possible to measure particles at a position shifted in the optical axis direction of the imaging lens.
第1実施形態に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of a particle analysis device concerning a 1st embodiment. 第1実施形態の撮像素子の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the image pick-up element of 1st Embodiment. 撮像素子の分光感度を示すグラフ及び光照射部の透過フィルタの分光透過率を示すグラフである。It is a graph which shows the spectral sensitivity of an image pick-up element, and a graph which shows the spectral transmission factor of the transmission filter of a light irradiation part. 第1実施形態の深度合成を示す図である。It is a figure showing depth composition of a 1st embodiment. 第1実施形態の変形例に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of the particle analyzer which concerns on the modification of 1st Embodiment. 分光素子(ダイクロイックプリズム)の構成例を示す模式図である。It is a schematic diagram which shows the structural example of a spectroscopy element (dichroic prism). 第1実施形態の変形例に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of the particle analyzer which concerns on the modification of 1st Embodiment. 第1実施形態の変形例に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of the particle analyzer which concerns on the modification of 1st Embodiment. 第2実施形態に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of the particle analyzer which concerns on 2nd Embodiment. 第2実施形態の観察距離C、流速v及び被写界深度dの関係などを示す模式図である。It is a schematic diagram which shows the relationship of the observation distance C of 2nd Embodiment, the flow velocity v, and the depth of field d etc. FIG. 第2実施形態の変形例に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of the particle analyzer which concerns on the modification of 2nd Embodiment. 変形実施形態に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of the particle analyzer which concerns on modification embodiment. 変形実施形態に係る粒子分析装置の全体模式図である。It is a whole schematic diagram of the particle analyzer which concerns on modification embodiment. 変形実施形態における粒子判別の機能を説明するための図である。It is a figure for demonstrating the function of particle | grain discrimination | determination in a modification embodiment.
100・・・粒子分析装置
P・・・粒子
2・・・光照射部
3・・・撮像部
4・・・画像処理部
31・・・撮像レンズ
F1~F3・・・ピント面
321・・・第1受光素子
322・・・第2受光素子
33・・・光学素子
34・・・分光素子
311・・・ティルトレンズ
100 ... particle analysis device P ... particle 2 ... light irradiation unit 3 ... imaging unit 4 ... image processing unit 31 ... imaging lens F1 to F3 ... focus plane 321 ... ... First light receiving element 322 ··· Second light receiving element 33 ··· Optical element 34 ··· Spectroscopic element 311 · · · Tilt lens
<第1実施形態>
 以下、本発明の第1実施形態に係る粒子分析装置について、図面を参照しながら説明する。
First Embodiment
Hereinafter, a particle analysis device according to a first embodiment of the present invention will be described with reference to the drawings.
 本実施形態の粒子分析装置100は、分散媒中に粒子Pが分散してなる試料を撮像して粒子Pを分析するものである。本実施形態では、粒子Pが貯留された粒子供給器6から粒子を大気中に自然落下させて、当該自然落下する粒子Pを撮像することによって粒子Pを分析する構成としてある。この場合、粒子Pが自然落下する空間(流路)Sにある大気が粒子Pを分散する分散媒となり、当該空間にある大気及び粒子Pが試料となる。 The particle analysis device 100 according to the present embodiment analyzes the particles P by imaging a sample in which the particles P are dispersed in a dispersion medium. In the present embodiment, the particles P are analyzed by causing the particles to spontaneously fall into the atmosphere from the particle feeder 6 in which the particles P are stored, and imaging the particles P that naturally fall. In this case, the air in the space (flow path) S where the particles P fall spontaneously becomes the dispersion medium for dispersing the particles P, and the air and the particles P in the space become the sample.
 具体的に粒子分析装置100は、試料に対して光を照射する光照射部2と、試料を撮像する撮像部3と、撮像部3により得られた画像データを処理する画像処理部4とを備えている。ここで、光照射部2及び撮像部3は、粒子Pが自然落下する空間(流路)Sを挟むように対向して配置されている。具体的に光照射部2及び撮像部3は、流路方向(鉛直方向)に直交する水平方向において対向して配置されている。 Specifically, the particle analysis device 100 includes a light irradiation unit 2 that irradiates light to a sample, an imaging unit 3 that images a sample, and an image processing unit 4 that processes image data obtained by the imaging unit 3. Have. Here, the light irradiation unit 2 and the imaging unit 3 are disposed to face each other so as to sandwich a space (flow path) S in which the particles P fall naturally. Specifically, the light emitting unit 2 and the imaging unit 3 are disposed to face each other in the horizontal direction orthogonal to the flow channel direction (vertical direction).
 光照射部2は、試料の所定範囲に光を照射するものであり、例えば発光ダイオードを用いた面発光タイプのものである。具体的に光照射部2は、発光ダイオードからなる光源21と当該光源21の光射出側に設けられて所定波長の光を透過する透過フィルタ22とを有する。本実施形態の透過フィルタ22は、撮像部3により受光される波長(第1波長、第2波長及び第3波長)を透過するものである。なお、正確な影絵を得るためには、平行照明のほうが望ましい。テレセントリック照明が最適ではあるが、LED光源とコンデンサーレンズとの組み合わせでもよい。 The light irradiation part 2 irradiates light to the predetermined range of a sample, and is a surface emitting type thing using a light emitting diode, for example. Specifically, the light irradiation unit 2 includes a light source 21 formed of a light emitting diode, and a transmission filter 22 provided on the light emission side of the light source 21 and transmitting light of a predetermined wavelength. The transmission filter 22 of the present embodiment transmits the wavelengths (first, second and third wavelengths) received by the imaging unit 3. In addition, parallel illumination is preferable to obtain an accurate shadow picture. Although telecentric illumination is optimal, it may be a combination of an LED light source and a condenser lens.
 撮像部3は、撮像レンズ31と、撮像レンズ31により結像される光を受光する撮像素子32とを有している。 The imaging unit 3 includes an imaging lens 31 and an imaging element 32 that receives light focused by the imaging lens 31.
 撮像レンズ31は、粒子Pが自然落下する空間(流路)Sにピント面(焦点面)を有するものである。本実施形態の撮像レンズ31は、テレセントリックレンズを用いている。テレセントリックレンズを用いることによって、視差による影響を受けずに歪みのない画像を撮影することができる。 The imaging lens 31 has a focal plane (focal plane) in a space (flow path) S where the particles P fall naturally. The imaging lens 31 of the present embodiment uses a telecentric lens. By using a telecentric lens, it is possible to capture an image without distortion and without being affected by parallax.
