JPWO2019142501A1 - Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses - Google Patents

Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses Download PDF

Info

Publication number
JPWO2019142501A1
JPWO2019142501A1 JP2019565739A JP2019565739A JPWO2019142501A1 JP WO2019142501 A1 JPWO2019142501 A1 JP WO2019142501A1 JP 2019565739 A JP2019565739 A JP 2019565739A JP 2019565739 A JP2019565739 A JP 2019565739A JP WO2019142501 A1 JPWO2019142501 A1 JP WO2019142501A1
Authority
JP
Japan
Prior art keywords
group
rubber composition
rubber
compound
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019565739A
Other languages
Japanese (ja)
Inventor
雄一 笹原
雄一 笹原
俊介 佐治
俊介 佐治
健二 中谷
健二 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPWO2019142501A1 publication Critical patent/JPWO2019142501A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • B62D55/253Tracks of continuously flexible type, e.g. rubber belts having elements interconnected by one or more cables or like elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/10Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

耐亀裂成長性が高く、且つ高温での弾性率が高いゴム物品を作製することができるゴム組成物を提供する。ゴム組成物は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体(a1)を含むゴム成分(a)と、熱硬化性樹脂(b)とを含有する、ことを特徴とする。Provided is a rubber composition capable of producing a rubber article having high crack growth resistance and high elastic modulus at high temperature. The rubber composition contains a rubber component (a) containing a multiple copolymer (a1) having a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, and a thermosetting resin (b). , Characterized by.

Description

本発明は、ゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースに関する。 The present invention relates to rubber compositions, tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices and hoses.

一般に、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置、ホース等のゴム物品には、高い耐久性が求められており、かかる要求を満たすために、高耐久性のゴム材料の開発が望まれている。 In general, rubber articles such as tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices, hoses, etc. are required to have high durability, and in order to meet such requirements, development of highly durable rubber materials Is desired.

そのようなゴム材料として、本発明者らは、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを含有する多元共重合体が、ゴム物品の耐亀裂成長性等の耐久性を向上させ得ることを見出した(下記特許文献1)。 As such a rubber material, the present inventors consider that a multi-component copolymer containing a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit provides durability such as crack resistance of a rubber article. It has been found that it can be improved (Patent Document 1 below).

国際公開第2015/190072号International Publication No. 2015/190072

しかしながら、本発明者らが更に検討したところ、上述の多元共重合体を用いたゴム物品は、高温での弾性率の維持という観点では十分ではなく、ゴム材料として改良の余地があることが分かった。 However, as a result of further studies by the present inventors, it was found that the rubber article using the above-mentioned multiple copolymer is not sufficient from the viewpoint of maintaining the elastic modulus at a high temperature, and there is room for improvement as a rubber material. It was.

そこで、本発明は、耐亀裂成長性が高く、且つ高温での弾性率が高いゴム物品を作製することができるゴム組成物を提供することを課題とする。
また、本発明は、耐亀裂成長性が高く、且つ高温での弾性率が高い、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースを提供することを課題とする。
Therefore, an object of the present invention is to provide a rubber composition capable of producing a rubber article having high crack growth resistance and high elastic modulus at high temperature.
Another object of the present invention is to provide a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device, and a hose, which have high crack growth resistance and high elastic modulus at high temperature.

上記課題を解決する本発明の要旨構成は、以下の通りである。 The gist structure of the present invention for solving the above problems is as follows.

本発明のゴム組成物は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体(a1)を含むゴム成分(a)と、
熱硬化性樹脂(b)と
を含有する、ことを特徴とする。
The rubber composition of the present invention comprises a rubber component (a) containing a multi-element copolymer (a1) having a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit.
It is characterized by containing a thermosetting resin (b).

本発明のタイヤは、上記のゴム組成物を用いたことを特徴とする。 The tire of the present invention is characterized by using the above rubber composition.

本発明のコンベヤベルトは、上記のゴム組成物を用いたことを特徴とする。 The conveyor belt of the present invention is characterized in that the above rubber composition is used.

本発明のゴムクローラは、上記のゴム組成物を用いたことを特徴とする。 The rubber crawler of the present invention is characterized in that the above rubber composition is used.

本発明の防振装置は、上記のゴム組成物を用いたことを特徴とする。 The vibration isolator of the present invention is characterized in that the above rubber composition is used.

本発明の免震装置は、上記のゴム組成物を用いたことを特徴とする。 The seismic isolation device of the present invention is characterized in that the above rubber composition is used.

本発明のホースは、上記のゴム組成物を用いたことを特徴とする。 The hose of the present invention is characterized by using the above rubber composition.

本発明によれば、耐亀裂成長性が高く、且つ高温での弾性率が高いゴム物品を作製することができるゴム組成物を提供することができる。
また、本発明によれば、耐亀裂成長性が高く、且つ高温での弾性率が高い、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースを提供することができる。
According to the present invention, it is possible to provide a rubber composition capable of producing a rubber article having high crack growth resistance and high elastic modulus at high temperature.
Further, according to the present invention, it is possible to provide a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device and a hose having high crack growth resistance and high elastic modulus at high temperature.

(1)ゴム組成物
本発明の一実施形態に係るゴム組成物(以下、「本実施形態のゴム組成物」と称することがある。)は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体(a1)を含むゴム成分(a)と、熱硬化性樹脂(b)とを含有する。また、本実施形態のゴム組成物は、更に必要に応じて、硬化剤(c)、軟化剤及び液状ゴムから選択される少なくとも1種の添加剤(d)、その他の成分を含有することができる。
本実施形態のゴム組成物は、上述した成分を含有することにより、これを用いて作製されるゴム物品の高い耐亀裂成長性を保持しつつ、高温を含む広い温度領域での弾性率を高いものとすることができる。
よって、本実施形態のゴム組成物によれば、耐亀裂成長性が高く、且つ高温での弾性率が高いゴム物品を作製することができる。
(1) Rubber Composition The rubber composition according to the embodiment of the present invention (hereinafter, may be referred to as "rubber composition of the present embodiment") has a conjugated diene unit, a non-conjugated olefin unit, and an aroma. It contains a rubber component (a) containing a multidimensional copolymer (a1) having a group vinyl unit and a thermosetting resin (b). Further, the rubber composition of the present embodiment may further contain at least one additive (d) selected from a curing agent (c), a softening agent and liquid rubber, and other components, if necessary. it can.
By containing the above-mentioned components, the rubber composition of the present embodiment has a high elastic modulus in a wide temperature range including high temperature while maintaining high crack growth resistance of the rubber article produced by using the above-mentioned components. Can be.
Therefore, according to the rubber composition of the present embodiment, it is possible to produce a rubber article having high crack growth resistance and high elastic modulus at high temperature.

以下、本実施形態のゴム組成物が含有し得る各成分について説明する。 Hereinafter, each component that can be contained in the rubber composition of the present embodiment will be described.

(ゴム成分(a))
本実施形態のゴム組成物に含有されるゴム成分(a)は、上記多元共重合体(a1)を含む。なお、ゴム成分(a)は、多元共重合体(a1)以外のその他のゴム成分を含んでもよい。
(Rubber component (a))
The rubber component (a) contained in the rubber composition of the present embodiment contains the multiple copolymer (a1). The rubber component (a) may contain other rubber components other than the multiple copolymer (a1).

<多元共重合体(a1)>
本発明で用いる多元共重合体(a1)は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する。
ここで、本明細書において、「共役ジエン単位」とは、多元共重合体における、共役ジエン化合物に由来する構成単位に相当する単位を意味し、「非共役オレフィン単位」とは、多元共重合体における、非共役オレフィン化合物に由来する構成単位に相当する単位を意味し、「芳香族ビニル単位」とは、多元共重合体における、芳香族ビニル化合物に由来する構成単位に相当する単位を意味する。
また、本明細書において、「共役ジエン化合物」とは、共役系のジエン化合物を意味し、「非共役オレフィン化合物」とは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する非共役系の化合物を意味し、「芳香族ビニル化合物」とは、少なくともビニル基で置換された芳香族化合物を意味し、且つ、共役ジエン化合物には含まれないものとする。
そして、本明細書において、「多元共重合体」とは、3種類以上の単量体を重合してなる共重合体を意味する。
<Multiple copolymer (a1)>
The multiple copolymer (a1) used in the present invention has a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit.
Here, in the present specification, the "conjugated diene unit" means a unit corresponding to a structural unit derived from a conjugated diene compound in a multi-dimensional copolymer, and the "non-conjugated olefin unit" means a multi-dimensional common weight. In the coalescence, it means a unit corresponding to a structural unit derived from a non-conjugated olefin compound, and "aromatic vinyl unit" means a unit corresponding to a structural unit derived from an aromatic vinyl compound in a multi-element copolymer. To do.
Further, in the present specification, the "conjugated diene compound" means a conjugated diene compound, and the "non-conjugated olefin compound" is an aliphatic unsaturated hydrocarbon having one carbon-carbon double bond. The above-mentioned non-conjugated compound is meant, and the "aromatic vinyl compound" means at least an aromatic compound substituted with a vinyl group and is not included in the conjugated diene compound.
In the present specification, the "multidimensional copolymer" means a copolymer obtained by polymerizing three or more kinds of monomers.

<<共役ジエン単位>>
多元共重合体(a1)は、共役ジエン単位を有する。共役ジエン単位は、通常、単量体としての共役ジエン化合物に由来する。多元共重合体(a1)は、単量体として共役ジエン化合物を用いて重合され得るものであるため、例えば公知であるEPDMのような非共役ジエン化合物を用いて重合してなる共重合体に比べ、架橋特性、フィラー補強性に優れる。従って、多元共重合体(a1)は、これを用いて製造されるゴム組成物やゴム物品の機械特性をより向上させることができるという利点も有する。
共役ジエン化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。即ち、多元共重合体(a1)は、共役ジエン単位を1種単独で有してもよく、2種以上を有してもよい。
<< Conjugated diene unit >>
The multiple copolymer (a1) has a conjugated diene unit. The conjugated diene unit is usually derived from the conjugated diene compound as a monomer. Since the multiple copolymer (a1) can be polymerized using a conjugated diene compound as a monomer, it can be polymerized using a non-conjugated diene compound such as a known EPDM. In comparison, it has excellent cross-linking characteristics and filler reinforcement. Therefore, the multiple copolymer (a1) also has an advantage that the mechanical properties of the rubber composition and the rubber article produced by using the copolymer can be further improved.
The conjugated diene compound may be used alone or in combination of two or more. That is, the multiple copolymer (a1) may have one type of conjugated diene unit alone or two or more types.

前記共役ジエン化合物は、炭素数が4〜8であることが好ましい。共役ジエン化合物として、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン等が挙げられる。多元共重合体(a1)の単量体としての共役ジエン化合物は、ゴム組成物及びゴム物品の耐亀裂成長性をより効果的に向上させる観点から、1,3−ブタジエン及びイソプレンの少なくともいずれかを含むことが好ましく、1,3−ブタジエン及びイソプレンのみからなることがより好ましく、1,3−ブタジエンのみからなることが更に好ましい。換言すれば、多元共重合体(a1)における共役ジエン単位は、1,3−ブタジエン単位及びイソプレン単位の少なくともいずれかを含むことが好ましく、1,3−ブタジエン単位及びイソプレン単位のみからなることがより好ましく、1,3−ブタジエン単位のみからなることが更に好ましい。 The conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, and 2,3-dimethyl-1,3-butadiene. The conjugated diene compound as a monomer of the multiple copolymer (a1) is at least one of 1,3-butadiene and isoprene from the viewpoint of more effectively improving the crack growth resistance of the rubber composition and the rubber article. , More preferably composed of only 1,3-butadiene and isoprene, and even more preferably composed of only 1,3-butadiene. In other words, the conjugated diene unit in the multiple copolymer (a1) preferably contains at least one of 1,3-butadiene units and isoprene units, and may consist only of 1,3-butadiene units and isoprene units. More preferably, it consists of only 1,3-butadiene units.

多元共重合体(a1)における共役ジエン単位の割合は、1mol%以上であることが好ましく、また、50mol%以下であることが好ましい。共役ジエン単位の割合が1mol%以上であることで、伸びに優れるゴム組成物及びゴム物品を得ることができ、また、50mol%以下であることで、ゴム物品の耐候性を良好に維持することができる。同様の観点から、多元共重合体(a1)における共役ジエン単位の割合は、3mol%以上であることがより好ましく、また、40mol%以下であることがより好ましく、30mol%以下であることが更に好ましく、20mol%以下であることが一層好ましく、15mol%以下であることが特に好ましい。 The ratio of the conjugated diene unit in the multiple copolymer (a1) is preferably 1 mol% or more, and preferably 50 mol% or less. When the ratio of the conjugated diene unit is 1 mol% or more, a rubber composition and a rubber article having excellent elongation can be obtained, and when it is 50 mol% or less, the weather resistance of the rubber article is well maintained. Can be done. From the same viewpoint, the ratio of the conjugated diene unit in the multiple copolymer (a1) is more preferably 3 mol% or more, more preferably 40 mol% or less, and further preferably 30 mol% or less. It is more preferably 20 mol% or less, and particularly preferably 15 mol% or less.

<<非共役オレフィン単位>>
多元共重合体(a1)は、非共役オレフィン単位を有する。非共役オレフィン単位は、通常、単量体としての非共役オレフィン化合物に由来する。
非共役オレフィン化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。即ち、多元共重合体(a1)は、非共役オレフィン単位を1種単独で有してもよく、2種以上を有してもよい。
<< Non-conjugated olefin unit >>
The multipolymer (a1) has a non-conjugated olefin unit. The non-conjugated olefin unit is usually derived from the non-conjugated olefin compound as a monomer.
The non-conjugated olefin compound may be used alone or in combination of two or more. That is, the multiple copolymer (a1) may have one type of non-conjugated olefin unit alone, or may have two or more types.

前記非共役オレフィン化合物は、炭素数が2〜10であることが好ましい。非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィン、ビバリン酸ビニル、1−フェニルチオエテン、若しくはN−ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。多元共重合体(a1)の単量体としての非共役オレフィン化合物は、耐亀裂成長性を効果的に高める結晶構造を多元共重合体(a1)内に形成する観点から、環状構造を有しないことが好ましく、α−オレフィンであることがより好ましく、エチレンを含むことが更に好ましく、エチレンのみからなることが一層好ましい。換言すれば、多元共重合体(a1)における非共役オレフィン単位は、環状構造を有しないことが好ましく、α−オレフィン単位であることがより好ましく、エチレン単位を含むことが更に好ましく、エチレン単位のみからなることが一層好ましい。 The non-conjugated olefin compound preferably has 2 to 10 carbon atoms. Specific examples of the non-conjugated olefin compound include α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene, vinyl bivariate and 1-phenylthioethane. Alternatively, a heteroatomic substituted alkene compound such as N-vinylpyrrolidone can be mentioned. The non-conjugated olefin compound as a monomer of the multiple copolymer (a1) does not have a cyclic structure from the viewpoint of forming a crystal structure in the multiple copolymer (a1) that effectively enhances crack resistance. It is more preferable, it is more preferably α-olefin, further preferably it contains ethylene, and even more preferably it is composed of ethylene alone. In other words, the non-conjugated olefin unit in the multiple copolymer (a1) preferably does not have a cyclic structure, is more preferably an α-olefin unit, further preferably contains an ethylene unit, and only the ethylene unit. It is more preferable to consist of.

多元共重合体(a1)における非共役オレフィン単位の割合は、40mol%以上であることが好ましく、また、97mol%以下であることが好ましい。非共役オレフィン単位の割合が40mol%以上であることで、共役ジエン単位及び芳香族ビニル単位の割合が過度に高くなることによる、耐候性の悪化、及び耐破壊性(特に破断強度(Tb))の悪化を抑制することができる。また、非共役オレフィン単位の割合が97mol%以下であることで、共役ジエン単位及び芳香族ビニル単位の割合が過度に低くなることによる、網目不形成に伴う耐亀裂成長性の悪化及び他部材との共架橋性の悪化を抑制することができる。同様の観点から、多元共重合体(a1)における非共役オレフィン単位の割合は、45mol%以上であることがより好ましく、55mol%以上であることが更に好ましく、65mol%以上であることが一層好ましく、また、95mol%以下であることがより好ましく、90mol%以下であることが更に好ましい。 The proportion of the non-conjugated olefin unit in the multiple copolymer (a1) is preferably 40 mol% or more, and preferably 97 mol% or less. When the ratio of the non-conjugated olefin unit is 40 mol% or more, the ratio of the conjugated diene unit and the aromatic vinyl unit becomes excessively high, resulting in deterioration of weather resistance and fracture resistance (particularly breaking strength (Tb)). Deterioration can be suppressed. Further, when the ratio of the non-conjugated olefin unit is 97 mol% or less, the ratio of the conjugated diene unit and the aromatic vinyl unit becomes excessively low, resulting in deterioration of crack growth resistance due to network non-formation and with other members. It is possible to suppress the deterioration of the co-crossing property of. From the same viewpoint, the proportion of the non-conjugated olefin unit in the multiple copolymer (a1) is more preferably 45 mol% or more, further preferably 55 mol% or more, still more preferably 65 mol% or more. Further, it is more preferably 95 mol% or less, and further preferably 90 mol% or less.

<<芳香族ビニル単位>>
多元共重合体(a1)は、芳香族ビニル単位を有する。芳香族ビニル単位は、通常、単量体としての芳香族ビニル化合物に由来する。
芳香族ビニル化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。即ち、多元共重合体(a1)は、芳香族ビニル単位を1種単独で有してもよく、2種以上を有してもよい。
<< Aromatic vinyl unit >>
The multiple copolymer (a1) has an aromatic vinyl unit. The aromatic vinyl unit is usually derived from an aromatic vinyl compound as a monomer.
The aromatic vinyl compound may be used alone or in combination of two or more. That is, the multiple copolymer (a1) may have one type of aromatic vinyl unit alone, or may have two or more types of aromatic vinyl units.

前記芳香族ビニル化合物は、芳香環に直接結合したビニル基を有し、且つ、炭素数が8〜10であることが好ましい。芳香族ビニル化合物として、具体的には、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、o−エチルスチレン、m−エチルスチレン、p−エチルスチレン等が挙げられる。多元共重合体(a1)の単量体としての芳香族ビニル化合物は、耐亀裂成長性を効果的に高める結晶構造を多元共重合体(a1)内に形成する観点から、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。換言すれば、多元共重合体(a1)における芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。 The aromatic vinyl compound preferably has a vinyl group directly bonded to the aromatic ring and has 8 to 10 carbon atoms. Specific examples of the aromatic vinyl compound include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene and the like. Can be mentioned. The aromatic vinyl compound as a monomer of the multiple copolymer (a1) may contain styrene from the viewpoint of forming a crystal structure in the multiple copolymer (a1) that effectively enhances crack resistance. It is preferably composed only of styrene. In other words, the aromatic vinyl unit in the multiple copolymer (a1) preferably contains a styrene unit, and more preferably consists of only a styrene unit.

多元共重合体(a1)における芳香族ビニル単位の割合は、2mol%以上であることが好ましく、また、35mol%以下であることが好ましい。芳香族ビニル単位の割合が2mol%以上であることで、高温における耐破壊性を向上させることができ、また、35mol%以下であることで、低燃費性の悪化を抑制することができる。同様の観点から、多元共重合体(a1)における芳香族ビニル単位の割合は、3mol%以上であることがより好ましく、また、30mol%以下であることがより好ましく、25mol%以下であることが更に好ましく、14mol%以下であることが一層好ましい。 The ratio of the aromatic vinyl unit in the multiple copolymer (a1) is preferably 2 mol% or more, and preferably 35 mol% or less. When the ratio of the aromatic vinyl unit is 2 mol% or more, the fracture resistance at high temperature can be improved, and when it is 35 mol% or less, deterioration of fuel efficiency can be suppressed. From the same viewpoint, the ratio of the aromatic vinyl unit in the multiple copolymer (a1) is more preferably 3 mol% or more, more preferably 30 mol% or less, and more preferably 25 mol% or less. More preferably, it is 14 mol% or less.

多元共重合体(a1)の単量体の種類の数としては、多元共重合体(a1)が共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する限り、特に制限はない。多元共重合体(a1)は、共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位以外の、その他の構成単位を有してもよい。但し、多元共重合体(a1)におけるその他の構成単位の割合は、所望の効果を得る観点から、30mol%以下であることが好ましく、20mol%以下であることがより好ましく、10mol%%以下であることが更に好ましく、0mol%、即ち、その他の構成単位を有しないことが一層好ましい。 The number of types of monomers of the multiple copolymer (a1) is not particularly limited as long as the multiple copolymer (a1) has a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit. .. The multiple copolymer (a1) may have other structural units other than the conjugated diene unit, the non-conjugated olefin unit, and the aromatic vinyl unit. However, the ratio of the other structural units in the multiple copolymer (a1) is preferably 30 mol% or less, more preferably 20 mol% or less, and 10 mol% or less from the viewpoint of obtaining a desired effect. It is more preferable to have 0 mol%, that is, it is further preferable to have no other constituent units.

多元共重合体(a1)は、少なくとも、一種の共役ジエン単位、一種の非共役オレフィン単位、及び一種の芳香族ビニル単位を有する。また、所望の効果を得る観点から、多元共重合体(a1)は、単量体として、一種の共役ジエン化合物、一種の非共役オレフィン化合物、及び一種の芳香族ビニル化合物を少なくとも用いて重合してなる共重合体であることが好ましい。
そして、多元共重合体(a1)は、一種の共役ジエン単位、一種の非共役オレフィン単位、及び一種の芳香族ビニル単位のみからなる三元共重合体であることがより好ましく、1,3−ブタジエン単位、エチレン単位、及びスチレン単位のみからなる三元共重合体であることが更に好ましい。ここで、「一種の共役ジエン単位」には、異なる結合様式の共役ジエン単位が包括されていることとする。
The multipolymer (a1) has at least one conjugated diene unit, one non-conjugated olefin unit, and one aromatic vinyl unit. From the viewpoint of obtaining the desired effect, the multiple copolymer (a1) is polymerized using at least one kind of conjugated diene compound, one kind of non-conjugated olefin compound, and one kind of aromatic vinyl compound as a monomer. It is preferably a copolymer.
The multiple copolymer (a1) is more preferably a ternary copolymer consisting of only one kind of conjugated diene unit, one kind of non-conjugated olefin unit, and one kind of aromatic vinyl unit, and 1,3-. More preferably, it is a ternary copolymer consisting of only butadiene units, ethylene units, and styrene units. Here, it is assumed that "a kind of conjugated diene unit" includes conjugated diene units having different binding modes.

多元共重合体(a1)は、上記共役ジエン単位の割合が1〜50mol%であり、上記非共役オレフィン単位の割合が40〜97mol%であり、且つ上記芳香族ビニル単位の割合が2〜35mol%であることが好ましい。この場合、耐亀裂成長性及び高温での弾性率を更に向上させることができる。 In the multiple copolymer (a1), the proportion of the conjugated diene unit is 1 to 50 mol%, the proportion of the non-conjugated olefin unit is 40 to 97 mol%, and the proportion of the aromatic vinyl unit is 2 to 35 mol. It is preferably%. In this case, the crack growth resistance and the elastic modulus at high temperature can be further improved.

多元共重合体(a1)は、主鎖が非環状構造のみからなることが好ましい。これにより、耐亀裂成長性をより向上させることができる。なお、共重合体の主鎖が環状構造を有するか否かの確認には、NMRが主要な測定手段として用いられる。具体的には、主鎖に存在する環状構造に由来するピーク(例えば、三員環〜五員環については、10〜24ppmに現れるピーク)が観測されない場合、その共重合体の主鎖は、非環状構造のみからなることを示す。 It is preferable that the main chain of the multiple copolymer (a1) has only an acyclic structure. Thereby, the crack growth resistance can be further improved. In addition, NMR is used as a main measuring means for confirming whether or not the main chain of the copolymer has a cyclic structure. Specifically, when a peak derived from the cyclic structure existing in the main chain (for example, a peak appearing at 10 to 24 ppm for a three-membered ring to a five-membered ring) is not observed, the main chain of the copolymer is determined. It is shown that it consists only of a non-cyclic structure.

