WO2019115913A1 - Dispositif de commutation autoalimenté et procédé de fonctionnement d'un tel dispositif - Google Patents

Dispositif de commutation autoalimenté et procédé de fonctionnement d'un tel dispositif Download PDF

Info

Publication number
WO2019115913A1
WO2019115913A1 PCT/FR2018/053111 FR2018053111W WO2019115913A1 WO 2019115913 A1 WO2019115913 A1 WO 2019115913A1 FR 2018053111 W FR2018053111 W FR 2018053111W WO 2019115913 A1 WO2019115913 A1 WO 2019115913A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transistor
control circuit
switching device
voltage transistor
Prior art date
Application number
PCT/FR2018/053111
Other languages
English (en)
Inventor
Gérald AUGUSTONI
Laurent Guillot
Thierry SUTTO
Original Assignee
Exagan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exagan filed Critical Exagan
Priority to EP18830917.3A priority Critical patent/EP3724980A1/fr
Priority to KR1020207017312A priority patent/KR20200097725A/ko
Priority to CN201880080261.5A priority patent/CN111713001A/zh
Priority to US16/954,054 priority patent/US20200328730A1/en
Publication of WO2019115913A1 publication Critical patent/WO2019115913A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K2017/6875Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors using self-conductive, depletion FETs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the present invention relates to a device for switching an electric charge. More specifically, it relates to a switching device comprising a control circuit and a supply circuit of this control circuit.
  • BACKGROUND OF THE INVENTION State of the art is known of load switching devices combining, in a series connection, a high voltage transistor in depletion mode and a low voltage transistor in enrichment mode.
  • the transistors are controlled to selectively place the device in a conducting conduction state or a blocking state according to the value of an external switching signal applied to a pin of the device.
  • the switching device is intended to be integrated in a system in which it is electrically connected to a load consisting of a power circuit and a generator, and makes it possible to transfer energy from the generator to the power circuit during the conduction periods.
  • the voltage supplied by the generator is usually of high value, for example 400V, 600V or more.
  • the two transistors can be mounted in cascode, and in this case the source of the low voltage transistor is electrically connected to the gate of the high voltage transistor.
  • a control circuit of the device can selectively place this device in an on state or a blocking state via a control signal applied to the gate of the low voltage transistor.
  • the two transistors may alternatively be cascaded, and in this case the control circuit generates a first and a second control signal respectively applied to the gate of the low voltage transistor and the gate of the high voltage transistor to selectively place this device in the on state or the blocking state.
  • the switching device is normally blocking, that is to say that in the absence of supply of the device, and in particular in the absence of supply of the control circuit, the switching device is in an inactive mode, in the blocking state. This avoids closing the device on the load inadvertently, which could cause serious security problems.
  • the control circuit ensures the proper operation of the latter. In case of detection of a malfunction or an event likely to cause such a malfunction, it generates the control signal (s) to place the device in an inactive mode, in which it is made blocking. This is particularly the case when the operating temperature of the device is excessive or certain voltages deviate from their setpoint voltages.
  • control circuit is embodied in integrated form, for example in the form of a programmable logic gate system, in the form of discrete components or in the form of a suitably programmed microcontroller. In all cases, the control circuit the appropriate sequencing of the control signals according to the value of an external switching signal and the internal state of the device.
  • the control circuit must be electrically powered and, for this purpose, the device is usually provided with a supply pin to which a supply voltage is applied which comes from a dedicated circuit of the system.
  • This circuit implements high voltage components such as diodes, inductors and / or capacitances to draw power from the switched load of the system and to condition this energy to provide the device with a voltage of power supply of relatively low amplitude (a few volts) and stable.
  • Such an external supply circuit is complex to perform and expensive.
  • Document EP0585788 discloses a device for switching an electrical load comprising a control circuit supplied with low voltage by the secondary coil of an external transformer.
  • a starting circuit makes it possible to initiate the start-up of the control circuit, the power supply during operation of the switching device requiring the voltage supplied by the secondary of the transformer.
  • An object of the present invention is to propose an alternative solution to the solutions of the state of the art.
  • An object of the invention is notably to propose a device for switching a load comprising two switching terminals, a high voltage transistor in depletion mode and a low voltage transistor in enhancement mode arranged in series between the two switching terminals and defining a midpoint, a control circuit generating a signal of gate control of the low voltage transistor for selectively placing the device in an on state or in a blocking state, and a supply circuit comprising an input connected to the midpoint and an output for supplying a supply voltage to the control circuit .
  • the supply circuit comprises a tank capacity establishing the supply voltage supplied to the control circuit when the switching device is connected to the load.
  • the supply circuit also comprises a switch, disposed between the inlet and the tank capacity, normally passing and able to electrically isolate the tank capacity of the midpoint when it is open.
  • the tank capacity establishes the supply voltage supplied to the control circuit when the switching device is connected to the load, the tank capacity being electrically isolated from the midpoint when the switch is open.
  • the gate of the high voltage transistor is electrically connected to the source of the low voltage transistor; the control circuit generates a second control signal of the gate of the high-voltage transistor; the switch comprises a low voltage transistor in depletion mode and a diode electrically connected to the input of the circuit, arranged in series with the low voltage transistor in depletion mode; the switch comprises first and second low voltage transistors in depletion mode connected in series; the supply circuit also comprises a regulating circuit of the supply voltage; the control circuit is configured to generate a deactivation signal of the switch as long as the first control signal is generated to place the device in the on state the high voltage transistor having a higher threshold voltage in absolute value than the voltage sufficient power to make the control device functional; the control circuit is configured to generate a switch off signal when the supply voltage (Va) exceeds a threshold voltage
  • the invention also relates to a method of controlling this switching device, the method comprising:
  • the method comprises the generation by the control circuit of a deactivation signal for opening the switch of the supply circuit at least during the pass phase of the switching device.
  • FIG. 1 represents an exemplary implementation of a switching device according to the invention
  • FIG. 2 represents a chronogram of the voltages developing in a device according to the invention during its operation
  • Figures 3a to 3d schematically show the state of a device according to the invention at different stages of its operation
  • FIG. 4 represents an improved version of a switching device 1 according to the invention
  • FIG. 5 represents an exemplary implementation of a regulating circuit of the supply voltage
  • FIG. 6 represents a first embodiment of a supply circuit according to the invention
  • FIGS. 7A to 7D show four other embodiments of a supply circuit according to the invention.
  • FIG. 1 shows an exemplary implementation of a switching device 1 according to the invention.
  • the voltage Vbus of the generator G can be large, for example 400V, 600V or more, and the current likely to flow in the high-intensity power device, for example greater than 1 A.
  • the switching device 1 makes it possible to selectively apply the voltage of the generator G to the load P according to the state of a switching signal COM which can be applied to a pin of the device to be supplied to a control circuit 4. It can also be envisaged that this switching signal COM is generated by the switching device 1 itself, or more precisely by the control circuit 4 of this device 1.
  • the switching device 1 comprises a high voltage transistor 5 in depletion mode.
  • high voltage transistor is meant a transistor comprising a drain, a source and a gate, the low amplitude voltage applied to the gate (of the order of a few volts) making it possible to electrically pass or block the link between the gate and the gate. drain and the source. In the off state, the voltage developing between the drain and the source can be of high amplitude, for example 400V, 600V or more, without damaging the transistor.
  • a depletion mode transistor has a negative threshold voltage (typically within the scope of the present invention between -8V and -5V). The voltage between the gate and the source must therefore be negative, lower than this threshold voltage, to block this transistor.
  • the high-voltage transistor in depletion mode 5 may be a HEMT transistor for example based on GaN or SiC.
  • This type of transistor has an avalanche voltage (that is to say the maximum voltage applicable between the drain and the source of the transistor without being damaged, it may be a breakdown voltage) of high amplitude, chosen to be greater than the voltage generator of the power circuit, for example more than 400V or 600V.
  • the switching device 1 also comprises a low voltage transistor 6 in enrichment mode, comprising a drain, a source and a gate.
  • An enrichment mode transistor has a positive threshold voltage. The voltage between the gate and the source must therefore be positive and greater than this threshold voltage, to turn this transistor.
  • the low voltage transistor 6 may be a silicon-based MOSFET transistor.
  • the avalanche voltage of the low voltage transistor is lower than that of the high voltage transistor. It can be for example of the order of 30 V.
