WO2019163835A1 - Rubber composition, tire, conveyor belt, rubber crawler, vibration isolation device, seismic isolation device, and hose - Google Patents

Rubber composition, tire, conveyor belt, rubber crawler, vibration isolation device, seismic isolation device, and hose Download PDF

Info

Publication number
WO2019163835A1
WO2019163835A1 PCT/JP2019/006358 JP2019006358W WO2019163835A1 WO 2019163835 A1 WO2019163835 A1 WO 2019163835A1 JP 2019006358 W JP2019006358 W JP 2019006358W WO 2019163835 A1 WO2019163835 A1 WO 2019163835A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber
rubber composition
component
compound
Prior art date
Application number
PCT/JP2019/006358
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 佐治
祥子 犬束
健二 中谷
駿 種村
靖宏 庄田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020501002A priority Critical patent/JPWO2019163835A1/en
Publication of WO2019163835A1 publication Critical patent/WO2019163835A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics

Definitions

  • the present invention relates to a rubber composition, a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device, and a hose.
  • the rubber composition containing the multi-component copolymer has a high viscosity in an unvulcanized state, and further improvement is necessary from the viewpoint of workability (viscosity reduction). I found out.
  • an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a rubber composition in which wear resistance, crack growth resistance, and workability are highly balanced.
  • Another object of the present invention is to provide a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device, and a hose excellent in wear resistance and crack growth resistance.
  • the gist configuration of the present invention for solving the above-described problems is as follows.
  • the rubber composition of the present invention contains, as a rubber component (a), a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a differential scanning calorimeter (DSC) at 0 to 120 ° C.
  • a rubber component a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a differential scanning calorimeter (DSC) at 0 to 120 ° C.
  • DSC differential scanning calorimeter
  • the content of the multi-component copolymer (a1) in the rubber component (a) is 5% by mass or more and less than 50% by mass
  • the conjugated diene rubber (a2) forms a continuous phase
  • the multi-component copolymer (a1) forms a dispersed phase.
  • the rubber composition of the present invention has a high balance between wear resistance, crack growth resistance and workability.
  • the multi-component copolymer (a1) has a content of the conjugated diene unit of 1 to 50 mol%, a content of the non-conjugated olefin unit of 40 to 97 mol%, and the aromatic
  • the group vinyl unit content is preferably 2 to 35 mol%. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
  • the rubber composition of the present invention contains styrene-butadiene rubber as the conjugated diene rubber (a2), and the content of the styrene-butadiene rubber in the rubber component (a) exceeds 50% by mass. It is preferable. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
  • the styrene-butadiene rubber has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of ⁇ 60 ° C. to 0 ° C.
  • Tg glass transition temperature measured by a differential scanning calorimeter
  • the styrene-butadiene rubber preferably has a styrene content of 5 to 50% by mass. In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
  • the styrene-butadiene rubber preferably has a vinyl bond content in the styrene-butadiene rubber of 15 to 60% by mass. In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
  • the multi-component copolymer (a1) preferably has a melting point of 30 to 130 ° C. measured by a differential scanning calorimeter (DSC). In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
  • DSC differential scanning calorimeter
  • the multi-component copolymer (a1) preferably has a glass transition temperature of 0 ° C. or less as measured by a differential scanning calorimeter (DSC). In this case, the workability of the rubber composition is further improved.
  • DSC differential scanning calorimeter
  • the multi-component copolymer (a1) preferably has a crystallinity of 0.5 to 50%. In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
  • the multi-component copolymer (a1) preferably has a main chain consisting only of an acyclic structure. In this case, the crack growth resistance of the rubber composition is further improved.
  • the multi-component copolymer (a1) is preferably such that the non-conjugated olefin unit is an acyclic non-conjugated olefin unit. In this case, the weather resistance of the rubber composition is improved.
  • the non-cyclic non-conjugated olefin unit is composed of only ethylene units. In this case, the weather resistance of the rubber composition is further improved.
  • the aromatic vinyl unit includes a styrene unit.
  • the weather resistance of the rubber composition is further improved.
  • the conjugated diene unit in the multi-component copolymer (a1), preferably contains a 1,3-butadiene unit and / or an isoprene unit. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
  • the tire of the present invention is characterized by using the above rubber composition.
  • Such a tire of the present invention is excellent in wear resistance and crack growth resistance.
  • the conveyor belt of the present invention is characterized by using the above rubber composition.
  • Such a conveyor belt of the present invention is excellent in wear resistance and crack growth resistance.
  • the rubber crawler of the present invention is characterized by using the above rubber composition. Such a rubber crawler of the present invention is excellent in wear resistance and crack growth resistance.
  • the vibration isolator of the present invention is characterized by using the above rubber composition.
  • Such a vibration isolator of the present invention is excellent in wear resistance and crack growth resistance.
  • the seismic isolation device of the present invention is characterized by using the above rubber composition. Such a seismic isolation device of the present invention is excellent in wear resistance and crack growth resistance.
  • the hose of the present invention is characterized by using the above rubber composition.
  • Such a hose of the present invention is excellent in wear resistance and crack growth resistance.
  • the rubber composition which highly balanced abrasion resistance, crack growth resistance, and workability
  • the rubber composition of the present invention contains, as a rubber component (a), a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a differential scanning calorimeter (DSC) at 0 to 120 ° C.
  • the content of the multi-component copolymer (a1) is 5% by mass or more and less than 50% by mass
  • the conjugated diene rubber (a2) forms a continuous phase
  • the multi-component copolymer (a1) ) Form a dispersed phase.
  • the rubber composition of the present invention includes a multi-component copolymer (a1) containing a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, the rubber composition is excellent in wear resistance and crack growth resistance.
  • the content of the multi-component copolymer (a1) in the rubber component (a) is 5% by mass or more and less than 50% by mass, and the conjugated diene rubber (a2) is a continuous phase.
  • the domain size of the polymer phase composed of the multi-component copolymer (a1) is reduced because the multi-component copolymer (a1) forms a dispersed phase, and therefore the multi-component copolymer (a1) due to strain is reduced.
  • the crystal collapse is promoted, and the wear resistance and crack growth resistance are further improved.
  • the conjugated diene rubber (a2) other than the multi-component copolymer (a1) which usually does not have a crystal component, forms a continuous phase. Since the unvulcanized viscosity largely depends on the viscosity of the continuous phase, the unvulcanized viscosity of the rubber composition as a whole can be effectively reduced. Therefore, the rubber composition of the present invention can highly balance wear resistance, crack growth resistance, and workability (viscosity reduction).
  • the rubber composition of the present invention contains, as a rubber component (a), a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a differential scanning calorimeter (DSC) at 0 to 120 ° C.
  • the multi-component copolymer (a1) has an endothermic peak energy measured by a differential scanning calorimeter (DSC) at 0 to 120 ° C. of 10 to 150 J / g, preferably 25 to 130 J / g.
  • the endothermic peak energy of the multi-component copolymer (a1) is less than 10 J / g, the crystallinity of the multi-component copolymer (a1) is insufficient and the crystals of the multi-component copolymer (a1) when strained. Collapse is insufficient, and the effect of improving wear resistance and crack growth resistance is reduced.
  • the endothermic peak energy of the multi-component copolymer (a1) exceeds 150 J / g, the crystallinity of the multi-component copolymer (a1) is too high, and the viscosity of the dispersed phase formed from the multi-component copolymer (a1). As a result, the unvulcanized viscosity of the rubber composition as a whole cannot be sufficiently reduced.
  • the content of the multi-component copolymer (a1) in the rubber component (a) is 5% by mass or more and less than 50% by mass, and 20 to 40% by mass. preferable.
  • the content of the multi-component copolymer (a1) in the rubber component (a) is less than 5% by mass, the effect of improving the wear resistance and crack growth resistance by the multi-component copolymer (a1) cannot be sufficiently obtained.
  • the content of the multi-component copolymer (a1) in the rubber component (a) is 50% by mass or more, the domain size of the polymer phase composed of the multi-component copolymer (a1) increases, and the multi-component copolymer due to strain increases.
  • the crystal collapse of the polymer (a1) does not proceed sufficiently, the effect of improving wear resistance and crack growth resistance is reduced, and the influence on the viscosity of the multi-component copolymer (a1) is increased, resulting in a rubber composition.
  • the unvulcanized viscosity of the whole product cannot be sufficiently reduced.
  • the conjugated diene rubber (a2) forms a continuous phase (so-called sea-island sea phase), and the multi-component copolymer (a1) is a dispersed phase (so-called sea-island island).
  • the polymer phase formed from the conjugated diene rubber (a2) and the polymer phase formed from the multi-component copolymer (a1) are incompatible, and the conjugated diene rubber (a2).
  • SEM scanning electron microscope
  • the conjugated diene rubber (a2) having no crystal component forms a continuous phase
  • the rubber composition as a whole has a low unvulcanized viscosity and excellent workability.
  • the multi-component copolymer (a1) forms a dispersed phase, and the domain size of the polymer phase composed of the multi-component copolymer (a1) is small. Crystal collapse of the coalescence (a1) is promoted, and the wear resistance and crack growth resistance are further improved.
  • the polymer phase formed from the conjugated diene rubber (a2) and the polymer phase formed from the multi-component copolymer (a1) are incompatible with each other depends on the rubber composition.
  • SEM Scanning electron microscope
  • the transparency of the rubber composition is confirmed by visual inspection. If it is transparent, it is compatible. If it is opaque, it is semi-compatible. If it is opaque, it is non-transparent. It can be judged as compatible.
  • Tg glass transition temperature
  • (3) in the SEM image, when only one phase is observed, it can be judged as compatible, and when more than one phase is observed, it can be judged as semi-compatible or incompatible. In principle, the determination of whether or not incompatibility is made is based only on (1) and (2). If a clear determination cannot be made only by (1) and (2), 3) Final decision is made.
  • the multi-component copolymer (a1) contains at least a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and consists only of a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit. It may also contain other monomer units.
  • the conjugated diene unit is a structural unit derived from a conjugated diene compound as a monomer.
  • the conjugated diene compound preferably has 4 to 8 carbon atoms.
  • Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compound may be a single kind or a combination of two or more kinds.
  • the conjugated diene compound as a monomer of the multi-component copolymer It preferably contains 1,3-butadiene and / or isoprene, more preferably consists only of 1,3-butadiene and / or isoprene, and more preferably consists only of 1,3-butadiene.
  • the conjugated diene unit in the multi-component copolymer preferably contains 1,3-butadiene units and / or isoprene units, and more preferably consists only of 1,3-butadiene units and / or isoprene units. Preferably, it consists only of 1,3-butadiene units.
  • the content of the conjugated diene unit is preferably 1 mol% or more, more preferably 3 mol% or more, and preferably 50 mol% or less, % Or less, more preferably 30 mol% or less, still more preferably 20 mol% or less, and even more preferably 15 mol% or less.
  • the content of the conjugated diene unit is 1 mol% or more of the entire multi-component copolymer, a rubber composition and a rubber product excellent in elongation can be obtained, and when it is 50 mol% or less, the weather resistance is excellent.
  • the non-conjugated olefin unit is a structural unit derived from a non-conjugated olefin compound as a monomer.
  • the non-conjugated olefin compound preferably has 2 to 10 carbon atoms.
  • Specific examples of such non-conjugated olefin compounds include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and other ⁇ -olefins, vinyl pivalate, 1-phenylthioethene.
  • heteroatom-substituted alkene compounds such as N-vinylpyrrolidone.
  • the non-conjugated olefin compound may be a single kind or a combination of two or more kinds.
  • the non-conjugated olefin compound as a monomer of the multi-component copolymer further reduces the crystallinity of the resulting multi-component copolymer, and improves the weather resistance of rubber compositions and tires using such a multi-component copolymer. From the viewpoint of further improvement, it is preferably an acyclic non-conjugated olefin compound, and the acyclic non-conjugated olefin compound is more preferably an ⁇ -olefin, and an ⁇ -olefin containing ethylene.
  • the non-conjugated olefin unit in the multi-component copolymer is preferably an acyclic non-conjugated olefin unit, and the acyclic non-conjugated olefin unit is preferably an ⁇ -olefin unit. More preferably, it is more preferably an ⁇ -olefin unit containing an ethylene unit, and further preferably only an ethylene unit.
  • the content of the non-conjugated olefin unit is preferably 40 mol% or more, more preferably 45 mol% or more, and even more preferably 55 mol% or more, It is particularly preferably 65 mol% or more, more preferably 97 mol% or less, still more preferably 95 mol% or less, and still more preferably 90 mol% or less.
  • the content of the non-conjugated olefin unit is 40 mol% or more of the entire multi-polymer, the content of the conjugated diene unit or the aromatic vinyl unit is decreased as a result, the weather resistance is improved, and the resistance at high temperature is increased.
  • Breakability (particularly, breaking strength (Tb)) is improved.
  • the content of the non-conjugated olefin unit is 97 mol% or less, the content of the conjugated diene unit or the aromatic vinyl unit increases as a result, and fracture resistance at high temperature (particularly, elongation at break (Eb)) Will improve.
  • the content of the non-conjugated olefin unit is preferably in the range of 45 to 95 mol%, more preferably in the range of 55 to 90 mol% with respect to the entire multi-component copolymer.
  • the aromatic vinyl unit is a structural unit derived from an aromatic vinyl compound as a monomer.
  • the aromatic vinyl compound preferably has 8 to 10 carbon atoms.
  • Examples of such aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, and the like.
  • the aromatic vinyl compound may be a single type or a combination of two or more types.
  • the aromatic vinyl compound as a monomer of the multi-component copolymer further reduces the crystallinity of the resulting multi-component copolymer, the weather resistance of rubber compositions and tires using such a multi-component copolymer, From the viewpoint of further improving the toughness, it is preferable that styrene is contained, and it is more preferable that the material only consists of styrene.
  • the aromatic vinyl unit in the multi-component copolymer preferably includes a styrene unit, and more preferably includes only a styrene unit.
  • the aromatic ring in the aromatic vinyl unit is not included in the main chain of the multi-component copolymer unless it is bonded to an adjacent unit.
  • the multi-component copolymer (a1) preferably has a content of the aromatic vinyl unit of 2 mol% or more, more preferably 3 mol% or more, and preferably 35 mol% or less. More preferably, it is 30 mol% or less, More preferably, it is 25 mol% or less, Most preferably, it is 20 mol% or less.
  • the content of the aromatic vinyl unit is preferably in the range of 2 to 35 mol%, more preferably in the range of 3 to 30 mol%, still more preferably in the range of 3 to 25 mol% with respect to the entire multi-component copolymer.
  • the number of types of monomers of the multi-component copolymer (a1) is not particularly limited as long as the multi-component copolymer contains a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit.
  • the multi-component copolymer (a1) may have other structural units other than the conjugated diene unit, the non-conjugated olefin unit, and the aromatic vinyl unit, but the content of the other structural unit is desired. From the viewpoint of obtaining the above effect, it is preferably 30 mol% or less, more preferably 20 mol% or less, still more preferably 10 mol% or less, and not contained, that is, the content of the entire multi-component copolymer. Is particularly preferably 0 mol%.
  • the multi-component copolymer (a1) includes a kind of conjugated diene compound, a kind of non-conjugated olefin compound, And a polymer obtained by polymerization using at least one kind of aromatic vinyl compound.
  • the multi-component copolymer (a1) is preferably a multi-component copolymer containing one kind of conjugated diene unit, one kind of non-conjugated olefin unit, and one kind of aromatic vinyl unit.
  • it is a terpolymer comprising only a conjugated diene unit, a non-conjugated olefin unit, and a single aromatic vinyl unit, and is composed only of a 1,3-butadiene unit, an ethylene unit, and a styrene unit. More preferably, it is a terpolymer.
  • the “one type of conjugated diene unit” includes conjugated diene units having different bonding modes.
  • the multi-component copolymer (a1) has a content of the conjugated diene unit of 1 to 50 mol%, a content of the non-conjugated olefin unit of 40 to 97 mol%, and the aromatic
  • the group vinyl unit content is preferably 2 to 35 mol%. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
  • the multi-component copolymer (a1) preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 10,000 to 10,000,000, more preferably 100,000 to 9,000,000. 150,000 to 8,000,000 is more preferable.
  • Mw polystyrene-equivalent weight average molecular weight
  • the Mw of the multi-component copolymer is 10,000 or more, the wear resistance of the rubber composition can be further improved, and when the Mw is 10,000,000 or less, high workability is achieved. Can be held.
  • the multi-component copolymer (a1) preferably has a polystyrene-equivalent number average molecular weight (Mn) of 10,000 to 10,000,000, more preferably 50,000 to 9,000,000. More preferably, it is 100,000 to 8,000,000.
  • Mn polystyrene-equivalent number average molecular weight
  • the Mn of the multi-component copolymer is 10,000 or more, the wear resistance of the rubber composition can be further improved, and when the Mn is 10,000,000 or less, high workability is achieved. Can be held.
  • the multi-component copolymer (a1) preferably has a molecular weight distribution [Mw / Mn (weight average molecular weight / number average molecular weight)] of 1.00 to 4.00, preferably 1.50 to 3.50. Is more preferable, and it is still more preferable that it is 1.80 to 3.00.
  • Mw / Mn weight average molecular weight / number average molecular weight
  • the wider the molecular weight distribution of the multi-component copolymer the better the workability of the rubber composition.
  • the molecular weight distribution of the multi-component copolymer is 4.00 or less, sufficient homogeneity can be brought about in the physical properties of the multi-component copolymer.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • the multi-component copolymer (a1) preferably has a melting point measured by a differential scanning calorimeter (DSC) of 30 to 130 ° C., more preferably 50 to 120 ° C. . If the melting point of the multi-component copolymer (a1) is 30 ° C. or higher, the crystallinity of the multi-component copolymer (a1) is increased, and the wear resistance and crack growth resistance of the rubber composition are further improved, If it is 130 degrees C or less, the workability
  • the melting point is a value measured by the method described in Examples.
  • the multi-component copolymer (a1) preferably has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of 0 ° C. or lower.
  • Tg glass transition temperature measured by a differential scanning calorimeter
  • DSC differential scanning calorimeter
  • the glass transition temperature of the multi-component copolymer (a1) is 0 ° C. or lower, the workability of the rubber composition is further improved.
  • the glass transition temperature is a value measured by the method described in Examples.
  • the multi-component copolymer (a1) preferably has a crystallinity of 0.5 to 50%, more preferably 3 to 45%. If the degree of crystallinity of the multi-component copolymer (a1) is 0.5% or more, sufficient crystallinity attributable to the non-conjugated olefin unit is ensured, and the rubber composition has wear resistance and crack growth resistance. Further improvement.
  • the crystallinity of the multi-component copolymer (a1) is 50% or less, workability during kneading of the rubber composition is improved, and a rubber composition containing the multi-component copolymer (a1) is blended. Since the tackiness of the rubber is improved, the workability when molding rubber products such as tires by attaching rubber members made from the rubber composition to each other is also improved.
  • the crystallinity is a value measured by the method described in Examples.
  • the multi-component copolymer (a1) preferably has a main chain consisting only of an acyclic structure.
  • the crack growth resistance of the rubber composition can be further improved.
  • NMR is used as a main measuring means for confirming whether or not the main chain of the copolymer has a cyclic structure.
  • the main chain of the copolymer is It shows that it consists only of an acyclic structure.
  • the multi-component copolymer (a1) can be produced through a polymerization process using a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound as monomers, and, if necessary, a coupling process, washing You may pass through a process and other processes.
  • the conjugated diene compound is more reactive than the non-conjugated olefin compound and the aromatic vinyl compound, the non-conjugated olefin compound and / or in the presence of the conjugated diene compound.
  • any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used.
  • a solvent is not particularly limited as long as it is inert in the polymerization reaction, and examples thereof include toluene, cyclohexane, and normal hexane.
  • the polymerization process may be performed in one stage, or may be performed in two or more stages.
  • the one-step polymerization process means all kinds of monomers to be polymerized, that is, conjugated diene compounds, non-conjugated olefin compounds, aromatic vinyl compounds, and other monomers, preferably conjugated diene compounds, non-conjugated.
  • the olefin compound and the aromatic vinyl compound are polymerized by reacting simultaneously.
  • the multi-stage polymerization process means that a polymer is formed by first reacting part or all of one or two kinds of monomers (first polymerization stage), and then the remaining kinds of monomers.
  • a step of polymerizing by performing one or more stages (second polymerization stage to final polymerization stage) in which the remainder of the one or two kinds of monomers is added and polymerized.
  • second polymerization stage to final polymerization stage in which the remainder of the one or two kinds of monomers is added and polymerized.
  • the polymerization reaction is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • the polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of ⁇ 100 ° C. to 200 ° C., for example, and can be about room temperature.
  • the pressure for the polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the conjugated diene compound into the polymerization reaction system.
  • the reaction time of the above polymerization reaction is not particularly limited and is preferably in the range of, for example, 1 second to 10 days, but can be appropriately selected depending on conditions such as the type of catalyst and polymerization temperature.
  • the polymerization process may be performed in one stage, or may be performed in two or more stages.
  • the polymerization may be stopped using a polymerization terminator such as methanol, ethanol, isopropanol.
  • the polymerization process is preferably performed in multiple stages. More preferably, a first step of obtaining a polymerization mixture by mixing a first monomer raw material containing at least an aromatic vinyl compound and a polymerization catalyst, and a conjugated diene compound, a non-conjugated olefin compound, and It is preferable to carry out the second step of introducing the second monomer raw material containing at least one selected from the group consisting of aromatic vinyl compounds. Further, it is more preferable that the first monomer raw material does not contain a conjugated diene compound and the second monomer raw material contains a conjugated diene compound.
  • the first monomer raw material used in the first step may contain a non-conjugated olefin compound together with the aromatic vinyl compound. Moreover, the 1st monomer raw material may contain the whole quantity of the aromatic vinyl compound to be used, and may contain only one part.
  • the non-conjugated olefin compound is contained in at least one of the first monomer raw material and the second monomer raw material.
  • the first step is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor.
  • the temperature (reaction temperature) in the first step is not particularly limited.
  • the pressure in the first step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the aromatic vinyl compound into the polymerization reaction system.
  • the time spent in the first step can be appropriately selected depending on conditions such as the type of polymerization catalyst and reaction temperature. For example, when the reaction temperature is 25 to 80 ° C., 5 minutes A range of ⁇ 500 minutes is preferred.
  • the polymerization method for obtaining the polymerization mixture may be any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method. Can be used. Further, when a solvent is used for the polymerization reaction, such a solvent may be any inactive in the polymerization reaction, and examples thereof include toluene, cyclohexanone, normal hexane and the like.
  • the second monomer raw material used in the second step is a conjugated diene compound only, or a conjugated diene compound and a non-conjugated olefin compound, or a conjugated diene compound and an aromatic vinyl compound, or a conjugated diene compound or a non-conjugated olefin. It is preferable that they are a compound and an aromatic vinyl compound.
  • the second monomer raw material includes at least one selected from the group consisting of a non-conjugated olefin compound and an aromatic vinyl compound in addition to the conjugated diene compound, these monomer raw materials are preliminarily used as a solvent or the like.
  • the method for introducing the second monomer raw material into the polymerization mixture is not particularly limited, but it is continuously added to the polymerization mixture by controlling the flow rate of each monomer raw material. It is preferable to perform (so-called metering).
  • a monomer raw material that is a gas under the conditions of the polymerization reaction system for example, ethylene as a non-conjugated olefin compound under the conditions of room temperature and atmospheric pressure
  • the polymerization reaction system is used at a predetermined pressure. Can be introduced.
  • the second step is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor.
  • the temperature (reaction temperature) in the second step is not particularly limited, but is preferably in the range of ⁇ 100 ° C. to 200 ° C., for example, and can be about room temperature. When the reaction temperature is raised, the selectivity of cis-1,4 bond in the conjugated diene unit may be lowered.
  • the pressure in the second step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate monomers such as a conjugated diene compound into the polymerization reaction system.
  • reaction time can be appropriately selected depending on conditions such as the type of polymerization catalyst and reaction temperature, but is preferably in the range of 0.1 hour to 10 days, for example.
  • the polymerization reaction may be stopped using a polymerization terminator such as methanol, ethanol, or isopropanol.
  • the polymerization step of the non-conjugated olefin compound, aromatic vinyl compound, and conjugated diene compound includes the following first polymerization catalyst composition, second polymerization catalyst composition, third polymerization catalyst composition, or It is preferable to include a step of polymerizing various monomers in the presence of the fourth polymerization catalyst composition.
  • first polymerization catalyst composition As the first polymerization catalyst composition (hereinafter also referred to as “first polymerization catalyst composition”), (A1) component: a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, the rare earth element compound or the reaction product having no bond between the rare earth element and carbon, Component (B1): an ionic compound (B1-1) composed of a non-coordinating anion and a cation, an aluminoxane (B1-2), a Lewis acid, a complex of a metal halide and a Lewis base, and an active halogen And a polymerization catalyst composition containing at least one selected from the group consisting of at least one halogen compound (B1-3) among the organic compounds.
  • the polymerization catalyst composition further comprises: (C1) Component: The following general formula (I): YR 1 a R 2 b R 3 c (I) (In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are monovalent hydrocarbons having 1 to 10 carbon atoms. R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y is a periodic rule.
  • a is 1 and b and c are 0, and when Y is a metal selected from groups 2 and 12 of the periodic table , A and b are 1 and c is 0, and a, b and c are 1 when Y is a metal selected from Group 13 of the Periodic Table) including.
  • the carbon source for the component (A1) is the above ( C1) component is required.
  • the polymerization catalyst composition may contain other components contained in a normal rare earth compound polymerization catalyst composition, such as a cocatalyst.
  • the concentration of the component (A1) contained in the first polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
  • the polymerization catalyst composition preferably contains an additive (D1) that can be an anionic ligand.
  • the component (A1) used in the first polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base.
  • the reaction of the rare earth element compound and the rare earth element compound with the Lewis base is performed.
  • the object does not have a bond between rare earth element and carbon.
  • the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle.
  • the rare earth element compound is a rare earth element (M), that is, a lanthanoid element composed of elements having atomic numbers 57 to 71 in the periodic table, or a compound containing scandium or yttrium.
  • the lanthanoid element examples include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the said (A1) component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the rare earth element compound is preferably a rare earth metal divalent or trivalent salt or complex compound, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child.
  • reaction product of the rare earth element compound or the rare earth element compound and a Lewis base is represented by the following general formula (II) or (III): M 11 X 11 2 ⁇ L 11 w (II) M 11 X 11 3 ⁇ L 11 w (III)
  • M 11 represents a lanthanoid element, scandium or yttrium
  • X 11 independently represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, an aldehyde residue, A ketone residue, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue
  • L 11 represents a Lewis base
  • w represents 0 to 3.
  • Examples of the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom, a halogen atom, an alkoxy group (a group in which an alcohol hydroxyl group is removed, and forms a metal alkoxide), a thiolate group ( A group obtained by removing hydrogen from a thiol group of a thiol compound and forming a metal thiolate), an amino group (a group obtained by removing one hydrogen atom bonded to a nitrogen atom of ammonia, a primary amine, or a secondary amine) And forms a metal amide), silyl group, aldehyde residue, ketone residue, carboxylic acid residue, thiocarboxylic acid residue, and phosphorus compound residue.
  • the group (ligand) include a hydrogen atom; an aliphatic alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group; Phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl -6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thiosec-butoxy group, thiotert-butoxy Aliphatic thiolate groups such as thiolate
  • a residue of an aldehyde such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone Residues of hydroxyphenones such as 2′-hydroxypropiophenone; residues of diketones such as acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone; isovaleric acid, caprylic acid, octanoic acid, Lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, pivalic acid, versatic acid [trade name, manufactured by Shell Chemical Co
  • examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, Diolefins and the like.
  • the rare earth element compound reacts with a plurality of Lewis bases (in the general formulas (II) and (III), when w is 2 or 3), the Lewis base L 11 may be the same. May be different.
  • the rare earth element compound has the following general formula (IV): M- (NQ 1 ) (NQ 2 ) (NQ 3 ) (IV) (In the formula, M is at least one selected from lanthanoid elements, scandium and yttrium, and NQ 1 , NQ 2 and NQ 3 are amino groups, which may be the same or different, provided that It preferably contains a compound represented by (having an MN bond). That is, the compound represented by the general formula (IV) is a metal amide having three MN bonds. Having three MN bonds has the advantage that the structure is stable because each bond is chemically equivalent and therefore easy to handle.
  • M is at least one selected from lanthanoid elements, scandium and yttrium
  • NQ 1 , NQ 2 and NQ 3 are amino groups, which may be the same or different, provided that It preferably contains a compound represented by (having an MN bond). That is, the compound represented by the general formula (IV) is a metal amide having three MN bonds
  • the amino group represented by NQ is an aliphatic amino group such as a dimethylamino group, a diethylamino group, or a diisopropylamino group; a phenylamino group, 2, 6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl- Arylamino groups such as 6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, 2,4,6-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group Either may be used, but a bistri
  • the component (B1) used in the first polymerization catalyst composition is at least one selected from the group consisting of an ionic compound (B1-1), an aluminoxane (B1-2), and a halogen compound (B1-3).
  • the total content of the component (B1) in the first polymerization catalyst composition is preferably 0.1 to 50 times mol of the component (A1).
  • the ionic compound (B1-1) comprises a non-coordinating anion and a cation, and reacts with a reaction product of the rare earth element compound or the Lewis base as the component (A1) to form a cationic transition metal compound.
  • Examples include ionic compounds that can be generated.
  • non-coordinating anion for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbaound decaborate and the like.
  • examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like.
  • ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cations such as cations, N, N-diethylanilinium cations, N, N-2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropylammonium cations and dicyclohexylammonium cations Is mentioned.
  • trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl)
  • the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • the ionic compound (B1-1) is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl). Borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable.
  • these ionic compounds (B1-1) can be used alone or in a mixture of two or more.
  • the content of the ionic compound (B1-1) in the first polymerization catalyst composition is preferably 0.1 to 10 times mol and about 1 time mol to the component (A1). Is more preferable.
  • the aluminoxane (B1-2) is a compound obtained by bringing an organoaluminum compound into contact with a condensing agent.
  • Aluminoxane or cyclic aluminoxane (wherein R ′ is a hydrocarbon group having 1 to 10 carbon atoms, some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group, and the polymerization degree of the repeating unit) Is preferably 5 or more, more preferably 10 or more).
  • R ′ examples include a methyl group, an ethyl group, a propyl group, and an isobutyl group, and among these, a methyl group is preferable.
  • organoaluminum compound used as the raw material for the aluminoxane include trialkylaluminums such as trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable.
  • an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used.
  • the content of the aluminoxane (B1-2) in the first polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the rare earth element M constituting the component (A1) is about 10 to 1000. It is preferable that
  • the halogen compound (B1-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen.
  • a Lewis acid a complex compound of a metal halide and a Lewis base
  • an organic compound containing an active halogen for example, the rare earth element compound as the component (A1) or By reacting with the reaction product with the Lewis base, a cationic transition metal compound, a halogenated transition metal compound, or a compound having a transition metal center with insufficient charge can be generated.
  • the total content of the halogen compound (B1-3) in the first polymerization catalyst composition is preferably 1 to 5 times mol with respect to the component (A1).
  • boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used.
  • a halogen compound containing an element belonging to Group 4, Group 5, Group 6, or Group 8 can also be used.
  • aluminum halide or organometallic halide is used.
  • chlorine or bromine is preferable.
  • the Lewis acid examples include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride,
  • the metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine.
  • a Lewis base which comprises the complex compound of the said metal halide and a Lewis base
  • a phosphorus compound a carbonyl compound, a nitrogen compound, an ether compound, alcohol, etc. are preferable.
  • tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol, lauryl alcohol are preferred.
  • the Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
  • organic compound containing the active halogen examples include benzyl chloride.
  • the component (C1) used in the first polymerization catalyst composition is the following general formula (I): YR 1 a R 2 b R 3 c (I) (In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are monovalent hydrocarbons having 1 to 10 carbon atoms. R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y is a periodic rule.
  • organoaluminum compound of the general formula (V) examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, and tripentyl.
  • the organometallic compound as the component (C1) described above can be used singly or in combination of two or more.
  • the content of the organometallic compound in the first polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol for the component (A1).
  • Addition of the additive (D1) that can be an anionic ligand is preferable because it provides an effect that a multi-component copolymer having a higher cis-1,4 bond content can be synthesized in a high yield.
  • the additive (D1) is not particularly limited as long as it can exchange with the amino group of the component (A1), but preferably has any of OH, NH, and SH groups.
  • compounds having an OH group include aliphatic alcohols and aromatic alcohols.
  • Examples of those having an NH group include primary amines and secondary amines such as alkylamines and arylamines. Specific examples include dimethylamine, diethylamine, pyrrole, ethanolamine, diethanolamine, dicyclohexylamine, N, N′-dibenzylethylenediamine, bis (2-diphenylphosphinophenyl) amine and the like.
  • Examples of those having an SH group include aliphatic thiols, aromatic thiols and the like, and compounds represented by the following general formulas (VI) and (VII).
  • R 1 , R 2 and R 3 are each independently —O—C j H 2j + 1 , — (O—C k H 2k —) a —O—C m H 2m + 1 or — C n H 2n + 1 , j, m and n are each independently 0 to 12, k and a are each independently 1 to 12, and R 4 is 1 to 12 carbon atoms.
  • 12 is a linear, branched, or cyclic, saturated or unsaturated alkylene group, cycloalkylene group, cycloalkylalkylene group, cycloalkenylalkylene group, alkenylene group, cycloalkenylene group, cycloalkylalkenylene group, cyclohexane
  • Specific examples of those represented by the general formula (VI) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, (mercaptomethyl) dimethylethoxysilane, mercaptomethyltri And methoxysilane.
  • W is —NR 8 —, —O— or —CR 9 R 10 —
  • R 8 and R 9 are —C p H 2p + 1
  • R 10 is —C q H 2q + 1
  • p and q are each independently 0 to 20
  • R 5 and R 6 are each independently —M—C r H 2r — (where M is —O— or —CH 2 —, and r is 1 to 20, and
  • R 7 is —O—C j H 2j + 1 , — (O—C k H 2k —).
  • R 4 is a 1 to 12 carbon atoms, a straight-chain, branched, or cyclic, saturated or unsaturated, alkylene group, cycloalkylene group, cycloalkylalkylene group, a cycloalkenyl alkylene group, an alkenylene , Cycloalkenylene group, a cycloalkyl alkenylene group, cycloalkenyl alkenylene group, an arylene group or an aralkylene group.
  • Specific examples of the compound represented by the general formula (VII) include 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-methylaza-2-silacyclooctane, 3-mercaptopropyl (ethoxy) -1,3.
  • an anionic tridentate ligand precursor represented by the following general formula (VIII) can be preferably used as the additive (D1).
  • E 1 -T 1 -XT 2 -E 2 (VIII) (In the formula, X represents an anionic electron-donating group containing a coordination atom selected from Group 15 atoms of the Periodic Table; E 1 and E 2 are each independently Groups 15 and 16 of the Periodic Table; A neutral electron donating group containing a coordinating atom selected from group atoms, and T 1 and T 2 each represent a bridging group that crosslinks X, E 1 and E 2. )
  • the additive (D1) is preferably added in an amount of 0.01 to 10 mol, particularly 0.1 to 1.2 mol with respect to 1 mol of the rare earth element compound.
  • the addition amount is 0.1 mol or more, the polymerization reaction of the monomer proceeds sufficiently.
  • the addition amount is preferably the same amount (1.0 mol) as the rare earth element compound, but an excessive amount may be added.
  • the neutral electron donating groups E 1 and E 2 are groups containing a coordinating atom selected from Groups 15 and 16 of the periodic table. E 1 and E 2 may be the same group or different groups. Examples of the coordinating atom include nitrogen N, phosphorus P, oxygen O, sulfur S and the like, and P is preferred.
  • the neutral electron donating group E 1 or E 2 is a diarylphosphino group such as a diphenylphosphino group or a ditolylphosphino group.
  • a dialkylphosphino group such as a dimethylphosphino group or a diethylphosphino group; an alkylarylphosphino group such as a methylphenylphosphino group is exemplified, and a diarylphosphino group is preferably exemplified.
  • the neutral electron donating group E 1 or E 2 is a dialkyl such as a dimethylamino group, a diethylamino group, or a bis (trimethylsilyl) amino group.
  • Examples include amino groups; diarylamino groups such as diphenylamino groups; alkylarylamino groups such as methylphenyl groups.
  • the neutral electron donating group E 1 or E 2 is an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group; Examples thereof include aryloxy groups such as phenoxy group and 2,6-dimethylphenoxy group.
  • the neutral electron donating group E 1 or E 2 is an alkylthio group such as a methylthio group, an ethylthio group, a propylthio group, or a butylthio group; Examples thereof include arylthio groups such as phenylthio group and tolylthio group.
  • the anionic electron donating group X is a group containing a coordination atom selected from Group 15 of the periodic table.
  • the coordination atom is preferably phosphorus P or nitrogen N, more preferably N.
  • the bridging groups T 1 and T 2 may be any group capable of bridging X, E 1 and E 2 , and examples thereof include an arylene group which may have a substituent on the aryl ring.
  • T 1 and T 2 may be the same group or different groups.
  • the arylene group may be a phenylene group, a naphthylene group, a pyridylene group, a thienylene group (preferably a phenylene group or a naphthylene group), or the like. Any group may be substituted on the aryl ring of the arylene group.
  • substituents examples include alkyl groups such as methyl group and ethyl group; aryl groups such as phenyl group and tolyl group; halogen groups such as fluoro, chloro and bromo; silyl groups such as trimethylsilyl group and the like. More preferred examples of the arylene group include a 1,2-phenylene group.
  • second polymerization catalyst composition As the second polymerization catalyst composition (hereinafter also referred to as “second polymerization catalyst composition”), the following general formula (IX): (wherein M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and R a to R f each independently represents an alkyl having 1 to 3 carbon atoms.
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R each independently represents an unsubstituted or substituted indenyl group
  • X ′ represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, or an amino group.
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl
  • X represents a hydrogen atom, a halogen atom, an alkoxy group or a thiolate group.
  • the second polymerization catalyst composition may further contain other components contained in the polymerization catalyst composition containing a normal metallocene complex, such as a promoter.
  • the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof bonded to the central metal.
  • a certain metallocene complex may be called a half metallocene complex.
  • the concentration of the complex contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / L.
  • Cp R in the formula is unsubstituted indenyl or substituted indenyl.
  • Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-x R x or C 9 H 11-x R x .