 撮像素子32は、第1波長域の光を受光する複数の第1受光素子321と、第2波長域の光を受光する複数の第2受光素子322と、第3波長域の光を受光する複数の第3受光素子323とを有している。本実施形態では、第1波長域の光は赤色の光(R)であり、第2波長域の光は緑色の光(G)であり、第3波長域の光は青色の光(B)である。また、本実施形態の複数の第1~第3受光素子321、322、323は、図2に示すように、単一の基板上にマトリックス状に配置されたものであり、撮像素子32において各受光素子321、322、323の前方には、対応する波長域の光を透過する透過フィルタ(不図示)が設けられている。また、上述した光照射部2の透過フィルタ22は、赤色の光、緑色の光及び青色の光を透過するRGB透過フィルタとしてある。 The imaging device 32 receives a plurality of first light receiving elements 321 that receive light in a first wavelength range, a plurality of second light receiving elements 322 that receive light in a second wavelength range, and light that receives light in a third wavelength range. A plurality of third light receiving elements 323 are provided. In the present embodiment, the light in the first wavelength range is red light (R), the light in the second wavelength range is green light (G), and the light in the third wavelength range is blue light (B) It is. Further, as shown in FIG. 2, the plurality of first to third light receiving elements 321, 322, and 323 of the present embodiment are arranged in a matrix on a single substrate, and each of the imaging elements 32 is provided. In front of the light receiving elements 321, 322, and 323, a transmission filter (not shown) for transmitting light in the corresponding wavelength range is provided. In addition, the transmission filter 22 of the light emitting unit 2 described above is an RGB transmission filter that transmits red light, green light, and blue light.
 ここで、撮像素子32の分光感度は、図3に示すように、R、G、Bの波長域が互いに重なってしまう。一方、光照射部2の透過フィルタ22の分光透過率は、R、G、Bの波長域が互いに分離している。このため、透過フィルタ22により第1波長域の光(R)を630nmとし、第2波長域の光(G)を530nmとし、第3波長域の光(B)を460nmとしている。 Here, in the spectral sensitivity of the imaging device 32, as shown in FIG. 3, the wavelength ranges of R, G, and B overlap each other. On the other hand, in the spectral transmittance of the transmission filter 22 of the light irradiation unit 2, the wavelength ranges of R, G, and B are separated from each other. Therefore, the light (R) in the first wavelength range is set to 630 nm, the light (G) in the second wavelength range is set to 530 nm, and the light (B) in the third wavelength range is set to 460 nm.
 然して、本実施形態の撮像部3は、第1波長域による結像系と第2波長域による結像系と第3波長域による結像系との間に軸上色収差を発生させる光学素子33を有している。 Therefore, the imaging unit 3 of this embodiment is an optical element 33 that generates axial chromatic aberration between the imaging system with the first wavelength range, the imaging system with the second wavelength range, and the imaging system with the third wavelength range. have.
 この光学素子33は、撮像レンズ31と各受光素子321、322、323との間に設けられた、例えば高分散硝材からなる平板である。高分散硝材としては、アッベ数が30よりも小さいものを用いることができる。 The optical element 33 is a flat plate made of, for example, a high dispersion glass material provided between the imaging lens 31 and each of the light receiving elements 321, 322, and 323. As the high dispersion glass material, one having an Abbe number smaller than 30 can be used.
 この光学素子33によって、撮像レンズ31によるピント面の位置が光軸方向にずれることになる。具体的には、物体側から撮像レンズ31側に、第1波長域の光(赤色の光)のピント面F1、第2波長域の光(緑色の光)のピント面F2及び第3波長域の光(青色の光)のピント面F3の順にずれるようになる。なお、各ピント面F1、F2、F3は、撮像レンズ31の被写界深度を有する。 The position of the focal plane by the imaging lens 31 is shifted in the optical axis direction by the optical element 33. Specifically, from the object side to the imaging lens 31 side, the focusing surface F1 of the light of the first wavelength range (red light), the focusing surface F2 of the light of the second wavelength range (green light), and the third wavelength range Light (blue light) is shifted in the order of the focal plane F3. Each of the focal planes F1, F2, and F3 has the depth of field of the imaging lens 31.
 このようにして、第1受光素子321が撮像する領域(ピント面F1)と、第2受光素子322が撮像する領域(ピント面F2)と、第3受光素子323が撮像する領域(ピント面F3)とは光軸方向に沿って互いに異なる位置となる。 Thus, the area (focusing plane F1) captured by the first light receiving element 321, the area (focusing plane F2) captured by the second light receiving element 322, and the area (focusing plane F3) captured by the third light receiving element 323. ) Are mutually different positions along the optical axis direction.
 これら受光素子321、322、323により得られた各画像データは画像処理部4によって分析処理される。 Each image data obtained by the light receiving elements 321, 322, 323 is analyzed by the image processing unit 4.
 画像処理部4は、構造としては、CPU、メモリ、入出力インターフェース、AD変換器、キーボードやマウスなどの入力手段などを有する汎用乃至専用のコンピュータである。また、画像処理部4には、ディスプレイ5が接続されている。そして、画像処理部4は、メモリに格納されたプログラムに基づいて、CPU及びその周辺機器が作動することにより、画像処理を施すとともに、粒子Pの測定項目を求める各種演算を行う。 The image processing unit 4 is a general-purpose to special-purpose computer having a CPU, a memory, an input / output interface, an AD converter, and an input unit such as a keyboard and a mouse as a structure. Further, a display 5 is connected to the image processing unit 4. Then, the image processing unit 4 performs image processing by operating the CPU and its peripheral devices based on the program stored in the memory, and performs various calculations for obtaining measurement items of the particles P.
 具体的に画像処理部4は、図4に示すように、第1受光素子321から得られた第1画像と、第2受光素子322から得られた第2画像と、第3受光素子323から得られた第3画像とを用いて深度合成などの画像処理を行って1枚の画像に合成する。より詳細には、画像処理部4は、各受光素子321~323により得られた光強度信号をベイヤー変換せずに第1~第3画像を形成する。そして、画像処理部4は、第1画像、第2画像、第3画像それぞれについて、それぞれの波長領域外のピクセル抜けを補完する。その後、画像処理部4は、補完した画像を用いて深度合成を行って1枚の画像に合成する。そして、画像処理部4は、その合成画像をディスプレイ5上に表示する(図1参照)。 Specifically, as shown in FIG. 4, the image processing unit 4 uses the first image obtained from the first light receiving element 321, the second image obtained from the second light receiving element 322, and the third light receiving element 323. Image processing such as depth synthesis is performed using the obtained third image to synthesize one image. More specifically, the image processing unit 4 forms first to third images without performing Bayer conversion on the light intensity signals obtained by the light receiving elements 321 to 323. Then, the image processing unit 4 complements the pixel omission outside the respective wavelength regions for each of the first image, the second image, and the third image. Thereafter, the image processing unit 4 performs depth combination using the complemented image and combines it into one image. Then, the image processing unit 4 displays the composite image on the display 5 (see FIG. 1).