  • the low voltage transistor 6 and the high voltage transistor 5 are arranged in series between the two switching terminals 2a, 2b.
  • the drain of the high voltage transistor is connected to one of these two of these terminals, and the source of the low voltage transistor is connected to the other of these terminals.
  • the source of the high-voltage transistor 5 is connected to the drain of the low-voltage transistor 6 at a middle point M.
  • the first terminal 2a is connected to the load and the second terminal 2b to an electrical ground of system, but the invention is not limited to this particular configuration.
  • the low-voltage transistor 6 and the high-voltage transistor 5 are mounted in cascode, that is to say that the source of the low voltage transistor, here connected to the system ground, is also electrically connected to the gate of the high voltage transistor 5.
  • the on state or blocking state of the device 1 is determined by the voltage applied to the gate of the low voltage transistor 6. A higher voltage threshold voltage Vt of this transistor making it passing, and a voltage lower than this threshold voltage Vt making it blocking.
  • the switching device 1 of Figure 1 it also comprises a control circuit 4.
  • this circuit can receive a COM switching signal developed outside the device 1.
  • the control circuit 4 can itself develop this switching signal according to the state of the device, that is to say from measurements of certain voltages or currents taken from the device, and which are communicated to it by the intermediate electrical connections (not shown in Figure 1 of principle).
  • the control circuit 4 processes this signal to establish and generate a control signal IN which is applied to the gate of the low-voltage transistor 6, for effectively placing the device 1 in an on or off state.
  • the control circuit 4 is an active circuit which therefore needs to be electrically powered.
  • the device 1 is provided with a supply circuit 7.
  • This circuit comprises an input 7a electrically connected to the midpoint M defined between the high voltage transistor 5 and the low voltage transistor 6. It also has a output 7b, delivering a voltage supply voltage Va, and electrically connected to the control circuit 7.
  • the supply voltage Va is of low value, in comparison with the voltages that can appear at the switching terminals 2a, 2b or the middle bridge M. It is of the order of a few volts, such as for example 5V.
  • the supply circuit 7 comprises a reservoir capacitor Cm, one of the electrodes of which is connected to the output 7b and the other to the electrical ground of the system or to another reference voltage of this system.
  • This capacity Cm has the function of storing charges taken at the midpoint M to establish the so-called supply voltage Va which will be supplied to the control circuit.
  • the voltage Vm at the midpoint M varies during the operation of the device between the electrical ground of the system, when the device is on, and the avalanche voltage of the low voltage transistor when the device is blocking.
  • the supply circuit 7 comprises a switch 7c disposed between the input 7a and the terminal of the tank capacity Cm carrying the supply voltage Va, corresponding to the output 7b.
  • the switch 7c is normally on, that is to say that the switch is closed in the absence of any control and the reservoir capacity is connected in this case to the middle point M of the device 1.
  • the "normally passing" characteristic of the switch 7c is important, because it ensures that when the device 1 is started, that is to say when it is brought into electrical contact with the load at the two terminals of switching 2a, 2b, the supply circuit can collect charges at the midpoint M to fill the tank capacity Cm, develop and provide a sufficient supply voltage Va, so that it can activate the control device 7.
  • the operation of the device will be explained in more detail in following this presentation.
  • the switch 7c is made open by means of a disabling signal DIS produced by the control circuit 4.
  • DIS disabling signal
  • the control circuit 4 When the control circuit 4 is powered and in operation, it establishes and generates the disabling signal DIS of the switch 7c when the control signal IN is generated to place the device 1 in an on state.
  • the supply circuit 7 of the high and low voltage transistors 5, 6 is thus isolated during this period of time. More specifically, the reservoir capacitance Cm of the midpoint is electrically insulated, the latter being traversed by a current of high intensity during the conduction phase of the device which should not be diverted towards the supply circuit 7.
  • the switch 7c may comprise normally-passing transistor, for example a low-voltage transistor such as a MOSFET transistor in depletion mode.
  • a low-voltage transistor such as a MOSFET transistor in depletion mode.
  • the intrinsic diode or diode of "body” or “body diode” according to the commonly used English terminology, intrinsically present in such transistors, leads to let a reverse current flow in the transistor. Due to the existence of this reverse current, such a transistor can not be in itself a switch allowing, when open, to electrically isolate the tank capacity Cm of the middle point M.
  • the switch 7c comprises a low voltage transistor in depletion mode and a diode electrically connected to the input 7a of the circuit, arranged in series with the low voltage transistor in depletion mode.
  • the low-voltage transistor in depletion mode may be a P-channel transistor.
  • the drain of the low-voltage transistor in depletion mode is connected to the terminal of the reservoir capacitor Cm, its source to the diode, and its gate to the circuit. 4.
  • the low voltage transistor in depletion mode is in an on state, the current flows from the midpoint to the tank capacity Cm.
  • the low-voltage transistor in depletion mode is in a blocking state, the intrinsic diode allowing the current of the drain to flow to the source, the diode blocks the current flowing through the intrinsic diode, isolating the reservoir capacitor Cm from the midpoint M.
  • the low voltage transistor in depletion mode may be an N channel transistor.
  • the source of the low voltage transistor in depletion mode is connected to the terminal of the reservoir capacitor Cm, its drain to the diode, and its gate to the control circuit 4.
  • the low voltage transistor in depletion mode when the low voltage transistor in depletion mode is in an on state, the current flows from the midpoint to the tank capacity Cm.
  • the low-voltage transistor in depletion mode is in a blocking state, the intrinsic diode allowing current to flow from the source to the drain, the diode blocks the current flowing through the intrinsic diode, isolating the reservoir capacitor Cm from the midpoint M .
  • Figs. 7A-7D show four further embodiments according to the present invention.
  • the series association of the diode and the low voltage transistor in depletion mode is replaced by a first and a second low voltage transistor in depletion mode connected in series.
  • the first and second low-voltage transistors in depletion mode are two N-channel transistors or two P-channel transistors, the drains of each transistor being interconnected or the sources of each transistor being interconnected.
  • the first and second low-voltage transistors in depletion mode may be two P-channel transistors.
  • the intrinsic diode of each transistor allowing current to flow from the source to the drain, should be placed these two transistors back-to-back (or "back-to-back" in English terminology frequently used).
  • the two low-voltage transistors in depletion mode are in an on state (that is to say their default state)
  • the current flows from the midpoint M to the tank capacity Cm.
  • the two low-voltage transistors in depletion mode are in a blocking state, their intrinsic diodes being in an opposite direction, the current can not flow. in any sense, isolating the tank capacity Cm from middle point M.
  • the first and second low-voltage transistors in depletion mode may be two N-channel transistors.
  • the intrinsic diode of each transistor allows the current of the drain to flow towards the source. , it is also appropriate to place these two transistors head to tail.
  • the current flows from the midpoint M to the tank capacitor Cm.
  • the two low-voltage transistors in depletion mode are in a blocking state, their intrinsic diodes being in an opposite direction, the current can not flow in any direction, isolating the reservoir capacitance Cm from the middle point M.
  • head to tail means that the drains of each transistor are connected to each other or that the sources of each transistor are connected to each other.
  • the drain of the first transistor is connected to the midpoint, its source to the source of the second transistor, and the drain of the second transistor is connected to the terminal of the tank capacitor Cm.
  • the first and the second low voltage transistor in depletion mode are respectively an N-channel transistor and a P-channel transistor or a P-channel transistor and an N-channel transistor, the source of the first transistor being connected to the drain of the second transistor.
  • the first transistor may be an N-channel transistor and the second transistor a P-channel transistor.
  • the intrinsic diodes of the N-channel transistor and the P channel transistor respectively allow the flow the current of the source to the drain and the drain to the source, it is appropriate to place the two transistors in series, that is to say that the source of the first transistor is connected to the drain of the second transistor.
  • the two low-voltage transistors in depletion mode are in an on state, the current flows from the midpoint M to the tank capacitor Cm.
  • the two low-voltage transistors in depletion mode are in a blocking state, their intrinsic diodes being in an opposite direction, the current can not flow in any direction, isolating the reservoir capacitance Cm from the middle point M.
  • the first transistor may be a P-channel transistor and the second transistor an N-channel transistor.
  • the two transistors should be placed in series, ie that is, the source of the first transistor is connected to the drain of the first transistor.