  • X is an integer of 0 to 7 or 0 to 11.
  • each R is preferably independently a hydrocarbyl group or a metalloid group. The number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8.
  • hydrocarbyl group examples include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • substituted indenyl examples include 2-phenylindenyl, 2-methylindenyl and the like.
  • two Cp R in general formula (IX) and (X) may mutually be same or different.
  • Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl It is preferable that
  • Cp R ′ having the cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-x R x .
  • X is an integer of 0 to 5.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following. (In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)
  • Cp R ′ having the indenyl ring as a basic skeleton is defined in the same manner as Cp R in the general formulas (IX) and (X), and preferred examples thereof are also the same.
  • Cp R ′ having the fluorenyl ring as a basic skeleton can be represented by C 13 H 9-x R x or C 13 H 17-x R x .
  • X is an integer of 0 to 9 or 0 to 17.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • the central metal M in the general formulas (IX), (X) and (XI) is a lanthanoid element, scandium or yttrium.
  • the lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used.
  • Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
  • the metallocene complex represented by the general formula (IX) includes a silylamide ligand [—N (SiR 3 ) 2 ].
  • the R groups (R a to R f in the general formula (IX)) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Further, it is preferable that at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst is facilitated, and the bulk around silicon is reduced, so that non-conjugated olefin compounds and aromatic vinyl compounds are introduced. It becomes easy.
  • At least one of R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom. Furthermore, a methyl group is preferable as the alkyl group.
  • the metallocene complex represented by the general formula (X) contains a silyl ligand [—SiX ′ 3 ].
  • X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (XI) described below, and preferred groups are also the same.
  • X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, and a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but is preferably a chlorine atom or a bromine atom.
  • the alkoxy group represented by X is an aliphatic alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, or a tert-butoxy group; a phenoxy group 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6 Examples include aryloxy groups such as -neopentylphenoxy group and 2-isopropyl-6-neopentylphenoxy group. Among these, 2,6-di-tert-butylphenoxy group is preferable.
  • the thiolate group represented by X includes a thiomethoxy group, a thioethoxy group, a thiopropoxy group, a thio n-butoxy group, a thioisobutoxy group, a thiosec-butoxy group, a thiotert-butoxy group, Group thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Arylthiolate groups such as thiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group, etc. Among these, 2,4,6-triisopropylthiophenoxy group, etc.
  • examples of the amino group represented by X include aliphatic amino groups such as dimethylamino group, diethylamino group and diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group, 2 , 6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-
  • Examples thereof include arylamino groups such as 6-neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group. Among these, bistrimethylsilylamino Groups are preferred.
  • examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like.
  • a tris (trimethylsilyl) silyl group is preferable.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by X specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Linear or branched aliphatic hydrocarbon groups such as isobutyl, sec-butyl, tert-butyl, neopentyl, hexyl and octyl; aromatic hydrocarbons such as phenyl, tolyl and naphthyl Groups; aralkyl groups such as benzyl groups, etc .; hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl groups, bistrimethylsilylmethyl groups, etc., among these, methyl groups, ethyl groups, isobutyl groups, trimethylsilylmethyl Groups and the like are preferred.
  • X is preferably a bistrimethylsilylamino group or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the non-coordinating anion represented by, for example, a tetravalent boron anion.
  • tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Deca
  • the metallocene complex represented by the above general formulas (IX) and (X) and the half metallocene cation complex represented by the above general formula (XI) may further have 0 to 3, preferably 0 to 1, neutral Lewis Contains base L.
  • examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
  • the neutral Lewis bases L may be the same or different.
  • metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) may exist as a monomer, and may be a dimer. Or it may exist as a multimer more than that.
  • the metallocene complex represented by the general formula (IX) includes, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt) and bis (trialkylsilyl). It can be obtained by reacting with an amine salt (for example, potassium salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (IX) is shown. (In the formula, X ′′ represents a halide.)
  • the metallocene complex represented by the general formula (X) includes, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt), and a silyl salt (for example, potassium). Salt or lithium salt).
  • reaction temperature should just be about room temperature, it can manufacture on mild conditions.
  • the reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used.
  • the example of reaction for obtaining the metallocene complex represented by general formula (X) is shown. (In the formula, X ′′ represents a halide.)
  • the half metallocene cation complex represented by the general formula (XI) can be obtained, for example, by the following reaction.
  • M represents a lanthanoid element, scandium or yttrium, and Cp R ′ independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl.
  • X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, or a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • L represents a neutral Lewis base
  • w represents An integer from 0 to 3 is shown.
  • [A] + [B] ⁇ [A] + represents a cation
  • [B] ⁇ represents a non-coordinating anion.
  • Examples of the cation represented by [A] + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation.
  • the tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like.
  • amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N— N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation.
  • trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation
  • Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable.
  • the ionic compound represented by the general formula [A] + [B] ⁇ used for the above reaction is a compound selected and combined from the above non-coordinating anions and cations, and is an N, N-dimethylaniline. Preference is given to nium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like.
  • the ionic compound represented by the general formula [A] + [B] ⁇ is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol based on the metallocene complex.
  • the half metallocene cation complex represented by the general formula (XI) may be provided as it is in the polymerization reaction system, or the compound represented by the general formula (XII) and formula used in the reaction [a] + [B] - provides an ionic compound represented separately into the polymerization reaction system, the general formula in the reaction system (XI You may form the half metallocene cation complex represented by this.
  • a half metallocene cation complex represented by (XI) can also be formed.
  • the structures of the metallocene complexes represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) are preferably determined by X-ray structural analysis.
  • the co-catalyst that can be used in the second polymerization catalyst composition can be arbitrarily selected from components used as a co-catalyst for a polymerization catalyst composition containing a normal metallocene complex.
  • suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.
  • the aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable.
  • the content of the aluminoxane in the second polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the central metal M of the metallocene complex is about 10 to 1000, preferably about 100. It is preferable to do.
  • the organoaluminum compound the general formula AlRR′R ′′ (wherein R and R ′ are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, or a hydrogen atom).
  • R ′′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms).
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride.
  • trialkylaluminum is preferable.
  • examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum.
  • the content of the organoaluminum compound in the polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol relative to the metallocene complex.
  • each of the metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) is used as an appropriate promoter.
  • the cis-1,4 bond content and the molecular weight of the resulting polymer can be increased.
  • the third polymerization catalyst composition (hereinafter, also referred to as “third polymerization catalyst composition”), as the rare earth element-containing compound, the following general formula (XIII): R a MX b QY b (XIII) (In the formula, each R independently represents unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium, and each X independently represents carbon.
  • a polymerization catalyst composition comprising a metallocene composite catalyst represented by 1-20 monovalent hydrocarbon groups or hydrogen atoms, wherein Y is coordinated to Q, and a and b are 2. Is mentioned.
  • metallocene composite catalyst In a preferred example of the metallocene composite catalyst, the following general formula (XIV): (In the formula, M 1 represents a lanthanoid element, scandium or yttrium, Cp R independently represents an unsubstituted or substituted indenyl group, and R A and R B each independently represents one having 1 to 20 carbon atoms. R A and R B are ⁇ -coordinated to M 1 and Al, and R C and R D each independently represent a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom.
  • the metallocene composite catalyst for example, a catalyst previously combined with an aluminum catalyst, it is possible to reduce or eliminate the amount of alkylaluminum used during the synthesis of the multi-component copolymer.
  • a conventional catalyst system it is necessary to use a large amount of alkylaluminum at the time of synthesizing the multicomponent copolymer.
  • the metal M in the general formula (XIII) is a lanthanoid element, scandium or yttrium.
  • the lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used.
  • Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
  • each R is independently an unsubstituted indenyl or a substituted indenyl, and the R is coordinated to the metal M.
  • substituted indenyl include, for example, 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group, and the like.
  • Q represents a group 13 element in the periodic table, and specific examples include boron, aluminum, gallium, indium, thallium and the like.
  • each X independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and X is ⁇ -coordinated to M and Q.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • the ⁇ coordination is a coordination mode having a crosslinked structure.
  • each Y independently represents a monovalent hydrocarbon group or hydrogen atom having 1 to 20 carbon atoms, and the Y is coordinated to Q.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • the metal M 1 is a lanthanoid element, scandium or yttrium.
  • the lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used.
  • Preferred examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
  • Cp R is unsubstituted indenyl or substituted indenyl.
  • Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7X R X or C 9 H 11X R X.
  • X is an integer of 0 to 7 or 0 to 11.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • Specific examples of the substituted indenyl include 2-phenylindenyl, 2-methylindenyl and the like. Note that the two Cp R 's in formula (XIV) may be the same or different from each other.
  • R A and R B each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R A and R B are ⁇ -coordinated to M 1 and Al. doing.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • the ⁇ coordination is a coordination mode having a crosslinked structure.
  • R C and R D are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • the metallocene composite catalyst is, for example, in a solvent, represented by the following general formula (XV):
  • M 2 represents a lanthanoid element, scandium or yttrium
  • Cp R independently represents unsubstituted or substituted indenyl
  • R E to R J each independently represents 1 to 3 carbon atoms.
  • L is a neutral Lewis base
  • w is, the metallocene complex represented by an integer of 0-3)
  • an organoaluminum compound represented by AlR K R L R M It is obtained by reacting with.
  • reaction temperature should just be about room temperature, it can manufacture on mild conditions.
  • the reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product.
  • a solvent that dissolves the raw material and the product For example, toluene or hexane may be used.
  • the structure of the metallocene composite catalyst is preferably determined by 1 H-NMR or X-ray structural analysis.
  • Cp R is unsubstituted indenyl or substituted indenyl, and has the same meaning as Cp R in the general formula (XIV).
  • the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above formula (XIV).
  • the metallocene complex represented by the general formula (XV) includes a silylamide ligand [—N (SiR 3 ) 2 ].
  • the R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Further, at least one of R E to R J is preferably a hydrogen atom. By making at least one of R E to R J a hydrogen atom, the catalyst can be easily synthesized. Furthermore, a methyl group is preferable as the alkyl group.
  • the metallocene complex represented by the general formula (XV) further contains 0 to 3, preferably 0 to 1 neutral Lewis base L.
  • the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
  • the neutral Lewis bases L may be the same or different.
  • the metallocene complex represented by the general formula (XV) may exist as a monomer, or may exist as a dimer or a higher multimer.
  • the organoaluminum compound used for producing the metallocene composite catalyst is represented by AlR K R L R M , where R K and R L are each independently a monovalent carbon atom having 1 to 20 carbon atoms.
  • R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that R M may be the same as or different from R K or R L described above.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
  • organoaluminum compound examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, tri Hexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride , Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-propylaluminum Muzi hydride, isobutylaluminum dihydride and the like.
  • triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred.
  • these organoaluminum compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them.
  • the amount of the organoaluminum compound used for the production of the metallocene composite catalyst is preferably 1 to 50 times mol, more preferably about 10 times mol relative to the metallocene complex.
  • the third polymerization catalyst composition may include the metallocene composite catalyst and a boron anion, and further, other components contained in the polymerization catalyst composition including a normal metallocene catalyst, such as a promoter. It is preferable to contain.
  • the metallocene composite catalyst and boron anion are also referred to as a two-component catalyst. According to the third polymerization catalyst composition, since the boron anion is further contained in the same manner as the metallocene composite catalyst, the content of each monomer component in the polymer can be arbitrarily controlled. It becomes.
  • boron anion constituting the two-component catalyst in the third polymerization catalyst composition include a tetravalent boron anion.
  • tetraphenylborate tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl) Phenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarboundecaborate Among
  • the boron anion can be used as an ionic compound combined with a cation.
  • the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation.
  • the tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl).
  • amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N— N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation.
  • Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable. Therefore, as the ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable.
  • the ionic compound composed of a boron anion and a cation is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol based on the metallocene composite catalyst.
  • the metallocene composite catalyst of the general formula (XIV) can be synthesized. Can not. Therefore, for the preparation of the third polymerization catalyst composition, it is necessary to synthesize the metallocene composite catalyst in advance, isolate and purify the metallocene composite catalyst, and then combine with the boron anion.
  • aluminoxane can be preferably used.
  • the aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable. These aluminoxanes may be used alone or in combination of two or more.
  • the fourth polymerization catalyst composition (hereinafter also referred to as “fourth polymerization catalyst composition”) A rare earth element compound (component (A2)), ⁇ Cyclopentadiene skeleton-containing compound selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene (hereinafter simply referred to as “cyclopentadiene skeleton-containing compound”) ) (Component (B2)), It is necessary to include.
  • the fourth polymerization catalyst composition ⁇ Organic metal compound (component (C2)), ⁇ Aluminoxane compound ((D2 component)), ⁇ Halogen compounds (component (E2)), May be included.
  • the fourth polymerization catalyst composition preferably has high solubility in aliphatic hydrocarbons, and is preferably a homogeneous solution in aliphatic hydrocarbons.
  • examples of the aliphatic hydrocarbon include hexane, cyclohexane, pentane, and the like.
  • a 4th polymerization catalyst composition does not contain an aromatic hydrocarbon.
  • examples of the aromatic hydrocarbon include benzene, toluene, xylene, and the like.
  • "it does not contain an aromatic hydrocarbon” means that the ratio of the aromatic hydrocarbon contained in a polymerization catalyst composition is less than 0.1 mass%.
  • the component (A2) can be a rare earth element-containing compound having a metal-nitrogen bond (MN bond) or a reaction product of the rare earth element-containing compound and a Lewis base.
  • the rare earth element-containing compound include compounds containing a lanthanoid element composed of scandium, yttrium, or an element having an atomic number of 57 to 71.
  • Specific examples of the lanthanoid element include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the Lewis base examples include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
  • the rare earth element-containing compound and the reaction product of the rare earth element-containing compound and the Lewis base preferably do not have a bond between the rare earth element and carbon.
  • the rare earth element-containing compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle.
  • the said (A2) component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • XVI M- (AQ 1 ) (AQ 2 ) (AQ 3 ) (XVI) [Wherein M is a scandium, yttrium or lanthanoid element; AQ 1 , AQ 2 and AQ 3 are functional groups which may be the same or different; A is nitrogen, oxygen or sulfur; Yes; provided that it has at least one MA bond].
  • the lanthanoid elements are specifically lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the compound is a component that can improve the catalytic activity in the reaction system, shorten the reaction time, and increase the reaction temperature.
  • gadolinium is particularly preferable from the viewpoint of enhancing catalyst activity and reaction controllability.
  • examples of the functional group represented by AQ 1 , AQ 2 and AQ 3 include an amino group. And in this case, it has three MN bonds.
  • amino group examples include aliphatic amino groups such as dimethylamino group, diethylamino group, and diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, Examples include arylamino groups such as 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group, and are particularly soluble in aliphatic hydrocarbons and aromatic hydrocarbons.
  • the component (A2) can be a compound having three MN bonds, and each bond becomes chemically equivalent, and the structure of the compound becomes stable, so that handling is easy. Moreover, if it is set as the said structure, the catalyst activity in a reaction system can further be improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.
  • the rare earth element-containing compound represented by the general formula (XVI) (that is, M- (OQ 1 ) (OQ 2 ) (OQ 3 )) is particularly limited.
  • R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
  • the component (A2) since it is preferable not to have a bond between a rare earth element and carbon, the above-described compound (XVII) or compound (XVIII) can be suitably used.
  • the rare earth element-containing compound represented by the general formula (XVI) (that is, M- (SQ 1 ) (SQ 2 ) (SQ 3 )) is particularly limited.
  • R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
  • the component (A2) since it is preferable not to have a bond between a rare earth element and carbon, the above-described compound (XIX) or compound (XX) can be suitably used.
  • the component (B2) is a compound selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene.
  • the said (B2) component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • substituted or unsubstituted cyclopentadiene examples include cyclopentadiene, pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene, and the like.
  • Examples of the substituted or unsubstituted indene include indene, 2-phenyl-1H-indene, 3-benzyl-1H-indene, 3-methyl-2-phenyl-1H-indene, and 3-benzyl-2-phenyl-1H.
  • -Indene 1-benzyl-1H-indene, 1-methyl-3-dimethylbenzylsilyl-indene, 1,3- (t-BuMe 2 Si) 2 -indene and the like, and particularly the viewpoint of reducing the molecular weight distribution Therefore, 3-benzyl-1H-indene and 1-benzyl-1H-indene are preferable.
  • substituted or unsubstituted fluorene examples include fluorene, trimethylsilylfluorene, isopropylfluorene, and the like.
  • Y is a metal element selected from the group consisting of elements of Group 1, Group 2, Group 12 and Group 13 of the Periodic Table; R 4 and R 5 are carbon atoms of 1; To 10 monovalent hydrocarbon groups or hydrogen atoms, and R 6 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, provided that R 4 , R 5 and R 6 are the same as each other.
  • Y is a Group 1 metal element, a is 1 and b and c are 0, and Y is a Group 2 or Group 12 metal element.
  • a and b are 1 and c is 0, and when Y is a Group 13 metal element, a, b and c are 1). Is mentioned.
  • the polymerization catalyst composition further contains a component (C2), the polymerization activity can be increased.
  • the component (C2) is represented by the following general formula (XXII): AlR 4 a R 5 b R 6 c (XXII) [Wherein, R 4 and R 5 are monovalent hydrocarbon groups or hydrogen atoms having 1 to 10 carbon atoms; R 6 is a monovalent hydrocarbon group having 1 to 10 carbon atoms; R 4 , R 5 and R 6 may be the same or different from each other].
  • organoaluminum compound examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, and trihexyl.
  • the said organoaluminum compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the aluminoxane compound (component (D2)) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other.
  • component (D2) the catalytic activity in the polymerization reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.
  • examples of the organoaluminum compound include trialkylaluminum such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof. Particularly, trimethylaluminum, and a mixture of trimethylaluminum and tributylaluminum are preferable.
  • examples of the condensing agent include water.
  • Examples of the component (D2) include the following formula (XXIII): -(Al (R 7 ) O) n- (XXIII) (Wherein, R 7 is a hydrocarbon group having 1 to 10 carbon atoms, wherein a portion of the hydrocarbon group may be substituted by halogen and / or alkoxy group; R 7 is between the repeating units And may be the same or different; n is 5 or more).
  • the molecular structure of the aluminoxane may be linear or cyclic.
  • N in the formula (XXIII) is preferably 10 or more.
  • examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isobutyl group, and the like, and a methyl group is particularly preferable.
  • the hydrocarbon group may be one kind or a combination of two or more kinds.
  • the hydrocarbon group is preferably a combination of a methyl group and an isobutyl group.
  • the aluminoxane preferably has high solubility in aliphatic hydrocarbons, and preferably has low solubility in aromatic hydrocarbons.
  • aluminoxane marketed as a hexane solution is preferable.
  • examples of the aliphatic hydrocarbon include hexane and cyclohexane.
  • the component (D2) is particularly represented by the following formula (XXIV): -(Al (CH 3 ) x (iC 4 H 9 ) y O) m- (XXIV) (In the formula, x + y is 1; m is 5 or more).
  • TMAO include a product name “TMAO341” manufactured by Tosoh Fine Chemical Co., Ltd.
  • the component (D2) is particularly represented by the following formula (XXV): -(Al (CH 3 ) 0.7 (iC 4 H 9 ) 0.3 O) k- (XXV) (Wherein k is 5 or more), and may be a modified aluminoxane (hereinafter also referred to as “MMAO”).
  • MMAO is a product name “MMAO-3A” manufactured by Tosoh Fine Chemical Co., Ltd.
  • the component (D2) is particularly represented by the following formula (XXVI): -[(CH 3 ) AlO] i- (XXVI) (Wherein i is 5 or more), a modified aluminoxane (hereinafter also referred to as “PMAO”).
  • PMAO a modified aluminoxane
  • An example of PMAO is “PMAO-211” manufactured by Tosoh Fine Chemical Co., Ltd.
  • the component (D2) is preferably MMAO or TMAO among the above-mentioned MMAO, TMAO, and PMAO from the viewpoint of improving the effect of improving the catalyst activity, and in particular, from the viewpoint of further enhancing the effect of improving the catalyst activity. More preferably, it is TMAO.
  • the halogen compound (component (E2)) is a halogen-containing compound which is a Lewis acid (hereinafter also referred to as “(E2-1) component”), a complex compound of a metal halide and a Lewis base (hereinafter referred to as “(E2- 2) component ”) and an organic compound containing an active halogen (hereinafter also referred to as“ component (E2-3) ”).
  • component (A2) that is, a rare earth element-containing compound having an MA bond, or a reaction product of the rare earth element-containing compound and a Lewis base to form a cationic transition metal compound, a halogenated transition, A metal compound and / or a transition metal compound in which electrons are insufficient at the transition metal center are generated.
  • component (E2) the amount of cis-1,4 bonds of the conjugated diene unit can be particularly increased.
  • Examples of the (E2-1) component include elements of Group 3, Group 4, Group 5, Group 6, Group 8, Group 13, Group 14 or Group 15 of the Periodic Table.
  • Examples of the halogen-containing compounds include aluminum halides and organometallic halides.
  • Examples of halogen-containing compounds that are Lewis acids include titanium tetrachloride, tungsten hexachloride, tri (pentafluorophenyl) borate, methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide.
  • Examples include bromide, tri (pentafluorophenyl) aluminum, dibutyltin dichloride, tin tetrachloride, phosphorus trichloride, phosphorus pentachloride, antimony trichloride, antimony pentachloride, etc., especially ethyl aluminum dichloride, ethyl aluminum dibromide, diethyl Aluminum chloride, diethylaluminum bromide, ethylaluminum ses
  • Examples of the metal halide used for the component (E2-2) include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, calcium iodide.
  • the Lewis base used for the component (E2-2) is preferably a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, or an alcohol.
  • tributyl phosphate tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone, propio Nitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethylhexanoic acid, oleic acid, stearic acid Benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-
  • the number of moles of the Lewis base is 0.01 to 30 moles, preferably 0.5 to 10 moles per mole of the metal halide.
  • the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
  • the above-mentioned complex compound of metal halide and Lewis base may be used alone or in combination of two or more.
  • Examples of the component (E3-3) include benzyl chloride.
  • the molar ratio of the amount of the component (B2) (cyclopentadiene skeleton-containing compound) to the component (A2) is preferably more than 0 and more preferably 0.5 or more from the viewpoint of obtaining sufficient catalyst activity.
  • it is 1 or more, particularly preferably 3 or less, more preferably 2.5 or less, and 2.2 or less from the viewpoint of suppressing a decrease in catalyst activity. Particularly preferred.
  • the molar ratio of the component (C2) component (organometallic compound) to the component (A2) is preferably 1 or more, more preferably 5 or more, Further, from the viewpoint of suppressing a decrease in catalyst activity in the reaction system, it is preferably 50 or less, more preferably 30 or less, and specifically about 10 is preferable.
  • the molar ratio of aminium in component (D2) (aluminoxane) to the rare earth element in component (A2) is preferably 10 or more, and more preferably 100 or more. More preferably, from the viewpoint of suppressing a decrease in catalyst activity in the reaction system, it is preferably 1000 or less, more preferably 800 or less.
  • the molar ratio of the component (E2) component (halogen compound) to the component (A2) is preferably 0 or more, more preferably 0.5 or more. It is particularly preferably 0 or more, and is preferably 20 or less, and more preferably 10 or less, from the viewpoint of maintaining the solubility of the component (E2) and suppressing a decrease in catalytic activity. Therefore, according to the above range, the effect of increasing the cis-1,4 bond amount or 1,4 bond amount of the conjugated diene unit can be enhanced.
  • the fourth polymerization catalyst composition includes a non-coordinating anion (for example, a tetravalent boron anion) and a cation (for example, a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, and a cycloheptatrienyl cation). And an ionic compound composed of a ferrocenium cation having a transition metal).
  • the ionic compound has high solubility in aromatic hydrocarbons and low solubility in hydrocarbons. Therefore, if it is set as the polymerization catalyst composition which does not contain an ionic compound, a conjugated diene polymer can be manufactured, reducing environmental impact and manufacturing cost further.
  • "it does not contain an ionic compound” means that the ratio of the ionic compound contained in a polymerization catalyst composition is less than 0.01 mass%.
  • the coupling step is a step of performing a reaction (coupling reaction) for modifying at least a part (for example, a terminal) of the polymer chain of the multi-component copolymer obtained in the polymerization step.
  • the coupling reaction is preferably performed when the polymerization reaction reaches 100%.
  • the coupling agent used in the coupling reaction is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a tin-containing compound such as bis (-1-octadecyl maleate) dioctyl tin (IV);
  • examples include isocyanate compounds such as 4,4′-diphenylmethane diisocyanate; alkoxysilane compounds such as glycidylpropyltrimethoxysilane, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • bis (-1-octadecyl maleate) dioctyltin (IV) is preferable from the viewpoint of reaction efficiency and low gel formation.
  • the number average molecular weight (Mn) can be increased by performing a coupling reaction.
  • the washing step is a step of washing the multi-component copolymer obtained in the polymerization step.
  • the medium used for washing is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include methanol, ethanol, isopropanol and the like.
  • a catalyst derived from a Lewis acid is used as a polymerization catalyst.
  • the amount of the acid to be added is preferably 15 mol% or less with respect to the solvent. Above this, the acid remains in the copolymer, which may adversely affect the reaction during kneading and vulcanization.
  • the amount of catalyst residue in the copolymer can be suitably reduced.
  • the rubber composition of the present invention contains a conjugated diene rubber (a2) other than the above-described multi-component copolymer (a1) as the rubber component (a).
  • the conjugated diene rubber (a2) other than the multi-component copolymer (a1) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • NR natural rubber
  • IR isoprene rubber
  • BR Butadiene rubber
  • CR chloroprene rubber
  • SBR styrene-butadiene rubber
  • SIR styrene-isoprene rubber
  • NBR acrylonitrile-butadiene rubber
  • SBR styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • These conjugated diene rubbers (a2) may be used alone or in combination of two or more.
  • the content of the conjugated diene rubber (a2) in the rubber component (a) is 95% by mass or less, preferably 80% by mass or less, and preferably It exceeds 50 mass%, More preferably, it is 60 mass% or more. If the content of the conjugated diene rubber (a2) in the rubber component (a) exceeds 50% by mass, the workability of the rubber composition is improved. If the content is 60% by mass or more, the workability of the rubber composition is improved. Further, when the amount is 80% by mass or less, the effect of the multi-component copolymer (a1) is sufficiently exerted, and the wear resistance and crack growth resistance of the rubber composition are further improved.
  • the rubber composition of the present invention contains styrene-butadiene rubber as the conjugated diene rubber (a2), and the content of the styrene-butadiene rubber in the rubber component (a) exceeds 50% by mass. Is preferred.
  • the conjugated diene rubber (a2) When a styrene-butadiene rubber generally having a high glass transition temperature is included as the conjugated diene rubber (a2), the affinity between the continuous phase consisting of the conjugated diene rubber (a2) and the dispersed phase consisting of the multi-component copolymer (a1) Since the properties of the dispersed phase consisting of the multi-component copolymer (a1) become small and the domain size of the multi-component copolymer (a1) decreases, the crystal collapse of the multi-component copolymer (a1) is further promoted. The wear resistance and crack growth resistance of the composition are further improved.
  • the content of the styrene-butadiene rubber in the rubber component (a) exceeds 50% by mass, the effect of the styrene-butadiene rubber becomes remarkable, and the wear resistance and crack growth resistance of the rubber composition are improved. Further improvement.
  • the content of the styrene-butadiene rubber in the rubber component (a) is preferably in the range of 60 to 95% by mass.
  • the styrene-butadiene rubber preferably has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of ⁇ 60 ° C. to 0 ° C., more preferably ⁇ 30 ° C. to 0 ° C. If the glass transition temperature (Tg) of the styrene-butadiene rubber is ⁇ 60 ° C. or higher, the affinity between the continuous phase composed of the conjugated diene rubber (a2) and the dispersed phase composed of the multi-component copolymer (a1) is further increased. This improves the wear resistance and crack growth resistance of the rubber composition.
  • Tg glass transition temperature measured by a differential scanning calorimeter
  • the glass transition temperature (Tg) of the styrene-butadiene rubber is 0 ° C. or lower, the viscosity of the continuous phase composed of the conjugated diene rubber (a2) is lowered, and the workability of the rubber composition is further improved.
  • the glass transition temperature is a value measured by the method described in Examples.
  • the styrene-butadiene rubber preferably has a styrene content of 5 to 50% by mass, more preferably 8 to 45% by mass. If the styrene content of the styrene-butadiene rubber is 5% by mass or more, the affinity between the continuous phase composed of the conjugated diene rubber (a2) and the dispersed phase composed of the multi-component copolymer (a1) is further improved. Further, the wear resistance and crack growth resistance of the rubber composition are further improved.
  • the styrene content of the styrene-butadiene rubber is 50% by mass or less, the affinity is improved, the viscosity of the continuous phase composed of the conjugated diene rubber (a2) is lowered, and the workability of the rubber composition is improved. Further improvement.
  • the styrene content is the amount of styrene units bonded in the styrene-butadiene rubber, and is determined from the integral ratio of the 1 H-NMR spectrum.
  • the vinyl bond content in the styrene-butadiene rubber is preferably 15 to 60% by mass, and more preferably 30 to 60% by mass.
  • the affinity between the continuous phase composed of the conjugated diene rubber (a2) and the dispersed phase composed of the multi-component copolymer (a1) is further improved. Further, the wear resistance and crack growth resistance of the rubber composition are further improved.
  • the vinyl bond content of the styrene-butadiene rubber is 60% by mass or less, the affinity is improved and the viscosity of the continuous phase composed of the conjugated diene rubber (a2) is lowered, and the workability of the rubber composition is improved. Further improvement.
  • the vinyl bond content is the amount of butadiene units having vinyl bonds (1,2-bonds) in the styrene-butadiene rubber, and is determined from the integral ratio of the 1 H-NMR spectrum.
  • the rubber composition of the present invention preferably contains a filler.
  • the wear resistance and crack growth resistance of the rubber composition can be further improved.
  • the filler tends to be distributed more in the continuous phase formed from the conjugated diene rubber (a2) than in the dispersed phase formed from the multi-component copolymer (a1).
  • the wear resistance and crack growth resistance of the rubber composition as a whole are further improved by improving the properties and crack growth resistance.
  • the filler is not particularly limited, and carbon black, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, magnesium oxide, oxidation Titanium, potassium titanate, barium sulfate and the like can be mentioned. Among these, carbon black and silica are preferable. These may be used alone or in combination of two or more.
  • the blending amount of the filler is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 10 to 100 parts by weight, preferably 20 to 80 parts by weight with respect to 100 parts by weight of the rubber component (a). Is more preferable, and 30 to 60 parts by mass is particularly preferable. When the blending amount of the filler is 10 parts by mass or more, the effect of improving the reinforcement by blending the filler is sufficiently obtained, and when it is 100 masses or less, good workability is maintained. can do.
  • the rubber composition of the present invention preferably contains a crosslinking agent.
  • a crosslinking agent there is no restriction
  • a sulfur-based crosslinking agent vulcanizing agent
  • the content of the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component (a).
  • a vulcanization accelerator When using the vulcanizing agent, a vulcanization accelerator can be used in combination.
  • the vulcanization accelerator include guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, thiuram, dithiocarbamate, and xanthate compounds.
  • the rubber composition of the present invention if necessary, softener, vulcanization aid, colorant, flame retardant, lubricant, foaming agent, plasticizer, processing aid, antioxidant, anti-aging agent, Known materials such as tackifiers, scorch inhibitors, ultraviolet inhibitors, antistatic agents, anti-coloring agents, and other compounding agents can be used depending on the intended use.
  • the rubber composition of the present invention can be used for various rubber products such as tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices, hoses and the like described later.
  • the tire of the present invention is characterized by using the above rubber composition. Since the tire of the present invention uses the rubber composition described above, it is excellent in wear resistance and crack growth resistance.
  • the application site of the rubber composition of the present invention in a tire is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tread, base tread, sidewall, side reinforcing rubber, and bead filler. .
  • a conventional method can be used. For example, on a tire molding drum, members normally used for manufacturing tires such as a carcass layer, a belt layer, a tread layer and the like made of an unvulcanized rubber composition and / or a cord are sequentially laminated, and the drum is removed and a green tire is removed. To do. Then, a desired tire (for example, a pneumatic tire) can be manufactured by heating and vulcanizing the green tire according to a conventional method.
  • the conveyor belt of the present invention is characterized by using the above rubber composition. Since the conveyor belt of this invention uses the rubber composition mentioned above, it is excellent in abrasion resistance and crack growth resistance.
  • the rubber composition is a surface layer rubber on the inner peripheral side that comes into contact with a driving pulley, a driven pulley, a shape-retaining rotor, etc., at least below a reinforcing member made of a steel cord or the like among conveyor belts. It can be used for (lower surface cover rubber), and can also be used for outer layer surface rubber (upper surface cover rubber) on the upper side of the reinforcing material and in contact with the transport article.
  • a reinforcing material is sandwiched between sheets made of the rubber composition, and the rubber composition is bonded to the reinforcing material by heat-pressing and vulcanizing and bonding. Adhesion and coating may be mentioned.
  • the rubber crawler of the present invention is characterized by using the above rubber composition. Since the rubber crawler of the present invention uses the rubber composition described above, it is excellent in wear resistance and crack growth resistance.
  • the rubber crawler includes a steel cord, an intermediate rubber layer that covers the steel cord, a core metal disposed on the intermediate rubber layer, and a body that surrounds the intermediate rubber layer and the metal core. And a plurality of lugs on the grounding surface side of the main rubber layer.
  • the rubber composition may be used in any part of the rubber crawler of the present invention. However, since it is excellent in wear resistance and crack growth resistance, the rubber composition is preferably used in the main rubber layer, particularly in the lug.
  • the vibration isolator of the present invention is characterized by using the above rubber composition. Since the vibration isolator of the present invention uses the above-described rubber composition, it is excellent in wear resistance and crack growth resistance.
  • the type of the vibration isolator of the present invention is not particularly limited. For example, engine mount, torsional damper, rubber bush, strut mount, bound bumper, helper rubber, member mount, stabilizer bush, air spring, center support, rubber propeller It can be used for shafts, anti-vibration levers, companion dampers, damping rubbers, idler arm bushings, steering column bushings, coupling rubbers, body mounts, muffler supports, dynamic dampers, and piping rubbers.
  • the seismic isolation device of the present invention is characterized by using the above rubber composition. Since the seismic isolation device of the present invention uses the above-described rubber composition, it is excellent in wear resistance and crack growth resistance.
  • the seismic isolation device includes a laminate in which soft layers and hard layers are alternately laminated, and a plug that is press-fitted into a hollow portion formed at the center of the laminate.
  • the rubber composition described above can be used for at least one of the soft layer and the plug.
  • the hose of the present invention is characterized by using the above rubber composition. Since the hose of the present invention uses the above-described rubber composition, it is excellent in wear resistance and crack growth resistance.
  • the hose is provided between an inner surface rubber layer (inner tube rubber) positioned on the radially inner side, an outer surface rubber layer positioned on the radially outer side, and the inner surface rubber layer and the outer surface rubber layer as necessary. And a reinforcing layer located on the surface.
  • the rubber composition described above can be used for at least one of the inner rubber layer and the outer rubber layer.
  • the rubber composition mentioned above can also be used for the hose which consists of a single rubber layer.
  • ⁇ Method for analyzing copolymer> The number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn), content of butadiene unit, ethylene unit and styrene unit, melting point, endothermic peak energy of the copolymer synthesized by the following methods: The glass transition temperature and crystallinity were measured to confirm the main chain structure.
  • Tm Melting point
  • Glass transition temperature (Tg) Using a differential scanning calorimeter (DSC, manufactured by T.A. Instruments Japan, "DSCQ2000"), the glass transition temperature (Tg) of the copolymer was determined in accordance with JIS K 7121-1987.
  • Crystallinity The crystal melting energy of 100% crystalline polyethylene and the melting peak energy of the obtained copolymer were measured, and the crystallinity was calculated from the energy ratio of polyethylene and copolymer.
  • the melting peak energy was measured with a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, “DSCQ2000”).
  • the catalyst solution was added to the pressure resistant stainless steel reactor and heated to 70 ° C.
  • ethylene was charged into the pressure resistant stainless steel reactor at a pressure of 1.5 MPa, and further 80 mL of a toluene solution containing 20 g of 1,3-butadiene was charged into the pressure resistant stainless steel reactor over 8 hours. Copolymerization was carried out for 5 hours.
  • 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5 mass% isopropanol solution was added to the pressure resistant stainless steel reactor to stop the reaction.
  • the copolymer was separated using a large amount of methanol and vacuum-dried at 50 ° C.
  • a terpolymer About the obtained terpolymer, number average molecular weight (Mn), weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), butadiene unit, ethylene unit, styrene unit content, melting point (T m ), Endothermic peak energy, glass transition temperature (Tg), and crystallinity were measured by the above methods. The results are shown in Table 1. Further, when the main chain structure of the obtained ternary copolymer was confirmed by the above method, no peak was observed at 10 to 24 ppm in the 13 C-NMR spectrum chart. The polymer was confirmed to have a main chain consisting only of an acyclic structure.
  • SBR1 Styrene-butadiene rubber, manufactured by JSR Corporation.
  • styrene content 45 mass%
  • vinyl bond content 19 mass%
  • SBR2 Styrene-butadiene rubber, manufactured by JSR Corporation.
  • the rubber composition of the present invention can be used for various rubber products such as tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices and hoses.

