WO2019116659A1 - Vibration-damping rubber composition and vibration-damping rubber - Google Patents

Vibration-damping rubber composition and vibration-damping rubber Download PDF

Info

Publication number
WO2019116659A1
WO2019116659A1 PCT/JP2018/034520 JP2018034520W WO2019116659A1 WO 2019116659 A1 WO2019116659 A1 WO 2019116659A1 JP 2018034520 W JP2018034520 W JP 2018034520W WO 2019116659 A1 WO2019116659 A1 WO 2019116659A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
vibration
rubber composition
copolymer
Prior art date
Application number
PCT/JP2018/034520
Other languages
French (fr)
Japanese (ja)
Inventor
堀川 泰郎
奈保子 伊藤
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2019558912A priority Critical patent/JP7348070B2/en
Publication of WO2019116659A1 publication Critical patent/WO2019116659A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Definitions

  • the present invention relates to a vibration-proof rubber composition and a vibration-proof rubber.
  • anti-vibration rubber In the field of automobiles, general industrial machines and the like, anti-vibration rubber is used to prevent vibration and noise of engines and vehicle bodies.
  • the vibration-proof rubber is conventionally manufactured using various rubber compositions, what mix
  • Patent Document 1 in order to achieve both the dynamic characteristics of the vibration-proof rubber and the fatigue resistance, a large particle size (small specific surface area) and a large particle size / high structure carbon black with developed structure are used. Is disclosed.
  • silica as a filler sulfur as a crosslinking agent (vulcanizing agent), and an alkylphenol disulfide or bismaleimide compound are blended in a rubber component formed by blending a natural rubber and a butyl rubber.
  • a rubber composition for high heat resistance, high durability, low dynamic magnification, high damping vibration proof rubber is disclosed.
  • Patent Document 3 discloses a vibration-proof rubber composition having a low dynamic magnification and high durability, which contains a rubber component, hydrophobized silica, and a silane coupling agent.
  • the vibration-proof rubber is naturally required to have a performance (vibration damping property) to sufficiently damp the vibration as a performance to be provided, and to have the performance, it is required that the static spring constant is small.
  • the vibration-proof rubber composition described in the above-mentioned document has a problem that the static spring constant becomes high and the dynamic magnification is adversely affected as a result of the addition of the filler to enhance the durability. Therefore, the conventional rubber composition has room for improvement in that the static spring constant is reduced to improve the vibration damping property while maintaining high durability.
  • this invention solves the problem of the said prior art, and an object of this invention is to provide the anti-vibration rubber composition which is highly durable and can fully attenuate a vibration. Moreover, this invention aims at providing the vibration-proof rubber which is excellent in durability and a vibration damping property using this vibration-proof rubber composition.
  • the vibration-proof rubber composition of the present invention comprises a rubber component containing a multicomponent copolymer having conjugated diene units, non-conjugated olefin units and aromatic vinyl units, and a filler as an optional component,
  • the filler content is 0 to 90 parts by mass with respect to 100 parts by mass of the rubber component.
  • the vibration-proof rubber of the present invention is characterized by containing the above-mentioned vibration-proof rubber composition.
  • the present invention it is possible to provide a vibration-proof rubber composition having high durability and capable of sufficiently damping vibration. Further, according to the present invention, it is possible to provide a vibration-proof rubber which is excellent in durability and vibration damping property using such a vibration-proof rubber composition.
  • the vibration-proof rubber composition (Hereafter, it may be called "the rubber composition of this embodiment.") Which concerns on one Embodiment of this invention is demonstrated in detail.
  • the rubber composition of the present embodiment is characterized by containing a rubber component including a multicomponent copolymer having a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit.
  • the rubber composition of the present embodiment can further contain a filler, a softener, a liquid rubber, and other components, as necessary.
  • the rubber composition of the present embodiment contains a multicomponent copolymer as a rubber component, and can further contain other rubber components.
  • the other rubber components are not particularly limited.
  • natural rubber isoprene rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, ethylene-propylene rubber ( EPM), ethylene-propylene-diene rubber (EPDM), polysulfide rubber, silicone rubber, fluororubber, urethane rubber and the like.
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • chloroprene rubber ethylene-propylene rubber
  • EPM ethylene-propylene-diene rubber
  • EPDM ethylene-propylene-diene rubber
  • silicone rubber fluororubber, urethane rubber and the like.
  • the multicomponent copolymer used in the present embodiment has a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit.
  • the conjugated diene unit in the multicomponent copolymer can easily form a crosslinked structure with other molecular chains. Therefore, the multi-component copolymer is, for example, cracked or creeped as compared with a copolymer formed by using a non-conjugated diene compound such as known ethylene-propylene-non-conjugated diene copolymer (EPDM). The occurrence of stagnation is suppressed.
  • EPDM ethylene-propylene-non-conjugated diene copolymer
  • the molecular chain portion composed of the non-conjugated olefin unit and the aromatic vinyl unit in the above multi-component copolymer has a high strength structure due to molecular chain orientation, crystal elongation and the like by repetition of dynamic elongation and compression. Can. Therefore, the rubber composition of the present embodiment can exhibit high durability by containing the above-described multicomponent copolymer, and can have high durability even without containing a large amount of filler. It is considered that the static spring constant is low and the vibration damping property is good.
  • conjugated diene unit refers to a unit corresponding to a unit derived from a conjugated diene compound in a copolymer
  • nonconjugated olefin unit refers to a nonconjugated olefin compound in a copolymer
  • aromatic vinyl unit refers to a unit corresponding to a unit derived from an aromatic vinyl compound in a copolymer
  • conjugated diene compound refers to a conjugated diene compound
  • non-conjugated olefin compound is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds.
  • aromatic vinyl compound refers to an aromatic compound substituted with at least a vinyl group, and is not included in the conjugated diene compound.
  • a multi-element copolymer refers to the copolymer formed by polymerizing three or more types of monomers.
  • the conjugated diene unit in the multicomponent copolymer is usually a unit derived from a conjugated diene compound as a monomer, and the conjugated diene compound preferably has 4 to 8 carbon atoms.
  • Specific examples of such conjugated diene compounds include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compounds may be used alone or in combination of two or more.
  • the conjugated diene compound used as a monomer preferably contains at least one of 1,3-butadiene and isoprene, and only 1,3-butadiene and / or isoprene.
  • the conjugated diene units in the multicomponent copolymer preferably contain at least one of 1,3-butadiene units and isoprene units, and consist of only 1,3-butadiene units and / or isoprene units. Is more preferred.
  • the non-conjugated olefin unit in the multicomponent copolymer is usually a unit derived from a non-conjugated olefin compound as a monomer, and the non-conjugated olefin compound preferably has 2 to 10 carbon atoms .
  • non-conjugated olefin compounds specifically, ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene or 1-octene, vinyl pivalate, 1-phenylthio Examples thereof include ethene and heteroatom-substituted alkene compounds such as N-vinyl pyrrolidone.
  • the non-conjugated olefin compounds may be used alone or in combination of two or more.
  • the non-conjugated olefin compound used as a monomer preferably has no cyclic structure from the viewpoint of further improving the durability, and from the viewpoint of further improving the durability and the breaking strength, an ⁇ -olefin (ethylene It is more preferable to include the above, and it is more preferable to consist of ethylene only.
  • the non-conjugated olefin unit in the multicomponent copolymer preferably has no cyclic structure from the viewpoint of further improving the durability, and from the viewpoint of further improving the durability and the breaking strength, ⁇ It is more preferred to contain an olefin unit (including an ethylene unit), and even more preferable to consist of only an ethylene unit.
  • the aromatic vinyl unit in the multicomponent copolymer is usually a unit derived from an aromatic vinyl compound as a monomer, and the aromatic vinyl compound preferably has 8 to 10 carbon atoms. .
  • aromatic vinyl compounds specifically, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene Etc.
  • the above aromatic vinyl compounds may be used alone or in combination of two or more.
  • the aromatic vinyl compound used as a monomer preferably contains styrene, and more preferably consists of styrene, from the viewpoint of ease of control of the melting point, the glass transition temperature, and the energy of the endothermic peak.
  • the aromatic vinyl units in the multicomponent copolymer preferably contain styrene units, and more preferably consist only of styrene units.
  • the multicomponent copolymer may also contain any unit other than the conjugated diene unit, the nonconjugated olefin unit and the aromatic vinyl unit described above.
  • the ratio of any unit other than the conjugated diene unit, the nonconjugated olefin unit and the aromatic vinyl unit is 10 mol% or less Is preferable, and 0 mol% is more preferable.
  • the number of types of monomers of the multicomponent copolymer is not particularly limited as long as the multicomponent copolymer has a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit.
  • the multi-component copolymer should contain at least one conjugated diene compound, one non-conjugated olefin compound, and one aromatic vinyl compound as monomers. It is preferable that it is a copolymer formed by using and copolymerizing.
  • the multicomponent copolymer of the present invention is preferably a multicomponent copolymer having one conjugated diene unit, one nonconjugated olefin unit, and one aromatic vinyl unit.
  • the multicomponent copolymer is more preferably a ternary copolymer consisting of only one conjugated diene unit, one nonconjugated olefin unit, and one aromatic vinyl unit, and 1,3 More preferably, it is a ternary copolymer consisting only of butadiene units, ethylene units and styrene units.
  • “one conjugated diene unit” includes conjugated diene units having different bonding modes.
  • the multicomponent copolymer preferably has a conjugated diene unit ratio of 1 mol% or more and 50 mol% or less.
  • the ratio of conjugated diene units is 1 mol% or more, the multicomponent copolymer can be uniformly behaved as an elastomer, and the effect of further improving the durability can be obtained, and at 50 mol% or less As a result, the effect of including non-conjugated olefin units and aromatic vinyl units can be sufficiently obtained.
  • the proportion of conjugated diene units in the multicomponent copolymer is more preferably 40 mol% or less.
  • the multicomponent copolymer preferably has a proportion of non-conjugated olefin units of 40 mol% or more and 97 mol% or less.
  • the proportion of non-conjugated olefin units is 40 mol% or more, the durability can be further improved, and by being 97 mol% or less, the effect of containing conjugated diene units and aromatic vinyl units is sufficiently obtained. Can be obtained.
  • the proportion of the non-conjugated olefin unit in the multicomponent copolymer is more preferably 45 mol% or more, and more preferably 93 mol% or less.
  • the multicomponent copolymer preferably has a proportion of aromatic vinyl units of 2 mol% or more and 35 mol% or less.
  • the proportion of the aromatic vinyl unit is 2 mol% or more, the breaking strength and the elongation can be further improved, and when it is 35 mol% or less, the effect of including the conjugated diene unit and the non-conjugated olefin unit You can get enough.
  • the proportion of the aromatic vinyl unit in the multicomponent copolymer is more preferably 5 mol% or more, and more preferably 25 mol% or less.
  • a conjugated diene unit was made into A
  • a nonconjugated olefin unit was made into B
  • an aromatic vinyl unit was made into C.
  • a x -B y -C z ( x, y, z is 1 or more is an integer) block copolymer employing a configuration such as, a, B, random copolymers of a configuration in which C is a random arrangement Alternating copolymer having a configuration such as a polymer, a tapered copolymer in which the random copolymer and the block copolymer are mixed, (ABC) w (w is an integer of 1 or more), etc. It can be combined.
  • the multicomponent copolymer may have a structure (linear structure) in which a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit are linearly linked, or a conjugated diene unit or a nonconjugated olefin unit, And at least one of the aromatic vinyl units may be branched to form a chained structure (branched structure).
  • branched chain can also be made into binary or multi-component (namely, branched chain is a conjugated diene unit, a non conjugated olefin unit, and an aromatic vinyl unit). Can include at least two of them).
  • the multicomponent copolymer preferably has a melting point of 30 to 130 ° C. as measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the melting point of the multicomponent copolymer is more preferably 40 ° C. or higher, and more preferably 120 ° C. or lower.
  • the melting point of the multicomponent copolymer can be specifically measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121-1987.
  • the multicomponent copolymer preferably has an endothermic peak energy of 10 to 130 J / g as measured by differential scanning calorimetry (DSC) at 0 to 120 ° C.
  • DSC differential scanning calorimetry
  • the energy of the endothermic peak is 10 J / g or more, the durability can be further improved regardless of the amount of the filler used, and by being 130 J / g or less, the fracture elongation can be improved.
  • the energy of the endothermic peak of the multicomponent copolymer is more preferably 15 J / g or more, and more preferably 90 J / g or less.
  • the energy of the endothermic peak of the multicomponent copolymer is raised from -150 ° C. to 150 ° C. at a temperature rise rate of 10 ° C./min. It can be measured by determining an endothermic peak (enthalpy relaxation) at 0 to 120 ° C. in the first run.
  • the multicomponent copolymer preferably has a glass transition temperature of 0 ° C. or less as measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the glass transition temperature of the multicomponent copolymer is more preferably ⁇ 10 ° C. or less.
  • the glass transition temperature of the multicomponent copolymer can be specifically measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121-1987.
  • the multicomponent copolymer preferably has a main chain consisting of only a non-cyclic structure. Thereby, durability can be further improved.
  • NMR is used as a main measurement means to confirm whether or not the main chain of the multicomponent copolymer has a cyclic structure. Specifically, when no peak derived from a cyclic structure present in the main chain (for example, a peak appearing at 10 to 24 ppm for a 3-membered ring to a 5-membered ring) is observed, the main chain of the multicomponent copolymer is , Indicates that it consists only of non-cyclic structure.
  • the proportion of the multicomponent copolymer in the rubber component is preferably 20% by mass or more.
  • the proportion of the multicomponent copolymer in the rubber component of the rubber composition of the present embodiment is more preferably 30% by mass or more.
  • the proportion of the multicomponent copolymer in the rubber component is preferably 100% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
  • the multicomponent copolymer may be produced, for example, by carrying out the step (polymerization step) of copolymerizing at least a conjugated diene compound, a nonconjugated olefin compound and an aromatic vinyl compound as monomers. it can.
  • step (polymerization step) of copolymerizing at least a conjugated diene compound, a nonconjugated olefin compound and an aromatic vinyl compound as monomers.
  • other steps such as a coupling step and a washing step can be carried out, if necessary, in addition to the above-mentioned polymerization step.
  • the conjugated diene compound is more reactive than the nonconjugated olefin compound and the aromatic vinyl compound, so that the nonconjugated olefin compound and / or Or, it tends to be difficult to polymerize the aromatic vinyl compound.
  • any polymerization method such as solution polymerization method, suspension polymerization method, liquid phase bulk polymerization method, emulsion polymerization method, gas phase polymerization method, solid phase polymerization method and the like can be used.
  • the solvent may be any solvent which is inactive in the polymerization reaction, and examples thereof include toluene, cyclohexane and normal hexane.
  • the polymerization reaction is preferably carried out under an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • the polymerization temperature of the above-mentioned polymerization reaction is not particularly limited, but, for example, the range of ⁇ 100 ° C. to 200 ° C. is preferable, and may be around room temperature.
  • the pressure of the above-mentioned polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently introduce the conjugated diene compound into the polymerization reaction system.
  • the reaction time of the polymerization reaction can be appropriately selected according to the conditions such as the type of polymerization catalyst and the polymerization temperature, but for example, the range of 1 second to 10 days is preferable.
  • the polymerization reaction may be terminated using a polymerization terminator such as methanol, ethanol or isopropanol.
  • the polymerization step may be performed in one step, or may be performed in multiple steps of two or more steps.
  • One-step polymerization processes are all kinds of monomers to be polymerized, ie conjugated diene compounds, non-conjugated olefin compounds, aromatic vinyl compounds and other monomers, preferably conjugated diene compounds, non-conjugated
  • an olefin compound and an aromatic vinyl compound are reacted at the same time to be polymerized.
  • the multistage polymerization process part or all of one or two kinds of monomers are first reacted to form a polymer (first polymerization stage), and then the remaining kinds of monomers And a step of performing polymerization by performing one or more stages (second polymerization stage to final polymerization stage) in which the remainder of the one or two types of monomers is added and polymerized.
  • first polymerization stage part or all of one or two kinds of monomers are first reacted to form a polymer
  • second polymerization stage to final polymerization stage a step of performing polymerization by performing one or more stages (second polymerization stage to final polymerization stage) in which the remainder of the one or two types of monomers is added and polymerized.
  • a second step of introducing a second monomer raw material containing at least one selected from the group consisting of an olefin compound and an aromatic vinyl compound.
  • the said 1st monomer raw material does not contain a conjugated diene compound
  • the said 2nd monomer raw material contains a conjugated diene compound.
  • the first monomer raw material used in the first step may contain a non-conjugated olefin compound together with the aromatic vinyl compound.
  • the first monomer raw material may contain the whole amount of the aromatic vinyl compound to be used, or may contain only a part.
  • the non-conjugated olefin compound is contained in at least one of the first monomer raw material and the second monomer raw material.
  • the first step is preferably carried out in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor.
  • the temperature (reaction temperature) in the first step is not particularly limited, but is preferably in the range of -100 ° C. to 200 ° C., for example, and may be about room temperature.
  • the pressure in the first step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the aromatic vinyl compound into the polymerization reaction system.
  • the time spent in the first step can be appropriately selected according to the conditions such as the type of polymerization catalyst, reaction temperature, etc. For example, when the reaction temperature is 25 to 80 ° C., 5 minutes A range of ⁇ 500 minutes is preferred.
  • any method such as solution polymerization method, suspension polymerization method, liquid phase bulk polymerization method, emulsion polymerization method, gas phase polymerization method, solid phase polymerization method and the like can be used. It can be used.
  • the solvent may be any solvent which is inactive in the polymerization reaction, and examples thereof include toluene, cyclohexanone, normal hexane and the like.
  • the second monomer raw material used in the second step is only the conjugated diene compound, the conjugated diene compound and the nonconjugated olefin compound only, the conjugated diene compound and the aromatic vinyl compound only, or the conjugated diene compound, Non-conjugated olefin compounds and aromatic vinyl compounds are preferred.
  • the second monomer material contains at least one selected from the group consisting of non-conjugated olefin compounds and aromatic vinyl compounds in addition to conjugated diene compounds, these monomer materials may be used as solvents in advance. And may be introduced into the polymerization mixture, or each monomer raw material may be introduced from a single state. Moreover, each monomer raw material may be added simultaneously or may be added one by one.
  • the second step is preferably carried out in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor.
  • the temperature (reaction temperature) in the second step is not particularly limited, but is preferably in the range of -100 ° C. to 200 ° C., for example, and may be about room temperature. When the reaction temperature is raised, the selectivity of cis-1,4 bond in the conjugated diene unit may be lowered.
  • the pressure in the second step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate a monomer such as a conjugated diene compound into the polymerization reaction system.
  • reaction time can be appropriately selected according to the conditions such as the type of polymerization catalyst, reaction temperature and the like, but for example, the range of 0.1 hour to 10 days is preferable.
  • the polymerization reaction may be terminated using a polymerization terminator such as methanol, ethanol or isopropanol.
  • the coupling step is a step of performing a reaction (coupling reaction) of modifying at least a part (for example, an end) of the polymer chain of the multicomponent copolymer obtained in the polymerization step using a coupling agent or the like. .
  • the coupling step is preferably performed when the polymerization reaction reaches 100%. By performing the coupling step, the number average molecular weight (Mn) of the multicomponent copolymer can be increased.
  • tin containing compounds such as bis (1-octadecyl maleate) diokuteru tin (lV); Isocyanate compounds such as 4'-diphenylmethane diisocyanate; and alkoxysilane compounds such as glycidyl propyl trimethoxysilane.
  • tin containing compounds such as bis (1-octadecyl maleate) diokuteru tin (lV); Isocyanate compounds such as 4'-diphenylmethane diisocyanate; and alkoxysilane compounds such as glycidyl propyl trimethoxysilane.
  • tin containing compounds such as bis (1-octadecyl maleate) diokuteru tin (lV); Isocyanate compounds such as 4'-diphenylmethane diisocyanate; and alkoxysilane compounds such as glycidyl propyl trimethoxysi
  • the washing step is a step of washing the multicomponent copolymer obtained in the polymerization step or the coupling step.
  • the medium used for the washing is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include solvents such as methanol, ethanol and isopropanol.
  • an acid for example, hydrochloric acid, a sulfuric acid, nitric acid etc.
  • the amount of the acid to be added is 15 mol% or less based on the solvent from the viewpoint of avoiding that the acid remains in the multicomponent copolymer and adversely affects the reaction during kneading and vulcanization. preferable.
  • the polymerization step may be performed in the presence of a first polymerization catalyst composition, a second polymerization catalyst composition, a third polymerization catalyst composition, or a fourth polymerization catalyst composition shown below. preferable.
  • a first polymerization catalyst composition a second polymerization catalyst composition
  • a third polymerization catalyst composition a third polymerization catalyst composition
  • a fourth polymerization catalyst composition shown below. preferable.
  • the first polymerization catalyst composition, the second polymerization catalyst composition, the third polymerization catalyst composition, and the fourth polymerization catalyst composition will be described.
  • first polymerization catalyst composition (hereinafter also referred to as "first polymerization catalyst composition") will be described.
  • Component (A1) a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, wherein the rare earth element compound or the reaction product does not have a bond between the rare earth element and carbon.
  • Component (B1) an ionic compound (B1-1) consisting of a non-coordinating anion and a cation, an aluminoxane (B1-2), a Lewis acid, a complex compound of a metal halide and a Lewis base, and an active halogen And a polymerization catalyst composition containing at least one selected from the group consisting of at least one halogen compound (B1-3) among organic compounds.
  • the polymerization catalyst composition further comprises Component (C1): The following formula (I): YR 1 a R 2 b R 3 c ...
  • R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 1 , R 2 and R 3 may be identical to or different from one another, and Y is a periodic group.
  • a is 1 and b and c are 0, and Y is a metal selected from Group 2 and Group 12 of the periodic table , A and b are 1 and c is 0, and when Y is a metal selected from Group 13 of the periodic table, a, b and c are 1. including.
  • the above-mentioned ionic compound (B1-1) and the above-mentioned halogen compound (B1-3) do not have carbon atoms to be supplied to the component (A1), and therefore the above-mentioned ((1) C1) The component is required. Even when the polymerization catalyst composition contains the aluminoxane (B1-2), the polymerization catalyst composition can contain the component (C1).
  • the first polymerization catalyst composition may contain other components contained in a general rare earth element compound polymerization catalyst composition, such as a cocatalyst.
  • the concentration of the component (A1) contained in the first polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
  • the polymerization catalyst composition preferably contains an additive (D1) that can be an anionic ligand.
  • the component (A1) used in the first polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, wherein the rare earth element compound and the reaction of the rare earth element compound with a Lewis base
  • the substance does not have a bond between the rare earth element and carbon.
  • the rare earth element compound is a compound containing a rare earth element (M), that is, a lanthanoid element composed of elements of atomic numbers 57 to 71 in the periodic table, or scandium or yttrium.
  • lanthanoid elements examples include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • the said (A1) component may be used individually by 1 type, and may be used combining 2 or more types.
  • the rare earth metal compound is preferably a salt or complex compound in which the rare earth metal is divalent or trivalent, and one or more coordination selected from a hydrogen atom, a halogen atom and an organic compound residue It is more preferable that it is a rare earth element compound containing a nitrogen.
  • the rare earth element compound or the reaction product of the rare earth element compound and the Lewis base is represented by the following formula (II) or formula (III): M 11 X 11 2 ⁇ L 11 w ... (II) M 11 X 11 3 ⁇ L 11 w ...
  • M 11 represents a lanthanoid element, scandium or yttrium
  • X 11 each independently represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, an aldehyde residue, A ketone residue, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue is shown
  • L 11 is preferably a Lewis base
  • w is preferably 0 to 3.
  • a group (ligand) to be bonded to the rare earth element of the above rare earth element compound a hydrogen atom, a halogen atom, an alkoxy group (a group excluding hydrogen of hydroxyl group of alcohol to form metal alkoxide), a thiolate group ( It is a group except hydrogen of thiol group of thiol compound and forms metal thiolate.
  • Amino group (ammonia, primary amine, or one hydrogen atom bonded to nitrogen atom of secondary amine is removed) Groups which form metal amides), silyl groups, aldehyde residues, ketone residues, carboxylic acid residues, thiocarboxylic acid residues or phosphorus compound residues.
  • aliphatic alkoxy group such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group; phenoxy group, 2,6-di- tert-Butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2 Aromatic alkoxy groups such as -isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio sec-butoxy group, thio tert-butoxy group, etc.
  • Aliphatic thiolate group thiophenoxy group, 2,6-di-tert-butyl Ophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2-tert-butyl-6-neopentylthiophenoxy group, Arylthiolate groups such as 2-isopropyl-6-neopentylthiophenoxy group, 2,4,6-triisopropylthiophenoxy group; aliphatic amino groups such as dimethylamino group, diethylamino group, diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropy
  • aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone, etc.
  • Residues of hydroxyphenone residues of diketones such as acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone and ethylacetylacetone; isovaleric acid, caprylic acid, octanoic acid, lauric acid, myristic acid, palmitic acid, Stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, pivalic acid, versatic acid (trade name of Shell Chemical Co., Ltd., a mixture of C10 monocarboxylic acid isomers Of synthetic acids, phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, succinic acid and other carboxylic acid residues; hexanethioic acid, 2,2-dimethylbutanethioic acid,
  • examples of the Lewis base which reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethyl aniline, trimethyl phosphine, lithium chloride, neutral olefins, and the like. Diolefins and the like.
  • the above-mentioned rare earth element compounds react with a plurality of Lewis bases (in the formulas (II) and (III), when w is 2 or 3, the Lewis bases L 11 are different even though they are identical. It may be
  • the rare earth element compound contains a compound represented by the following formula (IV).
  • M- (NQ 1) (NQ 2 ) (NQ 3) ⁇ (IV) (Wherein, M is at least one selected from lanthanoid elements, scandium and yttrium, and NQ 1 , NQ 2 and NQ 3 are amino groups and may be the same or different, provided that M ⁇ With N bond) That is, the compound represented by the above formula (IV) is characterized by having three M—N bonds. Having three M—N bonds has the advantage that the structure is stable because each bond is chemically equivalent, and hence it is easy to handle.
  • NQ NQ 1 , NQ 2 and NQ 3
  • aliphatic amino groups such as dimethylamino, diethylamino and diisopropylamino; phenylamino, 2, 6 -Di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6 -Arylamino groups such as neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group Although any may be used, the bistrimethylsilylamino group is preferred.
  • the component (B1) used in the first polymerization catalyst composition is at least one selected from the group consisting of the ionic compound (B1-1), the aluminoxane (B1-2) and the halogen compound (B1-3).
  • the total content of the components (B1) in the first polymerization catalyst composition is preferably 0.1 to 50 times the mol of the component (A1).
  • the ionic compound (B1-1) comprises a non-coordinating anion and a cation, and reacts with the rare earth element compound which is the component (A1) or a reactant thereof with a Lewis base to form a cationic transition metal compound.
  • the ionic compound etc. which can be produced can be mentioned.
  • non-coordinating anion for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri And decahydride-7,8-dicarbaundecaborate and the like.
  • examples of the cation include carbonium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptatrienyl cation, ferrocenium cation having a transition metal, and the like.
  • Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenyl carbonium cation, tri (substituted phenyl) carbonium cation and the like, and as the tri (substituted phenyl) carbonyl cation, more specifically, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation and the like.
  • ammonium cation examples include trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation, tributyl ammonium cation (for example, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cations such as cations, N, N-diethylanilinium cations, N, N, 2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropyl ammonium cation, dicyclohexyl ammonium cation, etc. Can be mentioned.
  • trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation, tributyl ammonium cation (for example, tri (n-buty
  • the phosphonium cation include triaryl phosphonium cations such as triphenyl phosphonium cation, tri (methyl phenyl) phosphonium cation, tri (dimethyl phenyl) phosphonium cation and the like.
  • compounds selected and combined respectively from the above-mentioned non-coordinating anions and cations are preferable, and specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbo Preferred are tetrakis (pentafluorophenyl) borate and the like.
  • these ionic compounds can be used alone or in combination of two or more.
  • the content of the ionic compound (B1-1) in the first polymerization catalyst composition is preferably 0.1 to 10 times mol and preferably about 1 time mol to the component (A1). Is more preferred.
  • aluminoxane (B1-2) is a compound obtained by contacting an organoaluminum compound and a condensing agent, and, for example, a chain having a repeating unit represented by the formula: (-Al (R ′) O—) Aluminoxane or cyclic aluminoxane (wherein R ′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups are substituted with at least one selected from the group consisting of halogen atoms and alkoxy groups 5 or more is preferable and 10 or more are more preferable.
  • R ' examples include a methyl group, an ethyl group, a propyl group and an isobutyl group, and among them, a methyl group is preferable.
  • organic aluminum compound used as a raw material of aluminoxane for example, trialkylaluminum such as trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum and the like and a mixture thereof can be mentioned, with preference given to trimethylaluminum.
  • an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be suitably used.
  • the content of the aluminoxane (B1-2) in the first polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the rare earth element M constituting the component (A1) is 10 to 1,1. It is preferable to make it about 000.
  • the halogen compound (B1-3) is made of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen, and for example, a rare earth element compound or the above component (A1)
  • the cationic transition metal compound, the halogenated transition metal compound and the transition metal center can form a charge deficient compound by reacting with the reactant with the Lewis base.
  • the total content of the halogen compounds (B1-3) in the first polymerization catalyst composition is preferably 1 to 5 times the mol of the component (A1).
  • boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used, and Group 3 and Group 3 in the periodic table It is also possible to use a halogen compound containing an element belonging to Group 4, Group 5, Group 6 or Group 8.
  • an aluminum halide or an organometallic halide is mentioned.
  • a halogen element chlorine or a bromine is preferable.
  • Lewis acid examples include methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide, butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride, diethylaluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride Among them, diethylaluminum chloride, ethylaluminum
  • a Lewis base which comprises the complex compound of the said metal halide and Lewis base
  • a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol etc. are preferable.
  • tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2- Ethyl hexyl alcohol, 1-decanol and lauryl alcohol are mentioned, Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2- Ethyl hexyl alcohol, 1-decanol and lauryl alcohol are preferred.
  • the Lewis base is preferably reacted in a proportion of 0.01 to 30 mol, more preferably 0.5 to 10 mol, per 1 mol of the metal halide.
  • the reaction with this Lewis base can be used to reduce the metal remaining in the polymer.
  • organic compound containing an active halogen examples include benzyl chloride and the like.
  • the component (C1) used in the first polymerization catalyst composition has the following formula (I): YR 1 a R 2 b R 3 c ... (I) (Wherein, Y is a metal selected from Groups 1, 2, 12, and 13 of the periodic table, and R 1 and R 2 each represent a monovalent hydrocarbon group having 1 to 10 carbon atoms or R 3 is a hydrogen atom, R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be identical to or different from one another, and Y is a group of periodic table 1 A is 1 and b and c are 0 when it is a metal selected from group a, and when a is a metal selected from groups 2 and 12 of the periodic table, a and and b is 1 and c is 0, and when Y is a metal selected from Group 13 of the periodic table, a, b and c are 1.
  • R 1 and R 2 each represent a monovalent hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom
  • R 3 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 1 and R 2 And R 3 may be the same as or different from one another.
  • organoaluminum compound represented by the formula (V) trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tri-t-butylaluminum Pentylaluminum, trihexylaluminum, tricyclohexylaluminum, trioctylaluminum; diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, dihexylaluminum hydride, hydrogenation Diisohexylaluminum, hydrogenated dioctylaluminum, hydrogenated diisooctylaluminum; ethylaluminum dihydrate, n-propyl alcohol Mini um
  • the organoaluminum compound as the component (C1) described above can be used singly or in combination of two or more.
  • the content of the organoaluminum compound in the first polymerization catalyst composition is preferably 1 to 50 times mol, and more preferably about 10 times mol to the component (A1).
  • the addition of the additive (D1) capable of becoming an anionic ligand is preferable because it has the effect of being able to synthesize a multicomponent copolymer having a higher cis-1,4 bond content in a high yield. .
  • the additive (D1) is not particularly limited as long as it can be exchanged with the amino group of the component (A1), but it is preferable to have any of an OH group, an NH group and an SH group.
  • the compound having an OH group include aliphatic alcohols and aromatic alcohols. Specifically, 2-ethyl-1-hexanol, dibutylhydroxytoluene, alkylated phenol, 4,4'-thiobis (6-t-butyl-3-methylphenol), 4,4'-butylidenebis (6-t- Butyl-3-methylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,6-di- t-Butyl-4-ethylphenol, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-octadecyl-3- (4-hydroxy-3,5-di) -T-Butylphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate,
  • primary amines or secondary amines such as an alkylamine and an arylamine
  • dimethylamine, diethylamine, pyrrole, ethanolamine, diethanolamine, dicyclohexylamine, N, N'-dibenzylethylenediamine, bis (2-diphenylphosphinophenyl) amine and the like can be mentioned.
  • Examples of the compound having an SH group include aliphatic thiols, aromatic thiols, and the like, as well as compounds represented by the following formulas (VI) and (VII).
  • R 1 , R 2 and R 3 are each independently —O—C j H 2j + 1 , — (O—C k H 2 k ⁇ ) a —O—C m H 2 m + 1 or —C n H 2 n + 1 J, m and n each independently represent an integer of 0 to 12, k and a each independently represent an integer of 1 to 12, and R 4 represents a carbon number of 1 to 12, and Chain, branched or cyclic, saturated or unsaturated, alkylene group, cycloalkylene group, cycloalkyl alkylene group, cycloalkenyl alkylene group, alkenylene group, cycloalkenylene group, cycloalkyl alkenylene group, cycloalkenyl alkenylene group, arylene group Or an aralkylene group)
  • Specific examples of the compound represented by the formula (VI) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl
  • W is -NR 8 -, - O- or -CR 9 R 10 - (wherein, R 8 and R 9 are -C p H 2p + 1, R 10 is -C q H 2q + 1, p and q are each independently an integer of 0 to 20.)
  • R 5 and R 6 are each independently -M-C r H 2r- (wherein, M is -O- or- CH 2 - and is, r is represented by an integer of 1 ⁇ 20), R 7 is -O-C j H 2j + 1 , -.
  • R 4 represents 1 carbon atom To 12 and is a linear, branched or cyclic, saturated or unsaturated alkylene group, cycloalkylene group, cyclic Alkyl alkylene group, a cycloalkenyl alkylene group, an alkenylene group, a cycloalkenylene group, a cycloalkyl alkenylene group, cycloalkenyl alkenylene group, an arylene group or an aralkylene group.
  • 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-methylaza-2-silacyclooctane 3-mercaptopropyl (ethoxy) -1,3-dioxa- Examples thereof include 6-butylaza-2-silacyclooctane, 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-dodecylaza-2-silacyclooctane and the like.
  • the anionic tridentate ligand precursor suitably represented by following formula (VIII) can be used as an additive (D1).
  • VIII (X represents an anionic electron donating group containing a coordinating atom selected from periodic table group 15 atoms, and E 1 and E 2 are each independently a periodic table group 15 and 16 atoms And a neutral electron donating group containing a coordinating atom selected from: T 1 and T 2 each represent a bridging group bridging X and E 1 and E 2 )
  • the additive (D1) is preferably added in an amount of 0.01 to 10 mol, more preferably 0.1 to 1.2 mol, per 1 mol of the rare earth element compound.
  • the addition amount is preferably equivalent to the rare earth element compound (1.0 mol), but an excess amount may be added.
  • the addition amount of 1.2 mol or less is preferable because the loss of the reagent is small.
  • the neutral electron donating groups E1 and E2 are groups containing a coordinating atom selected from Groups 15 and 16 of the periodic table.
  • E1 and E2 may be the same group or different groups.
  • the coordination atom include nitrogen N, phosphorus P, oxygen O, sulfur S and the like, preferably P.
  • a diaryl phosphino group such as a diphenyl phosphino group or a ditolyl phosphino group
  • a dialkyl phosphino group such as a dimethyl phosphino group and a diethyl phosphino group
  • an alkylaryl phosphino group such as a methyl phenyl phosphino group, and a diaryl phosphino group is preferable.
  • the neutral electron donating group E 1 or E 2 may be a dialkyl such as dimethylamino, diethylamino or bis (trimethylsilyl) amino. Examples thereof include an amino group and a bis (trialkylsilyl) amino group; a diarylamino group such as a diphenylamino group; and an alkylarylamino group such as a methylphenylamino group.
  • an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group or a butoxy group; Examples thereof include aryloxy groups such as phenoxy group and 2,6-dimethylphenoxy group.
  • an alkylthio group such as a methylthio group, an ethylthio group, a propylthio group, and a butylthio group
  • Examples include arylthio groups such as phenylthio group and tolylthio group.
  • the anionic electron donating group X is a group containing a coordinating atom selected from Group 15 of the periodic table.
  • a coordinating atom selected from Group 15 of the periodic table.
  • phosphorus P or nitrogen N is mentioned, More preferably, N is mentioned.
  • the bridging groups T 1 and T 2 may be any groups capable of bridging X and E 1 and E 2 , and arylene groups which may have a substituent on the aryl ring are exemplified.
  • T 1 and T 2 may be the same or different groups.
  • the arylene group include a phenylene group, a naphthylene group, a pyridylene group and a thienylene group, and a phenylene group and a naphthylene group are preferable.
  • any group may be substituted on the aryl ring of the arylene group.
  • substituents examples include alkyl groups such as methyl and ethyl; aryl groups such as phenyl and tolyl; halogen such as fluoro, chloro and bromo; and silyl such as trimethylsilyl. More preferably, a 1,2-phenylene group is exemplified as the arylene group.