多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30〜130℃であることが好ましい。融点が30℃以上であることにより、結晶が存在する温度領域では耐亀裂成長性が高く、且つ弾性率が高いゴム組成物を作製することができる。また、融点が130℃以下であることにより、ゴム組成物の混練の際に、結晶性の高い非共役オレフィン単位が融解し易く、作業性を向上させることができる。
なお、多元共重合体(a1)の融点は、示差走査熱量計を用い、JIS K 7121−1987に準拠して測定することができる。
The multi-element copolymer (a1) preferably has a melting point of 30 to 130 ° C. as measured by a differential scanning calorimeter (DSC). When the melting point is 30 ° C. or higher, a rubber composition having high crack growth resistance and high elastic modulus can be produced in a temperature range in which crystals are present. Further, when the melting point is 130 ° C. or lower, the non-conjugated olefin unit having high crystallinity is easily melted when the rubber composition is kneaded, and the workability can be improved.
The melting point of the multi-dimensional copolymer (a1) can be measured using a differential scanning calorimeter according to JIS K 7121-1987.

多元共重合体(a1)は、DSCで測定した0〜120℃における吸熱ピークのエネルギーが10〜150J/gであることが好ましい。吸熱ピークのエネルギーが10J/g以上であることにより、ゴム物品の剛性をより高めることができる。また、吸熱ピークのエネルギーが150J/g以下であることにより、耐亀裂成長性の悪化を抑制することができ、また、ゴム組成物の混練の際に、作業性を向上させることができる。
なお、多元共重合体(a1)の吸熱ピークのエネルギーは、示差走査熱量計を用い、JIS K 7121−1987に準拠して測定することができる。
The multi-element copolymer (a1) preferably has an endothermic peak energy of 10 to 150 J / g at 0 to 120 ° C. measured by DSC. When the energy of the endothermic peak is 10 J / g or more, the rigidity of the rubber article can be further increased. Further, when the energy of the endothermic peak is 150 J / g or less, deterioration of crack resistance can be suppressed, and workability can be improved when the rubber composition is kneaded.
The energy of the endothermic peak of the multi-dimensional copolymer (a1) can be measured using a differential scanning calorimeter according to JIS K 7121-1987.

多元共重合体(a1)は、DSCで測定したガラス転移温度が0℃以下であることが好ましい。ガラス転移温度が0℃以下であることにより、良好な低燃費性を有するゴム組成物を作製することができる。
なお、多元共重合体(a1)のガラス転移温度は、示差走査熱量計を用い、JIS K 7121−1987に準拠して測定することができる。
The multidimensional copolymer (a1) preferably has a glass transition temperature of 0 ° C. or lower as measured by DSC. When the glass transition temperature is 0 ° C. or lower, a rubber composition having good fuel efficiency can be produced.
The glass transition temperature of the multi-dimensional copolymer (a1) can be measured using a differential scanning calorimeter according to JIS K 7121-1987.

多元共重合体(a1)は、結晶化度が0.5〜50%であることが好ましい。結晶化度が0.5%以上であることにより、ゴム物品の剛性をより高めることができる。また、結晶化度が50%以下であることにより、耐亀裂成長性の悪化を抑制することができ、また、ゴム組成物の混練の際に、作業性を向上させることができる。
なお、多元共重合体(a1)の結晶化度は、具体的には、100%結晶成分からなるポリエチレンの結晶融解エネルギーと、JIS K 7121−1987に準拠してDSCで測定した多元共重合体の融解ピークエネルギーとの比率から、算出することができる。
The multi-dimensional copolymer (a1) preferably has a crystallinity of 0.5 to 50%. When the crystallinity is 0.5% or more, the rigidity of the rubber article can be further increased. Further, when the crystallinity is 50% or less, deterioration of crack resistance can be suppressed, and workability can be improved when the rubber composition is kneaded.
The crystallinity of the multi-dimensional copolymer (a1) is specifically determined by the crystal melting energy of polyethylene composed of 100% crystal components and the multi-dimensional copolymer measured by DSC in accordance with JIS K 7121-1987. It can be calculated from the ratio with the melting peak energy of.

多元共重合体(a1)は、重量平均分子量(Mw)が10,000以上であることが好ましく、また、10,000,000以下であることが好ましい。多元共重合体(a1)のMwが10,000以上であることにより、ゴム材料及びゴム物品としての機械的強度を十分に確保することができ、また、10,000,000以下であることにより、高い作業性を保持することができる。同様の観点から、多元共重合体(a1)のMwは、100,000以上であることがより好ましく、150,000以上であることが更に好ましく、また、9,000,000以下であることがより好ましく、8,000,000以下であることが更に好ましい。 The weight average molecular weight (Mw) of the multiple copolymer (a1) is preferably 10,000 or more, and preferably 10,000,000 or less. When the Mw of the multiple copolymer (a1) is 10,000 or more, sufficient mechanical strength as a rubber material and a rubber article can be ensured, and when it is 10,000,000 or less. , High workability can be maintained. From the same viewpoint, the Mw of the multipolymer (a1) is more preferably 100,000 or more, further preferably 150,000 or more, and 9,000,000 or less. More preferably, it is 8,000,000 or less.

多元共重合体(a1)は、数平均分子量(Mn)が10,000以上であることが好ましく、また、10,000,000以下であることが好ましい。多元共重合体(a1)のMnが10,000以上であることにより、ゴム材料及びゴム物品としての機械的強度を十分に確保することができ、また、10,000,000以下であることにより、高い作業性を保持することができる。同様の観点から、多元共重合体(a1)のMnは、50,000以上であることがより好ましく、100,000以上であることが更に好ましく、また、9,000,000以下であることがより好ましく、8,000,000以下であることが更に好ましい。 The number average molecular weight (Mn) of the multiple copolymer (a1) is preferably 10,000 or more, and preferably 10,000,000 or less. When the Mn of the multiple copolymer (a1) is 10,000 or more, sufficient mechanical strength as a rubber material and a rubber article can be ensured, and when it is 10,000,000 or less. , High workability can be maintained. From the same viewpoint, the Mn of the multiple copolymer (a1) is more preferably 50,000 or more, further preferably 100,000 or more, and 9,000,000 or less. More preferably, it is 8,000,000 or less.

多元共重合体(a1)は、分子量分布(Mw/Mn)が1.00以上であることが好ましく、また、4.00以下であることが好ましい。多元共重合体(a1)の分子量分布が4.00以下であることにより、多元共重合体の物性に十分な均質性をもたらすことができる。同様の観点から、多元共重合体(a1)の分子量分布は、3.50以下であることがより好ましく、3.00以下であることが更に好ましい。また、多元共重合体(a1)の分子量分布は、1.50以上であることがより好ましく、1.80以上であることが更に好ましい。
なお、上述した重量平均分子量、数平均分子量及び分子量分布は、ゲルバーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求められる。
The molecular weight distribution (Mw / Mn) of the multiple copolymer (a1) is preferably 1.00 or more, and preferably 4.00 or less. When the molecular weight distribution of the multiple copolymer (a1) is 4.00 or less, sufficient homogeneity can be brought about in the physical properties of the multiple copolymer. From the same viewpoint, the molecular weight distribution of the multiple copolymer (a1) is more preferably 3.50 or less, and further preferably 3.00 or less. Further, the molecular weight distribution of the multi-dimensional copolymer (a1) is more preferably 1.50 or more, and further preferably 1.80 or more.
The above-mentioned weight average molecular weight, number average molecular weight and molecular weight distribution can be determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.

<<多元共重合体の製造方法>>
上記多元共重合体(a1)は、例えば、少なくとも共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物を単量体として用い、これらを共重合させる工程(重合工程)を実施することで、製造することができる。また、多元共重合体(a1)の製造では、上記重合工程のほか、更に、必要に応じ、カップリング工程、洗浄工程等のその他の工程を実施することができる。ここで、多元共重合体(a1)の製造においては、重合触媒の存在下で、共役ジエン化合物を添加せずに非共役オレフィン化合物及び芳香族ビニル化合物のみを添加し、これらを重合させることが好ましい。特に後述の重合触媒組成物を使用する場合には、非共役オレフィン化合物及び芳香族ビニル化合物より共役ジエン化合物の方が反応性が高いことから、共役ジエン化合物の存在下で非共役オレフィン化合物及び/又は芳香族ビニル化合物を重合させることが困難となりやすい。また、先に共役ジエン化合物を重合させ、後に非共役オレフィン化合物及び芳香族ビニル化合物を付加的に重合させることも、触媒の特性上困難となりやすい。
<< Manufacturing method of multiple copolymer >>
The multiple copolymer (a1) is produced, for example, by using at least a conjugated diene compound, a non-conjugated olefin compound and an aromatic vinyl compound as monomers and carrying out a step (polymerization step) of copolymerizing them. can do. Further, in the production of the multi-element copolymer (a1), in addition to the above-mentioned polymerization step, other steps such as a coupling step and a washing step can be further carried out, if necessary. Here, in the production of the multi-element copolymer (a1), in the presence of a polymerization catalyst, it is possible to add only a non-conjugated olefin compound and an aromatic vinyl compound without adding a conjugated diene compound and polymerize them. preferable. In particular, when the polymerization catalyst composition described later is used, the conjugated diene compound is more reactive than the non-conjugated olefin compound and the aromatic vinyl compound. Therefore, in the presence of the conjugated diene compound, the non-conjugated olefin compound and / Alternatively, it tends to be difficult to polymerize the aromatic vinyl compound. Further, it tends to be difficult due to the characteristics of the catalyst to first polymerize the conjugated diene compound and then additionally polymerize the non-conjugated olefin compound and the aromatic vinyl compound.

重合工程では、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の重合方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。 In the polymerization step, any polymerization method such as a solution polymerization method, a suspension polymerization method, a liquid phase massive polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. When a solvent is used in the polymerization reaction, the solvent may be any solvent inactive in the polymerization reaction, and examples thereof include toluene, cyclohexane, and normal hexane.

重合工程において、重合反応は、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、共役ジエン単位におけるシス−1,4結合の選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物を十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間は、重合触媒の種類、重合温度等の条件によって適宜選択することができるが、例えば、1秒〜10日の範囲が好ましい。
また、重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
In the polymerization step, the polymerization reaction is preferably carried out in an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The polymerization temperature of the above polymerization reaction is not particularly limited, but is preferably in the range of -100 ° C. to 200 ° C., and may be about room temperature. In addition, when the polymerization temperature is raised, the selectivity of cis-1,4 bond in the conjugated diene unit may decrease. The pressure of the polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the conjugated diene compound into the polymerization reaction system. The reaction time of the polymerization reaction can be appropriately selected depending on the conditions such as the type of polymerization catalyst and the polymerization temperature, but is preferably in the range of 1 second to 10 days, for example.
Further, in the polymerization step, the polymerization reaction may be stopped by using a polymerization terminator such as methanol, ethanol or isopropanol.

重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。一段階の重合工程とは、重合させる全ての種類の単量体、即ち、共役ジエン化合物、非共役オレフィン化合物、芳香族ビニル化合物、及びその他の単量体、好ましくは、共役ジエン化合物、非共役オレフィン化合物、及び芳香族ビニル化合物を一斉に反応させて重合させる工程である。また、多段階の重合工程とは、1種類又は2種類の単量体の一部又は全部を最初に反応させて重合体を形成し(第1重合段階)、次いで、残る種類の単量体や前記1種類又は2種類の単量体の残部を添加して重合させる1以上の段階(第2重合段階〜最終重合段階)を行って重合させる工程である。特に、多元共重合体の製造では、重合工程を多段階で行うことが好ましい。 The polymerization step may be carried out in one step or in multiple steps of two or more steps. The one-step polymerization step is all kinds of monomers to be polymerized, namely conjugated diene compounds, non-conjugated olefin compounds, aromatic vinyl compounds, and other monomers, preferably conjugated diene compounds, non-conjugated. This is a step of polymerizing an olefin compound and an aromatic vinyl compound by reacting them all at once. In the multi-step polymerization step, a part or all of one or two kinds of monomers are first reacted to form a polymer (first polymerization step), and then the remaining kinds of monomers are formed. This is a step of polymerizing by performing one or more steps (second polymerization step to final polymerization step) in which the remainder of the one or two kinds of monomers is added and polymerized. In particular, in the production of a multi-element copolymer, it is preferable to carry out the polymerization step in multiple stages.

重合工程では、少なくとも芳香族ビニル化合物を含む第1単量体原料と、重合触媒とを混合して重合混合物を得る工程(第1工程)と、上記重合混合物に対し、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1種を含む第2単量体原料を導入する工程(第2工程)とを実施することが好ましい。更に、上記第1単量体原料が共役ジエン化合物を含まず、且つ上記第2単量体原料が共役ジエン化合物を含むことがより好ましい。 In the polymerization step, a first monomer raw material containing at least an aromatic vinyl compound and a polymerization catalyst are mixed to obtain a polymerization mixture (first step), and a conjugated diene compound and non-conjugated to the above polymerization mixture. It is preferable to carry out a step (second step) of introducing a second monomer raw material containing at least one selected from the group consisting of an olefin compound and an aromatic vinyl compound. Further, it is more preferable that the first monomer raw material does not contain a conjugated diene compound and the second monomer raw material contains a conjugated diene compound.

第1工程で用いる第1単量体原料は、芳香族ビニル化合物とともに、非共役オレフィン化合物を含有してもよい。また、第1単量体原料は、使用する芳香族ビニル化合物の全量を含有してもよく、一部のみを含有してもよい。また、非共役オレフィン化合物は、第1単量体原料及び第2単量体原料の少なくともいずれかに含有される。 The first monomer raw material used in the first step may contain a non-conjugated olefin compound together with the aromatic vinyl compound. In addition, the first monomer raw material may contain the entire amount of the aromatic vinyl compound used, or may contain only a part thereof. Further, the non-conjugated olefin compound is contained in at least one of the first monomer raw material and the second monomer raw material.

第1工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第1工程における温度(反応温度)は、特に制限はないが、例えば、−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。また、第1工程における圧力は、特に制限はないが、芳香族ビニル化合物を十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、第1工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、反応温度を25〜80℃とした場合には、5分〜500分の範囲が好ましい。 The first step is preferably carried out in the reactor under the atmosphere of an inert gas, preferably nitrogen gas or argon gas. The temperature (reaction temperature) in the first step is not particularly limited, but is preferably in the range of -100 ° C to 200 ° C, and may be about room temperature. The pressure in the first step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the aromatic vinyl compound into the polymerization reaction system. The time (reaction time) spent in the first step can be appropriately selected depending on the conditions such as the type of polymerization catalyst and the reaction temperature. For example, when the reaction temperature is 25 to 80 ° C., it is 5 minutes. The range of ~ 500 minutes is preferable.

第1工程において、重合混合物を得るための重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサノン、ノルマルヘキサン等が挙げられる。 In the first step, as the polymerization method for obtaining the polymerization mixture, any method such as a solution polymerization method, a suspension polymerization method, a liquid phase massive polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. Can be used. When a solvent is used in the polymerization reaction, the solvent may be any solvent inactive in the polymerization reaction, and examples thereof include toluene, cyclohexanone, and normal hexane.

第2工程で用いる第2単量体原料は、共役ジエン化合物のみである、共役ジエン化合物及び非共役オレフィン化合物のみである、共役ジエン化合物及び芳香族ビニル化合物のみである、又は、共役ジエン化合物、非共役オレフィン化合物、及び芳香族ビニル化合物であることが好ましい。なお、第2単量体原料が、共役ジエン化合物以外に非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1つを含む場合には、あらかじめこれらの単量体原料を溶媒等とともに混合した後に重合混合物に導入してもよく、各単量体原料を単独の状態から導入してもよい。また、各単量体原料は、同時に添加してもよく、逐次添加してもよい。第2工程において、重合混合物に対して第2単量体原料を導入する方法としては、特に制限はないが、各単量体原料の流量を制御して、重合混合物に対して連続的に添加すること(いわゆるミ−夕リング)が好ましい。ここで、重合反応系の条件下で気体である単量体原料(例えば、室温、常圧の条件下における非共役オレフィン化合物としてのエチレン等)を用いる場合には、所定の圧力で重合反応系に導入することができる。 The second monomer raw material used in the second step is only a conjugated diene compound, only a conjugated diene compound and a non-conjugated olefin compound, only a conjugated diene compound and an aromatic vinyl compound, or a conjugated diene compound. It is preferably a non-conjugated olefin compound and an aromatic vinyl compound. When the second monomer raw material contains at least one selected from the group consisting of a non-conjugated olefin compound and an aromatic vinyl compound in addition to the conjugated diene compound, these monomer raw materials are used as a solvent or the like in advance. It may be introduced into the polymerization mixture after being mixed with the compound, or each monomer raw material may be introduced from a single state. Further, each monomer raw material may be added at the same time or sequentially. In the second step, the method of introducing the second monomer raw material into the polymerization mixture is not particularly limited, but the flow rate of each monomer raw material is controlled and continuously added to the polymerization mixture. It is preferable to do (so-called monomer ring). Here, when a monomer raw material that is a gas under the conditions of the polymerization reaction system (for example, ethylene as a non-conjugated olefin compound under the conditions of room temperature and normal pressure) is used, the polymerization reaction system is carried out at a predetermined pressure. Can be introduced in.

第2工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第2工程における温度(反応温度)は、特に制限はないが、例えば、−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、反応温度を上げると、共役ジエン単位におけるシスー1,4結合の選択性が低下することがある。また、第2工程における圧力は、特に制限はないが、共役ジエン化合物等の単量体を十分に重合反応系に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、第2工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、0.1時間〜10日の範囲が好ましい。
また、第2工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
The second step is preferably carried out in the reactor under the atmosphere of an inert gas, preferably nitrogen gas or argon gas. The temperature (reaction temperature) in the second step is not particularly limited, but is preferably in the range of -100 ° C to 200 ° C, and may be about room temperature. When the reaction temperature is raised, the selectivity of cis-1,4 bond in the conjugated diene unit may decrease. The pressure in the second step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate a monomer such as a conjugated diene compound into the polymerization reaction system. The time (reaction time) spent in the second step can be appropriately selected depending on the conditions such as the type of polymerization catalyst and the reaction temperature, but is preferably in the range of 0.1 hour to 10 days, for example.
Further, in the second step, the polymerization reaction may be stopped by using a polymerization terminator such as methanol, ethanol or isopropanol.

カップリング工程は、重合工程において得られた多元共重合体の高分子鎖の少なくとも一部(例えば、末端)を、カップリング剤などを用いて変性する反応(カップリング反応)を行う工程である。カップリング工程は、重合反応が100%に達した際に行うことが好ましい。カップリング工程を行うことにより、多元共重合体の数平均分子量(Mn)を増加させることができる。 The coupling step is a step of carrying out a reaction (coupling reaction) in which at least a part (for example, a terminal) of the polymer chain of the multiple copolymer obtained in the polymerization step is modified with a coupling agent or the like. .. The coupling step is preferably performed when the polymerization reaction reaches 100%. By performing the coupling step, the number average molecular weight (Mn) of the multipolymer can be increased.

カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸−1−オクタデシル)ジオクテルスズ(lV)等のスズ含有化合物;4,4’−ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、反応効率の向上及びゲル生成の低減の観点から、ビス(マレイン酸−1−オクタデシル)ジオクテルスズ(IV)が好ましい。 The coupling agent used in the coupling reaction is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a tin-containing compound such as bis (-1-octadecyl maleate) diocteltin (lv); 4, Examples thereof include isocyanate compounds such as 4'-diphenylmethane diisocyanate; alkoxysilane compounds such as glycidylpropyltrimethoxysilane. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, bis (-1-octadecyl maleate) dioctelsin (IV) is preferable from the viewpoint of improving reaction efficiency and reducing gel formation.

洗浄工程は、重合工程又はカップリング工程で得られた多元共重合体を洗浄する工程である。洗浄工程を行うことにより、多元共重合体中の触媒残さ査量を好適に低下させることができる。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノ−ルなどの溶媒が挙げられ。また、重合触媒としてルイス酸由来の触媒を使用する際には、特に、上述した溶媒に対して酸(例えば塩酸、硫酸、硝酸など)を添加して用いることができる。なお、添加する酸の量は、当該酸が多元共重合体中に残存して混練及び加硫時の反応に悪影響を及ぼすことを回避する観点から、溶媒に対して15mol%以下であることが好ましい。 The washing step is a step of washing the multi-dimensional copolymer obtained in the polymerization step or the coupling step. By performing the washing step, the amount of catalyst residue in the multi-component copolymer can be suitably reduced. The medium used for cleaning is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include solvents such as methanol, ethanol and isopropanol. Further, when a catalyst derived from Lewis acid is used as the polymerization catalyst, an acid (for example, hydrochloric acid, sulfuric acid, nitric acid, etc.) can be added to the above-mentioned solvent. The amount of the acid to be added should be 15 mol% or less with respect to the solvent from the viewpoint of preventing the acid from remaining in the multipolymer and adversely affecting the reaction during kneading and vulcanization. preferable.

ここで、上記重合工程は、下記に示す第一の重合触媒組成物、第二の重合触媒組成物、第三の重合触媒組成物、又は第四の重合触媒組成物の存在下で行うことが好ましい。以下、第一の重合触媒組成物、第二の重合触媒組成物、第三の重合触媒組成物、及び第四の重合触媒組成物について説明する。 Here, the above-mentioned polymerization step may be carried out in the presence of the first polymerization catalyst composition, the second polymerization catalyst composition, the third polymerization catalyst composition, or the fourth polymerization catalyst composition shown below. preferable. Hereinafter, the first polymerization catalyst composition, the second polymerization catalyst composition, the third polymerization catalyst composition, and the fourth polymerization catalyst composition will be described.

−第一の重合触媒組成物−
第一の重合触媒組成物(以下、「第一重合触媒組成物」ともいう)について説明する。
第一重合触媒組成物としては、
(A1)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない、該希土類元素化合物又は反応物と、
(B1)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B1−1)、アルミノキサン(B1−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B1−3)よりなる群から選択される少なくとも一種と、を含む重合触媒組成物が挙げられる。
第一重合触媒組成物が、イオン性化合物(B1−1)及びハロゲン化合物(B1−3)よりなる群から選択される少なくとも一種を含む場合、該重合触媒組成物は、更に、
(C1)成分:下記一般式(I):
YR1 a2 b3 c ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は炭素数1〜10の一価の炭化水素基又は水素原子であり、R3は炭素数1〜10の一価の炭化水素基であり、R1、R2、R3はそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物を含む。
-First polymerization catalyst composition-
The first polymerization catalyst composition (hereinafter, also referred to as “first polymerization catalyst composition”) will be described.
As the first polymerization catalyst composition,
(A1) Component: A rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, which does not have a bond between the rare earth element and carbon, and the rare earth element compound or reaction product.
Component (B1): Contains an ionic compound (B1-1) composed of a non-coordinating anion and a cation, an aluminoxane (B1-2), a Lewis acid, a complex compound of a metal halide and a Lewis base, and an active halogen. Examples thereof include a polymerization catalyst composition containing at least one selected from the group consisting of at least one halogen compound (B1-3) among organic compounds.
When the first polymerization catalyst composition contains at least one selected from the group consisting of an ionic compound (B1-1) and a halogen compound (B1-3), the polymerization catalyst composition further comprises.
Component (C1): The following general formula (I):
YR 1 a R 2 b R 3 c・ ・ ・ (I)
(In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are monovalent hydrocarbons having 1 to 10 carbon atoms. It is a group or a hydrogen atom, R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y is the periodic table. When the metal is selected from the first group of the table, a is 1 and b and c are 0, and when Y is the metal selected from the second and twelfth groups of the periodic table. , A and b are 1 and c is 0, and a, b and c are 1 when Y is a metal selected from Group 13 of the Periodic Table). including.