Abstract

The present invention addresses the problem of providing a rubber composition that strikes a high degree of balance among wear resistance, crack growth resistance, and workability. The rubber composition is characterized by comprising, as a rubber component (a): a multicomponent copolymer (a1) including a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit and having an endothermic peak energy of 10-150 J/g as measured using a differential scanning calorimeter (DSC) at 0-120°C; and a conjugated diene rubber (a2) other than the multicomponent copolymer (a1), wherein the contained amount of the multicomponent copolymer (a1) in the rubber component (a) is not less than 5 mass% but less than 50 mass%, the conjugated diene rubber (a2) forms a continuous phase, and the multicomponent copolymer (a1) forms a dispersed phase.

Description

ゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースRubber composition, tire, conveyor belt, rubber crawler, vibration isolator, seismic isolator and hose
 本発明は、ゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースに関するものである。 The present invention relates to a rubber composition, a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device, and a hose.
 近年、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置、ホース等のゴム製品の耐久性を向上させるために、耐摩耗性及び耐亀裂成長性に優れたゴム組成物が要求されている。
 かかる要求に対して、本発明者らは、ゴム組成物のゴム成分として、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有する多元共重合体を使用することで、ゴム組成物の耐摩耗性及び耐亀裂成長性が向上することを見出した(下記特許文献1)。
In recent years, in order to improve the durability of rubber products such as tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices, hoses, etc., rubber compositions having excellent wear resistance and crack growth resistance have been required. Yes.
In response to such a requirement, the present inventors use a multi-component copolymer containing a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit as a rubber component of a rubber composition. It has been found that the wear resistance and crack growth resistance of the rubber composition are improved (Patent Document 1 below).
国際公開第2015/190072号International Publication No. 2015/190072
 しかしながら、本発明者らが更に検討したところ、前記多元共重合体を含むゴム組成物は、未加硫状態での粘度が高く、作業性(粘度低減)の観点から、更なる改良が必要であることが分かった。 However, as a result of further investigation by the present inventors, the rubber composition containing the multi-component copolymer has a high viscosity in an unvulcanized state, and further improvement is necessary from the viewpoint of workability (viscosity reduction). I found out.
 そこで、本発明は、上記従来技術の問題を解決し、耐摩耗性と、耐亀裂成長性と、作業性と、を高度にバランスさせたゴム組成物を提供することを課題とする。
 また、本発明は、耐摩耗性及び耐亀裂成長性に優れたタイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースを提供することを更なる課題とする。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a rubber composition in which wear resistance, crack growth resistance, and workability are highly balanced.
Another object of the present invention is to provide a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device, and a hose excellent in wear resistance and crack growth resistance.
 上記課題を解決する本発明の要旨構成は、以下の通りである。 The gist configuration of the present invention for solving the above-described problems is as follows.
 本発明のゴム組成物は、ゴム成分(a)として、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有し、且つ、0~120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10~150J/gである多元共重合体(a1)と、該多元共重合体(a1)以外の共役ジエン系ゴム(a2)と、を含み、
 前記ゴム成分(a)中における、前記多元共重合体(a1)の含有量が、5質量%以上50質量%未満であり、
 前記共役ジエン系ゴム(a2)が連続相を形成し、前記多元共重合体(a1)が分散相を形成していることを特徴とする。
 かかる本発明のゴム組成物は、耐摩耗性と、耐亀裂成長性と、作業性と、が高度にバランスされている。
The rubber composition of the present invention contains, as a rubber component (a), a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a differential scanning calorimeter (DSC) at 0 to 120 ° C. A multi-component copolymer (a1) having an endothermic peak energy measured in 10 to 150 J / g, and a conjugated diene rubber (a2) other than the multi-component copolymer (a1),
The content of the multi-component copolymer (a1) in the rubber component (a) is 5% by mass or more and less than 50% by mass,
The conjugated diene rubber (a2) forms a continuous phase, and the multi-component copolymer (a1) forms a dispersed phase.
The rubber composition of the present invention has a high balance between wear resistance, crack growth resistance and workability.
 本発明のゴム組成物において、前記多元共重合体(a1)は、前記共役ジエン単位の含有量が1~50mol%で、前記非共役オレフィン単位の含有量が40~97mol%で、且つ前記芳香族ビニル単位の含有量が2~35mol%であることが好ましい。この場合、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。 In the rubber composition of the present invention, the multi-component copolymer (a1) has a content of the conjugated diene unit of 1 to 50 mol%, a content of the non-conjugated olefin unit of 40 to 97 mol%, and the aromatic The group vinyl unit content is preferably 2 to 35 mol%. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
 本発明のゴム組成物は、前記共役ジエン系ゴム(a2)として、スチレン-ブタジエンゴムを含有し、前記ゴム成分(a)中における、該スチレン-ブタジエンゴムの含有量が、50質量%を超えることが好ましい。この場合、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。 The rubber composition of the present invention contains styrene-butadiene rubber as the conjugated diene rubber (a2), and the content of the styrene-butadiene rubber in the rubber component (a) exceeds 50% by mass. It is preferable. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
 ここで、前記スチレン-ブタジエンゴムは、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が-60℃~0℃であることが好ましい。この場合、ゴム組成物の耐摩耗性、耐亀裂成長性及び作業性が更に向上する。 Here, it is preferable that the styrene-butadiene rubber has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of −60 ° C. to 0 ° C. In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
 また、前記スチレン-ブタジエンゴムは、スチレン含有量が5~50質量%であることが好ましい。この場合、ゴム組成物の耐摩耗性、耐亀裂成長性及び作業性が更に向上する。 The styrene-butadiene rubber preferably has a styrene content of 5 to 50% by mass. In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
 また、前記スチレン-ブタジエンゴムは、当該スチレン-ブタジエンゴム中のビニル結合含量が15~60質量%であることが好ましい。この場合、ゴム組成物の耐摩耗性、耐亀裂成長性及び作業性が更に向上する。 The styrene-butadiene rubber preferably has a vinyl bond content in the styrene-butadiene rubber of 15 to 60% by mass. In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
 本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30~130℃であることが好ましい。この場合、ゴム組成物の耐摩耗性、耐亀裂成長性及び作業性が更に向上する。 In the rubber composition of the present invention, the multi-component copolymer (a1) preferably has a melting point of 30 to 130 ° C. measured by a differential scanning calorimeter (DSC). In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
 本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定したガラス転移温度が0℃以下であることが好ましい。この場合、ゴム組成物の作業性が更に向上する。 In the rubber composition of the present invention, the multi-component copolymer (a1) preferably has a glass transition temperature of 0 ° C. or less as measured by a differential scanning calorimeter (DSC). In this case, the workability of the rubber composition is further improved.
 本発明のゴム組成物において、前記多元共重合体(a1)は、結晶化度が0.5~50%であることが好ましい。この場合、ゴム組成物の耐摩耗性、耐亀裂成長性及び作業性が更に向上する。 In the rubber composition of the present invention, the multi-component copolymer (a1) preferably has a crystallinity of 0.5 to 50%. In this case, the wear resistance, crack growth resistance and workability of the rubber composition are further improved.
 本発明のゴム組成物において、前記多元共重合体(a1)は、主鎖が非環状構造のみからなることが好ましい。この場合、ゴム組成物の耐亀裂成長性が更に向上する。 In the rubber composition of the present invention, the multi-component copolymer (a1) preferably has a main chain consisting only of an acyclic structure. In this case, the crack growth resistance of the rubber composition is further improved.
 本発明のゴム組成物において、前記多元共重合体(a1)は、前記非共役オレフィン単位が非環状の非共役オレフィン単位であることが好ましい。この場合、ゴム組成物の耐候性が向上する。 In the rubber composition of the present invention, the multi-component copolymer (a1) is preferably such that the non-conjugated olefin unit is an acyclic non-conjugated olefin unit. In this case, the weather resistance of the rubber composition is improved.
 ここで、前記非環状の非共役オレフィン単位が、エチレン単位のみからなることが更に好ましい。この場合、ゴム組成物の耐候性が更に向上する。 Here, it is more preferable that the non-cyclic non-conjugated olefin unit is composed of only ethylene units. In this case, the weather resistance of the rubber composition is further improved.
 本発明のゴム組成物において、前記多元共重合体(a1)は、前記芳香族ビニル単位がスチレン単位を含むことが好ましい。この場合、ゴム組成物の耐候性が更に向上する。 In the rubber composition of the present invention, it is preferable that in the multi-component copolymer (a1), the aromatic vinyl unit includes a styrene unit. In this case, the weather resistance of the rubber composition is further improved.
 本発明のゴム組成物において、前記多元共重合体(a1)は、前記共役ジエン単位が1,3-ブタジエン単位及び/又はイソプレン単位を含むことが好ましい。この場合、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。 In the rubber composition of the present invention, in the multi-component copolymer (a1), the conjugated diene unit preferably contains a 1,3-butadiene unit and / or an isoprene unit. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
 また、本発明のタイヤは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のタイヤは、耐摩耗性及び耐亀裂成長性に優れる。 The tire of the present invention is characterized by using the above rubber composition. Such a tire of the present invention is excellent in wear resistance and crack growth resistance.
 また、本発明のコンベヤベルトは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のコンベヤベルトは、耐摩耗性及び耐亀裂成長性に優れる。 The conveyor belt of the present invention is characterized by using the above rubber composition. Such a conveyor belt of the present invention is excellent in wear resistance and crack growth resistance.
 また、本発明のゴムクローラは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のゴムクローラは、耐摩耗性及び耐亀裂成長性に優れる。 The rubber crawler of the present invention is characterized by using the above rubber composition. Such a rubber crawler of the present invention is excellent in wear resistance and crack growth resistance.
 また、本発明の防振装置は、上記のゴム組成物を用いたことを特徴とする。かかる本発明の防振装置は、耐摩耗性及び耐亀裂成長性に優れる。 Further, the vibration isolator of the present invention is characterized by using the above rubber composition. Such a vibration isolator of the present invention is excellent in wear resistance and crack growth resistance.
 また、本発明の免震装置は、上記のゴム組成物を用いたことを特徴とする。かかる本発明の免震装置は、耐摩耗性及び耐亀裂成長性に優れる。 The seismic isolation device of the present invention is characterized by using the above rubber composition. Such a seismic isolation device of the present invention is excellent in wear resistance and crack growth resistance.
 また、本発明のホースは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のホースは、耐摩耗性及び耐亀裂成長性に優れる。 The hose of the present invention is characterized by using the above rubber composition. Such a hose of the present invention is excellent in wear resistance and crack growth resistance.
 本発明によれば、耐摩耗性と、耐亀裂成長性と、作業性と、を高度にバランスさせたゴム組成物を提供することができる。
 また、本発明によれば、耐摩耗性及び耐亀裂成長性に優れたタイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the rubber composition which highly balanced abrasion resistance, crack growth resistance, and workability | operativity can be provided.
Further, according to the present invention, it is possible to provide a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device, and a hose excellent in wear resistance and crack growth resistance.
 以下に、本発明のゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースを、その実施形態に基づき、詳細に例示説明する。 Hereinafter, the rubber composition, tire, conveyor belt, rubber crawler, vibration isolator, seismic isolation device, and hose of the present invention will be described in detail based on the embodiments.
<ゴム組成物>
 本発明のゴム組成物は、ゴム成分(a)として、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有し、且つ、0~120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10~150J/gである多元共重合体(a1)と、該多元共重合体(a1)以外の共役ジエン系ゴム(a2)と、を含み、前記ゴム成分(a)中における、前記多元共重合体(a1)の含有量が、5質量%以上50質量%未満であり、前記共役ジエン系ゴム(a2)が連続相を形成し、前記多元共重合体(a1)が分散相を形成していることを特徴とする。
<Rubber composition>
The rubber composition of the present invention contains, as a rubber component (a), a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a differential scanning calorimeter (DSC) at 0 to 120 ° C. A multi-component copolymer (a1) having an endothermic peak energy of 10 to 150 J / g and a conjugated diene rubber (a2) other than the multi-component copolymer (a1), wherein the rubber component (a ), The content of the multi-component copolymer (a1) is 5% by mass or more and less than 50% by mass, the conjugated diene rubber (a2) forms a continuous phase, and the multi-component copolymer (a1) ) Form a dispersed phase.
 本発明のゴム組成物は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有する多元共重合体(a1)を含むため、耐摩耗性及び耐亀裂成長性に優れる。
 また、本発明のゴム組成物は、ゴム成分(a)中における、多元共重合体(a1)の含有量が5質量%以上50質量%未満であり、共役ジエン系ゴム(a2)が連続相を形成し、多元共重合体(a1)が分散相を形成していることで、多元共重合体(a1)からなるポリマー相のドメインサイズが小さくなるため、歪による多元共重合体(a1)の結晶崩壊が促進され、耐摩耗性及び耐亀裂成長性が一層向上する。
 更に、本発明のゴム組成物においては、結晶成分を通常有さない、多元共重合体(a1)以外の共役ジエン系ゴム(a2)が連続相を形成しており、ゴム組成物全体としての未加硫粘度は、連続相の粘度への依存が大きいため、ゴム組成物全体としての未加硫粘度も効果的に低減できる。
 そのため、本発明のゴム組成物は、耐摩耗性と、耐亀裂成長性と、作業性(粘度低減)と、を高度にバランスすることができる。
Since the rubber composition of the present invention includes a multi-component copolymer (a1) containing a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, the rubber composition is excellent in wear resistance and crack growth resistance.
In the rubber composition of the present invention, the content of the multi-component copolymer (a1) in the rubber component (a) is 5% by mass or more and less than 50% by mass, and the conjugated diene rubber (a2) is a continuous phase. And the domain size of the polymer phase composed of the multi-component copolymer (a1) is reduced because the multi-component copolymer (a1) forms a dispersed phase, and therefore the multi-component copolymer (a1) due to strain is reduced. The crystal collapse is promoted, and the wear resistance and crack growth resistance are further improved.
Furthermore, in the rubber composition of the present invention, the conjugated diene rubber (a2) other than the multi-component copolymer (a1), which usually does not have a crystal component, forms a continuous phase. Since the unvulcanized viscosity largely depends on the viscosity of the continuous phase, the unvulcanized viscosity of the rubber composition as a whole can be effectively reduced.
Therefore, the rubber composition of the present invention can highly balance wear resistance, crack growth resistance, and workability (viscosity reduction).
 本発明のゴム組成物は、ゴム成分(a)として、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有し、且つ、0~120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10~150J/gである多元共重合体(a1)を含む。
 該多元共重合体(a1)は、0~120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10~150J/gであり、25~130J/gであることが好ましい。多元共重合体(a1)の吸熱ピークエネルギーが10J/g未満では、多元共重合体(a1)の結晶性が不十分であり、歪を受けた際の、多元共重合体(a1)の結晶崩壊が不十分で、耐摩耗性及び耐亀裂成長性の向上効果が小さくなる。一方、多元共重合体(a1)の吸熱ピークエネルギーが150J/gを超えると、多元共重合体(a1)の結晶性が高すぎ、多元共重合体(a1)から形成される分散相の粘度への影響が大きくなって、ゴム組成物全体としての未加硫粘度を十分に低減できなくなる。
The rubber composition of the present invention contains, as a rubber component (a), a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a differential scanning calorimeter (DSC) at 0 to 120 ° C. A multi-component copolymer (a1) having an endothermic peak energy of 10 to 150 J / g.
The multi-component copolymer (a1) has an endothermic peak energy measured by a differential scanning calorimeter (DSC) at 0 to 120 ° C. of 10 to 150 J / g, preferably 25 to 130 J / g. When the endothermic peak energy of the multi-component copolymer (a1) is less than 10 J / g, the crystallinity of the multi-component copolymer (a1) is insufficient and the crystals of the multi-component copolymer (a1) when strained. Collapse is insufficient, and the effect of improving wear resistance and crack growth resistance is reduced. On the other hand, when the endothermic peak energy of the multi-component copolymer (a1) exceeds 150 J / g, the crystallinity of the multi-component copolymer (a1) is too high, and the viscosity of the dispersed phase formed from the multi-component copolymer (a1). As a result, the unvulcanized viscosity of the rubber composition as a whole cannot be sufficiently reduced.
 本発明のゴム組成物は、前記ゴム成分(a)中における、前記多元共重合体(a1)の含有量が、5質量%以上50質量%未満であり、20~40質量%であることが好ましい。ゴム成分(a)中における、多元共重合体(a1)の含有量が5質量%未満では、多元共重合体(a1)による耐摩耗性及び耐亀裂成長性の向上効果が十分に得られない。一方、ゴム成分(a)中における、多元共重合体(a1)の含有量が50質量%以上になると、多元共重合体(a1)からなるポリマー相のドメインサイズが大きくなり、歪による多元共重合体(a1)の結晶崩壊が十分に進まず、耐摩耗性及び耐亀裂成長性の向上効果が小さくなり、また、多元共重合体(a1)の粘度への影響が大きくなって、ゴム組成物全体としての未加硫粘度を十分に低減できなくなる。 In the rubber composition of the present invention, the content of the multi-component copolymer (a1) in the rubber component (a) is 5% by mass or more and less than 50% by mass, and 20 to 40% by mass. preferable. When the content of the multi-component copolymer (a1) in the rubber component (a) is less than 5% by mass, the effect of improving the wear resistance and crack growth resistance by the multi-component copolymer (a1) cannot be sufficiently obtained. . On the other hand, when the content of the multi-component copolymer (a1) in the rubber component (a) is 50% by mass or more, the domain size of the polymer phase composed of the multi-component copolymer (a1) increases, and the multi-component copolymer due to strain increases. The crystal collapse of the polymer (a1) does not proceed sufficiently, the effect of improving wear resistance and crack growth resistance is reduced, and the influence on the viscosity of the multi-component copolymer (a1) is increased, resulting in a rubber composition. The unvulcanized viscosity of the whole product cannot be sufficiently reduced.
 本発明のゴム組成物は、前記共役ジエン系ゴム(a2)が連続相(所謂、海島構造の海相)を形成し、前記多元共重合体(a1)が分散相(所謂、海島構造の島相)を形成している。ここで、前記共役ジエン系ゴム(a2)から形成されるポリマー相と、前記多元共重合体(a1)から形成されるポリマー相とは、非相溶であり、また、共役ジエン系ゴム(a2)が連続相を形成し、多元共重合体(a1)が分散相を形成していることは、走査型電子顕微鏡(SEM)で確認することができる。
 本発明のゴム組成物においては、結晶成分を有さない共役ジエン系ゴム(a2)が連続相を形成しているため、ゴム組成物全体としての未加硫粘度が低く、作業性に優れる。
 また、本発明のゴム組成物においては、多元共重合体(a1)が分散相を形成しており、多元共重合体(a1)からなるポリマー相のドメインサイズが小さいため、歪による多元共重合体(a1)の結晶崩壊が促進され、耐摩耗性及び耐亀裂成長性が一層向上する。
In the rubber composition of the present invention, the conjugated diene rubber (a2) forms a continuous phase (so-called sea-island sea phase), and the multi-component copolymer (a1) is a dispersed phase (so-called sea-island island). Phase). Here, the polymer phase formed from the conjugated diene rubber (a2) and the polymer phase formed from the multi-component copolymer (a1) are incompatible, and the conjugated diene rubber (a2). ) Form a continuous phase, and the multi-component copolymer (a1) forms a dispersed phase can be confirmed by a scanning electron microscope (SEM).
In the rubber composition of the present invention, since the conjugated diene rubber (a2) having no crystal component forms a continuous phase, the rubber composition as a whole has a low unvulcanized viscosity and excellent workability.
In the rubber composition of the present invention, the multi-component copolymer (a1) forms a dispersed phase, and the domain size of the polymer phase composed of the multi-component copolymer (a1) is small. Crystal collapse of the coalescence (a1) is promoted, and the wear resistance and crack growth resistance are further improved.
 なお、前記共役ジエン系ゴム(a2)から形成されるポリマー相と、前記多元共重合体(a1)から形成されるポリマー相とが互いに非相溶性を有するか否かは、ゴム組成物に関しての、(1)目視、(2)動的粘弾性カーブ、(3)走査型電子顕微鏡(SEM)により、総合的に判断することができる。
 (1)については、ゴム組成物の透明度を目視により確認し、透明である場合には相溶性、不透明な箇所が存在する場合には半相溶性、ほぼ全面的に不透明である場合には非相溶性、と判断することができる。
 (2)については、動的粘弾性測定で得られるtanδのカーブにおいて、ガラス転移温度(Tg)ピークが1つであり且つシャープである場合には相溶性、Tgピークが1つであるがブロードである場合には半相溶性、Tgピークが2つ以上存在する場合には非相溶性、と判断することができる。
 (3)については、SEM画像において、1相のみ観察される場合には相溶性、2相以上観察される場合には半相溶または非相溶性、と判断することができる。
 なお、非相溶性を有するか否かの判断は、原則的には(1)及び(2)のみにより行い、(1)及び(2)のみによっては明確な判断ができなかった場合に、(3)により最終判断を行う。
Whether or not the polymer phase formed from the conjugated diene rubber (a2) and the polymer phase formed from the multi-component copolymer (a1) are incompatible with each other depends on the rubber composition. (1) Visual observation, (2) Dynamic viscoelasticity curve, and (3) Scanning electron microscope (SEM).
For (1), the transparency of the rubber composition is confirmed by visual inspection. If it is transparent, it is compatible. If it is opaque, it is semi-compatible. If it is opaque, it is non-transparent. It can be judged as compatible.
For (2), in the curve of tan δ obtained by dynamic viscoelasticity measurement, if the glass transition temperature (Tg) peak is one and it is sharp, the compatibility and the Tg peak are one, but broad. Can be determined as semi-compatible, and when two or more Tg peaks are present, it can be determined as incompatible.
As for (3), in the SEM image, when only one phase is observed, it can be judged as compatible, and when more than one phase is observed, it can be judged as semi-compatible or incompatible.
In principle, the determination of whether or not incompatibility is made is based only on (1) and (2). If a clear determination cannot be made only by (1) and (2), 3) Final decision is made.
 前記多元共重合体(a1)は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を少なくとも含有し、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位のみからなってもよいし、更に他の単量体単位を含有してもよい。 The multi-component copolymer (a1) contains at least a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and consists only of a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit. It may also contain other monomer units.
 前記共役ジエン単位は、単量体としての共役ジエン化合物に由来する構成単位である。該共役ジエン化合物は、炭素数が4~8であることが好ましい。かかる共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。前記共役ジエン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、多元共重合体の単量体としての共役ジエン化合物は、得られる多元共重合体を用いたゴム組成物やタイヤ等の耐摩耗性、耐亀裂成長性を効果的に向上させる観点から、1,3-ブタジエン及び/又はイソプレンを含むことが好ましく、1,3-ブタジエン及び/又はイソプレンのみからなることがより好ましく、1,3-ブタジエンのみからなることが更に好ましい。別の言い方をすると、多元共重合体における共役ジエン単位は、1,3-ブタジエン単位及び/又はイソプレン単位を含むことが好ましく、1,3-ブタジエン単位及び/又はイソプレン単位のみからなることがより好ましく、1,3-ブタジエン単位のみからなることが更に好ましい。 The conjugated diene unit is a structural unit derived from a conjugated diene compound as a monomer. The conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. The conjugated diene compound may be a single kind or a combination of two or more kinds. And, from the viewpoint of effectively improving the wear resistance and crack growth resistance of rubber compositions and tires using the resulting multi-component copolymer, the conjugated diene compound as a monomer of the multi-component copolymer, It preferably contains 1,3-butadiene and / or isoprene, more preferably consists only of 1,3-butadiene and / or isoprene, and more preferably consists only of 1,3-butadiene. In other words, the conjugated diene unit in the multi-component copolymer preferably contains 1,3-butadiene units and / or isoprene units, and more preferably consists only of 1,3-butadiene units and / or isoprene units. Preferably, it consists only of 1,3-butadiene units.
 前記多元共重合体(a1)は、前記共役ジエン単位の含有量が、1mol%以上であることが好ましく、3mol%以上であることがより好ましく、また、50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることが更に好ましく、20mol%以下であることがより更に好ましく、15mol%以下であることがより一層好ましい。共役ジエン単位の含有量が、多元共重合体全体の1mol%以上であると、伸びに優れるゴム組成物及びゴム製品が得られるので好ましく、また、50mol%以下であると、耐候性に優れる。 In the multi-component copolymer (a1), the content of the conjugated diene unit is preferably 1 mol% or more, more preferably 3 mol% or more, and preferably 50 mol% or less, % Or less, more preferably 30 mol% or less, still more preferably 20 mol% or less, and even more preferably 15 mol% or less. When the content of the conjugated diene unit is 1 mol% or more of the entire multi-component copolymer, a rubber composition and a rubber product excellent in elongation can be obtained, and when it is 50 mol% or less, the weather resistance is excellent.
 前記非共役オレフィン単位は、単量体としての非共役オレフィン化合物に由来する構成単位である。該非共役オレフィン化合物は、炭素数が2~10であることが好ましい。かかる非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィン、ピバリン酸ビニル、1-フェニルチオエテン、N-ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。前記非共役オレフィン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、多元共重合体の単量体としての非共役オレフィン化合物は、得られる多元共重合体の結晶性をより低減し、かかる多元共重合体を用いたゴム組成物及びタイヤ等の耐候性をより向上させる観点から、非環状の非共役オレフィン化合物であることが好ましく、また、当該非環状の非共役オレフィン化合物は、α-オレフィンであることがより好ましく、エチレンを含むα-オレフィンであることが更に好ましく、エチレンのみからなることが特に好ましい。別の言い方をすると、多元共重合体における非共役オレフィン単位は、非環状の非共役オレフィン単位であることが好ましく、また、当該非環状の非共役オレフィン単位は、α-オレフィン単位であることがより好ましく、エチレン単位を含むα-オレフィン単位であることが更に好ましく、エチレン単位のみからなることが更に好ましい。 The non-conjugated olefin unit is a structural unit derived from a non-conjugated olefin compound as a monomer. The non-conjugated olefin compound preferably has 2 to 10 carbon atoms. Specific examples of such non-conjugated olefin compounds include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and other α-olefins, vinyl pivalate, 1-phenylthioethene. And heteroatom-substituted alkene compounds such as N-vinylpyrrolidone. The non-conjugated olefin compound may be a single kind or a combination of two or more kinds. The non-conjugated olefin compound as a monomer of the multi-component copolymer further reduces the crystallinity of the resulting multi-component copolymer, and improves the weather resistance of rubber compositions and tires using such a multi-component copolymer. From the viewpoint of further improvement, it is preferably an acyclic non-conjugated olefin compound, and the acyclic non-conjugated olefin compound is more preferably an α-olefin, and an α-olefin containing ethylene. Is more preferable, and it is particularly preferable that it consists only of ethylene. In other words, the non-conjugated olefin unit in the multi-component copolymer is preferably an acyclic non-conjugated olefin unit, and the acyclic non-conjugated olefin unit is preferably an α-olefin unit. More preferably, it is more preferably an α-olefin unit containing an ethylene unit, and further preferably only an ethylene unit.
 前記多元共重合体(a1)は、前記非共役オレフィン単位の含有量が、40mol%以上であることが好ましく、45mol%以上であることが更に好ましく、55mol%以上であることがより一層好ましく、65mol%以上であることが特に好ましく、また、97mol%以下であることが好ましく、95mol%以下であることが更に好ましく、90mol%以下であることがより一層好ましい。非共役オレフィン単位の含有量が、多元重合体全体の40mol%以上であると、結果として共役ジエン単位又は芳香族ビニル単位の含有量が減少して、耐候性が向上したり、高温での耐破壊性(特には、破断強度(Tb))が向上する。また、非共役オレフィン単位の含有量が97mol%以下であると、結果として共役ジエン単位又は芳香族ビニル単位の含有量が増加し、高温での耐破壊性(特には、破断伸び(Eb))が向上する。また、非共役オレフィン単位の含有量は、多元共重合体全体の45~95mol%の範囲が好ましく、55~90mol%の範囲がより好ましい。 In the multi-component copolymer (a1), the content of the non-conjugated olefin unit is preferably 40 mol% or more, more preferably 45 mol% or more, and even more preferably 55 mol% or more, It is particularly preferably 65 mol% or more, more preferably 97 mol% or less, still more preferably 95 mol% or less, and still more preferably 90 mol% or less. When the content of the non-conjugated olefin unit is 40 mol% or more of the entire multi-polymer, the content of the conjugated diene unit or the aromatic vinyl unit is decreased as a result, the weather resistance is improved, and the resistance at high temperature is increased. Breakability (particularly, breaking strength (Tb)) is improved. Further, when the content of the non-conjugated olefin unit is 97 mol% or less, the content of the conjugated diene unit or the aromatic vinyl unit increases as a result, and fracture resistance at high temperature (particularly, elongation at break (Eb)) Will improve. Further, the content of the non-conjugated olefin unit is preferably in the range of 45 to 95 mol%, more preferably in the range of 55 to 90 mol% with respect to the entire multi-component copolymer.
 前記芳香族ビニル単位は、単量体としての芳香族ビニル化合物に由来する構成単位である。該芳香族ビニル化合物は、炭素数が8~10であることが好ましい。かかる芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等が挙げられる。前記芳香族ビニル化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、多元共重合体の単量体としての芳香族ビニル化合物は、得られる多元共重合体の結晶性をより低減し、かかる多元共重合体を用いたゴム組成物及びタイヤ等の耐候性やタフネスをより向上させる観点から、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。別の言い方をすると、多元共重合体における芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。
 なお、芳香族ビニル単位における芳香族環は、隣接する単位と結合しない限り、多元共重合体の主鎖には含まれない。
The aromatic vinyl unit is a structural unit derived from an aromatic vinyl compound as a monomer. The aromatic vinyl compound preferably has 8 to 10 carbon atoms. Examples of such aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, and the like. . The aromatic vinyl compound may be a single type or a combination of two or more types. And the aromatic vinyl compound as a monomer of the multi-component copolymer further reduces the crystallinity of the resulting multi-component copolymer, the weather resistance of rubber compositions and tires using such a multi-component copolymer, From the viewpoint of further improving the toughness, it is preferable that styrene is contained, and it is more preferable that the material only consists of styrene. In other words, the aromatic vinyl unit in the multi-component copolymer preferably includes a styrene unit, and more preferably includes only a styrene unit.
The aromatic ring in the aromatic vinyl unit is not included in the main chain of the multi-component copolymer unless it is bonded to an adjacent unit.
 前記多元共重合体(a1)は、前記芳香族ビニル単位の含有量が、2mol%以上であることが好ましく、3mol%以上であることが更に好ましく、また、35mol%以下であることが好ましく、30mol%以下であることが更に好ましく、25mol%以下であることがより一層好ましく、20mol%以下であることが特に好ましい。芳香族ビニル単位の含有量が2mol%以上であると、高温における耐破壊性が向上する。また、芳香族ビニル単位の含有量が35mol%以下であると、共役ジエン単位及び非共役オレフィン単位による効果が顕著になる。また、芳香族ビニル単位の含有量は、多元共重合体全体の2~35mol%の範囲が好ましく、3~30mol%の範囲がより好ましく、3~25mol%の範囲がより一層好ましい。 The multi-component copolymer (a1) preferably has a content of the aromatic vinyl unit of 2 mol% or more, more preferably 3 mol% or more, and preferably 35 mol% or less. More preferably, it is 30 mol% or less, More preferably, it is 25 mol% or less, Most preferably, it is 20 mol% or less. When the content of the aromatic vinyl unit is 2 mol% or more, the fracture resistance at high temperatures is improved. Moreover, the effect by a conjugated diene unit and a nonconjugated olefin unit becomes remarkable as content of an aromatic vinyl unit is 35 mol% or less. The content of the aromatic vinyl unit is preferably in the range of 2 to 35 mol%, more preferably in the range of 3 to 30 mol%, still more preferably in the range of 3 to 25 mol% with respect to the entire multi-component copolymer.
 前記多元共重合体(a1)の単量体の種類の数としては、多元共重合体が共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを含有する限り、特に制限はない。該多元共重合体(a1)は、共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位以外の、その他の構成単位を有していてもよいが、その他の構成単位の含有量は、所望の効果を得る観点から、多元共重合体全体の30mol%以下であることが好ましく、20mol%以下であることがより好ましく、10mol%以下であることが更に好ましく、含有しないこと、即ち、含有量が0mol%であることが特に好ましい。 The number of types of monomers of the multi-component copolymer (a1) is not particularly limited as long as the multi-component copolymer contains a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit. The multi-component copolymer (a1) may have other structural units other than the conjugated diene unit, the non-conjugated olefin unit, and the aromatic vinyl unit, but the content of the other structural unit is desired. From the viewpoint of obtaining the above effect, it is preferably 30 mol% or less, more preferably 20 mol% or less, still more preferably 10 mol% or less, and not contained, that is, the content of the entire multi-component copolymer. Is particularly preferably 0 mol%.
 前記多元共重合体(a1)は、耐摩耗性、耐亀裂成長性、耐候性及び結晶性を好ましいものとする観点から、単量体として、一種の共役ジエン化合物、一種の非共役オレフィン化合物、及び一種の芳香族ビニル化合物を少なくとも用いて重合してなる重合体であることが好ましい。別の言い方をすると、前記多元共重合体(a1)は、一種の共役ジエン単位、一種の非共役オレフィン単位、及び一種の芳香族ビニル単位を含有する多元共重合体であることが好ましく、一種の共役ジエン単位、一種の非共役オレフィン単位、及び一種の芳香族ビニル単位のみからなる三元共重合体であることがより好ましく、1,3-ブタジエン単位、エチレン単位、及びスチレン単位のみからなる三元共重合体であることが更に好ましい。ここで、「一種の共役ジエン単位」には、異なる結合様式の共役ジエン単位が包含される。 From the viewpoint of making the wear resistance, crack growth resistance, weather resistance, and crystallinity preferable, the multi-component copolymer (a1) includes a kind of conjugated diene compound, a kind of non-conjugated olefin compound, And a polymer obtained by polymerization using at least one kind of aromatic vinyl compound. In other words, the multi-component copolymer (a1) is preferably a multi-component copolymer containing one kind of conjugated diene unit, one kind of non-conjugated olefin unit, and one kind of aromatic vinyl unit. More preferably, it is a terpolymer comprising only a conjugated diene unit, a non-conjugated olefin unit, and a single aromatic vinyl unit, and is composed only of a 1,3-butadiene unit, an ethylene unit, and a styrene unit. More preferably, it is a terpolymer. Here, the “one type of conjugated diene unit” includes conjugated diene units having different bonding modes.
 本発明のゴム組成物において、前記多元共重合体(a1)は、前記共役ジエン単位の含有量が1~50mol%で、前記非共役オレフィン単位の含有量が40~97mol%で、且つ前記芳香族ビニル単位の含有量が2~35mol%であることが好ましい。この場合、ゴム組成物の耐摩耗性、耐亀裂成長性が更に向上する。 In the rubber composition of the present invention, the multi-component copolymer (a1) has a content of the conjugated diene unit of 1 to 50 mol%, a content of the non-conjugated olefin unit of 40 to 97 mol%, and the aromatic The group vinyl unit content is preferably 2 to 35 mol%. In this case, the wear resistance and crack growth resistance of the rubber composition are further improved.
 前記多元共重合体(a1)は、ポリスチレン換算の重量平均分子量(Mw)が10,000~10,000,000であることが好ましく、100,000~9,000,000であることがより好ましく、150,000~8,000,000であることが更に好ましい。前記多元共重合体のMwが10,000以上であることにより、ゴム組成物の耐摩耗性を更に向上させることができ、また、Mwが10,000,000以下であることにより、高い作業性を保持することができる。 The multi-component copolymer (a1) preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 10,000 to 10,000,000, more preferably 100,000 to 9,000,000. 150,000 to 8,000,000 is more preferable. When the Mw of the multi-component copolymer is 10,000 or more, the wear resistance of the rubber composition can be further improved, and when the Mw is 10,000,000 or less, high workability is achieved. Can be held.
 前記多元共重合体(a1)は、ポリスチレン換算の数平均分子量(Mn)が10,000~10,000,000であることが好ましく、50,000~9,000,000であることがより好ましく、100,000~8,000,000であることが更に好ましい。前記多元共重合体のMnが10,000以上であることにより、ゴム組成物の耐摩耗性を更に向上させることができ、また、Mnが10,000,000以下であることにより、高い作業性を保持することができる。 The multi-component copolymer (a1) preferably has a polystyrene-equivalent number average molecular weight (Mn) of 10,000 to 10,000,000, more preferably 50,000 to 9,000,000. More preferably, it is 100,000 to 8,000,000. When the Mn of the multi-component copolymer is 10,000 or more, the wear resistance of the rubber composition can be further improved, and when the Mn is 10,000,000 or less, high workability is achieved. Can be held.
 前記多元共重合体(a1)は、分子量分布[Mw/Mn(重量平均分子量/数平均分子量)]が1.00~4.00であることが好ましく、1.50~3.50であることがより好ましく、1.80~3.00であることが更に好ましい。多元共重合体の分子量分布が広い程、ゴム組成物の作業性が向上する。また、多元共重合体の分子量分布が4.00以下であれば、多元共重合体の物性に十分な均質性をもたらすことができる。 The multi-component copolymer (a1) preferably has a molecular weight distribution [Mw / Mn (weight average molecular weight / number average molecular weight)] of 1.00 to 4.00, preferably 1.50 to 3.50. Is more preferable, and it is still more preferable that it is 1.80 to 3.00. The wider the molecular weight distribution of the multi-component copolymer, the better the workability of the rubber composition. In addition, when the molecular weight distribution of the multi-component copolymer is 4.00 or less, sufficient homogeneity can be brought about in the physical properties of the multi-component copolymer.