  • M represents a lanthanoid element, scandium or yttrium, CpR each independently represents unsubstituted or substituted indenyl, and R a to R f each independently represent an alkyl group having 1 to 3 carbon atoms Or a hydrogen atom, L represents a neutral Lewis base, and w represents an integer of 0 to 3.
  • a metallocene complex represented by the following formula (X):
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R each independently represents unsubstituted or substituted indenyl
  • X ′ represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group
  • L represents a neutral Lewis base
  • w represents an integer of 0 to 3.
  • M represents a lanthanoid element, scandium or yttrium
  • CpR ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl
  • X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group
  • An amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is shown
  • L is a neutral Lewis base
  • w is an integer of 0 to 3
  • the second polymerization catalyst composition may further contain other components contained in a polymerization catalyst composition containing a conventional metallocene complex, such as a cocatalyst.
  • the metallocene complex is a complex compound in which one or two or more cyclopentadienyls or derivatives thereof are bonded to a central metal, and in particular, only one cyclopentadienyl or a derivative thereof is bonded to the central metal.
  • One metallocene complex may be referred to as a half metallocene complex.
  • the concentration of the complex contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / L.
  • Cp R in the formula is unsubstituted indenyl or substituted indenyl.
  • Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-x Rx or C 9 H 11-x Rx .
  • X is an integer of 0 to 7 or 0 to 11.
  • each R is preferably independently a hydrocarbyl group or a metalloid group. The carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8.
  • hydrocarbyl group a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably.
  • the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include trimethylsilyl group and the like.
  • substituted indenyl include 2-phenyl indenyl, 2-methyl indenyl and the like.
  • two Cp R in Formula (IX) and (X) may mutually be same or different, respectively.
  • Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl is preferable. Is preferred.
  • Cp R ′ having a cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-x R x .
  • X is an integer of 0 to 5.
  • each R is preferably independently a hydrocarbyl group or a metalloid group. The carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8.
  • hydrocarbyl group a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably.
  • the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include trimethylsilyl group and the like.
  • Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following.
  • R represents a hydrogen atom, a methyl group or an ethyl group
  • Cp R ′ having the above-mentioned indenyl ring as a basic skeleton is defined in the same manner as Cp R of the formula (IX), and preferred examples are also the same.
  • Cp R ′ having the above-described fluorenyl ring as a basic skeleton can be represented by C 13 H 9-x R x or C 13 H 17-x R x .
  • X is an integer of 0 to 9 or 0 to 17.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8.
  • a hydrocarbyl group a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably.
  • examples of the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include trimethylsilyl group and the like.
  • the central metal M in formulas (IX), (X) and (XI) is a lanthanoid element, scandium or yttrium.
  • the lanthanoid element includes 15 elements of atomic numbers 57 to 71, any of which may be used.
  • Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.
  • the metallocene complex represented by the formula (IX) contains a silylamide ligand [-N (SiR 3 ) 2 ].
  • the R groups (R a to R f in the formula (IX)) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom.
  • at least one of R a to R f is a hydrogen atom.
  • At least one of R a to R c is a hydrogen atom
  • at least one of R d to R f is a hydrogen atom.
  • a methyl group is preferable.
  • the metallocene complex represented by the formula (X) contains a silyl ligand [-SiX ' 3 ].
  • X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the formula (XI) described below, and preferred groups are also the same.
  • X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group and a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • alkoxy group aliphatic alkoxy groups such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group and the like; phenoxy group, 2,6-di -Tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, Examples thereof include aryloxy groups such as 2-isopropyl-6-neopentylphenoxy group, and among them, 2,6-di-tert-butylphenoxy group is preferable.
  • a thiolate group represented by X aliphatic groups such as thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio sec-butoxy group, thio tert-butoxy group and the like Thiololate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthio group And arylthiolate groups such as phenoxy group, 2-tert-butyl-6-neopentylthiophenoxy group, 2-isopropyl-6-neopentylthiophenoxy group and 2,4,6-triisopropylthiophenoxy group. Among them, 2,4,6-triisopropylthiophenoxy group, 2,4,6
  • aliphatic amino groups such as dimethylamino, diethylamino and diisopropylamino; phenylamino, 2,6-di-tert-butylphenylamino, 2, 6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6 And arylamino groups such as neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; and bistrialkylsilylamino groups such as bistrimethylsilylamino group. Among them, bistrimethylsilylamino group Is preferred.
  • Examples of the silyl group represented by X in the formula (XI) include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group and the like. Among these, tris (trimethylsilyl) silyl group is preferable.
  • the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferable.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by X specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group , Linear or branched aliphatic hydrocarbon groups such as tert-butyl group, neopentyl group, hexyl group and octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group and naphthyl group; aralkyl groups such as benzyl group
  • Other examples include hydrocarbon groups containing a silicon atom such as trimethylsilylmethyl group and bistrimethylsilylmethyl group. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.
  • a bistrimethylsilylamino group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable.
  • examples of the non-coordinating anion represented by [B]-in include a tetravalent boron anion.
  • Specific examples of the tetravalent boron anion include tetraphenylborate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, and tetrakis Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Examples thereof include decahydride-7,8
  • the metallocene complex represented by the above formulas (IX) and (X) and the half metallocene cation complex represented by the above formula (XI) further have 0 to 3, preferably 0 to 1 neutral Lewis bases L.
  • examples of the neutral Lewis base L include tetrahydrofuran, diethylether, dimethylaniline, trimethyl phosphine, lithium chloride, neutral olefins, and neutral diolefins.
  • the neutral Lewis bases L may be the same or different.
  • the metallocene complex represented by the said Formula (IX) and (X), and the half metallocene cation complex represented by the said Formula (XI) may exist as a monomer, a dimer or it. It may exist as the above multimer.
  • the metallocene complex represented by the above formula (IX) is, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, a salt of indenyl (eg potassium salt or lithium salt) and a bis (trialkylsilyl) amine (For example, potassium salt or lithium salt).
  • the reaction temperature may be about room temperature, so that it can be produced under mild conditions.
  • the reaction time is optional, but is several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by Formula (IX) is shown.
  • the metallocene complex represented by the above formula (X) is, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, a salt of indenyl (eg potassium salt or lithium salt) and a salt of silyl (eg potassium salt) Or lithium salt) to obtain the compound.
  • the reaction temperature may be about room temperature, so that it can be produced under mild conditions.
  • the reaction time is optional, but is several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by Formula (X) is shown.
  • the half metallocene cation complex represented by the above formula (XI) can be obtained, for example, by the following reaction.
  • M represents a lanthanoid element, scandium or yttrium, and Cp R ′ each independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl
  • X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • L represents a neutral Lewis base
  • w is 0 Indicates an integer of ⁇ 3.
  • the formula [A] + [B] - in the ionic compound represented by, [A] + represents a cation
  • [B] - is a non-coordinating anion.
  • Examples of the cation represented by [A] + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Examples of the carbonium cation include trisubstituted carbonium cations such as triphenyl carbonium cation and tri (substituted phenyl) carbonium cation, and the like.
  • Specific examples of the tri (substituted phenyl) carbonyl cation include tri (methyl phenyl) ) Carbonium cation etc. are mentioned.
  • amine cations include trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation and tributyl ammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropyl ammonium cation and dicyclohexyl ammonium cation.
  • Examples of the phosphonium cation include triaryl phosphonium cations such as triphenyl phosphonium cation, tri (methyl phenyl) phosphonium cation and tri (dimethyl phenyl) phosphonium cation.
  • triaryl phosphonium cations such as triphenyl phosphonium cation, tri (methyl phenyl) phosphonium cation and tri (dimethyl phenyl) phosphonium cation.
  • N, N-dialkylanilinium cations or carbonium cations are preferable, and N, N-dialkylanilinium cations are particularly preferable.
  • the half metallocene cation complex represented by the formula (XI) may be provided as it is in the polymerization reaction system.
  • formula (XII) compound of formula represented by [a] + [B] used - provides ionic compound represented the separately into the polymerization reaction system is represented by the formula (XI) in the reaction system
  • Half metallocene cation complexes may be formed.
  • the structures of the metallocene complex represented by the above formulas (IX) and (X) and the half metallocene cation complex represented by the above formula (XI) are preferably determined by X-ray structural analysis.
  • the cocatalyst which can be used for the second polymerization catalyst composition may be optionally selected from components used as a cocatalyst for a polymerization catalyst composition containing a common metallocene complex.
  • Preferred examples of the cocatalyst include aluminoxane, organic aluminum compounds and the above-mentioned ionic compounds. These co-catalysts may be used alone or in combination of two or more.
  • aluminoxane alkylaluminoxane is preferable, and, for example, methylaluminoxane (MAO), modified methylaluminoxane and the like can be mentioned. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable.
  • the content of the aluminoxane in the second polymerization catalyst composition may be such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the central metal M of the metallocene complex is about 10 to 1,000. Preferably, it is more preferably about 100.
  • the organoaluminum compound a compound represented by the general formula AlRR′R ′ ′ (wherein R and R ′ each independently represent a monovalent hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, or a hydrogen atom) And R ′ ′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are illustrated, and a chlorine atom is preferable.
  • organic aluminum compound examples include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, dialkylaluminum hydride and the like, and among these, trialkylaluminum is preferable.
  • a trialkyl aluminum a triethyl aluminum, a triisobutyl aluminum etc. are mentioned, for example.
  • the content of the organoaluminum compound in the polymerization catalyst composition is preferably 1 to 50 times mol, and more preferably about 10 times mol, of the metallocene complex.
  • the metallocene complex represented by the above formulas (IX) and (X) and the half metallocene cation complex represented by the above formula (XI) are respectively combined with a suitable cocatalyst. Can increase the cis-1,4 bond content and the molecular weight of the resulting polymer.
  • third polymerization catalyst composition (hereinafter, also referred to as “third polymerization catalyst composition”) will be described.
  • the third polymerization catalyst composition as a rare earth element-containing compound, the following formula (XIII): R a MX b QY b (XIII) (Wherein R each independently represents unsubstituted or substituted indenyl, R is coordinated to M, M is a lanthanoid element, scandium or yttrium, and each X independently represents 1 to 6 carbon atoms. 20 represents a monovalent hydrocarbon group, X is ⁇ -coordinated to M and Q, Q is an element of Group 13 of the periodic table, and Y is independently 1 to 20 carbon atoms And a polymerization catalyst composition containing a metallocene-based composite catalyst represented by the formula: Y is coordinated to Q, and a and b are 2).
  • M 1 represents a lanthanoid element, scandium or yttrium
  • CpR each independently represents unsubstituted or substituted indenyl
  • R A and R B each independently have 1 to 20 carbon atoms indicates the valency of the hydrocarbon group
  • the R a and R B are coordinated ⁇ to M 1 and Al
  • R C and R D are each independently a monovalent hydrocarbon of 1 to 20 carbon atoms
  • a polymer can be manufactured by using the said metallocene type composite catalyst. Further, by using the above-mentioned metallocene-based composite catalyst, for example, a catalyst which has been composited in advance with an aluminum catalyst, it becomes possible to reduce or eliminate the amount of alkyl aluminum used at the time of multicomponent copolymer synthesis. In addition, when a conventional catalyst system is used, it is necessary to use a large amount of alkylaluminum in multicomponent copolymer synthesis.
  • the metal M in the above formula (XIII) is a lanthanoid element, scandium or yttrium.
  • the lanthanoid element includes 15 elements of atomic numbers 57 to 71, any of which may be used.
  • Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.
  • each R is independently unsubstituted indenyl or substituted indenyl, and R is coordinated to the metal M.
  • substituted indenyl include, for example, 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group and the like.
  • Q represents a periodic table group 13 element, and specific examples thereof include boron, aluminum, gallium, indium, thallium and the like.
  • X each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and X is ⁇ -coordinated to M and Q.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • (mu) coordination is a coordination mode having a crosslinked structure.
  • Y each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, and Y is coordinated to Q.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • the metal M 1 is a lanthanoid element, scandium or yttrium.
  • the lanthanoid element includes 15 elements of atomic numbers 57 to 71, any of which may be used.
  • Preferred examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.
  • Cp R is unsubstituted indenyl or substituted indenyl.
  • Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7 -X R X or C 9 H 11 -X R X.
  • X is an integer of 0 to 7 or 0 to 11.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8.
  • a hydrocarbyl group a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably.
  • examples of the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include trimethylsilyl group and the like.
  • Specific examples of the substituted indenyl include 2-phenyl indenyl, 2-methyl indenyl and the like.
  • the two Cp R 's in formula (XIV) may be identical to or different from one another.
  • R A and R B each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R A and R B are ⁇ -coordinated to M 1 and Al ing.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • (mu) coordination is a coordination mode having a crosslinked structure.
  • R C and R D are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • the above metallocene-based composite catalyst may be, for example, a solvent represented by the following formula (XV):
  • M 2 represents a lanthanoid element, scandium or yttrium
  • Cp R each independently represents unsubstituted or substituted indenyl
  • R E to R J each independently have 1 to 3 carbon atoms.
  • the reaction temperature may be about room temperature, so that it can be produced under mild conditions.
  • the reaction time is optional, but is several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene or hexane may be used.
  • the structure of the metallocene composite catalyst is preferably determined by 1 H-NMR or X-ray structural analysis.
  • Cp R is unsubstituted indenyl or substituted indenyl and has the same meaning as Cp R in the above formula (XIV).
  • the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above formula (XIV).
  • the metallocene complex represented by the above formula (XV) contains a silylamide ligand [-N (SiR 3 ) 2 ].
  • the R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom.
  • at least one of R E to R J is a hydrogen atom.
  • Making at least one of R E to R J a hydrogen atom facilitates the synthesis of the catalyst.
  • a methyl group is preferable.
  • the metallocene complex represented by the above formula (XV) further contains 0 to 3, preferably 0 to 1 neutral Lewis base L.
  • the neutral Lewis base L include tetrahydrofuran, diethylether, dimethylaniline, trimethyl phosphine, lithium chloride, neutral olefins, and neutral diolefins.
  • the neutral Lewis bases L may be the same or different.
  • the metallocene complex represented by the said Formula (XV) may exist as a monomer, and may exist as a dimer or multimer more than that.
  • the organoaluminum compound used to form the metallocene-based composite catalyst is represented by AlR K R L R M , where R K and R L are each independently a monovalent carbon having 1 to 20 carbon atoms.
  • R M is a hydrogen atom or a hydrogen atom, R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that R M may be the same as or different from R K or R L above.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, dodecyl, tridecyl and tetradecyl And pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • organoaluminum compounds include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum and tripentylaluminum.
  • triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred.
  • these organoaluminum compounds can be used singly or in combination of two or more.
  • the amount of the organoaluminum compound used to form the above-mentioned metallocene composite catalyst is preferably 1 to 50 times mol, and more preferably about 10 times mol based on the metallocene complex.
  • the third polymerization catalyst composition may contain the above metallocene-based composite catalyst and a boron anion, and further, other components contained in the polymerization catalyst composition containing a common metallocene-based catalyst, such as a cocatalyst, etc. Is preferred.
  • the said metallocene type composite catalyst and a boron anion are put together, and it is also called 2 component catalyst.
  • the content of each monomer component in the polymer can be arbitrarily controlled because it further contains a boron anion. It becomes.
  • tetravalent boron anions may be mentioned as the boron anions constituting the two-component catalyst.
  • tetraphenyl borate tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl) Phenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarbaundecaborate
  • tetraphenyl borate t
  • the said boron anion can be used as an ionic compound combined with the cation.
  • the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • the carbonium cation include trisubstituted carbonium cations such as triphenyl carbonium cation and tri (substituted phenyl) carbonium cation, and the like.
  • tri (substituted phenyl) carbonyl cation examples include tri (methyl phenyl) ) Carbonium cation etc. are mentioned.
  • amine cations include trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation and tributyl ammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropyl ammonium cation and dicyclohexyl ammonium cation.
  • Examples of the phosphonium cation include triaryl phosphonium cations such as triphenyl phosphonium cation, tri (methyl phenyl) phosphonium cation and tri (dimethyl phenyl) phosphonium cation.
  • N, N-dialkylanilinium cations or carbonium cations are preferable, and N, N-dialkylanilinium cations are more preferable. Therefore, as the above ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenyl carbonium tetrakis (pentafluorophenyl) borate and the like are preferable.
  • the ionic compound comprising a boron anion and a cation is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol, with respect to the metallocene composite catalyst.
  • a metallocene-based composite catalyst of the above formula (XIV) can not be synthesized. Therefore, for preparation of the third polymerization catalyst composition, it is necessary to pre-synthesize the metallocene-based composite catalyst, isolate and purify the metallocene-based composite catalyst, and then combine it with the boron anion.
  • aluminoxane etc. other than the organoaluminum compound represented by above-mentioned AlRKRLRM are mentioned suitably, for example.
  • aluminoxane alkylaluminoxane is preferable, and, for example, methylaluminoxane (MAO), modified methylaluminoxane and the like can be mentioned.
  • MAO methylaluminoxane
  • MMAO-3A manufactured by Tosoh Finechem Co., Ltd.
  • These aluminoxanes may be used alone or in combination of two or more.
  • the fourth polymerization catalyst composition includes a rare earth element compound and a compound having a cyclopentadiene skeleton.
  • the fourth polymerization catalyst composition is ⁇ Rare earth element compounds (hereinafter, also referred to as “component (A2)”), ⁇ Compounds selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene (hereinafter also referred to as “component (B2)”) When, Need to contain.
  • component (A2) Rare earth element compounds
  • component (B2) substituted or unsubstituted cyclopentadiene
  • substituted or unsubstituted indene compound having an indenyl group
  • substituted or unsubstituted fluorene hereinafter also referred to as “component (B2)
  • the fourth polymerization catalyst composition is -Organometallic compounds (hereinafter, also referred to as “(C2) components”) ⁇ Aluminoxane compound (hereinafter, also referred to as “component (D2)”) ⁇ Halogen compounds (hereinafter, also referred to as “component (E2)”) ⁇ Ionic compound (hereinafter, also referred to as “(F2) component”) May be further included.
  • the fourth polymerization catalyst composition preferably contains the organometallic compound (component (C2)) and the ionic compound (component (F2)).
  • the fourth polymerization catalyst composition preferably has high solubility in aliphatic hydrocarbon, and preferably becomes a homogeneous solution in aliphatic hydrocarbon.
  • examples of the aliphatic hydrocarbon include hexane, cyclohexane, pentane and the like.
  • a 4th polymerization catalyst composition does not contain an aromatic hydrocarbon.
  • examples of the aromatic hydrocarbon include benzene, toluene, xylene and the like.
  • “an aromatic hydrocarbon is not included” means that the ratio of the aromatic hydrocarbon contained in a polymerization catalyst composition is less than 0.1 mass%.
  • the component (A2) can be a rare earth element-containing compound having a metal-nitrogen bond (M-N bond) or a reaction product of the rare earth element-containing compound and a Lewis base.
  • the rare earth element-containing compound include scandium, yttrium, and compounds containing a lanthanoid element formed of an element having an atomic number of 57 to 71, and the like.
  • lanthanoid elements are lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • Lewis base for example, tetrahydrofuran, diethyl ether, dimethyl aniline, trimethyl phosphine, lithium chloride, neutral olefins, neutral diolefins and the like can be mentioned.
  • the rare earth element-containing compound or the reaction product of the rare earth element-containing compound and the Lewis base does not have a bond between the rare earth element and carbon.
  • the reaction product of the rare earth element-containing compound and the Lewis base does not have a rare earth element-carbon bond, the reaction product is stable and easy to handle.
  • the said (A2) component may be used individually by 1 type, and may be used combining 2 or more types.
  • the component (A2) is represented by the formula (1) M- (AQ 1 ) (AQ 2 ) (AQ 3 ) (1) (Wherein, M represents at least one element selected from the group consisting of scandium, yttrium, and lanthanoid elements; and AQ 1 , AQ 2 and AQ 3 may be the same or different) A group, wherein A represents at least one member selected from the group consisting of nitrogen, oxygen or sulfur; provided that it has at least one M-A bond) It is preferable that it is a compound represented by these.
  • lanthanoid elements are lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. According to the above compound, the catalytic activity in the reaction system can be improved, the reaction time can be shortened, and the reaction temperature can be raised.
  • gadolinium is preferable as M in the formula (1) from the viewpoint of enhancing the catalyst activity and the reaction controllability.
  • a in the above formula (1) is nitrogen
  • examples of functional groups represented by AQ 1 , AQ 2 and AQ 3 include amino groups and the like. Be And, in this case, there are three MN bonds.
  • amino group examples include aliphatic amino groups such as dimethylamino, diethylamino and diisopropylamino; phenylamino, 2,6-di-tert-butylphenylamino, 2,6-diisopropylphenylamino, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, And arylamino groups such as 2,4,6-tri-tert-butylphenylamino group; and bistrialkylsilylamino groups such as bistrimethylsilylamino group, and in particular, it is soluble in aliphatic hydrocarbons and aromatic hydrocarbons. From the viewpoint, a bistrimethylsilylamino group is preferred.
  • the above amino groups may be
  • the component (A2) can be made into a compound having three MN bonds, the bonds become chemically equivalent, the structure of the compound becomes stable, and the handling becomes easy. Moreover, if it is set as the said structure, the catalyst activity in a reaction system can further be improved. Therefore, the reaction time can be further shortened and the reaction temperature further raised.
  • the component (A2) represented by the formula (1) is not particularly limited, but for example, the following formula (1a) (RO) 3 M (1a) Rare earth alcoholate, represented by Following formula (1b) (R-CO 2 ) 3 M (1 b) And rare earth carboxylates represented by and the like.
  • R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by the compound represented by Formula (1a) or Formula (1b) mentioned above can be used conveniently. .
  • the component (A2) represented by the formula (1) is not particularly limited, but, for example, the following formula (1c) (RS) 3 M (1 c) A rare earth alkyl thiolate represented by Following formula (1d) (R-CS 2 ) 3 M (1 d) And the like.
  • R may be the same or different, and represents an alkyl group having 1 to 10 carbon atoms.
  • the compound (1c) or compound (1d) mentioned above can be used suitably.
  • the component (B2) is a compound selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene.
  • the compounds of the component (B2) may be used alone or in combination of two or more.
  • substituted cyclopentadiene examples include pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene and the like.
  • substituted or unsubstituted indene for example, indene, 2-phenyl-1H-indene, 3-benzyl-1H-indene, 3-methyl-2-phenyl-1H-indene, 3-benzyl-2-phenyl-1H -Indene, 1-benzyl-1H-indene and the like, and in particular, 3-benzyl-1H-indene and 1-benzyl-1H-indene are preferable from the viewpoint of reducing the molecular weight distribution.
  • the substituted fluorene include trimethylsilyl fluorene, isopropyl fluorene and the like.
  • the organometallic compound (component (C2)) has a formula (2): YR 4 a R 5 b R 6 c (2) (Wherein Y is a metal element selected from the group consisting of elements of Groups 1, 2, 12, and 13 of the periodic table, and R 4 and R 5 each have 1 to 10 carbon atoms) R 6 is a monovalent hydrocarbon group or a hydrogen atom, and R 6 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, provided that R 4 , R 5 and R 6 may be identical to or different from one another, Further, when Y is a metal element of Group 1, a is 1 and b and c are 0, and when Y is a metal element of Group 2 or 12, a and b is 1 and c is 0, and when Y is a metal element of Group 13, a, b and c are 1.
  • the (C2) component is represented by the formula (3): AlR 7 R 8 R 9 (3) (Wherein, R 7 and R 8 each represent a monovalent hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 9 represents a monovalent hydrocarbon group having one to 10 carbon atoms, R 7 , And R 8 and R 9 may be the same or different)).
  • organoaluminum compounds include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum and trihexyl Aluminum, tricyclohexylaluminum, trioctylaluminum; diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, dihexylaluminum hydride, diisohexylaluminum hydride, Hydrogenated dioctylaluminum, hydrogenated diisooctylaluminum; ethylaluminum dihydrate, n-propylaluminum Dihydride, include isobutyl aluminum dihydride,
  • the aluminoxane compound (component (D2)) is a compound obtained by bringing the organoaluminum compound and the condensing agent into contact with each other.
  • component (D2) the catalytic activity in the polymerization reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature further raised.
  • examples of the organoaluminum compound include trialkylaluminum such as trimethylaluminum, triethylaluminum and triisobutylaluminum, and a mixture thereof, and in particular, a mixture of trimethylaluminum, trimethylaluminum and tributylaluminum is preferable.
  • a condensing agent water etc. are mentioned, for example.
  • R 10 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, wherein part of the hydrocarbon group may be substituted with a halogen and / or an alkoxy group; R 10 is a repeating group Aluminoxanes represented by units which may be the same or different; n is 5 or more can be mentioned.
  • the molecular structure of the aluminoxane may be linear or cyclic.
  • n is preferably 10 or more.
  • the hydrocarbon group of R 10 include a methyl group, an ethyl group, a propyl group and an isobutyl group, and a methyl group is particularly preferable.
  • the above hydrocarbon groups may be used alone or in combination of two or more.
  • a hydrocarbon group of R the combination of a methyl group and an isobutyl group is preferable.
  • the aluminoxane preferably has high solubility in aliphatic hydrocarbon, and preferably has low solubility in aromatic hydrocarbon.
  • aluminoxane marketed as a hexane solution is preferred.
  • the aliphatic hydrocarbon hexane, cyclohexane and the like can be mentioned.
  • the component (D2) is particularly preferably a compound of formula (5): -(Al (CH 3 ) x (i-C 4 H 9 ) y O) m- (5) (Wherein, x + y is 1; m is 5 or more) may be a modified aluminoxane (hereinafter also referred to as "TMAO").
  • TMAO for example, a product name: TMAO341 manufactured by Tosoh Finechem Co., Ltd. can be mentioned.
  • the component (D2) is particularly preferably represented by the formula (6): -(Al (CH 3 ) 0.7 (i-C 4 H 9 ) 0.3 O) k- (6) It may be a modified aluminoxane represented by (wherein k is 5 or more) (hereinafter also referred to as "MMAO").
  • MMAO include product name: MMAO-3A manufactured by Tosoh Finechem Co., Ltd.
  • the component (D2) is particularly preferably a compound of formula (7): -[(CH 3 ) AlO] i ---(7) (Wherein, i is 5 or more) may be a modified aluminoxane (hereinafter also referred to as “PMAO”).
  • PMAO for example, product name: TMAO-211 manufactured by Tosoh Finechem Co., Ltd. can be mentioned.
  • the component (D2) is preferably MMAO or TMAO among the above MMAO, TMAO and PMAO from the viewpoint of enhancing the effect of enhancing the catalyst activity, and from the viewpoint of further enhancing the effect of enhancing the catalyst activity, it is TMAO. Is more preferred.
  • the halogen compound (component (E2)) is a halogen-containing compound which is a Lewis acid (hereinafter also referred to as “component (E2-1)”), a complex compound of a metal halide and a Lewis base (hereinafter referred to as “(E2-2) And at least one compound selected from the group consisting of an organic compound containing an active halogen (hereinafter also referred to as “component (E2-3)”).
  • component (A2) that is, a rare earth element-containing compound having a M—N bond or a reaction product of the rare earth element-containing compound and a Lewis base to form a cationic transition metal compound or a halogenated transition.
  • a metal compound and / or a transition metal compound in a state of electron deficiency in the transition metal center is formed.
  • halides of aluminum or halides of organometallics particularly preferred are halides of aluminum or halides of organometallics.
  • a halogen-containing compound which is a Lewis acid for example, titanium tetrachloride, tungsten hexachloride, tri (pentafluorophenyl) borate, methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide , Butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride, diethylaluminum bromide, diethylaluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylalum
  • Examples of the metal halide used for the component (E2-2) include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, calcium iodide, Barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, manganese bromide Manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper bromide, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bro
  • the Lewis base used for the component (E2-2) is preferably a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound or an alcohol.
  • tributyl phosphate tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethyl phosphine, tributyl phosphine, triphenyl phosphine, diethyl phosphino ethane, diphenyl phosphino ethane, acetylacetone, benzoylacetone, propionylacetone , Valerylacetone, ethylacetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, benzoic acid Acid, naphthenic acid, versatic acid, triethylamine, N, N
  • Examples of the component (E2-3) include benzyl chloride and the like.
  • the ionic compound (component (F2)) has the same meaning as the ionic compound (B1-1) described above for the first polymerization catalyst composition.
  • Ratio in molar with respect to the component (A2) (rare earth element compound) of the component (B2) (a compound selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene) Is preferably more than 0, more preferably 0.5 or more, and still more preferably 1 or more from the viewpoint of sufficiently obtaining catalytic activity, and from the viewpoint of suppressing a decrease in catalytic activity, 3 It is preferable that it is the following, It is more preferable that it is 2.5 or less, It is still more preferable that it is 2.2 or less.
  • the ratio of the (C2) component (organic metal compound) to the (A2) component is preferably 1 or more, more preferably 5 or more, and the reaction system From the viewpoint of suppressing a decrease in catalytic activity in the above, it is preferably 50 or less, more preferably 30 or less, and specifically about 10 or less.
  • the molar ratio of aluminum in the component (aluminoxane) to the rare earth element in the component (A2) is preferably 10 or more, and preferably 100 or more, from the viewpoint of improving the catalytic activity in the reaction system. Is more preferably 1,000 or less, and more preferably 800 or less from the viewpoint of suppressing a decrease in catalytic activity in the reaction system.
  • the ratio of the (E2) component (halogen compound) and the (F2) component (ionic compound) in mole to the (A2) component is preferably 0 or more from the viewpoint of improving the catalyst activity 0.5
  • it is more preferably 20 or less. Is preferable, and 10 or less is more preferable. Therefore, according to the above range, the effect of improving the cis-1,4-bond content of the conjugated diene polymer can be enhanced.
  • the rubber composition of the present embodiment can contain a filler.
  • the filler is not particularly limited, and examples thereof include carbon black and silica.
  • the carbon black is not particularly limited, and examples thereof include carbon black of SAF, ISAF, HAF, FF, FEF, GPF, SRF, CF, FT, and MT grade.
  • One type of carbon black may be used alone, or two or more types may be used in combination.
  • the silica is not particularly limited, and examples thereof include wet silica, dry silica, colloidal silica and the like.
  • the filler used in the present embodiment is preferably carbon black, and more preferably SAF, ISAF, HAF, or FEF grade carbon black.
  • the rubber composition of the present embodiment may not contain a filler.
  • the rubber composition of the present embodiment can contain the filler at a ratio of 90 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the content of the filler exceeds 90 parts by mass, the vibration damping property may be significantly deteriorated.
  • the content of the filler in the rubber composition is preferably 70 parts by mass or less and 50 parts by mass or less with respect to 100 parts by mass of the rubber component from the viewpoint of sufficiently suppressing the deterioration of the vibration damping property. It is more preferable that the amount is 30 parts by mass or less.
  • the rubber composition of the present embodiment can contain a softener and / or a liquid rubber.
  • a softener and / or the liquid rubber By containing the softener and / or the liquid rubber, the vibration damping property can be effectively improved.
  • liquid rubber refers to rubber which exhibits a liquid state at 24 degreeC. Further, in the present specification, “liquid rubber” is not included in the above-mentioned rubber component.
  • the softener examples include naphthenic oils, paraffinic oils and aromatic oils. Among these, as a softener, it is preferable to use an aromatic oil.
  • a softening agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the liquid rubber include, but are not limited to, hydrogenated isoprene rubber, hydrogenated butadiene rubber, liquid ethylene / propylene / diene copolymer, liquid ethylene / propylene copolymer, liquid butadiene / styrene / random copolymer and the like. Be Among these, as the liquid rubber, it is preferable to use a liquid butadiene / styrene / random copolymer. The liquid rubber may be used singly or in combination of two or more.
  • the rubber composition of the present embodiment preferably contains 20 parts by mass or more of at least one selected from a softener and a liquid rubber with respect to 100 parts by mass of the rubber component.
  • the rubber composition of the present embodiment is a crosslinking agent (including a vulcanizing agent such as sulfur) which is usually used in the rubber industry, if necessary, as long as the effects of the present invention are not impaired.
  • a crosslinking agent including a vulcanizing agent such as sulfur
  • components such as a homogenizing agent can be suitably contained.
  • the rubber composition of this embodiment can be obtained by mix
  • all the components may be compounded and kneaded at once, or each component may be compounded and kneaded in two or three stages.
  • mixing kneaders, such as a roll, an internal mixer, and a Banbury rotor, can be used.
  • well-known molding machines such as an extrusion molding machine and a press, can be used.
  • the rubber composition of the present embodiment may be produced by crosslinking.
  • the crosslinking conditions are not particularly limited, and usually, a temperature of 140 to 180 ° C. and a time of 5 to 120 minutes can be employed.
  • the anti-vibration rubber according to an embodiment of the present invention (hereinafter sometimes referred to as "the anti-vibration rubber according to the present embodiment") is characterized by including the rubber composition according to the above-mentioned present embodiment.
  • the anti-vibration rubber according to the present embodiment is excellent in durability and vibration damping property because the rubber composition described above is used.
  • the vibration-proof rubber of this embodiment can be preferably used, for example, as a vibration-proof member for vehicles, especially for automobiles, for which the required performance is more severe.
  • an engine mount a torsional damper, a rubber bush, a strut mount, a bound bumper, a helper rubber, a member mount, a stabilizer bush, an air spring, a center support, a rubberized propeller shaft, an antivibration lever.
  • These include compound dampers, damping rubbers, idler arm bushes, steering column bushes, coupling rubbers, body mounts, muffler supports, dynamic dampers and piping rubbers.
  • the anti-vibration rubber of the present embodiment can be preferably used for an engine mount.
  • the obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C.
  • ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and further 50 mL of a toluene solution containing 5 g of 1,3-butadiene as a conjugated diene compound is loaded over 3 hours And copolymerized at 70 ° C. for a total of 4 hours.
  • the obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C.
  • ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and 80 mL of a toluene solution containing 15 g of 1,3-butadiene as a conjugated diene compound is further loaded over 8 hours And copolymerized at 70 ° C. for a total of 8.5 hours.
  • the obtained catalyst solution was added to the above-mentioned pressure resistant stainless steel reactor and heated to 80 ° C. Next, ethylene as a non-conjugated olefin compound is charged at a pressure of 1.4 MPa into this pressure resistant stainless steel reactor, and further, 60 mL of a toluene solution containing 5 g of 1,3-butadiene as a conjugated diene compound is charged over 6 hours And copolymerized at 80 ° C. for a total of 6.5 hours.
  • the obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C.
  • ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and further 50 mL of a toluene solution containing 10 g of isoprene as a conjugated diene compound is charged over 7 hours, 70 ° C.
  • the copolymerization was carried out for a total of 8 hours.
  • the obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C.
  • ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and 500 mL of a toluene solution containing 100 g of 1,3-butadiene as a conjugated diene compound is further loaded over 4 hours And copolymerized at 70 ° C. for a total of 5 hours.
  • the obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C.
  • ethylene as a non-conjugated olefin compound is charged into this pressure resistant stainless steel reactor at a pressure of 1.0 MPa, and further, 50 mL of a toluene solution containing 1 g of 1,3-butadiene as a conjugated diene compound is charged over 4 hours And copolymerized at 70 ° C. for a total of 9 hours.
  • copolymers A to F, H and I are at least multicomponent copolymers having conjugated diene units, nonconjugated olefin units and aromatic vinyl units.
  • a rubber composition was prepared according to the formulation shown in Table 2. Next, this rubber composition was vulcanized at 155 ° C. for 60 minutes to obtain a vulcanized rubber. The obtained vulcanized rubber was subjected to measurement of static spring constant and evaluation of durability according to the following method.
  • the prepared rubber composition was press molded (vulcanized) at 155 ° C. for 60 minutes to prepare a cylindrical test piece having a diameter of 8 mm and a height of 6 mm. With respect to this cylindrical test piece, an axial load was applied and 20% compression was made in the axial direction, and after being temporarily unloaded, it was made to compress 20% in the axial direction again. Thereby, the load-deflection characteristics in the second loading process were measured, and a load-deflection curve was created based thereon.
  • the prepared rubber composition was press-molded (vulcanized) at 155 ° C. for 60 minutes to prepare a sheet-like test piece having a thickness of 2 mm.
  • a constant strain fatigue tester (trade name "FT-3100", manufactured by Shimadzu Corp.)
  • the sheet-like test pieces were subjected to 200%, 250%, 300 at a test temperature of 35 ° C in accordance with JIS K6270.
  • Test strains of% were repeatedly applied to measure the number of times (number of times of breakage) repeated until the test piece broke. Then, from the input energy given to the test piece at each test strain and the number of breaks at each test strain, an energy-breaking number conversion formula was calculated.
  • the rubber component containing a multicomponent copolymer having a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit is contained, and the content of the filler is 90 parts by mass with respect to 100 parts by mass of the rubber component It is understood that the rubber composition according to the example which is less than or equal to part is excellent in the durability and the vibration damping property.
  • the present invention it is possible to provide a vibration-proof rubber composition having high durability and capable of sufficiently damping vibration. Further, according to the present invention, it is possible to provide a vibration-proof rubber which is excellent in durability and vibration damping property using such a vibration-proof rubber composition.