上記イオン性化合物(B1−1)及び上記ハロゲン化合物(B1−3)は、(A1)成分へ供給するための炭素原子が存在しないため、該(A1)成分への炭素供給源として、上記(C1)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B1−2)を含む場合であっても、該重合触媒組成物は、上記(C1)成分を含むことができる。また、上記第一重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば、助触媒等を含んでいてもよい。
なお、重合反応系において、第一重合触媒組成物に含まれる(A1)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
更に、該重合触媒組成物は、アニオン性配位子となり得る添加剤(D1)を含有することが好ましい。
Since the ionic compound (B1-1) and the halogen compound (B1-3) do not have carbon atoms for supplying the component (A1), the above (A1) can be used as a carbon supply source for the component (A1). C1) Ingredients are required. Even when the polymerization catalyst composition contains the aluminoxane (B1-2), the polymerization catalyst composition can contain the component (C1). Further, the first polymerization catalyst composition may contain other components contained in a normal rare earth element compound-based polymerization catalyst composition, for example, a co-catalyst and the like.
In the polymerization reaction system, the concentration of the component (A1) contained in the first polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
Further, the polymerization catalyst composition preferably contains an additive (D1) that can be an anionic ligand.

上記第一重合触媒組成物に用いる(A1)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱い易い。ここで、希土類元素化合物とは、希土類元素(M)、即ち、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウム若しくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A1)成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The component (A1) used in the first polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, and here, a reaction of the rare earth element compound and the rare earth element compound with a Lewis base. The compound does not have a bond between a rare earth element and carbon. When the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle. Here, the rare earth element compound is a rare earth element (M), that is, a compound containing a lanthanoid element composed of elements having atomic numbers 57 to 71 in the periodic table, or scandium or yttrium.
Specific examples of the lanthanoid element include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The component (A1) may be used alone or in combination of two or more.

また、上記希土類元素化合物は、希土類金属が二価若しくは三価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることがより好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(II)又は一般式(III):
1111 2・L11w ・・・ (II)
1111 3・L11w ・・・ (III)
(それぞれの式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す)で表されることが好ましい。
Further, the rare earth element compound is preferably a divalent or trivalent salt or complex compound of the rare earth metal, and has one or more coordinations selected from hydrogen atom, halogen atom and organic compound residue. More preferably, it is a rare earth element compound containing children. Further, the rare earth element compound or the reaction product of the rare earth element compound and the Lewis base is described in the following general formula (II) or general formula (III):
M 11 X 11 2・ L 11 w ・ ・ ・ (II)
M 11 X 11 3・ L 11 w ・ ・ ・ (III)
(In each formula, M 11 represents a lanthanoid element, scandium or yttrium, and X 11 is an independent hydrogen atom, halogen atom, alkoxy group, thiolate group, amino group, silyl group, aldehyde residue, respectively. It is preferably represented by a ketone residue, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, where L 11 indicates a Lewis base and w indicates 0 to 3).

上記希土類元素化合物の希土類元素に結合する基(配位子)として、水素原子、ハロゲン原子、アルコキシ基(アルコールの水酸基の水素を除いた基であり、金属アルコキシドを形成する。)、チオラート基(チオール化合物のチオール基の水素を除いた基であり、金属チオラートを形成する。)、アミノ基(アンモニア、第一級アミン、又は第二級アミンの窒素原子に結合する水素原子を1つ除いた基であり、金属アミドを形成する。)、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基が挙げられる。具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等の芳香族アルコキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−ネオペンチルチオフェノキシ基、2−イソプロピル−6−ネオペンチルチオフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2’−ヒドロキシアセトフェノン、2’−ヒドロキシブチロフェノン、2’−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ピバル酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。
なお、これらの基(配位子)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
As a group (ligand) bonded to the rare earth element of the above rare earth element compound, a hydrogen atom, a halogen atom, an alkoxy group (a group excluding hydrogen from the hydroxyl group of the alcohol and forming a metal alkoxide), a thiolate group ( A hydrogen-free group of the thiol group of a thiol compound, which forms a metal thiolate), an amino group (ammonia, a primary amine, or a hydrogen atom bonded to a nitrogen atom of a secondary amine was removed. It is a group and forms a metal amide.), silyl groups, aldehyde residues, ketone residues, carboxylic acid residues, thiocarboxylic acid residues or phosphorus compound residues. Specifically, hydrogen atom; aliphatic alkoxy group such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group; phenoxy group, 2,6-di- tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2 Aromatic alkoxy groups such as −isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thion-butoxy group, thioisobutoxy group, thiosec-butoxy group, thiotert-butoxy group, etc. Aliphatic thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6- Arylthiolate groups such as isopropylthiophenoxy group, 2-tert-butyl-6-neopentylthiophenoxy group, 2-isopropyl-6-neopentylthiophenoxy group, 2,4,6-triisopropylthiophenoxy group; dimethylamino An aliphatic amino group such as a group, diethylamino group, diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino Group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, 2,4,6-tri-tert -Arylamino group such as butylphenylamino group; bistrialkylsilylamino group such as bistrimethylsilylamino group; trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (Bistrimethylsilyl) A silyl group such as a silyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom can be mentioned. Furthermore, residues of aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2'-hydroxyacetophenone, 2'-hydroxybutyrophenone, 2'-hydroxypropiophenone and the like. Residues of hydroxyphenone; Residues of diketones such as acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone;isovaleric acid, capric acid, octanoic acid, lauric acid, myristic acid, palmitic acid, Stealic acid, isostearic acid, oleic acid, phosphoric acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, pivalic acid, versaticic acid [trade name manufactured by Shell Chemical Co., Ltd., from a mixture of C10 monocarboxylic acid isomers Synthetic acids composed], residues of carboxylic acids such as phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, succinic acid; hexanethioic acid, 2,2-dimethylbutanthioic acid, decantioic acid, thiobenzoic acid, etc. Residues of thiocarboxylic acid; dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diheptyl phosphate, dioctyl phosphate, bis (2-ethylhexyl) phosphate, bis (1-methylheptyl) phosphate, dilauryl phosphate, Dioleyl Phosphonate, Diphenyl Phosphonate, Bis Phosphonate (p-Nonylphenyl), Bis Phosphonate (Polyethylene Glycol-p-Nonylphenyl), Phosphonate (Butyl) (2-Ethylhexyl), Phosphonate (1-Methylheptyl) Residues of phosphoesters such as (2-ethylhexyl), phosphate (2-ethylhexyl) (p-nonylphenyl); monobutyl 2-ethylhexylphosphonate, mono-2-ethylhexylphosphonate, mono-2-ethylhexyl phenylphosphonate Residues of phosphonic acid esters such as -2-ethylhexyl, 2-ethylhexylphosphonate mono-p-nonylphenyl, mono-2-ethylhexyl phosphonate, mono-1-methylheptyl phosphonate, mono-p-nonylphenyl phosphonate Dibutylphosphonic acid, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, dilaurylphosphonic acid, diorail phosphonate, diphenylphosphonate, bis (p-nonylphenyl) phosphinic acid, butyl ( 2-Ethylhexyl) phosphonic acid, (2-ethylhexyl) (1-methylheptyl) phosphonate, (2-ethylhexyl) Syl) (p-nonylphenyl) phosphinic acid, butylphosphinic acid, 2-ethylhexylphosphinic acid, 1-methylheptylphosphinic acid, oleylphosphinic acid, laurylphosphinic acid, phenylphosphinic acid, p-nonylphenylphosphinic acid and other phosphinic acids Residues can also be mentioned.
In addition, these groups (ligands) may be used individually by 1 type, and may be used in combination of 2 or more types.

上記第一重合触媒組成物に用いる(A1)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(一般式(II)及び(III)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。In the component (A1) used in the first polymerization catalyst composition, examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, and neutral olefins. Examples thereof include sex diolefins. Here, when the rare earth element compound reacts with a plurality of Lewis bases (in the general formulas (II) and (III), w is 2 or 3), the Lewis base L 11 may be the same. It may be different.

好適には、上記希土類元素化合物は、下記一般式(IV):
M−(NQ1)(NQ2)(NQ3) ・・・(IV)
(式中、Mは、ランタノイド元素、スカンジウム、イットリウムから選択される少なくとも一種であり、NQ1、NQ2及びNQ3は、アミノ基であり、同一であっても異なっていてもよく、但し、M−N結合を有する)で表される化合物を含有することが好ましい。
即ち、上記一般式(IV)で表される化合物は、M−N結合を3つ有することを特徴とする。M−N結合を3つ有することにより、各結合が化学的に等価となるため構造が安定的であり、それゆえに取り扱いが容易である、という利点を有する。
Preferably, the rare earth element compound has the following general formula (IV):
M- (NQ 1 ) (NQ 2 ) (NQ 3 ) ... (IV)
(In the formula, M is at least one selected from the lanthanoid element, scandium, and yttrium, and NQ 1 , NQ 2 and NQ 3 are amino groups, which may be the same or different, except that. It preferably contains a compound represented by (having an MN bond).
That is, the compound represented by the above general formula (IV) is characterized by having three MN bonds. Having three MN bonds has the advantage that the structures are stable because each bond is chemically equivalent and therefore easy to handle.

上記一般式(IV)において、NQ(NQ1、NQ2、及びNQ3)が表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基などの脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基などのアリールアミノ基;ビストリメチルシリルアミノ基などのビストリアルキルシリルアミノ基のいずれでもよいが、ビストリメチルシリルアミノ基が好ましい。In the above general formula (IV), the amino group represented by NQ (NQ 1 , NQ 2 , and NQ 3 ) is an aliphatic amino group such as a dimethylamino group, a diethylamino group, or a diisopropylamino group; a phenylamino group, 2, 6-di-tert-butylphenylamino group, 2,6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl- Arylamino groups such as 6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino such as bistrimethylsilylamino group Any of the groups may be used, but a bistrimethylsilylamino group is preferable.

上記第一重合触媒組成物に用いる(B1)成分は、イオン性化合物(B1−1)、アルミノキサン(B1−2)及びハロゲン化合物(B1−3)よりなる群から選択される少なくとも一種である。なお、上記第一重合触媒組成物における(B1)成分の合計の含有量は、(A1)成分に対して0.1〜50倍molであることが好ましい。 The component (B1) used in the first polymerization catalyst composition is at least one selected from the group consisting of an ionic compound (B1-1), an aluminoxane (B1-2) and a halogen compound (B1-3). The total content of the component (B1) in the first polymerization catalyst composition is preferably 0.1 to 50 times the mol of the component (A1).

上記イオン性化合物(B1−1)は、非配位性アニオンとカチオンとからなり、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。
ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。
一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。
従って、イオン性化合物(B1−1)としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物(B1−1)は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第一重合触媒組成物におけるイオン性化合物(B1−1)の含有量は、(A1)成分に対して0.1〜10倍molであることが好ましく、約1倍molであることがより好ましい。
The ionic compound (B1-1) is composed of a non-coordinating anion and a cation, and reacts with a rare earth element compound which is a component of (A1) or a reaction product thereof with a Lewis base to form a cationic transition metal compound. Examples thereof include ionic compounds that can be produced.
Here, as the non-coordinating anion, for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (trill) borate, tetra (kisilyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbound decaborate and the like.
On the other hand, examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, a ferrosenium cation having a transition metal, and the like. Specific examples of the carbonium cation include tri-substituted carbonium cations such as triphenyl carbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as the tri (substituted phenyl) carbonyl cation, Examples thereof include a tri (methylphenyl) carbocation cation and a tri (dimethylphenyl) carbocation cation. Specific examples of ammonium cations include trialkylammonary cations such as trimethylammonium cations, triethylammonary cations, tripropylammonium cations, and tributylammonary cations (eg, tri (n-butyl) ammonium cations); N, N-dimethylanilinium. N, N-dialkylanilinium cations such as cations, N, N-diethylanilinium cations, N, N, 2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropylammonium cations and dicyclohexylammonium cations, etc. Can be mentioned. Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
Therefore, as the ionic compound (B1-1), a compound selected and combined from the above-mentioned non-coordinating anions and cations is preferable, and specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl). Borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. In addition, these ionic compounds (B1-1) can be used alone or in combination of two or more. The content of the ionic compound (B1-1) in the first polymerization catalyst composition is preferably 0.1 to 10 times mol, more preferably about 1 times mol, with respect to the component (A1). Is more preferable.

上記アルミノキサン(B1−2)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(−Al(R’)O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1〜10の一価の炭化水素基であり、一部の炭化水素基はハロゲン原子及びアルコキシ基よりなる群から選択される少なくとも1つで置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上がより好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第一重合触媒組成物におけるアルミノキサン(B1−2)の含有量は、(A1)成分を構成する希土類元素Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10〜1,000程度となるようにすることが好ましい。 The aluminoxane (B1-2) is a compound obtained by contacting an organic aluminum compound with a condensing agent, and is, for example, a chain having a repeating unit represented by the general formula: (-Al (R') O-). Aluminoxane or cyclic aluminoxane (in the formula, R'is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and some hydrocarbon groups are at least one selected from the group consisting of halogen atoms and alkoxy groups. It may be substituted, and the degree of polymerization of the repeating unit is preferably 5 or more, more preferably 10 or more). Here, as R', a methyl group, an ethyl group, a propyl group, an isobutyl group and the like are specifically mentioned, and among these, a methyl group is preferable. Examples of the organoaluminum compound used as a raw material for aluminoxane include trialkylaluminum such as trimethylaluminum, triethylaluminum, tributylaluminum and triisobutylaluminum, and a mixture thereof, and trimethylaluminum is particularly preferable. For example, aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used. The content of aluminoxane (B1-2) in the first polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of aluminoxane to the rare earth element M constituting the component (A1) is 10 to 1, It is preferable that the value is about 000.

上記ハロゲン化合物(B1−3)は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A1)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第一重合触媒組成物におけるハロゲン化合物(B1−3)の合計の含有量は、(A1)成分に対して1〜5倍molであることが好ましい。 The halogen compound (B1-3) comprises at least one of an organic compound containing Lewis acid, a complex compound of a metal halide and a Lewis base, and an active halogen, and is, for example, a rare earth element compound or a rare earth element compound which is a component of (A1). By reacting with the reaction product with the Lewis base, a cationic transition metal compound, a halide transition metal compound, or a compound in which the transition metal center is insufficiently charged can be produced. The total content of the halogen compound (B1-3) in the first polymerization catalyst composition is preferably 1 to 5 times mol with respect to the component (A1).

上記ルイス酸としては、B(C653等のホウ素含有ハロゲン化合物、Al(C653等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第3族、第4族、第5族、第6族又は第8族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。
上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
As the Lewis acid, a boron-containing halogen compound such as B (C 6 F 5 ) 3 and an aluminum-containing halogen compound such as Al (C 6 F 5 ) 3 can be used, and Group 3 and Group 3 in the periodic table. Halogen compounds containing elements belonging to Group 4, Group 5, Group 6 or Group 8 can also be used. Preferred are aluminum halides or organometallic halides. Further, as the halogen element, chlorine or bromine is preferable.
Specific examples of the Lewis acid include methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide, butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride, diethylaluminum bromide, and diethyl. Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimone pentachloride, phosphorus trichloride , Phosphorus pentachloride, tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc. Among these, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, ethylaluminum di. Chlorides are particularly preferred.

上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、臭化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。 Examples of the metal halide constituting the complex compound of the metal halide and the Lewis base include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, and iodine. Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, renium chloride, renium bromide, renium iodide, copper chloride, copper bromide, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, bromide Gold and the like are mentioned, and among these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride and copper chloride are preferable, and magnesium chloride, manganese chloride, zinc chloride and copper chloride are particularly preferable.

また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。 Further, as the Lewis base constituting the complex compound of the metal halide and the Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol and the like are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricredil phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoetan, diphenylphosphinoetan, acetylacetone, benzoylacetone. , Propionyl acetone, valeryl acetone, ethyl acetyl acetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanic acid, 2-ethylhexanoic acid, oleic acid, stea Acids, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetoamide, tetrahydrofuran, diphenyl ether, 2-ethylhexyl alcohol, oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, lauryl alcohol and the like can be mentioned. Of these, tri-2-ethylhexyl phosphate, tricredyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2-ethylhexyl alcohol, 1-decanol, and lauryl alcohol are preferable.

上記ルイス塩基は、上記金属ハロゲン化物1molに対し、好ましくは0.01〜30mol、より好ましくは0.5〜10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。 The Lewis base is reacted at a ratio of preferably 0.01 to 30 mol, more preferably 0.5 to 10 mol, with respect to 1 mol of the metal halide. The reaction with the Lewis base can be used to reduce the amount of metal remaining in the polymer.

上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。 Examples of the organic compound containing an active halogen include benzyl chloride and the like.

上記第一重合触媒組成物に用いる(C1)成分は、下記一般式(I):
YR1 a2 b3 c ・・・ (I)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は炭素数1〜10の一価の炭化水素基又は水素原子であり、R3は炭素数1〜10の一価の炭化水素基であり、R1、R2、R3はそれぞれ互いに同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である)で表される有機金属化合物であり、下記一般式(V):
AlR123 ・・・ (V)
(式中、R1及びR2は炭素数1〜10の一価の炭化水素基又は水素原子であり、R3は炭素数1〜10の一価の炭化水素基であり、R1、R2、R3はそれぞれ互いに同一又は異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。
The component (C1) used in the first polymerization catalyst composition has the following general formula (I):
YR 1 a R 2 b R 3 c・ ・ ・ (I)
(In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are monovalent hydrocarbons having 1 to 10 carbon atoms. It is a group or a hydrogen atom, R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y is the periodic table. When the metal is selected from the first group of the table, a is 1 and b and c are 0, and when Y is the metal selected from the second and twelfth groups of the periodic table. , A and b are 1 and c is 0, and a, b and c are 1 when Y is a metal selected from Group 13 of the Periodic Table). The following general formula (V):
AlR 1 R 2 R 3 ... (V)
(In the formula, R 1 and R 2 are monovalent hydrocarbon groups or hydrogen atoms having 1 to 10 carbon atoms, R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 1 and R 2 are used. , R 3 may be the same or different from each other), preferably an organoaluminum compound.

一般式(V)で表される有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C1)成分としての有機金属化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。
なお、上記第一重合触媒組成物における有機金属化合物の含有量は、(A1)成分に対して1〜50倍molであることが好ましく、約10倍molであることがより好ましい。
Examples of the organic aluminum compound represented by the general formula (V) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, and tri-t-butylaluminum. Tripentyl aluminum, trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, hydrogen Diisohexyl aluminum chemicals, dioctyl aluminum hydrides, diisooctyl aluminum hydrides; ethyl aluminum dihydrides, n-propyl aluminum dihydrides, isobutylaluminum dihydrides, etc., among these, triethylaluminum, triisobutylaluminum, etc. Diethylaluminum hydride and diisobutylaluminum hydride are preferred. The organometallic compound as the component (C1) described above may be used alone or in combination of two or more.
The content of the organometallic compound in the first polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol, with respect to the component (A1).

アニオン性配位子となり得る添加剤(D1)の添加は、より高いシス−1,4結合含有量の多元共重合体を高収率で合成することが可能となる、という効果を奏するため好ましい。 The addition of the additive (D1), which can be an anionic ligand, is preferable because it has the effect of enabling the synthesis of a multipolymer with a higher cis-1,4 bond content in a high yield. ..

上記添加剤(D1)としては、(A1)成分のアミノ基と交換可能なものであれば特に限定されないが、OH基、NH基、SH基のいずれかを有することが好ましい。 The additive (D1) is not particularly limited as long as it can be exchanged with the amino group of the component (A1), but preferably has any of an OH group, an NH group, and an SH group.

具体的な化合物として、OH基を有するものとしては、脂肪族アルコール、芳香族アルコール等が挙げられる。具体的には、2−エチル−1−ヘキサノール、ジブチルヒドロキシトルエン、アルキル化フェノール、4,4’−チオビス(6−t−ブチル−3−メチルフェノール)、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチリルチオジプロピオネート等を挙げることができるが、これに限定されるものではない。例えばヒンダードフェノール系のものとして、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)、3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート、オクチル化ジフェニルアミン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール等を挙げることができる。また、ヒドラジン系として、N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジンを挙げることができる。 Specific examples of the compound have an OH group include aliphatic alcohols and aromatic alcohols. Specifically, 2-ethyl-1-hexanol, dibutylhydroxytoluene, alkylated phenol, 4,4'-thiobis (6-t-butyl-3-methylphenol), 4,4'-butylidenebis (6-t). -Butyl-3-methylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 2,6-di -T-Butyl-4-ethylphenol, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-octadecyl-3- (4-hydroxy-3,5-) Di-t-butylphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, dilaurylthiodipropionate, distearylthiodipropionate, di Examples include, but are not limited to, myristyl thiodipropionate. For example, as hindered phenol-based ones, triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3, 3,) 5-Di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5 -Triazine, pentaerythryl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-) Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl) -4-Hydroxy-hydrocinnamamide), 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-) Di-t-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, octylated diphenylamine, 2,4-bis [(octylthio) methyl]- O-cresol and the like can be mentioned. In addition, examples of the hydrazine system include N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine.

NH基を有するものとしては、アルキルアミン、アリールアミン等の第1級アミン又は第2級アミンを挙げることができる。具体的には、ジメチルアミン、ジエチルアミン、ピロール、エタノールアミン、ジエタノールアミン、ジシクロヘキシルアミン、N,N’−ジベンジルエチレンジアミン、ビス(2−ジフェニルホスフィノフェニル)アミン等が挙げられる。 Examples of those having an NH group include primary amines such as alkylamines and arylamines, and secondary amines. Specific examples thereof include dimethylamine, diethylamine, pyrrole, ethanolamine, diethanolamine, dicyclohexylamine, N, N'-dibenzylethylenediamine, bis (2-diphenylphosphinophenyl) amine and the like.

SH基を有するものとしては、脂肪族チオール、芳香族チオール等のほか、下記一般式(VI)、(VII)で示される化合物が挙げられる。 Examples of those having an SH group include aliphatic thiols, aromatic thiols and the like, as well as compounds represented by the following general formulas (VI) and (VII).

Figure 2019142501
(式中、R1、R2及びR3はそれぞれ独立して−O−Cj2j+1、−(O−Ck2k−)a−O−Cm2m+1又は−Cn2n+1で表され、j、m及びnは、それぞれ独立して0〜12の整数であり、k及びaは、それぞれ独立して1〜12の整数であり、R4は、炭素数1〜12であって、直鎖、分岐、若しくは環状の、飽和若しくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
一般式(VI)で示されるものの具体例としては、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、(メルカプトメチル)ジメチルエトキシシラン、メルカプトメチルトリメトキシシラン等が挙げられる。
Figure 2019142501
(In the equation, R 1 , R 2 and R 3 are independently −OC j H 2j + 1 , − ( OC k H 2k −) a −OC m H 2m + 1 or −C. represented by n H 2n + 1 , j, m and n are independently integers 0 to 12, k and a are independently integers 1 to 12, and R 4 is carbon. Numbers 1-12, linear, branched, or cyclic, saturated or unsaturated, alkylene group, cycloalkylene group, cycloalkylalkylene group, cycloalkenylalkylene group, alkenylene group, cycloalkenylene group, cycloalkylalkenylene Group, cycloalkenyl alkenylene group, arylene group or aralkylene group.)
Specific examples of those represented by the general formula (VI) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, (mercaptomethyl) dimethylethoxysilane, and mercaptomethyltrimethoxy. Examples include silane.