 なお、上述した重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。 The above-mentioned weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) are determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
 本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30~130℃であることが好ましく、50~120℃であることが更に好ましい。多元共重合体(a1)の融点が30℃以上であれば、多元共重合体(a1)の結晶性が高くなり、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上し、また、130℃以下であれば、ゴム組成物の作業性が更に向上する。
 ここで、該融点は、実施例に記載の方法で測定した値である。
In the rubber composition of the present invention, the multi-component copolymer (a1) preferably has a melting point measured by a differential scanning calorimeter (DSC) of 30 to 130 ° C., more preferably 50 to 120 ° C. . If the melting point of the multi-component copolymer (a1) is 30 ° C. or higher, the crystallinity of the multi-component copolymer (a1) is increased, and the wear resistance and crack growth resistance of the rubber composition are further improved, If it is 130 degrees C or less, the workability | operativity of a rubber composition will improve further.
Here, the melting point is a value measured by the method described in Examples.
 本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が0℃以下であることが好ましい。多元共重合体(a1)のガラス転移温度が0℃以下であれば、ゴム組成物の作業性が更に向上する。
 ここで、該ガラス転移温度は、実施例に記載の方法で測定した値である。
In the rubber composition of the present invention, the multi-component copolymer (a1) preferably has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of 0 ° C. or lower. When the glass transition temperature of the multi-component copolymer (a1) is 0 ° C. or lower, the workability of the rubber composition is further improved.
Here, the glass transition temperature is a value measured by the method described in Examples.
 本発明のゴム組成物において、前記多元共重合体(a1)は、結晶化度が0.5~50%であることが好ましく、3~45%であることが更に好ましい。多元共重合体(a1)の結晶化度が0.5%以上であれば、非共役オレフィン単位に起因する結晶性を十分に確保して、ゴム組成物の耐摩耗性、耐亀裂成長性が更に向上する。また、多元共重合体(a1)の結晶化度が50%以下であれば、ゴム組成物の混練の際の作業性が向上し、また、多元共重合体(a1)を配合したゴム組成物のタッキネスが向上するため、ゴム組成物から作製したゴム部材同士を貼り付け、タイヤ等のゴム製品を成形する際の作業性も向上する。
 ここで、該結晶化度は、実施例に記載の方法で測定した値である。
In the rubber composition of the present invention, the multi-component copolymer (a1) preferably has a crystallinity of 0.5 to 50%, more preferably 3 to 45%. If the degree of crystallinity of the multi-component copolymer (a1) is 0.5% or more, sufficient crystallinity attributable to the non-conjugated olefin unit is ensured, and the rubber composition has wear resistance and crack growth resistance. Further improvement. In addition, when the crystallinity of the multi-component copolymer (a1) is 50% or less, workability during kneading of the rubber composition is improved, and a rubber composition containing the multi-component copolymer (a1) is blended. Since the tackiness of the rubber is improved, the workability when molding rubber products such as tires by attaching rubber members made from the rubber composition to each other is also improved.
Here, the crystallinity is a value measured by the method described in Examples.
 前記多元共重合体(a1)は、主鎖が非環状構造のみからなることが好ましい。これにより、ゴム組成物の耐亀裂成長性をより向上させることができる。なお、共重合体の主鎖が環状構造を有するか否かの確認には、NMRが主要な測定手段として用いられる。具体的には、主鎖に存在する環状構造に由来するピーク(例えば、三員環~五員環については、10~24ppmに現れるピーク)が観測されない場合、その共重合体の主鎖は、非環状構造のみからなることを示す。 The multi-component copolymer (a1) preferably has a main chain consisting only of an acyclic structure. Thereby, the crack growth resistance of the rubber composition can be further improved. Incidentally, NMR is used as a main measuring means for confirming whether or not the main chain of the copolymer has a cyclic structure. Specifically, when a peak derived from a cyclic structure existing in the main chain (for example, a peak appearing at 10 to 24 ppm for a three-membered ring to a five-membered ring) is not observed, the main chain of the copolymer is It shows that it consists only of an acyclic structure.
 前記多元共重合体(a1)は、共役ジエン化合物と、非共役オレフィン化合物と、芳香族ビニル化合物とを単量体として用いる重合工程を経て製造でき、更に、必要に応じ、カップリング工程、洗浄工程、その他の工程を経てもよい。
 ここで、前記多元共重合体(a1)の製造においては、触媒存在下で、共役ジエン化合物を添加せずに非共役オレフィン化合物及び芳香族ビニル化合物のみを添加し、これらを重合させることが好ましい。特に後述の重合触媒組成物を使用する場合には、非共役オレフィン化合物及び芳香族ビニル化合物より共役ジエン化合物の方が反応性が高いことから、共役ジエン化合物の存在下で非共役オレフィン化合物及び/又は芳香族ビニル化合物を重合させることが困難となり易い。また、先に共役ジエン化合物を重合させ、後に非共役オレフィン化合物及び芳香族ビニル化合物を付加的に重合させることも、触媒の特性上困難となり易い。
The multi-component copolymer (a1) can be produced through a polymerization process using a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound as monomers, and, if necessary, a coupling process, washing You may pass through a process and other processes.
Here, in the production of the multi-component copolymer (a1), it is preferable to add only a non-conjugated olefin compound and an aromatic vinyl compound without adding a conjugated diene compound and polymerize them in the presence of a catalyst. . In particular, when using the polymerization catalyst composition described later, since the conjugated diene compound is more reactive than the non-conjugated olefin compound and the aromatic vinyl compound, the non-conjugated olefin compound and / or in the presence of the conjugated diene compound. Alternatively, it is difficult to polymerize the aromatic vinyl compound. Moreover, it is easy to polymerize the conjugated diene compound first, and then additionally polymerize the non-conjugated olefin compound and the aromatic vinyl compound later because of the characteristics of the catalyst.
 重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。 As the polymerization method, any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. In addition, when a solvent is used for the polymerization reaction, such a solvent is not particularly limited as long as it is inert in the polymerization reaction, and examples thereof include toluene, cyclohexane, and normal hexane.
 重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。一段階の重合工程とは、重合させる全ての種類の単量体、即ち、共役ジエン化合物、非共役オレフィン化合物、芳香族ビニル化合物、及びその他の単量体、好ましくは、共役ジエン化合物、非共役オレフィン化合物、及び芳香族ビニル化合物を一斉に反応させて重合させる工程である。また、多段階の重合工程とは、1種類又は2種類の単量体の一部又は全部を最初に反応させて重合体を形成し(第1重合段階)、次いで、残る種類の単量体や前記1種類又は2種類の単量体の残部を添加して重合させる1以上の段階(第2重合段階~最終重合段階)を行って重合させる工程である。特に、多元共重合体の製造では、重合工程を多段階で行うことが好ましい。 The polymerization process may be performed in one stage, or may be performed in two or more stages. The one-step polymerization process means all kinds of monomers to be polymerized, that is, conjugated diene compounds, non-conjugated olefin compounds, aromatic vinyl compounds, and other monomers, preferably conjugated diene compounds, non-conjugated. In this step, the olefin compound and the aromatic vinyl compound are polymerized by reacting simultaneously. The multi-stage polymerization process means that a polymer is formed by first reacting part or all of one or two kinds of monomers (first polymerization stage), and then the remaining kinds of monomers. Or a step of polymerizing by performing one or more stages (second polymerization stage to final polymerization stage) in which the remainder of the one or two kinds of monomers is added and polymerized. In particular, in the production of multi-component copolymers, it is preferable to carry out the polymerization process in multiple stages.
 重合工程において、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。また、上記重合反応の圧力は、共役ジエン化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限がなく、例えば、1秒~10日の範囲が好ましいが、触媒の種類、重合温度等の条件によって適宜選択することができる。また、重合工程は、一段階で行ってもよいし、二段以上の多段階で行ってもよい。
 また、前記共役ジエン化合物の重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
In the polymerization step, the polymerization reaction is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of −100 ° C. to 200 ° C., for example, and can be about room temperature. The pressure for the polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the conjugated diene compound into the polymerization reaction system. Also, the reaction time of the above polymerization reaction is not particularly limited and is preferably in the range of, for example, 1 second to 10 days, but can be appropriately selected depending on conditions such as the type of catalyst and polymerization temperature. In addition, the polymerization process may be performed in one stage, or may be performed in two or more stages.
In the polymerization step of the conjugated diene compound, the polymerization may be stopped using a polymerization terminator such as methanol, ethanol, isopropanol.
 前記重合工程は、多段階で行うことが好ましい。より好ましくは、少なくとも芳香族ビニル化合物を含む第1単量体原料と、重合触媒とを混合して重合混合物を得る第1工程と、前記重合混合物に対し、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1種を含む第2単量体原料を導入する第2工程とを実施することが好ましい。更に、上記第1単量体原料が共役ジエン化合物を含まず、且つ上記第2単量体原料が共役ジエン化合物を含むことがより好ましい。 The polymerization process is preferably performed in multiple stages. More preferably, a first step of obtaining a polymerization mixture by mixing a first monomer raw material containing at least an aromatic vinyl compound and a polymerization catalyst, and a conjugated diene compound, a non-conjugated olefin compound, and It is preferable to carry out the second step of introducing the second monomer raw material containing at least one selected from the group consisting of aromatic vinyl compounds. Further, it is more preferable that the first monomer raw material does not contain a conjugated diene compound and the second monomer raw material contains a conjugated diene compound.
 前記第1工程で用いる第1単量体原料は、芳香族ビニル化合物とともに、非共役オレフィン化合物を含有してもよい。また、第1単量体原料は、使用する芳香族ビニル化合物の全量を含有してもよく、一部のみを含有してもよい。また、非共役オレフィン化合物は、第1単量体原料及び第2単量体原料の少なくともいずれかに含有される。 The first monomer raw material used in the first step may contain a non-conjugated olefin compound together with the aromatic vinyl compound. Moreover, the 1st monomer raw material may contain the whole quantity of the aromatic vinyl compound to be used, and may contain only one part. The non-conjugated olefin compound is contained in at least one of the first monomer raw material and the second monomer raw material.
 前記第1工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第1工程における温度(反応温度)は、特に制限はないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。また、第1工程における圧力は、特に制限はないが、芳香族ビニル化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、第1工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、反応温度を25~80℃とした場合には、5分~500分の範囲が好ましい。 The first step is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor. The temperature (reaction temperature) in the first step is not particularly limited. The pressure in the first step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the aromatic vinyl compound into the polymerization reaction system. The time spent in the first step (reaction time) can be appropriately selected depending on conditions such as the type of polymerization catalyst and reaction temperature. For example, when the reaction temperature is 25 to 80 ° C., 5 minutes A range of ˜500 minutes is preferred.
 前記第1工程において、重合混合物を得るための重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサノン、ノルマルヘキサン等が挙げられる。 In the first step, the polymerization method for obtaining the polymerization mixture may be any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method. Can be used. Further, when a solvent is used for the polymerization reaction, such a solvent may be any inactive in the polymerization reaction, and examples thereof include toluene, cyclohexanone, normal hexane and the like.
 前記第2工程で用いる第2単量体原料は、共役ジエン化合物のみ、又は、共役ジエン化合物及び非共役オレフィン化合物、又は、共役ジエン化合物及び芳香族ビニル化合物、又は、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物であることが好ましい。
 なお、第2単量体原料が、共役ジエン化合物以外に非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1つを含む場合には、予めこれらの単量体原料を溶媒等と共に混合した後に重合混合物に導入してもよく、各単量体原料を単独の状態から導入してもよい。また、各単量体原料は、同時に添加してもよく、逐次添加してもよい。第2工程において、重合混合物に対して第2単量体原料を導入する方法としては、特に制限はないが、各単量体原料の流量を制御して、重合混合物に対して連続的に添加すること(所謂、ミータリング)が好ましい。ここで、重合反応系の条件下で気体である単量体原料(例えば、室温、常圧の条件下における非共役オレフィン化合物としてのエチレン等)を用いる場合には、所定の圧力で重合反応系に導入することができる。
The second monomer raw material used in the second step is a conjugated diene compound only, or a conjugated diene compound and a non-conjugated olefin compound, or a conjugated diene compound and an aromatic vinyl compound, or a conjugated diene compound or a non-conjugated olefin. It is preferable that they are a compound and an aromatic vinyl compound.
When the second monomer raw material includes at least one selected from the group consisting of a non-conjugated olefin compound and an aromatic vinyl compound in addition to the conjugated diene compound, these monomer raw materials are preliminarily used as a solvent or the like. After mixing together, it may be introduced into the polymerization mixture, or each monomer raw material may be introduced from a single state. Each monomer raw material may be added simultaneously or sequentially. In the second step, the method for introducing the second monomer raw material into the polymerization mixture is not particularly limited, but it is continuously added to the polymerization mixture by controlling the flow rate of each monomer raw material. It is preferable to perform (so-called metering). Here, in the case of using a monomer raw material that is a gas under the conditions of the polymerization reaction system (for example, ethylene as a non-conjugated olefin compound under the conditions of room temperature and atmospheric pressure), the polymerization reaction system is used at a predetermined pressure. Can be introduced.
 前記第2工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第2工程における温度(反応温度)は、特に制限はないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。なお、反応温度を上げると、共役ジエン単位におけるシス-1,4結合の選択性が低下することがある。また、第2工程における圧力は、特に制限はないが、共役ジエン化合物等の単量体を十分に重合反応系に取り込むため、0.1~10.0MPaの範囲が好ましい。また、第2工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、0.1時間~10日の範囲が好ましい。
 また、第2工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
The second step is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, in the reactor. The temperature (reaction temperature) in the second step is not particularly limited, but is preferably in the range of −100 ° C. to 200 ° C., for example, and can be about room temperature. When the reaction temperature is raised, the selectivity of cis-1,4 bond in the conjugated diene unit may be lowered. The pressure in the second step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate monomers such as a conjugated diene compound into the polymerization reaction system. The time spent in the second step (reaction time) can be appropriately selected depending on conditions such as the type of polymerization catalyst and reaction temperature, but is preferably in the range of 0.1 hour to 10 days, for example.
In the second step, the polymerization reaction may be stopped using a polymerization terminator such as methanol, ethanol, or isopropanol.
 ここで、上記の非共役オレフィン化合物、芳香族ビニル化合物、共役ジエン化合物の重合工程は、下記に示す第一の重合触媒組成物、第二の重合触媒組成物、第三の重合触媒組成物又は第四の重合触媒組成物の存在下で、各種単量体を重合させる工程を含むことが好ましい。 Here, the polymerization step of the non-conjugated olefin compound, aromatic vinyl compound, and conjugated diene compound includes the following first polymerization catalyst composition, second polymerization catalyst composition, third polymerization catalyst composition, or It is preferable to include a step of polymerizing various monomers in the presence of the fourth polymerization catalyst composition.
-第一の重合触媒組成物-
 第一の重合触媒組成物(以下、「第一重合触媒組成物」ともいう)としては、
 (A1)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない、該希土類元素化合物又は反応物と、
 (B1)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B1-1)、アルミノキサン(B1-2)、並びに、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B1-3)よりなる群から選択される少なくとも一種と、を含む重合触媒組成物が挙げられる。
 第一重合触媒組成物が、イオン性化合物(B1-1)及びハロゲン化合物(B1-3)の少なくとも一種を含む場合、該重合触媒組成物は、更に、
 (C1)成分:下記一般式(I):
   YR1 a2 b3 c ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は炭素数1~10の一価の炭化水素基又は水素原子であり、R3は炭素数1~10の一価の炭化水素基であり、R1、R2、R3はそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物を含む。
-First polymerization catalyst composition-
As the first polymerization catalyst composition (hereinafter also referred to as “first polymerization catalyst composition”),
(A1) component: a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, the rare earth element compound or the reaction product having no bond between the rare earth element and carbon,
Component (B1): an ionic compound (B1-1) composed of a non-coordinating anion and a cation, an aluminoxane (B1-2), a Lewis acid, a complex of a metal halide and a Lewis base, and an active halogen And a polymerization catalyst composition containing at least one selected from the group consisting of at least one halogen compound (B1-3) among the organic compounds.
When the first polymerization catalyst composition contains at least one of the ionic compound (B1-1) and the halogen compound (B1-3), the polymerization catalyst composition further comprises:
(C1) Component: The following general formula (I):
YR 1 a R 2 b R 3 c (I)
(In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are monovalent hydrocarbons having 1 to 10 carbon atoms. R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y is a periodic rule. When it is a metal selected from group 1 of the table, a is 1 and b and c are 0, and when Y is a metal selected from groups 2 and 12 of the periodic table , A and b are 1 and c is 0, and a, b and c are 1 when Y is a metal selected from Group 13 of the Periodic Table) including.
 上記イオン性化合物(B1-1)及び上記ハロゲン化合物(B1-3)は、(A1)成分へ供給するための炭素原子が存在しないため、該(A1)成分への炭素供給源として、上記(C1)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B1-2)を含む場合であっても、該重合触媒組成物は、上記(C1)成分を含むことができる。また、上記第一重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば、助触媒等を含んでいてもよい。
 なお、重合反応系において、第一重合触媒組成物に含まれる(A1)成分の濃度は0.1~0.0001mol/lの範囲であることが好ましい。
 更に、該重合触媒組成物は、アニオン性配位子となり得る添加剤(D1)を含有することが好ましい。
Since the ionic compound (B1-1) and the halogen compound (B1-3) have no carbon atom to be supplied to the component (A1), the carbon source for the component (A1) is the above ( C1) component is required. Even when the polymerization catalyst composition contains the aluminoxane (B1-2), the polymerization catalyst composition can contain the component (C1). The first polymerization catalyst composition may contain other components contained in a normal rare earth compound polymerization catalyst composition, such as a cocatalyst.
In the polymerization reaction system, the concentration of the component (A1) contained in the first polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
Furthermore, the polymerization catalyst composition preferably contains an additive (D1) that can be an anionic ligand.
 上記第一重合触媒組成物に用いる(A1)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素-炭素結合を有さない場合、化合物が安定であり、取り扱い易い。ここで、希土類元素化合物とは、希土類元素(M)、即ち、周期律表中の原子番号57~71の元素から構成されるランタノイド元素、又はスカンジウム若しくはイットリウムを含有する化合物である。
 なお、ランタノイド元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A1)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
The component (A1) used in the first polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base. Here, the reaction of the rare earth element compound and the rare earth element compound with the Lewis base is performed. The object does not have a bond between rare earth element and carbon. When the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle. Here, the rare earth element compound is a rare earth element (M), that is, a lanthanoid element composed of elements having atomic numbers 57 to 71 in the periodic table, or a compound containing scandium or yttrium.
Specific examples of the lanthanoid element include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In addition, the said (A1) component may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、上記希土類元素化合物は、希土類金属が2価若しくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(II)又は(III):
   M1111 2・L11w ・・・ (II)
   M1111 3・L11w ・・・ (III)
(それぞれの式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0~3を示す)で表されることが好ましい。
The rare earth element compound is preferably a rare earth metal divalent or trivalent salt or complex compound, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child. Furthermore, the reaction product of the rare earth element compound or the rare earth element compound and a Lewis base is represented by the following general formula (II) or (III):
M 11 X 11 2 · L 11 w (II)
M 11 X 11 3 · L 11 w (III)
(In each formula, M 11 represents a lanthanoid element, scandium or yttrium, and X 11 independently represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, an aldehyde residue, A ketone residue, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, L 11 represents a Lewis base, and w represents 0 to 3.
 上記希土類元素化合物の希土類元素に結合する基(配位子)としては、水素原子、ハロゲン原子、アルコキシ基(アルコールの水酸基の水素を除いた基であり、金属アルコキシドを形成する)、チオラート基(チオール化合物のチオール基の水素を除いた基であり、金属チオラートを形成する)、アミノ基(アンモニア、第一級アミン、又は第二級アミンの窒素原子に結合する水素原子を1つ除いた基であり、金属アミドを形成する)、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基、リン化合物残基が挙げられる。
 該基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。
 該基(配位子)として、更には、サリチルアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、2-ヒドロキシ-3-ナフトアルデヒド等のアルデヒドの残基;2’-ヒドロキシアセトフェノン、2’-ヒドロキシブチロフェノン、2’-ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ピバル酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2-ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2-ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(ブチル)(2-エチルヘキシル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)等のリン酸エステルの残基;2-エチルヘキシルホスホン酸モノブチル、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、フェニルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ホスホン酸モノ-2-エチルヘキシル、ホスホン酸モノ-1-メチルヘプチル、ホスホン酸モノ-p-ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、ブチル(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(1-メチルヘプチル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2-エチルヘキシルホスフィン酸、1-メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p-ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。
 なお、これらの基(配位子)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
Examples of the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom, a halogen atom, an alkoxy group (a group in which an alcohol hydroxyl group is removed, and forms a metal alkoxide), a thiolate group ( A group obtained by removing hydrogen from a thiol group of a thiol compound and forming a metal thiolate), an amino group (a group obtained by removing one hydrogen atom bonded to a nitrogen atom of ammonia, a primary amine, or a secondary amine) And forms a metal amide), silyl group, aldehyde residue, ketone residue, carboxylic acid residue, thiocarboxylic acid residue, and phosphorus compound residue.
Specific examples of the group (ligand) include a hydrogen atom; an aliphatic alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group; Phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl -6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thiosec-butoxy group, thiotert-butoxy Aliphatic thiolate groups such as thiophenoxy groups, 2,6-di-tert-butyl Ofenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, Arylthiolate groups such as 2-isopropyl-6-thioneopentylphenoxy group and 2,4,6-triisopropylthiophenoxy group; aliphatic amino groups such as dimethylamino group, diethylamino group and diisopropylamino group; phenylamino group; 2,6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert- Butyl-6-neopentylphenylamino group, -Arylamino groups such as isopropyl-6-neopentylphenylamino group, 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group; trimethylsilyl group, tris (trimethylsilyl) Silyl groups such as silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group; halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom, etc. .
As the group (ligand), a residue of an aldehyde such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone Residues of hydroxyphenones such as 2′-hydroxypropiophenone; residues of diketones such as acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone; isovaleric acid, caprylic acid, octanoic acid, Lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, pivalic acid, versatic acid [trade name, manufactured by Shell Chemical Co., C10 Monocarbo Synthetic acids composed of a mixture of isomers of acids], residues of carboxylic acids such as phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, succinic acid; hexanethioic acid, 2,2-dimethylbutanethioic acid, Residues of thiocarboxylic acids such as decanethioic acid, thiobenzoic acid; dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diheptyl phosphate, dioctyl phosphate, bis (2-ethylhexyl phosphate), bis (1-methyl phosphate) Heptyl), dilauryl phosphate, dioleyl phosphate, diphenyl phosphate, bis (p-nonylphenyl) phosphate, bis (polyethylene glycol-p-nonylphenyl) phosphate, (butyl) phosphate (2-ethylhexyl), phosphorus Acid (1-methylheptyl) (2-ethylhexyl), phosphoric acid (2-ethylhexyl) (p-nonylphenyl) Phosphoric acid ester residues such as: 2-ethylhexylphosphonic acid monobutyl, 2-ethylhexylphosphonic acid mono-2-ethylhexyl, phenylphosphonic acid mono-2-ethylhexyl, 2-ethylhexylphosphonic acid mono-p-nonylphenyl, phosphonic acid Residues of phosphonates such as mono-2-ethylhexyl, mono-1-methylheptyl phosphonate, mono-p-nonylphenyl phosphonate; dibutylphosphinic acid, bis (2-ethylhexyl) phosphinic acid, bis (1-methyl) Heptyl) phosphinic acid, dilaurylphosphinic acid, dioleylphosphinic acid, diphenylphosphinic acid, bis (p-nonylphenyl) phosphinic acid, butyl (2-ethylhexyl) phosphinic acid, (2-ethylhexyl) (1-methylheptyl) phosphine acid (2-ethylhexyl) (p-nonylphenyl) phosphinic acid, butylphosphinic acid, 2-ethylhexylphosphinic acid, 1-methylheptylphosphinic acid, oleylphosphinic acid, laurylphosphinic acid, phenylphosphinic acid, p-nonylphenylphosphinic acid And phosphinic acid residues such as
In addition, these groups (ligand) may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記第一重合触媒組成物に用いる(A1)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(一般式(II)及び(III)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。 In the component (A1) used in the first polymerization catalyst composition, examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, Diolefins and the like. Here, when the rare earth element compound reacts with a plurality of Lewis bases (in the general formulas (II) and (III), when w is 2 or 3), the Lewis base L 11 may be the same. May be different.
 好適には、上記希土類元素化合物は、下記一般式(IV):
   M-(NQ1)(NQ2)(NQ3) ・・・ (IV)
(式中、Mは、ランタノイド元素、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ1、NQ2及びNQ3は、アミノ基であり、同一であっても異なっていてもよく、ただし、M-N結合を有する)で表される化合物を含有することが好ましい。
 即ち、上記一般式(IV)で表される化合物は、M-N結合を3つ有することを特徴とする金属アミドである。M-N結合を3つ有することにより、各結合が化学的に等価となるため構造が安定的であり、それゆえに取り扱いが容易である、という利点を有する。
Preferably, the rare earth element compound has the following general formula (IV):
M- (NQ 1 ) (NQ 2 ) (NQ 3 ) (IV)
(In the formula, M is at least one selected from lanthanoid elements, scandium and yttrium, and NQ 1 , NQ 2 and NQ 3 are amino groups, which may be the same or different, provided that It preferably contains a compound represented by (having an MN bond).
That is, the compound represented by the general formula (IV) is a metal amide having three MN bonds. Having three MN bonds has the advantage that the structure is stable because each bond is chemically equivalent and therefore easy to handle.
 上記一般式(IV)において、NQ(NQ1、NQ2、及びNQ3)が表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基のいずれでもよいが、ビストリメチルシリルアミノ基が好ましい。 In the general formula (IV), the amino group represented by NQ (NQ 1 , NQ 2 , and NQ 3 ) is an aliphatic amino group such as a dimethylamino group, a diethylamino group, or a diisopropylamino group; a phenylamino group, 2, 6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl- Arylamino groups such as 6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, 2,4,6-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group Either may be used, but a bistrimethylsilylamino group is preferred.
 上記第一重合触媒組成物に用いる(B1)成分は、イオン性化合物(B1-1)、アルミノキサン(B1-2)及びハロゲン化合物(B1-3)よりなる群から選択される少なくとも一種である。なお、上記第一重合触媒組成物における(B1)成分の合計の含有量は、(A1)成分に対して0.1~50倍molであることが好ましい。 The component (B1) used in the first polymerization catalyst composition is at least one selected from the group consisting of an ionic compound (B1-1), an aluminoxane (B1-2), and a halogen compound (B1-3). The total content of the component (B1) in the first polymerization catalyst composition is preferably 0.1 to 50 times mol of the component (A1).
 上記イオン性化合物(B1-1)は、非配位性アニオンとカチオンとからなり、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。
 ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられる。
 一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。
 従って、イオン性化合物(B1-1)としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物(B1-1)は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物におけるイオン性化合物(B1-1)の含有量は、(A1)成分に対して0.1~10倍molであることが好ましく、約1倍molであることが更に好ましい。
The ionic compound (B1-1) comprises a non-coordinating anion and a cation, and reacts with a reaction product of the rare earth element compound or the Lewis base as the component (A1) to form a cationic transition metal compound. Examples include ionic compounds that can be generated.
Here, as the non-coordinating anion, for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbaound decaborate and the like.
On the other hand, examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like. Specific examples of ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cations such as cations, N, N-diethylanilinium cations, N, N-2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropylammonium cations and dicyclohexylammonium cations Is mentioned. Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
Accordingly, the ionic compound (B1-1) is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl). Borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. Moreover, these ionic compounds (B1-1) can be used alone or in a mixture of two or more. The content of the ionic compound (B1-1) in the first polymerization catalyst composition is preferably 0.1 to 10 times mol and about 1 time mol to the component (A1). Is more preferable.
 上記アルミノキサン(B1-2)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(-Al(R’)O-)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1~10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第一重合触媒組成物におけるアルミノキサン(B1-2)の含有量は、(A1)成分を構成する希土類元素Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10~1000程度となるようにすることが好ましい。 The aluminoxane (B1-2) is a compound obtained by bringing an organoaluminum compound into contact with a condensing agent. For example, a chain having a repeating unit represented by the general formula: (—Al (R ′) O—) Aluminoxane or cyclic aluminoxane (wherein R ′ is a hydrocarbon group having 1 to 10 carbon atoms, some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group, and the polymerization degree of the repeating unit) Is preferably 5 or more, more preferably 10 or more). Here, specific examples of R ′ include a methyl group, an ethyl group, a propyl group, and an isobutyl group, and among these, a methyl group is preferable. Examples of the organoaluminum compound used as the raw material for the aluminoxane include trialkylaluminums such as trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable. For example, an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used. The content of the aluminoxane (B1-2) in the first polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the rare earth element M constituting the component (A1) is about 10 to 1000. It is preferable that
 上記ハロゲン化合物(B1-3)は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第一重合触媒組成物におけるハロゲン化合物(B1-3)の合計の含有量は、(A1)成分に対して1~5倍molであることが好ましい。 The halogen compound (B1-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen. For example, the rare earth element compound as the component (A1) or By reacting with the reaction product with the Lewis base, a cationic transition metal compound, a halogenated transition metal compound, or a compound having a transition metal center with insufficient charge can be generated. The total content of the halogen compound (B1-3) in the first polymerization catalyst composition is preferably 1 to 5 times mol with respect to the component (A1).
 上記ルイス酸としては、B(C653等のホウ素含有ハロゲン化合物、Al(C653等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第3族、第4族、第5族、第6族又は第8族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。
 上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
As the Lewis acid, boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used. A halogen compound containing an element belonging to Group 4, Group 5, Group 6, or Group 8 can also be used. Preferably, aluminum halide or organometallic halide is used. Moreover, as a halogen element, chlorine or bromine is preferable.
Specific examples of the Lewis acid include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, ethylaluminum dibromide preferable.
 上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。 The metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine. Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Of these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride, and copper chloride are preferred. Ku, magnesium chloride, manganese chloride, zinc chloride, copper chloride being particularly preferred.
 また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチル-ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチル-ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 上記ルイス塩基は、上記金属ハロゲン化物1mol当り、0.01~30mol、好ましくは0.5~10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
Moreover, as a Lewis base which comprises the complex compound of the said metal halide and a Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol, etc. are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone , Propionitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethyl-hexanoic acid, olein Acid, stearic acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethyl-hexyl alcohol Examples include oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, and lauryl alcohol. Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol, lauryl alcohol are preferred.
The Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
 上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。 Examples of the organic compound containing the active halogen include benzyl chloride.
 上記第一重合触媒組成物に用いる(C1)成分は、下記一般式(I):