Abstract

Provided is a vibration-damping rubber composition having a high durability and being capable of sufficiently damping vibration. The vibration-damping rubber composition, which comprises a rubber component containing a multicomponent copolymer having a conjugated diene unit, a non-conjugated olefin unit and an aromatic vinyl unit and a filler as an optional component, is characterized in that the content of the filler is 0-90 parts by mass per 100 parts by mass of the rubber component.

Description

防振ゴム組成物及び防振ゴムVibration-proof rubber composition and vibration-proof rubber
 本発明は、防振ゴム組成物及び防振ゴムに関するものである。 The present invention relates to a vibration-proof rubber composition and a vibration-proof rubber.
 自動車、一般産業機械等の分野において、エンジンや車体の振動や騒音等を防止するために、防振ゴムが使用されている。防振ゴムは、従来、様々なゴム組成物を用いて製造されているが、カーボンブラック等の充填剤を配合したものが一般的である。 In the field of automobiles, general industrial machines and the like, anti-vibration rubber is used to prevent vibration and noise of engines and vehicle bodies. Although the vibration-proof rubber is conventionally manufactured using various rubber compositions, what mix | blended fillers, such as carbon black, is common.
 例えば、特許文献1では、防振ゴムの動的特性と耐疲労性とを両立させるために、粒子径が大きく(比表面積が小さく)、ストラクチャーの発達した大粒径・ハイストラクチャーカーボンブラックを用いることが開示されている。 For example, in Patent Document 1, in order to achieve both the dynamic characteristics of the vibration-proof rubber and the fatigue resistance, a large particle size (small specific surface area) and a large particle size / high structure carbon black with developed structure are used. Is disclosed.
 また、特許文献2では、天然ゴムとブチル系ゴムとをブレンドしてなるゴム成分に、充填剤としてのシリカと、架橋剤(加硫剤)としての硫黄とアルキルフェノールジスルフィド又はビスマレイミド化合物とを配合してなる高耐熱・高耐久・低動倍率・高減衰防振ゴム用ゴム組成物が開示されている。 Further, in Patent Document 2, silica as a filler, sulfur as a crosslinking agent (vulcanizing agent), and an alkylphenol disulfide or bismaleimide compound are blended in a rubber component formed by blending a natural rubber and a butyl rubber. There is disclosed a rubber composition for high heat resistance, high durability, low dynamic magnification, high damping vibration proof rubber.
 更に、特許文献3では、ゴム成分と、疎水化処理シリカと、シランカップリング剤とを含有する、動倍率が小さく且つ耐久性の高い防振ゴム組成物が開示されている。 Further, Patent Document 3 discloses a vibration-proof rubber composition having a low dynamic magnification and high durability, which contains a rubber component, hydrophobized silica, and a silane coupling agent.
特開2006-143860号公報JP, 2006-143860, A 特開2006-199792号公報JP, 2006-199792, A 特開2006-037002号公報JP, 2006-037002, A
 ここで、防振ゴムには、当然備えるべき性能として、振動を十分に減衰させる性能(振動減衰性)が要求され、また、当該性能を備えるために、静的ばね定数が小さいことが求められる。しかしながら、上述した文献に記載の防振ゴム組成物は、耐久性を高めるために充填剤が配合された結果、静的ばね定数が高くなり、ひいては動倍率に悪影響を及ぼすという問題があった。そのため、高い耐久性を保持しながらも、静的ばね定数が低減されて振動減衰性を向上させるという点で、従来のゴム組成物には改良の余地があった。 Here, the vibration-proof rubber is naturally required to have a performance (vibration damping property) to sufficiently damp the vibration as a performance to be provided, and to have the performance, it is required that the static spring constant is small. . However, the vibration-proof rubber composition described in the above-mentioned document has a problem that the static spring constant becomes high and the dynamic magnification is adversely affected as a result of the addition of the filler to enhance the durability. Therefore, the conventional rubber composition has room for improvement in that the static spring constant is reduced to improve the vibration damping property while maintaining high durability.
 そこで、本発明は、上記従来技術の問題を解決し、耐久性が高く、且つ振動を十分に減衰することが可能な防振ゴム組成物を提供することを目的とする。また、本発明は、かかる防振ゴム組成物を用いた、耐久性と振動減衰性とに優れる防振ゴムを提供することを目的とする。 Then, this invention solves the problem of the said prior art, and an object of this invention is to provide the anti-vibration rubber composition which is highly durable and can fully attenuate a vibration. Moreover, this invention aims at providing the vibration-proof rubber which is excellent in durability and a vibration damping property using this vibration-proof rubber composition.
 本発明の防振ゴム組成物は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体を含むゴム成分と、任意成分としての充填剤とを含有し、前記充填剤の含有量が前記ゴム成分100質量部に対して0~90質量部である、ことを特徴とする。 The vibration-proof rubber composition of the present invention comprises a rubber component containing a multicomponent copolymer having conjugated diene units, non-conjugated olefin units and aromatic vinyl units, and a filler as an optional component, The filler content is 0 to 90 parts by mass with respect to 100 parts by mass of the rubber component.
 本発明の防振ゴムは、上記の防振ゴム組成物を含むことを特徴とする。 The vibration-proof rubber of the present invention is characterized by containing the above-mentioned vibration-proof rubber composition.
 本発明によれば、耐久性が高く、且つ振動を十分に減衰することが可能な防振ゴム組成物を提供することができる。また、本発明によれば、かかる防振ゴム組成物を用いた、耐久性と振動減衰性とに優れる防振ゴムを提供することができる。 According to the present invention, it is possible to provide a vibration-proof rubber composition having high durability and capable of sufficiently damping vibration. Further, according to the present invention, it is possible to provide a vibration-proof rubber which is excellent in durability and vibration damping property using such a vibration-proof rubber composition.
(防振ゴム組成物)
 本発明の一実施形態に係る防振ゴム組成物(以下、「本実施形態のゴム組成物」と称することがある。)を詳細に説明する。本実施形態のゴム組成物は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体を含むゴム成分を含有することを一特徴とする。また、本実施形態のゴム組成物は、更に必要に応じて、充填剤、軟化剤、液状ゴム、その他の成分を含有することができる。
(Anti-vibration rubber composition)
The vibration-proof rubber composition (Hereafter, it may be called "the rubber composition of this embodiment.") Which concerns on one Embodiment of this invention is demonstrated in detail. The rubber composition of the present embodiment is characterized by containing a rubber component including a multicomponent copolymer having a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit. In addition, the rubber composition of the present embodiment can further contain a filler, a softener, a liquid rubber, and other components, as necessary.
<ゴム成分>
 上述の通り、本実施形態のゴム組成物は、ゴム成分として多元共重合体を含有し、更に、その他のゴム成分を含有することができる。
<Rubber component>
As described above, the rubber composition of the present embodiment contains a multicomponent copolymer as a rubber component, and can further contain other rubber components.
<<その他のゴム成分>>
 その他のゴム成分としては、特に制限はなく、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<< Other rubber components >>
The other rubber components are not particularly limited. For example, natural rubber, isoprene rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, ethylene-propylene rubber ( EPM), ethylene-propylene-diene rubber (EPDM), polysulfide rubber, silicone rubber, fluororubber, urethane rubber and the like. These may be used alone or in combination of two or more.
<<多元共重合体>>
 上述の通り、本実施形態に用いる多元共重合体は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する。
 上記多元共重合体における共役ジエン単位は、容易に他の分子鎖と架橋構造を形成することができる。そのため、上記多元共重合体は、例えば公知であるエチレン-プロピレン-非共役ジエン共重合体(EPDM)のような非共役ジエン化合物を用いて重合してなる共重合体に比べ、亀裂やクリープ等のへたりの発生が抑制されている。また、上記多元共重合体における非共役オレフィン単位及び芳香族ビニル単位からなる分子鎖部分は、動的な伸長や圧縮の繰り返しにより、分子鎖配向及び結晶伸長などに起因した高強度構造をとることができる。そのため、本実施形態のゴム組成物は、上述の多元共重合体を含有することで高い耐久性を発揮することができ、充填剤を大量に含有しなくても、高い耐久性を有しつつ、静的ばね定数が低く振動減衰性が良好なものとなる、と考えられる。
<< Multi-copolymer >>
As described above, the multicomponent copolymer used in the present embodiment has a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit.
The conjugated diene unit in the multicomponent copolymer can easily form a crosslinked structure with other molecular chains. Therefore, the multi-component copolymer is, for example, cracked or creeped as compared with a copolymer formed by using a non-conjugated diene compound such as known ethylene-propylene-non-conjugated diene copolymer (EPDM). The occurrence of stagnation is suppressed. In addition, the molecular chain portion composed of the non-conjugated olefin unit and the aromatic vinyl unit in the above multi-component copolymer has a high strength structure due to molecular chain orientation, crystal elongation and the like by repetition of dynamic elongation and compression. Can. Therefore, the rubber composition of the present embodiment can exhibit high durability by containing the above-described multicomponent copolymer, and can have high durability even without containing a large amount of filler. It is considered that the static spring constant is low and the vibration damping property is good.
 本明細書において、「共役ジエン単位」とは、共重合体における、共役ジエン化合物に由来する単位に相当する単位を指し、「非共役オレフィン単位」とは、共重合体における、非共役オレフィン化合物に由来する単位に相当する単位を指し、「芳香族ビニル単位」とは、共重合体における、芳香族ビニル化合物に由来する単位に相当する単位を指す。
 また、本明細書において、「共役ジエン化合物」とは、共役系のジエン化合物を指し、「非共役オレフィン化合物」とは、脂肪族不飽和炭化水素で、炭素-炭素二重結合を1個以上有する非共役系の化合物を指し、「芳香族ビニル化合物」とは、少なくともビニル基で置換された芳香族化合物を指し、且つ、共役ジエン化合物には含まれないものとする。
 そして、本明細書において、「多元共重合体」とは、3種類以上の単量体を重合してなる共重合体を指す。
In the present specification, “conjugated diene unit” refers to a unit corresponding to a unit derived from a conjugated diene compound in a copolymer, and “nonconjugated olefin unit” refers to a nonconjugated olefin compound in a copolymer The term “aromatic vinyl unit” refers to a unit corresponding to a unit derived from an aromatic vinyl compound in a copolymer.
Further, in the present specification, “conjugated diene compound” refers to a conjugated diene compound, and “non-conjugated olefin compound” is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds. The term “aromatic vinyl compound” refers to an aromatic compound substituted with at least a vinyl group, and is not included in the conjugated diene compound.
And in this specification, "a multi-element copolymer" refers to the copolymer formed by polymerizing three or more types of monomers.
 上記多元共重合体における共役ジエン単位は、通常、単量体としての共役ジエン化合物に由来する単位であり、また、この共役ジエン化合物は、炭素数が4~8であることが好ましい。かかる共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。共役ジエン化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。そして、単量体として用いる共役ジエン化合物は、耐久性を効果的に向上させる観点から、1,3-ブタジエン及びイソプレンの少なくともいずれかを含むことが好ましく、1,3-ブタジエン及び/又はイソプレンのみからなることがより好ましい。別の言い方をすると、多元共重合体における共役ジエン単位は、1,3-ブタジエン単位及びイソプレン単位の少なくともいずれかを含むことが好ましく、1,3-ブタジエン単位及び/又はイソプレン単位のみからなることがより好ましい。 The conjugated diene unit in the multicomponent copolymer is usually a unit derived from a conjugated diene compound as a monomer, and the conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of such conjugated diene compounds include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. The conjugated diene compounds may be used alone or in combination of two or more. And, from the viewpoint of effectively improving the durability, the conjugated diene compound used as a monomer preferably contains at least one of 1,3-butadiene and isoprene, and only 1,3-butadiene and / or isoprene. More preferably, In other words, the conjugated diene units in the multicomponent copolymer preferably contain at least one of 1,3-butadiene units and isoprene units, and consist of only 1,3-butadiene units and / or isoprene units. Is more preferred.
 上記多元共重合体における非共役オレフィン単位は、通常、単量体としての非共役オレフィン化合物に由来する単位であり、また、この非共役オレフィン化合物は、炭素数が2~10であることが好ましい。かかる非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、若しくは1-オクテン等のα-オレフィン、ピバリン酸ビニル、1-フェニルチオエテン、若しくはN-ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。上記非共役オレフィン化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。そして、単量体として用いる非共役オレフィン化合物は、耐久性をより向上させる観点から、環状構造を有しないことが好ましく、また、耐久性及び破壊強度を一層向上させる観点から、α-オレフィン(エチレンを含む)を含むことがより好ましく、エチレンのみからなることが更に好ましい。別の言い方をすると、多元共重合体における非共役オレフィン単位は、耐久性をより向上させる観点から、環状構造を有しないことが好ましく、また、耐久性及び破壊強度を一層向上させる観点から、α-オレフィン単位(エチレン単位を含む)を含むことがより好ましく、エチレン単位のみからなることが更に好ましい。 The non-conjugated olefin unit in the multicomponent copolymer is usually a unit derived from a non-conjugated olefin compound as a monomer, and the non-conjugated olefin compound preferably has 2 to 10 carbon atoms . As such non-conjugated olefin compounds, specifically, α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene or 1-octene, vinyl pivalate, 1-phenylthio Examples thereof include ethene and heteroatom-substituted alkene compounds such as N-vinyl pyrrolidone. The non-conjugated olefin compounds may be used alone or in combination of two or more. The non-conjugated olefin compound used as a monomer preferably has no cyclic structure from the viewpoint of further improving the durability, and from the viewpoint of further improving the durability and the breaking strength, an α-olefin (ethylene It is more preferable to include the above, and it is more preferable to consist of ethylene only. In other words, the non-conjugated olefin unit in the multicomponent copolymer preferably has no cyclic structure from the viewpoint of further improving the durability, and from the viewpoint of further improving the durability and the breaking strength, α It is more preferred to contain an olefin unit (including an ethylene unit), and even more preferable to consist of only an ethylene unit.
 上記多元共重合体における芳香族ビニル単位は、通常、単量体としての芳香族ビニル化合物に由来する単位であり、また、この芳香族ビニル化合物は、炭素数が8~10であることが好ましい。かかる芳香族ビニル化合物として、具体的には、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等が挙げられる。上記芳香族ビニル化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。そして、単量体として用いる芳香族ビニル化合物は、融点、ガラス転移温度、吸熱ピークのエネルギーの制御のし易さの観点から、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。別の言い方をすると、多元共重合体における芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。 The aromatic vinyl unit in the multicomponent copolymer is usually a unit derived from an aromatic vinyl compound as a monomer, and the aromatic vinyl compound preferably has 8 to 10 carbon atoms. . As such aromatic vinyl compounds, specifically, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene Etc. The above aromatic vinyl compounds may be used alone or in combination of two or more. The aromatic vinyl compound used as a monomer preferably contains styrene, and more preferably consists of styrene, from the viewpoint of ease of control of the melting point, the glass transition temperature, and the energy of the endothermic peak. In other words, the aromatic vinyl units in the multicomponent copolymer preferably contain styrene units, and more preferably consist only of styrene units.
 また、上記多元共重合体は、上述した共役ジエン単位、非共役オレフィン単位及び芳香族ビニル単位以外の、任意の単位を含有していてもよい。但し、本発明の所望の効果を得る観点から、本発明の多元共重合体は、共役ジエン単位、非共役オレフィン単位及び芳香族ビニル単位以外の任意の単位の割合が、10mol%以下であることが好ましく、0mol%であることがより好ましい。 The multicomponent copolymer may also contain any unit other than the conjugated diene unit, the nonconjugated olefin unit and the aromatic vinyl unit described above. However, from the viewpoint of obtaining the desired effects of the present invention, in the multicomponent copolymer of the present invention, the ratio of any unit other than the conjugated diene unit, the nonconjugated olefin unit and the aromatic vinyl unit is 10 mol% or less Is preferable, and 0 mol% is more preferable.
 上記多元共重合体の単量体の種類の数としては、多元共重合体が共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する限り、特に制限はない。ただし、耐久性をより好ましいものとする観点から、上記多元共重合体は、単量体として、1種の共役ジエン化合物、1種の非共役オレフィン化合物、及び1種の芳香族ビニル化合物を少なくとも用いて共重合させてなる共重合体であることが好ましい。別の言い方をすると、本発明の多元共重合体は、1種の共役ジエン単位、1種の非共役オレフィン単位、及び1種の芳香族ビニル単位を有する多元共重合体であることが好ましい。そして、上記多元共重合体は、1種の共役ジエン単位、1種の非共役オレフィン単位、及び1種の芳香族ビニル単位のみからなる三元共重合体であることがより好ましく、1,3-ブタジエン単位、エチレン単位、及びスチレン単位のみからなる三元共重合体であることが更に好ましい。ここで、「1種の共役ジエン単位」には、異なる結合様式の共役ジエン単位が包括されていることとする。 The number of types of monomers of the multicomponent copolymer is not particularly limited as long as the multicomponent copolymer has a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit. However, from the viewpoint of making the durability more preferable, the multi-component copolymer should contain at least one conjugated diene compound, one non-conjugated olefin compound, and one aromatic vinyl compound as monomers. It is preferable that it is a copolymer formed by using and copolymerizing. In other words, the multicomponent copolymer of the present invention is preferably a multicomponent copolymer having one conjugated diene unit, one nonconjugated olefin unit, and one aromatic vinyl unit. The multicomponent copolymer is more preferably a ternary copolymer consisting of only one conjugated diene unit, one nonconjugated olefin unit, and one aromatic vinyl unit, and 1,3 More preferably, it is a ternary copolymer consisting only of butadiene units, ethylene units and styrene units. Here, “one conjugated diene unit” includes conjugated diene units having different bonding modes.
 上記多元共重合体は、共役ジエン単位の割合が1mol%以上50mol%以下であることが好ましい。共役ジエン単位の割合が1mol%以上であることにより、多元共重合体がエラストマーとして均一にふるまうことが可能となって、耐久性をより向上させる効果を得ることができ、また、50mol%以下であることにより、非共役オレフィン単位及び芳香族ビニル単位を含むことの効果を十分に得ることができる。同様の観点から、上記多元共重合体における共役ジエン単位の割合は、40mol%以下であることがより好ましい。 The multicomponent copolymer preferably has a conjugated diene unit ratio of 1 mol% or more and 50 mol% or less. When the ratio of conjugated diene units is 1 mol% or more, the multicomponent copolymer can be uniformly behaved as an elastomer, and the effect of further improving the durability can be obtained, and at 50 mol% or less As a result, the effect of including non-conjugated olefin units and aromatic vinyl units can be sufficiently obtained. From the same viewpoint, the proportion of conjugated diene units in the multicomponent copolymer is more preferably 40 mol% or less.
 上記多元共重合体は、非共役オレフィン単位の割合が40mol%以上97mol%以下であることが好ましい。非共役オレフィン単位の割合が40mol%以上であることにより、耐久性をより向上させることができ、また、97mol%以下であることにより、共役ジエン単位及び芳香族ビニル単位を含むことの効果を十分に得ることができる。同様の観点から、上記多元共重合体における非共役オレフィン単位の割合は、45mol%以上であることがより好ましく、また、93mol%以下であることがより好ましい。 The multicomponent copolymer preferably has a proportion of non-conjugated olefin units of 40 mol% or more and 97 mol% or less. When the proportion of non-conjugated olefin units is 40 mol% or more, the durability can be further improved, and by being 97 mol% or less, the effect of containing conjugated diene units and aromatic vinyl units is sufficiently obtained. Can be obtained. From the same viewpoint, the proportion of the non-conjugated olefin unit in the multicomponent copolymer is more preferably 45 mol% or more, and more preferably 93 mol% or less.
 上記多元共重合体は、芳香族ビニル単位の割合が2mol%以上35mol%以下であることが好ましい。芳香族ビニル単位の割合が2mol%以上であることにより、破壊強度及び伸びをより向上させることができ、また、35mol%以下であることにより、共役ジエン単位及び非共役オレフィン単位を含むことの効果を十分に得ることができる。同様の観点から、上記多元共重合体における芳香族ビニル単位の割合は、5mol%以上であることがより好ましく、また、25mol%以下であることがより好ましい。 The multicomponent copolymer preferably has a proportion of aromatic vinyl units of 2 mol% or more and 35 mol% or less. When the proportion of the aromatic vinyl unit is 2 mol% or more, the breaking strength and the elongation can be further improved, and when it is 35 mol% or less, the effect of including the conjugated diene unit and the non-conjugated olefin unit You can get enough. From the same viewpoint, the proportion of the aromatic vinyl unit in the multicomponent copolymer is more preferably 5 mol% or more, and more preferably 25 mol% or less.
 上記多元共重合体の連鎖構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、共役ジエン単位をA、非共役オレフィン単位をB、芳香族ビニル単位をCとした場合において、A-B-C(x、y、zは1以上の整数である)等の構成をとるブロック共重合体、A、B、Cがランダムに配列する構成をとるランダム共重合体、上記ランダム共重合体とブロック共重合体とが混在してなるテーパー共重合体、(A-B-C)(wは1以上の整数である)等の構成をとる交互共重合体とすることができる。
 また、上記多元共重合体は、共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位が直線的に連鎖した構造(直線構造)であってもよいし、共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位の少なくともいずれかが分岐鎖を形成して連鎖した構造(分岐構造)であってもよい。なお、上記多元共重合体が分岐構造である場合には、分岐鎖も二元又は多元とすることができる(即ち、分岐鎖が、共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位のうちの少なくとも2つを含むことができる)。
There is no restriction | limiting in particular as a chain structure of the said multi-component copolymer, According to the objective, it can select suitably, For example, a conjugated diene unit was made into A, a nonconjugated olefin unit was made into B, and an aromatic vinyl unit was made into C. in the case, a x -B y -C z ( x, y, z is 1 or more is an integer) block copolymer employing a configuration such as, a, B, random copolymers of a configuration in which C is a random arrangement Alternating copolymer having a configuration such as a polymer, a tapered copolymer in which the random copolymer and the block copolymer are mixed, (ABC) w (w is an integer of 1 or more), etc. It can be combined.
Further, the multicomponent copolymer may have a structure (linear structure) in which a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit are linearly linked, or a conjugated diene unit or a nonconjugated olefin unit, And at least one of the aromatic vinyl units may be branched to form a chained structure (branched structure). In addition, when the said multi-component copolymer is branched structure, branched chain can also be made into binary or multi-component (namely, branched chain is a conjugated diene unit, a non conjugated olefin unit, and an aromatic vinyl unit). Can include at least two of them).
 上記多元共重合体は、示差走査熱量測定(DSC)により測定される融点が30~130℃であることが好ましい。融点が30℃以上であることにより、コールドフローを抑制することができ、130℃以下であることにより、加工性及び成型性を良好なものとすることができる。同様の観点から、多元共重合体の融点は、40℃以上であることがより好ましく、120℃以下であることがより好ましい。
 なお、多元共重合体の融点は、具体的には、示差走査熱量計(DSC)を用い、JIS K 7121-1987に準拠して測定することができる。
The multicomponent copolymer preferably has a melting point of 30 to 130 ° C. as measured by differential scanning calorimetry (DSC). When the melting point is 30 ° C. or more, cold flow can be suppressed, and when the melting point is 130 ° C. or less, processability and moldability can be improved. From the same viewpoint, the melting point of the multicomponent copolymer is more preferably 40 ° C. or higher, and more preferably 120 ° C. or lower.
The melting point of the multicomponent copolymer can be specifically measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121-1987.
 上記多元共重合体は、0~120℃における示差走査熱量測定(DSC)により測定される吸熱ピークのエネルギーが10~130J/gであることが好ましい。吸熱ピークのエネルギーが10J/g以上であることにより、充填剤の使用量にかかわらず、耐久性をより向上させることができ、130J/g以下であることにより、破壊伸びを向上させることができる。同様の観点から、多元共重合体の吸熱ピークのエネルギーは、15J/g以上であることがより好ましく、90J/g以下であることがより好ましい。
 なお、多元共重合体の吸熱ピークのエネルギーは、具体的には、JIS K 7121-1987に準拠して、10℃/分の昇温速度で-150℃から150℃まで昇温し、その時(1st run)の0~120℃における吸熱ピーク(エンタルピー緩和)を求めることにより、測定することができる。
The multicomponent copolymer preferably has an endothermic peak energy of 10 to 130 J / g as measured by differential scanning calorimetry (DSC) at 0 to 120 ° C. When the energy of the endothermic peak is 10 J / g or more, the durability can be further improved regardless of the amount of the filler used, and by being 130 J / g or less, the fracture elongation can be improved. . From the same viewpoint, the energy of the endothermic peak of the multicomponent copolymer is more preferably 15 J / g or more, and more preferably 90 J / g or less.
Specifically, according to JIS K 7121-1987, the energy of the endothermic peak of the multicomponent copolymer is raised from -150 ° C. to 150 ° C. at a temperature rise rate of 10 ° C./min. It can be measured by determining an endothermic peak (enthalpy relaxation) at 0 to 120 ° C. in the first run.
 上記多元共重合体は、示差走査熱量測定(DSC)により測定されるガラス転移温度が0℃以下であることが好ましい。ガラス転移温度が0℃以下であることにより、低温性(低温での特性変化が少ない等)を向上させることができる。同様の観点から、多元共重合体のガラス転移温度は、-10℃以下であることがより好ましい。
 なお、多元共重合体のガラス転移温度は、具体的には、示差走査熱量計(DSC)を用い、JIS K 7121-1987に準拠して、測定することができる。
The multicomponent copolymer preferably has a glass transition temperature of 0 ° C. or less as measured by differential scanning calorimetry (DSC). When the glass transition temperature is 0 ° C. or lower, low temperature properties (such as a small change in characteristics at low temperatures) can be improved. From the same viewpoint, the glass transition temperature of the multicomponent copolymer is more preferably −10 ° C. or less.
The glass transition temperature of the multicomponent copolymer can be specifically measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121-1987.
 上記多元共重合体は、主鎖が非環状構造のみからなることが好ましい。これにより、耐久性を更に向上させることができる。
 なお、多元共重合体の主鎖が環状構造を有するか否かの確認には、NMRが主要な測定手段として用いられる。具体的には、主鎖に存在する環状構造に由来するピーク(例えば、三員環~五員環については、10~24ppmに現れるピーク)が観測されない場合、その多元共重合体の主鎖は、非環状構造のみからなることを示す。
The multicomponent copolymer preferably has a main chain consisting of only a non-cyclic structure. Thereby, durability can be further improved.
In addition, NMR is used as a main measurement means to confirm whether or not the main chain of the multicomponent copolymer has a cyclic structure. Specifically, when no peak derived from a cyclic structure present in the main chain (for example, a peak appearing at 10 to 24 ppm for a 3-membered ring to a 5-membered ring) is observed, the main chain of the multicomponent copolymer is , Indicates that it consists only of non-cyclic structure.
 本実施形態のゴム組成物は、ゴム成分における多元共重合体の割合が、20質量%以上であることが好ましい。多元共重合体の割合が20質量%以上であることにより、防振ゴム組成物の耐久性をより向上させることができる。同様の観点から、本実施形態のゴム組成物のゴム成分における多元共重合体の割合は、30質量%以上であることがより好ましい。一方、ゴム成分における多元共重合体の割合は、好ましくは100質量%以下、より好ましくは95質量%以下、更に好ましくは90質量%以下である。 In the rubber composition of the present embodiment, the proportion of the multicomponent copolymer in the rubber component is preferably 20% by mass or more. When the proportion of the multicomponent copolymer is 20% by mass or more, the durability of the vibration-proof rubber composition can be further improved. From the same viewpoint, the proportion of the multicomponent copolymer in the rubber component of the rubber composition of the present embodiment is more preferably 30% by mass or more. On the other hand, the proportion of the multicomponent copolymer in the rubber component is preferably 100% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
<<多元共重合体の製造方法>>
 上記多元共重合体は、例えば、少なくとも共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物を単量体として用い、これらを共重合させる工程(重合工程)を実施することで、製造することができる。また、多元共重合体の製造では、上記重合工程のほか、更に、必要に応じ、カップリング工程、洗浄工程等のその他の工程を実施することができる。ここで、多元共重合体の製造においては、重合触媒の存在下で、共役ジエン化合物を添加せずに非共役オレフィン化合物及び芳香族ビニル化合物のみを添加し、これらを重合させることが好ましい。特に後述の重合触媒組成物を使用する場合には、非共役オレフィン化合物及び芳香族ビニル化合物より共役ジエン化合物の方が反応性が高いことから、共役ジエン化合物の存在下で非共役オレフィン化合物及び/又は芳香族ビニル化合物を重合させることが困難となりやすい。また、先に共役ジエン化合物を重合させ、後に非共役オレフィン化合物及び芳香族ビニル化合物を付加的に重合させることも、触媒の特性上困難となりやすい。
<< Method for Producing Multicomponent Copolymer >>
The multicomponent copolymer may be produced, for example, by carrying out the step (polymerization step) of copolymerizing at least a conjugated diene compound, a nonconjugated olefin compound and an aromatic vinyl compound as monomers. it can. In addition, in the production of the multicomponent copolymer, other steps such as a coupling step and a washing step can be carried out, if necessary, in addition to the above-mentioned polymerization step. Here, in the production of the multi-component copolymer, it is preferable to add only the non-conjugated olefin compound and the aromatic vinyl compound without adding the conjugated diene compound in the presence of the polymerization catalyst, and polymerize these. In particular, when the polymerization catalyst composition described below is used, the conjugated diene compound is more reactive than the nonconjugated olefin compound and the aromatic vinyl compound, so that the nonconjugated olefin compound and / or Or, it tends to be difficult to polymerize the aromatic vinyl compound. In addition, it is likely to be difficult in view of the characteristics of the catalyst to polymerize the conjugated diene compound first and to additionally polymerize the non-conjugated olefin compound and the aromatic vinyl compound later.
 重合工程では、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の重合方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。 In the polymerization step, any polymerization method such as solution polymerization method, suspension polymerization method, liquid phase bulk polymerization method, emulsion polymerization method, gas phase polymerization method, solid phase polymerization method and the like can be used. When a solvent is used for the polymerization reaction, the solvent may be any solvent which is inactive in the polymerization reaction, and examples thereof include toluene, cyclohexane and normal hexane.
 重合工程において、重合反応は、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、共役ジエン単位におけるシス-1,4結合の選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、上記重合反応の反応時間は、重合触媒の種類、重合温度等の条件によって適宜選択することができるが、例えば、1秒~10日の範囲が好ましい。
 また、重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
In the polymerization step, the polymerization reaction is preferably carried out under an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The polymerization temperature of the above-mentioned polymerization reaction is not particularly limited, but, for example, the range of −100 ° C. to 200 ° C. is preferable, and may be around room temperature. When the polymerization temperature is increased, the selectivity of cis-1,4 bond in the conjugated diene unit may be lowered. Further, the pressure of the above-mentioned polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently introduce the conjugated diene compound into the polymerization reaction system. The reaction time of the polymerization reaction can be appropriately selected according to the conditions such as the type of polymerization catalyst and the polymerization temperature, but for example, the range of 1 second to 10 days is preferable.
In the polymerization step, the polymerization reaction may be terminated using a polymerization terminator such as methanol, ethanol or isopropanol.
 重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。一段階の重合工程とは、重合させる全ての種類の単量体、即ち、共役ジエン化合物、非共役オレフィン化合物、芳香族ビニル化合物、及びその他の単量体、好ましくは、共役ジエン化合物、非共役オレフィン化合物、及び芳香族ビニル化合物を一斉に反応させて重合させる工程である。また、多段階の重合工程とは、1種類又は2種類の単量体の一部又は全部を最初に反応させて重合体を形成し(第1重合段階)、次いで、残る種類の単量体や前記1種類又は2種類の単量体の残部を添加して重合させる1以上の段階(第2重合段階~最終重合段階)を行って重合させる工程である。特に、多元共重合体の製造では、重合工程を多段階で行うことが好ましい。 The polymerization step may be performed in one step, or may be performed in multiple steps of two or more steps. One-step polymerization processes are all kinds of monomers to be polymerized, ie conjugated diene compounds, non-conjugated olefin compounds, aromatic vinyl compounds and other monomers, preferably conjugated diene compounds, non-conjugated In this step, an olefin compound and an aromatic vinyl compound are reacted at the same time to be polymerized. In the multistage polymerization process, part or all of one or two kinds of monomers are first reacted to form a polymer (first polymerization stage), and then the remaining kinds of monomers And a step of performing polymerization by performing one or more stages (second polymerization stage to final polymerization stage) in which the remainder of the one or two types of monomers is added and polymerized. In particular, in the production of multicomponent copolymers, it is preferable to carry out the polymerization step in multiple steps.
 重合工程では、少なくとも芳香族ビニル化合物を含む第1単量体原料と、重合触媒とを混合して重合混合物を得る工程(第1工程)と、上記重合混合物に対し、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1種を含む第2単量体原料を導入する工程(第2工程)とを実施することが好ましい。更に、上記第1単量体原料が共役ジエン化合物を含まず、且つ上記第2単量体原料が共役ジエン化合物を含むことがより好ましい。 In the polymerization step, a step (first step) of mixing a first monomer raw material containing at least an aromatic vinyl compound and a polymerization catalyst to obtain a polymerization mixture, and a conjugated diene compound or non-conjugated with respect to the polymerization mixture It is preferable to carry out the step (second step) of introducing a second monomer raw material containing at least one selected from the group consisting of an olefin compound and an aromatic vinyl compound. Furthermore, it is more preferable that the said 1st monomer raw material does not contain a conjugated diene compound, and the said 2nd monomer raw material contains a conjugated diene compound.
 第1工程で用いる第1単量体原料は、芳香族ビニル化合物とともに、非共役オレフィン化合物を含有してもよい。また、第1単量体原料は、使用する芳香族ビニル化合物の全量を含有してもよく、一部のみを含有してもよい。また、非共役オレフィン化合物は、第1単量体原料及び第2単量体原料の少なくともいずれかに含有される。 The first monomer raw material used in the first step may contain a non-conjugated olefin compound together with the aromatic vinyl compound. In addition, the first monomer raw material may contain the whole amount of the aromatic vinyl compound to be used, or may contain only a part. In addition, the non-conjugated olefin compound is contained in at least one of the first monomer raw material and the second monomer raw material.
 第1工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第1工程における温度(反応温度)は、特に制限はないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。また、第1工程における圧力は、特に制限はないが、芳香族ビニル化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、第1工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、反応温度を25~80℃とした場合には、5分~500分の範囲が好ましい。 The first step is preferably carried out in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor. The temperature (reaction temperature) in the first step is not particularly limited, but is preferably in the range of -100 ° C. to 200 ° C., for example, and may be about room temperature. The pressure in the first step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the aromatic vinyl compound into the polymerization reaction system. The time spent in the first step (reaction time) can be appropriately selected according to the conditions such as the type of polymerization catalyst, reaction temperature, etc. For example, when the reaction temperature is 25 to 80 ° C., 5 minutes A range of ̃500 minutes is preferred.