 また、画像処理部4は、合成画像などを用いて、粒子Pの粒度分布、円相当径、長径、短径、周囲長、アスペクト比、円形度、凹凸度などを算出する。画像処理部4は、これら算出した数値も合成画像とともにディスプレイ5上に表示する。 Further, the image processing unit 4 calculates the particle size distribution of the particles P, the circle equivalent diameter, the major diameter, the minor diameter, the peripheral length, the aspect ratio, the degree of circularity, the degree of unevenness, etc. The image processing unit 4 also displays the calculated numerical values on the display 5 together with the composite image.
<第1実施形態の効果>
 本実施形態の粒子分析装置100によれば、光学素子33によって第1~第3波長域の光それぞれに軸上色収差を発生させて、これらを第1~第3受光素子321、322、323で受光することによって、撮像レンズ31の光軸方向にずれた位置の粒子Pを計測することができる。また、受光素子321、322、323により得られた画像を深度合成などの処理により1枚の画像に合成することで、撮像部31の被写界深度を広げることができ、光軸方向にずれた位置の粒子Pを計測することができる。
<Effect of First Embodiment>
According to the particle analysis device 100 of the present embodiment, axial chromatic aberration is generated in each of the light of the first to third wavelength regions by the optical element 33, and these are represented by the first to third light receiving elements 321, 322, 323. By receiving light, it is possible to measure the particles P at a position shifted in the optical axis direction of the imaging lens 31. In addition, by combining the images obtained by the light receiving elements 321, 322, and 323 into one image by processing such as depth combination, the depth of field of the imaging unit 31 can be extended, and displacement in the optical axis direction Particles P at different positions can be measured.
 また、受光素子321、322、323が撮像する領域、すなわちピント面F1、F2、F3は、必ずしも連続した領域である必要はない。各受光素子321、322、323の被写界深度が相互に重なりあっても良いし、図1に示すように離間していても構わない。被写界深度を超える領域の粒子は若干ぼけて撮影されるが、画像処理部4によって周知の鮮鋭化処理を施すことにより容易に復元可能である。この際、撮像レンズ31にテレセントリックレンズを用いていれば、粒子の大きさやアスペクト比なども正しく計測することができる。また、測定対象となる粒子のサイズや比重などに応じて、ピント面F1、F2、F3の間隔(光軸方向の距離)が任意に設定できるよう、光学素子33を随時選択できる構成としてもよいし、軸上色収差量を(ピント面F1、F2、F3の間隔を)調節可能な光学素子33を用いても良い。 In addition, the areas imaged by the light receiving elements 321, 322, and 323, that is, the focus planes F1, F2, and F3 do not necessarily have to be continuous areas. The depths of field of the light receiving elements 321, 322, 323 may overlap with each other, or may be separated as shown in FIG. The particles in the region exceeding the depth of field are photographed somewhat blurred, but can be easily restored by performing well-known sharpening processing by the image processing unit 4. At this time, if a telecentric lens is used as the imaging lens 31, the particle size, aspect ratio, and the like can be correctly measured. The optical element 33 may be selected as needed so that the distance between the focusing planes F1, F2, and F3 (the distance in the optical axis direction) can be arbitrarily set according to the size and specific gravity of the particles to be measured. Alternatively, an optical element 33 capable of adjusting the amount of axial chromatic aberration (the distance between the focal planes F1, F2, and F3) may be used.
<第1実施形態の変形例>
 図5に示すように、撮像レンズ31及び撮像素子32の間に、撮像レンズ31により結像される光から第1波長域の光、第2波長域の光及び第3波長域の光に分離する分光素子34を設けてもよい。この分光素子34は、図6に示すように、例えばダイクロイックプリズムを用いることができる。このダイクロイックプリズムは、入射した光を、赤色の光、緑色の光及び青色の光に分光するものであり、各光の光射出面に複数の第1受光素子321からなる第1撮像素子32a、複数の第2受光素子322からなる第2撮像素子32b、複数の第3受光素子323からなる第3撮像素子32cが設けられている。この場合、光学素子33は、撮像レンズ31及び分光素子34の間に設ける。
Modification of First Embodiment
As shown in FIG. 5, between the imaging lens 31 and the imaging device 32, the light focused by the imaging lens 31 is separated into light of a first wavelength range, light of a second wavelength range, and light of a third wavelength range. A spectral element 34 may be provided. As this spectral element 34, as shown in FIG. 6, for example, a dichroic prism can be used. The dichroic prism is for separating the incident light into red light, green light and blue light, and the first imaging element 32a comprising a plurality of first light receiving elements 321 on the light emission surface of each light, A second imaging element 32 b including a plurality of second light receiving elements 322 and a third imaging element 32 c including a plurality of third light receiving elements 323 are provided. In this case, the optical element 33 is provided between the imaging lens 31 and the spectral element 34.
 このようにダイクロイックプリズムを用いて撮像素子32a~32cを3枚設けた構成の場合、カラーCCDと比較して分光感度の重なり影響の考慮が不要となる。この場合、光照射部2に透過フィルタ22を用いて、積極的に第3波長域の光(B)は波長を短くし、第2波長域の光(G)を第3波長域の光(B)寄りにし、第1波長域の光(R)を近赤外寄りにすれば、より収差を拡大できる。カラーCCD(CCD一枚)の場合、RとGの軸上色収差の差が少ないが、撮像素子32を3枚(第1~第3撮像素子32a~32c)に分ければ、上記のように波長を選択することにより色収差をさらに拡大できる。 As described above, in the configuration in which three imaging elements 32a to 32c are provided using dichroic prisms, consideration of overlapping influence of spectral sensitivity becomes unnecessary as compared with a color CCD. In this case, by using the transmission filter 22 in the light irradiation unit 2, the light (B) of the third wavelength range is positively shortened and the light (G) of the second wavelength range is reduced to the light of the third wavelength range ( B) If the light (R) in the first wavelength range is moved to the near infrared side by moving the light closer, the aberration can be further expanded. In the case of a color CCD (one CCD), the difference in axial chromatic aberration between R and G is small, but if the imaging device 32 is divided into three sheets (first to third imaging devices 32a to 32c), the wavelength is as described above The chromatic aberration can be further expanded by selecting.