  • the current flows from the midpoint M to the tank capacitor Cm.
  • the two low voltage transistors in depletion mode are in a state blocking, their intrinsic diodes being in an opposite direction, the current can flow in any direction, isolating the tank capacity Cm of the middle point M.
  • the terminals of the first and second transistors may be inverted, so that the source of the first transistor is connected to the midpoint M, the drain of the first transistor is connected to the source of the second transistor, and the drain of the second transistor connected to the terminal of the tank capacity Cm.
  • the two transistors comprising the switch 7c are simultaneously in an on state or in a blocking state.
  • the switch 7c may comprise a control box
  • this housing is disposed between the control circuit 4 and the gate of each of the low voltage transistors in depletion mode.
  • the control box CTRL is configured to adapt the signal delivered by the control circuit to apply a voltage to each of the grids so as to simultaneously place the two transistors in an on or off state.
  • the configuration of such a housing is well known per se, and may for example comprise, according to the nature of the low voltage transistors in depletion mode, an inverter.
  • the switch 7c is a normally on switch, able to electrically isolate the tank capacity Cm midpoint M when open.
  • FIG. 2 shows a chronogram of the voltages developing in the device 1 during its operation.
  • the device 1 is controlled by the control circuit 4 to alternate:
  • a blocking phase during which the control circuit 4 generates a control signal IN to open the low voltage transistor 6.
  • This signal is at 0V on the timing diagram of FIG. 2. It is lower than the threshold voltage Vt of the low voltage transistor 6 to make it blocking.
  • a pass phase (or conduction) during which the control circuit 4 generates a control signal for closing the low voltage transistor 6.
  • This signal may be a few volts, but in all cases, greater than the threshold voltage Vt of the low voltage transistor 6 to make it pass.
  • the control circuit generates a disabling signal DIS so that the switch 7c of the supply circuit 7 is open.
  • the instant t0 is defined as the moment at which the device 1 is physically connected to its load. At this instant t0, the tank capacity Cm is thus totally discharged, the voltage Va supply is zero.
  • the control circuit 4 is not able to operate, that is to say to provide the commands such as the gate control of the low voltage transistor IN or the control of the DIS switch.
  • the "cascode" configuration of the low and high voltage transistors 5, 6 however ensures that the device 1 is in a blocking state.
  • FIG. 3a schematically represents the state of this device at this start time t0.
  • the control circuit 4 is not powered, the control signal IN has a zero voltage lower than the threshold voltage Vt of the low voltage transistor in enrichment mode, this transistor is therefore open.
  • the normally open switch 7c of the supply circuit 7 is closed, the control circuit 4 being unable to provide a disabling signal DIS.
  • the voltage of the source of the high voltage transistor in depletion mode 5 (corresponding to the control voltage Vgs of this transistor) is also substantially zero at the start time t0, but greater than the threshold voltage Vt 'of this transistor (this threshold voltage being negative) which is therefore passing.
  • this supply voltage Va is sufficient, for example when it reaches a voltage nominal power supply of the control circuit 4 which can be, for example, 5 V, the control circuit 4 is activated and becomes functional. In other words, the control circuit 4 is then electrically powered by the supply circuit 7, it is therefore functional and ready to generate the commands for operating the device 1.
  • the threshold voltage Vt 'of the high voltage transistor has been chosen so that it is greater (in absolute value) than a supply voltage Va sufficient for the control device 4 to be functional.
  • the voltage of the mid-point Vm is equivalent to the supply voltage. This voltage rises gradually with the supply voltage.
  • the high voltage transistor 5 opens, and the voltage applied between its terminals VDM is established substantially at the voltage of the generator Vbus).
  • the leakage current flowing through this transistor leads to continuing the raising of the voltage from the mid-point to the avalanche voltage VBR of the low-voltage transistor 6.
  • the schematic state of the device 1 from this instant t0 ' is shown in Figure 3b.
  • the control device 4 generates an opening control of the switch. DIS at startup, and as long as the supply voltage Va is sufficient.
  • the control device generates the signal DIS for deactivating the switch 7c at time t1, after the point at which the mid-point has reached the avalanche voltage VBR of FIG. Low voltage transistor 6.
  • the switch 7c is open, and the charges of the tank capacity Cm taken to supply the control circuit are not renewed.
  • the supply voltage Va therefore weakens from this moment tl.
  • the opening command of the DIS switch can correspond to the application of a gate voltage at this transistor lower than its threshold voltage, leading to placing it in a blocking state.
  • the series association of the diode with this transistor makes it possible to electrically isolate the reservoir capacitor Cm from the middle point M.
  • the opening command of the DIS switch can correspond to the application of a gate voltage to each of these transistors less than their threshold voltage, leading to placing them in a blocking state.
  • the combination of these two transistors according to one of the previously described configurations makes it possible to electrically isolate the reservoir capacitor Cm from the middle point M.
  • the opening command of the DIS switch may correspond to the delivery of a signal to the control box CTRL, configured to adapt the voltage levels provided to the grids and simultaneously place the low-voltage transistors in depletion mode in a blocking state.
  • the control circuit 4 generates a control of the gate of the low-voltage transistor IN aiming to make it closed and to bring the device 1 into a conduction phase. As seen, this can be caused by the switching of the external switching signal COM.
  • the control circuit 4 took care to precede this event by the deactivation of the switch 7c of the power supply circuit 7 at the instant t1, as we have seen, to avoid keeping this circuit connected to the midpoint. M during this phase.
  • control circuit 4 is configured to disable the switch 7c of the power supply circuit by generating an opening command DIS of this switch, before generating the control signal of the gate of the low voltage transistor IN to make it closed.
  • the control device 4 generates the control signal IN of the gate of the low-voltage transistor 6 to place the device 1 in an on state for a period of time extending to a time t3, as shown in the figures 2 and 3c. During this entire period of time, between the instant t2 and t3, the control circuit 4 maintains the disabling signal DIS of the switch 7c so that it is open.
  • the reservoir capacity Cm continues to be discharged as and when the consumption of charges supplying the control circuit.
  • the control device 4 switches the IN control of the gate of the low-voltage transistor 6 to make it open, and interrupt the conduction phase of the device 1.
  • This time t3 can be caused by the tilting of the signal external switching device COM to the device 1 or established by the control circuit 4 itself, for example at the end of a predetermined period of the conduction phase.
  • the control device 4 switches the disabling signal DIS of the switch 7c, at a time t4, so as to bring the tank capacity Cm into contact with the midpoint M and allow it to be reloaded.
  • the voltage of the midpoint gradually rises towards the avalanche voltage VBR of the low voltage transistor 6.
  • the high voltage transistor 5 is maintained closed and, neglecting the source drain resistance of the high voltage transistor 5, the voltage applied between its terminals VDM is substantially zero.
  • the state of the device between instants t3 and t4 is schematically represented in FIG. 3d.
  • the device is found in a similar to that in which it was at time tO or tO '.
  • the passing and blocking phases of the device can then succeed one another (according to the state of the switching signal COM) and reproduce the cycle which has just been presented.
  • FIG. 2 In a complementary illustration of the operation of a device 1 according to the invention, represented in FIG. 2 a situation where at a time t5 the disabling signal DIS of the switch 7c is generated when the supply voltage Va reaches a predetermined threshold value Vamax, lower than the avalanche voltage VBR of the low voltage transistor 6.
  • This Vamax voltage is chosen to be greater than the nominal supply voltage of the control circuit 4.
  • the control circuit is configured to generate the DIS disabling signal of the switch 7c to open it and stop charging the tank capacity Cm, as soon as the supply voltage Va delivered by the supply circuit 7 exceeds this threshold value Vamax.
  • control circuit is configured to detect the passage of the supply voltage Va under a predetermined minimum Vamin threshold value. Under this supply threshold voltage, the proper operation of the control circuit is no longer guaranteed. Also, the control circuit is configured so that this detection causes the passage of the device 1 in a security configuration. It may for example be to switch or maintain the control signal of the gate of the low voltage transistor 6 in an open state as soon as the supply voltage drops below this minimum threshold Vamin. The device 1 is then placed in a blocking and secure state.
  • FIG. 4 represents an improved version of a switching device 1 according to the invention, on which high voltage and low voltage transistors 6 have not been placed for greater visibility.