 第1工程において、重合混合物を得るための重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサノン、ノルマルヘキサン等が挙げられる。 In the first step, as a polymerization method for obtaining a polymerization mixture, any method such as solution polymerization method, suspension polymerization method, liquid phase bulk polymerization method, emulsion polymerization method, gas phase polymerization method, solid phase polymerization method and the like can be used. It can be used. When a solvent is used for the polymerization reaction, the solvent may be any solvent which is inactive in the polymerization reaction, and examples thereof include toluene, cyclohexanone, normal hexane and the like.
 第2工程で用いる第2単量体原料は、共役ジエン化合物のみである、共役ジエン化合物及び非共役オレフィン化合物のみである、共役ジエン化合物及び芳香族ビニル化合物のみである、又は、共役ジエン化合物、非共役オレフィン化合物、及び芳香族ビニル化合物であることが好ましい。なお、第2単量体原料が、共役ジエン化合物以外に非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1つを含む場合には、あらかじめこれらの単量体原料を溶媒等とともに混合した後に重合混合物に導入してもよく、各単量体原料を単独の状態から導入してもよい。また、各単量体原料は、同時に添加してもよく、逐次添加してもよい。第2工程において、重合混合物に対して第2単量体原料を導入する方法としては、特に制限はないが、各単量体原料の流量を制御して、重合混合物に対して連続的に添加すること(いわゆるミ-夕リング)が好ましい。ここで、重合反応系の条件下で気体である単量体原料(例えば、室温、常圧の条件下における非共役オレフィン化合物としてのエチレン等)を用いる場合には、所定の圧力で重合反応系に導入することができる。 The second monomer raw material used in the second step is only the conjugated diene compound, the conjugated diene compound and the nonconjugated olefin compound only, the conjugated diene compound and the aromatic vinyl compound only, or the conjugated diene compound, Non-conjugated olefin compounds and aromatic vinyl compounds are preferred. When the second monomer material contains at least one selected from the group consisting of non-conjugated olefin compounds and aromatic vinyl compounds in addition to conjugated diene compounds, these monomer materials may be used as solvents in advance. And may be introduced into the polymerization mixture, or each monomer raw material may be introduced from a single state. Moreover, each monomer raw material may be added simultaneously or may be added one by one. Although there is no restriction | limiting in particular as a method to introduce | transduce a 2nd monomer raw material with respect to a polymerization mixture in a 2nd process, The flow rate of each monomer raw material is controlled and it adds continuously with respect to a polymerization mixture It is preferable to do so (so-called "mid-ring"). Here, in the case of using a monomer raw material (for example, ethylene as a non-conjugated olefin compound under conditions of room temperature and normal pressure) which is a gas under the conditions of the polymerization reaction system, the polymerization reaction system is performed at a predetermined pressure Can be introduced.
 第2工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第2工程における温度(反応温度)は、特に制限はないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。なお、反応温度を上げると、共役ジエン単位におけるシスー1,4結合の選択性が低下することがある。また、第2工程における圧力は、特に制限はないが、共役ジエン化合物等の単量体を十分に重合反応系に取り込むため、0.1~10.0MPaの範囲が好ましい。また、第2工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、0.1時間~10日の範囲が好ましい。
 また、第2工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
The second step is preferably carried out in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor. The temperature (reaction temperature) in the second step is not particularly limited, but is preferably in the range of -100 ° C. to 200 ° C., for example, and may be about room temperature. When the reaction temperature is raised, the selectivity of cis-1,4 bond in the conjugated diene unit may be lowered. The pressure in the second step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate a monomer such as a conjugated diene compound into the polymerization reaction system. The time spent for the second step (reaction time) can be appropriately selected according to the conditions such as the type of polymerization catalyst, reaction temperature and the like, but for example, the range of 0.1 hour to 10 days is preferable.
In the second step, the polymerization reaction may be terminated using a polymerization terminator such as methanol, ethanol or isopropanol.
 カップリング工程は、重合工程において得られた多元共重合体の高分子鎖の少なくとも一部(例えば、末端)を、カップリング剤などを用いて変性する反応(カップリング反応)を行う工程である。カップリング工程は、重合反応が100%に達した際に行うことが好ましい。カップリング工程を行うことにより、多元共重合体の数平均分子量(Mn)を増加させることができる。 The coupling step is a step of performing a reaction (coupling reaction) of modifying at least a part (for example, an end) of the polymer chain of the multicomponent copolymer obtained in the polymerization step using a coupling agent or the like. . The coupling step is preferably performed when the polymerization reaction reaches 100%. By performing the coupling step, the number average molecular weight (Mn) of the multicomponent copolymer can be increased.
 カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸-1-オクタデシル)ジオクテルスズ(lV)等のスズ含有化合物;4,4’-ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、反応効率の向上及びゲル生成の低減の観点から、ビス(マレイン酸-1-オクタデシル)ジオクテルスズ(IV)が好ましい。 There is no restriction | limiting in particular as a coupling agent used for a coupling reaction, According to the objective, it can select suitably, For example, tin containing compounds, such as bis (1-octadecyl maleate) diokuteru tin (lV); Isocyanate compounds such as 4'-diphenylmethane diisocyanate; and alkoxysilane compounds such as glycidyl propyl trimethoxysilane. These may be used alone or in combination of two or more. Among these, bis (1-octadecyl maleate) diquatel tin (IV) is preferable from the viewpoint of improvement of reaction efficiency and reduction of gel formation.
 洗浄工程は、重合工程又はカップリング工程で得られた多元共重合体を洗浄する工程である。洗浄工程を行うことにより、多元共重合体中の触媒残さ査量を好適に低下させることができる。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノ-ルなどの溶媒が挙げられ。また、重合触媒としてルイス酸由来の触媒を使用する際には、特に、上述した溶媒に対して酸(例えば塩酸、硫酸、硝酸など)を添加して用いることができる。なお、添加する酸の量は、当該酸が多元共重合体中に残存して混練及び加硫時の反応に悪影響を及ぼすことを回避する観点から、溶媒に対して15mol%以下であることが好ましい。 The washing step is a step of washing the multicomponent copolymer obtained in the polymerization step or the coupling step. By performing the washing step, the amount of catalyst residue in the multicomponent copolymer can be suitably reduced. The medium used for the washing is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include solvents such as methanol, ethanol and isopropanol. Moreover, when using the catalyst derived from Lewis acid as a polymerization catalyst, an acid (for example, hydrochloric acid, a sulfuric acid, nitric acid etc.) can be added and used with respect to the solvent mentioned above especially. The amount of the acid to be added is 15 mol% or less based on the solvent from the viewpoint of avoiding that the acid remains in the multicomponent copolymer and adversely affects the reaction during kneading and vulcanization. preferable.
 ここで、上記重合工程は、下記に示す第一の重合触媒組成物、第二の重合触媒組成物、第三の重合触媒組成物、又は第四の重合触媒組成物の存在下で行うことが好ましい。以下、第一の重合触媒組成物、第二の重合触媒組成物、第三の重合触媒組成物、及び第四の重合触媒組成物について説明する。 Here, the polymerization step may be performed in the presence of a first polymerization catalyst composition, a second polymerization catalyst composition, a third polymerization catalyst composition, or a fourth polymerization catalyst composition shown below. preferable. Hereinafter, the first polymerization catalyst composition, the second polymerization catalyst composition, the third polymerization catalyst composition, and the fourth polymerization catalyst composition will be described.
-第一の重合触媒組成物-
 第一の重合触媒組成物(以下、「第一重合触媒組成物」ともいう)について説明する。
 第一重合触媒組成物としては、
 (A1)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない、該希土類元素化合物又は反応物と、
 (B1)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B1-1)、アルミノキサン(B1-2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B1-3)よりなる群から選択される少なくとも一種と、を含む重合触媒組成物が挙げられる。
 第一重合触媒組成物が、イオン性化合物(B1-1)及びハロゲン化合物(B1-3)よりなる群から選択される少なくとも一種を含む場合、該重合触媒組成物は、更に、
 (C1)成分:下記式(I):
     YR  ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは炭素数1~10の一価の炭化水素基又は水素原子であり、Rは炭素数1~10の一価の炭化水素基であり、R、R、Rはそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物を含む。
-First polymerization catalyst composition-
The first polymerization catalyst composition (hereinafter also referred to as "first polymerization catalyst composition") will be described.
As a first polymerization catalyst composition,
Component (A1): a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, wherein the rare earth element compound or the reaction product does not have a bond between the rare earth element and carbon.
Component (B1): an ionic compound (B1-1) consisting of a non-coordinating anion and a cation, an aluminoxane (B1-2), a Lewis acid, a complex compound of a metal halide and a Lewis base, and an active halogen And a polymerization catalyst composition containing at least one selected from the group consisting of at least one halogen compound (B1-3) among organic compounds.
When the first polymerization catalyst composition contains at least one selected from the group consisting of the ionic compound (B1-1) and the halogen compound (B1-3), the polymerization catalyst composition further comprises
Component (C1): The following formula (I):
YR 1 a R 2 b R 3 c ... (I)
(Wherein Y is a metal selected from Groups 1, 2, 12, and 13 of the periodic table, and R 1 and R 2 are monovalent hydrocarbon having 1 to 10 carbon atoms) R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 1 , R 2 and R 3 may be identical to or different from one another, and Y is a periodic group. When it is a metal selected from Table Group 1, a is 1 and b and c are 0, and Y is a metal selected from Group 2 and Group 12 of the periodic table , A and b are 1 and c is 0, and when Y is a metal selected from Group 13 of the periodic table, a, b and c are 1. including.
 上記イオン性化合物(B1-1)及び上記ハロゲン化合物(B1-3)は、(A1)成分へ供給するための炭素原子が存在しないため、該(A1)成分への炭素供給源として、上記(C1)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B1-2)を含む場合であっても、該重合触媒組成物は、上記(C1)成分を含むことができる。また、上記第一重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。
 なお、重合反応系において、第一重合触媒組成物に含まれる(A1)成分の濃度は0.1~0.0001mol/lの範囲であることが好ましい。
 更に、該重合触媒組成物は、アニオン性配位子となり得る添加剤(D1)を含有することが好ましい。
The above-mentioned ionic compound (B1-1) and the above-mentioned halogen compound (B1-3) do not have carbon atoms to be supplied to the component (A1), and therefore the above-mentioned ((1) C1) The component is required. Even when the polymerization catalyst composition contains the aluminoxane (B1-2), the polymerization catalyst composition can contain the component (C1). In addition, the first polymerization catalyst composition may contain other components contained in a general rare earth element compound polymerization catalyst composition, such as a cocatalyst.
In the polymerization reaction system, the concentration of the component (A1) contained in the first polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
Furthermore, the polymerization catalyst composition preferably contains an additive (D1) that can be an anionic ligand.
 上記第一重合触媒組成物に用いる(A1)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素-炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、希土類元素(M)、即ち、周期律表中の原子番号57~71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。
 なお、ランタノイド元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A1)成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The component (A1) used in the first polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, wherein the rare earth element compound and the reaction of the rare earth element compound with a Lewis base The substance does not have a bond between the rare earth element and carbon. When the rare earth compound and the reactant do not have a rare earth-carbon bond, the compound is stable and easy to handle. Here, the rare earth element compound is a compound containing a rare earth element (M), that is, a lanthanoid element composed of elements of atomic numbers 57 to 71 in the periodic table, or scandium or yttrium.
Examples of lanthanoid elements include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. In addition, the said (A1) component may be used individually by 1 type, and may be used combining 2 or more types.
 また、上記希土類元素化合物は、希土類金属が二価もしくは三価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることがより好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記式(II)又は式(III):
     M1111 ・L11w ・・・ (II)
     M1111 ・L11w ・・・ (III)
(それぞれの式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0~3を示す)で表されることが好ましい。
The rare earth metal compound is preferably a salt or complex compound in which the rare earth metal is divalent or trivalent, and one or more coordination selected from a hydrogen atom, a halogen atom and an organic compound residue It is more preferable that it is a rare earth element compound containing a nitrogen. Furthermore, the rare earth element compound or the reaction product of the rare earth element compound and the Lewis base is represented by the following formula (II) or formula (III):
M 11 X 11 2 · L 11 w ... (II)
M 11 X 11 3 · L 11 w ... (III)
(In the respective formulae, M 11 represents a lanthanoid element, scandium or yttrium, and X 11 each independently represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, an aldehyde residue, A ketone residue, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue is shown, L 11 is preferably a Lewis base, and w is preferably 0 to 3.
 上記希土類元素化合物の希土類元素に結合する基(配位子)として、水素原子、ハロゲン原子、アルコキシ基(アルコールの水酸基の水素を除いた基であり、金属アルコキシドを形成する。)、チオラート基(チオール化合物のチオール基の水素を除いた基であり、金属チオラートを形成する。)、アミノ基(アンモニア、第一級アミン、又は第二級アミンの窒素原子に結合する水素原子を1つ除いた基であり、金属アミドを形成する。)、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基が挙げられる。具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等の芳香族アルコキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-ネオペンチルチオフェノキシ基、2-イソプロピル-6-ネオペンチルチオフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、2-ヒドロキシ-3-ナフトアルデヒド等のアルデヒドの残基;2’-ヒドロキシアセトフェノン、2’-ヒドロキシブチロフェノン、2’-ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ピバル酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2-ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2-ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(ブチル)(2-エチルヘキシル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)等のリン酸エステルの残基;2-エチルヘキシルホスホン酸モノブチル、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、フェニルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ホスホン酸モノ-2-エチルヘキシル、ホスホン酸モノ-1-メチルヘプチル、ホスホン酸モノ-p-ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、ブチル(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(1-メチルヘプチル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2-エチルヘキシルホスフィン酸、1-メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p-ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As a group (ligand) to be bonded to the rare earth element of the above rare earth element compound, a hydrogen atom, a halogen atom, an alkoxy group (a group excluding hydrogen of hydroxyl group of alcohol to form metal alkoxide), a thiolate group ( It is a group except hydrogen of thiol group of thiol compound and forms metal thiolate. Amino group (ammonia, primary amine, or one hydrogen atom bonded to nitrogen atom of secondary amine is removed) Groups which form metal amides), silyl groups, aldehyde residues, ketone residues, carboxylic acid residues, thiocarboxylic acid residues or phosphorus compound residues. Specifically, hydrogen atom; aliphatic alkoxy group such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group; phenoxy group, 2,6-di- tert-Butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2 Aromatic alkoxy groups such as -isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio sec-butoxy group, thio tert-butoxy group, etc. Aliphatic thiolate group; thiophenoxy group, 2,6-di-tert-butyl Ophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2-tert-butyl-6-neopentylthiophenoxy group, Arylthiolate groups such as 2-isopropyl-6-neopentylthiophenoxy group, 2,4,6-triisopropylthiophenoxy group; aliphatic amino groups such as dimethylamino group, diethylamino group, diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert- Butyl-6-neopentylphenylamino group, -Arylamino groups such as isopropyl-6-neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group; trimethylsilyl group, tris (trimethylsilyl) group Silyl groups such as silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group; halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom etc. . Furthermore, residues of aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone, etc. Residues of hydroxyphenone; residues of diketones such as acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone and ethylacetylacetone; isovaleric acid, caprylic acid, octanoic acid, lauric acid, myristic acid, palmitic acid, Stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, pivalic acid, versatic acid (trade name of Shell Chemical Co., Ltd., a mixture of C10 monocarboxylic acid isomers Of synthetic acids, phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, succinic acid and other carboxylic acid residues; hexanethioic acid, 2,2-dimethylbutanethioic acid, decanethioic acid, thiobenzoic acid Residues of thiocarboxylic acids such as dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diheptyl phosphate, dioctyl phosphate, bis (2-ethylhexyl) phosphate, bis (1-methylheptyl) phosphate, dilauryl phosphate , Dioleyl phosphate, diphenyl phosphate, bis (p-nonylphenyl) phosphate, bis (polyethylene glycol-p-nonylphenyl) phosphate, (butyl) (2-ethylhexyl) phosphate, 1-methylheptyl phosphate Phosphoric acid esters such as (2-ethylhexyl), phosphoric acid (2-ethylhexyl) (p-nonylphenyl), etc. Residues of monoethyl-2-ethylhexylphosphonate, mono-2-ethylhexyl 2-ethylhexylphosphonate, mono-2-ethylhexyl phenylphosphonate, mono-p-nonylphenyl 2-ethylhexylphosphonate, mono-2-ethylhexyl phosphonate Residues of phosphonic acid esters such as mono-1-methylheptyl phosphonic acid and mono-p-nonylphenyl phosphonic acid; dibutylphosphinic acid, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, Dilaurylphosphinic acid, dioleoylphosphinic acid, diphenylphosphinic acid, bis (p-nonylphenyl) phosphinic acid, butyl (2-ethylhexyl) phosphinic acid, (2-ethylhexyl) (1-methylheptyl) phosphinic acid, (2- Ethyl hex Sil) (p-nonylphenyl) phosphinic acid, butyl phosphinic acid, 2-ethylhexyl phosphinic acid, 1-methylheptyl phosphinic acid, oleyl phosphinic acid, lauryl phosphinic acid, phenyl phosphinic acid, phosphinic acid such as p-nonyl phenyl phosphinic acid The residue of can also be mentioned. In addition, these ligands may be used individually by 1 type, and may be used combining 2 or more types.
 上記第一重合触媒組成物に用いる(A1)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(II)及び(III)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。 In the component (A1) used for the first polymerization catalyst composition, examples of the Lewis base which reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethyl aniline, trimethyl phosphine, lithium chloride, neutral olefins, and the like. Diolefins and the like. Here, when the above-mentioned rare earth element compounds react with a plurality of Lewis bases (in the formulas (II) and (III), when w is 2 or 3, the Lewis bases L 11 are different even though they are identical. It may be
 好適には、上記希土類元素化合物は、下記式(IV)で表される化合物を含有することが好ましい。
 M-(NQ)(NQ)(NQ) ・・・(IV)
(式中、Mはランタノイド元素、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ、NQ及びNQはアミノ基であり、同一であっても異なっていてもよく、但し、M-N結合を有する)
 即ち、上記式(IV)で表される化合物は、M-N結合を3つ有することを特徴とする。M-N結合を3つ有することにより、各結合が化学的に等価となるため構造が安定的であり、それゆえに取り扱いが容易である、という利点を有する。
Preferably, the rare earth element compound contains a compound represented by the following formula (IV).
M- (NQ 1) (NQ 2 ) (NQ 3) ··· (IV)
(Wherein, M is at least one selected from lanthanoid elements, scandium and yttrium, and NQ 1 , NQ 2 and NQ 3 are amino groups and may be the same or different, provided that M − With N bond)
That is, the compound represented by the above formula (IV) is characterized by having three M—N bonds. Having three M—N bonds has the advantage that the structure is stable because each bond is chemically equivalent, and hence it is easy to handle.
 上記式(IV)において、NQ(NQ、NQ、及びNQ)が表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基などの脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基などのアリールアミノ基;ビストリメチルシリルアミノ基などのビストリアルキルシリルアミノ基のいずれでもよいが、ビストリメチルシリルアミノ基が好ましい。 In the above formula (IV), as the amino group represented by NQ (NQ 1 , NQ 2 and NQ 3 ), aliphatic amino groups such as dimethylamino, diethylamino and diisopropylamino; phenylamino, 2, 6 -Di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6 -Arylamino groups such as neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group Although any may be used, the bistrimethylsilylamino group is preferred. There.
 上記第一重合触媒組成物に用いる(B1)成分は、イオン性化合物(B1-1)、アルミノキサン(B1-2)及びハロゲン化合物(B1-3)よりなる群から選択される少なくとも一種である。なお、上記第一重合触媒組成物における(B1)成分の合計の含有量は、(A1)成分に対して0.1~50倍molであることが好ましい。 The component (B1) used in the first polymerization catalyst composition is at least one selected from the group consisting of the ionic compound (B1-1), the aluminoxane (B1-2) and the halogen compound (B1-3). The total content of the components (B1) in the first polymerization catalyst composition is preferably 0.1 to 50 times the mol of the component (A1).
 上記イオン性化合物(B1-1)は、非配位性アニオンとカチオンとからなり、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物におけるイオン性化合物(B1-1)の含有量は、(A1)成分に対して0.1~10倍molであることが好ましく、約1倍molであることがより好ましい。 The ionic compound (B1-1) comprises a non-coordinating anion and a cation, and reacts with the rare earth element compound which is the component (A1) or a reactant thereof with a Lewis base to form a cationic transition metal compound. The ionic compound etc. which can be produced can be mentioned. Here, as the non-coordinating anion, for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri And decahydride-7,8-dicarbaundecaborate and the like. On the other hand, examples of the cation include carbonium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptatrienyl cation, ferrocenium cation having a transition metal, and the like. Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenyl carbonium cation, tri (substituted phenyl) carbonium cation and the like, and as the tri (substituted phenyl) carbonyl cation, more specifically, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation and the like. Specific examples of the ammonium cation include trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation, tributyl ammonium cation (for example, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cations such as cations, N, N-diethylanilinium cations, N, N, 2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropyl ammonium cation, dicyclohexyl ammonium cation, etc. Can be mentioned. Specific examples of the phosphonium cation include triaryl phosphonium cations such as triphenyl phosphonium cation, tri (methyl phenyl) phosphonium cation, tri (dimethyl phenyl) phosphonium cation and the like. Accordingly, as the ionic compound, compounds selected and combined respectively from the above-mentioned non-coordinating anions and cations are preferable, and specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbo Preferred are tetrakis (pentafluorophenyl) borate and the like. In addition, these ionic compounds can be used alone or in combination of two or more. The content of the ionic compound (B1-1) in the first polymerization catalyst composition is preferably 0.1 to 10 times mol and preferably about 1 time mol to the component (A1). Is more preferred.
 上記アルミノキサン(B1-2)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、式:(-Al(R’)O-)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1~10の一価の炭化水素基であり、一部の炭化水素基はハロゲン原子及びアルコキシ基よりなる群から選択される少なくとも1つで置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上がより好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第一重合触媒組成物におけるアルミノキサン(B1-2)の含有量は、(A1)成分を構成する希土類元素Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10~1,000程度となるようにすることが好ましい。 The above aluminoxane (B1-2) is a compound obtained by contacting an organoaluminum compound and a condensing agent, and, for example, a chain having a repeating unit represented by the formula: (-Al (R ′) O—) Aluminoxane or cyclic aluminoxane (wherein R ′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups are substituted with at least one selected from the group consisting of halogen atoms and alkoxy groups 5 or more is preferable and 10 or more are more preferable. Here, specific examples of R 'include a methyl group, an ethyl group, a propyl group and an isobutyl group, and among them, a methyl group is preferable. Moreover, as an organic aluminum compound used as a raw material of aluminoxane, for example, trialkylaluminum such as trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum and the like and a mixture thereof can be mentioned, with preference given to trimethylaluminum. For example, an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be suitably used. The content of the aluminoxane (B1-2) in the first polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the rare earth element M constituting the component (A1) is 10 to 1,1. It is preferable to make it about 000.
 上記ハロゲン化合物(B1-3)は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第一重合触媒組成物におけるハロゲン化合物(B1-3)の合計の含有量は、(A1)成分に対して1~5倍molであることが好ましい。 The halogen compound (B1-3) is made of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen, and for example, a rare earth element compound or the above component (A1) The cationic transition metal compound, the halogenated transition metal compound and the transition metal center can form a charge deficient compound by reacting with the reactant with the Lewis base. The total content of the halogen compounds (B1-3) in the first polymerization catalyst composition is preferably 1 to 5 times the mol of the component (A1).
 上記ルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第3族、第4族、第5族、第6族又は第8族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。 As the Lewis acid, boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used, and Group 3 and Group 3 in the periodic table It is also possible to use a halogen compound containing an element belonging to Group 4, Group 5, Group 6 or Group 8. Preferably, an aluminum halide or an organometallic halide is mentioned. Moreover, as a halogen element, chlorine or a bromine is preferable. Specific examples of the above Lewis acid include methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide, butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride, diethylaluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride Among them, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide and ethylaluminum dibromide are particularly preferred. preferable.
 上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、臭化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。 Examples of metal halides which constitute a complex compound of the above metal halide and a Lewis base include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper bromide, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, bromide Gold and the like can be mentioned, and among these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride, chloride Preferably, magnesium chloride, manganese chloride, zinc chloride, copper chloride being particularly preferred.
 また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。 Moreover, as a Lewis base which comprises the complex compound of the said metal halide and Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol etc. are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethyl phosphine, tributyl phosphine, triphenyl phosphine, diethyl phosphino ethane, diphenyl phosphino ethane, acetyl acetone, benzoyl acetone Propionylacetone, valerylacetone, ethylacetylacetone, methyl acetoacetate, ethyl acetoacetate, phenylacetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethylhexanoic acid, oleic acid, stearin Acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethylhexyl alcohol, olei Alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, lauryl alcohol etc. are mentioned, Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2- Ethyl hexyl alcohol, 1-decanol and lauryl alcohol are preferred.
 上記ルイス塩基は、上記金属ハロゲン化物1molに対し、好ましくは0.01~30mol、より好ましくは0.5~10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。 The Lewis base is preferably reacted in a proportion of 0.01 to 30 mol, more preferably 0.5 to 10 mol, per 1 mol of the metal halide. The reaction with this Lewis base can be used to reduce the metal remaining in the polymer.
 上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。 Examples of the organic compound containing an active halogen include benzyl chloride and the like.
 上記第一重合触媒組成物に用いる(C1)成分は、下記式(I):
     YR  ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は炭素数1~10の一価の炭化水素基又は水素原子であり、R3は炭素数1~10の一価の炭化水素基であり、R、R、Rはそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物であり、下記式(V):
     AlR ・・・ (V)
(式中、R及びRは炭素数1~10の一価の炭化水素基又は水素原子であり、R3は炭素数1~10の一価の炭化水素基であり、R、R、Rはそれぞれ互いに同一又は異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。
The component (C1) used in the first polymerization catalyst composition has the following formula (I):
YR 1 a R 2 b R 3 c ... (I)
(Wherein, Y is a metal selected from Groups 1, 2, 12, and 13 of the periodic table, and R 1 and R 2 each represent a monovalent hydrocarbon group having 1 to 10 carbon atoms or R 3 is a hydrogen atom, R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be identical to or different from one another, and Y is a group of periodic table 1 A is 1 and b and c are 0 when it is a metal selected from group a, and when a is a metal selected from groups 2 and 12 of the periodic table, a and and b is 1 and c is 0, and when Y is a metal selected from Group 13 of the periodic table, a, b and c are 1. Following formula (V):
AlR 1 R 2 R 3 ... (V)
Wherein R 1 and R 2 each represent a monovalent hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, R 3 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 and R 2 And R 3 may be the same as or different from one another.
 式(V)で表される有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C1)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物における有機アルミニウム化合物の含有量は、(A1)成分に対して1~50倍molであることが好ましく、約10倍molであることがより好ましい。 As the organoaluminum compound represented by the formula (V), trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tri-t-butylaluminum Pentylaluminum, trihexylaluminum, tricyclohexylaluminum, trioctylaluminum; diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, dihexylaluminum hydride, hydrogenation Diisohexylaluminum, hydrogenated dioctylaluminum, hydrogenated diisooctylaluminum; ethylaluminum dihydrate, n-propyl alcohol Mini um dihydride, include isobutyl aluminum dihydride and the like, among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. The organoaluminum compound as the component (C1) described above can be used singly or in combination of two or more. The content of the organoaluminum compound in the first polymerization catalyst composition is preferably 1 to 50 times mol, and more preferably about 10 times mol to the component (A1).
 アニオン性配位子となり得る添加剤(D1)の添加は、より高いシス-1,4結合含有量の多元共重合体を高収率で合成することが可能となる、という効果を奏するため好ましい。 The addition of the additive (D1) capable of becoming an anionic ligand is preferable because it has the effect of being able to synthesize a multicomponent copolymer having a higher cis-1,4 bond content in a high yield. .
 上記添加剤(D1)としては、(A1)成分のアミノ基と交換可能なものであれば特に限定されないが、OH基、NH基、SH基のいずれかを有することが好ましい。 The additive (D1) is not particularly limited as long as it can be exchanged with the amino group of the component (A1), but it is preferable to have any of an OH group, an NH group and an SH group.
 具体的な化合物として、OH基を有するものとしては、脂肪族アルコール、芳香族アルコール等が挙げられる。具体的には2-エチル-1-ヘキサノール、ジブチルヒドロキシトルエン、アルキル化フェノール、4,4’-チオビス(6-t-ブチル-3-メチルフェノール)、4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,6-ジ-t-ブチル-4-エチルフェノール、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、n-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチリルチオジプロピオネート等を挙げることができるが、これに限定されるものではない。例えばヒンダードフェノール系のものとして、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール等を挙げることができる。また、ヒドラジン系として、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジンを挙げることができる。 Specific examples of the compound having an OH group include aliphatic alcohols and aromatic alcohols. Specifically, 2-ethyl-1-hexanol, dibutylhydroxytoluene, alkylated phenol, 4,4'-thiobis (6-t-butyl-3-methylphenol), 4,4'-butylidenebis (6-t- Butyl-3-methylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,6-di- t-Butyl-4-ethylphenol, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-octadecyl-3- (4-hydroxy-3,5-di) -T-Butylphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, dilaurate Thiodipropionate, distearyl thiodipropionate, it may be mentioned di-myristyl thiodipropionate, etc., but is not limited thereto. For example, as a hindered phenol type, triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3, 5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5 -Triazine, pentaerythryl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylene bis [3- (3,5-di-t-) Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-ha Samethylene bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2 4,6-Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, octylated diphenylamine, 2 And 4-bis [(octylthio) methyl] -o-cresol and the like. Moreover, N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine can be mentioned as a hydrazine system.