 また、光学素子33として、高分散硝材からなる平板の他に、回折現象を利用して色収差を拡大する回折光学素子を用いてもよい。また、それらを併用してもよい。ここで、回折光学素子は、表面又は内部に回折格子を形成した回折光学素子を含むレンズ系としてもよい。 Further, as the optical element 33, in addition to a flat plate made of a high dispersion glass material, a diffractive optical element may be used which expands the chromatic aberration using a diffraction phenomenon. Moreover, you may use them together. Here, the diffractive optical element may be a lens system including a diffractive optical element in which a diffraction grating is formed on the surface or in the inside.
 さらに、光照射部2は、透過フィルタ22を有さない構成であってもよい。この場合、光源は、赤色LED、緑色LED及び青色LEDを組み合わせたものを用いてもよい。また、光源は、近赤外域の光を射出するものや、紫外域の光を射出するものであっても良い。 Furthermore, the light irradiation unit 2 may not have the transmission filter 22. In this case, the light source may be a combination of a red LED, a green LED and a blue LED. Further, the light source may emit light in the near infrared region or light in the ultraviolet region.
 その上、図7に示すように、光学素子33を撮像レンズ31の前方に設けてもよい。光学素子33として高分散硝材からなる平板を用いてもよい。ここで、撮像レンズ31が拡大光学系の場合は、光学素子33の位置は撮像レンズ31の前方が望ましい。これにより、光学倍率(横倍率)を大きくしても、横倍率の2乗となる縦倍率の影響を受けることがなく、軸上色収差を大きくすることができる。また、撮像レンズ31が縮小光学系の場合は、光学素子33の位置は撮像レンズ31の後方が好ましい。 Moreover, as shown in FIG. 7, the optical element 33 may be provided in front of the imaging lens 31. A flat plate made of a high dispersion glass material may be used as the optical element 33. Here, when the imaging lens 31 is a magnifying optical system, the position of the optical element 33 is preferably in front of the imaging lens 31. As a result, even if the optical magnification (lateral magnification) is increased, the longitudinal chromatic aberration can be increased without being affected by the longitudinal magnification which is the square of the lateral magnification. When the imaging lens 31 is a reduction optical system, the position of the optical element 33 is preferably behind the imaging lens 31.
 また、図8に示すように、光学素子33を少なくとも正の屈折力を有する第1レンズ33aと負の屈折力を有する第2レンズ33bからなるレンズ系から構成してもよい。ここで、第1レンズ33aは、平凸レンズであり、第2レンズ33bは平凹レンズである。そして、光学素子33は、平凸レンズ33aと平凹レンズ33bとが近接配置して構成されている。この場合、平凹レンズ33bに高分散硝材を用い、平凸レンズ33aに低分散硝材を用いる構成が望ましく、両者の焦点距離の絶対値を略同一にすると良い。平凸レンズ33aと平凹レンズ33bの順序や向き(凹凸面と平面の順序)は問わない。片側の面が平面となる平凹、平凸レンズは光軸に対する直角度を組立精度として保障するために有利である。光学仕様としては正の屈折力を有する両凸レンズ、負の屈折力を有する両凹レンズを用いてもよく、正または負の屈折力を有するメニスカスレンズを用いても同じ性能を達成できる。また、これらのレンズ(平凹、平凸、両凹、両凸、メニスカス)を接着等により貼り合わせた接合レンズを用いてもよい。また、平凸レンズ33aに高分散硝材を用いてもよいし、平凸レンズ33a及び平凹レンズ33bの両方に高分散硝材を用いてもよい。 Further, as shown in FIG. 8, the optical element 33 may be constituted by a lens system including a first lens 33a having at least positive refractive power and a second lens 33b having negative refractive power. Here, the first lens 33a is a plano-convex lens, and the second lens 33b is a plano-concave lens. The optical element 33 is configured such that the plano-convex lens 33a and the plano-concave lens 33b are disposed close to each other. In this case, it is preferable to use a high dispersion glass material for the plano-concave lens 33b and a low dispersion glass material for the plano-convex lens 33a, and it is preferable to make the absolute values of the focal distances of the two equal. The order and orientation of the plano-convex lens 33a and the plano-concave lens 33b (order of the concavo-convex surface and the plane) does not matter. A plano-concave, plano-convex lens in which the surface on one side is a plane is advantageous in order to ensure the perpendicularity to the optical axis as the assembly accuracy. As the optical specification, a biconvex lens having positive refractive power or a biconcave lens having negative refractive power may be used, and the same performance can be achieved using a meniscus lens having positive or negative refractive power. In addition, a cemented lens in which these lenses (plano-concave, plano-convex, biconcave, biconvex, meniscus) are pasted together by adhesion or the like may be used. Further, a high dispersion glass material may be used for the plano-convex lens 33a, or a high dispersion glass material may be used for both the plano-convex lens 33a and the plano-concave lens 33b.
<第2実施形態>
 次に本発明の第2実施形態に係る粒子分析装置について、図面を参照しながら説明する。
Second Embodiment
Next, a particle analysis device according to a second embodiment of the present invention will be described with reference to the drawings.
 本実施形態の粒子分析装置100は、前記実施形態とは撮像部3の構成が異なる。その他の構成は前記第1実施形態と同様のため、説明は省略する。 The particle analysis device 100 of the present embodiment differs from the above embodiment in the configuration of the imaging unit 3. The other configuration is the same as that of the first embodiment, so the description will be omitted.
 本実施形態の撮像部3は、図9に示すように、そのピント面F1~F3が流路Sに対して傾斜するように配置されている。本実施形態の流路方向は鉛直方向であり、前記ピント面F1~F3は、鉛直方向に対して傾斜している。また、本実施形態では、光照射部2も流路Sに対して傾斜するように配置されて撮像部3に対向している。 As shown in FIG. 9, the imaging unit 3 of the present embodiment is disposed such that its focal planes F1 to F3 are inclined with respect to the flow path S. The flow channel direction in the present embodiment is the vertical direction, and the focus planes F1 to F3 are inclined with respect to the vertical direction. Further, in the present embodiment, the light irradiation unit 2 is also disposed to be inclined with respect to the flow path S and is opposed to the imaging unit 3.