  • the supply circuit 7 of the improved version of the device 1 comprises, in the supply circuit, a voltage regulator LDO disposed between the tank capacitor Vm and a regulated capacity Cr connected to the output 7b of the circuit and supplying the supply voltage Va to the control circuit.
  • a voltage regulator LDO disposed between the tank capacitor Vm and a regulated capacity Cr connected to the output 7b of the circuit and supplying the supply voltage Va to the control circuit.
  • the regulation circuit LDO typically comprises a transistor whose gate is connected to the output of a comparator of a reference voltage (such as a bandgap voltage). ) and a voltage representative of that appearing across the regulated capacity Cr.
  • the comparator makes the transistor turn on or off so as to transfer charges from the reservoir capacitor Cm to the regulated capacitor Cr as required so that the voltage Va across the regulated capacitor Cr is substantially equal to a set voltage sufficient to power the control circuit 4 and make it functional.
  • This setpoint voltage is determined by the value of the resistors of a divider bridge whose center point voltage is compared to the reference voltage.
  • a switching device therefore makes it possible to accumulate charges in the tank capacity Cm of the supply circuit 7 during the phases in which the device 1 is blocking.
  • the supply circuit is isolated from the nodes where a strong current flows.
  • the reservoir capacity Cm will thus be chosen so that it accumulates enough charges to supply the control circuit when the supply circuit 7 is isolated.
  • the switch 7c will be kept closed for a long time, during the phases when the device 1 is blocking, in order to sufficiently load the capacitor Cm tank. In practice, this period during which the switch 7c is closed can be very short (for example of the order of a few hundred nanoseconds for example), so as not to limit the ability of the device 1 to switch from one phase to another at a very high frequency.
  • the present invention therefore describes a switching device comprising an internal supply circuit for powering the device without requiring any external power source.
  • the supply circuit is only exposed to voltages of small magnitude (of the order of the avalanche voltage VBR of the low voltage transistor 6), so that it may consist of component he has been easy to manufacture or procure, and therefore inexpensive. It is therefore possible, at low cost, a power external device.
  • a switching device 1 according to the invention can be implemented in a "cascade" configuration.
  • the gate of the high-voltage transistor 5 is not connected to the source of the low-voltage transistor 6, and the control circuit 4 then generates a second control signal IN 'for controlling the gate of the high-voltage transistor 5.
  • the switching device according to the invention can be used in a power conversion system, half bridge configuration. As is well known per se, such a system comprises a high switch and a low switch (each of these switches may be in accordance with the invention) connected to two connection terminals.
  • One of these terminals is connected to a source of continuous high voltage, and the other to ground.
  • the two switches define a midpoint to which a resonant load is connected.

Abstract

L'invention porte sur un dispositif de commutation (1) d'une charge comprenant : - deux bornes de commutations (2a, 2b); - un transistor haute tension en mode déplétion (5) et un transistor basse tension en mode enrichissement (6) disposés en série entre les deux bornes de commutation (2a, 2b) et définissant un point milieu (M); - un circuit de commande (4) générant un signal de commande (IN) de la grille du transistor basse tension (5) pour sélectivement placer le dispositif (1) dans un état passant ou dans un état bloquant; - un circuit d'alimentation (7) comprenant une entrée (7a) reliée au point milieu (M) et une sortie (7b) pour fournir une tension d'alimentation (Va) au circuit de commande (4). Le circuit d'alimentation comprend une capacité réservoir (Cm) reliée à un interrupteur normalement passant (7c) pour charger la capacité réservoir (Cm) et fournir la tension d'alimentation (Va) au circuit de commande (4) lorsque le dispositif de commutation (1) est relié à la charge.

Description

DISPOSITIF DE COMMUTATION AUTOALIMENTE ET PROCEDE DE FONCTIONNEMENT D'UN TEL DISPOSITIF
DOMAINE DE L' INVENTION
La présente invention concerne un dispositif de commutation d'une charge électrique. Plus précisément, elle vise un dispositif de commutation comprenant un circuit de commande et un circuit d'alimentation de ce circuit de commande.
ARRIERE PLAN TECHNOLOGIQUE DE L' INVENTION On connaît de l'état de la technique des dispositifs de commutation d'une charge associant, dans un montage en série, un transistor haute tension en mode déplétion et un transistor basse tension en mode enrichissement. Les transistors sont commandés pour placer sélectivement le dispositif dans un état passant de conduction ou un état bloquant selon la valeur d'un signal extérieur de commutation, appliqué à une broche du dispositif. Le dispositif de commutation est destiné à être intégré dans un système dans lequel il est électriquement relié à une charge constituée d'un circuit de puissance et d'un générateur, et permet de transférer de l'énergie du générateur au circuit de puissance pendant les périodes de conduction. La tension fournie par le générateur est usuellement de forte valeur, par exemple 400V, 600V ou plus.
Les deux transistors peuvent être montés en cascode, et dans ce cas la source du transistor basse tension est électriquement reliée à la grille du transistor haute tension. Un circuit de commande du dispositif peut sélectivement placer ce dispositif dans un état passant ou un état bloquant par l'intermédiaire d'un signal de commande appliqué à la grille du transistor basse tension.
Les deux transistors peuvent alternativement être montés en cascade, et dans ce cas le circuit de commande génère un premier et un deuxième signal de commande appliqués respectivement à la grille du transistor basse tension et à la grille du transistor haute tension pour sélectivement placer ce dispositif dans l'état passant ou l'état bloquant.
Dans les deux cas, le dispositif de commutation est normalement bloquant, c'est-à-dire qu'en l'absence d'alimentation du dispositif, et notamment en l'absence d'alimentation du circuit de commande, le dispositif de commutation est dans un mode inactif, à l'état bloquant. On évite ainsi de refermer le dispositif sur la charge de manière intempestive, ce qui pourrait causer de graves problèmes de sécurité. Outre ses fonctions de commande de l'état de conduction du dispositif de commutation, le circuit de commande veille au bon fonctionnement de celui-ci. En cas de détection d'un dysfonctionnement ou d'un événement susceptible de provoquer un tel dysfonctionnement, il génère le ou les signaux de commande pour placer le dispositif dans un mode inactif, dans lequel il est rendu bloquant. C'est le cas notamment lorsque la température de fonctionnement du dispositif est excessive ou que certaines tensions s'écartent de leurs tensions de consigne.
Le circuit de commande est réalisé sous forme intégrée, par exemple sous la forme d'un système de portes logiques programmables, sous la forme de composants discrets ou sous la forme d'un microcontrôleur convenablement programmé. Dans tous les cas le circuit de commande met en œuvre le séquencement approprié des signaux de commande selon la valeur d'un signal externe de commutation et de l'état interne du dispositif.
Le circuit de commande doit être alimenté électriquement et, à cet effet, le dispositif est usuellement muni d'une broche d'alimentation sur lequel on applique une tension d'alimentation qui provient d'un circuit dédié du système. Ce circuit met en œuvre des composants haute tension tels que des diodes, des inductances et/ou des capacités en vue de prélever de l'énergie à la charge commutée du système et en vue de conditionner cette énergie pour fournir au dispositif une tension d'alimentation de relativement faible amplitude (quelques volts) et stable. Un tel circuit d'alimentation externe est complexe à réaliser et onéreux.
On connaît du document EP0585788 un dispositif de commutation d'une charge électrique comprenant un circuit de commande alimenté en basse tension par la bobine secondaire d'un transformateur externe. Un circuit de démarrage permet d'engager la mise en route du circuit de commande, l'alimentation électrique en cours de fonctionnement du dispositif de commutation nécessitant la tension fournie par le secondaire du transformateur.
Certains documents de l'art antérieur prévoient une source auxiliaire interne d'alimentation d'un dispositif de commutation. C'est le cas notamment du document US9590507.
BREVE DESCRIPTION DE L' INVENTION
Un objet de la présente invention est de proposer une solution alternative aux solutions de l'état de l'art. Un objet de l'invention est notamment de proposer un dispositif de commutation d'une charge comprenant deux bornes de commutations, un transistor haute tension en mode déplétion et un transistor basse tension en mode enrichissement disposés en série entre les deux bornes de commutation et définissant un point milieu, un circuit de commande générant un signal de commande de la grille du transistor basse tension pour sélectivement placer le dispositif dans un état passant ou dans un état bloquant, et un circuit d'alimentation comprenant une entrée reliée au point milieu et une sortie pour fournir une tension d'alimentation au circuit de commande.