Figure 2019142501
(式中、Wは、−NR8−、−O−又は−CR910−(ここで、R8及びR9は−Cp2p+1であり、R10は、−Cq2q+1であり、p及びqは、それぞれ独立して0〜20の整数である。)で表され、R5及びR6は、それぞれ独立して−M−Cr2r−(ここで、Mは−O−又は−CH2−であり、rは1〜20の整数である。)で表され、R7は、−O−Cj2j+1、−(O−Ck2k−)a−O−Cm2m+1又は−Cn2n+1で表され、j、m及びnは、それぞれ独立して0〜12の整数であり、k及びaは、それぞれ独立して1〜12の整数であり、R4は、炭素数1〜12であって、直鎖、分岐、若しくは環状の、飽和若しくは不飽和の、アルキレン基、シクロアルキレン基、シクロアルキルアルキレン基、シクロアルケニルアルキレン基、アルケニレン基、シクロアルケニレン基、シクロアルキルアルケニレン基、シクロアルケニルアルケニレン基、アリーレン基又はアラルキレン基である。)
Figure 2019142501
(Wherein, W is, -NR 8 -, - O- or -CR 9 R 10 - (wherein, R 8 and R 9 are -C p H 2p + 1, R 10 is, -C q H It is 2q + 1 , and p and q are independently represented by integers 0 to 20.), And R 5 and R 6 are independently −MC r H 2r − (where, respectively). , M is −O− or −CH 2− , and r is an integer of 1 to 20), and R 7 is −OC j H 2j + 1 , − (OC k H. 2k −) a −O−C m H 2m + 1 or −C n H 2n + 1 , j, m and n are independently integers from 0 to 12, and k and a are respectively. Independently an integer of 1-12, R 4 has 1-12 carbon atoms and is a linear, branched, or cyclic, saturated or unsaturated, alkylene group, cycloalkylene group, cycloalkylalkylene group. , Cycloalkenylalkylene group, alkenylene group, cycloalkenylene group, cycloalkylalkenylene group, cycloalkenylalkenylene group, arylene group or aralkylene group.)

一般式(VII)で示されるものの具体例としては、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、3−メルカプトプロピル(エトキシ)−1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタンなどが挙げられる。 Specific examples of those represented by the general formula (VII) are 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-methylaza-2-silacyclooctane and 3-mercaptopropyl (ethoxy) -1,3-. Examples thereof include dioxa-6-butylaza-2-silacyclooctane and 3-mercaptopropyl (ethoxy) -1,3-dioxa-6-dodecylaza-2-silacyclooctane.

また、添加剤(D1)としては、好適には下記一般式(VIII)で表されるアニオン性三座配位子前駆体を使用できる。
1−T1−X−T2−E2 ・・・(VIII)
(式中、Xは、周期律表第15族原子から選択される配位原子を含むアニオン性の電子供与基を示し、E1及びE2は、それぞれ独立して、周期律表第15族及び16族原子から選択される配位原子を含む中性の電子供与基を示し、T1及びT2は、それぞれ、XとE1及びE2とを架橋する架橋基を示す)
Further, as the additive (D1), an anionic tridentate ligand precursor represented by the following general formula (VIII) can be preferably used.
E 1- T 1- X-T 2- E 2 ... (VIII)
(In the equation, X represents an anionic electron donating group containing a coordination atom selected from the group 15 atoms of the periodic table, and E 1 and E 2 are independent of the group 15 of the periodic table. And a neutral electron donating group containing a coordination atom selected from Group 16 atoms, where T 1 and T 2 indicate a bridging group that bridges X with E 1 and E 2 , respectively).

添加剤(D1)は、前記希土類元素化合物1molに対して、0.01〜10mol添加することが好ましく、0.1〜1.2mol添加することがより好ましい。添加量が0.1mol以上であると、単量体の重合反応が十分に進行する。また、添加量は、希土類元素化合物と当量(1.0mol)とすることが好ましいが、過剰量添加されていてもよい。添加量が1.2mol以下であると、試薬のロスが少ないので好ましい。 The additive (D1) is preferably added in an amount of 0.01 to 10 mol, more preferably 0.1 to 1.2 mol, based on 1 mol of the rare earth element compound. When the addition amount is 0.1 mol or more, the polymerization reaction of the monomer proceeds sufficiently. The amount added is preferably equivalent to that of the rare earth element compound (1.0 mol), but an excessive amount may be added. When the addition amount is 1.2 mol or less, the loss of the reagent is small, which is preferable.

上記一般式(VIII)中、中性の電子供与基E1及びE2は、周期律表第15族及び第16族から選択される配位原子を含む基である。また、E1及びE2は同一の基であってもよく、異なる基であってもよい。該配位原子としては、窒素N、リンP、酸素O、硫黄Sなどが例示されるが、好ましくはPである。In the above general formula (VIII), the neutral electron donating groups E 1 and E 2 are groups containing a coordination atom selected from groups 15 and 16 of the periodic table. Further, E 1 and E 2 may be the same group or different groups. Examples of the coordination atom include nitrogen N, phosphorus P, oxygen O, and sulfur S, but P is preferable.

前記E1及びE2に含まれる配位原子がPである場合には、中性の電子供与基E1又はE2としては、ジフェニルホスフィノ基、ジトリルホスフィノ基等のジアリールホスフィノ基;ジメチルホスフィノ基、ジエチルホスフィノ基等のジアルキルホスフィノ基;メチルフェニルホスフィノ基等のアルキルアリールホスフィノ基が例示され、好ましくはジアリールホスフィノ基である。When the coordinating atom contained in E 1 and E 2 is P, the neutral electron donating group E 1 or E 2 is a diarylphosphino group such as a diphenylphosphino group or a ditrilphosphino group. A dialkylphosphino group such as a dimethylphosphino group or a diethylphosphino group; an alkylarylphosphino group such as a methylphenylphosphino group is exemplified, and a diarylphosphino group is preferable.

前記E1及びE2に含まれる配位原子がNである場合には、中性の電子供与基E1又はE2としては、ジメチルアミノ基、ジエチルアミノ基、ビス(トリメチルシリル)アミノ基等のジアルキルアミノ基及びビス(トリアルキルシリル)アミノ基;ジフェニルアミノ基等のジアリールアミノ基;メチルフェニルアミノ基等のアルキルアリールアミノ基などが例示される。When the coordinating atom contained in E 1 and E 2 is N, the neutral electron donating group E 1 or E 2 is a dialkyl group such as a dimethylamino group, a diethylamino group, or a bis (trimethylsilyl) amino group. Examples thereof include an amino group and a bis (trialkylsilyl) amino group; a diarylamino group such as a diphenylamino group; and an alkylarylamino group such as a methylphenylamino group.

前記E1及びE2に含まれる配位原子がOである場合には、中性の電子供与基E1又はE2としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基;フェノキシ基、2,6−ジメチルフェノキシ基等のアリールオキシ基などが例示される。When the coordinating atom contained in E 1 and E 2 is O, the neutral electron donating group E 1 or E 2 is an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group; Examples thereof include an aryloxy group such as a phenoxy group and a 2,6-dimethylphenoxy group.

前記E1及びE2に含まれる配位原子がSである場合には、中性の電子供与基E1又はE2としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等のアルキルチオ基;フェニルチオ基、トリルチオ基等のアリールチオ基などが例示される。When the coordination atom contained in E 1 and E 2 is S, the neutral electron donating group E 1 or E 2 is an alkyl thio group such as a methyl thio group, an ethyl thio group, a propyl thio group, or a butyl thio group; Examples thereof include arylthio groups such as phenylthio groups and trilthio groups.

アニオン性の電子供与基Xは、周期律表第15族から選択される配位原子を含む基である。該配位原子として、好ましくはリンP又は窒素Nが挙げられ、より好ましくはNが挙げられる。 The anionic electron donating group X is a group containing a coordination atom selected from Group 15 of the periodic table. The coordinating atom preferably includes phosphorus P or nitrogen N, and more preferably N.

架橋基T1及びT2は、XとE1及びE2を架橋することができる基であればよく、アリール環上に置換基を有していてもよいアリーレン基が例示される。また、T1及びT2は同一の基でも異なる基であってもよい。
前記アリーレン基としては、フェニレン基、ナフチレン基、ピリジレン基、チエニレン基が例示され、好ましくはフェニレン基、ナフチレン基である。また、前記アリーレン基のアリール環上には任意の基が置換されていてもよい。該置換基としてはメチル基、エチル基などのアルキル基;フェニル基、トリル基などのアリール基;フルオロ、クロロ、ブロモなどのハロゲン基;トリメチルシリル基などのシリル基などが例示される。
前記アリーレン基として、更に好ましくは1,2−フェニレン基が例示される。
The cross-linking groups T 1 and T 2 may be any group capable of cross-linking X with E 1 and E 2, and an arylene group which may have a substituent on the aryl ring is exemplified. Further, T 1 and T 2 may be the same group or different groups.
Examples of the arylene group include a phenylene group, a naphthylene group, a pyridylene group, and a thienylene group, and a phenylene group and a naphthylene group are preferable. Further, any group may be substituted on the aryl ring of the arylene group. Examples of the substituent include an alkyl group such as a methyl group and an ethyl group; an aryl group such as a phenyl group and a trill group; a halogen group such as fluoro, chloro and bromo; and a silyl group such as a trimethylsilyl group.
As the arylene group, a 1,2-phenylene group is more preferably exemplified.

−第二の重合触媒組成物−
次に、第二の重合触媒組成物(以下、「第二重合触媒組成物」ともいう)について説明する。第二重合触媒組成物としては、下記一般式(IX):
-Second polymerization catalyst composition-
Next, the second polymerization catalyst composition (hereinafter, also referred to as “second polymerization catalyst composition”) will be described. The second polymerization catalyst composition includes the following general formula (IX):

Figure 2019142501
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換若しくは置換インデニルを示し、Ra〜Rは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。)で表されるメタロセン錯体、及び下記一般式(X):
Figure 2019142501
(In the formula, M represents a lanthanoid element, scandium or yttrium, CpR independently represents an unsubstituted or substituted indenyl, and R a to R each independently represent an alkyl group having 1 to 3 carbon atoms or It represents a hydrogen atom, L represents a neutral Lewis base, w represents an integer of 0 to 3), a metallocene complex represented by the following general formula (X):

Figure 2019142501
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換若しくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。)で表されるメタロセン錯体、並びに下記一般式(XI):
Figure 2019142501
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R independently represents an unsubstituted or substituted indenyl, and X'is a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group or an amino group. , A silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, w represents an integer of 0 to 3), and the following. General formula (XI):

Figure 2019142501
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、無置換若しくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]−は、非配位性アニオンを示す。)で表されるハーフメタロセンカチオン錯体よりなる群から選択される少なくとも1種類の錯体を含む重合触媒組成物が挙げられる。
第二重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば、助触媒等を含んでいてもよい。ここで、メタロセン錯体は、1つ又は2つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が1つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
なお、重合反応系において、第二重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
Figure 2019142501
(In the formula, M represents a lanthanoid element, scandium or yttrium, CpR'represents an unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and X is a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, It represents an amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, w represents an integer of 0 to 3, and [B]-is non-coordinating. Examples thereof include a polymerization catalyst composition containing at least one complex selected from the group consisting of half metallocene cation complexes represented by (showing a position anion).
The second polymerization catalyst composition may further contain other components contained in the polymerization catalyst composition containing a normal metallocene complex, for example, a co-catalyst and the like. Here, the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof is bonded to the central metal. A certain metallocene complex may be referred to as a half metallocene complex.
In the polymerization reaction system, the concentration of the complex contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / L.

上記一般式(IX)及び(X)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-xx又はC911-xxで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(IX)及び(X)における2つのCpRは、それぞれ互いに同一でも異なっていてもよい。In the metallocene complexes represented by the general formulas (IX) and (X), Cp R in the formula is unsubstituted indenyl or substituted indenyl. Cp R with an indenyl ring as the basic skeleton can be represented by C 9 H 7-x R x or C 9 H 11-x R x . Here, X is an integer of 0 to 7 or 0 to 11. Further, it is preferable that R is independently a hydrocarbyl group or a metalloid group. The number of carbon atoms of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8. Specific preferred examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group and a benzyl group. On the other hand, examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group of the metalloid group is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group and the like. Specific examples of the substituted indenyl include 2-phenylindenyl, 2-methylindenyl and the like. The two Cp Rs in the general formulas (IX) and (X) may be the same or different from each other.

上記一般式(XI)で表されるハーフメタロセンカチオン錯体において、式中のCpR'は、無置換若しくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換若しくは置換のインデニルであることが好ましい。In the half-metallocene cation complex represented by the general formula (XI), Cp R 'is in the formula, an unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, among these, unsubstituted or substituted indenyl Is preferable.

上記一般式(XI)において、シクロペンタジエニル環を基本骨格とするCpR'は、C55-xxで示される。ここで、Xは、0〜5の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR'として、具体的には、以下のものが例示される。In the general formula (XI), Cp R 'having a basic skeleton a cyclopentadienyl ring, represented by C 5 H 5-x R x . Here, X is an integer of 0 to 5. Further, it is preferable that R is independently a hydrocarbyl group or a metalloid group. The number of carbon atoms of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8. Specific preferred examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group and a benzyl group. On the other hand, examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group of the metalloid group is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group and the like. A cyclopentadienyl ring as Cp R 'having a basic skeleton, specifically, are exemplified as follows.

Figure 2019142501
(式中、Rは水素原子、メチル基又はエチル基を示す。)
Figure 2019142501
(In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)

一般式(XI)において、上記インデニル環を基本骨格とするCpR'は、一般式(IX)及び(X)のCpRと同様に定義され、好ましい例も同様である。In the general formula (XI), Cp R 'is the basic skeleton of the above indenyl ring, is similarly defined as Cp R in the general formula (IX) and (X), and preferred examples are also the same.

一般式(XI)において、上記フルオレニル環を基本骨格とするCpR'は、C139-xx又はC1317-xxで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。In the general formula (XI), Cp R 'having a basic skeleton of the above fluorenyl ring may be represented by C 13 H 9-x R x or C 13 H 17-x R x . Here, X is an integer of 0-9 or 0-17. Further, it is preferable that R is independently a hydrocarbyl group or a metalloid group. The number of carbon atoms of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8. Specific preferred examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group and a benzyl group. On the other hand, examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group of the metalloid group is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group and the like.

一般式(IX)、(X)及び(XI)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 The central metal M in the general formulas (IX), (X) and (XI) is a lanthanoid element, scandium or yttrium. The lanthanoid element includes 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferable examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.

一般式(IX)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(一般式(IX)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも1つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも1つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィン化合物や芳香族ビニル化合物が導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも1つが水素原子であり、Rd〜Rfのうち少なくとも1つが水素原子であることがより好ましい。更に、アルキル基としては、メチル基が好ましい。The metallocene complex represented by the general formula (IX) contains a silylamide ligand [-N (SiR 3 ) 2 ]. The R groups ( Ra to R f in the general formula (IX)) contained in the silylamide ligand are independently alkyl groups having 1 to 3 carbon atoms or hydrogen atoms. Further, it is preferable that at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst becomes easy and the bulkiness around silicon becomes low, so that a non-conjugated olefin compound or an aromatic vinyl compound is introduced. It becomes easy to be done. From the same viewpoint, it is more preferable that at least one of R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom. Further, as the alkyl group, a methyl group is preferable.

一般式(X)で表されるメタロセン錯体は、シリル配位子[−SiX’3]を含む。シリル配位子[−SiX’3]に含まれるX’は、下記で説明される一般式(XI)のXと同様に定義される基であり、好ましい基も同様である。The metallocene complex represented by the general formula (X) include silyl ligand [-SiX '3]. 'X contained in [3 silyl ligand -SiX]' is X as well as being defined group of the general formula (XI) to be described below, is the same preferable groups.

一般式(XI)において、Xは水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基及び炭素数1〜20の一価の炭化水素基からなる群より選択される基である。ここで、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。 In the general formula (XI), X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group and a monovalent hydrocarbon group having 1 to 20 carbon atoms. Here, the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, but a chlorine atom or a bromine atom is preferable.

一般式(XI)において、Xが表すアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシ基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。 In the general formula (XI), the alkoxy group represented by X includes an aliphatic alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group and a tert-butoxy group; a phenoxy group. , 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6 Examples thereof include aryloxy groups such as −neopentylphenoxy group and 2-isopropyl-6-neopentylphenoxy group, and among these, 2,6-di-tert-butylphenoxy group is preferable.

一般式(XI)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−ネオペンチルチオフェノキシ基、2−イソプロピル−6−ネオペンチルチオフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。 In the general formula (XI), examples of the thiolate group represented by X include fats such as thiomethoxy group, thioethoxy group, thiopropoxy group, thion-butoxy group, thioisobutoxy group, thiosec-butoxy group and thiotert-butoxy group. Group thiolate groups; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Examples thereof include arylthiolate groups such as a thiophenoxy group, a 2-tert-butyl-6-neopentylthiophenoxy group, a 2-isopropyl-6-neopentylthiophenoxy group and a 2,4,6-triisopropylthiophenoxy group. Of these, 2,4,6-triisopropylthiophenoxy groups are preferred.

一般式(XI)において、Xが表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、これらの中でも、ビストリメチルシリルアミノ基が好ましい。 In the general formula (XI), the amino group represented by X is an aliphatic amino group such as a dimethylamino group, a diethylamino group or a diisopropylamino group; a phenylamino group, a 2,6-di-tert-butylphenylamino group, 2 , 6-Diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl- Arylamino groups such as 6-neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group are mentioned, and among these, bistrimethylsilylamino Groups are preferred.

一般式(XI)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。 In the general formula (XI), examples of the silyl group represented by X include a trimethylsilyl group, a tris (trimethylsilyl) silyl group, a bis (trimethylsilyl) methylsilyl group, a trimethylsilyl (dimethyl) silyl group, and a triisopropylsilyl (bistrimethylsilyl) silyl group. Among these, a tris (trimethylsilyl) silyl group is preferable.

また、一般式(XI)において、Xが表す炭素数1〜20の一価の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分岐鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。 Further, in the general formula (XI), as the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by X, specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like. Linear or branched aliphatic hydrocarbon groups such as isobutyl group, sec-butyl group, tert-butyl group, neopentyl group, hexyl group and octyl group; aromatic hydrocarbon groups such as phenyl group, trill group and naphthyl group. In addition to an aralkyl group such as a benzyl group; a hydrocarbon group containing a silicon atom such as a trimethylsilylmethyl group and a bistrimethylsilylmethyl group can be mentioned. Among these, a methyl group, an ethyl group, an isobutyl group and a trimethylsilylmethyl group can be mentioned. Etc. are preferable.

一般式(XI)において、Xとしては、ビストリメチルシリルアミノ基又は炭素数1〜20の一価の炭化水素基が好ましい。 In the general formula (XI), as X, a bistrimethylsilylamino group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable.

一般式(XI)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。In the general formula (XI), examples of the non-coordinating anion represented by [B] include a tetravalent boron anion. Specifically, as the tetravalent boron anion, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (trill) borate, tetra (kisilyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbundecaborate and the like can be mentioned, and among these, tetrakis (pentafluorophenyl) borate is preferable.

上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) are further 0 to 3, preferably 0 to 1 neutral Lewis. Contains base L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins and the like. Here, when the complex contains a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.

また、上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 Further, the metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) may exist as a monomer and are dimers. Or it may exist as a multimer of more than that.

上記一般式(IX)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミンの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(IX)で表されるメタロセン錯体を得るための反応例を示す。 The metallocene complex represented by the above general formula (IX) is, for example, a lanthanoid trishalide, a scandium trishalide or an ittrium trishalide in a solvent, an indenyl salt (for example, a potassium salt or a lithium salt) and a bis (trialkylsilyl). It can be obtained by reacting with an amine salt (for example, a potassium salt or a lithium salt). Since the reaction temperature may be about room temperature, it can be produced under mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product, and for example, toluene may be used. An example of the reaction for obtaining the metallocene complex represented by the general formula (IX) is shown below.

Figure 2019142501
(式中、X’’はハライドを示す。)
Figure 2019142501
(In the formula, X'' indicates a halide.)

上記一般式(X)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(X)で表されるメタロセン錯体を得るための反応例を示す。 The metallocene complex represented by the general formula (X) is, for example, a lanthanoid trishalide, a scandium trishalide or an yttrium trishalide in a solvent, an indenyl salt (for example, a potassium salt or a lithium salt) and a silyl salt (for example, potassium). It can be obtained by reacting with a salt or lithium salt). Since the reaction temperature may be about room temperature, it can be produced under mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product, and for example, toluene may be used. An example of the reaction for obtaining the metallocene complex represented by the general formula (X) is shown below.

Figure 2019142501
(式中、X’’はハライドを示す。)
Figure 2019142501
(In the formula, X'' indicates a halide.)

上記一般式(XI)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。 The half metallocene cation complex represented by the above general formula (XI) can be obtained, for example, by the following reaction.

Figure 2019142501
Figure 2019142501

ここで、一般式(XII)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、それぞれ独立して無置換若しくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。In this case, the compound represented by the general formula (XII), M is a lanthanoid element, scandium or yttrium, Cp R 'are each independently an unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl , X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents a neutral Lewis base. Indicates an integer from 0 to 3. Further, the formula [A] + [B] - in the ionic compound represented by, [A] + represents a cation, [B] - it is a non-coordinating anion.

[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。Examples of the cation represented by [A] + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, a ferrosenium cation having a transition metal, and the like. Examples of the carbocation cation include a tri-substituted carbonium cation such as a triphenyl carbonium cation and a tri (substituted phenyl) carbonium cation, and the tri (substituted phenyl) carbonyl cation is specifically a tri (methylphenyl) cation. ) Carbonyl cation and the like. Examples of the amine cation include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropylammonium cations and dicyclohexylammonium cations can be mentioned. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cations or carbocation cations are preferable, and N, N-dialkylanilinium cations are particularly preferable.

上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、一般式(XI)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(XI)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(XII)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(XI)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(IX)又は(X)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(XI)で表されるハーフメタロセンカチオン錯体を形成させることもできる。The general formula for the reaction [A] + [B] - As the ionic compound represented by a compound of a combination selected from each non-coordinating anion and cation of the, N, N-Jimechiruaniri Ionic tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. Further, the ionic compound represented by the general formula [A] + [B] is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol, to the metallocene complex. When the half metallocene cation complex represented by the general formula (XI) is used in the polymerization reaction, the half metallocene cation complex represented by the general formula (XI) may be provided as it is in the polymerization reaction system. the compound represented by the general formula (XII) and formula used in the reaction [a] + [B] - provides an ionic compound represented separately into the polymerization reaction system, the general formula in the reaction system (XI ) May be formed to form a half metallocene cation complex. Further, by using a metallocene complex represented by the general formula (IX) or (X) in combination with an ionic compound represented by the general formula [A] + [B] - , the general formula can be used in the reaction system. It is also possible to form a half metallocene cation complex represented by (XI).

上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。 The structures of the metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) are preferably determined by X-ray structural analysis.

上記第二重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The co-catalyst that can be used in the second polymerization catalyst composition can be arbitrarily selected from the components used as co-catalysts in the polymerization catalyst composition containing a normal metallocene complex. Preferred examples of the co-catalyst include aluminoxane, organoaluminum compounds, and the above-mentioned ionic compounds. These co-catalysts may be used alone or in combination of two or more.

上記アルミノキサンとしては、アルキルアルミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソー・ファインケム(株)製)等が好ましい。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mに対する、アルミノキサンのアルミニウム元素Alの元素比率Al/Mが、10〜1,000程度となるようにすることが好ましく、100程度となるようにすることがより好ましい。 As the aluminoxane, an alkylaluminoxane is preferable, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) or the like is preferable. The content of aluminoxane in the second polymerization catalyst composition is such that the element ratio Al / M of the aluminum element Al of aluminoxane to the central metal M of the metallocene complex is about 10 to 1,000. It is preferably about 100, and more preferably.