 具体的に撮像部3のピント面F1~F3は概略矩形状をなすものであり、ピント面F1~F3の短辺と略平行な軸を回転中心として、ピント面F1~F3が所定角度傾斜している。 Specifically, the focus planes F1 to F3 of the imaging unit 3 have a substantially rectangular shape, and the focus planes F1 to F3 are inclined at a predetermined angle with respect to an axis substantially parallel to the short sides of the focus planes F1 to F3. ing.
 ここで、ピント面F1~F3の傾斜角度θと、流路Sの奥行寸法Dと、測定領域(ピント面F1~F3の長辺)の長さLと、撮像レンズ31の被写界深度dとの関係は、以下の式となる。
  sinθ≒(D-d)/L
  なお、撮像レンズ31の被写界深度dは、単一の受光素子(例えば第1受光素子321)における被写界深度である。
Here, the inclination angle θ of the focus planes F1 to F3, the depth dimension D of the flow path S, the length L of the measurement area (long sides of the focus planes F1 to F3), and the depth of field d of the imaging lens 31 The relationship with is the following equation.
sin θ ≒ (D−d) / L
The depth of field d of the imaging lens 31 is the depth of field in a single light receiving element (for example, the first light receiving element 321).
 また、撮像部3の1フレームにおける観察距離Cは、図10に示すように、以下の式となる。
  C=d/sinθ
 撮像部3の撮像間隔tが以下の式を満たすことによって、流路Sを流れる試料中の粒子Pを漏らすことなく撮像することができる。
  t≦C/v
  t≦(d/sinθ)/v
  なお、vは試料の流速(落下速度)である。
Further, as shown in FIG. 10, the observation distance C in one frame of the imaging unit 3 is as follows.
C = d / sin θ
When the imaging interval t of the imaging unit 3 satisfies the following equation, imaging can be performed without leaking the particles P in the sample flowing through the flow path S.
t ≦ C / v
t ≦ (d / sin θ) / v
Here, v is the flow velocity (dropping velocity) of the sample.
<第2実施形態の効果>
 本実施形態の粒子分析装置100によれば、流路Sの流路方向に直交する奥行方向にずれた粒子Pを計測することができる。これにより、前記第1実施形態よりも光軸方向において広範囲にわたって計測することができる。
<Effect of Second Embodiment>
According to the particle analysis device 100 of the present embodiment, the particles P shifted in the depth direction orthogonal to the flow channel direction of the flow channel S can be measured. Thereby, measurement can be performed over a wider range in the optical axis direction than in the first embodiment.
<第2実施形態の変形例>
 図11に示すように、撮像部3の撮像レンズ31がティルトレンズ311を有しており、当該ティルトレンズ311によりピント面F1~F3を傾斜する構成としてもよい。これにより、撮像部3全体を流路Sに対して傾斜させる必要が無く、粒子分析装置100全体の小型化が可能となる。
Modification of Second Embodiment
As shown in FIG. 11, the imaging lens 31 of the imaging unit 3 may have a tilt lens 311, and the focusing surfaces F1 to F3 may be inclined by the tilt lens 311. As a result, there is no need to incline the entire imaging unit 3 with respect to the flow path S, and the entire particle analysis device 100 can be miniaturized.
 また、粒子サイズの大小に応じて撮像レンズ31の光学倍率を選択可能に構成してもよい。この場合、撮像レンズ31の光学倍率に応じて被写界深度dが変化する。そのため、撮像レンズ31による被写界深度dに応じて、ピント面F1~F3の傾斜角度θが調整可能に構成することが望ましい。この構成であれば、粒子サイズの大小に関わらず、高精度な計測が可能となる。 Further, the optical magnification of the imaging lens 31 may be selectable according to the size of the particle size. In this case, the depth of field d changes in accordance with the optical magnification of the imaging lens 31. Therefore, it is desirable that the inclination angle θ of the focus planes F1 to F3 be adjustable in accordance with the depth of field d of the imaging lens 31. With this configuration, highly accurate measurement can be performed regardless of the particle size.
<その他の変形実施形態>
 なお、本発明は前記各実施形態に限られるものではない。
<Other Modified Embodiments>
The present invention is not limited to the above embodiments.
 例えば、前記実施形態では、RGBの3種類の波長域の光を用いていたが、その他の互いに異なる波長域を用いて計測するものであってもよい。また、3種類の波長域に限られず、2種類の波長域を用いて計測するものであってもよいし、4種類以上の波長域を用いて計測するものであってもよい。 For example, although light in three wavelength ranges of RGB is used in the above embodiment, measurement may be performed using other different wavelength ranges. Moreover, it is not restricted to three types of wavelength ranges, It may measure using two types of wavelength ranges, and may measure using four or more types of wavelength ranges.
 また、前記第2実施形態は、前記第1実施形態を前提としない構成であってもよい。
 つまり、図12に示すように、粒子分析装置100の撮像部3が前記第1実施形態の光学素子33を有さない構成であり、撮像部3のピント面Fが流路Sに対して傾斜するように配置されている。その他の構成は、前記第2実施形態と同様である。この粒子分析装置100であれば、流路Sの流路方向に直交する奥行方向にずれた粒子Pを計測することができる。
Further, the second embodiment may be configured not on the premise of the first embodiment.
That is, as shown in FIG. 12, the imaging unit 3 of the particle analysis device 100 does not have the optical element 33 of the first embodiment, and the focal plane F of the imaging unit 3 is inclined with respect to the flow path S It is arranged to be. The other configuration is the same as that of the second embodiment. With this particle analyzer 100, it is possible to measure particles P shifted in the depth direction orthogonal to the flow channel direction of the flow channel S.
 図12に示す粒子分析装置100においては、撮像部3の撮像素子32として、特定の波長の光を透過する透過フィルタ等を設けない構成としても良い。このような構成の撮像部3は、一般にモノクロカメラと呼ばれており、透過フィルタが不要となるので、撮影感度が高くなる。また各画素が同じ条件で撮影できるので、より高精度な計測が可能となる。 In the particle analysis device 100 shown in FIG. 12, the imaging device 32 of the imaging unit 3 may not be provided with a transmission filter or the like that transmits light of a specific wavelength. The imaging unit 3 having such a configuration is generally referred to as a monochrome camera, and a transmission filter is not necessary, so the imaging sensitivity is increased. Further, since each pixel can be photographed under the same condition, more accurate measurement becomes possible.