Selon l'invention, le circuit d'alimentation comprend une capacité réservoir établissant la tension d'alimentation fournie au circuit de commande lorsque le dispositif de commutation est relié à la charge.
Selon l'invention, le circuit d'alimentation comprend également un interrupteur, disposé entre l'entrée et la capacité réservoir, normalement passant et apte à isoler électriquement la capacité réservoir du point milieu lorsqu'il est ouvert.
Selon l'invention, la capacité réservoir établit la tension d'alimentation fournie au circuit de commande lorsque le dispositif de commutation est relié à la charge, la capacité réservoir étant isolée électriquement du point milieu lorsque l'interrupteur est ouvert.
On dispose de la sorte d'un circuit d'auto alimentation du circuit de commande, et il n'est pas nécessaire de prévoir un circuit d'alimentation externe au dispositif . Selon d'autres caractéristiques avantageuses et non limitatives de l'invention, prises seules ou selon toute combinaison techniquement réalisable : la grille du transistor haute tension est électriquement reliée à la source du transistor basse tension ; le circuit de commande génère un deuxième signal de commande de la grille du transistor haute tension ; l'interrupteur comprend un transistor basse tension en mode déplétion et une diode électriquement reliée à l'entrée du circuit, disposée en série avec le transistor basse tension en mode déplétion ; l'interrupteur comprend un premier et un second transistors basse tension en mode déplétion reliés en série ; le circuit d'alimentation comprend également un circuit de régulation de la tension d'alimentation ; le circuit de commande est configuré pour générer un signal de désactivation de 1 ' interrupteur tant que le premier signal de commande est généré pour placer le dispositif à l'état passant le transistor haute tension présentant une tension seuil supérieure en valeur absolue à la tension d'alimentation suffisante pour rendre le dispositif de commande fonctionnel ; le circuit de commande est configuré pour générer un signal de désactivation de 1 ' interrupteur lorsque la tension d'alimentation (Va) excède une tension seuil ; le circuit de commande est configuré pour placer le dispositif dans une configuration de sécurité lorsque la tension d'alimentation franchit à la baisse une tension seuil minimale .
L' invention concerne également un procédé de commande de ce dispositif de commutation, le procédé comprenant :
- une phase bloquante pendant laquelle le circuit de commande génère un signal de commande pour ouvrir le transistor basse tension ;
- une phase passante pendant lequel le circuit de commande génère un signal de commande pour fermer le transistor basse tension.
Selon l'invention, le procédé comprend la génération par le circuit de commande d'un signal de désactivation pour ouvrir l'interrupteur du circuit d'alimentation au moins pendant la phase passante du dispositif de commutation.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée de l'invention qui va suivre en référence aux figures annexées sur lesquelles :
- la figure 1 représente un exemple de mise en œuvre d'un dispositif de commutation conforme à l'invention ; la figure 2 représente un chronogramme des tensions se développant dans un dispositif conforme à l'invention au cours de son fonctionnement; les figures 3a à 3d représentent schématiquement l'état d'un dispositif conforme à l'invention à différentes étapes de son fonctionnement ; la figure 4 représente une version améliorée d'un dispositif de commutation 1 conforme à l'invention ; la figure 5 représente un exemple de mise en œuvre d'un circuit de régulation de la tension d'alimentation ; la figure 6 représente un premier mode de réalisation d'un circuit d'alimentation conforme à l'invention ;
- les figures 7A à 7D représentent quatre autres modes de réalisation d'un circuit d'alimentation conforme 1 ' invention .
DESCRIPTION DETAILLEE DE L' INVENTION On a représenté sur la figure 1 un exemple de mise en œuvre d'un dispositif de commutation 1 conforme à 1 ' invention .
Il comprend deux bornes de commutation 2a, 2b auxquelles peut être relié, comme cela est représenté en pointillés sur cette figure, une charge P et un générateur G symbolisant un circuit de puissance auquel le dispositif de commutation 1 est connecté. La tension Vbus du générateur G peut être importante, par exemple de 400V , 600 V ou plus, et le courant susceptible de circuler dans le dispositif de puissance de forte intensité, par exemple supérieur à 1 A.
Comme cela est bien connu en soi, le dispositif de commutation 1 permet de sélectivement appliquer la tension du générateur G à la charge P selon l'état d'un signal de commutation COM qui peut être appliqué à une broche du dispositif pour être fourni à un circuit de commande 4. On peut également envisager que ce signal de commutation COM soit généré par le dispositif de commutation 1 lui-même, ou plus précisément par le circuit de commande 4 de ce dispositif 1.
Le dispositif de commutation 1 comprend un transistor haute tension 5 en mode déplétion.
Par « transistor haute tension », on désigne un transistor comprenant un drain, une source et une grille, la tension de faible amplitude appliquée sur la grille (de l'ordre de quelques volts) permettant de rendre électriquement passant ou bloquant la liaison entre le drain et la source. À l'état bloqué, la tension se développant entre le drain et la source peut être de forte amplitude, par exemple de 400V, 600 V ou plus, sans endommager le transistor .
Un transistor en mode déplétion présente une tension seuil négative (typiquement comprise dans le cadre de la présente invention entre -8V et -5V) . La tension entre la grille et la source doit donc être négative, inférieure à cette tension seuil, pour rendre bloquant ce transistor.
Le transistor à haute tension en mode déplétion 5 peut être un transistor HEMT par exemple à base de GaN ou de SiC. Ce type de transistor présente une tension d'avalanche (c'est-à-dire la tension maximale applicable entre le drain et la source du transistor sans qu'il soit endommagé, il peut s'agir d'une tension de claquage) de forte amplitude, choisie pour être supérieure à la tension du générateur du circuit de puissance, par exemple de plus de 400V ou 600V.
Le dispositif de commutation 1 comprend également un transistor basse tension 6 en mode enrichissement, comprenant un drain, une source et une grille.
Un transistor en mode enrichissement présente une tension seuil positive. La tension entre la grille et la source doit donc être positive et supérieure à cette tension seuil, pour rendre passant ce transistor.
Le transistor basse tension 6 peut être un transistor MOSFET à base de silicium. La tension d'avalanche du transistor basse tension est inférieure à celle du transistor haute tension. Elle peut être par exemple de l'ordre de 30 V.
Le transistor basse tension 6 et le transistor haute tension 5 sont disposés en série entre les deux bornes de commutations 2a, 2b. Ainsi, le drain du transistor haute tension est relié à une de ces deux de ces bornes, et la source du transistor basse tension est reliée à l'autre de ces bornes. La source du transistor haute tension 5 est reliée au drain du transistor basse tension 6 au niveau d'un point milieu M. Dans l'exemple représenté, la première borne 2a est reliée à la charge et la seconde borne 2b à une masse électrique du système, mais l'invention n'est nullement limitée à cette configuration particulière.
Dans l'exemple représenté le transistor basse tension 6 et le transistor haute tension 5 sont montés en cascode, c'est-à-dire que la source du transistor basse tension, ici reliée à la masse du système, est également électriquement reliée à la grille du transistor haute tension 5. Dans cette configuration, l'état passant ou bloquant du dispositif 1 est déterminé par la tension appliquée sur la grille du transistor basse tension 6. Une tension supérieure la tension seuil Vt de de ce transistor le rendant passant, et une tension inférieure à cette tension seuil Vt le rendant bloquant.
Poursuivant la description du dispositif de commutation 1 de la figure 1, celui-ci comprend également un circuit de commande 4. Comme on l'a vu, ce circuit peut recevoir un signal de commutation COM élaboré à l'extérieur du dispositif 1. Alternativement, le circuit de commande 4 peut élaborer lui-même ce signal de commutation selon l'état du dispositif, c'est à dire à partir de mesures de certaines tensions ou certains courants prélevées dans le dispositif, et qui lui sont communiquées par l'intermédiaire de liaisons électriques (non représentées sur la figure 1 de principe) . Quelle que soit la manière dont le circuit de commande 4 reçoit ou élabore un signal de commutation COM, le circuit de commande traite ce signal pour établir et générer un signal de commande IN qui est appliqué à la grille du transistor basse tension 6, pour effectivement placer le dispositif 1 dans un état passant ou bloquant.