一方、上記有機アルミニウム化合物としては、一般式AlRR’R’’(式中、R及びR’はそれぞれ独立して炭素数1〜10の一価の炭化水素基、ハロゲン原子、又は水素原子であり、R’’は炭素数1〜10の一価の炭化水素基である)で表される有機アルミニウム化合物が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、塩素原子が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることがより好ましい。 On the other hand, as the organic aluminum compound, the general formula AlRR'R'' (in the formula, R and R'are independently monovalent hydrocarbon groups having 1 to 10 carbon atoms, halogen atoms, or hydrogen atoms. , R'' is a monovalent hydrocarbon group having 1 to 10 carbon atoms), and an organic aluminum compound represented by the above is preferable. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom is preferable. Examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, dialkylaluminum hydride and the like, and among these, trialkylaluminum is preferable. Further, examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum. The content of the organoaluminum compound in the above-mentioned polymerization catalyst composition is preferably 1 to 50 times mol, more preferably about 10 times mol, with respect to the metallocene complex.

更に、上記重合触媒組成物においては、上記一般式(IX)及び(X)で表されるメタロセン錯体、並びに上記一般式(XI)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合含有量や得られる重合体の分子量を増大できる。 Further, in the polymerization catalyst composition, the metallocene complex represented by the general formulas (IX) and (X) and the half metallocene cation complex represented by the general formula (XI) are used as appropriate cocatalysts, respectively. By combining them, the cis-1,4 bond content and the molecular weight of the obtained polymer can be increased.

−第三の重合触媒組成物−
次に、第三の重合触媒組成物(以下、「第三重合触媒組成物」ともいう)について説明する。
-Third polymerization catalyst composition-
Next, the third polymerization catalyst composition (hereinafter, also referred to as “third polymerization catalyst composition”) will be described.

第三の重合触媒組成物としては、希土類元素含有化合物として、下記一般式(XIII):
aMXbQYb・・・(XIII)
(式中、Rはそれぞれ独立して無置換若しくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の一価の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である)で表されるメタロセン系複合触媒を含む重合触媒組成物が挙げられる。
As the third polymerization catalyst composition, as a rare earth element-containing compound, the following general formula (XIII):
R a MX b QY b ... (XIII)
(In the formula, R independently represents an unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium, and X independently represents 1 to 1 carbon atoms. It represents 20 monovalent hydrocarbon groups, X is μ-coordinated to M and Q, Q is a Group 13 element of the Periodic Table, and Y is independently one of 1 to 20 carbon atoms. Examples thereof include a polymerization catalyst composition containing a metallocene-based composite catalyst representing a valent hydrocarbon group or hydrogen atom, in which Y is coordinated to Q, and a and b are 2).

上記メタロセン系複合触媒の好適例においては、下記一般式(XIV): In a preferred example of the metallocene-based composite catalyst, the following general formula (XIV):

Figure 2019142501
(式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換若しくは置換インデニルを示し、RA及びRBは、それぞれ独立して炭素数1〜20の一価の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位しており、RC及びRDは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子を示す)で表されるメタロセン系複合触媒が挙げられる。
Figure 2019142501
(Wherein, M 1 is a lanthanoid element, scandium or yttrium, CpR is independently a non-substituted or substituted indenyl, R A and R B are, one independently carbon atoms 1 to 20 indicates the valency of the hydrocarbon group, the R a and R B are coordinated μ to M 1 and Al, R C and R D are each independently a monovalent hydrocarbon having 1 to 20 carbon atoms Examples thereof include metallocene-based composite catalysts represented by (indicating a group or a hydrogen atom).

上記メタロセン系複合触媒を用いることで、多元共重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、多元共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、多元共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10モル当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5モル当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。 By using the above-mentioned metallocene-based composite catalyst, a multidimensional copolymer can be produced. Further, by using the above-mentioned metallocene-based composite catalyst, for example, a catalyst that is previously combined with an aluminum catalyst, it is possible to reduce or eliminate the amount of alkylaluminum used in the synthesis of multiple copolymers. If a conventional catalyst system is used, it is necessary to use a large amount of alkylaluminum at the time of synthesizing the multiple copolymer. For example, in the conventional catalyst system, it is necessary to use alkylaluminum of 10 molar equivalents or more with respect to the metal catalyst, but in the case of the metallocene-based composite catalyst, adding alkylaluminum of about 5 molar equivalents is excellent. Catalytic action is exhibited.

上記メタロセン系複合触媒において、上記一般式(XIII)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the metallocene-based composite catalyst, the metal M in the general formula (XIII) is a lanthanoid element, scandium or yttrium. The lanthanoid element includes 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferable examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y.

上記一般式(XIII)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニルの具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
上記一般式(XIII)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
In the above general formula (XIII), R is an unsubstituted indenyl or a substituted indenyl, respectively, and the R is coordinated to the metal M. Specific examples of the substituted indenyl include 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group and the like. ..
In the above general formula (XIII), Q represents an element of Group 13 of the periodic table, and specific examples thereof include boron, aluminum, gallium, indium, and thallium.

上記一般式(XIII)において、Xは、それぞれ独立して炭素数1〜20の一価の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。 In the above general formula (XIII), X independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and X is μ-coordinated to M and Q. Here, as the monovalent hydrocarbon group having 1 to 20 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a dodecyl group and a tridecyl group. , Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. The μ coordination is a coordination mode having a crosslinked structure.

上記一般式(XIII)において、Yは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子を示し、該Yは、Qに配位している。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 In the above general formula (XIII), Y independently represents a monovalent hydrocarbon group or a hydrogen atom having 1 to 20 carbon atoms, and Y is coordinated with Q. Here, as the monovalent hydrocarbon group having 1 to 20 carbon atoms, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a dodecyl group and a tridecyl group. , Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

上記一般式(XIV)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。In the above general formula (XIV), the metal M 1 is a lanthanoid element, scandium or yttrium. The lanthanoid element includes 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferable examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and ittrium Y.

上記一般式(XIV)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911-XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることがより好ましく、1〜8であることが更に好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(XIV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
In the above general formula (XIV), Cp R is an unsubstituted indenyl or a substituted indenyl. Cp R of the indenyl ring as a basic skeleton may be represented by C 9 H 7-X R X or C 9 H 11-X R X . Here, X is an integer of 0 to 7 or 0 to 11. Further, it is preferable that R is independently a hydrocarbyl group or a metalloid group. The number of carbon atoms of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8. Specific preferred examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group and a benzyl group. On the other hand, examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group of the metalloid group is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group and the like.
Specific examples of the substituted indenyl include 2-phenylindenyl, 2-methylindenyl and the like. The two Cp Rs in the general formula (XIV) may be the same or different from each other.

上記一般式(XIV)において、RA及びRBは、それぞれ独立して炭素数1〜20の一価の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位している。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記一般式(XIV)において、RC及びRDは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子である。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記一般式(XV):
In the general formula (XIV), R A and R B are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, said R A and R B, M 1 and μ coordinated to Al doing. Here, the monovalent hydrocarbon group having 1 to 20 carbon atoms includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a dodecyl group and a tridecyl group. , Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. The μ coordination is a coordination mode having a crosslinked structure.
In the above general formula (XIV), RC and RD are independently monovalent hydrocarbon groups or hydrogen atoms having 1 to 20 carbon atoms. Here, the monovalent hydrocarbon group having 1 to 20 carbon atoms includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a dodecyl group and a tridecyl group. , Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
The metallocene-based composite catalyst is, for example, in a solvent having the following general formula (XV):

Figure 2019142501
(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換若しくは置換インデニルを示し、RE〜RJは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を、AlRKLMで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、1H−NMRやX線構造解析により決定することが好ましい。
Figure 2019142501
(In the formula, M 2 represents a lanthanoid element, scandium or yttrium, Cp R independently represents an unsubstituted or substituted indenyl, and R E to R J each independently have 1 to 3 carbon atoms. an alkyl group or a hydrogen atom, L is a neutral Lewis base, w is, the metallocene complex represented by an integer of 0 to 3), an organoaluminum compound represented by AlR K R L R M It is obtained by reacting with. Since the reaction temperature may be about room temperature, it can be produced under mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product, and for example, toluene or hexane may be used. The structure of the metallocene-based composite catalyst is preferably determined by 1H-NMR or X-ray structure analysis.

上記一般式(XV)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記一般式(XIV)中のCpRと同義である。また、上記一般式(XV)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記一般式(XIV)中の金属M1と同義である。In the metallocene complex represented by the general formula (XV), Cp R is an unsubstituted indenyl or a substituted indenyl, and is synonymous with Cp R in the general formula (XIV). Further, in the above general formula (XV), the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above general formula (XIV).

上記一般式(XV)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(RE〜RJ基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、RE〜RJのうち少なくとも一つが水素原子であることが好ましい。RE〜RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。The metallocene complex represented by the above general formula (XV) contains a silylamide ligand [-N (SiR 3 ) 2 ]. Silyl amide R groups contained in the ligand (R E to R J group) are each independently an alkyl group or a hydrogen atom having 1 to 3 carbon atoms. Further, it is preferable that at least one of R E to R J is a hydrogen atom. By making at least one of R E to R J a hydrogen atom, the synthesis of the catalyst becomes easy. Further, as the alkyl group, a methyl group is preferable.

上記一般式(XV)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the above general formula (XV) further contains 0 to 3, preferably 0 to 1 neutral Lewis bases L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins and the like. Here, when the complex contains a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.

また、上記一般式(XV)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 Further, the metallocene complex represented by the above general formula (XV) may exist as a monomer, or may exist as a dimer or a multimer of more than that.

一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKLMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子で、RMは炭素数1〜20の一価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。On the other hand, the organoaluminum compound used to produce the metallocene-based composite catalyst is represented by AlR K R L R M, wherein, R K and R L are hydrocarbon monovalent C1-20 independently hydrogen group or a hydrogen atom, R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that, R M may be the same or different and the R K or R L. The monovalent hydrocarbon group having 1 to 20 carbon atoms includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a dodecyl group, a tridecyl group and a tetradecyl group. , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることがより好ましい。 Specific examples of the organic aluminum compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, and tri. Hexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethylaluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride , Dioctyl aluminum hydride, Diisooctyl aluminum hydride; ethylaluminum dihydride, n-propylaluminum dihydride, isobutylaluminum dihydride, etc. Among these, triethylaluminum, triisobutylaluminum, diethylaluminum hydride, etc. Diisobutylaluminum hydride is preferred. Further, these organoaluminum compounds may be used alone or in combination of two or more. The amount of the organoaluminum compound used for producing the metallocene-based composite catalyst is preferably 1 to 50 times mol, more preferably about 10 times mol, with respect to the metallocene complex.

前記第三重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含んでもよく、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。前記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の重合体中での含有量を任意に制御することが可能となる。 The third polymerization catalyst composition may contain the metallocene-based composite catalyst and a boron anion, and other components contained in the polymerization catalyst composition containing a normal metallocene-based catalyst, such as a co-catalyst, etc. Is preferably included. The metallocene-based composite catalyst and the boron anion are collectively referred to as a two-component catalyst. According to the third polymerization catalyst composition, similarly to the metallocene-based composite catalyst, since it further contains a boron anion, the content of each monomer component in the polymer can be arbitrarily controlled. It becomes.

上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 Specific examples of the boron anion constituting the two-component catalyst in the third polymerization catalyst composition include tetravalent boron anion. For example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl). Phenyl) borate, tetra (trill) borate, tetra (kisilyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarbundecaborate Etc., and among these, tetrakis (pentafluorophenyl) borate is preferable.

なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンがより好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍mol加えることが好ましく、約1倍mol加えることがより好ましい。 The boron anion can be used as an ionic compound combined with a cation. Examples of the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, a ferrosenium cation having a transition metal, and the like. Examples of the carbonium cation include a tri-substituted carbonium cation such as a triphenyl carbonium cation and a tri (substituted phenyl) carbonium cation, and the tri (substituted phenyl) carbonyl cation is specifically a tri (methylphenyl) cation. ) Carbonyl cation and the like. Examples of the amine cation include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropylammonium cations and dicyclohexylammonium cations can be mentioned. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbocation cation is preferable, and N, N-dialkylanilinium cation is more preferable. Therefore, as the ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. The ionic compound composed of a boron anion and a cation is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol, with respect to the metallocene-based composite catalyst.

なお、上記一般式(XV)で表されるメタロセン錯体と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記一般式(XIV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。 If a boron anion is present in the reaction system for reacting the metallocene complex represented by the general formula (XV) with the organoaluminum compound, the metallocene-based composite catalyst of the general formula (XIV) can be synthesized. Can not. Therefore, in order to prepare the third polymerization catalyst composition, it is necessary to synthesize the metallocene-based composite catalyst in advance, isolate and purify the metallocene-based composite catalyst, and then combine it with a boron anion.

上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKRLRMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアルミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソー・ファインケム(株)製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 As the co-catalyst that can be used in the third polymerization catalyst composition, for example, in addition to the above-mentioned organoaluminum compound represented by AlRKRLRM, aluminoxane and the like are preferably mentioned. As the aluminoxane, an alkylaluminoxane is preferable, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) or the like is preferable. In addition, these aluminoxans may be used individually by 1 type, and may be used in combination of 2 or more types.

−第四の重合触媒組成物−
第四の重合触媒組成物は、希土類元素化合物と、シクロペンタジエン骨格を有する化合物を含む。
− Fourth polymerization catalyst composition −
The fourth polymerization catalyst composition contains a rare earth element compound and a compound having a cyclopentadiene skeleton.

第四の重合触媒組成物は、
・希土類元素化合物(以下、「(A2)成分」ともいう)と、
・置換又は無置換のシクロペンタジエン、置換又は無置換のインデン(インデニル基を有する化合物)、及び置換又は無置換のフルオレンよりなる群から選択される化合物(以下、「(B2)成分」ともいう)と、
を含むことを必要とする。
この第四の重合触媒組成物は、
・有機金属化合物(以下、「(C2)成分」ともいう)
・アルミノキサン化合物(以下、「(D2)成分」ともいう)
・ハロゲン化合物(以下、「(E2)成分」ともいう)
を更に含んでもよい。
The fourth polymerization catalyst composition is
-Rare earth element compounds (hereinafter, also referred to as "(A2) component") and
-A compound selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene (hereinafter, also referred to as "(B2) component"). When,
Is required to include.
This fourth polymerization catalyst composition is
-Organometallic compound (hereinafter, also referred to as "(C2) component")
-Aluminoxane compound (hereinafter, also referred to as "(D2) component")
-Halogen compound (hereinafter, also referred to as "(E2) component")
May be further included.

第四の重合触媒組成物は、脂肪族炭化水素に高い溶解性を有することが好ましく、脂肪族炭化水素中で均一系溶液となることが好ましい。ここで、脂肪族炭化水素としては、例えば、ヘキサン、シクロヘキサン、ペンタン等が挙げられる。
そして、第四の重合触媒組成物は、芳香族炭化水素を含まないことが好ましい。ここで、芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
なお、「芳香族炭化水素を含まない」とは、重合触媒組成物に含まれる芳香族炭化水素の割合が0.1質量%未満であることを意味する。
The fourth polymerization catalyst composition preferably has high solubility in an aliphatic hydrocarbon, and preferably becomes a homogeneous solution in the aliphatic hydrocarbon. Here, examples of the aliphatic hydrocarbon include hexane, cyclohexane, pentane and the like.
The fourth polymerization catalyst composition preferably does not contain aromatic hydrocarbons. Here, examples of the aromatic hydrocarbon include benzene, toluene, xylene and the like.
In addition, "does not contain aromatic hydrocarbons" means that the ratio of aromatic hydrocarbons contained in a polymerization catalyst composition is less than 0.1% by mass.

(A2)成分は、金属−窒素結合(M−N結合)を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物とすることができる。
なお、希土類元素含有化合物としては、例えば、スカンジウム、イットリウム、又は原子番号57〜71の元素から構成されるランタノイド元素を含有する化合物等が挙げられる。ランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。
また、ルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。
The component (A2) can be a rare earth element-containing compound having a metal-nitrogen bond (MN bond) or a reaction product of the rare earth element-containing compound and a Lewis base.
Examples of the rare earth element-containing compound include a compound containing a lanthanoid element composed of scandium, yttrium, or an element having an atomic number of 57 to 71. Specific examples of the lanthanoid element are lanthanium, cerium, placeodimium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, forminium, erbium, thulium, ytterbium, and lutetium.
Examples of the Lewis base include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins and the like.

ここで、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有しないことが好ましい。希土類元素含有化合物とルイス塩基との反応物が希土類元素−炭素結合を有さない場合、反応物が安定であり、取り扱いが容易である。
なお、上記(A2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Here, it is preferable that the rare earth element-containing compound or the reaction product of the rare earth element-containing compound and the Lewis base does not have a bond between the rare earth element and carbon. When the reaction product of the rare earth element-containing compound and the Lewis base does not have a rare earth element-carbon bond, the reaction product is stable and easy to handle.
The component (A2) may be used alone or in combination of two or more.

ここで、(A2)成分は、一般式(XVI)
M−(AQ1)(AQ2)(AQ3) ・・・(XVI)
(式中、Mは、スカンジウム、イットリウム、ランタノイド元素からなる群から選択される少なくとも1種の元素を表し;AQ1、AQ2及びAQ3は、それぞれ同一であっても異なっていてもよい官能基であり、ここで、Aは、窒素、酸素又は硫黄からなる群から選択される少なくとも1種を表し;但し、少なくとも1つのM−A結合を有する)
で表される化合物であることが好ましい。
なお、ランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。
上記化合物によれば、反応系における触媒活性を向上させることができ、反応時間を短くし、反応温度を高くすることが可能となる。
Here, the component (A2) is represented by the general formula (XVI).
M- (AQ 1 ) (AQ 2 ) (AQ 3 ) ... (XVI)
(In the formula, M represents at least one element selected from the group consisting of scandium, yttrium and lanthanoid elements; AQ 1 , AQ 2 and AQ 3 may be the same or different, respectively. A group, where A represents at least one selected from the group consisting of nitrogen, oxygen or sulfur; however, it has at least one MA bond).
It is preferably a compound represented by.
Specifically, the lanthanoid element is lanthanium, cerium, placeodimium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, forminium, erbium, thulium, ytterbium, and lutetium.
According to the above compound, the catalytic activity in the reaction system can be improved, the reaction time can be shortened, and the reaction temperature can be raised.

上記一般式(XVI)中のMとしては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。
上記一般式(XVI)中のAが窒素である場合、AQ1、AQ2、及びAQ3(即ち、NQ1、NQ2、及びNQ3)で表される官能基としては、アミノ基等が挙げられる。そして、この場合、3つのM−N結合を有する。
アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基が挙げられ、特に、脂肪族炭化水素及び芳香族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミノ基が好ましい。上記アミノ基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As M in the above general formula (XVI), gadolinium is particularly preferable from the viewpoint of enhancing catalytic activity and reaction controllability.
When A in the above general formula (XVI) is nitrogen, the functional group represented by AQ 1 , AQ 2 , and AQ 3 (that is, NQ 1 , NQ 2 , and NQ 3 ) includes an amino group and the like. Can be mentioned. And in this case, it has three MN bonds.
Examples of the amino group include an aliphatic amino group such as a dimethylamino group, a diethylamino group and a diisopropylamino group; a phenylamino group, a 2,6-di-tert-butylphenylamino group and a 2,6-diisopropylphenylamino group. 2,6-Dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, Arylamino groups such as 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group, and in particular, solubility in aliphatic hydrocarbons and aromatic hydrocarbons. From the viewpoint, a bistrimethylsilylamino group is preferable. The amino group may be used alone or in combination of two or more.

上記構成によれば、(A2)成分を3つのM−N結合を有する化合物とすることができ、各結合が化学的に等価となり、化合物の構造が安定となるため、取り扱いが容易となる。
また、上記構成とすれば、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
According to the above configuration, the component (A2) can be a compound having three MN bonds, the bonds are chemically equivalent, and the structure of the compound is stable, so that handling is easy.
Further, with the above configuration, the catalytic activity in the reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.

上記一般式(XVI)中のAが酸素である場合、一般式(XVI)で表される(A2)成分としては、特に制限されないが、例えば、下記一般式(XVII)
(RO)3M・・・(XVII)
で表される希土類アルコラート、
下記一般式(XVIII)
(R−CO23M・・・(XVIII)
で表される希土類カルボキシレート等が挙げられる。ここで、上記一般式(XVII)及び(XVIII)中、Rは、同一であっても異なっていてもよく、炭素数1〜10のアルキル基である。
なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した一般式(XVII)で表される化合物又は一般式(XVIII)で表される化合物を好適に使用できる。
When A in the general formula (XVI) is oxygen, the component (A2) represented by the general formula (XVI) is not particularly limited, but for example, the following general formula (XVII).
(RO) 3 M ... (XVII)
Rare earth element represented by,
The following general formula (XVIII)
(R-CO 2 ) 3 M ... (XVIII)
Examples thereof include rare earth carboxylates represented by. Here, in the above general formulas (XVII) and (XVIII), R may be the same or different, and is an alkyl group having 1 to 10 carbon atoms.
Since it is preferable that the component (A2) does not have a bond between a rare earth element and carbon, the compound represented by the above-mentioned general formula (XVII) or the compound represented by the general formula (XVIII) is preferably used. Can be used.

上記一般式(XVI)中のAが硫黄である場合、一般式(XVI)で表される(A2)成分としては、特に制限されないが、例えば、下記一般式(XIX)
(RS)3M・・・(XIX)
で表される希土類アルキルチオラート、
下記一般式(XX)
(R−CS23M・・・(XX)
で表される化合物等が挙げられる。ここで、上記一般式(XIX)及び(XX)中、Rは、同一であっても異なっていてもよく、炭素数1〜10のアルキル基である。
なお、(A2)成分としては、希土類元素と炭素との結合を有しないことが好ましいため、上述した化合物(XIX)又は化合物(XX)を好適に使用できる。
When A in the general formula (XVI) is sulfur, the component (A2) represented by the general formula (XVI) is not particularly limited, but for example, the following general formula (XIX)
(RS) 3 M ... (XIX)
Rare earth alkylthiolate represented by,
The following general formula (XX)
(R-CS 2 ) 3 M ... (XX)
Examples thereof include compounds represented by. Here, in the above general formulas (XIX) and (XX), R may be the same or different, and is an alkyl group having 1 to 10 carbon atoms.
Since it is preferable that the component (A2) does not have a bond between a rare earth element and carbon, the above-mentioned compound (XIX) or compound (XX) can be preferably used.

(B2)成分は、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン(インデニル基を有する化合物)、及び置換又は無置換のフルオレンよりなる群から選択される化合物である。
上記(B2)成分の化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The component (B2) is a compound selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene (compound having an indenyl group), and substituted or unsubstituted fluorene.
The compound of the component (B2) may be used alone or in combination of two or more.