 NH基を有するものとしては、アルキルアミン、アリールアミン等の第1級アミン又は第2級アミンを挙げることができる。具体的には、ジメチルアミン、ジエチルアミン、ピロール、エタノールアミン、ジエタノールアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン、ビス(2-ジフェニルホスフィノフェニル)アミン等が挙げられる。 As what has a NH group, primary amines or secondary amines, such as an alkylamine and an arylamine, can be mentioned. Specifically, dimethylamine, diethylamine, pyrrole, ethanolamine, diethanolamine, dicyclohexylamine, N, N'-dibenzylethylenediamine, bis (2-diphenylphosphinophenyl) amine and the like can be mentioned.
 SH基を有するものとしては、脂肪族チオール、芳香族チオール等のほか、下記式(VI)、(VII)で示される化合物が挙げられる。 Examples of the compound having an SH group include aliphatic thiols, aromatic thiols, and the like, as well as compounds represented by the following formulas (VI) and (VII).
Figure JPOXMLDOC01-appb-C000001
(式中、R、R及びRはそれぞれ独立して-O-C2j+1、-(O-C2k-)-O-C2m+1又は-C2n+1で表され、j、m及びnはそれぞれ独立して0~12の整数であり、k及びaはそれぞれ独立して1~12の整数であり、Rは炭素数1~12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
 式(VI)で示されるものの具体例として、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、(メルカプトメチル)ジメチルエトキシシラン、メルカプトメチルトリメトキシシラン等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(Wherein, R 1 , R 2 and R 3 are each independently —O—C j H 2j + 1 , — (O—C k H 2 k −) a —O—C m H 2 m + 1 or —C n H 2 n + 1 J, m and n each independently represent an integer of 0 to 12, k and a each independently represent an integer of 1 to 12, and R 4 represents a carbon number of 1 to 12, and Chain, branched or cyclic, saturated or unsaturated, alkylene group, cycloalkylene group, cycloalkyl alkylene group, cycloalkenyl alkylene group, alkenylene group, cycloalkenylene group, cycloalkyl alkenylene group, cycloalkenyl alkenylene group, arylene group Or an aralkylene group)
Specific examples of the compound represented by the formula (VI) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, (mercaptomethyl) dimethylethoxysilane, mercaptomethyltrimethoxysilane, etc. Can be mentioned.
Figure JPOXMLDOC01-appb-C000002
(式中、Wは-NR-、-O-又は-CR10-(ここで、R及びRは-C2p+1であり、R10は-C2q+1であり、p及びqはそれぞれ独立して0~20の整数である。)で表され、R及びRはそれぞれ独立して-M-C2r-(ここで、Mは-O-又は-CH-であり、rは1~20の整数である。)で表され、Rは-O-C2j+1、-(O-C2k-)-O-C2m+1又は-C2n+1で表され、j、m及びnはそれぞれ独立して0~12の整数であり、k及びaはそれぞれ独立して1~12の整数であり、Rは炭素数1~12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
Figure JPOXMLDOC01-appb-C000002
(Wherein, W is -NR 8 -, - O- or -CR 9 R 10 - (wherein, R 8 and R 9 are -C p H 2p + 1, R 10 is -C q H 2q + 1, p and q are each independently an integer of 0 to 20.) R 5 and R 6 are each independently -M-C r H 2r- (wherein, M is -O- or- CH 2 - and is, r is represented by an integer of 1 ~ 20), R 7 is -O-C j H 2j + 1 , -. (O-C k H 2k -) a -O-C m H 2m + 1 Or -C n H 2n + 1 , j, m and n each independently represent an integer of 0 to 12, k and a each independently represent an integer of 1 to 12, and R 4 represents 1 carbon atom To 12 and is a linear, branched or cyclic, saturated or unsaturated alkylene group, cycloalkylene group, cyclic Alkyl alkylene group, a cycloalkenyl alkylene group, an alkenylene group, a cycloalkenylene group, a cycloalkyl alkenylene group, cycloalkenyl alkenylene group, an arylene group or an aralkylene group.)
 式(VII)で示されるものの具体例として、3-メルカプトプロピル(エトキシ)-1,3-ジオキサ-6-メチルアザ-2-シラシクロオクタン、3-メルカプトプロピル(エトキシ)-1,3-ジオキサ-6-ブチルアザ-2-シラシクロオクタン、3-メルカプトプロピル(エトキシ)-1,3-ジオキサ-6-ドデシルアザ-2-シラシクロオクタンなどが挙げられる。 As specific examples of those represented by the formula (VII), 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-methylaza-2-silacyclooctane, 3-mercaptopropyl (ethoxy) -1,3-dioxa- Examples thereof include 6-butylaza-2-silacyclooctane, 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-dodecylaza-2-silacyclooctane and the like.
 また、添加剤(D1)としては、好適には下記式(VIII)で表されるアニオン性三座配位子前駆体を使用できる。
 E-T-X-T-E ・・・(VIII)
(Xは、周期律表第15族原子から選択される配位原子を含むアニオン性の電子供与基を示し、E及びEはそれぞれ独立して、周期律表第15族及び16族原子から選択される配位原子を含む中性の電子供与基を示し、T及びTはそれぞれ、XとE及びEを架橋する架橋基を示す)
Moreover, as an additive (D1), the anionic tridentate ligand precursor suitably represented by following formula (VIII) can be used.
E 1 -T 1 -X-T 2 -E 2 ... (VIII)
(X represents an anionic electron donating group containing a coordinating atom selected from periodic table group 15 atoms, and E 1 and E 2 are each independently a periodic table group 15 and 16 atoms And a neutral electron donating group containing a coordinating atom selected from: T 1 and T 2 each represent a bridging group bridging X and E 1 and E 2 )
 添加剤(D1)は、前記希土類元素化合物1molに対して、0.01~10mol添加することが好ましく、0.1~1.2mol添加することがより好ましい。添加量が0.1mol以上であると、モノマーの重合が進行し、本発明の目的を達成しうる。また、添加量は、希土類元素化合物と当量(1.0mol)とすることが好ましいが、過剰量添加されていてもよい。添加量が1.2mol以下であると、試薬のロスが少ないので好ましい。 The additive (D1) is preferably added in an amount of 0.01 to 10 mol, more preferably 0.1 to 1.2 mol, per 1 mol of the rare earth element compound. When the addition amount is 0.1 mol or more, polymerization of the monomer proceeds to achieve the object of the present invention. The addition amount is preferably equivalent to the rare earth element compound (1.0 mol), but an excess amount may be added. The addition amount of 1.2 mol or less is preferable because the loss of the reagent is small.
 上記式(VIII)中、中性の電子供与基E1及びE2は、周期律表第15族及び第16族から選択される配位原子を含む基である。また、E1及びE2は同一の基であってもよく、異なる基であってもよい。該配位原子としては、窒素N、リンP、酸素O、硫黄Sなどが例示されるが、好ましくはPである。 In the above formula (VIII), the neutral electron donating groups E1 and E2 are groups containing a coordinating atom selected from Groups 15 and 16 of the periodic table. E1 and E2 may be the same group or different groups. Examples of the coordination atom include nitrogen N, phosphorus P, oxygen O, sulfur S and the like, preferably P.
 前記E及びEに含まれる配位原子がPである場合には、中性の電子供与基E又はEとしては、ジフェニルホスフィノ基やジトリルホスフィノ基などのジアリールホスフィノ基;ジメチルホスフィノ基やジエチルホスフィノ基などのジアルキルホスフィノ基;メチルフェニルホスフィノ基などのアルキルアリールホスフィノ基が例示され、好ましくはジアリールホスフィノ基である。 When the coordinating atom contained in E 1 and E 2 is P, as the neutral electron donating group E 1 or E 2 , a diaryl phosphino group such as a diphenyl phosphino group or a ditolyl phosphino group A dialkyl phosphino group such as a dimethyl phosphino group and a diethyl phosphino group; and an alkylaryl phosphino group such as a methyl phenyl phosphino group, and a diaryl phosphino group is preferable.
 前記E及びEに含まれる配位原子がNである場合には、中性の電子供与基E又はEとしては、ジメチルアミノ基、ジエチルアミノ基やビス(トリメチルシリル)アミノ基などのジアルキルアミノ基及びビス(トリアルキルシリル)アミノ基;ジフェニルアミノ基などのジアリールアミノ基;メチルフェニルアミノ基などのアルキルアリールアミノ基などが例示される。 When the coordinating atom contained in E 1 and E 2 is N, the neutral electron donating group E 1 or E 2 may be a dialkyl such as dimethylamino, diethylamino or bis (trimethylsilyl) amino. Examples thereof include an amino group and a bis (trialkylsilyl) amino group; a diarylamino group such as a diphenylamino group; and an alkylarylamino group such as a methylphenylamino group.
 前記E及びEに含まれる配位原子がOである場合には、中性の電子供与基E又はEとしては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基;フェノキシ基、2,6-ジメチルフェノキシ基などのアリールオキシ基などが例示される。 When the coordinating atom contained in E 1 and E 2 is O, as the neutral electron donating group E 1 or E 2 , an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group or a butoxy group; Examples thereof include aryloxy groups such as phenoxy group and 2,6-dimethylphenoxy group.
 前記E及びEに含まれる配位原子がSである場合には、中性の電子供与基E又はEとしては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基などのアルキルチオ基;フェニルチオ基、トリルチオ基などのアリールチオ基などが例示される。 When the coordinating atom contained in E 1 and E 2 is S, as the neutral electron donating group E 1 or E 2 , an alkylthio group such as a methylthio group, an ethylthio group, a propylthio group, and a butylthio group; Examples include arylthio groups such as phenylthio group and tolylthio group.
 アニオン性の電子供与基Xは、周期律表第15族から選択される配位原子を含む基である。該配位原子として好ましくはリンP又は窒素Nが挙げられ、より好ましくはNが挙げられる。 The anionic electron donating group X is a group containing a coordinating atom selected from Group 15 of the periodic table. As said coordination atom, Preferably phosphorus P or nitrogen N is mentioned, More preferably, N is mentioned.
 架橋基T及びTは、XとE及びEを架橋することができる基であればよく、アリール環上に置換基を有していてもよいアリーレン基が例示される。また、T及びTは同一の基でも異なる基であってもよい。
 前記アリーレン基としては、フェニレン基、ナフチレン基、ピリジレン基、チエニレン基が例示され、好ましくはフェニレン基、ナフチレン基である。また、前記アリーレン基のアリール環上には任意の基が置換されていてもよい。該置換基としてはメチル基、エチル基などのアルキル基;フェニル基、トリル基などのアリール基;フルオロ、クロロ、ブロモなどのハロゲン基;トリメチルシリル基などのシリル基などが例示される。
 前記アリーレン基として、更に好ましくは1,2-フェニレン基が例示される。
The bridging groups T 1 and T 2 may be any groups capable of bridging X and E 1 and E 2 , and arylene groups which may have a substituent on the aryl ring are exemplified. In addition, T 1 and T 2 may be the same or different groups.
Examples of the arylene group include a phenylene group, a naphthylene group, a pyridylene group and a thienylene group, and a phenylene group and a naphthylene group are preferable. In addition, any group may be substituted on the aryl ring of the arylene group. Examples of the substituent include alkyl groups such as methyl and ethyl; aryl groups such as phenyl and tolyl; halogen such as fluoro, chloro and bromo; and silyl such as trimethylsilyl.
More preferably, a 1,2-phenylene group is exemplified as the arylene group.
-第二の重合触媒組成物-
 次に、第二の重合触媒組成物(以下、「第二重合触媒組成物」ともいう)について説明する。第二重合触媒組成物としては、下記式(IX):
-Second polymerization catalyst composition-
Next, the second polymerization catalyst composition (hereinafter, also referred to as “second polymerization catalyst composition”) will be described. As a 2nd polymerization catalyst composition, following formula (IX):
Figure JPOXMLDOC01-appb-C000003
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、R~Rは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。)で表されるメタロセン錯体、及び下記式(X):
Figure JPOXMLDOC01-appb-C000003
(Wherein, M represents a lanthanoid element, scandium or yttrium, CpR each independently represents unsubstituted or substituted indenyl, and R a to R f each independently represent an alkyl group having 1 to 3 carbon atoms Or a hydrogen atom, L represents a neutral Lewis base, and w represents an integer of 0 to 3.), and a metallocene complex represented by the following formula (X):
Figure JPOXMLDOC01-appb-C000004
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。)で表されるメタロセン錯体、並びに下記式(XI):
Figure JPOXMLDOC01-appb-C000004
( Wherein , M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents unsubstituted or substituted indenyl, and X ′ represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group , A silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents an integer of 0 to 3.) a metallocene complex represented by Formula (XI):
Figure JPOXMLDOC01-appb-C000005
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]-は、非配位性アニオンを示す。)で表されるハーフメタロセンカチオン錯体よりなる群から選択される少なくとも1種類の錯体を含む重合触媒組成物が挙げられる。
 第二重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、1つ又は2つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が1つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
 なお、重合反応系において、第二重合触媒組成物に含まれる錯体の濃度は0.1~0.0001mol/Lの範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(Wherein, M represents a lanthanoid element, scandium or yttrium, CpR ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, An amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is shown, L is a neutral Lewis base, w is an integer of 0 to 3, and [B]-is not substituted. And a polymerization catalyst composition comprising at least one complex selected from the group consisting of half metallocene cation complexes represented by
The second polymerization catalyst composition may further contain other components contained in a polymerization catalyst composition containing a conventional metallocene complex, such as a cocatalyst. Here, the metallocene complex is a complex compound in which one or two or more cyclopentadienyls or derivatives thereof are bonded to a central metal, and in particular, only one cyclopentadienyl or a derivative thereof is bonded to the central metal. One metallocene complex may be referred to as a half metallocene complex.
In the polymerization reaction system, the concentration of the complex contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / L.
 上記式(IX)及び(X)で表されるメタロセン錯体において、式中のCpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7-x又はC11-xで示され得る。ここで、Xは0~7又は0~11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることがより好ましく、1~8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、式(IX)及び(X)における2つのCpは、それぞれ互いに同一でも異なっていてもよい。 In the metallocene complexes represented by the above formulas (IX) and (X), Cp R in the formula is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-x Rx or C 9 H 11-x Rx . Here, X is an integer of 0 to 7 or 0 to 11. Further, each R is preferably independently a hydrocarbyl group or a metalloid group. The carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8. Specifically as a hydrocarbyl group, a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably. On the other hand, examples of the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include trimethylsilyl group and the like. Specific examples of the substituted indenyl include 2-phenyl indenyl, 2-methyl indenyl and the like. In addition, two Cp R in Formula (IX) and (X) may mutually be same or different, respectively.
 上記式(XI)で表されるハーフメタロセンカチオン錯体において、式中のCpR’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR’は、C5-xで示される。ここで、Xは0~5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることがより好ましく、1~8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR’として、具体的には、以下のものが例示される。 In the half metallocene cation complex represented by the above formula (XI), Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl is preferable. Is preferred. Cp R ′ having a cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-x R x . Here, X is an integer of 0 to 5. Further, each R is preferably independently a hydrocarbyl group or a metalloid group. The carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8. Specifically as a hydrocarbyl group, a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably. On the other hand, examples of the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include trimethylsilyl group and the like. Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following.
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子、メチル基又はエチル基を示す。)
Figure JPOXMLDOC01-appb-C000006
(Wherein R represents a hydrogen atom, a methyl group or an ethyl group)
 式(XI)において、上記インデニル環を基本骨格とするCpR’は、式(IX)のCpと同様に定義され、好ましい例も同様である。 In the formula (XI), Cp R ′ having the above-mentioned indenyl ring as a basic skeleton is defined in the same manner as Cp R of the formula (IX), and preferred examples are also the same.
 式(XI)において、上記フルオレニル環を基本骨格とするCpR’は、C139-x又はC1317-xで示され得る。ここで、Xは0~9又は0~17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることがより好ましく、1~8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。 In the formula (XI), Cp R ′ having the above-described fluorenyl ring as a basic skeleton can be represented by C 13 H 9-x R x or C 13 H 17-x R x . Here, X is an integer of 0 to 9 or 0 to 17. Further, each R is preferably independently a hydrocarbyl group or a metalloid group. The carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8. Specifically as a hydrocarbyl group, a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably. On the other hand, examples of the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include trimethylsilyl group and the like.
 式(IX)、(X)及び(XI)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 The central metal M in formulas (IX), (X) and (XI) is a lanthanoid element, scandium or yttrium. The lanthanoid element includes 15 elements of atomic numbers 57 to 71, any of which may be used. Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.
 式(IX)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR]を含む。シリルアミド配位子に含まれるR基(式(IX)におけるR~R)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、R~Rのうち少なくとも1つが水素原子であることが好ましい。R~Rのうち少なくとも1つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィン化合物や芳香族ビニル化合物が導入され易くなる。同様の観点から、R~Rのうち少なくとも1つが水素原子であり、R~Rのうち少なくとも1つが水素原子であることがより好ましい。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the formula (IX) contains a silylamide ligand [-N (SiR 3 ) 2 ]. The R groups (R a to R f in the formula (IX)) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Preferably, at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst becomes easy, and the bulk height around silicon becomes low, so introduction of non-conjugated olefin compounds and aromatic vinyl compounds It becomes easy to do. From the same viewpoint, it is more preferable that at least one of R a to R c is a hydrogen atom, and at least one of R d to R f is a hydrogen atom. Furthermore, as an alkyl group, a methyl group is preferable.
 式(X)で表されるメタロセン錯体は、シリル配位子[-SiX’]を含む。シリル配位子[-SiX’]に含まれるX’は、下記で説明される式(XI)のXと同様に定義される基であり、好ましい基も同様である。 The metallocene complex represented by the formula (X) contains a silyl ligand [-SiX ' 3 ]. X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the formula (XI) described below, and preferred groups are also the same.
 式(XI)において、Xは水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基及び炭素数1~20の一価の炭化水素基からなる群より選択される基である。ここで、上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等のアリールオキシ基が挙げられ、これらの中でも、2,6-ジ-tert-ブチルフェノキシ基が好ましい。 In the formula (XI), X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group and a monovalent hydrocarbon group having 1 to 20 carbon atoms. Here, as the above alkoxy group, aliphatic alkoxy groups such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group and the like; phenoxy group, 2,6-di -Tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, Examples thereof include aryloxy groups such as 2-isopropyl-6-neopentylphenoxy group, and among them, 2,6-di-tert-butylphenoxy group is preferable.
 式(XI)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-ネオペンチルチオフェノキシ基、2-イソプロピル-6-ネオペンチルチオフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6-トリイソプロピルチオフェノキシ基が好ましい。 In the formula (XI), as a thiolate group represented by X, aliphatic groups such as thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio sec-butoxy group, thio tert-butoxy group and the like Thiololate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthio group And arylthiolate groups such as phenoxy group, 2-tert-butyl-6-neopentylthiophenoxy group, 2-isopropyl-6-neopentylthiophenoxy group and 2,4,6-triisopropylthiophenoxy group. Among them, 2,4,6-triisopropylthiophenoxy is preferable. Arbitrariness.
 式(XI)において、Xが表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、これらの中でも、ビストリメチルシリルアミノ基が好ましい。 In the formula (XI), as the amino group represented by X, aliphatic amino groups such as dimethylamino, diethylamino and diisopropylamino; phenylamino, 2,6-di-tert-butylphenylamino, 2, 6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6 And arylamino groups such as neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; and bistrialkylsilylamino groups such as bistrimethylsilylamino group. Among them, bistrimethylsilylamino group Is preferred.
 式(XI)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。 Examples of the silyl group represented by X in the formula (XI) include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group and the like. Among these, tris (trimethylsilyl) silyl group is preferable.
 式(XI)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1~20の一価の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分岐鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。 In the formula (XI), the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferable. Moreover, as the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by X, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group , Linear or branched aliphatic hydrocarbon groups such as tert-butyl group, neopentyl group, hexyl group and octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group and naphthyl group; aralkyl groups such as benzyl group Other examples include hydrocarbon groups containing a silicon atom such as trimethylsilylmethyl group and bistrimethylsilylmethyl group. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.
 式(XI)において、Xとしては、ビストリメチルシリルアミノ基又は炭素数1~20の一価の炭化水素基が好ましい。 In the formula (XI), as X, a bistrimethylsilylamino group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable.
 式(XI)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 In the formula (XI), examples of the non-coordinating anion represented by [B]-include a tetravalent boron anion. Specific examples of the tetravalent boron anion include tetraphenylborate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, and tetrakis Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Examples thereof include decahydride-7,8-dicarbaundecaborate and the like, and among these, tetrakis (pentafluorophenyl) borate is preferable.
 上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the above formulas (IX) and (X) and the half metallocene cation complex represented by the above formula (XI) further have 0 to 3, preferably 0 to 1 neutral Lewis bases L. including. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethylether, dimethylaniline, trimethyl phosphine, lithium chloride, neutral olefins, and neutral diolefins. Here, when the above complex contains a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.
 また、上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 Moreover, the metallocene complex represented by the said Formula (IX) and (X), and the half metallocene cation complex represented by the said Formula (XI) may exist as a monomer, a dimer or it. It may exist as the above multimer.
 上記式(IX)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミンの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、式(IX)で表されるメタロセン錯体を得るための反応例を示す。 The metallocene complex represented by the above formula (IX) is, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, a salt of indenyl (eg potassium salt or lithium salt) and a bis (trialkylsilyl) amine (For example, potassium salt or lithium salt). The reaction temperature may be about room temperature, so that it can be produced under mild conditions. The reaction time is optional, but is several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by Formula (IX) is shown.
Figure JPOXMLDOC01-appb-C000007
(式中、X’’はハライドを示す。)
Figure JPOXMLDOC01-appb-C000007
(Wherein, X ′ ′ represents a halide)
 上記式(X)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、式(X)で表されるメタロセン錯体を得るための反応例を示す。 The metallocene complex represented by the above formula (X) is, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, a salt of indenyl (eg potassium salt or lithium salt) and a salt of silyl (eg potassium salt) Or lithium salt) to obtain the compound. The reaction temperature may be about room temperature, so that it can be produced under mild conditions. The reaction time is optional, but is several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by Formula (X) is shown.
Figure JPOXMLDOC01-appb-C000008
(式中、X’’はハライドを示す。)
Figure JPOXMLDOC01-appb-C000008
(Wherein, X ′ ′ represents a halide)
 上記式(XI)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。 The half metallocene cation complex represented by the above formula (XI) can be obtained, for example, by the following reaction.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ここで、式(XII)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。また、式[A][B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]は、非配位性アニオンを示す。 Here, in the compound represented by the formula (XII), M represents a lanthanoid element, scandium or yttrium, and Cp R ′ each independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w is 0 Indicates an integer of ~ 3. Further, the formula [A] + [B] - in the ionic compound represented by, [A] + represents a cation, [B] - is a non-coordinating anion.
 [A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。 Examples of the cation represented by [A] + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as triphenyl carbonium cation and tri (substituted phenyl) carbonium cation, and the like. Specific examples of the tri (substituted phenyl) carbonyl cation include tri (methyl phenyl) ) Carbonium cation etc. are mentioned. Examples of amine cations include trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation and tributyl ammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropyl ammonium cation and dicyclohexyl ammonium cation. Examples of the phosphonium cation include triaryl phosphonium cations such as triphenyl phosphonium cation, tri (methyl phenyl) phosphonium cation and tri (dimethyl phenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cations or carbonium cations are preferable, and N, N-dialkylanilinium cations are particularly preferable.
 上記反応に用いる式[A][B]で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、式[A][B]で表されるイオン性化合物は、メタロセン錯体に対して0.1~10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、式(XI)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、式(XI)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる式(XII)で表される化合物と式[A][B]で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で式(XI)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、式(IX)又は(X)で表されるメタロセン錯体と式[A][B]で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で式(XI)で表されるハーフメタロセンカチオン錯体を形成させることもできる。 Expression used in the above reaction [A] + [B] - As the ionic compound represented by a compound of a combination selected from each non-coordinating anion and cation of the, N, N-dimethylanilinium Tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. Further, the formula [A] + [B] - ionic compounds represented by is preferably added from 0.1 to 10 times mol for the metallocene complex, more preferably it added about 1 times mol. When the half metallocene cation complex represented by the formula (XI) is used for the polymerization reaction, the half metallocene cation complex represented by the formula (XI) may be provided as it is in the polymerization reaction system. formula (XII) compound of formula represented by [a] + [B] used - provides ionic compound represented the separately into the polymerization reaction system is represented by the formula (XI) in the reaction system Half metallocene cation complexes may be formed. Further, the formula (IX) or (X) a metallocene complex of the formula represented by [A] + [B] - by using a combination of an ionic compound represented by the formula in the reaction system (XI) It is also possible to form a half metallocene cation complex represented by
 上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。 The structures of the metallocene complex represented by the above formulas (IX) and (X) and the half metallocene cation complex represented by the above formula (XI) are preferably determined by X-ray structural analysis.
 上記第二重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The cocatalyst which can be used for the second polymerization catalyst composition may be optionally selected from components used as a cocatalyst for a polymerization catalyst composition containing a common metallocene complex. Preferred examples of the cocatalyst include aluminoxane, organic aluminum compounds and the above-mentioned ionic compounds. These co-catalysts may be used alone or in combination of two or more.
 上記アルミノキサンとしては、アルキルアルミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソー・ファインケム(株)製)等が好ましい。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10~1,000程度となるようにすることが好ましく、100程度となるようにすることがより好ましい。 As the above-mentioned aluminoxane, alkylaluminoxane is preferable, and, for example, methylaluminoxane (MAO), modified methylaluminoxane and the like can be mentioned. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. The content of the aluminoxane in the second polymerization catalyst composition may be such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the central metal M of the metallocene complex is about 10 to 1,000. Preferably, it is more preferably about 100.
 一方、上記有機アルミニウム化合物としては、一般式AlRR’R’’(式中、R及びR’はそれぞれ独立して炭素数1~10の一価の炭化水素基、ハロゲン原子、又は水素原子であり、R’’は炭素数1~10の一価の炭化水素基である)で表される有機アルミニウム化合物が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、塩素原子が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1~50倍molであることが好ましく、約10倍molであることがより好ましい。 On the other hand, as the organoaluminum compound, a compound represented by the general formula AlRR′R ′ ′ (wherein R and R ′ each independently represent a monovalent hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, or a hydrogen atom) And R ′ ′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms. As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are illustrated, and a chlorine atom is preferable. Examples of the organic aluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, dialkylaluminum hydride and the like, and among these, trialkylaluminum is preferable. Moreover, as a trialkyl aluminum, a triethyl aluminum, a triisobutyl aluminum etc. are mentioned, for example. The content of the organoaluminum compound in the polymerization catalyst composition is preferably 1 to 50 times mol, and more preferably about 10 times mol, of the metallocene complex.
 更に、上記重合触媒組成物においては、上記式(IX)及び(X)で表されるメタロセン錯体、並びに上記式(XI)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス-1,4結合含有量や得られる重合体の分子量を増大できる。 Furthermore, in the above polymerization catalyst composition, the metallocene complex represented by the above formulas (IX) and (X) and the half metallocene cation complex represented by the above formula (XI) are respectively combined with a suitable cocatalyst. Can increase the cis-1,4 bond content and the molecular weight of the resulting polymer.
-第三の重合触媒組成物-
 次に、第三の重合触媒組成物(以下、「第三重合触媒組成物」ともいう)について説明する。
-Third polymerization catalyst composition-
Next, the third polymerization catalyst composition (hereinafter, also referred to as "third polymerization catalyst composition") will be described.
 第三の重合触媒組成物としては、希土類元素含有化合物として、下記式(XIII):
   RMXQY・・・(XIII)
(式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1~20の一価の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である)で表されるメタロセン系複合触媒を含む重合触媒組成物が挙げられる。
As the third polymerization catalyst composition, as a rare earth element-containing compound, the following formula (XIII):
R a MX b QY b (XIII)
(Wherein R each independently represents unsubstituted or substituted indenyl, R is coordinated to M, M is a lanthanoid element, scandium or yttrium, and each X independently represents 1 to 6 carbon atoms. 20 represents a monovalent hydrocarbon group, X is μ-coordinated to M and Q, Q is an element of Group 13 of the periodic table, and Y is independently 1 to 20 carbon atoms And a polymerization catalyst composition containing a metallocene-based composite catalyst represented by the formula: Y is coordinated to Q, and a and b are 2).
 上記メタロセン系複合触媒の好適例においては、下記式(XIV): In the preferred example of the metallocene-based composite catalyst, the following formula (XIV):
Figure JPOXMLDOC01-appb-C000010
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、R及びRは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該R及びRは、M及びAlにμ配位しており、R及びRは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子を示す)で表されるメタロセン系複合触媒が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(Wherein, M 1 represents a lanthanoid element, scandium or yttrium, CpR each independently represents unsubstituted or substituted indenyl, and R A and R B each independently have 1 to 20 carbon atoms indicates the valency of the hydrocarbon group, the R a and R B are coordinated μ to M 1 and Al, R C and R D are each independently a monovalent hydrocarbon of 1 to 20 carbon atoms And a metallocene-based composite catalyst represented by the group or hydrogen atom.
 上記メタロセン系複合触媒を用いることで、重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、多元共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、多元共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10モル当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5モル当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。 A polymer can be manufactured by using the said metallocene type composite catalyst. Further, by using the above-mentioned metallocene-based composite catalyst, for example, a catalyst which has been composited in advance with an aluminum catalyst, it becomes possible to reduce or eliminate the amount of alkyl aluminum used at the time of multicomponent copolymer synthesis. In addition, when a conventional catalyst system is used, it is necessary to use a large amount of alkylaluminum in multicomponent copolymer synthesis. For example, in the conventional catalyst system, it is necessary to use at least 10 molar equivalents of alkylaluminum with respect to the metal catalyst, but in the case of the above metallocene-based composite catalyst, it is excellent by adding approximately five molar equivalents of alkylaluminum. The catalytic action is exhibited.
 上記メタロセン系複合触媒において、上記式(XIII)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the metallocene-based composite catalyst, the metal M in the above formula (XIII) is a lanthanoid element, scandium or yttrium. The lanthanoid element includes 15 elements of atomic numbers 57 to 71, any of which may be used. Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.
 上記式(XIII)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニルの具体例としては、例えば、1,2,3-トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7-ヘキサメチルインデニル基等が挙げられる。
 上記式(XIII)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
In Formula (XIII) above, each R is independently unsubstituted indenyl or substituted indenyl, and R is coordinated to the metal M. Specific examples of substituted indenyl include, for example, 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group and the like. .