Comme on l'a vu, le circuit de commande 4 est un circuit actif qui nécessite donc d'être alimenté électriquement. À cet effet, le dispositif 1 est pourvu d'un circuit d'alimentation 7. Ce circuit comprend une entrée 7a reliée électriquement au point milieu M définit entre le transistor haute tension 5 et le transistor basse tension 6. Il dispose également d'une sortie 7b, délivrant une tension d ' alimentation Va, et électriquement reliée au circuit de commande 7. La tension électrique d'alimentation Va est de faible valeur, en comparaison avec les tensions qui peuvent apparaître au niveau des bornes de commutations 2a, 2b ou du pont milieu M. Elle est de l'ordre de quelques volts, comme par exemple 5V.
Le circuit d'alimentation 7 comprend une capacité réservoir Cm dont une des électrodes est reliée à la sortie 7b et l'autre à la masse électrique du système ou à une autre tension de référence de ce système. Cette capacité Cm a pour fonction de stocker des charges prélevées au niveau du point milieu M afin d'établir la tension dite d'alimentation Va qui sera fournie au circuit de commande.
La tension Vm au point milieu M varie au cours du fonctionnement du dispositif entre la masse électrique du système, lorsque le dispositif est passant, et la tension d'avalanche du transistor basse tension lorsque le dispositif est bloquant.
Le circuit d'alimentation 7 comprend un interrupteur 7c disposé entre l'entrée 7a et la borne de la capacité réservoir Cm portant la tension d'alimentation Va, correspondant à la sortie 7b. L'interrupteur 7c est normalement passant, c'est-à-dire que l'interrupteur est fermé en l'absence de toute commande et la capacité réservoir est bien reliée dans ce cas au point milieu M du dispositif 1.
La caractéristique « normalement passante » de l'interrupteur 7c est importante, car elle assure qu'au démarrage du dispositif 1, c'est-à-dire au moment où il est mis en contact électrique avec la charge au niveau des deux bornes de commutation 2a, 2b, le circuit d'alimentation puisse prélever des charges au niveau du point milieu M pour emplir la capacité réservoir Cm, élaborer et fournir une tension d'alimentation Va suffisante, pour qu'elle puisse activer le dispositif de commande 7. Le fonctionnement du dispositif sera explicité plus en détail dans la suite de cet exposé.
L'interrupteur 7c est rendu ouvert par l'intermédiaire d'un signal de désactivation DIS élaboré par le circuit de commande 4. Lorsque le circuit de commande 4 est alimenté et en fonctionnement, il établit et génère le signal de désactivation DIS de l'interrupteur 7c lorsque le signal de commande IN est généré pour placer le dispositif 1 dans un état passant. On isole ainsi le circuit d'alimentation 7 des transistors haute et basse tension 5, 6 pendant cette période de temps. Plus spécifiquement, on isole électriquement la capacité réservoir Cm du point milieu, celui-ci étant traversé par un courant de forte intensité pendant la phase de conduction du dispositif qu'il ne faudrait pas dévier vers le circuit d'alimentation 7.
Comme cela est bien connu en soi, l'interrupteur 7c peut comprendre transistor normalement passant, par exemple un transistor basse tension tel qu'un transistor MOSFET en mode déplétion. La diode intrinsèque (ou diode de « body » ou « body diode » selon la terminologie anglo-saxonne fréquemment employée) , intrinsèquement présente dans de tels transistors, conduit à laisser un courant inverse circuler dans le transistor. Du fait de l'existence de ce courant inverse, un tel transistor ne peut constituer à lui seul un interrupteur permettant, lorsqu'il est ouvert, d'isoler électriquement la capacité réservoir Cm du point milieu M.
Selon un premier mode de réalisation de l'invention, représenté sur la figure 6, l'interrupteur 7c comprend un transistor basse tension en mode déplétion et une diode électriquement reliée à l'entrée 7a du circuit, disposée en série avec le transistor basse tension en mode déplétion.
La présence d'une telle diode présente l'avantage de permettre d'éviter de décharger la capacité réservoir Cm dans l'un des transistors haute ou basse tension 5, 6, et donc de préserver les charges, dans le cas où la tension du point milieu M venait à passer sous la tension d'alimentation disponible aux bornes de la capacité réservoir Cm.
Dans cette situation, l'association en série d'une diode et du transistor basse tension en mode déplétion permet d' isoler électriquement la capacité réservoir Cm du point milieu .
Le transistor basse tension en mode déplétion peut être un transistor à canal P. Dans ce cas, le drain du transistor basse tension en mode déplétion est relié à la borne de la capacité réservoir Cm, sa source à la diode, et sa grille au circuit de commande 4. Ainsi, lorsque le transistor basse tension en mode déplétion est dans un état passant, le courant circule du point milieu vers la capacité réservoir Cm. Lorsque le transistor basse tension en mode déplétion se trouve dans un état bloquant, la diode intrinsèque laissant circuler le courant du drain vers la source, la diode bloque le courant circulant à travers la diode intrinsèque, isolant la capacité réservoir Cm du point milieu M. Alternativement, le transistor basse tension en mode déplétion peut être un transistor à canal N. Dans ce cas, la source du transistor basse tension en mode déplétion est reliée à la borne de la capacité réservoir Cm, son drain à la diode, et sa grille au circuit de commande 4. Ainsi, lorsque le transistor basse tension en mode déplétion est dans un état passant, le courant circule du point milieu vers la capacité réservoir Cm. Lorsque le transistor basse tension en mode déplétion se trouve dans un état bloquant, la diode intrinsèque laissant circuler le courant de la source vers le drain, la diode bloque le courant circulant à travers la diode intrinsèque, isolant la capacité réservoir Cm du point milieu M.
Les figures 7A à 7D représentent quatre autres modes de réalisation conformes à la présente invention. Dans ces quatre modes de réalisation, l'association en série de la diode et du transistor basse tension en mode déplétion est remplacée par un premier et un second transistor basse tension en mode déplétion reliés en série.
Selon un mode de réalisation, le premier et le second transistors basse tension en mode déplétion sont deux transistors à canal N ou deux transistors à canal P, les drains de chaque transistor étant reliés entre eux ou les sources de chaque transistor étant reliées entre elles.
Comme cela est représenté sur la figure 7A, le premier et le second transistors basse tension en mode déplétion peuvent être deux transistors à canal P. Dans cette situation, la diode intrinsèque de chaque transistor laissant circuler le courant de la source vers le drain, il convient de placer ces deux transistors tête-bêche (ou « back-to-back » selon la terminologie anglo-saxonne fréquemment employée) . Ainsi, lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état passant (c'est-à-dire leur état par défaut), le courant circule du point milieu M vers la capacité réservoir Cm. Lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état bloquant, leurs diodes intrinsèques se trouvant dans un sens opposé, le courant ne peut circuler dans aucun sens, isolant la capacité réservoir Cm du point milieu M.
Alternativement, et comme cela est représenté sur la figure 7B, le premier et le second transistors basse tension en mode déplétion peuvent être deux transistors à canal N. Dans cette situation, la diode intrinsèque de chaque transistor laissant circuler le courant du drain vers la source, il convient également de placer ces deux transistors tête-bêche. Ainsi, lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état passant, le courant circule du point milieu M vers la capacité réservoir Cm. Lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état bloquant, leurs diodes intrinsèques se trouvant dans un sens opposé, le courant ne peut circuler dans aucun sens, isolant la capacité réservoir Cm du point milieu M.
Le terme tête-bêche signifie que les drains de chaque transistor sont reliés entre eux ou que les sources de chaque transistor sont reliées entre elles. Ainsi, dans toutes ces configurations, le drain du premier transistor est relié au point milieu, sa source à la source du second transistor, et le drain du second transistor est relié à la borne de la capacité réservoir Cm.
Il est bien entendu possible d'inverser les bornes du premier et du second transistor, de sorte que la source du premier transistor est reliée au point milieu, son drain est relié au drain du second transistor, et la source du second transistor est reliée à la borne de la capacité réservoir Cm.
Selon un autre mode de réalisation, le premier et le second transistor basse tension en mode déplétion sont respectivement un transistor à canal N et un transistor à canal P ou un transistor à canal P et un transistor à canal N, la source du premier transistor étant reliée au drain du second transistor.