置換シクロペンタジエンとしては、例えば、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル−テトラメチルシクロペンタジエン等が挙げられる。
置換又は無置換のインデンとしては、例えば、インデン、2−フェニル−1H−インデン、3−ベンジル−1H−インデン、3−メチル−2−フェニル−1H−インデン、3−ベンジル−2−フェニル−1H−インデン、1−ベンジル−1H−インデン等が挙げられ、特に、分子量分布を小さくする観点から、3−ベンジル−1H−インデン、1−ベンジル−1H−インデンが好ましい。
置換フルオレンとしては、例えば、トリメチルシリルフルオレン、イソプロピルフルオレン等が挙げられる。
Examples of the substituted cyclopentadiene include pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene and the like.
Examples of the substituted or unsubstituted indene include indene, 2-phenyl-1H-inden, 3-benzyl-1H-inden, 3-methyl-2-phenyl-1H-inden, and 3-benzyl-2-phenyl-1H. Examples thereof include −indene and 1-benzyl-1H-indene, and 3-benzyl-1H-indene and 1-benzyl-1H-indene are particularly preferable from the viewpoint of reducing the molecular weight distribution.
Examples of the substituted fluorene include trimethylsilylfluorene and isopropylfluorene.

上記構成によれば、シクロペンタジエン骨格を有する化合物が具える共役電子を増加させることができ、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。 According to the above configuration, the conjugated electrons contained in the compound having a cyclopentadiene skeleton can be increased, and the catalytic activity in the reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.

有機金属化合物((C2)成分)は、一般式(XXI):
YR4 a5 b6 c ・・・(XXI)
(式中、Yは、周期律表の第1族、第2族、第12族及び第13族の元素からなる群から選択される金属元素であり、R4及びR5は炭素数1〜10の一価の炭化水素基又は水素原子であり、R6は炭素数1〜10の一価の炭化水素基であり、但し、R4、R5及びR6はそれぞれ互いに同一又は異なっていてもよく、また、Yが第1族の金属元素である場合には、aは1であり且つb及びcは0であり、Yが第2族又は第12族の金属元素である場合には、a及びbは1であり且つcは0であり、Yが第13族の金属元素である場合には、a,b及びcは1である)で表される化合物である。
ここで、触媒活性を高める観点から、一般式(XXI)において、R1、R2及びR3は少なくとも1つが異なっていることが好ましい。
The organometallic compound (component (C2)) has a general formula (XXI):
YR 4 a R 5 b R 6 c・ ・ ・ (XXI)
(In the formula, Y is a metal element selected from the group consisting of the elements of Group 1, Group 2, Group 12 and Group 13 of the periodic table, and R4 and R5 have 1 to 10 carbon atoms. a hydrocarbon group or a hydrogen atom a monovalent, R6 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, provided that, R 4, R 5 and R 6 may be the same or different from each other, When Y is a group 1 metal element, a is 1 and b and c are 0, and when Y is a group 2 or 12 metal element, a and b is 1 and c is 0, and when Y is a metal element of Group 13, a, b and c are 1).
Here, from the viewpoint of enhancing the catalytic activity, it is preferable that at least one of R 1 , R 2 and R 3 is different in the general formula (XXI).

詳細には、(C2)成分は、一般式(XXII):
AlR789 ・・・(XXII)
(式中、R7及びR8は、炭素数1〜10の一価の炭化水素基又は水素原子であり、R9は、炭素数1〜10の一価の炭化水素基であり、R7、R8及びR9は、同一であっても異なっていてもよい)で表される有機アルミニウム化合物であることが好ましい。
Specifically, the component (C2) is represented by the general formula (XXII) :.
AlR 7 R 8 R 9 ... (XXII)
(In the formula, R 7 and R 8 are monovalent hydrocarbon groups or hydrogen atoms having 1 to 10 carbon atoms, R 9 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 7 , R 8 and R 9 may be the same or different), and are preferably organoaluminum compounds.

上記有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましく、水素化ジイソブチルアルミニウムがより好ましい。
上記有機アルミニウム化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the organic aluminum compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, and trihexyl. Aluminum, tricyclohexylaluminum, trioctylaluminum; diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride, Dioctyl aluminum hydride, diisooctyl aluminum hydride; ethylaluminum dihydride, n-propylaluminum dihydride, isobutylaluminum dihydride, etc. include triethylaluminum, triisobutylaluminum, diethylaluminum hydride, and diisobutylaluminum hydride. Preferably, hydride diisobutylaluminum is more preferred.
The above-mentioned organoaluminum compound may be used alone or in combination of two or more.

アルミノキサン化合物((D2)成分)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物である。
(D2)成分を用いることによって、重合反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
The aluminoxane compound (component (D2)) is a compound obtained by contacting an organoaluminum compound with a condensing agent.
By using the component (D2), the catalytic activity in the polymerization reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.

ここで、有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、及びその混合物等が挙げられ、特に、トリメチルアルミニウム、トリメチルアルミニウムとトリブチルアルミニウムとの混合物が好ましい。
縮合剤としては、例えば、水等が挙げられる。
Here, examples of the organoaluminum compound include trialkylaluminum such as trimethylaluminum, triethylaluminum and triisobutylaluminum, and a mixture thereof, and trimethylaluminum, a mixture of trimethylaluminum and tributylaluminum is particularly preferable.
Examples of the condensing agent include water and the like.

(D2)成分としては、例えば、一般式(XXIII):
−(Al(R10)O)n− ・・・(XXIII)
(式中、R10は、炭素数1〜10の一価の炭化水素基であり、ここで、炭化水素基の一部はハロゲン及び/又はアルコキシ基で置換されてもよく;R10は、繰り返し単位間で同一であっても異なっていてもよく;nは5以上である)で表されるアルミノキサンを挙げることができる。
上記アルミノキサンの分子構造は、直鎖状であっても環状であってもよい。
As the component (D2), for example, the general formula (XXIII):
− (Al (R 10 ) O) n − ··· (XXIII)
(In the formula, R 10 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, where some of the hydrocarbon groups may be substituted with halogen and / or alkoxy groups; R 10 is Alkoxyxane represented by (n is 5 or more) can be mentioned, which may be the same or different between the repeating units.
The molecular structure of the aluminoxane may be linear or cyclic.

一般式(XXIII)中のnは、10以上であることが好ましい。
また、一般式(XXIII)中のR10の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、特に、メチル基が好ましい。上記炭化水素基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。R10の炭化水素基としては、メチル基とイソブチル基との組み合わせが好ましい。
N in the general formula (XXIII) is preferably 10 or more.
Further, examples of the hydrocarbon group of R 10 in the general formula (XXIII) include a methyl group, an ethyl group, a propyl group, an isobutyl group and the like, and a methyl group is particularly preferable. The above hydrocarbon groups may be used alone or in combination of two or more. As the hydrocarbon group of R 10 , a combination of a methyl group and an isobutyl group is preferable.

上記アルミノキサンは、脂肪族炭化水素に高い溶解性を有することが好ましく、芳香族炭化水素に低い溶解性を有することが好ましい。例えば、ヘキサン溶液として市販されているアルミノキサンが好ましい。
ここで、脂肪族炭化水素とは、ヘキサン、シクロヘキサン等が挙げられる。
The aluminoxane preferably has high solubility in aliphatic hydrocarbons, and preferably has low solubility in aromatic hydrocarbons. For example, aluminoxane commercially available as a hexane solution is preferable.
Here, examples of the aliphatic hydrocarbon include hexane and cyclohexane.

(D2)成分は、特に、一般式(XXIV):
−(Al(CH3x(i−C49yO)m− ・・・(XXIV)
(式中、x+yは1であり;mは5以上である)で表される修飾アルミノキサン(以下、「TMAO」ともいう)としてよい。TMAOとしては、例えば、東ソー・ファインケム(株)製の製品名:TMAO341が挙げられる。
The component (D2) is particularly composed of the general formula (XXIV):
− (Al (CH 3 ) x (i−C 4 H 9 ) y O) m − ··· (XXIV)
It may be a modified aluminoxane (hereinafter, also referred to as “TMAO”) represented by (in the formula, x + y is 1; m is 5 or more). Examples of TMAO include product name: TMAO341 manufactured by Tosoh Finechem Co., Ltd.

また、(D2)成分は、特に、一般式(XXV):
−(Al(CH30.7(i−C490.3O)k− ・・・(XXV)
(式中、kは5以上である)で表される修飾アルミノキサン(以下、「MMAO」ともいう)としてよい。MMAOとしては、例えば、東ソー・ファインケム(株)製の製品名:MMAO−3Aが挙げられる。
The component (D2) is particularly composed of the general formula (XXV) :.
− (Al (CH 3 ) 0.7 (i−C 4 H 9 ) 0.3 O) k − ··· (XXV)
It may be a modified aluminoxane (hereinafter, also referred to as “MMAO”) represented by (k is 5 or more in the formula). Examples of MMAO include product name: MMAO-3A manufactured by Tosoh Finechem Co., Ltd.

更に、(D2)成分は、特に、一般式(XXVI):
−[(CH3)AlO]i− ・・・(XXVI)
(式中、iは5以上である)で表される修飾アルミノキサン(以下、「PMAO」ともいう)としてよい。PMAOとしては、例えば、東ソー・ファインケム(株)製の製品名:TMAO−211が挙げられる。
Further, the component (D2) is particularly composed of the general formula (XXVI) :.
− [(CH 3 ) AlO] i − ・ ・ ・ (XXVI)
It may be a modified aluminoxane (hereinafter, also referred to as “PMAO”) represented by (i is 5 or more in the formula). Examples of PMAO include product name: TMAO-211 manufactured by Tosoh Finechem Co., Ltd.

(D2)成分は、触媒活性を向上させる効果を高める観点から、上記MMAO、TMAO、PMAOのうち、MMAO又はTMAOであることが好ましく、触媒活性を向上させる効果を更に高める観点から、TMAOであることがより好ましい。 The component (D2) is preferably MMAO or TMAO among the above MMAO, TMAO, and PMAO from the viewpoint of enhancing the effect of improving the catalytic activity, and is TMAO from the viewpoint of further enhancing the effect of improving the catalytic activity. Is more preferable.

ハロゲン化合物((E2)成分)は、ルイス酸であるハロゲン含有化合物(以下、「(E2−1)成分」ともいう)、金属ハロゲン化物とルイス塩基との錯化合物(以下、「(E2−2)成分」ともいう)、及び活性ハロゲンを含む有機化合物(以下、「(E2−3)成分」ともいう)からなる群から選択される少なくとも1種の化合物である。 The halogen compound ((E2) component) is a halogen-containing compound (hereinafter, also referred to as “(E2-1) component”) which is a Lewis acid, or a complex compound of a metal halide and a Lewis base (hereinafter, “(E2-2) component”. ) Component) and an organic compound containing an active halogen (hereinafter, also referred to as “(E2-3) component”), which is at least one compound selected from the group.

これらの化合物は、(A2)成分、即ち、M−N結合を有する、希土類元素含有化合物又は該希土類元素含有化合物とルイス塩基との反応物と反応して、カチオン性遷移金属化合物、ハロゲン化遷移金属化合物、及び/又は遷移金属中心において電子が不足した状態の遷移金属化合物を生成する。
(E2)成分を用いることによって、共役ジエン重合体のシス−1,4−結合含有量を向上させることができる。
These compounds react with the component (A2), that is, a rare earth element-containing compound having an MN bond or a reaction product of the rare earth element-containing compound and a Lewis base to form a cationic transition metal compound or a halogenated transition. A metal compound and / or a transition metal compound in a state where the transition metal center is deficient in electrons is generated.
By using the component (E2), the cis-1,4-bond content of the conjugated diene polymer can be improved.

(E2−1)成分としては、例えば、第3族、第4族、第5族、第6族、第8族、第13族、第14族又は第15族の元素を含むハロゲン含有化合物等が挙げられ、特に、アルミニウムのハロゲン化物又は有機金属のハロゲン化物が好ましい。
ルイス酸であるハロゲン含有化合物としては、例えば、四塩化チタン、六塩化タングステン、トリ(ペンタフルオロフェニル)ボレート、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、アルミニウムトリブロマイド、トリ(ペンタフルオロフェニル)アルミニウム、ジブチル錫ジクロライド、四塩化錫、三塩化リン、五塩化リン、三塩化アンチモン、五塩化アンチモン等が挙げられ、特に、エチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイドが好ましい。
ハロゲンとしては、塩素又は臭素が好ましい。
上記ルイス酸であるハロゲン含有化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the component (E2-1) include halogen-containing compounds containing elements of Group 3, Group 4, Group 5, Group 6, Group 8, Group 13, Group 14, or Group 15. In particular, aluminum halides or organic metal halides are preferable.
Examples of the halogen-containing compound which is Lewis acid include titanium tetrachloride, tungsten hexachloride, tri (pentafluorophenyl) borate, methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, and butylaluminum dibromide. , Butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride, diethylaluminum bromide, diethylaluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, aluminum Examples thereof include tribromide, tri (pentafluorophenyl) aluminum, dibutyltin dichloride, tin tetrachloride, phosphorus trichloride, phosphorus pentachloride, antimony trichloride, antimone pentachloride, etc., and in particular, ethylaluminum dichloride, ethylaluminum dibromide, etc. Diethylaluminum chloride, diethylaluminum bromide, ethylaluminum sesquichloride, ethylaluminum sesquibromide are preferred.
As the halogen, chlorine or bromine is preferable.
The halogen-containing compound which is Lewis acid may be used alone or in combination of two or more.

(E2−2)成分に用いられる金属ハロゲン化物としては、例えば、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、臭化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化亜鉛、塩化マンガン、塩化銅が好ましく、塩化マグネシウム、塩化亜鉛、塩化マンガン、塩化銅がより好ましい。
(E2−2)成分に用いられるルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコールが好ましい。
例えば、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、特に、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基のモル数は、上記金属ハロゲン化物1モルに対して、好ましくは0.01〜30モル、より好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記金属ハロゲン化物とルイス塩基との錯化合物((E2−2)成分)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the metal halide used for the component (E2-2) include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, calcium iodide, and the like. Barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, manganese bromide , Manganese iodide, renium chloride, renium bromide, renium iodide, copper chloride, copper bromide, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Magnesium chloride, calcium chloride, barium chloride, zinc chloride, manganese chloride, and copper chloride are preferable, and magnesium chloride, zinc chloride, manganese chloride, and copper chloride are more preferable.
As the Lewis base used in the component (E2-2), a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, and an alcohol are preferable.
For example, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricredil phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoetan, diphenylphosphinoetan, acetylacetone, benzoylacetone, propionylacetone. , Valeryl acetone, ethyl acetyl acetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, benzoic acid Acids, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetoamide, tetrahydrofuran, diphenyl ether, 2-ethylhexyl alcohol, oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, lauryl alcohol and the like can be mentioned in particular. Tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2-ethylhexyl alcohol, 1-decanol and lauryl alcohol are preferred.
The number of moles of the Lewis base is preferably 0.01 to 30 mol, more preferably 0.5 to 10 mol, with respect to 1 mol of the metal halide. The reaction with the Lewis base can be used to reduce the amount of metal remaining in the polymer.
The complex compound ((E2-2) component) of the metal halide and the Lewis base may be used alone or in combination of two or more.

(E2−3)成分としては、例えば、ベンジルクロライド等が挙げられる。 Examples of the component (E2-3) include benzyl chloride and the like.

以下、第四の重合触媒組成物の各成分間の質量割合について記載する。
(B2)成分(置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び置換又は無置換のフルオレンよりなる群から選択される化合物)の(A2)成分(希土類元素化合物)に対するモルにおける割合は、触媒活性を十分に得る観点から、0超であることが好ましく、0.5以上であることがより好ましく、1以上であることが更に好ましく、触媒活性の低下を抑制する観点から、3以下であることが好ましく、2.5以下であることがより好ましく、2.2以下であることが更に好ましい。
Hereinafter, the mass ratio between each component of the fourth polymerization catalyst composition will be described.
Ratio of component (B2) (compound selected from the group consisting of substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene) to component (A2) component (rare earth element compound) in molar amount. Is preferably more than 0, more preferably 0.5 or more, further preferably 1 or more, and 3 from the viewpoint of suppressing a decrease in catalytic activity, from the viewpoint of sufficiently obtaining catalytic activity. It is preferably less than or equal to, more preferably 2.5 or less, and even more preferably 2.2 or less.

(C2)成分(有機金属化合物)の(A2)成分に対するモルにおける割合は、反応系における触媒活性を向上させる観点から、1以上であることが好ましく、5以上であることがより好ましく、反応系における触媒活性の低下を抑制する観点から、50以下であることが好ましく、30以下であることがより好ましく、具体的には、約10であることが更に好ましい。 The ratio of the component (C2) (organometallic compound) to the component (A2) in molars is preferably 1 or more, more preferably 5 or more, and the reaction system from the viewpoint of improving the catalytic activity in the reaction system. From the viewpoint of suppressing the decrease in catalytic activity in the above, the content is preferably 50 or less, more preferably 30 or less, and more preferably about 10.

(D2)成分(アルミノキサン)中のアルミニウムの、(A2)成分中の希土類元素に対するモルにおける割合は、反応系における触媒活性を向上させる観点から、10以上であることが好ましく、100以上であることがより好ましく、反応系における触媒活性の低下を抑制する観点から、1,000以下であることが好ましく、800以下であることがより好ましい。 The ratio of aluminum in the component (D2) (aluminoxane) to the rare earth element in the component (A2) is preferably 10 or more, preferably 100 or more, from the viewpoint of improving the catalytic activity in the reaction system. Is more preferable, and from the viewpoint of suppressing a decrease in catalytic activity in the reaction system, it is preferably 1,000 or less, and more preferably 800 or less.

(E2)成分(ハロゲン化合物)の(A2)成分に対するモルにおける割合は、触媒活性を向上させる観点から、0以上であることが好ましく、0.5以上であることがより好ましく、1.0以上であることが更に好ましく、(E2)成分の溶解性を保持し、触媒活性の低下を抑制する観点から、20以下であることが好ましく、10以下であることがより好ましい。
そのため、上記範囲によれば、共役ジエン重合体のシス−1,4−結合含有量を向上させる効果を高めることができる。
The ratio of the component (E2) (halogen compound) to the component (A2) in molars is preferably 0 or more, more preferably 0.5 or more, and 1.0 or more, from the viewpoint of improving the catalytic activity. It is more preferably 20 or less, and more preferably 10 or less, from the viewpoint of maintaining the solubility of the component (E2) and suppressing the decrease in catalytic activity.
Therefore, according to the above range, the effect of improving the cis-1,4-bond content of the conjugated diene polymer can be enhanced.

なお、第四の重合触媒組成物は、非配位性アニオン(例えば、4価のホウ素アニオン等)とカチオン(例えば、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等)とからなるイオン性化合物を含まないことが好ましい。ここで、イオン性化合物は、芳香族炭化水素に高い溶解性を有し、炭化水素に低い溶解性を有する。そのため、イオン性化合物を含まない重合触媒組成物とすれば、環境負荷及び製造コストを更に低減させつつ、共役ジエン重合体を製造することができる。
なお、「イオン性化合物を含まない」とは、重合触媒組成物に含まれるイオン性化合物の割合が0.01質量%未満であることを意味する。
The fourth polymerization catalyst composition contains a non-coordinating anion (for example, a tetravalent boron anion) and a cation (for example, a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, and a cycloheptatrienyl cation). , Ferrosenium cation having a transition metal, etc.) It is preferable that it does not contain an ionic compound. Here, the ionic compound has high solubility in aromatic hydrocarbons and low solubility in hydrocarbons. Therefore, if the polymerization catalyst composition does not contain an ionic compound, the conjugated diene polymer can be produced while further reducing the environmental load and the production cost.
In addition, "not containing an ionic compound" means that the ratio of the ionic compound contained in the polymerization catalyst composition is less than 0.01% by mass.

本実施形態のゴム組成物は、ゴム成分(a)における多元共重合体(a1)の割合が10〜100質量%であることが好ましい。上記割合が10質量%以上であることにより、耐亀裂成長性を十分に向上させることができる。同様の観点から、ゴム成分(a)における多元共重合体(a1)の割合は、30質量%以上であることがより好ましく、70質量%以上であることがより好ましい。 In the rubber composition of the present embodiment, the proportion of the multiple copolymer (a1) in the rubber component (a) is preferably 10 to 100% by mass. When the above ratio is 10% by mass or more, the crack growth resistance can be sufficiently improved. From the same viewpoint, the ratio of the multiple copolymer (a1) in the rubber component (a) is more preferably 30% by mass or more, and more preferably 70% by mass or more.

<その他のゴム成分>
その他のゴム成分としては、特に制限はなく、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、クロロプレンゴム、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらは、未変性でも、変性されていてもよい。これらその他のゴム成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Other rubber components>
The other rubber components are not particularly limited, and are, for example, natural rubber, isoprene rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, ethylene-propylene rubber ( EPM), ethylene-propylene-diene rubber (EPDM), polysulfide rubber, silicone rubber, fluororubber, urethane rubber and the like can be mentioned. These may be unmodified or modified. These other rubber components may be used alone or in combination of two or more.

(熱硬化性樹脂(b))
本実施形態のゴム組成物は、熱硬化性樹脂(b)を含有する。ゴム組成物が熱硬化性樹脂(b)を含有することで、ゴム組成物の硬度が向上し、高温での弾性率を高くすることができる。
(Thermosetting resin (b))
The rubber composition of the present embodiment contains a thermosetting resin (b). When the rubber composition contains the thermosetting resin (b), the hardness of the rubber composition can be improved and the elastic modulus at a high temperature can be increased.

熱硬化性樹脂としては、加熱によって硬化する樹脂であれば特に限定はされず、例えば、フェノール樹脂、クレゾール変性フェノール樹脂、オイル変性フェノール樹脂(例えば、カシューオイル変性フェノール樹脂、トール油変性フェノール樹脂など)、アルキルフェノール樹脂、クレゾール樹脂、オイル変性クレゾール樹脂等が挙げられる。熱硬化性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらの中でも、熱硬化性樹脂(b)は、高温での弾性率をより高める観点から、フェノール樹脂又はクレゾール樹脂を含むことが好ましく、また、カシューオイル変性フェノール樹脂又はトール油変性フェノール樹脂を含むことも好ましい。
The thermosetting resin is not particularly limited as long as it is a resin that can be cured by heating. For example, a phenol resin, a cresol-modified phenol resin, an oil-modified phenol resin (for example, cashew oil-modified phenol resin, tall oil-modified phenol resin, etc.) ), Alkylphenol resin, cresol resin, oil-modified cresol resin and the like. The thermosetting resin may be used alone or in combination of two or more.
Among these, the thermosetting resin (b) preferably contains a phenol resin or a cresol resin from the viewpoint of further increasing the elastic modulus at a high temperature, and also contains a cashew oil-modified phenol resin or a tall oil-modified phenol resin. It is also preferable.

ここで、フェノール樹脂とは、フェノール類と、ホルムアルデヒド、アセトアルデヒド、フルフラールなどのアルデヒド類との縮合物である。また、カシューオイル変性フェノール樹脂とは、上記のフェノール樹脂を、カシューオイルを使って変性したものであり、具体的には、下式:

Figure 2019142501
(式中、nは1〜9の整数である)で示される。Here, the phenol resin is a condensate of phenols and aldehydes such as formaldehyde, acetaldehyde, and furfural. The cashew oil-modified phenolic resin is the above-mentioned phenolic resin modified with cashew oil. Specifically, the following formula:
Figure 2019142501
(In the formula, n is an integer of 1 to 9).

また、トール油変性フェノール樹脂とは、上記のフェノール樹脂を、トール油を使って変性したものであり、具体的には、下式:

Figure 2019142501
(式中、R及びR’は、それぞれ独立して、フェノール樹脂に相当する部分であり、R1及びR2は、それぞれ独立して、炭素数1〜15のアルキレン基であり、R3は、炭素数1〜15のアルキル基である)で示される。
また、トール油変性フェノール樹脂の具体例としては、下式:
Figure 2019142501
(式中、R及びR’は、上記と同様である)で示される樹脂が挙げられる。The tall oil-modified phenolic resin is obtained by modifying the above-mentioned phenolic resin with tall oil. Specifically, the following formula:
Figure 2019142501
(In the formula, R and R'are independent portions corresponding to the phenol resin, R 1 and R 2 are independently alkylene groups having 1 to 15 carbon atoms, and R 3 is. , It is an alkyl group having 1 to 15 carbon atoms).
Further, as a specific example of the tall oil-modified phenol resin, the following formula:
Figure 2019142501
Examples thereof include resins represented by (in the formula, R and R'are the same as above).