 前記各実施形態の試料は、分散媒として大気を用いた試料であったが、気体以外の分散媒、例えば、液体やゲル中に粒子を分散させた試料であってもよい。この場合、粒子分析装置は、試料をフローセルに流通させる構成であってもよいし、バッチ式のセルに収容する構成であってもよい。 The sample in each of the above embodiments is a sample using air as a dispersion medium, but may be a dispersion medium other than a gas, for example, a sample in which particles are dispersed in a liquid or gel. In this case, the particle analysis apparatus may be configured to flow the sample through the flow cell, or may be configured to be accommodated in a batch-type cell.
 試料をフローセルに流通させる構成としては、図13に示すものが考えられる。つまり、例えば液体中に粒子を分散させた試料を収容する測定セル7と、当該測定セル7に試料を導入及び導出させる貯留タンク81や循環ポンプ82を有する循環経路8とを備えている。そして、測定セル7の一方側に光照射部2が設けられ、測定セルの他方側に撮像部3が設けられる。ここで、測定セルの撮像部3側の側壁に高分散硝材を用いることにより、測定セル7と光学素子33とが一体に構成されたものであってもよい。 As a configuration for circulating the sample through the flow cell, one shown in FIG. 13 can be considered. That is, for example, a measurement cell 7 for storing a sample in which particles are dispersed in a liquid, and a circulation path 8 having a storage tank 81 for introducing the sample into and out of the measurement cell 7 and a circulation pump 82 are provided. And the light irradiation part 2 is provided in one side of the measurement cell 7, and the imaging part 3 is provided in the other side of the measurement cell. Here, the measurement cell 7 and the optical element 33 may be integrally configured by using a high dispersion glass material on the side wall on the imaging unit 3 side of the measurement cell.
 また、前記各実施形態の光学素子は、ガラス材料の他、PC(ポリカーボネート)、PS(ポリスチレン)などアッベ数30程度で透過率を有する樹脂製のものであっても良い。 In addition to the glass material, the optical element of each of the above embodiments may be made of a resin having a transmittance of about 30 Abbe number such as PC (polycarbonate) or PS (polystyrene).
 前記実施形態の粒子Pとしては、透光性を有する第1粒子Xと、第1粒子Xとは異種の第2粒子Yとが混在している場合がある。第1粒子Xたる透光性粒子としては、例えば気泡や樹脂製の粒子などが挙げられ、第2粒子Yとしては、透光性を有する粒子であっても良いし透光性を有していない粒子であっても良い。これらの第1粒子X及び第2粒子Yは、セル7内の媒質中に分散されている。なお、媒質は水等の液体や空気等の気体である。
 以下では、第1粒子Xが、医薬品、食品、化学工業品などの測定対象Xであり、第2粒子Yが、測定対象外の粒子たる気泡Yである場合について説明する。
As particle P of the above-mentioned embodiment, there may be a case where the first particle X having translucency and the second particle Y different from the first particle X are mixed. Examples of light-transmitting particles that are the first particles X include air bubbles and particles made of resin, and the second particles Y may be light-transmitting particles or have light-transmitting properties. There may be no particles. The first particles X and the second particles Y are dispersed in the medium in the cell 7. The medium is a liquid such as water or a gas such as air.
In the following, the case where the first particle X is a measurement target X such as a pharmaceutical product, a food, a chemical product or the like, and the second particle Y is a bubble Y which is a particle not to be measured.
 光照射部2及び撮像部3は、セル7を挟むように対向して配置されており、光照射部2から射出された光は、図14(a)に示すように、透光性粒子を通過する際に屈折する。より具体的には、媒質の屈折率よりも粒子の屈折率が大きい場合は、同図上段に示すように、光が屈折して集光し、媒質の屈折率よりも粒子の屈折率が小さい場合は、同図下段に示すように、光が屈折して発散する。これにより、粒子に照射された光の一部、具体的には粒子の中心部に照射された光が撮像部3に到達することになる。
 その結果、撮像部3が撮像した粒子の画像には、図14(b)に示すように、粒子を通過する光の屈折に起因した明暗領域が現れる。より具体的には、画像に写された粒子の中心部は明るい領域(以下、明領域S1という)となり、その外周部は暗い領域(以下、暗領域S2という)領域となり、これらの明領域S1及び暗領域S2は識別可能な領域となる。
The light emitting unit 2 and the imaging unit 3 are disposed to face each other so as to sandwich the cell 7, and the light emitted from the light emitting unit 2 is a light transmitting particle as shown in FIG. 14 (a). It refracts when it passes. More specifically, when the refractive index of the particle is larger than the refractive index of the medium, as shown in the upper part of the figure, the light is refracted and condensed, and the refractive index of the particle is smaller than the refractive index of the medium In the case, as shown in the lower part of the figure, light is refracted and diverged. Thereby, a part of the light irradiated to the particles, specifically, the light irradiated to the central part of the particles reaches the imaging unit 3.
As a result, as shown in FIG. 14 (b), bright and dark regions caused by refraction of light passing through the particles appear in the image of the particles captured by the imaging unit 3. More specifically, the central part of the particles captured in the image is a bright area (hereinafter referred to as bright area S1), and the outer peripheral part is a dark area (hereinafter referred to as dark area S2). The dark area S2 is an identifiable area.
 より詳細に説明すると、図14(a)に示すように、測定対象Xである粒子や気泡Yをボールレンズとみなした場合、これらの粒子の焦点距離EFLは、粒子の直径D、粒子の屈折率n1、及び粒子が分散する媒質の屈折率n2をパラメータとした下記の算出式により算出することができる。
 EFL=n1・D/4(n1-n2)
 このことから、仮に直径Dが互いに等しい測定対象X及び気泡Yを撮像した場合、測定対象Xの屈折率と気泡Yの屈折率との差に起因して明領域S1及び暗領域S2の比率、大きさ、形状、明暗(コントラスト)などが変わる。
More specifically, as shown in FIG. 14A, when particles or bubbles Y to be measured X are regarded as a ball lens, the focal length EFL of these particles is the diameter D of the particles, the refraction of the particles It can be calculated by the following calculation formula using the ratio n1 and the refractive index n2 of the medium in which the particles are dispersed as parameters.
EFL = n1 · D / 4 (n1-n2)
From this, when imaging the measurement object X and the bubble Y whose diameters D are mutually equal, the ratio of the bright region S1 and the dark region S2 due to the difference between the refractive index of the measurement object X and the refractive index of the bubble Y, Changes in size, shape, contrast, etc.