Comme cela est représenté sur la figure 7C, le premier transistor peut être un transistor à canal N et le second transistor un transistor à canal P. Dans cette situation, les diodes intrinsèques du transistor à canal N et du transistor à canal P laissant respectivement circuler le courant de la source vers le drain et du drain vers la source, il convient de placer les deux transistors en série, c'est-à-dire que la source du premier transistor est reliée au drain du second transistor. Ainsi, lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état passant, le courant circule du point milieu M vers la capacité réservoir Cm. Lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état bloquant, leurs diodes intrinsèques se trouvant dans un sens opposé, le courant ne peut circuler dans aucun sens, isolant la capacité réservoir Cm du point milieu M.
Alternativement, et comme cela est représenté sur la figure 7D, le premier transistor peut être un transistor à canal P et le second transistor un transistor à canal N.
Dans cette situation, les diodes intrinsèques du transistor à canal P et du transistor à canal N laissant respectivement circuler le courant du drain vers la source et de la source vers le drain, il convient de placer les deux transistors en série, c'est-à-dire que la source du premier transistor est reliée au drain du premier transistor. Ainsi, lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état passant, le courant circule du point milieu M vers la capacité réservoir Cm. Lorsque les deux transistors basse tension en mode déplétion se trouvent dans un état bloquant, leurs diodes intrinsèques se trouvant dans un sens opposé, le courant ne peut circuler dans aucun sens, isolant la capacité réservoir Cm du point milieu M.
Bien entendu, les bornes du premier et du second transistor peuvent être inversées, de sorte que la source du premier transistor soit reliée au point milieu M, le drain du premier transistor soit relié à la source du second transistor, et le drain du second transistor soit relié à la borne de la capacité réservoir Cm.
Quel que soit le mode de réalisation choisi, il est particulièrement avantageux thermiquement que les deux transistors composant l'interrupteur 7c se trouvent simultanément dans un état passant ou dans un état bloquant.
La fermeture simultanée des deux transistors permet de forcer le courant à passer à travers le canal de chacun d'entre eux, court-circuitant leur diode intrinsèque. Un tel court-circuit permet d'éviter une dissipation thermique à travers les diodes intrinsèques.
De manière avantageuse, afin de synchroniser l'état passant ou bloquant de chacun des transistors, l'interrupteur 7c peut comprendre un boîtier de contrôle
CTRL visant à adapter les niveaux de tension fournis aux grilles. Comme cela est représenté sur les figures 7A à 7D, ce boîtier est disposé entre le circuit de commande 4 et la grille de chacun des transistors basse tension en mode déplétion. Le boîtier de contrôle CTRL est configuré de manière à adapter le signal délivré par le circuit de commande pour appliquer une tension à chacune des grilles de manière à placer simultanément les deux transistors dans un état passant ou bloquant. La configuration d'un tel boîtier est bien connue en soi, et peut par exemple comprendre, selon la nature des transistors basse tension en mode déplétion, un inverseur.
Quelle que soit la configuration choisie, l'interrupteur 7c est bien un interrupteur normalement passant, apte à isoler électriquement la capacité réservoir Cm du point milieu M lorsqu'il est ouvert.
On a représenté, à titre d'illustration, sur la figure 2 un chronogramme des tensions se développant dans le dispositif 1 au cours de son fonctionnement.
D'une manière très générale le dispositif 1 est commandé par le circuit de commande 4 pour alterner :
- une phase bloquante pendant laquelle le circuit de commande 4 génère un signal de commande IN pour ouvrir le transistor basse tension 6. Ce signal est à 0V sur le chronogramme de la figure 2. Il est inférieur à la tension seuil Vt du transistor basse tension 6 pour le rendre bloquant.
- une phase passante (ou de conduction) pendant lequel le circuit de commande 4 génère un signal de commande pour fermer le transistor basse tension 6. Ce signal peut être de quelques volts, mais dans tous les cas, supérieur à la tension seuil Vt du transistor basse tension 6 pour le rendre passant. Pendant cette phase également le circuit de commande génère un signal de désactivation DIS pour que l'interrupteur 7c du circuit d'alimentation 7 soit ouvert.
Revenant à la description de la figure 2, on définit l'instant tO comme l'instant auquel on connecte physiquement le dispositif 1 à sa charge. À cet instant tO, la capacité réservoir Cm est donc totalement déchargée, la tension alimentation Va est nulle. Le circuit de commande 4 n'est pas en mesure de fonctionner, c'est-à-dire de fournir les commandes telles que la commande de la grille du transistor basse tension IN ou la commande de l'interrupteur DIS. La configuration « cascode » des transistors basse et haute tension 5, 6 assure toutefois que le dispositif 1 est bien dans un état bloquant.
La figure 3a représente schématiquement l'état de ce dispositif à cet instant de démarrage tO. Le circuit de commande 4 n'est pas alimenté, le signal de commande IN présente une tension nulle inférieure à la tension seuil Vt du transistor basse tension en mode enrichissement, ce transistor est donc ouvert. L'interrupteur normalement passant 7c du circuit d'alimentation 7 est fermé, le circuit de commande 4 étant dans l'incapacité de fournir un signal de désactivation DIS. La tension de la source du transistor haute tension en mode déplétion 5 (correspondant à la tension de commande Vgs de ce transistor) est également sensiblement nul à l'instant tO de démarrage, mais toutefois supérieure à la tension de seuil Vt' de ce transistor (cette tension seuil étant négative) qui est donc passant. Au cours des instants qui suivent l'instant tO, on prélève donc des charges au niveau du point milieu grâce à un courant I circulant dans le transistor haute tension 5, on charge la capacité réservoir Cm et on établit progressivement une tension d'alimentation Va. La tension aux bornes du transistor haute tension VDM, celui-ci étant passant, est sensiblement nulle (et en tout état de cause au moins un ordre de grandeur plus faible que la tension du générateur Vbus) si l'on néglige la résistance drain-source de ce transistor .
Lorsque cette tension d'alimentation Va est suffisante, par exemple lorsqu'elle atteint une tension d'alimentation nominale du circuit de commande 4 qui peut être, par exemple, de 5 V, le circuit de commande 4 s'active et devient fonctionnel. En d'autres termes, le circuit de commande 4 est alors alimenté électriquement par le circuit d'alimentation 7, il est donc fonctionnel et prêt à générer les commandes permettant d'opérer le dispositif 1.
Bien entendu, on a choisi la tension seuil Vt' du transistor haute tension pour qu'elle soit supérieure (en valeur absolue) à une tension d'alimentation Va suffisante pour que le dispositif de commande 4 soit fonctionnel.
La tension du point milieu Vm est équivalente à la tension d'alimentation. Cette tension s'élève donc progressivement avec la tension d'alimentation. On désigne t0', l'instant auquel la progression de la tension du point milieu est telle que la tension de commande Vgs (correspondant à l'opposé de la tension Vm du point milieu) passe sous la tension seuil Vt' du transistor haute tension. À partir de cet instant t0', le transistor haute tension 5 s'ouvre, et la tension s'appliquant entre ses bornes VDM s'établit sensiblement à la tension du générateur Vbus) . Toutefois, le courant de fuite traversant ce transistor conduit à poursuivre l'élévation de la tension du point milieu jusque-là la tension d'avalanche VBR du transistor basse tension 6. L'état schématique du dispositif 1 à partir de cet instant t0' est représenté sur la figure 3b.
Pour éviter de continuer à charger la capacité réservoir Vm jusqu'à la tension d'avalanche VBR du transistor basse tension 6, ce qui pourrait être excessif, on peut prévoir que le dispositif de commande 4 génère une commande d'ouverture de l'interrupteur DIS à son démarrage, et tant que la tension d'alimentation Va est suffisante. Dans l'exemple représenté à titre d'illustration du fonctionnement du dispositif 1 sur les figures 2 et 3b, le dispositif de commande génère le signal DIS de désactivation de l'interrupteur 7c à l'instant tl, postérieur à l'instant auquel le point milieu a atteint la tension d'avalanche VBR du transistor basse tension 6. En conséquence, l'interrupteur 7c est ouvert, et les charges de la capacité réservoir Cm prélevée pour alimenter le circuit de commande ne sont pas renouvelées. La tension d'alimentation Va s'affaiblit donc à partir de cet instant tl.