本実施形態のゴム組成物における熱硬化性樹脂(b)の含有量は、ゴム成分(a)100質量部に対して5〜50質量部であることが好ましい。上記含有量が5質量部以上であることにより、高温での弾性率をより確実に向上させることができ、また、50質量部以下であることにより、硬度が過度に高くなることによる耐久性及び作業性の悪化を抑制することができる。同様の観点から、ゴム成分(a)100質量部に対する熱硬化性樹脂(b)の含有量は、6質量部以上であることがより好ましく、また、30質量部以下であることがより好ましく、20質量部以下であることが更に好ましい。 The content of the thermosetting resin (b) in the rubber composition of the present embodiment is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component (a). When the content is 5 parts by mass or more, the elastic modulus at high temperature can be more reliably improved, and when the content is 50 parts by mass or less, the durability due to excessively high hardness and durability and Deterioration of workability can be suppressed. From the same viewpoint, the content of the thermosetting resin (b) with respect to 100 parts by mass of the rubber component (a) is more preferably 6 parts by mass or more, and more preferably 30 parts by mass or less. It is more preferably 20 parts by mass or less.

(硬化剤(c))
本実施形態のゴム組成物は、硬化剤(c)を更に含有することが好ましい。ゴム組成物が硬化剤(c)を含有することで、効果的に熱硬化性樹脂(b)を硬化させ、高温での弾性率をより向上させることができる。
(Curing agent (c))
The rubber composition of the present embodiment preferably further contains the curing agent (c). When the rubber composition contains the curing agent (c), the thermosetting resin (b) can be effectively cured and the elastic modulus at a high temperature can be further improved.

硬化剤としては、熱硬化性樹脂を硬化させる作用を有するものであればよく、例えば、ヘキサメトキシメチルメラミン、ヘキサメチレンテトラミン、メラミン、メチロールメラミン等が挙げられる。硬化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらの中でも、硬化剤(c)は、高温での弾性率をより一層高める観点から、ヘキサメトキシメチルメラミンを含むことが好ましい。
The curing agent may be any one having an action of curing a thermosetting resin, and examples thereof include hexamethoxymethylmelamine, hexamethylenetetramine, melamine, and methylolmelamine. The curing agent may be used alone or in combination of two or more.
Among these, the curing agent (c) preferably contains hexamethoxymethylmelamine from the viewpoint of further increasing the elastic modulus at high temperature.

本実施形態のゴム組成物における硬化剤(c)の含有量は、ゴム成分(a)100質量部に対して0.1〜10質量部であることが好ましい。上記含有量が0.1質量部以上であることにより、弾性率の向上効果をより十分に得ることができ、また、10質量部以下であることにより、硬度が過度に高くなることに起因する耐久性及び作業性の悪化を抑制することができる。同様の観点から、ゴム成分(a)100質量部に対する硬化剤(c)の含有量は、0.3質量部以上であることがより好ましく、また、5質量部以下であることがより好ましい。 The content of the curing agent (c) in the rubber composition of the present embodiment is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (a). When the content is 0.1 part by mass or more, the effect of improving the elastic modulus can be more sufficiently obtained, and when it is 10 parts by mass or less, the hardness becomes excessively high. Deterioration of durability and workability can be suppressed. From the same viewpoint, the content of the curing agent (c) with respect to 100 parts by mass of the rubber component (a) is more preferably 0.3 parts by mass or more, and more preferably 5 parts by mass or less.

(軟化剤及び液状ゴムから選択される添加剤(d))
本実施形態のゴム組成物は、軟化剤及び液状ゴムから選択される添加剤(d)を含有することが好ましい。ゴム組成物が上記添加剤(d)を含有することで、作業性をより向上させることができる。添加剤(d)は、軟化剤のみを用いてもよいし、液状ゴムのみを用いてもよいし、軟化剤及び液状ゴムの両方を用いてもよい。
なお、「液状ゴム」とは、24℃において液状を呈するゴムを指す。また、本明細書において「液状ゴム」は、上述のゴム成分に含まれないものとする。
(Additive (d) selected from softener and liquid rubber)
The rubber composition of the present embodiment preferably contains an additive (d) selected from a softening agent and a liquid rubber. When the rubber composition contains the above additive (d), workability can be further improved. As the additive (d), only the softening agent may be used, only the liquid rubber may be used, or both the softening agent and the liquid rubber may be used.
The "liquid rubber" refers to rubber that exhibits a liquid state at 24 ° C. Further, in the present specification, "liquid rubber" is not included in the above-mentioned rubber component.

軟化剤としては、例えば、ナフテン系オイル、パラフィン系オイル、芳香族系オイル等が挙げられる。軟化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
液状ゴムとしては、例えば、水素添加イソプレンゴム、水素添加ブタジエンゴム、液状エチレン・プロピレン・ジエン共重合体、液状エチレン・プロピレン共重合体、液状ブタジエン・スチレン・ランダム共重合体等が挙げられる。液状ゴムは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the softener include naphthenic oils, paraffinic oils, aromatic oils and the like. The softener may be used alone or in combination of two or more.
Examples of the liquid rubber include hydrogenated isoprene rubber, hydrogenated butadiene rubber, liquid ethylene / propylene / diene copolymer, liquid ethylene / propylene copolymer, liquid butadiene / styrene / random copolymer and the like. The liquid rubber may be used alone or in combination of two or more.

上記添加剤(d)は、溶解性パラメータ(SP値)が4以下であることが好ましい。添加剤(d)のSP値が4以下であることにより、多元共重合体(a1)との相溶性が高くなり、添加剤(d)が局所的に存在して破壊核になることを抑制でき、耐亀裂成長性をより向上させつつ、作業性を向上させることができる。
ここで、上記添加剤(d)のSP値は、ハンセン(Hansen)の数式を用いて算出される溶解度パラメータを意味する。
The solubility parameter (SP value) of the additive (d) is preferably 4 or less. When the SP value of the additive (d) is 4 or less, the compatibility with the multipolymer (a1) is increased, and the additive (d) is suppressed from being locally present and becoming a fracture nuclei. It is possible to improve workability while further improving crack resistance.
Here, the SP value of the additive (d) means a solubility parameter calculated using Hansen's mathematical formula.

本実施形態のゴム組成物における上記添加剤(d)の含有量は、ゴム成分(a)100質量部に対して、3〜150質量部であることが好ましい。上記含有量が3質量部以上であることにより、作業性をより向上させることができ、また、150質量部以下であることにより、多元共重合体(a1)を用いることの諸効果をより十分に享受することができる。 The content of the additive (d) in the rubber composition of the present embodiment is preferably 3 to 150 parts by mass with respect to 100 parts by mass of the rubber component (a). When the content is 3 parts by mass or more, workability can be further improved, and when the content is 150 parts by mass or less, various effects of using the multiple copolymer (a1) are more sufficient. Can be enjoyed by.

(その他の成分)
また、本実施形態のゴム組成物は、本発明の効果を損なわない範囲で、必要に応じて、充填剤、架橋剤(硫黄等の加硫剤を含む)、架橋促進剤(加硫促進剤)、架橋促進助剤(加硫促進助剤)、老化防止剤、亜鉛華(ZnO)、ワックス類、酸化防止剤、発泡剤、可塑剤、滑剤、粘着付与剤、石油系樹脂、紫外線吸収剤、分散剤、相溶化剤、均質化剤等の成分を、適宜含有することができる。
(Other ingredients)
Further, the rubber composition of the present embodiment is, if necessary, a filler, a cross-linking agent (including a vulcanizing agent such as sulfur), and a cross-linking accelerator (vulcanization accelerator) as long as the effects of the present invention are not impaired. ), Cross-linking accelerator (vulcanization accelerator), anti-aging agent, zinc oxide (ZnO), waxes, antioxidants, foaming agents, plasticizers, lubricants, tackifiers, petroleum resins, UV absorbers , Dispersants, compatibilizers, homogenizing agents and the like can be appropriately contained.

充填剤としては、例えば、シリカ、カーボンブラック、酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられる。充填剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、シリカ及びカーボンブラックから選択される1種以上を含むことが好ましい。 Examples of the filler include silica, carbon black, aluminum oxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide, titanium oxide, and the like. Examples thereof include potassium titanate and barium sulfate. The filler may be used alone or in combination of two or more. Among these, it is preferable to contain one or more selected from silica and carbon black.

なお、カーボンブラックとしては、特に制限されず、例えば、SAF、ISAF、HAF、FF、FEF、GPF、SRF、CF、FT、MTグレードのカーボンブラックが挙げられる。カーボンブラックは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
シリカとしては、特に制限されず、例えば、湿式シリカ、乾式シリカ、コロイダルシリカ等が挙げられる。シリカは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、本実施形態のゴム組成物は、充填剤としてシリカを含有する場合には、当該シリカの配合効果を向上させるために、シランカップリング剤を更に含有することが好ましい。
The carbon black is not particularly limited, and examples thereof include SAF, ISAF, HAF, FF, FEF, GPF, SRF, CF, FT, and MT grade carbon black. One type of carbon black may be used alone, or two or more types may be used in combination.
The silica is not particularly limited, and examples thereof include wet silica, dry silica, colloidal silica and the like. Silica may be used alone or in combination of two or more. When the rubber composition of the present embodiment contains silica as a filler, it is preferable that the rubber composition further contains a silane coupling agent in order to improve the blending effect of the silica.

本実施形態のゴム組成物における上記充填剤の含有量は、ゴム成分(a)100質量部に対して、10〜100質量部であることが好ましい。上記含有量が10質量部以上であることにより、耐亀裂成長性の向上効果を得ることができ、また、100質量部以下であることにより、耐亀裂成長性の悪化を十分に抑制することができる。 The content of the filler in the rubber composition of the present embodiment is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component (a). When the content is 10 parts by mass or more, the effect of improving the crack growth resistance can be obtained, and when the content is 100 parts by mass or less, deterioration of the crack growth resistance can be sufficiently suppressed. it can.

(ゴム組成物の製造)
本実施形態のゴム組成物の製造方法としては、特に制限されず、例えば、常法に従って上述した各成分を配合して混練することにより、本実施形態のゴム組成物を得ることができる。なお、配合及び混練に際しては、全ての成分を一度に配合して混練してもよく、2段階又は3段階等の多段階に分けて各成分を配合して混練してもよい。なお、混練に際しては、ロール、インターナルミキサー、バンバリーローター等の混練機を用いることができる。更に、ゴム組成物をシート状や帯状等に成形する際には、押出成形機、プレス機等の公知の成形機を用いることができる。
(Manufacturing of rubber composition)
The method for producing the rubber composition of the present embodiment is not particularly limited, and for example, the rubber composition of the present embodiment can be obtained by blending and kneading each of the above-mentioned components according to a conventional method. In addition, at the time of blending and kneading, all the components may be blended and kneaded at one time, or each component may be blended and kneaded in multiple stages such as two steps or three steps. For kneading, a kneading machine such as a roll, an internal mixer, or a Banbury rotor can be used. Further, when molding the rubber composition into a sheet shape, a strip shape, or the like, a known molding machine such as an extrusion molding machine or a press machine can be used.

また、本実施形態のゴム組成物は、架橋して製造してもよい。架橋条件としては、特に制限されず、通常は140〜180℃の温度、及び5〜120分間の時間を採用することができる。 Moreover, the rubber composition of this embodiment may be produced by cross-linking. The crosslinking conditions are not particularly limited, and usually a temperature of 140 to 180 ° C. and a time of 5 to 120 minutes can be adopted.

本実施形態のゴム組成物は、後述するタイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホース等の、各種ゴム物品に利用することができる。 The rubber composition of the present embodiment can be used for various rubber articles such as tires, conveyor belts, rubber crawlers, vibration isolators, seismic isolation devices and hoses, which will be described later.

(2)タイヤ
本発明のタイヤは、上述のゴム組成物を用いたことを特徴とする。かかる本発明のタイヤは、上述したゴム組成物を用いているため、耐亀裂成長性が高く、且つ高温での弾性率が高い。
一実施形態において、タイヤは、トレッド、ベーストレッド、サイドウォール、ベルトコーティングゴム、プライコーティングゴム、サイド補強ゴム及びビードフィラー等の部位を備える。そして、一実施形態においては、上述したゴム組成物を、上述した部位の少なくともいずれかに用いることができる。特には、上述したゴム組成物を、トレッド、ビードフィラーに好適に用いることができる。
上記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴム組成物及び/又はコードからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。
(2) Tire The tire of the present invention is characterized by using the above-mentioned rubber composition. Since the tire of the present invention uses the above-mentioned rubber composition, it has high crack growth resistance and high elastic modulus at high temperature.
In one embodiment, the tire comprises parts such as treads, base treads, sidewalls, belt coated rubbers, ply coated rubbers, side reinforcing rubbers and bead fillers. Then, in one embodiment, the above-mentioned rubber composition can be used for at least one of the above-mentioned sites. In particular, the rubber composition described above can be suitably used for treads and bead fillers.
As a method for manufacturing the tire, a conventional method can be used. For example, members used for normal tire manufacturing such as a carcass layer, a belt layer, and a tread layer made of an unvulcanized rubber composition and / or a cord are sequentially laminated on a tire molding drum, and the drum is removed to form a green tire. To do. Then, by heating and vulcanizing this green tire according to a conventional method, a desired tire (for example, a pneumatic tire) can be manufactured.

(3)コンベヤベルト
本発明のコンベヤベルトは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のコンベヤベルトは、上述したゴム組成物を用いているため、耐亀裂成長性が高く、且つ高温での弾性率が高い。
一実施形態において、コンベヤベルトは、スチールコード等からなる補強材の下側の、駆動プーリー、従動プーリー、保形ローター等と接触する内周側の表層ゴム(下面カバーゴム)、及び、補強材の上側の、輸送物品と接触する外周側の表層ゴム(上面カバーゴム)を備える。そして、一実施形態においては、上述したゴム組成物を、上述した部位の少なくともいずれかに用いることができる。
本発明のコンベヤベルトは、例えば、上述のゴム組成物からなるシートで補強材を挟み込んだ後、このゴム組成物を加熱圧着して加硫させて、補強材にゴム組成物の接着及び被覆を行うことで、製造することができる。
(3) Conveyor Belt The conveyor belt of the present invention is characterized by using the above rubber composition. Since the conveyor belt of the present invention uses the rubber composition described above, it has high crack growth resistance and high elastic modulus at high temperatures.
In one embodiment, the conveyor belt has a surface rubber (bottom cover rubber) on the inner peripheral side that comes into contact with a drive pulley, a driven pulley, a shape-retaining rotor, etc., and a reinforcing material under the reinforcing material made of a steel cord or the like. A surface layer rubber (top cover rubber) on the outer peripheral side that comes into contact with the transported article is provided on the upper side of the above. Then, in one embodiment, the above-mentioned rubber composition can be used for at least one of the above-mentioned sites.
In the conveyor belt of the present invention, for example, a reinforcing material is sandwiched between the sheets made of the above-mentioned rubber composition, and then the rubber composition is heat-bonded and vulcanized to bond and coat the rubber composition on the reinforcing material. By doing so, it can be manufactured.

(4)ゴムクローラ
本発明のゴムクローラは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のゴムクローラは、上述したゴム組成物を用いているため、耐亀裂成長性が高く、且つ高温での弾性率が高い。
一実施形態において、ゴムクローラは、スチールコードと、該スチールコードを被覆する中間ゴム層と、該中間ゴム層の上に配置された芯金と、前記中間ゴム層と芯金とを囲む本体ゴム層とを具え、更に、本体ゴム層の接地面側に複数のラグを有している。そして、一実施形態においては、上述したゴム組成物を、上述した部位の少なくともいずれかに用いることができる。特には、耐亀裂成長性に優れるため、上述したゴム組成物を、本体ゴム層、特には、ラグに好適に用いることができる。
(4) Rubber Crawler The rubber crawler of the present invention is characterized in that the above rubber composition is used. Since the rubber crawler of the present invention uses the above-mentioned rubber composition, it has high crack growth resistance and high elastic modulus at high temperature.
In one embodiment, the rubber crawler comprises a steel cord, an intermediate rubber layer covering the steel cord, a core metal arranged on the intermediate rubber layer, and a main body rubber surrounding the intermediate rubber layer and the core metal. It has a layer and has a plurality of lugs on the ground contact surface side of the main body rubber layer. Then, in one embodiment, the above-mentioned rubber composition can be used for at least one of the above-mentioned sites. In particular, since it is excellent in crack growth resistance, the above-mentioned rubber composition can be suitably used for the main body rubber layer, particularly for the lug.

(5)防振装置
本発明の防振装置は、上記のゴム組成物を用いたことを特徴とする。かかる本発明の防振装置は、上述したゴム組成物を用いているため、耐亀裂成長性が高く、且つ高温での弾性率が高い。
防振装置の種類としては、特に限定されず、例えば、エンジンマウント、トーショナルダンパー、ラバーブッシュ、ストラットマウント、バウンドバンパー、ヘルパーラバー、メンバマウント、スタビブッシュ、空気ばね、センターサポート、ゴム入りプロペラシャフト、防振レバー、コンパニヨンダンパー、ダンピングラバー、アイドラーアームブッシュ、ステアリングコラムブッシュ、カップリングラバー、ボデーマウント、マフラーサポート、ダイナミックダンパー、パイピングラバー等が挙げられる。
(5) Anti-vibration device The anti-vibration device of the present invention is characterized by using the above rubber composition. Since the vibration isolator of the present invention uses the rubber composition described above, it has high crack growth resistance and high elastic modulus at high temperature.
The type of anti-vibration device is not particularly limited, and for example, engine mount, torsional damper, rubber bush, strut mount, bound bumper, helper rubber, member mount, stabilizer bush, air spring, center support, and rubber-filled propeller shaft. , Anti-vibration lever, companion damper, damping rubber, idler arm bush, steering column bush, coupling rubber, body mount, muffler support, dynamic damper, piping rubber, etc.

(6)免震装置
本発明の免震装置は、上記のゴム組成物を用いたことを特徴とする。かかる本発明の免震装置は、上述したゴム組成物を用いているため、耐亀裂成長性が高く、且つ高温での弾性率が高い。
一実施形態において、免震装置は、軟質層と硬質層とが交互に積層された積層体、及び、当該積層体の中心に形成された中空部に圧入されるプラグを備える。そして、一実施形態においては、上述したゴム組成物を、軟質層及びプラグの少なくともいずれかに用いることができる。
(6) Seismic Isolation Device The seismic isolation device of the present invention is characterized by using the above rubber composition. Since the seismic isolation device of the present invention uses the above-mentioned rubber composition, it has high crack growth resistance and high elastic modulus at high temperature.
In one embodiment, the seismic isolation device includes a laminated body in which soft layers and hard layers are alternately laminated, and a plug that is press-fitted into a hollow portion formed in the center of the laminated body. Then, in one embodiment, the rubber composition described above can be used for at least one of the soft layer and the plug.

(7)ホース
本発明のホースは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のホースは、上述したゴム組成物を用いているため、耐亀裂成長性が高く、且つ高温での弾性率が高い。
一実施形態において、ホースは、径方向内側に位置する内面ゴム層(内管ゴム)と、径方向外側に位置する外面ゴム層と、必要に応じて上記内面ゴム層及び上記外面ゴム層の間に位置する補強層とを備える。そして、一実施形態においては、上述したゴム組成物を、内面ゴム層及び外面ゴム層の少なくともいずれかに用いることができる。また、上述したゴム組成物は、単一ゴム層からなるホースに用いることもできる。
(7) Hose The hose of the present invention is characterized in that the above rubber composition is used. Since the hose of the present invention uses the above-mentioned rubber composition, it has high crack growth resistance and high elastic modulus at high temperature.
In one embodiment, the hose is located between the inner rubber layer (inner tube rubber) located radially inside, the outer rubber layer located radially outer, and, if necessary, between the inner rubber layer and the outer rubber layer. It is provided with a reinforcing layer located at. Then, in one embodiment, the above-mentioned rubber composition can be used for at least one of the inner surface rubber layer and the outer surface rubber layer. The rubber composition described above can also be used for a hose composed of a single rubber layer.

以下、実施例を挙げて本発明を更に詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for the purpose of exemplifying the present invention and do not limit the present invention in any way.

<共重合体A(多元共重合体)の製造>
十分に乾燥した1,000mL耐圧ステンレス反応器に、芳香族ビニル化合物としてのスチレン160g及びトルエン600mLを加えた。
一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3−tert−ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体(1,3−[(t−Bu)Me2Si]295Gd[N(SiHMe222)0.25mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C654]0.275mmol、及びジイソブチルアルミニウムハイドライド1.1mmolを仕込み、トルエン40mLを加えて触媒溶液を得た。
得られた触媒溶液を、上記の耐圧ステンレス反応器に加え、70℃に加温した。
次いで、上記の耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを圧力1.5MPaで投入し、更に、共役ジエン化合物としての1,3−ブタジエン20gを含むトルエン溶液80mLを8時間かけて投入し、70℃で計8.5時間共重合を行った。
次いで、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて重合反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体A(多元共重合体)を得た。
<Manufacturing of copolymer A (multi-polymer)>
160 g of styrene and 600 mL of toluene as aromatic vinyl compounds were added to a sufficiently dried 1,000 mL pressure resistant stainless steel reactor.
On the other hand, in a glove box under a nitrogen atmosphere, a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex (1,3-[(t)) was placed in a glass container. −Bu) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2 ) 2 ] 2 ) 0.25 mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] 0 .275 mmol and 1.1 mmol of diisobutylaluminum hydride were charged, and 40 mL of toluene was added to obtain a catalytic solution.
The obtained catalyst solution was added to the above-mentioned pressure-resistant stainless steel reactor and heated to 70 ° C.
Next, ethylene as a non-conjugated olefin compound was charged into the above-mentioned pressure-resistant stainless reactor at a pressure of 1.5 MPa, and 80 mL of a toluene solution containing 20 g of 1,3-butadiene as a conjugated diene compound was charged over 8 hours. Then, copolymerization was carried out at 70 ° C. for a total of 8.5 hours.
Then, 1 mL of a 5% by mass isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure resistant stainless steel reactor to stop the polymerization reaction.
Next, the copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain a copolymer A (multipolymer).