   YR1 a2 b3 c ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は炭素数1~10の一価の炭化水素基又は水素原子であり、R3は炭素数1~10の一価の炭化水素基であり、R1、R2、R3はそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物であり、下記一般式(V):
   AlR123 ・・・ (V)
(式中、R1及びR2は炭素数1~10の一価の炭化水素基又は水素原子であり、R3は炭素数1~10の一価の炭化水素基であり、R1、R2、R3はそれぞれ互いに同一又は異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。
 前記一般式(V)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C1)成分としての有機金属化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。
 なお、上記第一重合触媒組成物における有機金属化合物の含有量は、(A1)成分に対して1~50倍molであることが好ましく、約10倍molであることが更に好ましい。
The component (C1) used in the first polymerization catalyst composition is the following general formula (I):
YR 1 a R 2 b R 3 c (I)
(In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are monovalent hydrocarbons having 1 to 10 carbon atoms. R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y is a periodic rule. When it is a metal selected from group 1 of the table, a is 1 and b and c are 0, and when Y is a metal selected from groups 2 and 12 of the periodic table , A and b are 1 and c is 0, and a, b and c are 1 when Y is a metal selected from Group 13 of the Periodic Table) The following general formula (V):
AlR 1 R 2 R 3 (V)
(Wherein, R 1 and R 2 is a hydrocarbon group or a hydrogen atom, monovalent 1-10 carbon atoms, R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1, R 2 and R 3 may be the same or different from each other).
Examples of the organoaluminum compound of the general formula (V) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, and tripentyl. Aluminum, trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, dihydrogen hydride Isohexyl aluminum, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl al Bromide dihydride, include isobutyl aluminum dihydride and the like, among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. The organometallic compound as the component (C1) described above can be used singly or in combination of two or more.
The content of the organometallic compound in the first polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol for the component (A1).
 アニオン性配位子となり得る添加剤(D1)の添加は、より高いシス-1,4結合含量の多元共重合体を高収率で合成することが可能となる、という効果を奏するため好ましい。
 上記添加剤(D1)としては、(A1)成分のアミノ基と交換可能なものであれば特に限定されないが、OH基、NH基、SH基のいずれかを有することが好ましい。
Addition of the additive (D1) that can be an anionic ligand is preferable because it provides an effect that a multi-component copolymer having a higher cis-1,4 bond content can be synthesized in a high yield.
The additive (D1) is not particularly limited as long as it can exchange with the amino group of the component (A1), but preferably has any of OH, NH, and SH groups.
 具体的な化合物として、OH基を有するものとしては、脂肪族アルコール、芳香族アルコール等が挙げられる。具体的には、2-エチル-1-ヘキサノール、ジブチルヒドロキシトルエン、アルキル化フェノール、4,4’-チオビス-(6-t-ブチル-3-メチルフェノール)、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、2,6-ジ-t-4-エチルフェノール、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、n-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチリルチオプロピオネート等を挙げることができるが、これに限定されるものではない。例えば、ヒンダードフェノール系のものとして、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-t-ブチル-4-ヒドロキシベンジルフォソフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール等を挙げることができる。また、ヒドラジン系として、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジンを挙げることができる。 Specific examples of compounds having an OH group include aliphatic alcohols and aromatic alcohols. Specifically, 2-ethyl-1-hexanol, dibutylhydroxytoluene, alkylated phenol, 4,4′-thiobis- (6-tert-butyl-3-methylphenol), 4,4′-butylidenebis- (6 -T-butyl-3-methylphenol), 2,2'-methylenebis- (4-methyl-6-t-butylphenol), 2,2'-methylenebis- (4-ethyl-6-t-butylphenol), 2 , 6-di-t-4-ethylphenol, 1,1,3-tris- (2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-octadecyl-3- (4-hydroxy-3 , 5-di-t-butylphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, dill Li thiodipropionate, distearyl thiodipropionate, may be mentioned di-myristyl thio propionate, but is not limited thereto. For example, as a hindered phenol type, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3 , 5-triazine, pentaerythryl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di- t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N ′ Hexamethylene bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 3,5-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5- Trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, octyl Diphenylamine, 2,4-bis [(octylthio) methyl] -o-cresol, and the like. Further, examples of the hydrazine series include N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine.
 NH基を有するものとしては、アルキルアミン、アリールアミン等の第1級アミンあるいは第2級アミンを挙げることができる。具体的には、ジメチルアミン、ジエチルアミン、ピロール、エタノールアミン、ジエタノールアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン、ビス(2-ジフェニルフォスフィノフェニル)アミン等が挙げられる。 Examples of those having an NH group include primary amines and secondary amines such as alkylamines and arylamines. Specific examples include dimethylamine, diethylamine, pyrrole, ethanolamine, diethanolamine, dicyclohexylamine, N, N′-dibenzylethylenediamine, bis (2-diphenylphosphinophenyl) amine and the like.
 SH基を有するものとしては、脂肪族チオール、芳香族チオール等のほか、下記一般式(VI)、(VII)で示される化合物が挙げられる。 Examples of those having an SH group include aliphatic thiols, aromatic thiols and the like, and compounds represented by the following general formulas (VI) and (VII).
Figure JPOXMLDOC01-appb-C000001
(式中、R1、R2及びR3は、それぞれ独立して-O-Cj2j+1、-(O-Ck2k-)a-O-Cm2m+1又は-Cn2n+1で表され、j、m及びnは、それぞれ独立して0~12であり、k及びaは、それぞれ独立して1~12であり、R4は、炭素数1~12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
 前記一般式(VI)で示されるものの具体例としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、(メルカプトメチル)ジメチルエトキシシラン、メルカプトメチルトリメトキシシラン等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Wherein R 1 , R 2 and R 3 are each independently —O—C j H 2j + 1 , — (O—C k H 2k —) a —O—C m H 2m + 1 or — C n H 2n + 1 , j, m and n are each independently 0 to 12, k and a are each independently 1 to 12, and R 4 is 1 to 12 carbon atoms. 12 is a linear, branched, or cyclic, saturated or unsaturated alkylene group, cycloalkylene group, cycloalkylalkylene group, cycloalkenylalkylene group, alkenylene group, cycloalkenylene group, cycloalkylalkenylene group, cyclohexane An alkenylalkenylene group, an arylene group or an aralkylene group.)
Specific examples of those represented by the general formula (VI) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, (mercaptomethyl) dimethylethoxysilane, mercaptomethyltri And methoxysilane.
Figure JPOXMLDOC01-appb-C000002
(式中、Wは、-NR8-、-O-又は-CR910-(ここで、R8及びR9は、-Cp2p+1であり、R10は、-Cq2q+1であり、p及びqは、それぞれ独立して0~20である。)で表され、R5及びR6は、それぞれ独立して-M-Cr2r-(ここで、Mは-O-又は-CH2-であり、rは1~20である。)で表され、R7は、-O-Cj2j+1、-(O-Ck2k-)a-O-Cm2m+1又は-Cn2n+1で表され、j、m及びnは、それぞれ独立して0~12であり、k及びaは、それぞれ独立して1~12であり、R4は、炭素数1~12であって、直鎖、分岐、もしくは環状の、飽和もしくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
 前記一般式(VII)で示されるものの具体例としては、3-メルカプトプロピル(エトキシ)-1,3-ジオキサ-6-メチルアザ-2-シラシクロオクタン、3-メルカプトプロピル(エトキシ)-1,3-ジオキサ-6-ブチルアザ-2-シラシクロオクタン、3-メルカプトプロピル(エトキシ)-1,3-ジオキサ-6-ドデシルアザ-2-シラシクロオクタン等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Wherein W is —NR 8 —, —O— or —CR 9 R 10 — (wherein R 8 and R 9 are —C p H 2p + 1 , R 10 is —C q H 2q + 1 , p and q are each independently 0 to 20, and R 5 and R 6 are each independently —M—C r H 2r — (where M is —O— or —CH 2 —, and r is 1 to 20, and R 7 is —O—C j H 2j + 1 , — (O—C k H 2k —). a —O—C m H 2m + 1 or —C n H 2n + 1 , j, m and n are each independently 0 to 12, and k and a are each independently 1 to is 12, R 4 is a 1 to 12 carbon atoms, a straight-chain, branched, or cyclic, saturated or unsaturated, alkylene group, cycloalkylene group, cycloalkylalkylene group, a cycloalkenyl alkylene group, an alkenylene , Cycloalkenylene group, a cycloalkyl alkenylene group, cycloalkenyl alkenylene group, an arylene group or an aralkylene group.)
Specific examples of the compound represented by the general formula (VII) include 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-methylaza-2-silacyclooctane, 3-mercaptopropyl (ethoxy) -1,3. -Dioxa-6-butylaza-2-silacyclooctane, 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-dodecylaza-2-silacyclooctane, and the like.
 また、前記添加剤(D1)としては、好適には下記一般式(VIII)で表されるアニオン性三座配位子前駆体を使用できる。
   E1-T1-X-T2-E2 ・・・ (VIII)
(式中、Xは、周期律表第15族原子から選択される配位原子を含むアニオン性電子供与基を示し、E1及びE2はそれぞれ独立して、周期律表第15族及び16族原子から選択される配位原子を含む中性電子供与基を示し、T1及びT2はそれぞれ、XとE1及びE2を架橋する架橋基を示す。)
As the additive (D1), an anionic tridentate ligand precursor represented by the following general formula (VIII) can be preferably used.
E 1 -T 1 -XT 2 -E 2 (VIII)
(In the formula, X represents an anionic electron-donating group containing a coordination atom selected from Group 15 atoms of the Periodic Table; E 1 and E 2 are each independently Groups 15 and 16 of the Periodic Table; A neutral electron donating group containing a coordinating atom selected from group atoms, and T 1 and T 2 each represent a bridging group that crosslinks X, E 1 and E 2. )
 前記添加剤(D1)は、前記希土類元素化合物1molに対して、0.01~10mol、特に0.1~1.2mol添加するのが好ましい。添加量が0.1mol以上であると、単量体の重合反応が十分に進行する。また、添加量は、希土類元素化合物と等量(1.0mol)とすることが好ましいが、過剰量添加されていてもよい。また、添加量が1.2mol以下であると、試薬のロスが少ないので好ましい。 The additive (D1) is preferably added in an amount of 0.01 to 10 mol, particularly 0.1 to 1.2 mol with respect to 1 mol of the rare earth element compound. When the addition amount is 0.1 mol or more, the polymerization reaction of the monomer proceeds sufficiently. Further, the addition amount is preferably the same amount (1.0 mol) as the rare earth element compound, but an excessive amount may be added. Moreover, it is preferable that the addition amount be 1.2 mol or less because there is little loss of reagent.
 上記一般式(VIII)中、中性の電子供与基E1及びE2は、周期律表第15族及び第16族から選択される配位原子を含む基である。また、E1及びE2は同一の基であってもよく、異なる基であってもよい。該配位原子としては、窒素N、リンP、酸素O、硫黄S等が例示されるが、好ましくはPである。 In the general formula (VIII), the neutral electron donating groups E 1 and E 2 are groups containing a coordinating atom selected from Groups 15 and 16 of the periodic table. E 1 and E 2 may be the same group or different groups. Examples of the coordinating atom include nitrogen N, phosphorus P, oxygen O, sulfur S and the like, and P is preferred.
 前記E1及びE2に含まれる配位原子がPである場合には、中性の電子供与基E1又はE2としては、ジフェニルホスフィノ基、ジトリルホスフィノ基等のジアリールホスフィノ基;ジメチルホスフィノ基、ジエチルホスフィノ基等のジアルキルホスフィノ基;メチルフェニルホスフィノ基等のアルキルアリールホスフィノ基が例示され、好ましくはジアリールホスフィノ基が例示される。 When the coordination atom contained in E 1 and E 2 is P, the neutral electron donating group E 1 or E 2 is a diarylphosphino group such as a diphenylphosphino group or a ditolylphosphino group. A dialkylphosphino group such as a dimethylphosphino group or a diethylphosphino group; an alkylarylphosphino group such as a methylphenylphosphino group is exemplified, and a diarylphosphino group is preferably exemplified.
 前記E1及びE2に含まれる配位原子がNである場合には、中性の電子供与基E1又はE2としては、ジメチルアミノ基、ジエチルアミノ基、ビス(トリメチルシリル)アミノ基等のジアルキルアミノ基;ジフェニルアミノ基等のジアリールアミノ基;メチルフェニル基等のアルキルアリールアミノ基等が例示される。 When the coordination atom contained in E 1 and E 2 is N, the neutral electron donating group E 1 or E 2 is a dialkyl such as a dimethylamino group, a diethylamino group, or a bis (trimethylsilyl) amino group. Examples include amino groups; diarylamino groups such as diphenylamino groups; alkylarylamino groups such as methylphenyl groups.
 前記E1及びE2に含まれる配位原子がOである場合には、中性の電子供与基E1又はE2としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基;フェノキシ基、2,6-ジメチルフェノキシ基等のアリールオキシ基等が例示される。 When the coordination atom contained in E 1 and E 2 is O, the neutral electron donating group E 1 or E 2 is an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group; Examples thereof include aryloxy groups such as phenoxy group and 2,6-dimethylphenoxy group.
 前記E1及びE2に含まれる配位原子がSである場合には、中性の電子供与基E1又はE2としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等のアルキルチオ基;フェニルチオ基、トリルチオ基等のアリールチオ基等が例示される。 When the coordination atom contained in E 1 and E 2 is S, the neutral electron donating group E 1 or E 2 is an alkylthio group such as a methylthio group, an ethylthio group, a propylthio group, or a butylthio group; Examples thereof include arylthio groups such as phenylthio group and tolylthio group.
 アニオン性の電子供与基Xは、周期律表第15族から選択される配位原子を含む基である。該配位原子として、好ましくはリンP又は窒素Nが挙げられ、より好ましくはNが挙げられる。 The anionic electron donating group X is a group containing a coordination atom selected from Group 15 of the periodic table. The coordination atom is preferably phosphorus P or nitrogen N, more preferably N.
 架橋基T1及びT2は、XとE1及びE2を架橋することができる基であればよく、アリール環上に置換基を有していてもよいアリーレン基が例示される。また、T1及びT2は同一の基でも異なる基であってもよい。
 前記アリーレン基は、フェニレン基、ナフチレン基、ピリジレン基、チエニレン基(好ましくはフェニレン基、ナフチレン基)等であり得る。また、前記アリーレン基のアリール環上には任意の基が置換されていてもよい。該置換基としてはメチル基、エチル基等のアルキル基;フェニル基、トリル基等のアリール基;フルオロ、クロロ、ブロモ等のハロゲン基;トリメチルシリル基等のシリル基等が例示される。
 前記アリーレン基として、更に好ましくは1,2-フェニレン基が例示される。
The bridging groups T 1 and T 2 may be any group capable of bridging X, E 1 and E 2 , and examples thereof include an arylene group which may have a substituent on the aryl ring. T 1 and T 2 may be the same group or different groups.
The arylene group may be a phenylene group, a naphthylene group, a pyridylene group, a thienylene group (preferably a phenylene group or a naphthylene group), or the like. Any group may be substituted on the aryl ring of the arylene group. Examples of the substituent include alkyl groups such as methyl group and ethyl group; aryl groups such as phenyl group and tolyl group; halogen groups such as fluoro, chloro and bromo; silyl groups such as trimethylsilyl group and the like.
More preferred examples of the arylene group include a 1,2-phenylene group.
-第二の重合触媒組成物-
 第二の重合触媒組成物(以下、「第二重合触媒組成物」ともいう)としては、下記一般式(IX):
Figure JPOXMLDOC01-appb-C000003
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra~Rfは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体、及び下記一般式(X):
Figure JPOXMLDOC01-appb-C000004
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体、並びに下記一般式(XI):
Figure JPOXMLDOC01-appb-C000005
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]-は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物が挙げられる。
-Second polymerization catalyst composition-
As the second polymerization catalyst composition (hereinafter also referred to as “second polymerization catalyst composition”), the following general formula (IX):
Figure JPOXMLDOC01-appb-C000003
( Wherein M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and R a to R f each independently represents an alkyl having 1 to 3 carbon atoms. A metallocene complex represented by the following formula (X): and a group or a hydrogen atom, L represents a neutral Lewis base, and w represents an integer of 0 to 3.
Figure JPOXMLDOC01-appb-C000004
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and X ′ represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, or an amino group. , A silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents an integer of 0 to 3), Formula (XI):
Figure JPOXMLDOC01-appb-C000005
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and X represents a hydrogen atom, a halogen atom, an alkoxy group or a thiolate group. , An amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, w represents an integer of 0 to 3, and [B] represents non- And a polymerization catalyst composition containing at least one complex selected from the group consisting of a half metallocene cation complex represented by the following formula:
 第二重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば、助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
 なお、重合反応系において、第二重合触媒組成物に含まれる錯体の濃度は、0.1~0.0001mol/Lの範囲であることが好ましい。
The second polymerization catalyst composition may further contain other components contained in the polymerization catalyst composition containing a normal metallocene complex, such as a promoter. Here, the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof bonded to the central metal. A certain metallocene complex may be called a half metallocene complex.
In the polymerization reaction system, the concentration of the complex contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / L.
 上記一般式(IX)及び(X)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-xx又はC911-xxで示され得る。ここで、Xは、0~7又は0~11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、一般式(IX)及び(X)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。 In the metallocene complexes represented by the general formulas (IX) and (X), Cp R in the formula is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-x R x or C 9 H 11-x R x . Here, X is an integer of 0 to 7 or 0 to 11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of the substituted indenyl include 2-phenylindenyl, 2-methylindenyl and the like. In addition, two Cp R in general formula (IX) and (X) may mutually be same or different.
 上記一般式(XI)で表されるハーフメタロセンカチオン錯体において、式中のCpR'は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。 In the half metallocene cation complex represented by the general formula (XI), Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl It is preferable that
 一般式(XI)において、上記シクロペンタジエニル環を基本骨格とするCpR'は、C55-xxで示される。ここで、Xは、0~5の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR'として、具体的には、以下のものが例示される。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子、メチル基又はエチル基を示す。)
In the general formula (XI), Cp R ′ having the cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-x R x . Here, X is an integer of 0 to 5. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following.
Figure JPOXMLDOC01-appb-C000006
(In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)
 一般式(XI)において、上記インデニル環を基本骨格とするCpR'は、一般式(IX)及び(X)のCpRと同様に定義され、好ましい例も同様である。 In the general formula (XI), Cp R ′ having the indenyl ring as a basic skeleton is defined in the same manner as Cp R in the general formulas (IX) and (X), and preferred examples thereof are also the same.
 一般式(XI)において、上記フルオレニル環を基本骨格とするCpR'は、C139-xx又はC1317-xxで示され得る。ここで、Xは、0~9又は0~17の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。 In the general formula (XI), Cp R ′ having the fluorenyl ring as a basic skeleton can be represented by C 13 H 9-x R x or C 13 H 17-x R x . Here, X is an integer of 0 to 9 or 0 to 17. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same. Specific examples of the metalloid group include a trimethylsilyl group.
 一般式(IX)、(X)及び(XI)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 The central metal M in the general formulas (IX), (X) and (XI) is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used. Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
 一般式(IX)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR32]を含む。シリルアミド配位子に含まれるR基(一般式(IX)におけるRa~Rf)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、Ra~Rfのうち少なくとも一つが水素原子であることが好ましい。Ra~Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりの嵩高さが低くなるため、非共役オレフィン化合物や芳香族ビニル化合物が導入され易くなる。同様の観点から、Ra~Rcのうち少なくとも一つが水素原子であり、Rd~Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the general formula (IX) includes a silylamide ligand [—N (SiR 3 ) 2 ]. The R groups (R a to R f in the general formula (IX)) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Further, it is preferable that at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst is facilitated, and the bulk around silicon is reduced, so that non-conjugated olefin compounds and aromatic vinyl compounds are introduced. It becomes easy. From the same viewpoint, it is more preferable that at least one of R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom. Furthermore, a methyl group is preferable as the alkyl group.
 一般式(X)で表されるメタロセン錯体は、シリル配位子[-SiX’3]を含む。シリル配位子[-SiX’3]に含まれるX’は、下記で説明される一般式(XI)のXと同様に定義される基であり、好ましい基も同様である。 The metallocene complex represented by the general formula (X) contains a silyl ligand [—SiX ′ 3 ]. X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (XI) described below, and preferred groups are also the same.
 一般式(XI)において、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基及び炭素数1~20の一価の炭化水素基からなる群より選択される基である。ここで、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。 In the general formula (XI), X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, and a monovalent hydrocarbon group having 1 to 20 carbon atoms. . Here, the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but is preferably a chlorine atom or a bromine atom.
 一般式(XI)において、Xが表すアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等のアリールオキシ基が挙げられ、これらの中でも、2,6-ジ-tert-ブチルフェノキシ基が好ましい。 In the general formula (XI), the alkoxy group represented by X is an aliphatic alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, or a tert-butoxy group; a phenoxy group 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6 Examples include aryloxy groups such as -neopentylphenoxy group and 2-isopropyl-6-neopentylphenoxy group. Among these, 2,6-di-tert-butylphenoxy group is preferable.
 一般式(XI)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6-トリイソプロピルチオフェノキシ基が好ましい。 In the general formula (XI), the thiolate group represented by X includes a thiomethoxy group, a thioethoxy group, a thiopropoxy group, a thio n-butoxy group, a thioisobutoxy group, a thiosec-butoxy group, a thiotert-butoxy group, Group thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Arylthiolate groups such as thiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group, etc. Among these, 2,4,6-triisopropylthiophenoxy group Preferred.
 一般式(XI)において、Xが表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、これらの中でも、ビストリメチルシリルアミノ基が好ましい。 In the general formula (XI), examples of the amino group represented by X include aliphatic amino groups such as dimethylamino group, diethylamino group and diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group, 2 , 6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl- Examples thereof include arylamino groups such as 6-neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group. Among these, bistrimethylsilylamino Groups are preferred.
 一般式(XI)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。 In the general formula (XI), examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like. Among these, a tris (trimethylsilyl) silyl group is preferable.
 また、一般式(XI)において、Xが表す炭素数1~20の一価の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。 In the general formula (XI), as the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by X, specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Linear or branched aliphatic hydrocarbon groups such as isobutyl, sec-butyl, tert-butyl, neopentyl, hexyl and octyl; aromatic hydrocarbons such as phenyl, tolyl and naphthyl Groups; aralkyl groups such as benzyl groups, etc .; hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl groups, bistrimethylsilylmethyl groups, etc., among these, methyl groups, ethyl groups, isobutyl groups, trimethylsilylmethyl Groups and the like are preferred.
 一般式(XI)において、Xとしては、ビストリメチルシリルアミノ基又は炭素数1~20の一価の炭化水素基が好ましい。 In general formula (XI), X is preferably a bistrimethylsilylamino group or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
 一般式(XI)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 In the general formula (XI), [B] - The non-coordinating anion represented by, for example, a tetravalent boron anion. Specific examples of the tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarboundeborate is exemplified, and among these, tetrakis (pentafluorophenyl) borate is preferable.
 上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the above general formulas (IX) and (X) and the half metallocene cation complex represented by the above general formula (XI) may further have 0 to 3, preferably 0 to 1, neutral Lewis Contains base L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.
 また、上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 Further, the metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) may exist as a monomer, and may be a dimer. Or it may exist as a multimer more than that.
 上記一般式(IX)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミンの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(IX)で表されるメタロセン錯体を得るための反応例を示す。
Figure JPOXMLDOC01-appb-C000007
(式中、X’’はハライドを示す。)
The metallocene complex represented by the general formula (IX) includes, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt) and bis (trialkylsilyl). It can be obtained by reacting with an amine salt (for example, potassium salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (IX) is shown.
Figure JPOXMLDOC01-appb-C000007
(In the formula, X ″ represents a halide.)
 上記一般式(X)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は、室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は、任意であるが、数時間~数十時間程度である。反応溶媒は、特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(X)で表されるメタロセン錯体を得るための反応例を示す。
Figure JPOXMLDOC01-appb-C000008
(式中、X’’はハライドを示す。)
The metallocene complex represented by the general formula (X) includes, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt), and a silyl salt (for example, potassium). Salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the example of reaction for obtaining the metallocene complex represented by general formula (X) is shown.
Figure JPOXMLDOC01-appb-C000008
(In the formula, X ″ represents a halide.)
 上記一般式(XI)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
Figure JPOXMLDOC01-appb-C000009
The half metallocene cation complex represented by the general formula (XI) can be obtained, for example, by the following reaction.
Figure JPOXMLDOC01-appb-C000009
 ここで、一般式(XII)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。 Here, in the compound represented by the general formula (XII), M represents a lanthanoid element, scandium or yttrium, and Cp R ′ independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl. , X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, w represents An integer from 0 to 3 is shown. In the ionic compound represented by the general formula [A] + [B] , [A] + represents a cation, and [B] represents a non-coordinating anion.
 [A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。 Examples of the cation represented by [A] + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N— N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable.
 上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1~10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、一般式(XI)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(XI)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(XII)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(XI)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(IX)又は(X)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(XI)で表されるハーフメタロセンカチオン錯体を形成させることもできる。 The ionic compound represented by the general formula [A] + [B] used for the above reaction is a compound selected and combined from the above non-coordinating anions and cations, and is an N, N-dimethylaniline. Preference is given to nium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like. The ionic compound represented by the general formula [A] + [B] is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol based on the metallocene complex. When the half metallocene cation complex represented by the general formula (XI) is used for the polymerization reaction, the half metallocene cation complex represented by the general formula (XI) may be provided as it is in the polymerization reaction system, or the compound represented by the general formula (XII) and formula used in the reaction [a] + [B] - provides an ionic compound represented separately into the polymerization reaction system, the general formula in the reaction system (XI You may form the half metallocene cation complex represented by this. Further, by using a combination of a metallocene complex represented by the general formula (IX) or (X) and an ionic compound represented by the general formula [A] + [B] , A half metallocene cation complex represented by (XI) can also be formed.
 上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。 The structures of the metallocene complexes represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) are preferably determined by X-ray structural analysis.
 上記第二重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The co-catalyst that can be used in the second polymerization catalyst composition can be arbitrarily selected from components used as a co-catalyst for a polymerization catalyst composition containing a normal metallocene complex. Suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.
 上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソーファインケム社製)等が好ましい。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10~1000程度、好ましくは100程度となるようにすることが好ましい。 The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable. The content of the aluminoxane in the second polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of the aluminoxane to the central metal M of the metallocene complex is about 10 to 1000, preferably about 100. It is preferable to do.
 一方、上記有機アルミニウム化合物としては、一般式AlRR’R’’(式中、R及びR’はそれぞれ独立して炭素数1~10の一価の炭化水素基、ハロゲン原子、又は水素原子であり、R’’は炭素数1~10の一価の炭化水素基である)で表される有機アルミニウム化合物が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、塩素原子が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1~50倍molであることが好ましく、約10倍molであることが更に好ましい。 On the other hand, as the organoaluminum compound, the general formula AlRR′R ″ (wherein R and R ′ are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, or a hydrogen atom). , R ″ is a monovalent hydrocarbon group having 1 to 10 carbon atoms). Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable. Examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride. Among these, trialkylaluminum is preferable. Examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum. The content of the organoaluminum compound in the polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol relative to the metallocene complex.
 更に、上記重合触媒組成物においては、上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス-1,4結合含量や得られる重合体の分子量を増大できる。 Furthermore, in the polymerization catalyst composition, each of the metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) is used as an appropriate promoter. In combination, the cis-1,4 bond content and the molecular weight of the resulting polymer can be increased.
-第三の重合触媒組成物-
 第三の重合触媒組成物(以下、「第三重合触媒組成物」ともいう)としては、希土類元素含有化合物として、下記一般式(XIII):
   RaMXbQYb・・・(XIII)
(式中、Rは、それぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Xは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該XはM及びQにμ配位しており、Qは、周期律表第13族元素を示し、Yは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは、2である)で表されるメタロセン系複合触媒を含む重合触媒組成物が挙げられる。
-Third polymerization catalyst composition-
As the third polymerization catalyst composition (hereinafter, also referred to as “third polymerization catalyst composition”), as the rare earth element-containing compound, the following general formula (XIII):
R a MX b QY b (XIII)
(In the formula, each R independently represents unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium, and each X independently represents carbon. 1 represents a monovalent hydrocarbon group of 1 to 20, wherein X is μ-coordinated to M and Q, Q represents a group 13 element of the periodic table, and Y represents each independently a carbon number A polymerization catalyst composition comprising a metallocene composite catalyst represented by 1-20 monovalent hydrocarbon groups or hydrogen atoms, wherein Y is coordinated to Q, and a and b are 2. Is mentioned.
 上記メタロセン系複合触媒の好適例においては、下記一般式(XIV):
Figure JPOXMLDOC01-appb-C000010
(式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RA及びRBは、それぞれ独立して炭素数1~20の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位しており、RC及びRDは、それぞれ独立して炭素数1~20の炭化水素基又は水素原子を示す)で表されるメタロセン系複合触媒が挙げられる。
 上記メタロセン系重合触媒を用いることで、多元共重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、多元共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、多元共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10モル当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5モル当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
In a preferred example of the metallocene composite catalyst, the following general formula (XIV):
Figure JPOXMLDOC01-appb-C000010
(In the formula, M 1 represents a lanthanoid element, scandium or yttrium, Cp R independently represents an unsubstituted or substituted indenyl group, and R A and R B each independently represents one having 1 to 20 carbon atoms. R A and R B are μ-coordinated to M 1 and Al, and R C and R D each independently represent a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Metallocene-based composite catalysts represented by
By using the metallocene polymerization catalyst, a multi-component copolymer can be produced. In addition, by using the metallocene composite catalyst, for example, a catalyst previously combined with an aluminum catalyst, it is possible to reduce or eliminate the amount of alkylaluminum used during the synthesis of the multi-component copolymer. When a conventional catalyst system is used, it is necessary to use a large amount of alkylaluminum at the time of synthesizing the multicomponent copolymer. For example, in the conventional catalyst system, it is necessary to use an alkylaluminum of 10 molar equivalents or more with respect to the metal catalyst. Catalysis is exerted.
 上記メタロセン系複合触媒において、上記一般式(XIII)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the metallocene composite catalyst, the metal M in the general formula (XIII) is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used. Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
 上記一般式(XIII)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニルの具体例としては、例えば、1,2,3-トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7-ヘキサメチルインデニル基等が挙げられる。 In the general formula (XIII), each R is independently an unsubstituted indenyl or a substituted indenyl, and the R is coordinated to the metal M. Specific examples of substituted indenyl include, for example, 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group, and the like. .
 上記一般式(XIII)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。 In the above general formula (XIII), Q represents a group 13 element in the periodic table, and specific examples include boron, aluminum, gallium, indium, thallium and the like.
 上記一般式(XIII)において、Xは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。 In the general formula (XIII), each X independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and X is μ-coordinated to M and Q. Here, the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.
 上記一般式(XIII)において、Yは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子を示し、該Yは、Qに配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 In the general formula (XIII), each Y independently represents a monovalent hydrocarbon group or hydrogen atom having 1 to 20 carbon atoms, and the Y is coordinated to Q. Here, the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