In the above formula (XIII), Q represents a periodic table group 13 element, and specific examples thereof include boron, aluminum, gallium, indium, thallium and the like.
 上記式(XIII)において、Xはそれぞれ独立して炭素数1~20の一価の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
 上記式(XIII)において、Yはそれぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
In the above formula (XIII), X each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and X is μ-coordinated to M and Q. Here, as the monovalent hydrocarbon group having 1 to 20 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. In addition, (mu) coordination is a coordination mode having a crosslinked structure.
In the above formula (XIII), Y each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, and Y is coordinated to Q. Here, as the monovalent hydrocarbon group having 1 to 20 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
 上記式(XIV)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the above formula (XIV), the metal M 1 is a lanthanoid element, scandium or yttrium. The lanthanoid element includes 15 elements of atomic numbers 57 to 71, any of which may be used. Preferred examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.
 上記式(XIV)において、Cpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7-X又はC11-Xで示され得る。ここで、Xは0~7又は0~11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることがより好ましく、1~8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
 置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、式(XIV)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
In the above formula (XIV), Cp R is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7 -X R X or C 9 H 11 -X R X. Here, X is an integer of 0 to 7 or 0 to 11. Further, each R is preferably independently a hydrocarbyl group or a metalloid group. The carbon number of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 8. Specifically as a hydrocarbyl group, a methyl group, an ethyl group, a phenyl group, a benzyl group etc. are mentioned suitably. On the other hand, examples of the metalloid of the metalloid group include germyl Ge, stanyl Sn and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group which the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include trimethylsilyl group and the like.
Specific examples of the substituted indenyl include 2-phenyl indenyl, 2-methyl indenyl and the like. The two Cp R 's in formula (XIV) may be identical to or different from one another.
 上記式(XIV)において、R及びRは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該R及びRは、M及びAlにμ配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
 上記式(XIV)において、R及びRは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子である。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
 なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XV):
In the above formula (XIV), R A and R B each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R A and R B are μ-coordinated to M 1 and Al ing. Here, as the monovalent hydrocarbon group having 1 to 20 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. In addition, (mu) coordination is a coordination mode having a crosslinked structure.
In the above formula (XIV), R C and R D are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Here, as the monovalent hydrocarbon group having 1 to 20 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, a tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
The above metallocene-based composite catalyst may be, for example, a solvent represented by the following formula (XV):
Figure JPOXMLDOC01-appb-C000011
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R~Rは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体を、AlRで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、1H-NMRやX線構造解析により決定することが好ましい。
Figure JPOXMLDOC01-appb-C000011
( Wherein , M 2 represents a lanthanoid element, scandium or yttrium, Cp R each independently represents unsubstituted or substituted indenyl, and R E to R J each independently have 1 to 3 carbon atoms. An organoaluminum compound represented by AlR K R L R M , a metallocene complex represented by an alkyl group or a hydrogen atom, L represents a neutral Lewis base, and w represents an integer of 0 to 3) It is obtained by reacting with The reaction temperature may be about room temperature, so that it can be produced under mild conditions. The reaction time is optional, but is several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene or hexane may be used. The structure of the metallocene composite catalyst is preferably determined by 1 H-NMR or X-ray structural analysis.
 上記式(XV)で表されるメタロセン錯体において、Cpは、無置換インデニル又は置換インデニルであり、上記式(XIV)中のCpと同義である。また、上記式(XV)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XIV)中の金属Mと同義である。 In the metallocene complex represented by the above formula (XV), Cp R is unsubstituted indenyl or substituted indenyl and has the same meaning as Cp R in the above formula (XIV). Further, in the above formula (XV), the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above formula (XIV).
 上記式(XV)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR]を含む。シリルアミド配位子に含まれるR基(R~R基)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、R~Rのうち少なくとも一つが水素原子であることが好ましい。R~Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the above formula (XV) contains a silylamide ligand [-N (SiR 3 ) 2 ]. The R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Preferably, at least one of R E to R J is a hydrogen atom. Making at least one of R E to R J a hydrogen atom facilitates the synthesis of the catalyst. Furthermore, as an alkyl group, a methyl group is preferable.
 上記式(XV)で表されるメタロセン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the above formula (XV) further contains 0 to 3, preferably 0 to 1 neutral Lewis base L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethylether, dimethylaniline, trimethyl phosphine, lithium chloride, neutral olefins, and neutral diolefins. Here, when the above complex contains a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.
 また、上記式(XV)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 Moreover, the metallocene complex represented by the said Formula (XV) may exist as a monomer, and may exist as a dimer or multimer more than that.
 一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRで表され、ここで、R及びRは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子で、Rは炭素数1~20の一価の炭化水素基であり、但し、Rは上記R又はRと同一でも異なっていてもよい。炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 On the other hand, the organoaluminum compound used to form the metallocene-based composite catalyst is represented by AlR K R L R M , where R K and R L are each independently a monovalent carbon having 1 to 20 carbon atoms. R M is a hydrogen atom or a hydrogen atom, R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that R M may be the same as or different from R K or R L above. The monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, dodecyl, tridecyl and tetradecyl And pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
 上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1~50倍molであることが好ましく、約10倍molであることがより好ましい。 Specific examples of the above organoaluminum compounds include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum and tripentylaluminum. Hexylaluminum, Tricyclohexylaluminum, Trioctylaluminum; Diethylaluminum hydride, Di-n-propylaluminum hydride, Di-n-butylaluminum hydride, Diisobutylaluminum hydride, Dihexylaluminum hydride, Diisohexylaluminum hydride , Hydrogenated dioctylaluminum, hydrogenated diisooctylaluminum; ethylaluminum dihydride, n-propylaluminum Muzi hydride, isobutylaluminum dihydride and the like. Among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. Moreover, these organoaluminum compounds can be used singly or in combination of two or more. The amount of the organoaluminum compound used to form the above-mentioned metallocene composite catalyst is preferably 1 to 50 times mol, and more preferably about 10 times mol based on the metallocene complex.
 前記第三重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含んでもよく、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。前記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の重合体中での含有量を任意に制御することが可能となる。 The third polymerization catalyst composition may contain the above metallocene-based composite catalyst and a boron anion, and further, other components contained in the polymerization catalyst composition containing a common metallocene-based catalyst, such as a cocatalyst, etc. Is preferred. In addition, the said metallocene type composite catalyst and a boron anion are put together, and it is also called 2 component catalyst. According to the third polymerization catalyst composition, as in the case of the metallocene composite catalyst, the content of each monomer component in the polymer can be arbitrarily controlled because it further contains a boron anion. It becomes.
 上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 In the third polymerization catalyst composition, specifically, tetravalent boron anions may be mentioned as the boron anions constituting the two-component catalyst. For example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl) Phenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarbaundecaborate And the like, among which tetrakis (pentafluorophenyl) borate is preferred.
 なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンがより好ましい。従って、上記イオン性化合物としては、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1~10倍mol加えることが好ましく、約1倍mol加えることがより好ましい。 In addition, the said boron anion can be used as an ionic compound combined with the cation. Examples of the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as triphenyl carbonium cation and tri (substituted phenyl) carbonium cation, and the like. Specific examples of the tri (substituted phenyl) carbonyl cation include tri (methyl phenyl) ) Carbonium cation etc. are mentioned. Examples of amine cations include trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation and tributyl ammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropyl ammonium cation and dicyclohexyl ammonium cation. Examples of the phosphonium cation include triaryl phosphonium cations such as triphenyl phosphonium cation, tri (methyl phenyl) phosphonium cation and tri (dimethyl phenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cations or carbonium cations are preferable, and N, N-dialkylanilinium cations are more preferable. Therefore, as the above ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenyl carbonium tetrakis (pentafluorophenyl) borate and the like are preferable. The ionic compound comprising a boron anion and a cation is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol, with respect to the metallocene composite catalyst.
 なお、上記式(XV)で表されるメタロセン錯体と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XIV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。 When a boron anion is present in a reaction system in which a metallocene complex represented by the above formula (XV) is reacted with an organic aluminum compound, a metallocene-based composite catalyst of the above formula (XIV) can not be synthesized. Therefore, for preparation of the third polymerization catalyst composition, it is necessary to pre-synthesize the metallocene-based composite catalyst, isolate and purify the metallocene-based composite catalyst, and then combine it with the boron anion.
 上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKRLRMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアルミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソー・ファインケム(株)製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 As a co-catalyst which can be used for the said 3rd polymerization catalyst composition, aluminoxane etc. other than the organoaluminum compound represented by above-mentioned AlRKRLRM are mentioned suitably, for example. As the above-mentioned aluminoxane, alkylaluminoxane is preferable, and, for example, methylaluminoxane (MAO), modified methylaluminoxane and the like can be mentioned. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. These aluminoxanes may be used alone or in combination of two or more.
-第四の重合触媒組成物-
 第四の重合触媒組成物は、希土類元素化合物と、シクロペンタジエン骨格を有する化合物を含む。
-Fourth polymerization catalyst composition-
The fourth polymerization catalyst composition includes a rare earth element compound and a compound having a cyclopentadiene skeleton.
 第四の重合触媒組成物は、
・希土類元素化合物(以下、「(A2)成分」ともいう)と、
・置換又は無置換のシクロペンタジエン、置換又は無置換のインデン(インデニル基を有する化合物)、及び置換又は無置換のフルオレンよりなる群から選択される化合物(以下、「(B2)成分」ともいう)と、
を含むことを必要とする。
 この第四の重合触媒組成物は、
・有機金属化合物(以下、「(C2)成分」ともいう)
・アルミノキサン化合物(以下、「(D2)成分」ともいう)
・ハロゲン化合物(以下、「(E2)成分」ともいう)
・イオン性化合物(以下、「(F2)成分」ともいう)
を更に含んでもよい。これらの中でも、この第四の重合触媒組成物は、上記有機金属化合物((C2)成分)及び上記イオン性化合物((F2)成分)を含むことが好ましい。
The fourth polymerization catalyst composition is
· Rare earth element compounds (hereinafter, also referred to as "component (A2)"),
・ Compounds selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene (hereinafter also referred to as “component (B2)”) When,
Need to contain.
The fourth polymerization catalyst composition is
-Organometallic compounds (hereinafter, also referred to as "(C2) components")
・ Aluminoxane compound (hereinafter, also referred to as “component (D2)”)
・ Halogen compounds (hereinafter, also referred to as “component (E2)”)
・ Ionic compound (hereinafter, also referred to as “(F2) component”)
May be further included. Among these, the fourth polymerization catalyst composition preferably contains the organometallic compound (component (C2)) and the ionic compound (component (F2)).
 第四の重合触媒組成物は、脂肪族炭化水素に高い溶解性を有することが好ましく、脂肪族炭化水素中で均一系溶液となることが好ましい。ここで、脂肪族炭化水素としては、例えば、ヘキサン、シクロヘキサン、ペンタン等が挙げられる。
 そして、第四の重合触媒組成物は、芳香族炭化水素を含まないことが好ましい。ここで、芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 なお、「芳香族炭化水素を含まない」とは、重合触媒組成物に含まれる芳香族炭化水素の割合が0.1質量%未満であることを意味する。
The fourth polymerization catalyst composition preferably has high solubility in aliphatic hydrocarbon, and preferably becomes a homogeneous solution in aliphatic hydrocarbon. Here, examples of the aliphatic hydrocarbon include hexane, cyclohexane, pentane and the like.
And it is preferable that a 4th polymerization catalyst composition does not contain an aromatic hydrocarbon. Here, examples of the aromatic hydrocarbon include benzene, toluene, xylene and the like.
In addition, "an aromatic hydrocarbon is not included" means that the ratio of the aromatic hydrocarbon contained in a polymerization catalyst composition is less than 0.1 mass%.
 (A2)成分は、金属-窒素結合(M-N結合)を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物とすることができる。
 なお、希土類元素含有化合物としては、例えば、スカンジウム、イットリウム、又は原子番号57~71の元素から構成されるランタノイド元素を含有する化合物等が挙げられる。ランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。
 また、ルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。
The component (A2) can be a rare earth element-containing compound having a metal-nitrogen bond (M-N bond) or a reaction product of the rare earth element-containing compound and a Lewis base.
Examples of the rare earth element-containing compound include scandium, yttrium, and compounds containing a lanthanoid element formed of an element having an atomic number of 57 to 71, and the like. Specifically, lanthanoid elements are lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
Further, as the Lewis base, for example, tetrahydrofuran, diethyl ether, dimethyl aniline, trimethyl phosphine, lithium chloride, neutral olefins, neutral diolefins and the like can be mentioned.
 ここで、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有しないことが好ましい。希土類元素含有化合物とルイス塩基との反応物が希土類元素-炭素結合を有さない場合、反応物が安定であり、取り扱いが容易である。
 なお、上記(A2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Here, it is preferable that the rare earth element-containing compound or the reaction product of the rare earth element-containing compound and the Lewis base does not have a bond between the rare earth element and carbon. When the reaction product of the rare earth element-containing compound and the Lewis base does not have a rare earth element-carbon bond, the reaction product is stable and easy to handle.
In addition, the said (A2) component may be used individually by 1 type, and may be used combining 2 or more types.
 ここで、(A2)成分は、式(1)
   M-(AQ)(AQ)(AQ) ・・・(1)
(式中、Mは、スカンジウム、イットリウム、ランタノイド元素からなる群から選択される少なくとも1種の元素を表し;AQ、AQ及びAQは、それぞれ同一であっても異なっていてもよい官能基であり、ここで、Aは、窒素、酸素又は硫黄からなる群から選択される少なくとも1種を表し;但し、少なくとも1つのM-A結合を有する)
で表される化合物であることが好ましい。
 なお、ランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。
 上記化合物によれば、反応系における触媒活性を向上させることができ、反応時間を短くし、反応温度を高くすることが可能となる。
Here, the component (A2) is represented by the formula (1)
M- (AQ 1 ) (AQ 2 ) (AQ 3 ) (1)
(Wherein, M represents at least one element selected from the group consisting of scandium, yttrium, and lanthanoid elements; and AQ 1 , AQ 2 and AQ 3 may be the same or different) A group, wherein A represents at least one member selected from the group consisting of nitrogen, oxygen or sulfur; provided that it has at least one M-A bond)
It is preferable that it is a compound represented by these.
Specifically, lanthanoid elements are lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
According to the above compound, the catalytic activity in the reaction system can be improved, the reaction time can be shortened, and the reaction temperature can be raised.
 上記式(1)中のMとしては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。
 上記式(1)中のAが窒素である場合、AQ、AQ、及びAQ(即ち、NQ、NQ、及びNQ)で表される官能基としては、アミノ基等が挙げられる。そして、この場合、3つのM-N結合を有する。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、特に、脂肪族炭化水素及び芳香族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミノ基が好ましい。上記アミノ基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In particular, gadolinium is preferable as M in the formula (1) from the viewpoint of enhancing the catalyst activity and the reaction controllability.
When A in the above formula (1) is nitrogen, examples of functional groups represented by AQ 1 , AQ 2 and AQ 3 (that is, NQ 1 , NQ 2 and NQ 3 ) include amino groups and the like. Be And, in this case, there are three MN bonds.
Examples of the amino group include aliphatic amino groups such as dimethylamino, diethylamino and diisopropylamino; phenylamino, 2,6-di-tert-butylphenylamino, 2,6-diisopropylphenylamino, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, And arylamino groups such as 2,4,6-tri-tert-butylphenylamino group; and bistrialkylsilylamino groups such as bistrimethylsilylamino group, and in particular, it is soluble in aliphatic hydrocarbons and aromatic hydrocarbons. From the viewpoint, a bistrimethylsilylamino group is preferred. The above amino groups may be used alone or in combination of two or more.
 上記構成によれば、(A2)成分を3つのM-N結合を有する化合物とすることができ、各結合が化学的に等価となり、化合物の構造が安定となるため、取り扱いが容易となる。
 また、上記構成とすれば、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
According to the above configuration, the component (A2) can be made into a compound having three MN bonds, the bonds become chemically equivalent, the structure of the compound becomes stable, and the handling becomes easy.
Moreover, if it is set as the said structure, the catalyst activity in a reaction system can further be improved. Therefore, the reaction time can be further shortened and the reaction temperature further raised.
 Aが酸素である場合、式(1)で表される(A2)成分としては、特に制限されないが、例えば、下記式(1a)
   (RO)M・・・(1a)
で表される希土類アルコラート、
下記式(1b)
   (R-COM・・・(1b)
で表される希土類カルボキシレート等が挙げられる。ここで、上記式(1a)及び(1b)の各式中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
 なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した式(1a)で表される化合物又は式(1b)で表される化合物を好適に使用できる。
When A is oxygen, the component (A2) represented by the formula (1) is not particularly limited, but for example, the following formula (1a)
(RO) 3 M (1a)
Rare earth alcoholate, represented by
Following formula (1b)
(R-CO 2 ) 3 M (1 b)
And rare earth carboxylates represented by and the like. Here, in each of the above formulas (1a) and (1b), R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
In addition, since it is preferable that it does not have a bond with a rare earth element and carbon as (A2) component, the compound represented by the compound represented by Formula (1a) or Formula (1b) mentioned above can be used conveniently. .
 Aが硫黄である場合、式(1)で表される(A2)成分としては、特に制限されないが、例えば、下記式(1c)
   (RS)M・・・(1c)
で表される希土類アルキルチオラート、
下記式(1d)
   (R-CSM・・・(1d)
で表される化合物等が挙げられる。ここで、上記式(1c)及び(1d)の各式中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基を表す。
 なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(1c)又は化合物(1d)を好適に使用できる。
When A is sulfur, the component (A2) represented by the formula (1) is not particularly limited, but, for example, the following formula (1c)
(RS) 3 M (1 c)
A rare earth alkyl thiolate represented by
Following formula (1d)
(R-CS 2 ) 3 M (1 d)
And the like. Here, in each of the above formulas (1c) and (1d), R may be the same or different, and represents an alkyl group having 1 to 10 carbon atoms.
In addition, since it is preferable that it does not have a bond with a rare earth element and carbon as (A2) component, the compound (1c) or compound (1d) mentioned above can be used suitably.
 (B2)成分は、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン(インデニル基を有する化合物)、及び置換又は無置換のフルオレンよりなる群から選択される化合物である。
 上記(B2)成分の化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The component (B2) is a compound selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene.
The compounds of the component (B2) may be used alone or in combination of two or more.
 置換シクロペンタジエンとしては、例えば、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル-テトラメチルシクロペンタジエン等が挙げられる。
 置換又は無置換のインデンとしては、例えば、インデン、2-フェニル-1H-インデン、3-ベンジル-1H-インデン、3-メチル-2-フェニル-1H-インデン、3-ベンジル-2-フェニル-1H-インデン、1-ベンジル-1H-インデン等が挙げられ、特に、分子量分布を小さくする観点から、3-ベンジル-1H-インデン、1-ベンジル-1H-インデンが好ましい。
 置換フルオレンとしては、例えば、トリメチルシリルフルオレン、イソプロピルフルオレン等が挙げられる。
Examples of the substituted cyclopentadiene include pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene and the like.
As substituted or unsubstituted indene, for example, indene, 2-phenyl-1H-indene, 3-benzyl-1H-indene, 3-methyl-2-phenyl-1H-indene, 3-benzyl-2-phenyl-1H -Indene, 1-benzyl-1H-indene and the like, and in particular, 3-benzyl-1H-indene and 1-benzyl-1H-indene are preferable from the viewpoint of reducing the molecular weight distribution.
Examples of the substituted fluorene include trimethylsilyl fluorene, isopropyl fluorene and the like.
 上記構成によれば、シクロペンタジエン骨格を有する化合物が具える共役電子を増加させることができ、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。 According to the above-mentioned configuration, it is possible to increase the number of conjugated electrons contained in the compound having a cyclopentadiene skeleton and to further improve the catalytic activity in the reaction system. Therefore, the reaction time can be further shortened and the reaction temperature further raised.
 有機金属化合物((C2)成分)は、式(2):
   YR  ・・・(2)
(式中、Yは、周期律表の第1族、第2族、第12族及び第13族の元素からなる群から選択される金属元素であり、R4及びR5は炭素数1~10の一価の炭化水素基又は水素原子であり、R6は炭素数1~10の一価の炭化水素基であり、但し、R、R及びRはそれぞれ互いに同一又は異なっていてもよく、また、Yが第1族の金属元素である場合には、aは1であり且つb及びcは0であり、Yが第2族又は第12族の金属元素である場合には、a及びbは1であり且つcは0であり、Yが第13族の金属元素である場合には、a,b及びcは1である)で表される化合物である。
 ここで、触媒活性を高める観点から、式(2)において、R、R及びRは少なくとも1つが異なっていることが好ましい。
The organometallic compound (component (C2)) has a formula (2):
YR 4 a R 5 b R 6 c (2)
(Wherein Y is a metal element selected from the group consisting of elements of Groups 1, 2, 12, and 13 of the periodic table, and R 4 and R 5 each have 1 to 10 carbon atoms) R 6 is a monovalent hydrocarbon group or a hydrogen atom, and R 6 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, provided that R 4 , R 5 and R 6 may be identical to or different from one another, Further, when Y is a metal element of Group 1, a is 1 and b and c are 0, and when Y is a metal element of Group 2 or 12, a and b is 1 and c is 0, and when Y is a metal element of Group 13, a, b and c are 1.
Here, from the viewpoint of enhancing the catalyst activity, it is preferable that in the formula (2), at least one of R 1 , R 2 and R 3 is different.
 詳細には、(C2)成分は、式(3):
   AlR ・・・(3)
(式中、R及びRは、炭素数1~10の一価の炭化水素基又は水素原子であり、Rは、炭素数1~10の一価の炭化水素基であり、R、R及びRは、同一であっても異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。
 上記有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましく、水素化ジイソブチルアルミニウムがより好ましい。
 上記有機アルミニウム化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specifically, the (C2) component is represented by the formula (3):
AlR 7 R 8 R 9 (3)
(Wherein, R 7 and R 8 each represent a monovalent hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 9 represents a monovalent hydrocarbon group having one to 10 carbon atoms, R 7 , And R 8 and R 9 may be the same or different)).
Examples of the organoaluminum compounds include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum and trihexyl Aluminum, tricyclohexylaluminum, trioctylaluminum; diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, dihexylaluminum hydride, diisohexylaluminum hydride, Hydrogenated dioctylaluminum, hydrogenated diisooctylaluminum; ethylaluminum dihydrate, n-propylaluminum Dihydride, include isobutyl aluminum dihydride, etc., triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, preferably diisobutylaluminum hydride, diisobutylaluminum hydride are more preferred.
The organic aluminum compounds may be used alone or in combination of two or more.
 アルミノキサン化合物((D2)成分)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物である。
 (D2)成分を用いることによって、重合反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
The aluminoxane compound (component (D2)) is a compound obtained by bringing the organoaluminum compound and the condensing agent into contact with each other.
By using the component (D2), the catalytic activity in the polymerization reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature further raised.
 ここで、有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、及びその混合物等が挙げられ、特に、トリメチルアルミニウム、トリメチルアルミニウムとトリブチルアルミニウムとの混合物が好ましい。
 縮合剤としては、例えば、水等が挙げられる。
Here, examples of the organoaluminum compound include trialkylaluminum such as trimethylaluminum, triethylaluminum and triisobutylaluminum, and a mixture thereof, and in particular, a mixture of trimethylaluminum, trimethylaluminum and tributylaluminum is preferable.
As a condensing agent, water etc. are mentioned, for example.
 (D2)成分としては、例えば、式(4):
   -(Al(R10)O)- ・・・(4)
(式中、R10は、炭素数1~10の一価の炭化水素基であり、ここで、炭化水素基の一部はハロゲン及び/又はアルコキシ基で置換されてもよく;R10は、繰り返し単位間で同一であっても異なっていてもよく;nは5以上である)で表されるアルミノキサンを挙げることができる。
As the component (D2), for example, the formula (4):
-(Al (R 10 ) O) n- (4)
(Wherein, R 10 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, wherein part of the hydrocarbon group may be substituted with a halogen and / or an alkoxy group; R 10 is a repeating group Aluminoxanes represented by units which may be the same or different; n is 5 or more can be mentioned.
 上記アルミノキサンの分子構造は、直鎖状であっても環状であってもよい。
 nは10以上であることが好ましい。
 R10の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、特に、メチル基が好ましい。上記炭化水素基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。Rの炭化水素基としては、メチル基とイソブチル基との組み合わせが好ましい。
The molecular structure of the aluminoxane may be linear or cyclic.
n is preferably 10 or more.
Examples of the hydrocarbon group of R 10 include a methyl group, an ethyl group, a propyl group and an isobutyl group, and a methyl group is particularly preferable. The above hydrocarbon groups may be used alone or in combination of two or more. As a hydrocarbon group of R, the combination of a methyl group and an isobutyl group is preferable.
 上記アルミノキサンは、脂肪族炭化水素に高い溶解性を有することが好ましく、芳香族炭化水素に低い溶解性を有することが好ましい。例えば、ヘキサン溶液として市販されているアルミノキサンが好ましい。
 ここで、脂肪族炭化水素とは、ヘキサン、シクロヘキサン等が挙げられる。
The aluminoxane preferably has high solubility in aliphatic hydrocarbon, and preferably has low solubility in aromatic hydrocarbon. For example, aluminoxane marketed as a hexane solution is preferred.
Here, as the aliphatic hydrocarbon, hexane, cyclohexane and the like can be mentioned.
 (D2)成分は、特に、式(5):
   -(Al(CH(i-CO)- ・・・(5)
(式中、x+yは1であり;mは5以上である)で表される修飾アルミノキサン(以下、「TMAO」ともいう)としてよい。TMAOとしては、例えば、東ソー・ファインケム(株)製の製品名:TMAO341が挙げられる。
The component (D2) is particularly preferably a compound of formula (5):
-(Al (CH 3 ) x (i-C 4 H 9 ) y O) m- (5)
(Wherein, x + y is 1; m is 5 or more) may be a modified aluminoxane (hereinafter also referred to as "TMAO"). As TMAO, for example, a product name: TMAO341 manufactured by Tosoh Finechem Co., Ltd. can be mentioned.
 また、(D2)成分は、特に、式(6):
   -(Al(CH0.7(i-C0.3O)- ・・・(6)
(式中、kは5以上である)で表される修飾アルミノキサン(以下、「MMAO」ともいう)としてよい。MMAOとしては、例えば、東ソー・ファインケム(株)製の製品名:MMAO-3Aが挙げられる。
Further, the component (D2) is particularly preferably represented by the formula (6):
-(Al (CH 3 ) 0.7 (i-C 4 H 9 ) 0.3 O) k- (6)
It may be a modified aluminoxane represented by (wherein k is 5 or more) (hereinafter also referred to as "MMAO"). Examples of MMAO include product name: MMAO-3A manufactured by Tosoh Finechem Co., Ltd.
 更に、(D2)成分は、特に、式(7):
   -[(CH)AlO]- ・・・(7)
(式中、iは5以上である)で表される修飾アルミノキサン(以下、「PMAO」ともいう)としてよい。PMAOとしては、例えば、東ソー・ファインケム(株)製の製品名:TMAO-211が挙げられる。
Furthermore, the component (D2) is particularly preferably a compound of formula (7):
-[(CH 3 ) AlO] i ---(7)
(Wherein, i is 5 or more) may be a modified aluminoxane (hereinafter also referred to as “PMAO”). As PMAO, for example, product name: TMAO-211 manufactured by Tosoh Finechem Co., Ltd. can be mentioned.
 (D2)成分は、触媒活性を向上させる効果を高める観点から、上記MMAO、TMAO、PMAOのうち、MMAO又はTMAOであることが好ましく、触媒活性を向上させる効果を更に高める観点から、TMAOであることがより好ましい。 The component (D2) is preferably MMAO or TMAO among the above MMAO, TMAO and PMAO from the viewpoint of enhancing the effect of enhancing the catalyst activity, and from the viewpoint of further enhancing the effect of enhancing the catalyst activity, it is TMAO. Is more preferred.
 ハロゲン化合物((E2)成分)は、ルイス酸であるハロゲン含有化合物(以下、「(E2-1)成分」ともいう)、金属ハロゲン化物とルイス塩基との錯化合物(以下、「(E2-2)成分」ともいう)、及び活性ハロゲンを含む有機化合物(以下、「(E2-3)成分」ともいう)からなる群から選択される少なくとも1種の化合物である。 The halogen compound (component (E2)) is a halogen-containing compound which is a Lewis acid (hereinafter also referred to as “component (E2-1)”), a complex compound of a metal halide and a Lewis base (hereinafter referred to as “(E2-2) And at least one compound selected from the group consisting of an organic compound containing an active halogen (hereinafter also referred to as “component (E2-3)”).
 これらの化合物は、(A2)成分、即ち、M-N結合を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物と反応して、カチオン性遷移金属化合物、ハロゲン化遷移金属化合物、及び/又は遷移金属中心において電子が不足した状態の遷移金属化合物を生成する。
 (E2)成分を用いることによって、共役ジエン重合体のシス-1,4-結合含有量を向上させることができる。
These compounds react with the component (A2), that is, a rare earth element-containing compound having a M—N bond or a reaction product of the rare earth element-containing compound and a Lewis base to form a cationic transition metal compound or a halogenated transition. A metal compound and / or a transition metal compound in a state of electron deficiency in the transition metal center is formed.
By using the component (E2), the cis-1,4-bond content of the conjugated diene polymer can be improved.
 (E2-1)成分としては、例えば、第3族、第4族、第5族、第6族、第8族、第13族、第14族又は第15族の元素を含むハロゲン含有化合物等が挙げられ、特に、アルミニウムのハロゲン化物又は有機金属のハロゲン化物が好ましい。
 ルイス酸であるハロゲン含有化合物としては、例えば、四塩化チタン、六塩化タングステン、トリ(ペンタフルオロフェニル)ボレート、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、アルミニウムトリブロマイド、トリ(ペンタフルオロフェニル)アルミニウム、ジブチル錫ジクロライド、四塩化錫、三塩化リン、五塩化リン、三塩化アンチモン、五塩化アンチモン等が挙げられ、特に、エチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイドが好ましい。
 ハロゲンとしては、塩素又は臭素が好ましい。
 上記ルイス酸であるハロゲン含有化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the component (E2-1), for example, a halogen-containing compound containing an element of Group 3, Group 4, Group 5, Group 6, Group 8, Group 13, Group 14 or Group 15 or the like And particularly preferred are halides of aluminum or halides of organometallics.
As a halogen-containing compound which is a Lewis acid, for example, titanium tetrachloride, tungsten hexachloride, tri (pentafluorophenyl) borate, methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide , Butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride, diethylaluminum bromide, diethylaluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, aluminum To Bromide, tri (pentafluorophenyl) aluminum, dibutyltin dichloride, tin tetrachloride, phosphorus trichloride, phosphorus pentachloride, antimony trichloride, antimony pentachloride and the like can be mentioned, and in particular, ethylaluminum dichloride, ethylaluminum dibromide, diethyl Aluminum chloride, diethylaluminum bromide, ethylaluminum sesquichloride and ethylaluminum sesquibromide are preferred.
As the halogen, chlorine or bromine is preferable.
The halogen-containing compounds which are the above-mentioned Lewis acids may be used alone or in combination of two or more.
 (E2-2)成分に用いられる金属ハロゲン化物としては、例えば、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、臭化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化亜鉛、塩化マンガン、塩化銅が好ましく、塩化マグネシウム、塩化亜鉛、塩化マンガン、塩化銅がより好ましい。
 (E2-2)成分に用いられるルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコールが好ましい。
 例えば、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、特に、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 上記ルイス塩基のモル数は、上記金属ハロゲン化物1モルに対して、好ましくは0.01~30モル、より好ましくは0.5~10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