 そこで、画像処理部4の粒子判別部は、上述した明暗領域S1、S2に基づいて、得られた画像に写る粒子が、第1粒子であるか第2粒子であるか、すなわち測定対象Xである気泡Yであるかを判別する。具体的にこの粒子判別部は、測定対象Xの屈折率と気泡Yの屈折率との差に起因して現れる明暗領域S1、S2の画像差に基づき、画像に写る粒子が測定対象Xであるか気泡Yであるかを判別するものであり、例えば画像を二値化することで上述した画像差を算出するように構成されている。 Therefore, the particle discrimination unit of the image processing unit 4 determines whether the particle reflected in the obtained image is the first particle or the second particle based on the above-described bright and dark areas S1 and S2, that is, the measurement object X It is determined whether there is a certain bubble Y or not. Specifically, in the particle discrimination unit, particles reflected in the image are the measurement object X based on the image difference between the light and dark areas S1 and S2 appearing due to the difference between the refractive index of the measurement object X and the refractive index of the bubble Y. It is determined whether the air bubble Y or the air bubble Y. For example, the image difference described above is calculated by binarizing the image.
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。 In addition, various modifications and combinations may be made without departing from the spirit of the present invention.
 本発明によれば、光学素子によって第1波長域の光と第2波長域の光とに軸上色収差を発生させて、これらを第1受光素子及び第2受光素子で受光しているので、撮像レンズの光軸方向にずれた位置の粒子を計測することができる。
 

 
According to the present invention, axial chromatic aberration is generated in the light of the first wavelength range and the light of the second wavelength range by the optical element, and these are received by the first light receiving element and the second light receiving element. It is possible to measure particles at a position shifted in the optical axis direction of the imaging lens.


Claims (13)

  1.  分散媒中に粒子が分散してなる試料を撮像して前記粒子を分析する粒子分析装置であって、
     前記試料を撮像する撮像部と、
     前記撮像部により得られた画像データを処理する画像処理部とを備え、
     前記撮像部は、
     撮像レンズと、
     前記撮像レンズにより結像される光のうち第1波長域の光を受光する第1受光素子と、
     前記撮像レンズにより結像される光のうち第2波長域の光を受光する第2受光素子と、
     前記第1波長域による結像系と前記第2波長域による結像系との間で軸上色収差を拡大させる光学素子とを有する、粒子分析装置。
    A particle analysis apparatus for imaging a sample in which particles are dispersed in a dispersion medium to analyze the particles,
    An imaging unit configured to image the sample;
    An image processing unit that processes image data obtained by the imaging unit;
    The imaging unit is
    An imaging lens,
    A first light receiving element that receives light in a first wavelength range among light beams imaged by the imaging lens;
    A second light receiving element that receives light in a second wavelength range among the light imaged by the imaging lens;
    A particle analysis apparatus comprising: an optical element for expanding axial chromatic aberration between an imaging system according to the first wavelength range and an imaging system according to the second wavelength range.
  2.  前記撮像レンズと前記各受光素子の間に設けられ、前記撮像レンズにより結像される光から前記第1波長域の光及び前記第2波長域の光に分離する分光素子をさらに備え、
     前記光学素子は、前記撮像レンズと前記分光素子との間に設けられている、請求項1記載の粒子分析装置。
    It further comprises a spectral element provided between the imaging lens and each of the light receiving elements, for separating the light focused by the imaging lens into light of the first wavelength range and light of the second wavelength range.
    The particle analyzer according to claim 1, wherein the optical element is provided between the imaging lens and the spectral element.
  3.  前記光学素子は、全体として略アフォーカル系となる光学素子である、請求項1記載の粒子分析装置。 The particle analyzer according to claim 1, wherein the optical element is an optical element that is substantially afocal system as a whole.
  4.  前記光学素子は、高分散硝材からなる平板である、請求項1記載の粒子分析装置。 The particle analyzer according to claim 1, wherein the optical element is a flat plate made of a high dispersion glass material.
  5.  前記光学素子は、少なくとも正の屈折力を有する第1レンズと負の屈折力を有する第2レンズからなるレンズ系であり、
     前記第1レンズ又は前記第2レンズの少なくとも一方が高分散硝材からなる、請求項1記載の粒子分析装置。
    The optical element is a lens system including a first lens having at least a positive refractive power and a second lens having a negative refractive power,
    The particle analysis device according to claim 1, wherein at least one of the first lens and the second lens is made of a high dispersion glass material.
  6.  前記光学素子は、回折現象を利用して色収差を拡大する回折光学素子である、請求項1記載の粒子分析装置。 The particle analysis device according to claim 1, wherein the optical element is a diffractive optical element that expands chromatic aberration using a diffraction phenomenon.
  7.  前記回折光学素子は、表面又は内部に回折格子を形成した回折光学素子を含むレンズ系である、請求項6記載の粒子分析装置。 The particle analysis device according to claim 6, wherein the diffractive optical element is a lens system including a diffractive optical element in which a diffraction grating is formed on the surface or in the inside.
  8.  前記試料に対して前記第1波長域及び前記第2波長域の光を照射する光照射部をさらに備える、請求項1記載の粒子分析装置。 The particle analysis device according to claim 1, further comprising: a light irradiation unit that irradiates the light in the first wavelength range and the second wavelength range on the sample.
  9.  前記撮像部は、流路を流れる前記試料を撮像するものであり、
     前記撮像部のピント面が前記流路に対して傾斜するように配置されている、請求項1記載の粒子分析装置。
    The imaging unit is for imaging the sample flowing in the flow path,
    The particle analysis device according to claim 1, wherein a focusing surface of the imaging unit is disposed to be inclined with respect to the flow path.
  10.  前記撮像部はティルトレンズを有しており、当該ティルトレンズにより前記撮像部のピント面が傾斜されている、請求項9記載の粒子分析装置。 10. The particle analysis device according to claim 9, wherein the imaging unit has a tilt lens, and a focusing surface of the imaging unit is tilted by the tilt lens.
  11.  前記撮像部のピント面が概略矩形状をなすものであり、
     前記ピント面の短辺と略平行な軸を回転中心として、前記ピント面が所定角度傾斜している、請求項10記載の粒子分析装置。
    The focal plane of the imaging unit is substantially rectangular.
    11. The particle analysis device according to claim 10, wherein the focusing surface is inclined at a predetermined angle around an axis substantially parallel to the short side of the focusing surface.