 上記一般式(XIV)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the above general formula (XIV), the metal M 1 is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used. Preferred examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
 上記一般式(XIV)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97XX又はC911XXで示され得る。ここで、Xは、0~7又は0~11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
 置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、式(XIV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
In the general formula (XIV), Cp R is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7X R X or C 9 H 11X R X. Here, X is an integer of 0 to 7 or 0 to 11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The number of carbon atoms in the hydrocarbyl group is preferably 1-20, more preferably 1-10, and even more preferably 1-8. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the above hydrocarbyl group. It is the same. Specific examples of the metalloid group include a trimethylsilyl group.
Specific examples of the substituted indenyl include 2-phenylindenyl, 2-methylindenyl and the like. Note that the two Cp R 's in formula (XIV) may be the same or different from each other.
 上記一般式(XIV)において、RA及びRBは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。 In the general formula (XIV), R A and R B each independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R A and R B are μ-coordinated to M 1 and Al. doing. Here, the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.
 上記一般式(XIV)において、RC及びRDは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子である。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 In the general formula (XIV), R C and R D are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Here, the monovalent hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group. Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
 なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記一般式(XV):
Figure JPOXMLDOC01-appb-C000011
(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RE~RJは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体を、AlRKLMで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は、室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は、任意であるが、数時間~数十時間程度である。反応溶媒は、特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、1H-NMRやX線構造解析により決定することが好ましい。
The metallocene composite catalyst is, for example, in a solvent, represented by the following general formula (XV):
Figure JPOXMLDOC01-appb-C000011
( Wherein M 2 represents a lanthanoid element, scandium or yttrium, Cp R independently represents unsubstituted or substituted indenyl, and R E to R J each independently represents 1 to 3 carbon atoms. an alkyl group or a hydrogen atom, L is a neutral Lewis base, w is, the metallocene complex represented by an integer of 0-3), an organoaluminum compound represented by AlR K R L R M It is obtained by reacting with. In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene or hexane may be used. The structure of the metallocene composite catalyst is preferably determined by 1 H-NMR or X-ray structural analysis.
 上記一般式(XV)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記一般式(XIV)中のCpRと同義である。また、上記式(XV)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XIV)中の金属M1と同義である。 In the metallocene complex represented by the general formula (XV), Cp R is unsubstituted indenyl or substituted indenyl, and has the same meaning as Cp R in the general formula (XIV). In the above formula (XV), the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above formula (XIV).
 上記一般式(XV)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR32]を含む。シリルアミド配位子に含まれるR基(RE~RJ基)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、RE~RJのうち少なくとも一つが水素原子であることが好ましい。RE~RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the general formula (XV) includes a silylamide ligand [—N (SiR 3 ) 2 ]. The R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Further, at least one of R E to R J is preferably a hydrogen atom. By making at least one of R E to R J a hydrogen atom, the catalyst can be easily synthesized. Furthermore, a methyl group is preferable as the alkyl group.
 上記一般式(XV)で表されるメタロセン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the general formula (XV) further contains 0 to 3, preferably 0 to 1 neutral Lewis base L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.
 また、上記一般式(XV)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 In addition, the metallocene complex represented by the general formula (XV) may exist as a monomer, or may exist as a dimer or a higher multimer.
 一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKLMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子で、RMは炭素数1~20の一価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 On the other hand, the organoaluminum compound used for producing the metallocene composite catalyst is represented by AlR K R L R M , where R K and R L are each independently a monovalent carbon atom having 1 to 20 carbon atoms. In the hydrogen group or hydrogen atom, R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that R M may be the same as or different from R K or R L described above. Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
 上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1~50倍molであることが好ましく、約10倍molであることが更に好ましい。 Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, tri Hexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride , Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-propylaluminum Muzi hydride, isobutylaluminum dihydride and the like. Among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. Moreover, these organoaluminum compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them. The amount of the organoaluminum compound used for the production of the metallocene composite catalyst is preferably 1 to 50 times mol, more preferably about 10 times mol relative to the metallocene complex.
 前記第三重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含んでもよく、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。前記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の重合体中での含有量を任意に制御することが可能となる。 The third polymerization catalyst composition may include the metallocene composite catalyst and a boron anion, and further, other components contained in the polymerization catalyst composition including a normal metallocene catalyst, such as a promoter. It is preferable to contain. The metallocene composite catalyst and boron anion are also referred to as a two-component catalyst. According to the third polymerization catalyst composition, since the boron anion is further contained in the same manner as the metallocene composite catalyst, the content of each monomer component in the polymer can be arbitrarily controlled. It becomes.
 上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 Specific examples of the boron anion constituting the two-component catalyst in the third polymerization catalyst composition include a tetravalent boron anion. For example, tetraphenylborate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl) Phenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarboundecaborate Among these, tetrakis (pentafluorophenyl) borate is preferable.
 なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1~10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。 The boron anion can be used as an ionic compound combined with a cation. Examples of the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N— N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable. Therefore, as the ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. The ionic compound composed of a boron anion and a cation is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol based on the metallocene composite catalyst.
 なお、上記一般式(XV)で表されるメタロセン錯体と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記一般式(XIV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。 When a boron anion is present in the reaction system in which the metallocene complex represented by the general formula (XV) is reacted with the organoaluminum compound, the metallocene composite catalyst of the general formula (XIV) can be synthesized. Can not. Therefore, for the preparation of the third polymerization catalyst composition, it is necessary to synthesize the metallocene composite catalyst in advance, isolate and purify the metallocene composite catalyst, and then combine with the boron anion.
 上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKLMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the third polymerization catalyst co-catalyst which can be used in the compositions, for example, other organic aluminum compound represented by AlR K R L R M described above, aluminoxane can be preferably used. The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable. These aluminoxanes may be used alone or in combination of two or more.
-第四の重合触媒組成物-
 第四の重合触媒組成物(以下、「第四重合触媒組成物」ともいう)は、
・希土類元素化合物((A2)成分)と、
・置換又は無置換のシクロペンタジエン、置換又は無置換のインデン(インデニル基を有する化合物)、及び、置換又は無置換のフルオレンから選択されるシクロペンタジエン骨格含有化合物(以下、単に「シクロペンタジエン骨格含有化合物」と称することがある。)((B2)成分)と、
 を含むことを要する。
 また、第四重合触媒組成物は、それ以外に、
・有機金属化合物((C2)成分)、
・アルミノキサン化合物((D2成分))、
・ハロゲン化合物((E2)成分)、
 を含んでもよい。
-Fourth polymerization catalyst composition-
The fourth polymerization catalyst composition (hereinafter also referred to as “fourth polymerization catalyst composition”)
A rare earth element compound (component (A2)),
・ Cyclopentadiene skeleton-containing compound selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene (hereinafter simply referred to as “cyclopentadiene skeleton-containing compound”) ) (Component (B2)),
It is necessary to include.
In addition, the fourth polymerization catalyst composition,
・ Organic metal compound (component (C2)),
・ Aluminoxane compound ((D2 component)),
・ Halogen compounds (component (E2)),
May be included.
 第四の重合触媒組成物は、脂肪族炭化水素に高い溶解性を有することが好ましく、脂肪族炭化水素中で均一系溶液となることが好ましい。ここで、脂肪族炭化水素としては、例えば、ヘキサン、シクロヘキサン、ペンタン等が挙げられる。
 そして、第四の重合触媒組成物は、芳香族炭化水素を含まないことが好ましい。ここで、芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 なお、「芳香族炭化水素を含まない」とは、重合触媒組成物に含まれる芳香族炭化水素の割合が0.1質量%未満であることを意味する。
The fourth polymerization catalyst composition preferably has high solubility in aliphatic hydrocarbons, and is preferably a homogeneous solution in aliphatic hydrocarbons. Here, examples of the aliphatic hydrocarbon include hexane, cyclohexane, pentane, and the like.
And it is preferable that a 4th polymerization catalyst composition does not contain an aromatic hydrocarbon. Here, examples of the aromatic hydrocarbon include benzene, toluene, xylene, and the like.
In addition, "it does not contain an aromatic hydrocarbon" means that the ratio of the aromatic hydrocarbon contained in a polymerization catalyst composition is less than 0.1 mass%.
 前記(A2)成分は、金属-窒素結合(M-N結合)を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物とすることができる。
 前記希土類元素含有化合物としては、例えば、スカンジウム、イットリウム、又は原子番号57~71の元素から構成されるランタノイド元素を含有する化合物等が挙げられる。ランタノイド元素とは、具体的には、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。
 また、前記ルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。
 ここで、希土類元素含有化合物及び該希土類元素含有化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有しないことが好ましい。希土類元素含有化合物及び反応物が希土類元素-炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。
 なお、上記(A2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The component (A2) can be a rare earth element-containing compound having a metal-nitrogen bond (MN bond) or a reaction product of the rare earth element-containing compound and a Lewis base.
Examples of the rare earth element-containing compound include compounds containing a lanthanoid element composed of scandium, yttrium, or an element having an atomic number of 57 to 71. Specific examples of the lanthanoid element include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
Examples of the Lewis base include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
Here, the rare earth element-containing compound and the reaction product of the rare earth element-containing compound and the Lewis base preferably do not have a bond between the rare earth element and carbon. When the rare earth element-containing compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle.
In addition, the said (A2) component may be used individually by 1 type, and may be used in combination of 2 or more type.
 前記(A2)成分としては、下記一般式(XVI):
   M-(AQ1)(AQ2)(AQ3) ・・・ (XVI)
[式中、Mは、スカンジウム、イットリウム又はランタノイド元素であり;AQ1、AQ2及びAQ3は、同一であっても異なっていてもよい官能基であり;Aは、窒素、酸素又は硫黄であり;但し、少なくとも1つのM-A結合を有する]で表される化合物が好ましい。ここで、ランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。該化合物は、反応系における触媒活性を向上させることができ、反応時間を短くし、反応温度を高くすることが可能な成分である。
As the component (A2), the following general formula (XVI):
M- (AQ 1 ) (AQ 2 ) (AQ 3 ) (XVI)
[Wherein M is a scandium, yttrium or lanthanoid element; AQ 1 , AQ 2 and AQ 3 are functional groups which may be the same or different; A is nitrogen, oxygen or sulfur; Yes; provided that it has at least one MA bond]. Here, the lanthanoid elements are specifically lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The compound is a component that can improve the catalytic activity in the reaction system, shorten the reaction time, and increase the reaction temperature.
 一般式(XVI)中のMとしては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。 As M in the general formula (XVI), gadolinium is particularly preferable from the viewpoint of enhancing catalyst activity and reaction controllability.
 一般式(XVI)中のAが窒素である場合、AQ1、AQ2及びAQ3(即ち、NQ1、NQ2及びNQ3)で表される官能基としては、アミノ基等が挙げられる。そして、この場合、3つのM-N結合を有する。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、特に、脂肪族炭化水素及び芳香族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミノ基が好ましい。上記アミノ基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記構成によれば、(A2)成分を3つのM-N結合を有する化合物とすることができ、各結合が化学的に等価となり、化合物の構造が安定となるため、取り扱いが容易となる。
 また、上記構成とすれば、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
When A in the general formula (XVI) is nitrogen, examples of the functional group represented by AQ 1 , AQ 2 and AQ 3 (that is, NQ 1 , NQ 2 and NQ 3 ) include an amino group. And in this case, it has three MN bonds.
Examples of the amino group include aliphatic amino groups such as dimethylamino group, diethylamino group, and diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, Examples include arylamino groups such as 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group, and are particularly soluble in aliphatic hydrocarbons and aromatic hydrocarbons. From the viewpoint, a bistrimethylsilylamino group is preferable. The said amino group may be used individually by 1 type, and may be used in combination of 2 or more type.
According to the above configuration, the component (A2) can be a compound having three MN bonds, and each bond becomes chemically equivalent, and the structure of the compound becomes stable, so that handling is easy.
Moreover, if it is set as the said structure, the catalyst activity in a reaction system can further be improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.
 一般式(XVI)中のAが酸素である場合、一般式(XVI)(即ち、M-(OQ1)(OQ2)(OQ3))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XVII):
   (RO)3M ・・・ (XVII)
で表される希土類アルコラートや、下記一般式(XVIII):
   (R-CO23M・・・ (XVIII)
で表される希土類カルボキシレート等が挙げられる。ここで、上記一般式(XVII)及び(XVIII)中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
 なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(XVII)又は化合物(XVIII)を好適に使用できる。
When A in the general formula (XVI) is oxygen, the rare earth element-containing compound represented by the general formula (XVI) (that is, M- (OQ 1 ) (OQ 2 ) (OQ 3 )) is particularly limited. For example, the following general formula (XVII):
(RO) 3 M (XVII)
Rare earth alcoholate represented by the following general formula (XVIII):
(R-CO 2 ) 3 M ... (XVIII)
And rare earth carboxylates represented by Here, in the above general formulas (XVII) and (XVIII), R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
As the component (A2), since it is preferable not to have a bond between a rare earth element and carbon, the above-described compound (XVII) or compound (XVIII) can be suitably used.
 一般式(XVI)中のAが硫黄である場合、一般式(XVI)(即ち、M-(SQ1)(SQ2)(SQ3))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XIX):
   (RS)3M ・・・ (XIX)
で表される希土類アルキルチオラートや、下記一般式(XX):
   (R-CS23M ・・・ (XX)
で表される化合物、等が挙げられる。ここで、上記一般式(XIX)及び(XX)中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
 なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(XIX)又は化合物(XX)を好適に使用できる。
When A in the general formula (XVI) is sulfur, the rare earth element-containing compound represented by the general formula (XVI) (that is, M- (SQ 1 ) (SQ 2 ) (SQ 3 )) is particularly limited. For example, the following general formula (XIX):
(RS) 3 M (XIX)
Rare earth alkylthiolate represented by the following general formula (XX):
(R-CS 2 ) 3 M (XX)
And the like. Here, in the general formulas (XIX) and (XX), R may be the same or different and is an alkyl group having 1 to 10 carbon atoms.
In addition, as the component (A2), since it is preferable not to have a bond between a rare earth element and carbon, the above-described compound (XIX) or compound (XX) can be suitably used.
 前記(B2)成分は、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び、置換又は無置換のフルオレンから選択される化合物である。
 なお、上記(B2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The component (B2) is a compound selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene.
In addition, the said (B2) component may be used individually by 1 type, and may be used in combination of 2 or more type.
 置換又は無置換のシクロペンタジエンとしては、例えば、シクロペンタジエン、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル-テトラメチルシクロペンタジエン等が挙げられる。 Examples of the substituted or unsubstituted cyclopentadiene include cyclopentadiene, pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene, and the like.
 置換又は無置換のインデンとしては、例えば、インデン、2-フェニル-1H-インデン、3-ベンジル-1H-インデン、3-メチル-2-フェニル-1H-インデン、3-ベンジル-2-フェニル-1H-インデン、1-ベンジル-1H-インデン、1-メチル-3-ジメチルベンジルシリル-インデン、1,3-(t-BuMe2Si)2-インデン等が挙げられ、特に、分子量分布を小さくする観点から、3-ベンジル-1H-インデン、1-ベンジル-1H-インデンが好ましい。 Examples of the substituted or unsubstituted indene include indene, 2-phenyl-1H-indene, 3-benzyl-1H-indene, 3-methyl-2-phenyl-1H-indene, and 3-benzyl-2-phenyl-1H. -Indene, 1-benzyl-1H-indene, 1-methyl-3-dimethylbenzylsilyl-indene, 1,3- (t-BuMe 2 Si) 2 -indene and the like, and particularly the viewpoint of reducing the molecular weight distribution Therefore, 3-benzyl-1H-indene and 1-benzyl-1H-indene are preferable.
 置換又は無置換のフルオレンとしては、例えば、フルオレン、トリメチルシリルフルオレン、イソプロピルフルオレン等が挙げられる。 Examples of the substituted or unsubstituted fluorene include fluorene, trimethylsilylfluorene, isopropylfluorene, and the like.
 前記有機金属化合物((C2)成分)としては、下記一般式(XXI):
   YR4 a5 b6 c ・・・ (XXI)
[式中、Yは、周期律表の第1族、第2族、第12族及び第13族の元素からなる群から選択される金属元素であり;R4及びR5は、炭素数1~10の一価の炭化水素基又は水素原子であり、R6は、炭素数1~10の一価の炭化水素基であり、但し、R4、R5及びR6は、それぞれ互いに同一であっても異なっていてもよく;また、Yが第1族の金属元素である場合には、aは1で且つb及びcは0であり、Yが第2族又は第12族の金属元素である場合には、a及びbは1で且つcは0であり、Yが第13族の金属元素である場合には、a、b及びcは1である)で表される有機金属化合物が挙げられる。
 重合触媒組成物が(C2)成分を更に含むことによって、重合活性を高めることができる。
 ここで、触媒活性を高める観点から、一般式(XXI)において、R4、R5及びR6は少なくとも1つが異なっていることが好ましい。
As the organometallic compound (component (C2)), the following general formula (XXI):
YR 4 a R 5 b R 6 c (XXI)
[Wherein Y is a metal element selected from the group consisting of elements of Group 1, Group 2, Group 12 and Group 13 of the Periodic Table; R 4 and R 5 are carbon atoms of 1; To 10 monovalent hydrocarbon groups or hydrogen atoms, and R 6 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, provided that R 4 , R 5 and R 6 are the same as each other. And when Y is a Group 1 metal element, a is 1 and b and c are 0, and Y is a Group 2 or Group 12 metal element. A and b are 1 and c is 0, and when Y is a Group 13 metal element, a, b and c are 1). Is mentioned.
When the polymerization catalyst composition further contains a component (C2), the polymerization activity can be increased.
Here, from the viewpoint of enhancing the catalytic activity, it is preferable that at least one of R 4 , R 5 and R 6 is different in general formula (XXI).
 詳細には、(C2)成分は、下記一般式(XXII):
   AlR4 a5 b6 c ・・・ (XXII)
[式中、R4及びR5は、炭素数1~10の一価の炭化水素基又は水素原子であり;R6は、炭素数1~10の一価の炭化水素基であり;R4、R5及びR6は、同一であっても異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。
Specifically, the component (C2) is represented by the following general formula (XXII):
AlR 4 a R 5 b R 6 c (XXII)
[Wherein, R 4 and R 5 are monovalent hydrocarbon groups or hydrogen atoms having 1 to 10 carbon atoms; R 6 is a monovalent hydrocarbon group having 1 to 10 carbon atoms; R 4 , R 5 and R 6 may be the same or different from each other].
 上記有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、特に、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましく、更に特に、水素化ジイソブチルアルミニウムが好ましい。
 上記有機アルミニウム化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, and trihexyl. Aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride, Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-propylaluminium Dihydride, include isobutyl aluminum dihydride and the like, particularly, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, preferably diisobutylaluminum hydride, more particularly, diisobutylaluminum hydride are preferred.
The said organoaluminum compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 前記アルミノキサン化合物((D2)成分)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物である。
 (D2)成分を用いることによって、重合反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
The aluminoxane compound (component (D2)) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other.
By using the component (D2), the catalytic activity in the polymerization reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.
 ここで、有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、及びその混合物等が挙げられ、特に、トリメチルアルミニウム、トリメチルアルミニウムとトリブチルアルミニウムとの混合物が好ましい。
 一方、縮合剤としては、例えば、水等が挙げられる。
Here, examples of the organoaluminum compound include trialkylaluminum such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof. Particularly, trimethylaluminum, and a mixture of trimethylaluminum and tributylaluminum are preferable.
On the other hand, examples of the condensing agent include water.
 前記(D2)成分としては、例えば、下記式(XXIII):
   -(Al(R7)O)n- ・・・ (XXIII)
(式中、R7は、炭素数1~10の炭化水素基であり、ここで、炭化水素基の一部はハロゲン及び/又はアルコキシ基で置換されてもよく;R7は、繰り返し単位間で同一であっても異なっていてもよく;nは5以上である)で表されるアルミノキサンを挙げることができる。
 上記アルミノキサンの分子構造は、直鎖状であっても環状であってもよい。
Examples of the component (D2) include the following formula (XXIII):
-(Al (R 7 ) O) n- (XXIII)
(Wherein, R 7 is a hydrocarbon group having 1 to 10 carbon atoms, wherein a portion of the hydrocarbon group may be substituted by halogen and / or alkoxy group; R 7 is between the repeating units And may be the same or different; n is 5 or more).
The molecular structure of the aluminoxane may be linear or cyclic.
 上記式(XXIII)中のnは、10以上であることが好ましい。
 また、上記式(XXIII)中のR7に関して、炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、特に、メチル基が好ましい。該炭化水素基は、1種でもよいし、2種以上を組み合わせでもよい。式(XXIII)中のR7に関して、炭化水素基としては、メチル基とイソブチル基との組み合わせが好ましい。
N in the formula (XXIII) is preferably 10 or more.
Moreover, regarding R 7 in the above formula (XXIII), examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isobutyl group, and the like, and a methyl group is particularly preferable. The hydrocarbon group may be one kind or a combination of two or more kinds. Regarding R 7 in formula (XXIII), the hydrocarbon group is preferably a combination of a methyl group and an isobutyl group.
 上記アルミノキサンは、脂肪族炭化水素に高い溶解性を有することが好ましく、芳香族炭化水素に低い溶解性を有することが好ましい。例えば、ヘキサン溶液として市販されているアルミノキサンが好ましい。
 ここで、脂肪族炭化水素とは、ヘキサン、シクロヘキサン等が挙げられる。
The aluminoxane preferably has high solubility in aliphatic hydrocarbons, and preferably has low solubility in aromatic hydrocarbons. For example, aluminoxane marketed as a hexane solution is preferable.
Here, examples of the aliphatic hydrocarbon include hexane and cyclohexane.
 前記(D2)成分は、特に、下記式(XXIV):
   -(Al(CH3x(i-C49yO)m- ・・・ (XXIV)
(式中、x+yは1であり;mは5以上である)で表される修飾アルミノキサン(以下、「TMAO」ともいう)としてもよい。TMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「TMAO341」が挙げられる。
The component (D2) is particularly represented by the following formula (XXIV):
-(Al (CH 3 ) x (iC 4 H 9 ) y O) m- (XXIV)
(In the formula, x + y is 1; m is 5 or more). Examples of TMAO include a product name “TMAO341” manufactured by Tosoh Fine Chemical Co., Ltd.
 また、前記(D2)成分は、特に、下記式(XXV):
   -(Al(CH30.7(i-C490.3O)k- ・・・ (XXV)
(式中、kは5以上である)で表される修飾アルミノキサン(以下、「MMAO」ともいう)としてもよい。MMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「MMAO-3A」が挙げられる。
In addition, the component (D2) is particularly represented by the following formula (XXV):
-(Al (CH 3 ) 0.7 (iC 4 H 9 ) 0.3 O) k- (XXV)
(Wherein k is 5 or more), and may be a modified aluminoxane (hereinafter also referred to as “MMAO”). An example of MMAO is a product name “MMAO-3A” manufactured by Tosoh Fine Chemical Co., Ltd.
 更に、前記(D2)成分は、特に、下記式(XXVI):
   -[(CH3)AlO]i- ・・・ (XXVI)
(式中、iは5以上である)で表される修飾アルミノキサン(以下、「PMAO」ともいう)としてもよい。PMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「PMAO-211」が挙げられる。
Furthermore, the component (D2) is particularly represented by the following formula (XXVI):
-[(CH 3 ) AlO] i- (XXVI)
(Wherein i is 5 or more), a modified aluminoxane (hereinafter also referred to as “PMAO”). An example of PMAO is “PMAO-211” manufactured by Tosoh Fine Chemical Co., Ltd.
 前記(D2)成分は、触媒活性を向上させる効果を高める観点から、上記MMAO、TMAO、PMAOのうち、MMAO又はTMAOであることが好ましく、特に、触媒活性を向上させる効果を更に高める観点から、TMAOであることが更に好ましい。 The component (D2) is preferably MMAO or TMAO among the above-mentioned MMAO, TMAO, and PMAO from the viewpoint of improving the effect of improving the catalyst activity, and in particular, from the viewpoint of further enhancing the effect of improving the catalyst activity. More preferably, it is TMAO.
 前記ハロゲン化合物((E2)成分)は、ルイス酸であるハロゲン含有化合物(以下、「(E2-1)成分」ともいう)、金属ハロゲン化物とルイス塩基との錯化合物(以下、「(E2-2)成分」ともいう)、及び活性ハロゲンを含む有機化合物(以下、「(E2-3)成分」ともいう)からなる群から選択される少なくとも1種の化合物である。 The halogen compound (component (E2)) is a halogen-containing compound which is a Lewis acid (hereinafter also referred to as “(E2-1) component”), a complex compound of a metal halide and a Lewis base (hereinafter referred to as “(E2- 2) component ”) and an organic compound containing an active halogen (hereinafter also referred to as“ component (E2-3) ”).
 これらの化合物は、(A2)成分、すなわち、M-A結合を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物と反応して、カチオン性遷移金属化合物、ハロゲン化遷移金属化合物、及び/又は遷移金属中心において電子が不足した状態の遷移金属化合物を生成する。
 (E2)成分を更に含むことによって、共役ジエン単位のシス-1,4結合量を特により高めることができる。
These compounds react with the component (A2), that is, a rare earth element-containing compound having an MA bond, or a reaction product of the rare earth element-containing compound and a Lewis base to form a cationic transition metal compound, a halogenated transition, A metal compound and / or a transition metal compound in which electrons are insufficient at the transition metal center are generated.
By further including the component (E2), the amount of cis-1,4 bonds of the conjugated diene unit can be particularly increased.
 前記(E2-1)成分としては、例えば、周期律表の第3族、第4族、第5族、第6族、第8族、第13族、第14族又は第15族の元素を含むハロゲン含有化合物等が挙げられ、特に、アルミニウムのハロゲン化物又は有機金属のハロゲン化物が好ましい。
 ルイス酸であるハロゲン含有化合物としては、例えば、四塩化チタン、六塩化タングステン、トリ(ペンタフルオロフェニル)ボレート、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、アルミニウムトリブロマイド、トリ(ペンタフルオロフェニル)アルミニウム、ジブチル錫ジクロライド、四塩化錫、三塩化リン、五塩化リン、三塩化アンチモン、五塩化アンチモン等が挙げられ、特に、エチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイドが好ましい。
 ハロゲンとしては、塩素又は臭素が好ましい。
 上記ルイス酸であるハロゲン含有化合物((D-1)成分)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the (E2-1) component include elements of Group 3, Group 4, Group 5, Group 6, Group 8, Group 13, Group 14 or Group 15 of the Periodic Table. Examples of the halogen-containing compounds include aluminum halides and organometallic halides.
Examples of halogen-containing compounds that are Lewis acids include titanium tetrachloride, tungsten hexachloride, tri (pentafluorophenyl) borate, methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide. , Butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride, diethylaluminum bromide, diethylaluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquichloride, ethylaluminum sesquichloride, aluminum G Examples include bromide, tri (pentafluorophenyl) aluminum, dibutyltin dichloride, tin tetrachloride, phosphorus trichloride, phosphorus pentachloride, antimony trichloride, antimony pentachloride, etc., especially ethyl aluminum dichloride, ethyl aluminum dibromide, diethyl Aluminum chloride, diethylaluminum bromide, ethylaluminum sesquichloride, and ethylaluminum sesquibromide are preferred.
As halogen, chlorine or bromine is preferable.
The above-mentioned halogen-containing compound that is a Lewis acid (component (D-1)) may be used alone or in combination of two or more.
 前記(E2-2)成分に用いられる金属ハロゲン化物としては、例えば、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、特に、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化亜鉛、塩化マンガン、塩化銅が好ましく、更に特に、塩化マグネシウム、塩化亜鉛、塩化マンガン、塩化銅が好ましい。
 前記(E2-2)成分に用いられるルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコールが好ましい。
 例えば、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、特に、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 上記ルイス塩基のモル数は、上記金属ハロゲン化物1モル当たり、0.01~30モル、好ましくは0.5~10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
 上記金属ハロゲン化物とルイス塩基との錯化合物((E2-2)成分)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the metal halide used for the component (E2-2) include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, calcium iodide. , Barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, bromide Manganese, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. In particular, magnesium chloride, calcium chloride, barium chloride, zinc chloride, manganese chloride, and copper chloride are preferable, and more particularly, magnesium chloride. Um, zinc chloride, manganese chloride, copper chloride are preferable.
The Lewis base used for the component (E2-2) is preferably a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, or an alcohol.
For example, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone, propio Nitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethylhexanoic acid, oleic acid, stearic acid Benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethylhexyl alcohol, olei Examples include alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, lauryl alcohol and the like, and in particular, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2-ethylhexyl alcohol 1-decanol and lauryl alcohol are preferred.
The number of moles of the Lewis base is 0.01 to 30 moles, preferably 0.5 to 10 moles per mole of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
The above-mentioned complex compound of metal halide and Lewis base (component (E2-2)) may be used alone or in combination of two or more.
 前記(E3-3)成分としては、例えば、ベンジルクロライド等が挙げられる。 Examples of the component (E3-3) include benzyl chloride.
 以下、第四の重合触媒組成物の各成分間の配合割合について記載する。
 (B2)成分(シクロペンタジエン骨格含有化合物)の(A2)成分に対する配合量のモル比は、触媒活性を十分に得る観点から、0超であることが好ましく、0.5以上であることが更に好ましく、1以上であることが特に好ましく、また、触媒活性の低下を抑制する観点から、3以下であることが好ましく、2.5以下であることが更に好ましく、2.2以下であることが特に好ましい。
Hereinafter, it describes about the mixture ratio between each component of a 4th polymerization catalyst composition.
The molar ratio of the amount of the component (B2) (cyclopentadiene skeleton-containing compound) to the component (A2) is preferably more than 0 and more preferably 0.5 or more from the viewpoint of obtaining sufficient catalyst activity. Preferably, it is 1 or more, particularly preferably 3 or less, more preferably 2.5 or less, and 2.2 or less from the viewpoint of suppressing a decrease in catalyst activity. Particularly preferred.
 (C2)成分(有機金属化合物)の(A2)成分に対する配合量のモル比は、反応系における触媒活性を向上させる観点から、1以上であることが好ましく、5以上であることが更に好ましく、また、反応系における触媒活性の低下を抑制する観点から、50以下であることが好ましく、30以下であることが更に好ましく、具体的には、約10であることが好ましい。 From the viewpoint of improving the catalytic activity in the reaction system, the molar ratio of the component (C2) component (organometallic compound) to the component (A2) is preferably 1 or more, more preferably 5 or more, Further, from the viewpoint of suppressing a decrease in catalyst activity in the reaction system, it is preferably 50 or less, more preferably 30 or less, and specifically about 10 is preferable.
 (D2)成分(アルミノキサン)中のアミニウムの、(A2)成分中の希土類元素に対するモル比は、反応系における触媒活性を向上させる観点から、10以上であることが好ましく、100以上であることがより好ましく、また、反応系における触媒活性の低下を抑制する観点から、1000以下であることが好ましく、800以下であることがより好ましい。 From the viewpoint of improving the catalytic activity in the reaction system, the molar ratio of aminium in component (D2) (aluminoxane) to the rare earth element in component (A2) is preferably 10 or more, and more preferably 100 or more. More preferably, from the viewpoint of suppressing a decrease in catalyst activity in the reaction system, it is preferably 1000 or less, more preferably 800 or less.
 (E2)成分(ハロゲン化合物)の(A2)成分に対する配合量のモル比は、触媒活性を向上させる観点から、0以上であることが好ましく、0.5以上であることが更に好ましく、1.0以上であることが特に好ましく、また、(E2)成分の溶解性を保持し、触媒活性の低下を抑制する観点から、20以下であることが好ましく、10以下であることが更に好ましい。
 そのため、上記範囲によれば、共役ジエン単位のシス-1,4結合量又は1,4結合量を高める効果を高くすることができる。
From the viewpoint of improving the catalytic activity, the molar ratio of the component (E2) component (halogen compound) to the component (A2) is preferably 0 or more, more preferably 0.5 or more. It is particularly preferably 0 or more, and is preferably 20 or less, and more preferably 10 or less, from the viewpoint of maintaining the solubility of the component (E2) and suppressing a decrease in catalytic activity.
Therefore, according to the above range, the effect of increasing the cis-1,4 bond amount or 1,4 bond amount of the conjugated diene unit can be enhanced.
 なお、第四の重合触媒組成物は、非配位性アニオン(例えば、4価のホウ素アニオン等)とカチオン(例えば、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等)とからなるイオン性化合物を含まないことが好ましい。ここで、イオン性化合物は、芳香族炭化水素に高い溶解性を有し、炭化水素に低い溶解性を有する。そのため、イオン性化合物を含まない重合触媒組成物とすれば、環境負荷及び製造コストを更に低減させつつ、共役ジエン重合体を製造することができる。
 なお、「イオン性化合物を含まない」とは、重合触媒組成物に含まれるイオン性化合物の割合が0.01質量%未満であることを意味する。
The fourth polymerization catalyst composition includes a non-coordinating anion (for example, a tetravalent boron anion) and a cation (for example, a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, and a cycloheptatrienyl cation). And an ionic compound composed of a ferrocenium cation having a transition metal). Here, the ionic compound has high solubility in aromatic hydrocarbons and low solubility in hydrocarbons. Therefore, if it is set as the polymerization catalyst composition which does not contain an ionic compound, a conjugated diene polymer can be manufactured, reducing environmental impact and manufacturing cost further.