Examples of the metal halide used for the component (E2-2) include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, calcium iodide, Barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, manganese bromide Manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper bromide, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Preferred are magnesium chloride, calcium chloride, barium chloride, zinc chloride, manganese chloride and copper chloride, magnesium chloride and chloride Lead, manganese chloride, copper chloride are more preferable.
The Lewis base used for the component (E2-2) is preferably a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound or an alcohol.
For example, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethyl phosphine, tributyl phosphine, triphenyl phosphine, diethyl phosphino ethane, diphenyl phosphino ethane, acetylacetone, benzoylacetone, propionylacetone , Valerylacetone, ethylacetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, benzoic acid Acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethylhexyl alcohol, oleyl acid Coal, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, lauryl alcohol etc., and in particular, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2-ethylhexyl alcohol 1-decanol and lauryl alcohol are preferred.
The number of moles of the Lewis base is preferably 0.01 to 30 moles, more preferably 0.5 to 10 moles with respect to 1 mole of the metal halide. The reaction with this Lewis base can be used to reduce the metal remaining in the polymer.
 (E2-3)成分としては、例えば、ベンジルクロライド等が挙げられる。 Examples of the component (E2-3) include benzyl chloride and the like.
 イオン性化合物((F2)成分)は、第一の重合触媒組成物について既述したイオン性化合物(B1-1)と同義である。 The ionic compound (component (F2)) has the same meaning as the ionic compound (B1-1) described above for the first polymerization catalyst composition.
 以下、第四の重合触媒組成物の各成分間の質量割合について記載する。
 (B2)成分(置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び置換又は無置換のフルオレンよりなる群から選択される化合物)の(A2)成分(希土類元素化合物)に対するモルにおける割合は、触媒活性を十分に得る観点から、0超であることが好ましく、0.5以上であることがより好ましく、1以上であることが更に好ましく、触媒活性の低下を抑制する観点から、3以下であることが好ましく、2.5以下であることがより好ましく、2.2以下であることが更に好ましい。
Hereinafter, the mass ratio between the respective components of the fourth polymerization catalyst composition will be described.
Ratio in molar with respect to the component (A2) (rare earth element compound) of the component (B2) (a compound selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene) Is preferably more than 0, more preferably 0.5 or more, and still more preferably 1 or more from the viewpoint of sufficiently obtaining catalytic activity, and from the viewpoint of suppressing a decrease in catalytic activity, 3 It is preferable that it is the following, It is more preferable that it is 2.5 or less, It is still more preferable that it is 2.2 or less.
 (C2)成分(有機金属化合物)の(A2)成分に対するモルにおける割合は、反応系における触媒活性を向上させる観点から、1以上であることが好ましく、5以上であることがより好ましく、反応系における触媒活性の低下を抑制する観点から、50以下であることが好ましく、30以下であることがより好ましく、具体的には、約10であることが更に好ましい。 From the viewpoint of improving the catalytic activity in the reaction system, the ratio of the (C2) component (organic metal compound) to the (A2) component is preferably 1 or more, more preferably 5 or more, and the reaction system From the viewpoint of suppressing a decrease in catalytic activity in the above, it is preferably 50 or less, more preferably 30 or less, and specifically about 10 or less.
 (D2)成分(アルミノキサン)中のアルミニウムの、(A2)成分中の希土類元素に対するモルにおける割合は、反応系における触媒活性を向上させる観点から、10以上であることが好ましく、100以上であることがより好ましく、反応系における触媒活性の低下を抑制する観点から、1,000以下であることが好ましく、800以下であることがより好ましい。 The molar ratio of aluminum in the component (aluminoxane) to the rare earth element in the component (A2) is preferably 10 or more, and preferably 100 or more, from the viewpoint of improving the catalytic activity in the reaction system. Is more preferably 1,000 or less, and more preferably 800 or less from the viewpoint of suppressing a decrease in catalytic activity in the reaction system.
 (E2)成分(ハロゲン化合物)及び(F2)成分(イオン性化合物)の合計の(A2)成分に対するモルにおける割合は、触媒活性を向上させる観点から、0以上であることが好ましく、0.5以上であることがより好ましく、1.0以上であることが更に好ましく、(E2)成分及び(F2)成分の溶解性を保持し、触媒活性の低下を抑制する観点から、20以下であることが好ましく、10以下であることがより好ましい。
 そのため、上記範囲によれば、共役ジエン重合体のシス-1,4-結合含有量を向上させる効果を高めることができる。
From the viewpoint of improving the catalyst activity, the ratio of the (E2) component (halogen compound) and the (F2) component (ionic compound) in mole to the (A2) component is preferably 0 or more from the viewpoint of improving the catalyst activity 0.5 From the viewpoint of maintaining the solubility of the component (E2) and the component (F2) and suppressing the decrease of the catalytic activity, it is more preferably 20 or less. Is preferable, and 10 or less is more preferable.
Therefore, according to the above range, the effect of improving the cis-1,4-bond content of the conjugated diene polymer can be enhanced.
<充填剤>
 本実施形態のゴム組成物は、充填剤を含有することができる。充填剤を含有することで、ゴム組成物の耐久性を向上させることができる。上記充填剤としては、特に制限されず、例えば、カーボンブラック、シリカ等が挙げられる。
 カーボンブラックとしては、特に制限されず、例えば、SAF、ISAF、HAF、FF、FEF、GPF、SRF、CF、FT、MTグレードのカーボンブラックが挙げられる。カーボンブラックは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。シリカとしては、特に制限されず、例えば、湿式シリカ、乾式シリカ、コロイダルシリカ等が挙げられる。そして、本実施形態で用いる充填剤は、これらの中でも、カーボンブラックであることが好ましく、SAF、ISAF、HAF、FEFグレードのカーボンブラックであることがより好ましい。
 但し、本実施形態のゴム組成物は、充填剤を含有しなくてもよい。
<Filler>
The rubber composition of the present embodiment can contain a filler. By containing the filler, the durability of the rubber composition can be improved. The filler is not particularly limited, and examples thereof include carbon black and silica.
The carbon black is not particularly limited, and examples thereof include carbon black of SAF, ISAF, HAF, FF, FEF, GPF, SRF, CF, FT, and MT grade. One type of carbon black may be used alone, or two or more types may be used in combination. The silica is not particularly limited, and examples thereof include wet silica, dry silica, colloidal silica and the like. Among these, the filler used in the present embodiment is preferably carbon black, and more preferably SAF, ISAF, HAF, or FEF grade carbon black.
However, the rubber composition of the present embodiment may not contain a filler.
 また、本実施形態のゴム組成物は、上記充填剤を、ゴム成分100質量部に対して90質量部以下の割合で含有することができる。充填剤の含有量が90質量部を超えると、振動減衰性が大幅に悪化する虞がある。また、ゴム組成物における充填剤の含有量は、振動減衰性の悪化を十分に抑制する観点から、ゴム成分100質量部に対して70質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることが更に好ましい。 In addition, the rubber composition of the present embodiment can contain the filler at a ratio of 90 parts by mass or less with respect to 100 parts by mass of the rubber component. When the content of the filler exceeds 90 parts by mass, the vibration damping property may be significantly deteriorated. In addition, the content of the filler in the rubber composition is preferably 70 parts by mass or less and 50 parts by mass or less with respect to 100 parts by mass of the rubber component from the viewpoint of sufficiently suppressing the deterioration of the vibration damping property. It is more preferable that the amount is 30 parts by mass or less.
<軟化剤及び液状ゴム>
 本実施形態のゴム組成物は、軟化剤及び/又は液状ゴムを含有することができる。軟化剤及び/又は液状ゴムを含有することで、振動減衰性を効果的に向上させることができる。なお、本明細書において「液状ゴム」とは、24℃において液状を呈するゴムを指す。また、本明細書において「液状ゴム」は、上述のゴム成分に含まれないものとする。
<Softener and liquid rubber>
The rubber composition of the present embodiment can contain a softener and / or a liquid rubber. By containing the softener and / or the liquid rubber, the vibration damping property can be effectively improved. In addition, in this specification, "liquid rubber" refers to rubber which exhibits a liquid state at 24 degreeC. Further, in the present specification, "liquid rubber" is not included in the above-mentioned rubber component.
 軟化剤としては、ナフテン系オイル、パラフィン系オイル、芳香族系オイル等が挙げられる。これらの中でも、軟化剤としては、芳香族系オイルを用いることが好ましい。軟化剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 液状ゴムとしては、特に限定されないが、水素添加イソプレンゴム、水素添加ブタジエンゴム、液状エチレン・プロピレン・ジエン共重合体、液状エチレン・プロピレン共重合体、液状ブタジエン・スチレン・ランダム共重合体等が挙げられる。これらの中でも、液状ゴムとしては、液状ブタジエン・スチレン・ランダム共重合体を用いることが好ましい。液状ゴムは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the softener include naphthenic oils, paraffinic oils and aromatic oils. Among these, as a softener, it is preferable to use an aromatic oil. A softening agent may be used individually by 1 type, and may be used in combination of 2 or more type.
Examples of the liquid rubber include, but are not limited to, hydrogenated isoprene rubber, hydrogenated butadiene rubber, liquid ethylene / propylene / diene copolymer, liquid ethylene / propylene copolymer, liquid butadiene / styrene / random copolymer and the like. Be Among these, as the liquid rubber, it is preferable to use a liquid butadiene / styrene / random copolymer. The liquid rubber may be used singly or in combination of two or more.
 本実施形態のゴム組成物は、軟化剤及び液状ゴムから選択される少なくとも1種を、ゴム成分100質量部に対して20質量部以上含有することが好ましい。上記成分を20質量部以上含有することにより、振動減衰性を向上させる効果をより十分に得ることができる。 The rubber composition of the present embodiment preferably contains 20 parts by mass or more of at least one selected from a softener and a liquid rubber with respect to 100 parts by mass of the rubber component. By containing 20 parts by mass or more of the above components, the effect of improving the vibration damping property can be obtained more sufficiently.
<その他の成分>
 また、本実施形態のゴム組成物は、本発明の効果を損なわない範囲で、必要に応じて、ゴム工業で通常使用されている架橋剤(硫黄等の加硫剤を含む)、架橋促進剤(加硫促進剤)、老化防止剤、亜鉛華(ZnO)、ワックス類、酸化防止剤、発泡剤、可塑剤、滑剤、粘着付与剤、石油系樹脂、紫外線吸収剤、分散剤、相溶化剤、均質化剤等の成分を、適宜含有することができる。
<Other ingredients>
In addition, the rubber composition of the present embodiment is a crosslinking agent (including a vulcanizing agent such as sulfur) which is usually used in the rubber industry, if necessary, as long as the effects of the present invention are not impaired. (Vulcanization accelerator), anti-aging agent, zinc white (ZnO), waxes, antioxidant, foaming agent, plasticizer, lubricant, tackifier, petroleum resin, ultraviolet absorber, dispersant, compatibilizer And components such as a homogenizing agent can be suitably contained.
<防振ゴム組成物の製造>
 本実施形態のゴム組成物の製造方法としては、特に制限されず、例えば、常法に従って上述した各成分を配合して混練することにより、本実施形態のゴム組成物を得ることができる。なお、配合及び混練に際しては、全ての成分を一度に配合して混練してもよく、2段階又は3段階に分けて各成分を配合して混練してもよい。なお、混練に際しては、ロール、インターナルミキサー、バンバリーローター等の混練機を用いることができる。更に、ゴム組成物をシート状や帯状等に成形する際には、押出成形機、プレス機等の公知の成形機を用いることができる。
<Production of vibration-proof rubber composition>
It does not restrict | limit especially as a manufacturing method of the rubber composition of this embodiment, For example, the rubber composition of this embodiment can be obtained by mix | blending and knead | mixing each component mentioned above according to a conventional method. In addition, at the time of compounding and kneading, all the components may be compounded and kneaded at once, or each component may be compounded and kneaded in two or three stages. In addition, in the case of kneading | mixing, kneaders, such as a roll, an internal mixer, and a Banbury rotor, can be used. Furthermore, when forming a rubber composition into a sheet form, strip shape, etc., well-known molding machines, such as an extrusion molding machine and a press, can be used.
 また、本実施形態のゴム組成物は、架橋して製造してもよい。架橋条件としては、特に制限されず、通常は140~180℃の温度、及び5~120分間の時間を採用することができる。 Further, the rubber composition of the present embodiment may be produced by crosslinking. The crosslinking conditions are not particularly limited, and usually, a temperature of 140 to 180 ° C. and a time of 5 to 120 minutes can be employed.
(防振ゴム)
 本発明の一実施形態に係る防振ゴム(以下、「本実施形態の防振ゴム」と称することがある。)は、上記の本実施形態のゴム組成物を含むことを特徴とする。本実施形態の防振ゴムは、上述したゴム組成物を用いているため、耐久性と振動減衰性とに優れる。そして、本実施形態の防振ゴムは、例えば、要求性能が一段と厳しい車両用、特に自動車用防振部材に好ましく用いることができる。自動車用防振部材としては、例えば、エンジンマウント、トーショナルダンパー、ラバーブッシュ、ストラットマウント、バウンドバンパー、ヘルパーラバー、メンバマウント、スタビブッシュ、空気ばね、センターサポート、ゴム入りプロペラシャフト、防振レバー、コンパニヨンダンパー、ダンピングラバー、アイドラーアームブッシュ、ステアリングコラムブッシュ、カップリングラバー、ボデーマウント、マフラーサポート、ダイナミックダンパー、パイピングラバー等が挙げられる。本実施形態の防振ゴムは、これらの中でも特に、エンジンマウントに好ましく用いることができる。
(Anti-vibration rubber)
The anti-vibration rubber according to an embodiment of the present invention (hereinafter sometimes referred to as "the anti-vibration rubber according to the present embodiment") is characterized by including the rubber composition according to the above-mentioned present embodiment. The anti-vibration rubber according to the present embodiment is excellent in durability and vibration damping property because the rubber composition described above is used. And the vibration-proof rubber of this embodiment can be preferably used, for example, as a vibration-proof member for vehicles, especially for automobiles, for which the required performance is more severe. For example, an engine mount, a torsional damper, a rubber bush, a strut mount, a bound bumper, a helper rubber, a member mount, a stabilizer bush, an air spring, a center support, a rubberized propeller shaft, an antivibration lever. These include compound dampers, damping rubbers, idler arm bushes, steering column bushes, coupling rubbers, body mounts, muffler supports, dynamic dampers and piping rubbers. Among these, the anti-vibration rubber of the present embodiment can be preferably used for an engine mount.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.
(共重合体Aの合成)
 十分に乾燥した1000mLの耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン80gと、トルエン600mLとを加えた。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.25mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.275mmol及びジイソブチルアルミニウムハイドライド1.4mmolを仕込み、トルエン40mLを加えて触媒溶液を得た。
 得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、70℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを、圧力1.5MPaで投入し、更に、共役ジエン化合物としての1,3-ブタジエン5gを含むトルエン溶液50mLを3時間かけて投入し、70℃で計4時間、共重合を行った。
 共重合後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体Aを得た。
(Synthesis of copolymer A)
In a fully dried 1000 mL pressure-resistant stainless steel reactor, 80 g of styrene as an aromatic vinyl compound and 600 mL of toluene were added. On the other hand, mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t -Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.25mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5) 4] 0 .275 mmol and 1.4 mmol of diisobutylaluminum hydride were charged, and 40 mL of toluene was added to obtain a catalyst solution.
The obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C. Next, ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and further 50 mL of a toluene solution containing 5 g of 1,3-butadiene as a conjugated diene compound is loaded over 3 hours And copolymerized at 70 ° C. for a total of 4 hours.
After the copolymerization, 1 mL of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in 5% by mass of an isopropanol solution is added to the pressure resistant stainless steel reactor to stop the reaction, The copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain copolymer A.
(共重合体Bの合成)
 十分に乾燥した1000mLの耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン180gと、トルエン600mLとを加えた。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.25mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.275mmol及びジイソブチルアルミニウムハイドライド1.1mmolを仕込み、トルエン40mLを加えて触媒溶液を得た。
 得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、70℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを、圧力1.5MPaで投入し、更に、共役ジエン化合物としての1,3-ブタジエン15gを含むトルエン溶液80mLを8時間かけて投入し、70℃で計8.5時間、共重合を行った。
 共重合後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体Bを得た。
(Synthesis of copolymer B)
In a sufficiently dried 1000 mL pressure-resistant stainless steel reactor, 180 g of styrene as an aromatic vinyl compound and 600 mL of toluene were added. On the other hand, mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t -Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.25mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5) 4] 0 .275 mmol and 1.1 mmol of diisobutylaluminum hydride were charged, and 40 mL of toluene was added to obtain a catalyst solution.
The obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C. Next, ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and 80 mL of a toluene solution containing 15 g of 1,3-butadiene as a conjugated diene compound is further loaded over 8 hours And copolymerized at 70 ° C. for a total of 8.5 hours.
After the copolymerization, 1 mL of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in 5% by mass of an isopropanol solution is added to the pressure resistant stainless steel reactor to stop the reaction, The copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain copolymer B.
(共重合体Cの合成)
 十分に乾燥した1000mLの耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン160gと、トルエン400mLとを加えた。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.17mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.187mmol及びジイソブチルアルミニウムハイドライド1.4mmolを仕込み、トルエン40mLを加えて触媒溶液を得た。
 得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、70℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを、圧力1.5MPaで投入し、更に、共役ジエン化合物としての1,3-ブタジエン30gを含むトルエン溶液150mLを30分間かけて投入し、70℃で6時間、共重合を行った。その後、この耐圧ステンレス反応器に、共役ジエン化合物としての1,3-ブタジエン30gを含むトルエン溶液150mLを30分間かけて更に投入し、70℃で1時間、共重合を行った。
 共重合後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体Cを得た。
(Synthesis of copolymer C)
In a sufficiently dried 1000 mL pressure-resistant stainless steel reactor, 160 g of styrene as an aromatic vinyl compound and 400 mL of toluene were added. On the other hand, mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t -Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.17mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5) 4] 0 . 187 mmol and 1.4 mmol of diisobutylaluminum hydride were charged, and 40 mL of toluene was added to obtain a catalyst solution.
The obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C. Next, ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and further 150 mL of a toluene solution containing 30 g of 1,3-butadiene as a conjugated diene compound is loaded over 30 minutes And copolymerized at 70 ° C. for 6 hours. Thereafter, 150 mL of a toluene solution containing 30 g of 1,3-butadiene as a conjugated diene compound was further added to the pressure resistant stainless steel reactor over 30 minutes, and copolymerization was performed at 70 ° C. for 1 hour.
After the copolymerization, 1 mL of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in 5% by mass of an isopropanol solution is added to the pressure resistant stainless steel reactor to stop the reaction, The copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain copolymer C.
(共重合体Dの合成)
 十分に乾燥した1000mLの耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン240gと、トルエン600mLとを加えた。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.5mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.55mmol及びジイソブチルアルミニウムハイドライド1.7mmolを仕込み、トルエン70mLを加えて触媒溶液を得た。
 得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、80℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを、圧力1.4MPaで投入し、更に、共役ジエン化合物としての1,3-ブタジエン5gを含むトルエン溶液60mLを6時間かけて投入し、80℃で計6.5時間、共重合を行った。
 共重合後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体Dを得た。
(Synthesis of copolymer D)
In a sufficiently dried 1000 mL pressure resistant stainless steel reactor, 240 g of styrene as an aromatic vinyl compound and 600 mL of toluene were added. On the other hand, mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t -Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.5mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5) 4] 0 .55 mmol and 1.7 mmol of diisobutylaluminum hydride were charged, and 70 mL of toluene was added to obtain a catalyst solution.
The obtained catalyst solution was added to the above-mentioned pressure resistant stainless steel reactor and heated to 80 ° C. Next, ethylene as a non-conjugated olefin compound is charged at a pressure of 1.4 MPa into this pressure resistant stainless steel reactor, and further, 60 mL of a toluene solution containing 5 g of 1,3-butadiene as a conjugated diene compound is charged over 6 hours And copolymerized at 80 ° C. for a total of 6.5 hours.
After the copolymerization, 1 mL of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in 5% by mass of an isopropanol solution is added to the pressure resistant stainless steel reactor to stop the reaction, The copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain copolymer D.
(共重合体Eの合成)
 十分に乾燥した1000mLの耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン160gと、トルエン600mLとを加えた。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.25mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.275mmol及びジイソブチルアルミニウムハイドライド1.1mmolを仕込み、トルエン40mLを加えて触媒溶液を得た。
 得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、70℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを、圧力1.5MPaで投入し、更に、共役ジエン化合物としてのイソプレン10gを含むトルエン溶液50mLを7時間かけて投入し、70℃で計8時間、共重合を行った。
 共重合後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体Eを得た。
(Synthesis of copolymer E)
In a sufficiently dried 1000 mL pressure-resistant stainless steel reactor, 160 g of styrene as an aromatic vinyl compound and 600 mL of toluene were added. On the other hand, mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t -Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.25mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5) 4] 0 .275 mmol and 1.1 mmol of diisobutylaluminum hydride were charged, and 40 mL of toluene was added to obtain a catalyst solution.
The obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C. Next, ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and further 50 mL of a toluene solution containing 10 g of isoprene as a conjugated diene compound is charged over 7 hours, 70 ° C. The copolymerization was carried out for a total of 8 hours.
After the copolymerization, 1 mL of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in 5% by mass of an isopropanol solution is added to the pressure resistant stainless steel reactor to stop the reaction, The copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain copolymer E.
(共重合体Fの合成)
 共重合体Aの合成において、用いたスチレンを30gとしたこと以外は、共重合体Aの合成と同様の操作を行って、共重合体Fを得た。
(Synthesis of copolymer F)
A copolymer F was obtained in the same manner as the synthesis of the copolymer A, except that 30 g of styrene was used in the synthesis of the copolymer A.
(共重合体Gの合成)
 共重合体Bの合成において、1,3-ブタジエンを投入しなかったこと以外は、共重合体Bの合成と同様の操作を行って、共重合体Gを得た。
(Synthesis of copolymer G)
A copolymer G was obtained in the same manner as the synthesis of the copolymer B, except that in the synthesis of the copolymer B, 1,3-butadiene was not added.
(共重合体Hの合成)
 十分に乾燥した1000mLの耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン80gと、トルエン300mLとを加えた。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.25mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.275mmol及びジイソブチルアルミニウムハイドライド1.4mmolを仕込み、トルエン40mLを加えて触媒溶液を得た。
 得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、70℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを、圧力1.5MPaで投入し、更に、共役ジエン化合物としての1,3-ブタジエン100gを含むトルエン溶液500mLを4時間かけて投入し、70℃で計5時間、共重合を行った。
 共重合後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体Hを得た。
(Synthesis of copolymer H)
In a sufficiently dried 1000 mL pressure-resistant stainless steel reactor, 80 g of styrene as an aromatic vinyl compound and 300 mL of toluene were added. On the other hand, mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t -Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.25mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5) 4] 0 .275 mmol and 1.4 mmol of diisobutylaluminum hydride were charged, and 40 mL of toluene was added to obtain a catalyst solution.
The obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C. Next, ethylene as a non-conjugated olefin compound is charged at a pressure of 1.5 MPa into this pressure resistant stainless steel reactor, and 500 mL of a toluene solution containing 100 g of 1,3-butadiene as a conjugated diene compound is further loaded over 4 hours And copolymerized at 70 ° C. for a total of 5 hours.
After the copolymerization, 1 mL of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in 5% by mass of an isopropanol solution is added to the pressure resistant stainless steel reactor to stop the reaction, The copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain copolymer H.
(共重合体Iの合成)
 十分に乾燥した1000mLの耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン200gと、トルエン700mLとを加えた。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.5mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.55mmol及びジイソブチルアルミニウムハイドライド1.7mmolを仕込み、トルエン70mLを加えて触媒溶液を得た。
 得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、70℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを、圧力1.0MPaで投入し、更に、共役ジエン化合物としての1,3-ブタジエン1gを含むトルエン溶液50mLを4時間かけて投入し、70℃で計9時間、共重合を行った。
 共重合後、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体Iを得た。
(Synthesis of copolymer I)
In a sufficiently dried 1000 mL pressure-resistant stainless steel reactor, 200 g of styrene as an aromatic vinyl compound and 700 mL of toluene were added. On the other hand, mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t -Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.5mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5) 4] 0 .55 mmol and 1.7 mmol of diisobutylaluminum hydride were charged, and 70 mL of toluene was added to obtain a catalyst solution.
The obtained catalyst solution was added to the above-described pressure resistant stainless steel reactor and heated to 70 ° C. Next, ethylene as a non-conjugated olefin compound is charged into this pressure resistant stainless steel reactor at a pressure of 1.0 MPa, and further, 50 mL of a toluene solution containing 1 g of 1,3-butadiene as a conjugated diene compound is charged over 4 hours And copolymerized at 70 ° C. for a total of 9 hours.
After the copolymerization, 1 mL of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in 5% by mass of an isopropanol solution is added to the pressure resistant stainless steel reactor to stop the reaction, The copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain copolymer I.
 以上のようにして得られた各共重合体について、H-NMRスペクトルを用いて、共役ジエン単位の割合(mol%)、非共役オレフィン単位の割合(mol%)、及び芳香族ビニル単位の割合(mol%)を測定した。
 また、各共重合体について、JIS K 7121-1987に準拠した示差走査熱量測定(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)により、融点、ガラス転移温度、及び0~120℃での吸熱ピークのエネルギーを測定した。なお、吸熱ピークのエネルギーの測定に関し、具体的には、まず、10℃/分の昇温速度で-150℃から150℃まで昇温する。そして、その時(1st run)の0~120℃における吸熱ピーク(エンタルピー緩和)を求めることにより、吸熱ピークのエネルギーを測定することができる。
 また、得られた各共重合体における主鎖構造を調べたところ、13C-NMRスペクトルチャートにおいて、10~24ppmにピークが観測されなかったことから、得られた各共重合体は、主鎖が非環状構造のみからなることを確認した。
For each copolymer obtained as described above, using 1 H-NMR spectrum, the proportion (mol%) of conjugated diene units, the proportion (mol%) of non-conjugated olefin units, and the proportion of aromatic vinyl units The proportion (mol%) was measured.
Moreover, about each copolymer, melting | fusing point, glass transition temperature, and 0 ~ are measured by the differential scanning calorimetry measurement (DSC, the TA Instruments Japan company make, "DSCQ2000") based on JISK7121-1987. The energy of the endothermic peak at 120 ° C. was measured. Specifically, regarding the measurement of the energy of the endothermic peak, first, the temperature is raised from -150 ° C. to 150 ° C. at a temperature rising rate of 10 ° C./min. Then, the energy of the endothermic peak can be measured by determining the endothermic peak (enthalpy relaxation) at 0 to 120 ° C. at that time (1st run).
Further, when the main chain structure of each of the obtained copolymers was examined, no peak was observed at 10 to 24 ppm in the 13 C-NMR spectrum chart, and thus each of the obtained copolymers had a main chain Was confirmed to consist only of non-cyclic structure.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1より、共重合体A~F、H,Iは、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体であることが、少なくとも分かる。 From Table 1, it can be seen that the copolymers A to F, H and I are at least multicomponent copolymers having conjugated diene units, nonconjugated olefin units and aromatic vinyl units.
(ゴム組成物及び加硫ゴムの調製)
 各例において、表2に示す配合処方で、ゴム組成物を調製した。次いで、このゴム組成物を、155℃で60分間加硫して、加硫ゴムを得た。得られた加硫ゴムについて、下記の方法に従って、静的ばね定数の測定及び耐久性の評価を行った。
(Preparation of rubber composition and vulcanized rubber)
In each example, a rubber composition was prepared according to the formulation shown in Table 2. Next, this rubber composition was vulcanized at 155 ° C. for 60 minutes to obtain a vulcanized rubber. The obtained vulcanized rubber was subjected to measurement of static spring constant and evaluation of durability according to the following method.
<静的ばね定数の測定>
 調製したゴム組成物を155℃で60分間プレス成形(加硫)して、直径8mm、高さ6mmの円筒状試験片を作製した。この円筒状試験片に対して、軸方向に荷重を加えて軸方向に20%圧縮させ、一旦減荷した後、再度軸方向に20%圧縮させた。これにより、2回目の加荷過程における荷重-たわみ特性を測定し、それに基づいて荷重-たわみ曲線を作成した。作成した曲線から、たわみが5%になったときの荷重値(P5%)(単位:N)及び15%になったときの荷重値(P15%)(単位:N)をそれぞれ読み取って、下式により静的ばね定数Ks(N/mm)を算出した。ここで、式中の「0.6」は、15%-5%(即ち、10%)の高さ(mm)である。
  Ks = {(P15%)-(P5%)}/0.6
 なお、上記の試験は、動的粘弾性試験機(GABO社製、商品名「Eplexor500N」)を用い、試験温度35℃で行った。静的ばね定数の値が小さいほど、振動減衰性に優れることを示す。結果を表2に示す。
<Measurement of static spring constant>
The prepared rubber composition was press molded (vulcanized) at 155 ° C. for 60 minutes to prepare a cylindrical test piece having a diameter of 8 mm and a height of 6 mm. With respect to this cylindrical test piece, an axial load was applied and 20% compression was made in the axial direction, and after being temporarily unloaded, it was made to compress 20% in the axial direction again. Thereby, the load-deflection characteristics in the second loading process were measured, and a load-deflection curve was created based thereon. From the created curve, read the load value (P: 5%) (unit: N) when deflection is 5% and the load value (P: 15%) (unit: N) when 15%: The static spring constant Ks (N / mm) was calculated by the equation. Here, “0.6” in the formula is a height (mm) of 15% -5% (that is, 10%).
Ks = {(P15%)-(P5%)} / 0.6
In addition, said test was done at the test temperature of 35 degreeC using the dynamic-viscoelasticity tester (The GABO company make, brand name "Eplexor 500N"). The smaller the value of the static spring constant, the better the vibration damping property. The results are shown in Table 2.
<耐久性の評価>
 調製したゴム組成物を155℃で60分間プレス成形(加硫)して、厚み2mmのシート状試験片を作製した。このシート状試験片に対して、定ひずみ疲労試験機(商品名「FT-3100」、島津製作所製)を用い、JIS K6270に準拠して、試験温度35℃にて200%、250%、300%の試験ひずみを繰り返し与えて、試験片が破断するまでに繰り返した回数(破断回数)を測定した。そして、各試験ひずみで試験片に与えられた入力エネルギーと、各試験ひずみでの破断回数とから、エネルギー―破断回数換算式を算出した。この換算式により、入力エネルギーが1MPaのときの破断回数換算値を求めた。実施例11で求めた破断回数換算値を100として、各例における破断回数換算値を指数化した。この指数(耐久性指数)が大きいほど、耐久性に優れることを示す。結果を表2に示す。
<Evaluation of durability>
The prepared rubber composition was press-molded (vulcanized) at 155 ° C. for 60 minutes to prepare a sheet-like test piece having a thickness of 2 mm. Using a constant strain fatigue tester (trade name "FT-3100", manufactured by Shimadzu Corp.), the sheet-like test pieces were subjected to 200%, 250%, 300 at a test temperature of 35 ° C in accordance with JIS K6270. Test strains of% were repeatedly applied to measure the number of times (number of times of breakage) repeated until the test piece broke. Then, from the input energy given to the test piece at each test strain and the number of breaks at each test strain, an energy-breaking number conversion formula was calculated. By this conversion equation, the number of fractures conversion value when the input energy is 1 MPa was determined. The broken number conversion value in each example was indexed with the broken number conversion value determined in Example 11 being 100. It shows that it is excellent in durability, so that this index (durability index) is large. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
*1 SBR:JSR株式会社製、「♯1500」、スチレン-ブタジエンゴム
*2 EPDM:JSR株式会社製、商品名「EP35」、エチレン-プロピレン-ジエンゴム
*3 充填剤:旭カーボン株式会社社製、SAF級カーボンブラック
*4 軟化剤:富士興産株式会社製、商品名「アロマックス#3」、芳香族系プロセスオイル
*5 液状ゴム:クレイバレー社製、商品名「ライコン100」、ブタジエン・スチレン・ランダム共重合体
*6 老化防止剤:精工化学株式会社製、商品名「オゾノン6C」、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*7 加硫促進剤DPG:大内新興化学工業株式会社製、商品名「ノクセラーD」、ジフェニルグアニジン
*8 加硫促進剤CZ:大内新興化学株式会社製、商品名「ノクセラーCZ-G」、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
*9 加硫促進剤DM:大内新興化学株式会社製、商品名「ノクセラーDM-P」、ジ-2-ベンゾチアゾリルジスルフィド
* 1 SBR: manufactured by JSR Corporation "# 1500", Styrene-Butadiene Rubber * 2 EPDM: manufactured by JSR Corporation Trade name "EP 35", Ethylene-Propylene-Diene Rubber * 3 Filler: manufactured by Asahi Carbon Co., Ltd. SAF-class carbon black * 4 Softener: made by Fuji Kosan Co., Ltd., trade name "Aromax # 3, aromatic process oil * 5 Liquid rubber: made by Clay Valley, trade name" Ricon 100 ", butadiene / styrene Random copolymer * 6 Anti-aging agent: SEIKO CHEMICAL CO., LTD., Trade name "Ozonone 6C", N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine * 7 vulcanization accelerator DPG : Made by Ouchi Shinko Chemical Co., Ltd., trade name "Noxceler D", diphenyl guanidine * 8 vulcanization accelerator CZ: made by Ouchi Shinsei Chemical Co., Ltd. Name "Noxceler CZ-G", N-Cyclohexyl-2-benzothiazolylsulfenamide * 9 Vulcanization accelerator DM: made by Ouchi New Chemical Co., Ltd., trade name "Noxcella DM-P", di-2-benzo Thiazolyl disulfide
 表2より、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体を含むゴム成分を含有し、充填剤の含有量がゴム成分100質量部に対して90質量部以下である実施例に係るゴム組成物は、耐久性と振動減衰性とに優れることが分かる。 From Table 2, the rubber component containing a multicomponent copolymer having a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit is contained, and the content of the filler is 90 parts by mass with respect to 100 parts by mass of the rubber component It is understood that the rubber composition according to the example which is less than or equal to part is excellent in the durability and the vibration damping property.
 本発明によれば、耐久性が高く、且つ振動を十分に減衰することが可能な防振ゴム組成物を提供することができる。また、本発明によれば、かかる防振ゴム組成物を用いた、耐久性と振動減衰性とに優れる防振ゴムを提供することができる。
 