得られた共重合体Aについて、ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、測定温度40℃でのポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。その結果、数平均分子量(Mn)は163,000、重量平均分子量(Mw)は399,000、分子量分布(Mw/Mn)は2.4であった。
また、得られた共重合体Aについて、1H−NMRスペクトル(100℃、d−テトラクロロエタン標準:6ppm)の各ピークの積分比より、エチレン単位、スチレン単位、ブタジエン単位の割合(mol%)を求めた。その結果、エチレン単位の割合は85mol%、スチレン単位の割合は7mol%、ブタジエン単位の割合は8mol%であった。
また、得られた共重合体Aについて、JIS K 7121−1987に準拠した示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)で、融点、ガラス転移温度、0〜120℃での吸熱ピークのエネルギーを測定した。なお、吸熱ピークのエネルギーの測定に関し、具体的には、まず、10℃/分の昇温速度で−150℃から150℃まで昇温し、その時(1st run)の0〜120℃における吸熱ピーク(エンタルピー緩和)を求めることにより、吸熱ピークのエネルギーを測定した。その結果、融点は63℃であり、ガラス転移温度は−28℃であり、吸熱ピークのエネルギーは35.6J/gであった。
更に、100%結晶成分からなるポリエチレンの結晶融解エネルギーと、DSCで測定した共重合体Aの融解ピークエネルギーとの比率から、結晶化度を求めたところ、12.1%と算出された。
更に、共重合体Aの13C−NMRスペクトルチャートでは、10〜24ppmにピークが観測されなかったことから、共重合体Aは、主鎖が非環状構造のみからなることが確認された。
Regarding the obtained copolymer A, gel permeation chromatography [GPC: HLC-8121 GPC / HT manufactured by Tosoh, column: GMHHR-H (S) HT × 2 manufactured by Tosoh, detector: differential refractive index meter (RI). ], The polystyrene-equivalent number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) at a measurement temperature of 40 ° C. were determined using the monodisperse polystyrene as a reference. As a result, the number average molecular weight (Mn) was 163,000, the weight average molecular weight (Mw) was 399,000, and the molecular weight distribution (Mw / Mn) was 2.4.
Further, regarding the obtained copolymer A, the ratio of ethylene units, styrene units, and butadiene units (mol%) was determined from the integral ratio of each peak in the 1 H-NMR spectrum (100 ° C., d-tetrachloroethane standard: 6 ppm). Asked. As a result, the proportion of ethylene units was 85 mol%, the proportion of styrene units was 7 mol%, and the proportion of butadiene units was 8 mol%.
Further, regarding the obtained copolymer A, a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000") conforming to JIS K 7121-1987 was used to determine the melting point and glass transition temperature. The energy of the endothermic peak at 0-120 ° C. was measured. Regarding the measurement of the energy of the endothermic peak, specifically, the temperature is raised from −150 ° C. to 150 ° C. at a heating rate of 10 ° C./min, and the endothermic peak at 0 to 120 ° C. at that time (1st run). The energy of the endothermic peak was measured by determining (enthalpy relaxation). As a result, the melting point was 63 ° C., the glass transition temperature was −28 ° C., and the energy of the endothermic peak was 35.6 J / g.
Further, the crystallinity was calculated from the ratio of the crystal melting energy of polyethylene composed of 100% crystal components to the melting peak energy of the copolymer A measured by DSC, and was calculated to be 12.1%.
Furthermore, in the 13 C-NMR spectrum chart of the copolymer A, no peak was observed at 10 to 24 ppm, confirming that the main chain of the copolymer A had only an acyclic structure.

<共重合体B(二元共重合体)の製造>
十分に乾燥した4Lステンレス反応器に、1,3−ブタジエン120g(2.22mol)を含むトルエン溶液2,000gを添加した後、エチレンを1.72MPaで導入した。
一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC962GdN(SiHMe22]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C654]28.5μmol、及びジイソブチルアルミニウムハイドライド2.00mmolを仕込み、トルエン40mlに溶解させて触媒溶液とした。
得られた触媒溶液を、ガドリニウム換算で25.0μmolとなる量だけ上記のステンレス反応器に添加し、50℃で90分間重合を行った。
次いで、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液5mlを加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、70℃で真空乾燥し、共重合体B(二元共重合体)を得た。
<Manufacturing of copolymer B (binary copolymer)>
After adding 2,000 g of a toluene solution containing 120 g (2.22 mol) of 1,3-butadiene to a sufficiently dried 4 L stainless steel reactor, ethylene was introduced at 1.72 MPa.
On the other hand, in a glove box under a nitrogen atmosphere, into a glass vessel bis (2-phenyl indenyl) gadolinium bis (dimethylsilyl amide) [(2-PhC 9 H 6) 2 GdN (SiHMe 2) 2] 28.5μmol , Dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] 28.5 μmol, and 2.00 mmol of diisobutylaluminum hydride were charged and dissolved in 40 ml of toluene to prepare a catalytic solution.
The obtained catalyst solution was added to the above-mentioned stainless steel reactor in an amount of 25.0 μmol in terms of gadolinium, and polymerization was carried out at 50 ° C. for 90 minutes.
Then, 5 ml of an isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in an amount of 5% by mass was added to terminate the reaction.
Next, the copolymer was separated using a large amount of methanol and vacuum dried at 70 ° C. to obtain a copolymer B (binary copolymer).

得られた共重合体Bについて、共重合体Aと同様にして、数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。その結果、数平均分子量(Mn)は121,000、重量平均分子量(Mw)は473,000、分子量分布(Mw/Mn)は3.88であった。
また、得られた共重合体Bについて、共重合体Aと同様にして、エチレン単位、スチレン単位、ブタジエン単位の割合(mol%)を求めた。その結果、エチレン単位の割合は43mol%、スチレン単位の割合は0mol%、ブタジエン単位の割合は57mol%であった。
また、得られた共重合体Bについて、共重合体Aと同様にして、融点、ガラス転移温度、0〜120℃での吸熱ピークのエネルギーを測定した。その結果、融点は120℃であり、ガラス転移温度は−103℃であり、吸熱ピークのエネルギーは48.5J/gであった。
更に、100%結晶成分からなるポリエチレンの結晶融解エネルギーと、DSCで測定した共重合体Bの融解ピークエネルギーとの比率から、結晶化度を求めたところ、16.5%と算出された。
For the obtained copolymer B, the number average molecular weight (Mn), the weight average molecular weight (Mw), and the molecular weight distribution (Mw / Mn) were determined in the same manner as in the copolymer A. As a result, the number average molecular weight (Mn) was 121,000, the weight average molecular weight (Mw) was 473,000, and the molecular weight distribution (Mw / Mn) was 3.88.
Further, for the obtained copolymer B, the ratios (mol%) of ethylene units, styrene units, and butadiene units were determined in the same manner as in the copolymer A. As a result, the proportion of ethylene units was 43 mol%, the proportion of styrene units was 0 mol%, and the proportion of butadiene units was 57 mol%.
Further, for the obtained copolymer B, the melting point, the glass transition temperature, and the energy of the endothermic peak at 0 to 120 ° C. were measured in the same manner as in the copolymer A. As a result, the melting point was 120 ° C., the glass transition temperature was −103 ° C., and the energy of the endothermic peak was 48.5 J / g.
Further, the crystallinity was calculated from the ratio of the crystal melting energy of polyethylene composed of 100% crystal components to the melting peak energy of copolymer B measured by DSC, and was calculated to be 16.5%.

<ゴム組成物の調製及び評価>
表1に示す配合処方に従い、通常のバンバリーミキサーを用いて比較例1,3,4及び実施例1,2のゴム組成物を製造した。表1、表2に示す配合処方に従い、通常のバンバリーミキサーを用いて比較例1,3,4及び実施例1,2以外の例のゴム組成物を製造する。比較例1,3,4及び実施例1,2のゴム組成物を用いて、下記の方法で、高温弾性率及び耐亀裂成長性を評価した。また、比較例1,3,4及び実施例1,2以外の例のゴム組成物を用いて、下記の方法で、高温弾性率及び耐亀裂成長性を評価する。結果を表1、表2に示す。
<Preparation and evaluation of rubber composition>
The rubber compositions of Comparative Examples 1, 3 and 4 and Examples 1 and 2 were produced using a normal Bunbury mixer according to the formulation shown in Table 1. According to the formulation shown in Tables 1 and 2, rubber compositions of Examples other than Comparative Examples 1, 3 and 4 and Examples 1 and 2 are produced using a normal Bunbury mixer. Using the rubber compositions of Comparative Examples 1, 3 and 4 and Examples 1 and 2, the high-temperature elastic modulus and crack growth resistance were evaluated by the following methods. Further, the high temperature elastic modulus and the crack growth resistance are evaluated by the following methods using the rubber compositions of Examples other than Comparative Examples 1, 3 and 4 and Examples 1 and 2. The results are shown in Tables 1 and 2.

(1)高温弾性率
比較例1,3,4及び実施例1,2のゴム組成物を160℃で20分加硫した後、動的せん断粘弾性測定装置(レオメトリックス社製)を使用し、温度130℃、動歪1.0%、周波数15Hzの条件で、貯蔵弾性率(E’)を測定した。比較例1,3,4及び実施例1,2以外の例のゴム組成物を160℃で20分加硫した後、動的せん断粘弾性測定装置(レオメトリックス社製)を使用し、温度130℃、動歪1.0%、周波数15Hzの条件で、貯蔵弾性率(E’)を測定する。
表1に示すカーボンブラックを用いた例においては、比較例1を100としたときの指数で表示し、表2に示すシリカを用いた例においては、比較例6を100として、測定値を指数化する。この指数値が大きいほど、高温での弾性率が高いことを示す。
(1) High-temperature elastic modulus After vulcanizing the rubber compositions of Comparative Examples 1, 3 and 4 and Examples 1 and 2 at 160 ° C. for 20 minutes, a dynamic shear viscoelasticity measuring device (manufactured by Leometrics) was used. The storage elastic modulus (E') was measured under the conditions of a temperature of 130 ° C., a dynamic strain of 1.0%, and a frequency of 15 Hz. After vulcanizing the rubber compositions of Comparative Examples 1, 3 and 4 and Examples other than Examples 1 and 2 at 160 ° C. for 20 minutes, a dynamic shear viscoelasticity measuring device (manufactured by Leometrics) was used and the temperature was 130. The storage elastic modulus (E') is measured under the conditions of ° C., dynamic strain 1.0%, and frequency 15 Hz.
In the example using carbon black shown in Table 1, the index is displayed when Comparative Example 1 is 100, and in the example using silica shown in Table 2, Comparative Example 6 is set to 100 and the measured value is an index. To be. The larger the index value, the higher the elastic modulus at high temperature.

(2)耐亀裂成長性
各実施例及び比較例のゴム組成物から、JIS3号試験片を作製する。次いで、この試験片の中心部に0.5mmの亀裂を入れ、室温で0〜100%の一定歪で繰返し疲労を与え、試験片が切断するまでの回数を測定する。表1に示すカーボンブラックを用いた例においては、比較例1を100としたときの指数で表示し、表2に示すシリカを用いた例においては、比較例6を100として、測定値を指数化する。この指数値が大きいほど、耐亀裂成長性に優れることを示す。
(2) Crack growth resistance A JIS No. 3 test piece is prepared from the rubber compositions of each Example and Comparative Example. Next, a 0.5 mm crack is formed in the center of the test piece, repeated fatigue is applied at room temperature with a constant strain of 0 to 100%, and the number of times until the test piece is cut is measured. In the example using carbon black shown in Table 1, the index is displayed when Comparative Example 1 is 100, and in the example using silica shown in Table 2, Comparative Example 6 is set to 100 and the measured value is an index. To be. The larger the index value, the better the crack growth resistance.

Figure 2019142501
Figure 2019142501

Figure 2019142501
Figure 2019142501

*1 カーボンブラック:HAFカーボン、旭カーボン株式会社製、商品名「#70」
*2 シリカ:東ソー・シリカ株式会社製、商品名「ニプシールAQ(登録商標)」
*3 シランカップリング剤:ビス(3−トリエトシキシリルプロピル)ジスルフィド、Evonik社製、商品名「Si75(登録商標)」、平均硫黄鎖長:2.35
*4 熱硬化性樹脂A:住友ベークライト製、トール油変性フェノール樹脂
*5 熱硬化性樹脂B:住友ベークライト製、フェノール樹脂
*6 硬化剤:ヘキサメトキシメチルメラミン
*7 軟化剤:プロセスオイル
*8 老化防止剤6PPD:N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、大内新興化学工業株式会社製、商品名「ノクラック6C(登録商標)」
*9 ワックス:精工化学株式会社製、商品名「サンタイト(登録商標)」
*10 加硫促進剤MBTS:ジ−2−ベンゾチアゾリルジスルフィド、三新化学工業株式会社製、商品名「サンセラーDM」
*11 加硫促進剤TBBS:N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、三新化学工業株式会社製、商品名「サンセラーNS」
*12 加硫促進剤DPG:1,3−ジフェニルグアニジン、三新化学工業株式会社製、商品名「サンセラーD」
* 1 Carbon black: HAF carbon, manufactured by Asahi Carbon Co., Ltd., product name "# 70"
* 2 Silica: Made by Toso Silica Co., Ltd., Product name "Nipseal AQ (registered trademark)"
* 3 Silane coupling agent: Bis (3-trietoxysilylpropyl) disulfide, manufactured by Evonik, trade name "Si75 (registered trademark)", average sulfur chain length: 2.35
* 4 Thermosetting resin A: Sumitomo Bakelite, tall oil-modified phenolic resin * 5 Thermosetting resin B: Sumitomo Bakelite, phenolic resin * 6 Hardener: Hexamethoxymethylmelamine * 7 Softener: Process oil * 8 Aging Inhibitor 6PPD: N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Nocrack 6C (registered trademark)"
* 9 Wax: Made by Seiko Kagaku Co., Ltd., trade name "Santite (registered trademark)"
* 10 Vulcanization accelerator MBTS: Di-2-benzothiazolyl disulfide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name "Sun Cellar DM"
* 11 Vulcanization accelerator TBBS: N-tert-butyl-2-benzothiazolyl sulfeneamide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name "Suncellor NS"
* 12 Vulcanization accelerator DPG: 1,3-diphenylguanidine, manufactured by Sanshin Chemical Industry Co., Ltd., trade name "Sunseller D"

表1、表2から、本発明に従う実施例のゴム組成物を用いることで、耐亀裂成長性が高く、且つ高温での弾性率が高いゴム物品を作製することができることが分かる。 From Tables 1 and 2, it can be seen that by using the rubber compositions of Examples according to the present invention, rubber articles having high crack growth resistance and high elastic modulus at high temperatures can be produced.

本発明によれば、耐亀裂成長性が高く、且つ高温での弾性率が高いゴム物品を作製することができるゴム組成物を提供することができる。
また、本発明によれば、耐亀裂成長性が高く、且つ高温での弾性率が高い、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホースを提供することができる。
According to the present invention, it is possible to provide a rubber composition capable of producing a rubber article having high crack growth resistance and high elastic modulus at high temperature.
Further, according to the present invention, it is possible to provide a tire, a conveyor belt, a rubber crawler, a vibration isolator, a seismic isolation device and a hose having high crack growth resistance and high elastic modulus at high temperature.

Claims (25)

共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを有する多元共重合体(a1)を含むゴム成分(a)と、
熱硬化性樹脂(b)と
を含有する、ことを特徴とする、ゴム組成物。
A rubber component (a) containing a multiple copolymer (a1) having a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit,
A rubber composition containing a thermosetting resin (b).
前記多元共重合体(a1)は、
前記共役ジエン単位の割合が1〜50mol%であり、
前記非共役オレフィン単位の割合が40〜97mol%であり、且つ
前記芳香族ビニル単位の割合が2〜35mol%である、
請求項1に記載のゴム組成物。
The multiple copolymer (a1) is
The ratio of the conjugated diene unit is 1 to 50 mol%.
The proportion of the non-conjugated olefin unit is 40 to 97 mol%, and the proportion of the aromatic vinyl unit is 2 to 35 mol%.
The rubber composition according to claim 1.
前記熱硬化性樹脂(b)の含有量が、前記ゴム成分(a)100質量部に対して5〜50質量部である、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the content of the thermosetting resin (b) is 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component (a). 前記熱硬化性樹脂(b)が、フェノール樹脂又はクレゾール樹脂を含む、請求項1〜3のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the thermosetting resin (b) contains a phenol resin or a cresol resin. 前記熱硬化性樹脂(b)が、カシューオイル変性フェノール樹脂又はトール油変性フェノール樹脂を含む、請求項1〜4のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, wherein the thermosetting resin (b) contains a cashew oil-modified phenolic resin or a tall oil-modified phenolic resin. 更に、硬化剤(c)を含有する、請求項1〜5のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, further comprising a curing agent (c). 前記硬化剤(c)が、ヘキサメトキシメチルメラミンを含む、請求項6に記載のゴム組成物。 The rubber composition according to claim 6, wherein the curing agent (c) contains hexamethoxymethylmelamine. 前記硬化剤(c)の含有量が、前記ゴム成分(a)100質量部に対して0.1〜10質量部である、請求項6又は7に記載のゴム組成物。 The rubber composition according to claim 6 or 7, wherein the content of the curing agent (c) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component (a). 更に、軟化剤及び液状ゴムから選択される少なくとも1種の添加剤(d)を含有し、
前記添加剤(d)の含有量が、前記ゴム成分(a)100質量部に対して3〜150質量部である、請求項1〜8のいずれかに記載のゴム組成物。
Further, it contains at least one additive (d) selected from a softener and a liquid rubber, and contains.
The rubber composition according to any one of claims 1 to 8, wherein the content of the additive (d) is 3 to 150 parts by mass with respect to 100 parts by mass of the rubber component (a).
前記多元共重合体(a1)は、主鎖が非環状構造のみからなる、請求項1〜9のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 9, wherein the multiple copolymer (a1) has only a non-cyclic structure in the main chain. 前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30〜130℃である、請求項1〜10のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 10, wherein the multiple copolymer (a1) has a melting point of 30 to 130 ° C. as measured by a differential scanning calorimeter (DSC). 前記多元共重合体(a1)は、0〜120℃における示差走査熱量計(DSC)で測定した吸熱ピークのエネルギーが10〜150J/gである、請求項1〜11のいずれかに記載のゴム組成物。 The rubber according to any one of claims 1 to 11, wherein the multiple copolymer (a1) has an endothermic peak energy of 10 to 150 J / g measured by a differential scanning calorimeter (DSC) at 0 to 120 ° C. Composition. 前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定したガラス転移温度が0℃以下である、請求項1〜12のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 12, wherein the multiple copolymer (a1) has a glass transition temperature of 0 ° C. or lower as measured by a differential scanning calorimeter (DSC). 前記多元共重合体(a1)は、結晶化度が0.5〜50%である、請求項1〜13のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 13, wherein the multiple copolymer (a1) has a crystallinity of 0.5 to 50%. 前記非共役オレフィン単位が、環状構造を有しない、請求項1〜14のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 14, wherein the non-conjugated olefin unit does not have a cyclic structure. 前記非共役オレフィン単位が、エチレン単位のみからなる、請求項1〜15のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 15, wherein the non-conjugated olefin unit comprises only an ethylene unit. 前記芳香族ビニル単位が、スチレン単位を含む、請求項1〜16のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 16, wherein the aromatic vinyl unit contains a styrene unit. 前記共役ジエン単位が、1,3−ブタジエン単位及びイソプレン単位の少なくともいずれかを含む、請求項1〜17のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 17, wherein the conjugated diene unit contains at least one of 1,3-butadiene unit and isoprene unit. 前記ゴム成分(a)における前記多元共重合体(a1)の割合が10〜100質量%である、請求項1〜18のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 18, wherein the ratio of the multiple copolymer (a1) in the rubber component (a) is 10 to 100% by mass. 請求項1〜19のいずれかに記載のゴム組成物を用いたことを特徴とする、タイヤ。 A tire using the rubber composition according to any one of claims 1 to 19. 請求項1〜19のいずれかに記載のゴム組成物を用いたことを特徴とする、コンベヤベルト。 A conveyor belt according to any one of claims 1 to 19, wherein the rubber composition is used. 請求項1〜19のいずれかに記載のゴム組成物を用いたことを特徴とする、ゴムクローラ。 A rubber crawler using the rubber composition according to any one of claims 1 to 19. 請求項1〜19のいずれかに記載のゴム組成物を用いたことを特徴とする、防振装置。 An anti-vibration device according to any one of claims 1 to 19, wherein the rubber composition is used. 請求項1〜19のいずれかに記載のゴム組成物を用いたことを特徴とする、免震装置。 A seismic isolation device according to any one of claims 1 to 19, wherein the rubber composition is used. 請求項1〜19のいずれかに記載のゴム組成物を用いたことを特徴とする、ホース。 A hose using the rubber composition according to any one of claims 1 to 19.
JP2019565739A 2018-01-19 2018-11-26 Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses Pending JPWO2019142501A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018007598 2018-01-19
JP2018007598 2018-01-19
PCT/JP2018/043449 WO2019142501A1 (en) 2018-01-19 2018-11-26 Rubber composition, tire, conveyor belt, rubber crawler, vibration-damping device, seismic isolator, and hose

Publications (1)

Publication Number Publication Date
JPWO2019142501A1 true JPWO2019142501A1 (en) 2021-02-04

Family

ID=67300996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565739A Pending JPWO2019142501A1 (en) 2018-01-19 2018-11-26 Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses

Country Status (2)

Country Link
JP (1) JPWO2019142501A1 (en)
WO (1) WO2019142501A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7427418B2 (en) 2019-10-28 2024-02-05 Toyo Tire株式会社 Rubber composition for seismic isolation structures and seismic isolation structures
JP7477394B2 (en) 2020-08-03 2024-05-01 旭化成株式会社 Rubber composition and tire
WO2022034865A1 (en) 2020-08-11 2022-02-17 旭化成株式会社 Packaged molded body, cross-linking rubber composition, manufacturing method of packaged molded body, manufacturing method of cross-linking rubber composition, and tire tread
JPWO2022065509A1 (en) 2020-09-28 2022-03-31
CN114369297B (en) 2020-10-16 2023-12-08 旭化成株式会社 Cross-linking rubber composition, method for producing cross-linked rubber, and tread for tire
US20230365789A1 (en) 2020-10-30 2023-11-16 Asahi Kasei Kabushiki Kaisha Rubber Composition, and Tire
CN112745543A (en) * 2020-12-29 2021-05-04 贵州轮胎股份有限公司 Ultra-cutting-resistant and crack-resistant growth all-steel underground mining smooth tire tread rubber material and preparation method thereof
KR20230079269A (en) 2021-01-07 2023-06-05 아사히 가세이 가부시키가이샤 Rubber composition for crosslinking, rubber composition for tires, molded article for sidewalls of tires, sheet, method for producing sidewalls of tires, sidewalls of tires
JP2024068124A (en) 2022-11-07 2024-05-17 住友ゴム工業株式会社 tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155239A (en) * 2012-01-27 2013-08-15 Bridgestone Corp Rubber composition, bead filler, and tire
EP3156429B1 (en) * 2014-06-12 2019-01-23 Bridgestone Corporation Multi-component copolymer, rubber composition, and tire
JP6635369B2 (en) * 2015-10-16 2020-01-22 株式会社ブリヂストン Multi-component copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire

Also Published As

Publication number Publication date
WO2019142501A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6947801B2 (en) Multiple copolymers, rubber compositions and tires
JP6780827B2 (en) Multiple copolymers, rubber compositions, crosslinked rubber compositions, rubber products, and tires
JP7094402B2 (en) Multiple copolymers, rubber compositions, crosslinked rubber compositions and rubber articles
JPWO2019142501A1 (en) Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
JPWO2019078083A1 (en) Multiple copolymers, rubber compositions, crosslinked rubber compositions, rubber products, and tires
JP7311091B2 (en) Multidimensional copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
JP6602150B2 (en) Multi-component copolymer, rubber composition, crosslinked rubber composition, and rubber article
JP7094403B2 (en) Multiple copolymers, rubber compositions, crosslinked rubber compositions and rubber articles
JP7124899B2 (en) Multidimensional copolymer, rubber composition, crosslinked rubber composition, rubber product, and tire
RU2578566C1 (en) Rubber mixture and tyre, containing said rubber mixture
JP6635369B2 (en) Multi-component copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
JP7348070B2 (en) Anti-vibration rubber composition and anti-vibration rubber
JP7252139B2 (en) Rubber compositions, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
WO2019146323A1 (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration isolator, seismic isolator, and hose
CN108350129B (en) Multipolymer, rubber composition, crosslinked rubber composition and rubber product
JPWO2019116655A1 (en) Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
JP7041706B2 (en) Multiple copolymers, rubber compositions, crosslinked rubber compositions and rubber articles
JPWO2019163230A1 (en) Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
JPWO2019163835A1 (en) Rubber composition, tires, conveyor belts, rubber crawlers, anti-vibration devices, seismic isolation devices and hoses
JP6729891B2 (en) Conjugated diene-based copolymer and method for producing the same, rubber composition, crosslinked rubber composition, and tire