In addition, "it does not contain an ionic compound" means that the ratio of the ionic compound contained in a polymerization catalyst composition is less than 0.01 mass%.
 前記カップリング工程は、前記重合工程において得られた多元共重合体の高分子鎖の少なくとも一部(例えば、末端)を変性する反応(カップリング反応)を行う工程である。
 前記カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
 前記カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)等のスズ含有化合物;4,4’-ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)が、反応効率と低ゲル生成の点で、好ましい。
 なお、カップリング反応を行うことにより、数平均分子量(Mn)の増加を行うことができる。
The coupling step is a step of performing a reaction (coupling reaction) for modifying at least a part (for example, a terminal) of the polymer chain of the multi-component copolymer obtained in the polymerization step.
In the coupling step, the coupling reaction is preferably performed when the polymerization reaction reaches 100%.
The coupling agent used in the coupling reaction is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a tin-containing compound such as bis (-1-octadecyl maleate) dioctyl tin (IV); Examples include isocyanate compounds such as 4,4′-diphenylmethane diisocyanate; alkoxysilane compounds such as glycidylpropyltrimethoxysilane, and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, bis (-1-octadecyl maleate) dioctyltin (IV) is preferable from the viewpoint of reaction efficiency and low gel formation.
In addition, the number average molecular weight (Mn) can be increased by performing a coupling reaction.
 前記洗浄工程は、前記重合工程において得られた多元共重合体を洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノールなどが挙げられるが、重合触媒としてルイス酸由来の触媒を使用する際は、特にこれらの溶媒に対して酸(たとえば塩酸、硫酸、硝酸)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では酸が共重合体中に残存してしまうことで混練及び加硫時の反応に悪影響を及ぼす可能性がある。
 この洗浄工程により、共重合体中の触媒残渣量を好適に低下させることができる。
The washing step is a step of washing the multi-component copolymer obtained in the polymerization step. The medium used for washing is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include methanol, ethanol, isopropanol and the like. When a catalyst derived from a Lewis acid is used as a polymerization catalyst. Can be used in particular by adding an acid (for example, hydrochloric acid, sulfuric acid, nitric acid) to these solvents. The amount of the acid to be added is preferably 15 mol% or less with respect to the solvent. Above this, the acid remains in the copolymer, which may adversely affect the reaction during kneading and vulcanization.
By this washing step, the amount of catalyst residue in the copolymer can be suitably reduced.
 本発明のゴム組成物は、ゴム成分(a)として、上述した多元共重合体(a1)以外の共役ジエン系ゴム(a2)を含む。
 該多元共重合体(a1)以外の共役ジエン系ゴム(a2)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)の他、イソプレンゴム(IR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、スチレン-ブタジエンゴム(SBR)、スチレン-イソプレンゴム(SIR)、アクリロニトリル-ブタジエンゴム(NBR)等の合成ジエン系ゴムが挙げられる。これらの中でも、ゴム組成物の耐摩耗性及び耐亀裂成長性の観点から、スチレン-ブタジエンゴム(SBR)が好ましい。これら共役ジエン系ゴム(a2)は、1種単独で使用してもよく、2種以上を混合して用いてもよい。
The rubber composition of the present invention contains a conjugated diene rubber (a2) other than the above-described multi-component copolymer (a1) as the rubber component (a).
The conjugated diene rubber (a2) other than the multi-component copolymer (a1) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, in addition to natural rubber (NR), isoprene rubber (IR ), Butadiene rubber (BR), chloroprene rubber (CR), styrene-butadiene rubber (SBR), styrene-isoprene rubber (SIR), acrylonitrile-butadiene rubber (NBR), and the like. Among these, styrene-butadiene rubber (SBR) is preferable from the viewpoint of wear resistance and crack growth resistance of the rubber composition. These conjugated diene rubbers (a2) may be used alone or in combination of two or more.
 本発明のゴム組成物において、前記ゴム成分(a)中の、前記共役ジエン系ゴム(a2)の含有量は、95質量%以下であり、好ましくは80質量%以下であり、また、好ましくは50質量%を超え、更に好ましくは60質量%以上である。ゴム成分(a)中の、共役ジエン系ゴム(a2)の含有量が50質量%を超えれば、ゴム組成物の作業性が向上し、60質量%以上であれば、ゴム組成物の作業性が更に向上し、また、80質量%以下であれば、多元共重合体(a1)による作用が十分に発揮され、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。 In the rubber composition of the present invention, the content of the conjugated diene rubber (a2) in the rubber component (a) is 95% by mass or less, preferably 80% by mass or less, and preferably It exceeds 50 mass%, More preferably, it is 60 mass% or more. If the content of the conjugated diene rubber (a2) in the rubber component (a) exceeds 50% by mass, the workability of the rubber composition is improved. If the content is 60% by mass or more, the workability of the rubber composition is improved. Further, when the amount is 80% by mass or less, the effect of the multi-component copolymer (a1) is sufficiently exerted, and the wear resistance and crack growth resistance of the rubber composition are further improved.
 本発明のゴム組成物は、前記共役ジエン系ゴム(a2)として、スチレン-ブタジエンゴムを含有し、ゴム成分(a)中における、該スチレン-ブタジエンゴムの含有量が、50質量%を超えることが好ましい。共役ジエン系ゴム(a2)として、一般にガラス転移温度が高いスチレン-ブタジエンゴムを含むと、共役ジエン系ゴム(a2)からなる連続相と、多元共重合体(a1)からなる分散相との親和性が良好となって、多元共重合体(a1)からなる分散相のドメインサイズが小さくなり、該ドメインサイズが小さくなると、多元共重合体(a1)の結晶崩壊がより促進されるので、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。また、ゴム成分(a)中における、該スチレン-ブタジエンゴムの含有量が50質量%を超えれば、スチレン-ブタジエンゴムによる効果が顕著になり、ゴム組成物の耐摩耗性及び耐亀裂成長性がより一層向上する。なお、ゴム組成物の耐摩耗性及び耐亀裂成長性の観点から、ゴム成分(a)中における、該スチレン-ブタジエンゴムの含有量は、60~95質量%の範囲が好ましい。 The rubber composition of the present invention contains styrene-butadiene rubber as the conjugated diene rubber (a2), and the content of the styrene-butadiene rubber in the rubber component (a) exceeds 50% by mass. Is preferred. When a styrene-butadiene rubber generally having a high glass transition temperature is included as the conjugated diene rubber (a2), the affinity between the continuous phase consisting of the conjugated diene rubber (a2) and the dispersed phase consisting of the multi-component copolymer (a1) Since the properties of the dispersed phase consisting of the multi-component copolymer (a1) become small and the domain size of the multi-component copolymer (a1) decreases, the crystal collapse of the multi-component copolymer (a1) is further promoted. The wear resistance and crack growth resistance of the composition are further improved. In addition, if the content of the styrene-butadiene rubber in the rubber component (a) exceeds 50% by mass, the effect of the styrene-butadiene rubber becomes remarkable, and the wear resistance and crack growth resistance of the rubber composition are improved. Further improvement. From the viewpoint of wear resistance and crack growth resistance of the rubber composition, the content of the styrene-butadiene rubber in the rubber component (a) is preferably in the range of 60 to 95% by mass.
 前記スチレン-ブタジエンゴムは、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が-60℃~0℃であることが好ましく、-30℃~0℃であることが更に好ましい。スチレン-ブタジエンゴムのガラス転移温度(Tg)が-60℃以上であれば、共役ジエン系ゴム(a2)からなる連続相と、多元共重合体(a1)からなる分散相との親和性が更に向上して、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。また、スチレン-ブタジエンゴムのガラス転移温度(Tg)が0℃以下であれば、共役ジエン系ゴム(a2)からなる連続相の粘度が低くなり、ゴム組成物の作業性が更に向上する。
 ここで、該ガラス転移温度は、実施例に記載の方法で測定した値である。
The styrene-butadiene rubber preferably has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of −60 ° C. to 0 ° C., more preferably −30 ° C. to 0 ° C. If the glass transition temperature (Tg) of the styrene-butadiene rubber is −60 ° C. or higher, the affinity between the continuous phase composed of the conjugated diene rubber (a2) and the dispersed phase composed of the multi-component copolymer (a1) is further increased. This improves the wear resistance and crack growth resistance of the rubber composition. If the glass transition temperature (Tg) of the styrene-butadiene rubber is 0 ° C. or lower, the viscosity of the continuous phase composed of the conjugated diene rubber (a2) is lowered, and the workability of the rubber composition is further improved.
Here, the glass transition temperature is a value measured by the method described in Examples.
 前記スチレン-ブタジエンゴムは、スチレン含有量が5~50質量%であることが好ましく、8~45質量%であることが更に好ましい。スチレン-ブタジエンゴムのスチレン含有量が5質量%以上であれば、共役ジエン系ゴム(a2)からなる連続相と、多元共重合体(a1)からなる分散相との親和性が更に向上して、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。また、スチレン-ブタジエンゴムのスチレン含有量が50質量%以下であれば、親和性が向上し、さらに共役ジエン系ゴム(a2)からなる連続相の粘度が低くなり、ゴム組成物の作業性が更に向上する。
 ここで、該スチレン含有量は、スチレン-ブタジエンゴム中における、スチレン単位の結合量であり、1H-NMRスペクトルの積分比より求める。
The styrene-butadiene rubber preferably has a styrene content of 5 to 50% by mass, more preferably 8 to 45% by mass. If the styrene content of the styrene-butadiene rubber is 5% by mass or more, the affinity between the continuous phase composed of the conjugated diene rubber (a2) and the dispersed phase composed of the multi-component copolymer (a1) is further improved. Further, the wear resistance and crack growth resistance of the rubber composition are further improved. Further, when the styrene content of the styrene-butadiene rubber is 50% by mass or less, the affinity is improved, the viscosity of the continuous phase composed of the conjugated diene rubber (a2) is lowered, and the workability of the rubber composition is improved. Further improvement.
Here, the styrene content is the amount of styrene units bonded in the styrene-butadiene rubber, and is determined from the integral ratio of the 1 H-NMR spectrum.
 また、前記スチレン-ブタジエンゴムは、当該スチレン-ブタジエンゴム中のビニル結合含量が15~60質量%であることが好ましく、30~60質量%であることが更に好ましい。スチレン-ブタジエンゴムのビニル結合含量が15質量%以上であれば、共役ジエン系ゴム(a2)からなる連続相と、多元共重合体(a1)からなる分散相との親和性が更に向上して、ゴム組成物の耐摩耗性及び耐亀裂成長性が更に向上する。また、スチレン-ブタジエンゴムのビニル結合含量が60質量%以下であれば、親和性が向上し、さらに共役ジエン系ゴム(a2)からなる連続相の粘度が低くなり、ゴム組成物の作業性が更に向上する。
 ここで、該ビニル結合含量は、スチレン-ブタジエンゴム中における、ビニル結合(1,2-結合)しているブタジエン単位の結合量であり、1H-NMRスペクトルの積分比より求める。
In the styrene-butadiene rubber, the vinyl bond content in the styrene-butadiene rubber is preferably 15 to 60% by mass, and more preferably 30 to 60% by mass. When the vinyl bond content of the styrene-butadiene rubber is 15% by mass or more, the affinity between the continuous phase composed of the conjugated diene rubber (a2) and the dispersed phase composed of the multi-component copolymer (a1) is further improved. Further, the wear resistance and crack growth resistance of the rubber composition are further improved. Further, when the vinyl bond content of the styrene-butadiene rubber is 60% by mass or less, the affinity is improved and the viscosity of the continuous phase composed of the conjugated diene rubber (a2) is lowered, and the workability of the rubber composition is improved. Further improvement.
Here, the vinyl bond content is the amount of butadiene units having vinyl bonds (1,2-bonds) in the styrene-butadiene rubber, and is determined from the integral ratio of the 1 H-NMR spectrum.
 本発明のゴム組成物は、充填剤を含むことが好ましい。ゴム組成物が充填剤を含む場合、ゴム組成物の耐摩耗性及び耐亀裂成長性を更に向上させることができる。
 なお、該充填剤は、多元共重合体(a1)から形成される分散相よりも、共役ジエン系ゴム(a2)から形成される連続相により多く分配される傾向があり、連続相の耐摩耗性及び耐亀裂成長性が向上することで、ゴム組成物全体としての耐摩耗性及び耐亀裂成長性がより一層向上する。
 前記充填剤としては、特に制限はなく、カーボンブラック、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられるが、これらの中でも、カーボンブラック及びシリカが好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 前記充填剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分(a)100質量部に対し、10~100質量部が好ましく、20~80質量部がより好ましく、30~60質量部が特に好ましい。前記充填剤の配合量が10質量部以上であることにより、充填剤を配合したことによる補強性向上の効果が十分に得られ、また、100質量以下であることにより、良好な作業性を保持することができる。
The rubber composition of the present invention preferably contains a filler. When the rubber composition contains a filler, the wear resistance and crack growth resistance of the rubber composition can be further improved.
The filler tends to be distributed more in the continuous phase formed from the conjugated diene rubber (a2) than in the dispersed phase formed from the multi-component copolymer (a1). The wear resistance and crack growth resistance of the rubber composition as a whole are further improved by improving the properties and crack growth resistance.
The filler is not particularly limited, and carbon black, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, magnesium oxide, oxidation Titanium, potassium titanate, barium sulfate and the like can be mentioned. Among these, carbon black and silica are preferable. These may be used alone or in combination of two or more.
The blending amount of the filler is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 10 to 100 parts by weight, preferably 20 to 80 parts by weight with respect to 100 parts by weight of the rubber component (a). Is more preferable, and 30 to 60 parts by mass is particularly preferable. When the blending amount of the filler is 10 parts by mass or more, the effect of improving the reinforcement by blending the filler is sufficiently obtained, and when it is 100 masses or less, good workability is maintained. can do.
 本発明のゴム組成物は、架橋剤を含むことが好ましい。該架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム-ニトロソアミン系架橋剤等が挙げられる。なお、タイヤ用のゴム組成物としては、これらの中でも硫黄系架橋剤(加硫剤)がより好ましい。
 前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分(a)100質量部に対し、0.1~20質量部が好ましい。
The rubber composition of the present invention preferably contains a crosslinking agent. There is no restriction | limiting in particular as this crosslinking agent, According to the objective, it can select suitably, For example, a sulfur type crosslinking agent, an organic peroxide type crosslinking agent, an inorganic crosslinking agent, a polyamine crosslinking agent, a resin crosslinking agent, sulfur Compound-based crosslinking agents, oxime-nitrosamine-based crosslinking agents and the like can be mentioned. In addition, as a rubber composition for tires, a sulfur-based crosslinking agent (vulcanizing agent) is more preferable among these.
The content of the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component (a).
 前記加硫剤を用いる場合には、更に加硫促進剤を併用することもできる。前記加硫促進剤としては、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。 When using the vulcanizing agent, a vulcanization accelerator can be used in combination. Examples of the vulcanization accelerator include guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, thiuram, dithiocarbamate, and xanthate compounds.
 また、本発明のゴム組成物には、必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、粘着付与剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。 Further, the rubber composition of the present invention, if necessary, softener, vulcanization aid, colorant, flame retardant, lubricant, foaming agent, plasticizer, processing aid, antioxidant, anti-aging agent, Known materials such as tackifiers, scorch inhibitors, ultraviolet inhibitors, antistatic agents, anti-coloring agents, and other compounding agents can be used depending on the intended use.
 本発明のゴム組成物は、後述するタイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置、ホース等の、各種ゴム製品に利用できる。 The rubber composition of the present invention can be used for various rubber products such as tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices, hoses and the like described later.
<タイヤ>
 本発明のタイヤは、上述のゴム組成物を用いたことを特徴とする。かかる本発明のタイヤは、上述したゴム組成物を用いているため、耐摩耗性、耐亀裂成長性に優れる。
 タイヤにおける本発明のゴム組成物の適用部位としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラー等が挙げられる。
 前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴム組成物及び/又はコードからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。
<Tire>
The tire of the present invention is characterized by using the above rubber composition. Since the tire of the present invention uses the rubber composition described above, it is excellent in wear resistance and crack growth resistance.
The application site of the rubber composition of the present invention in a tire is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tread, base tread, sidewall, side reinforcing rubber, and bead filler. .
As a method for manufacturing the tire, a conventional method can be used. For example, on a tire molding drum, members normally used for manufacturing tires such as a carcass layer, a belt layer, a tread layer and the like made of an unvulcanized rubber composition and / or a cord are sequentially laminated, and the drum is removed and a green tire is removed. To do. Then, a desired tire (for example, a pneumatic tire) can be manufactured by heating and vulcanizing the green tire according to a conventional method.
<コンベヤベルト>
 本発明のコンベヤベルトは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のコンベヤベルトは、上述したゴム組成物を用いているため、耐摩耗性、耐亀裂成長性に優れる。
 一実施形態においては、前記ゴム組成物を、コンベヤベルトのうち、少なくとも、スチールコード等からなる補強材の下側の、駆動プーリー、従動プーリー、保形ローター等と接触する内周側の表層ゴム(下面カバーゴム)に用いることができ、また、補強材の上側の、輸送物品と接触する外周側の表層ゴム(上面カバーゴム)に用いることもできる。
 本発明のコンベヤベルトの具体的な製造例としては、上記ゴム組成物からなるシートで補強材を挟み込み、このゴム組成物を加熱圧着して加硫接着することにより、補強材にゴム組成物を接着及び被覆することが挙げられる。
<Conveyor belt>
The conveyor belt of the present invention is characterized by using the above rubber composition. Since the conveyor belt of this invention uses the rubber composition mentioned above, it is excellent in abrasion resistance and crack growth resistance.
In one embodiment, the rubber composition is a surface layer rubber on the inner peripheral side that comes into contact with a driving pulley, a driven pulley, a shape-retaining rotor, etc., at least below a reinforcing member made of a steel cord or the like among conveyor belts. It can be used for (lower surface cover rubber), and can also be used for outer layer surface rubber (upper surface cover rubber) on the upper side of the reinforcing material and in contact with the transport article.
As a specific production example of the conveyor belt of the present invention, a reinforcing material is sandwiched between sheets made of the rubber composition, and the rubber composition is bonded to the reinforcing material by heat-pressing and vulcanizing and bonding. Adhesion and coating may be mentioned.
<ゴムクローラ>
 本発明のゴムクローラは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のゴムクローラは、上述したゴム組成物を用いているため、耐摩耗性、耐亀裂成長性に優れる。
 一実施形態においては、ゴムクローラは、スチールコードと、該スチールコードを被覆する中間ゴム層と、該中間ゴム層の上に配置された芯金と、前記中間ゴム層と芯金とを囲む本体ゴム層とを具え、更に、本体ゴム層の接地面側に複数のラグを有している。ここで、前記ゴム組成物は、本発明のゴムクローラのどの部位に用いてもよいが、耐摩耗性、耐亀裂成長性に優れるため、本体ゴム層、特には、ラグに用いることが好ましい。
<Rubber crawler>
The rubber crawler of the present invention is characterized by using the above rubber composition. Since the rubber crawler of the present invention uses the rubber composition described above, it is excellent in wear resistance and crack growth resistance.
In one embodiment, the rubber crawler includes a steel cord, an intermediate rubber layer that covers the steel cord, a core metal disposed on the intermediate rubber layer, and a body that surrounds the intermediate rubber layer and the metal core. And a plurality of lugs on the grounding surface side of the main rubber layer. Here, the rubber composition may be used in any part of the rubber crawler of the present invention. However, since it is excellent in wear resistance and crack growth resistance, the rubber composition is preferably used in the main rubber layer, particularly in the lug.
<防振装置>
 本発明の防振装置は、上記のゴム組成物を用いたことを特徴とする。本発明の防振装置は、上述したゴム組成物を用いているため、耐摩耗性、耐亀裂成長性に優れる。
 本発明の防振装置の種類は特に限定されず、例えば、エンジンマウント、トーショナルダンパー、ラバーブッシュ、ストラットマウント、バウンドバンパー、ヘルパーラバー、メンバマウント、スタビブッシュ、空気ばね、センターサポート、ゴム入りプロペラシャフト、防振レバー、コンパニヨンダンパー、ダンピングラバー、アイドラーアームブッシュ、ステアリングコラムブッシュ、カップリングラバー、ボデーマウント、マフラーサポート、ダイナミックダンパー、パイピングラバー等に利用できる。
<Vibration isolator>
The vibration isolator of the present invention is characterized by using the above rubber composition. Since the vibration isolator of the present invention uses the above-described rubber composition, it is excellent in wear resistance and crack growth resistance.
The type of the vibration isolator of the present invention is not particularly limited. For example, engine mount, torsional damper, rubber bush, strut mount, bound bumper, helper rubber, member mount, stabilizer bush, air spring, center support, rubber propeller It can be used for shafts, anti-vibration levers, companion dampers, damping rubbers, idler arm bushings, steering column bushings, coupling rubbers, body mounts, muffler supports, dynamic dampers, and piping rubbers.
<免震装置>
 本発明の免震装置は、上記のゴム組成物を用いたことを特徴とする。本発明の免震装置は、上述したゴム組成物を用いているため、耐摩耗性、耐亀裂成長性に優れる。
 一実施形態において、免震装置は、軟質層と硬質層とが交互に積層された積層体、及び、当該積層体の中心に形成された中空部に圧入されるプラグを備える。そして、一実施形態においては、上述したゴム組成物を、軟質層及びプラグの少なくともいずれかに用いることができる。
<Seismic isolation device>
The seismic isolation device of the present invention is characterized by using the above rubber composition. Since the seismic isolation device of the present invention uses the above-described rubber composition, it is excellent in wear resistance and crack growth resistance.
In one embodiment, the seismic isolation device includes a laminate in which soft layers and hard layers are alternately laminated, and a plug that is press-fitted into a hollow portion formed at the center of the laminate. In one embodiment, the rubber composition described above can be used for at least one of the soft layer and the plug.
<ホース>
 本発明のホースは、上記のゴム組成物を用いたことを特徴とする。本発明のホースは、上述したゴム組成物を用いているため、耐摩耗性、耐亀裂成長性に優れる。
 一実施形態において、ホースは、径方向内側に位置する内面ゴム層(内管ゴム)と、径方向外側に位置する外面ゴム層と、必要に応じて上記内面ゴム層及び上記外面ゴム層の間に位置する補強層とを備える。そして、一実施形態においては、上述したゴム組成物を、内面ゴム層及び外面ゴム層の少なくともいずれかに用いることができる。また、上述したゴム組成物は、単一ゴム層からなるホースに用いることもできる。
<Hose>
The hose of the present invention is characterized by using the above rubber composition. Since the hose of the present invention uses the above-described rubber composition, it is excellent in wear resistance and crack growth resistance.
In one embodiment, the hose is provided between an inner surface rubber layer (inner tube rubber) positioned on the radially inner side, an outer surface rubber layer positioned on the radially outer side, and the inner surface rubber layer and the outer surface rubber layer as necessary. And a reinforcing layer located on the surface. In one embodiment, the rubber composition described above can be used for at least one of the inner rubber layer and the outer rubber layer. Moreover, the rubber composition mentioned above can also be used for the hose which consists of a single rubber layer.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
<共重合体の分析方法>
 以下の方法で、合成した共重合体の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)、ブタジエン単位、エチレン単位及びスチレン単位の含有量、融点、吸熱ピークエネルギー、ガラス転移温度、結晶化度を測定し、主鎖構造を確認した。
<Method for analyzing copolymer>
The number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn), content of butadiene unit, ethylene unit and styrene unit, melting point, endothermic peak energy of the copolymer synthesized by the following methods: The glass transition temperature and crystallinity were measured to confirm the main chain structure.
(1)数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC-8121GPC/HT、カラム:東ソー製GMHHR-H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、共重合体のポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。
(1) Number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)
Gel permeation chromatography [GPC: Tosoh HLC-8121GPC / HT, column: Tosoh GMH HR -H (S) HT × 2, detector: differential refractometer (RI)], based on monodisperse polystyrene The polystyrene-reduced number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the copolymer were determined. The measurement temperature is 40 ° C.
(2)ブタジエン単位、エチレン単位及びスチレン単位の含有量
 共重合体中のブタジエン単位、エチレン単位、スチレン単位の含有量(mol%)を、1H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)の各ピークの積分比より求めた。
(2) Content of butadiene unit, ethylene unit and styrene unit The content (mol%) of butadiene unit, ethylene unit and styrene unit in the copolymer was determined by 1 H-NMR spectrum (100 ° C, d-tetrachloroethane standard). : 6 ppm) from the integration ratio of each peak.
(3)融点(Tm
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体の融点を測定した。
(3) Melting point ( Tm )
The melting point of the copolymer was measured according to JIS K 7121-1987 using a differential scanning calorimeter (DSC, “DSCQ2000” manufactured by TA Instruments Japan Co., Ltd.).
(4)吸熱ピークエネルギー
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、10℃/分の昇温速度で-150℃から150℃まで昇温し、その時(1st run)の0~120℃における吸熱ピークエネルギーを測定した。
(4) Endothermic peak energy Using a differential scanning calorimeter (DSC, manufactured by T.A. Instruments Japan, “DSCQ2000”), the rate of temperature increase is 10 ° C./min according to JIS K 7121-1987. The temperature was increased from −150 ° C. to 150 ° C., and the endothermic peak energy at 0 to 120 ° C. at that time (1st run) was measured.
(5)ガラス転移温度(Tg)
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体のガラス転移温度(Tg)とした。
(5) Glass transition temperature (Tg)
Using a differential scanning calorimeter (DSC, manufactured by T.A. Instruments Japan, "DSCQ2000"), the glass transition temperature (Tg) of the copolymer was determined in accordance with JIS K 7121-1987.
(6)結晶化度
 100%結晶成分のポリエチレンの結晶融解エネルギーと、得られた共重合体の融解ピークエネルギーを測定し、ポリエチレンと共重合体とのエネルギー比率から、結晶化度を算出した。なお、融解ピークエネルギーは、示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)で測定した。
(6) Crystallinity The crystal melting energy of 100% crystalline polyethylene and the melting peak energy of the obtained copolymer were measured, and the crystallinity was calculated from the energy ratio of polyethylene and copolymer. The melting peak energy was measured with a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, “DSCQ2000”).
(7)主鎖構造の確認
 合成した共重合体について、13C-NMRスペクトルを測定した。
(7) Confirmation of main chain structure The synthesized copolymer was measured for 13 C-NMR spectrum.
<三元共重合体の合成方法>
 十分に乾燥した1000mLの耐圧ステンレス反応器に、スチレン160gと、トルエン600mLを加えた。
 窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)Me2Si]295Gd[N(SiHMe222}0.25mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C654]0.275mmol、及びジイソブチルアルミニウムハイドライド1.1mmolを仕込み、トルエン40mLに溶解させて触媒溶液とした。
 該触媒溶液を、前記耐圧ステンレス反応器に加え、70℃に加温した。
 次いで、エチレンを圧力1.5MPaで、該耐圧ステンレス反応器に投入し、更に1,3-ブタジエン20gを含むトルエン溶液80mLを8時間かけて該耐圧ステンレス反応器に投入し、70℃で計8.5時間共重合を行った。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mlを、該耐圧ステンレス反応器に加えて反応を停止させた。
 次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、三元共重合体を得た。
 得られた三元共重合体について、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブタジエン単位、エチレン単位、スチレン単位の含有量、融点(Tm)、吸熱ピークエネルギー、ガラス転移温度(Tg)、結晶化度を、上記の方法で測定した。結果を表1に示す。
 また、得られた三元共重合体について、上記の方法で主鎖構造を確認したところ、13C-NMRスペクトルチャートにおいて、10~24ppmにピークが観測されなかったことから、合成した三元共重合体は、主鎖が非環状構造のみからなることを確認した。
<Synthesis Method of Ternary Copolymer>
To a sufficiently dried 1000 mL pressure-resistant stainless steel reactor, 160 g of styrene and 600 mL of toluene were added.
In a glove box under a nitrogen atmosphere, a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amido) gadolinium complex {1,3-[(t-Bu ) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2 ) 2 ] 2 } 0.25 mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] 0.275 mmol And 1.1 mmol of diisobutylaluminum hydride were charged and dissolved in 40 mL of toluene to obtain a catalyst solution.
The catalyst solution was added to the pressure resistant stainless steel reactor and heated to 70 ° C.
Next, ethylene was charged into the pressure resistant stainless steel reactor at a pressure of 1.5 MPa, and further 80 mL of a toluene solution containing 20 g of 1,3-butadiene was charged into the pressure resistant stainless steel reactor over 8 hours. Copolymerization was carried out for 5 hours.
Next, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5 mass% isopropanol solution was added to the pressure resistant stainless steel reactor to stop the reaction.
Next, the copolymer was separated using a large amount of methanol and vacuum-dried at 50 ° C. to obtain a terpolymer.
About the obtained terpolymer, number average molecular weight (Mn), weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), butadiene unit, ethylene unit, styrene unit content, melting point (T m ), Endothermic peak energy, glass transition temperature (Tg), and crystallinity were measured by the above methods. The results are shown in Table 1.
Further, when the main chain structure of the obtained ternary copolymer was confirmed by the above method, no peak was observed at 10 to 24 ppm in the 13 C-NMR spectrum chart. The polymer was confirmed to have a main chain consisting only of an acyclic structure.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(比較例C1-C5、実施例C5-C6、及び比較例S1-S5)
<ゴム組成物の調製及び評価>
 表2及び表3に示す配合処方に従い、通常のバンバリーミキサーを用いて、ゴム組成物を製造した。得られたゴム組成物を走査型電子顕微鏡(SEM)で観察し、連続相のゴム成分と、分散相のゴム成分を確認した。更に、得られたゴム組成物に対して、下記の方法で、耐摩耗性、耐亀裂成長性、作業性を評価した。結果を表2及び表3に示す。
(Comparative Examples C1-C5, Examples C5-C6, and Comparative Examples S1-S5)
<Preparation and evaluation of rubber composition>
According to the formulation shown in Table 2 and Table 3, a rubber composition was produced using a normal Banbury mixer. The obtained rubber composition was observed with a scanning electron microscope (SEM), and the rubber component of the continuous phase and the rubber component of the dispersed phase were confirmed. Furthermore, with respect to the obtained rubber composition, the wear resistance, crack growth resistance, and workability were evaluated by the following methods. The results are shown in Tables 2 and 3.
(8)耐摩耗性
 ランボーン型摩耗試験機を用い、室温におけるスリップ率60%で摩耗量を測定し、測定結果の逆数を用い、表2においては、比較例C5を100とする指数で表示し、表3においては、比較例S5を100とする指数で表示した。数値が大きい程、耐摩耗性が良好であることを示す。
(8) Abrasion resistance Using a Lambourn type abrasion tester, the amount of wear was measured at a slip rate of 60% at room temperature, and the reciprocal of the measurement result was used. In Table 3, the index is expressed as an index with Comparative Example S5 as 100. It shows that abrasion resistance is so favorable that a numerical value is large.
(9)耐亀裂成長性(250%伸長時のヒステリシスロス比)
 JIS 3号試験片中心部に0.5mmの亀裂を入れ、室温で0~100%の一定ひずみで繰返し疲労を与え、サンプルが切断するまでの回数を測定した。表2においては、比較例C5を100としたときの指数で表示し、表3においては、比較例S5を100としたときの指数で表示した。数値が大きい程、耐亀裂成長性が良好であることを示す。
(9) Crack growth resistance (hysteresis loss ratio at 250% elongation)
A 0.5 mm crack was made in the center of a JIS No. 3 test piece, repeated fatigue was performed at a constant strain of 0 to 100% at room temperature, and the number of times until the sample was cut was measured. In Table 2, it was displayed as an index when Comparative Example C5 was 100, and in Table 3, it was displayed as an index when Comparative Example S5 was 100. The larger the value, the better the crack growth resistance.
(10)作業性(未加硫粘度)
 JIS K6300-1994に準拠して、130℃にてゴム組成物の未加硫粘度[ムーニー粘度ML1+4(130℃)]を測定し、表2においては、比較例C5の未加硫粘度の逆数を100とした際の指数から、また、表3においては、比較例S5の未加硫粘度の逆数を100とした際の指数から、以下の基準で作業性を評価した。
  ◎:指数値が90以上の場合
  ○:指数値が70以上90未満の場合
  △:指数値が50以上70未満の場合
  ×:指数値が50未満の場合
(10) Workability (unvulcanized viscosity)
According to JIS K6300-1994, the unvulcanized viscosity [Mooney viscosity ML 1 + 4 (130 ° C.)] of the rubber composition was measured at 130 ° C., and in Table 2, the unvulcanized viscosity of Comparative Example C5 The workability was evaluated according to the following criteria from the index when the reciprocal number of 100 was set to 100, and from the index when the reciprocal number of the unvulcanized viscosity of Comparative Example S5 was set to 100 in Table 3.
◎: When the index value is 90 or more ○: When the index value is 70 or more and less than 90 △: When the index value is 50 or more and less than 70 ×: When the index value is less than 50
(比較例C6-C9、実施例C1-C4、比較例S6-S9、及び実施例S1-S4)
 表2及び表3に示す配合処方に従い、通常のバンバリーミキサーを用いて、ゴム組成物を製造する。得られるゴム組成物を走査型電子顕微鏡(SEM)で観察し、連続相のゴム成分と、分散相のゴム成分を確認する。また、得られるゴム組成物に対して、上記の方法で、耐摩耗性、耐亀裂成長性、作業性を評価する。結果を表2及び表3に示す。
(Comparative Examples C6-C9, Examples C1-C4, Comparative Examples S6-S9, and Examples S1-S4)
According to the formulation shown in Table 2 and Table 3, a rubber composition is produced using a normal Banbury mixer. The obtained rubber composition is observed with a scanning electron microscope (SEM) to confirm the rubber component of the continuous phase and the rubber component of the dispersed phase. Further, the obtained rubber composition is evaluated for wear resistance, crack growth resistance and workability by the above methods. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
*1 三元共重合体: 上記の方法で合成した三元共重合体
*2 SBR1: スチレン-ブタジエンゴム、JSR社製。商品名「#0202」、ガラス転移温度=-25℃、スチレン含有量=45質量%、ビニル結合含量=19質量%
*3 SBR2: スチレン-ブタジエンゴム、JSR社製。商品名「#1500」、ガラス転移温度=-60℃、スチレン含有量=24質量%、ビニル結合含量=19質量%
*4 BR: ブタジエンゴム、宇部興産社製、商品名「BR150L」
*5 NR: 天然ゴム、RSS #3
*6 カーボンブラック: HAFカーボンブラック、旭カーボン社製、商品名「#70」
*7 老化防止剤6PPD: N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック6C(登録商標)」
*8 ワックス: 精工化学社製、商品名「サンタイト(登録商標)」
*9 軟化剤: プロセスオイル
*10 加硫促進剤MBTS: ジ-2-ベンゾチアゾリルジスルフィド、三新化学工業社製、商品名「サンセラーDM」
*11 加硫促進剤TBBS: N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、三新化学工業社製、商品名「サンセラーNS」
*12 加硫促進剤DPG: 1,3-ジフェニルグアニジン、三新化学工業社製、商品名「サンセラーD」
*13 シリカ: 東ソー・シリカ社製、商品名「ニプシールAQ(登録商標)」
*14 シランカップリング剤: ビス(3-トリエトシキシリルプロピル)ジスルフィド(平均硫黄鎖長:2.35)、Evonik社製、商品名「Si75(登録商標)」
* 1 Ternary copolymer: Ternary copolymer synthesized by the above method * 2 SBR1: Styrene-butadiene rubber, manufactured by JSR Corporation. Product name “# 0202”, glass transition temperature = −25 ° C., styrene content = 45 mass%, vinyl bond content = 19 mass%
* 3 SBR2: Styrene-butadiene rubber, manufactured by JSR Corporation. Product name “# 1500”, glass transition temperature = −60 ° C., styrene content = 24 mass%, vinyl bond content = 19 mass%
* 4 BR: Butadiene rubber, manufactured by Ube Industries, trade name “BR150L”
* 5 NR: Natural rubber, RSS # 3
* 6 Carbon Black: HAF carbon black, manufactured by Asahi Carbon Co., Ltd., trade name “# 70”
* 7 Anti-aging agent 6PPD: N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd., trade name "NOCRACK 6C (registered trademark)"
* 8 Wax: Made by Seiko Chemical Co., Ltd., trade name “Suntite (registered trademark)”
* 9 Softener: Process oil * 10 Vulcanization accelerator MBTS: Di-2-benzothiazolyl disulfide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name “Sunceller DM”
* 11 Vulcanization accelerator TBBS: N-tert-butyl-2-benzothiazolylsulfenamide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name “Suncellor NS”
* 12 Vulcanization accelerator DPG: 1,3-diphenylguanidine, manufactured by Sanshin Chemical Industry Co., Ltd., trade name “Sunseller D”
* 13 Silica: Tosoh Silica Co., Ltd., trade name “Nipseal AQ (registered trademark)”
* 14 Silane coupling agent: Bis (3-triethoxysilylpropyl) disulfide (average sulfur chain length: 2.35), manufactured by Evonik, trade name “Si75 (registered trademark)”
 表2及び表3から、本発明に従う実施例のゴム組成物は、耐摩耗性と、耐亀裂成長性と、作業性と、が高度にバランスされていることが分かる。 From Tables 2 and 3, it can be seen that the rubber compositions of the examples according to the present invention have a high balance between wear resistance, crack growth resistance and workability.
 本発明のゴム組成物は、タイヤを始め、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホース等の、各種ゴム製品に利用できる。 The rubber composition of the present invention can be used for various rubber products such as tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices and hoses.