According to the present invention, it is possible to provide a vibration-proof rubber composition having high durability and capable of sufficiently damping vibration. Further, according to the present invention, it is possible to provide a vibration-proof rubber which is excellent in durability and vibration damping property using such a vibration-proof rubber composition.

Claims (13)

  1.  共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体を含むゴム成分と、任意成分としての充填剤とを含有し、前記充填剤の含有量が前記ゴム成分100質量部に対して0~90質量部である、ことを特徴とする、防振ゴム組成物。 A rubber component containing a multicomponent copolymer having a conjugated diene unit, a nonconjugated olefin unit, and an aromatic vinyl unit, and a filler as an optional component, wherein the content of the filler is the rubber component 100 The vibration-proof rubber composition characterized in that it is 0 to 90 parts by mass with respect to the mass parts.
  2.  前記多元共重合体は、
     前記共役ジエン単位の割合が1~50mol%であり、
     前記非共役オレフィン単位の割合が40~97mol%であり、
     前記芳香族ビニル単位の割合が2~35mol%である、
    請求項1に記載の防振ゴム組成物。
    The multicomponent copolymer is
    The ratio of the conjugated diene unit is 1 to 50 mol%,
    The proportion of the non-conjugated olefin unit is 40 to 97 mol%,
    The proportion of the aromatic vinyl units is 2 to 35 mol%,
    The vibration proof rubber composition according to claim 1.
  3.  前記ゴム成分における前記多元共重合体の割合が20質量%以上である、請求項1又は2に記載の防振ゴム組成物。 The vibration-proof rubber composition of Claim 1 or 2 whose ratio of the said multicomponent copolymer in the said rubber component is 20 mass% or more.
  4.  更に、軟化剤及び液状ゴムから選択される少なくとも1種を、前記ゴム成分100質量部に対して20質量部以上含有する、請求項1~3のいずれかに記載の防振ゴム組成物。 The anti-vibration rubber composition according to any one of claims 1 to 3, further comprising 20 parts by mass or more based on 100 parts by mass of the rubber component, at least one selected from a softener and a liquid rubber.
  5.  前記多元共重合体は、示差走査熱量測定(DSC)により測定される融点が30~130℃である、請求項1~4のいずれかに記載の防振ゴム組成物。 The vibration-proof rubber composition according to any one of claims 1 to 4, wherein the multicomponent copolymer has a melting point of 30 to 130 属 C as measured by differential scanning calorimetry (DSC).
  6.  前記多元共重合体は、0~120℃における示差走査熱量測定(DSC)により測定される吸熱ピークのエネルギーが10~130J/gである、請求項1~5のいずれかに記載の防振ゴム組成物。 The anti-vibration rubber according to any one of claims 1 to 5, wherein the multicomponent copolymer has an endothermic peak energy of 10 to 130 J / g as measured by differential scanning calorimetry (DSC) at 0 to 120 ° C. Composition.
  7.  前記多元共重合体は、示差走査熱量測定(DSC)により測定されるガラス転移温度が0℃以下である、請求項1~6のいずれかに記載の防振ゴム組成物。 The vibration-proof rubber composition according to any one of claims 1 to 6, wherein the multicomponent copolymer has a glass transition temperature measured by differential scanning calorimetry (DSC) of 0 属 C or less.
  8.  前記多元共重合体は、主鎖が非環状構造のみからなる、請求項1~7のいずれかに記載の防振ゴム組成物。 The vibration-proof rubber composition according to any one of claims 1 to 7, wherein in the multi-component copolymer, the main chain consists only of a non-cyclic structure.
  9.  前記非共役オレフィン単位が、環状構造を有しない、請求項1~8のいずれかに記載の防振ゴム組成物。 The vibration-proof rubber composition according to any one of claims 1 to 8, wherein the non-conjugated olefin unit does not have a cyclic structure.
  10.  前記非共役オレフィン単位が、エチレン単位のみからなる、請求項1~9のいずれかに記載の防振ゴム組成物。 The vibration-proof rubber composition according to any one of claims 1 to 9, wherein the non-conjugated olefin unit comprises only an ethylene unit.
  11.  前記芳香族ビニル単位が、スチレン単位を含む、請求項1~10のいずれかに記載の防振ゴム組成物。 The vibration-proof rubber composition according to any one of claims 1 to 10, wherein the aromatic vinyl unit comprises a styrene unit.
  12.  前記共役ジエン単位が、1,3-ブタジエン単位及びイソプレン単位の少なくともいずれかを含む、請求項1~11のいずれかに記載の防振ゴム組成物。 The vibration-proof rubber composition according to any one of claims 1 to 11, wherein the conjugated diene unit contains at least one of 1,3-butadiene unit and isoprene unit.
  13.  請求項1~12のいずれかに記載の防振ゴム組成物を含む、ことを特徴とする、防振ゴム。
     
    An anti-vibration rubber comprising the anti-vibration rubber composition according to any one of claims 1 to 12.
PCT/JP2018/034520 2017-12-13 2018-09-18 Vibration-damping rubber composition and vibration-damping rubber WO2019116659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558912A JP7348070B2 (en) 2017-12-13 2018-09-18 Anti-vibration rubber composition and anti-vibration rubber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017238965 2017-12-13
JP2017-238965 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019116659A1 true WO2019116659A1 (en) 2019-06-20

Family

ID=66819093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034520 WO2019116659A1 (en) 2017-12-13 2018-09-18 Vibration-damping rubber composition and vibration-damping rubber

Country Status (2)

Country Link
JP (1) JP7348070B2 (en)
WO (1) WO2019116659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074161A1 (en) * 2021-10-26 2023-05-04 住友化学株式会社 Rubber composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228743A (en) * 1997-07-18 1999-08-24 Mitsui Chem Inc Unsaturated elastomer composition and its vulcanized rubber
JP2007154185A (en) * 2005-11-14 2007-06-21 Hokushin Ind Inc Thermoplastic elastomer for damper and viscous fluid-sealed damper
JP2015164983A (en) * 2014-03-03 2015-09-17 東洋紡株式会社 Elastomer composition and molded article formed from the same
WO2017065299A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multicomponent copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
WO2017064862A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204249A (en) * 1997-01-20 1998-08-04 Bridgestone Corp Damping material and damping member
JP2005105209A (en) 2003-10-01 2005-04-21 Yokohama Rubber Co Ltd:The Highly damping elastomer composition
JP5800684B2 (en) 2011-11-01 2015-10-28 住友ゴム工業株式会社 High damping composition
JP2014001337A (en) 2012-06-20 2014-01-09 Sumitomo Rubber Ind Ltd High damping composition and earthquake-proof damper
WO2015190072A1 (en) 2014-06-12 2015-12-17 株式会社ブリヂストン Multi-component copolymer, rubber composition, and tire
US10053530B2 (en) 2014-06-12 2018-08-21 Bridgestone Corporation Method for producing a multicomponent copolymer
JP6261131B2 (en) 2014-07-04 2018-01-17 住友ゴム工業株式会社 High damping composition, seismic damper and seismic isolation bearing
CN108137756B (en) 2015-10-16 2021-06-15 株式会社普利司通 Multipolymer, rubber composition, crosslinked rubber composition, rubber product and tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228743A (en) * 1997-07-18 1999-08-24 Mitsui Chem Inc Unsaturated elastomer composition and its vulcanized rubber
JP2007154185A (en) * 2005-11-14 2007-06-21 Hokushin Ind Inc Thermoplastic elastomer for damper and viscous fluid-sealed damper
JP2015164983A (en) * 2014-03-03 2015-09-17 東洋紡株式会社 Elastomer composition and molded article formed from the same
WO2017065299A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multicomponent copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
WO2017064862A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074161A1 (en) * 2021-10-26 2023-05-04 住友化学株式会社 Rubber composition

Also Published As

Publication number Publication date
JPWO2019116659A1 (en) 2020-12-17
JP7348070B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
CN108137746B (en) Multipolymer, rubber composition, crosslinked rubber composition, rubber product and tire
WO2015190072A1 (en) Multi-component copolymer, rubber composition, and tire
JP7213014B2 (en) Multidimensional copolymer, rubber composition, crosslinked rubber composition and rubber article
WO2019078083A1 (en) Multi-copolymer, rubber composition, cross-linked rubber composition, rubber article, and tire
RU2579577C2 (en) Anti-vibration rubber composition, cross-linked anti-vibration composition and anti-vibration rubber
WO2019142501A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration-damping device, seismic isolator, and hose
JP6602150B2 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
JP6602151B2 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
WO2017064857A1 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
WO2017065301A1 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
JPWO2017064860A1 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition and rubber article
JP2017075274A (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
JP5845099B2 (en) Anti-vibration rubber composition, crosslinked anti-vibration rubber composition and anti-vibration rubber
JP7348070B2 (en) Anti-vibration rubber composition and anti-vibration rubber
RU2579103C1 (en) Vibration-absorbing rubber mixture, cross-linked vibration-absorbing rubber mixture and vibration-absorbing rubber
WO2019146323A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration isolator, seismic isolator, and hose
WO2019116656A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, anti-vibration device, seismic isolation device, and hose
CN108350129B (en) Multipolymer, rubber composition, crosslinked rubber composition and rubber product
WO2019116655A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, anti-vibration device, seismic isolation device, and hose
JP7041706B2 (en) Multiple copolymers, rubber compositions, crosslinked rubber compositions and rubber articles
JPWO2019163230A1 (en) Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
WO2019163835A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration isolation device, seismic isolation device, and hose
JP2013155239A (en) Rubber composition, bead filler, and tire
JP2013067678A (en) Vibration absorption rubber composition, crosslinked vibration absorption rubber composition, and vibration absorption rubber
WO2018150900A1 (en) Multicomponent copolymer, rubber composition, and rubber article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889404

Country of ref document: EP

Kind code of ref document: A1