  12.  前記撮像部のピント面が前記流路の流路方向に対して傾斜しており、
     前記撮像部の撮像間隔Tを以下の式よりも短くしている、請求項9記載の粒子分析装置。
      T≦(d/sinθ)/v
      ここで、dは前記撮像レンズの被写界深度、θは前記ピント面の傾斜角度、vは前記試料の流速である。
    The focal plane of the imaging unit is inclined with respect to the flow channel direction of the flow channel,
    The particle analysis device according to claim 9, wherein the imaging interval T of the imaging unit is shorter than the following equation.
    T ≦ (d / sin θ) / v
    Here, d is the depth of field of the imaging lens, θ is the inclination angle of the focusing surface, and v is the flow velocity of the sample.
  13.  前記撮像レンズによる被写界深度に応じて、前記ピント面の傾斜角度が調整可能に構成されている、請求項10記載の粒子分析装置。

     
    The particle analysis device according to claim 10, wherein the tilt angle of the focusing surface is adjustable in accordance with the depth of field of the imaging lens.

PCT/JP2018/041753 2017-12-15 2018-11-09 Particle analyzing device WO2019116802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558975A JPWO2019116802A1 (en) 2017-12-15 2018-11-09 Particle analyzer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017240819 2017-12-15
JP2017-240819 2017-12-15
JP2018106009 2018-06-01
JP2018-106009 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019116802A1 true WO2019116802A1 (en) 2019-06-20

Family

ID=66820234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041753 WO2019116802A1 (en) 2017-12-15 2018-11-09 Particle analyzing device

Country Status (2)

Country Link
JP (1) JPWO2019116802A1 (en)
WO (1) WO2019116802A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090081A (en) * 2020-12-22 2022-06-29 ㈜ 엘티아이에스 Particle measuring device
JP7453080B2 (en) 2020-07-20 2024-03-19 旭化成株式会社 Inspection method for bright spot foreign matter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59643A (en) * 1982-03-25 1984-01-05 ベクトン・デイツキンソン・アンド・カンパニ− Measuring device for fluidized cell
JPS62269043A (en) * 1986-05-17 1987-11-21 Canon Inc Particle analyser
JPH08320285A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Particle analyzing device
WO2005018236A1 (en) * 2003-08-13 2005-02-24 Scalar Corporation Camera, image processing apparatus, image data processing method, and program
US6917421B1 (en) * 2001-10-12 2005-07-12 Kla-Tencor Technologies Corp. Systems and methods for multi-dimensional inspection and/or metrology of a specimen
JP2010286574A (en) * 2009-06-10 2010-12-24 Nikon Corp Chromatic aberration expansion optical system
JP2011501209A (en) * 2007-10-11 2011-01-06 スリーエム イノベイティブ プロパティズ カンパニー Color confocal sensor
US20140347447A1 (en) * 2008-12-05 2014-11-27 Unisensor A/S Optical sectioning of a sample and detection of particles in a sample

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074645A (en) * 1999-09-03 2001-03-23 Isao Shimizu Method and device for measuring small amount of fine particle
JP2010127723A (en) * 2008-11-27 2010-06-10 Nikon Corp Shape measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59643A (en) * 1982-03-25 1984-01-05 ベクトン・デイツキンソン・アンド・カンパニ− Measuring device for fluidized cell
JPS62269043A (en) * 1986-05-17 1987-11-21 Canon Inc Particle analyser
JPH08320285A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Particle analyzing device
US6917421B1 (en) * 2001-10-12 2005-07-12 Kla-Tencor Technologies Corp. Systems and methods for multi-dimensional inspection and/or metrology of a specimen
WO2005018236A1 (en) * 2003-08-13 2005-02-24 Scalar Corporation Camera, image processing apparatus, image data processing method, and program
JP2011501209A (en) * 2007-10-11 2011-01-06 スリーエム イノベイティブ プロパティズ カンパニー Color confocal sensor
US20140347447A1 (en) * 2008-12-05 2014-11-27 Unisensor A/S Optical sectioning of a sample and detection of particles in a sample
JP2010286574A (en) * 2009-06-10 2010-12-24 Nikon Corp Chromatic aberration expansion optical system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453080B2 (en) 2020-07-20 2024-03-19 旭化成株式会社 Inspection method for bright spot foreign matter
KR20220090081A (en) * 2020-12-22 2022-06-29 ㈜ 엘티아이에스 Particle measuring device
KR102470065B1 (en) 2020-12-22 2022-11-23 (주) 엘티아이에스 Particle measuring device

Also Published As

Publication number Publication date
JPWO2019116802A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
EP2745094B1 (en) Optical biosensor with a plurality of sensor regions
CA2703102C (en) Depth of field extension for optical tomography
JP5159986B2 (en) Imaging apparatus and imaging method
JP7448609B2 (en) Optical inspection equipment, methods and programs
US9541750B2 (en) Telecentric, wide-field fluorescence scanning systems and methods
US10371632B2 (en) Data correction method in fine particle measuring device and fine particle measuring device
JP6510044B2 (en) Detector for microscope
US10962488B2 (en) Integrated projection-schlieren optical system
US8633432B2 (en) Reflective focusing and transmissive projection device
JP2012244277A (en) Image capture device and microscope system comprising the same
US20050001144A1 (en) Imaging system, methodology, and applications employing reciprocal space optical design
CN110133826B (en) Information acquisition device
US7439478B2 (en) Imaging system, methodology, and applications employing reciprocal space optical design having at least one pixel being scaled to about a size of a diffraction-limited spot defined by a microscopic optical system
WO2019116802A1 (en) Particle analyzing device
CN107111013B (en) Compact modulation transfer function evaluation system
JP7308823B2 (en) Particle size distribution measuring device and program for particle size distribution measuring device
US20120281086A1 (en) Distance measurement apparatus and distance measurement method
CN101673043B (en) Wide-angle distortion testing system and method
JP2020076717A (en) Optical inspection device and optical inspection method
JP6975704B2 (en) Multicolor detector
CN110376171B (en) Transmission type fluorescence detection imaging system applied to dPCR detector
RU2316797C1 (en) Lens objective with changeable focal length for operation within ir spectrum area
Plaipichit et al. Spectroscopy system using digital camera as two dimensional detectors for undergraduate student laboratory
RU2806167C1 (en) High-aperture infrared lens
KR101627337B1 (en) Sample Chamber Cartridge for Reducing Field Curvature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887932

Country of ref document: EP

Kind code of ref document: A1