Claims (20)

  1.  ゴム成分(a)として、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有し、且つ、0~120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10~150J/gである多元共重合体(a1)と、該多元共重合体(a1)以外の共役ジエン系ゴム(a2)と、を含み、
     前記ゴム成分(a)中における、前記多元共重合体(a1)の含有量が、5質量%以上50質量%未満であり、
     前記共役ジエン系ゴム(a2)が連続相を形成し、前記多元共重合体(a1)が分散相を形成していることを特徴とする、ゴム組成物。
    The rubber component (a) contains a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and has an endothermic peak energy measured by a differential scanning calorimeter (DSC) at 0 to 120 ° C. of 10 A multi-component copolymer (a1) of ˜150 J / g, and a conjugated diene rubber (a2) other than the multi-component copolymer (a1),
    The content of the multi-component copolymer (a1) in the rubber component (a) is 5% by mass or more and less than 50% by mass,
    The rubber composition, wherein the conjugated diene rubber (a2) forms a continuous phase and the multi-component copolymer (a1) forms a dispersed phase.
  2.  前記多元共重合体(a1)は、前記共役ジエン単位の含有量が1~50mol%で、前記非共役オレフィン単位の含有量が40~97mol%で、且つ前記芳香族ビニル単位の含有量が2~35mol%である、請求項1に記載のゴム組成物。 The multi-component copolymer (a1) has a content of the conjugated diene unit of 1 to 50 mol%, a content of the non-conjugated olefin unit of 40 to 97 mol%, and a content of the aromatic vinyl unit of 2 The rubber composition according to claim 1, wherein the rubber composition is ˜35 mol%.
  3.  前記共役ジエン系ゴム(a2)として、スチレン-ブタジエンゴムを含有し、前記ゴム成分(a)中における、該スチレン-ブタジエンゴムの含有量が、50質量%を超える、請求項1又は2に記載のゴム組成物。 The conjugated diene rubber (a2) contains styrene-butadiene rubber, and the content of the styrene-butadiene rubber in the rubber component (a) exceeds 50% by mass. Rubber composition.
  4.  前記スチレン-ブタジエンゴムは、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が-60℃~0℃である、請求項3に記載のゴム組成物。 The rubber composition according to claim 3, wherein the styrene-butadiene rubber has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of -60 ° C to 0 ° C.
  5.  前記スチレン-ブタジエンゴムは、スチレン含有量が5~50質量%である、請求項3又は4に記載のゴム組成物。 The rubber composition according to claim 3 or 4, wherein the styrene-butadiene rubber has a styrene content of 5 to 50 mass%.
  6.  前記スチレン-ブタジエンゴムは、当該スチレン-ブタジエンゴム中のビニル結合含量が15~60質量%である、請求項3~5のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 3 to 5, wherein the styrene-butadiene rubber has a vinyl bond content in the styrene-butadiene rubber of 15 to 60% by mass.
  7.  前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30~130℃である、請求項1~6のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, wherein the multi-component copolymer (a1) has a melting point of 30 to 130 ° C as measured by a differential scanning calorimeter (DSC).
  8.  前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定したガラス転移温度が0℃以下である、請求項1~7のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 7, wherein the multi-component copolymer (a1) has a glass transition temperature of 0 ° C or less as measured by a differential scanning calorimeter (DSC).
  9.  前記多元共重合体(a1)は、結晶化度が0.5~50%である、請求項1~8のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 8, wherein the multi-component copolymer (a1) has a crystallinity of 0.5 to 50%.
  10.  前記多元共重合体(a1)は、主鎖が非環状構造のみからなる、請求項1~9のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 9, wherein the multi-component copolymer (a1) has a main chain composed only of an acyclic structure.
  11.  前記多元共重合体(a1)は、前記非共役オレフィン単位が非環状の非共役オレフィン単位である、請求項1~10のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 10, wherein in the multi-component copolymer (a1), the non-conjugated olefin unit is an acyclic non-conjugated olefin unit.
  12.  前記非環状の非共役オレフィン単位が、エチレン単位のみからなる、請求項11に記載のゴム組成物。 The rubber composition according to claim 11, wherein the non-cyclic non-conjugated olefin unit consists of only ethylene units.
  13.  前記多元共重合体(a1)は、前記芳香族ビニル単位がスチレン単位を含む、請求項1~12のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 12, wherein in the multi-component copolymer (a1), the aromatic vinyl unit includes a styrene unit.
  14.  前記多元共重合体(a1)は、前記共役ジエン単位が1,3-ブタジエン単位及び/又はイソプレン単位を含む、請求項1~13のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 13, wherein in the multi-component copolymer (a1), the conjugated diene unit includes a 1,3-butadiene unit and / or an isoprene unit.
  15.  請求項1~14のいずれか一項に記載のゴム組成物を用いたことを特徴とする、タイヤ。 A tire using the rubber composition according to any one of claims 1 to 14.
  16.  請求項1~14のいずれか一項に記載のゴム組成物を用いたことを特徴とする、コンベヤベルト。 A conveyor belt comprising the rubber composition according to any one of claims 1 to 14.
  17.  請求項1~14のいずれか一項に記載のゴム組成物を用いたことを特徴とする、ゴムクローラ。 A rubber crawler using the rubber composition according to any one of claims 1 to 14.
  18.  請求項1~14のいずれか一項に記載のゴム組成物を用いたことを特徴とする、防振装置。 A vibration isolator using the rubber composition according to any one of claims 1 to 14.
  19.  請求項1~14のいずれか一項に記載のゴム組成物を用いたことを特徴とする、免震装置。 A seismic isolation device using the rubber composition according to any one of claims 1 to 14.
  20.  請求項1~14のいずれか一項に記載のゴム組成物を用いたことを特徴とする、ホース。 A hose using the rubber composition according to any one of claims 1 to 14.
PCT/JP2019/006358 2018-02-22 2019-02-20 Rubber composition, tire, conveyor belt, rubber crawler, vibration isolation device, seismic isolation device, and hose WO2019163835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501002A JPWO2019163835A1 (en) 2018-02-22 2019-02-20 Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030135 2018-02-22
JP2018-030135 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163835A1 true WO2019163835A1 (en) 2019-08-29

Family

ID=67688293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006358 WO2019163835A1 (en) 2018-02-22 2019-02-20 Rubber composition, tire, conveyor belt, rubber crawler, vibration isolation device, seismic isolation device, and hose

Country Status (2)

Country Link
JP (1) JPWO2019163835A1 (en)
WO (1) WO2019163835A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228743A (en) * 1997-07-18 1999-08-24 Mitsui Chem Inc Unsaturated elastomer composition and its vulcanized rubber
JP2005220313A (en) * 2004-02-09 2005-08-18 Sumitomo Rubber Ind Ltd Rubber composition and tire using the same
JP2017075286A (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
WO2017065299A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multicomponent copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
WO2018230410A1 (en) * 2017-06-14 2018-12-20 株式会社ブリヂストン Rubber composition and tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228743A (en) * 1997-07-18 1999-08-24 Mitsui Chem Inc Unsaturated elastomer composition and its vulcanized rubber
JP2005220313A (en) * 2004-02-09 2005-08-18 Sumitomo Rubber Ind Ltd Rubber composition and tire using the same
JP2017075286A (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
WO2017065299A1 (en) * 2015-10-16 2017-04-20 株式会社ブリヂストン Multicomponent copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
WO2018230410A1 (en) * 2017-06-14 2018-12-20 株式会社ブリヂストン Rubber composition and tire

Also Published As

Publication number Publication date
JPWO2019163835A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2015190072A1 (en) Multi-component copolymer, rubber composition, and tire
WO2017065299A1 (en) Multicomponent copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
WO2017064859A1 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
JP6602150B2 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
WO2012105258A1 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, rubber composition for tire tread use, crosslinked rubber composition, and tire
JP6602151B2 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
JP6637716B2 (en) Multi-component copolymer, rubber composition, cross-linked rubber composition and rubber article
JPWO2019142501A1 (en) Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
WO2017065301A1 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
WO2017064860A1 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
JP2017075274A (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
JP7205681B2 (en) Multidimensional copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
JP5899072B2 (en) Butadiene-isoprene copolymer and method for producing the same
JP7252139B2 (en) Rubber compositions, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
JP7348070B2 (en) Anti-vibration rubber composition and anti-vibration rubber
JP5917813B2 (en) Rubber composition, tire tread rubber composition, crosslinked rubber composition, and tire
WO2019163835A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration isolation device, seismic isolation device, and hose
JPWO2019116655A1 (en) Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
JP5899074B2 (en) Method for producing polymer composition and polymer composition
WO2017064858A1 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
WO2019163230A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration-damping device, seismic isolator, and hose
JP5934044B2 (en) Method for producing polymer composition and polymer composition
JP5899073B2 (en) Styrene-isoprene copolymer and method for producing the same
WO2018150900A1 (en) Multicomponent copolymer, rubber composition, and rubber article
JP2017200983A (en) Conjugated diene copolymer and method for producing the same, rubber composition, crosslinked rubber composition, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757612

Country of ref document: EP

Kind code of ref document: A1