Par exemple, si l'interrupteur 7c est constitué de l'association en série d'un transistor basse tension en mode déplétion et d'une diode, la commande d'ouverture de l'interrupteur DIS peut correspondre à l'application d'une tension de grille à ce transistor inférieure à sa tension de seuil, conduisant à le placer dans un état bloquant. L'association en série de la diode avec ce transistor permet d' isoler électriquement la capacité réservoir Cm du point milieu M.
Si l'interrupteur 7c est constitué de l'association de deux transistors basse tension en mode déplétion, la commande d'ouverture de l'interrupteur DIS peut correspondre à l'application d'une tension de grille à chacun de ces transistors inférieure à leur tension de seuil, conduisant à les placer dans un état bloquant. L'association de ces deux transistors selon l'une des configurations précédemment décrites permet d' isoler électriquement la capacité réservoir Cm du point milieu M.
Alternativement, et de manière avantageuse, la commande d'ouverture de l'interrupteur DIS peut correspondre à la délivrance d'un signal au boîtier de contrôle CTRL, configuré pour adapter les niveaux de tension fournis aux grilles et placer simultanément les transistors basse tension en mode déplétion dans un état bloquant.
Comme cela a déjà été décrit précédemment, une telle simultanéité permet d'éviter les dissipations thermiques à travers la diode intrinsèque d'un transistor qui serait placé dans un état bloquant tandis que l'autre se trouve dans un état passant. A l'instant t2, le circuit de commande 4 génère une commande de la grille du transistor basse tension IN visant à le rendre fermé et à faire entrer le dispositif 1 dans une phase de conduction. Comme on l'a vue, ceci peut être provoqué par le basculement du signal externe de commutation COM. Le circuit de commande 4 a pris soin de faire précéder cet évènement par la désactivation de l'interrupteur 7c du circuit d'alimentation 7 à l'instant tl pour, comme on l'a vu, éviter de maintenir connecter ce circuit au point milieu M pendant cette phase. D'une manière générale donc, et si ce n'est déjà pas le cas, le circuit de commande 4 est configuré pour désactiver l'interrupteur 7c du circuit d'alimentation en générant une commande d'ouverture DIS de cet interrupteur, avant de générer le signal de commande de la grille du transistor basse tension IN pour le rendre fermé.
Le dispositif de commande 4 génère le signal de commande IN de la grille du transistor basse tension 6 pour placer le dispositif 1 dans un état passant pendant une période de temps s'étendant jusqu'à un instant t3, comme cela est représenté sur les figures 2 et 3c. Pendant toute cette période de temps, entre l'instant t2 et t3, le circuit de commande 4 maintient le signal de désactivation DIS de l'interrupteur 7c pour qu'il soit ouvert. La capacité réservoir Cm continue donc à se décharger au fur et à mesure de la consommation de charges alimentant le circuit de commande .
A l'instant t3, le dispositif de commande 4 fait basculer la commande IN de la grille du transistor basse tension 6 pour le rendre ouvert, et interrompre la phase de conduction du dispositif 1. Cet instant t3 peut être provoqué par le basculement du signal de commutation externe COM au dispositif 1 ou établit par le circuit de commande 4 lui- même, par exemple à l'issue d'une durée déterminée de la phase de conduction.
Peu après cet instant t3, le dispositif de commande 4 fait basculer le signal de désactivation DIS de l'interrupteur 7c, à un instant t4, de manière à remettre en contact la capacité réservoir Cm avec le point milieu M et permettre son rechargement. Entre les instants t3 et t4, qui sont très proches l'un de l'autre, la tension du point milieu s'élève peu à peu vers la tension d'avalanche VBR du transistor basse tension 6. Le transistor haute tension 5 est maintenu fermé et, en négligeant la résistance drain source du transistor haute tension 5, la tension s'appliquant entre ses bornes VDM est sensiblement nulle. L'état du dispositif entre les instants t3 et t4 est schématiquement représenté sur la figure 3d.
A l'instant t4, le dispositif se retrouve dans un similaire à celui dans lequel il se trouvait à l'instant tO ou tO'. Les phases passantes et bloquantes du dispositif peuvent alors se succéder (selon l'état du signal de commutation COM) et reproduire le cycle qui vient d'être présenté .
Dans une illustration complémentaire du fonctionnement d'un dispositif 1 conforme à l'invention, on représenté sur la figure 2 une situation où à un instant t5 le signal de désactivation DIS de l'interrupteur 7c est généré lorsque la tension d'alimentation Va atteint une valeur seuil Vamax prédéterminée, inférieure à la tension d'avalanche VBR du transistor basse tension 6. Cette tension Vamax est choisie pour être supérieure à la tension nominale d'alimentation du circuit de commande 4. Afin d'éviter de charger la capacité réservoir de manière excessive, jusqu'à la tension d'avalanche VBR du transistor basse tension 6, le circuit de commande est configuré pour générer le signal de désactivation DIS de l'interrupteur 7c pour l'ouvrir et cesser de charger la capacité réservoir Cm, dès que la tension d'alimentation Va délivrée par le circuit d'alimentation 7 excède cette valeur seuil Vamax.
On observe ainsi sur la figure 2, à partir de cet instant t5, que l'ouverture de l'interrupteur 7c entraine la remontée brutale de la tension de point milieu Vm à la tension d'avalanche du transistor basse tension VBR. On note également que dans le même temps, tension grille-source Vgs du transistor haute tension 5 passe sous la tension seuil Vt' de ce transistor, ce qui conduit à le rendre ouvert et à appliquer la tension du générateur Vbus entre ses bornes. La consommation électrique du circuit de commande 4 se poursuit, ce qui conduit à faire baisser la tension d'alimentation Va délivrée par le circuit d'alimentation.
Selon une variante non représentée, on peut également prévoir que le circuit de commande soit configuré pour détecter le passage de la tension d'alimentation Va sous une valeur seuil minimale Vamin prédéterminée. Sous cette tension seuil d'alimentation, le bon fonctionnement du circuit de commande n'est plus garanti. Aussi, le circuit de commande est configuré pour que cette détection entraine le passage du dispositif 1 dans une configuration de sécurité. Il peut s'agir par exemple de faire basculer ou maintenir le signal de commande de la grille du transistor basse tension 6 dans un état ouvert dès lors que la tension d'alimentation franchit à la baisse ce seuil minimum Vamin. Le dispositif 1 est alors placé dans un état bloquant et sécurisé.
La figure 4 représente une version améliorée d'un dispositif de commutation 1 conforme à l'invention, sur laquelle on a omis de placer les transistors haute tension 5 et basse tension 6 pour plus de visibilité.
Outre les éléments déjà décrits en relation avec le dispositif de la figure 1, le circuit d'alimentation 7 de la version améliorée du dispositif 1 comprend, dans le circuit d'alimentation, un régulateur de tension LDO disposé entre la capacité réservoir Vm et une capacité régulée Cr connectée à la sortie 7b du circuit et fournissant la tension d'alimentation Va au circuit de commande. Ces composants additionnels permettent de délivrer une tension d'alimentation Va bien moins oscillante que celle apparaissant aux bornes de la capacité réservoir Cm et qui fluctue selon les cycles de chargement-déchargement liée aux phases bloquantes passantes du dispositif 1.
On notera que la tension apparaissant aux bornes de la capacité réservoir Cm est néanmoins fournie au circuit de commande 4, au niveau d'une entrée de mesure haute impédance de ce circuit, la mesure de cette tension pouvant être utile, comme on l'a explicité précédemment, pour générer le signal de désactivation de l'interrupteur 7c lorsque la tension mesurée dépasse un seuil prédéterminé Vamax ou pour placer le dispositif dans une configuration de sécurité si la tension mesurée est inférieure à la tension seuil minimum Vamin . Comme cela est bien connu en soi, et représenté sur la figure 5, le circuit de régulation LDO comprend typiquement un transistor dont la grille est connectée à la sortie d'un comparateur d'une tension de référence (telle qu'une tension de bandgap) et d'une tension représentative de celle apparaissant aux bornes de la capacité régulée Cr. Le comparateur rend passant ou bloquant le transistor de manière à transférer des charges de la capacité réservoir Cm à la capacité régulée Cr selon le besoin de manière à ce que la tension Va aux bornes de la capacité régulée Cr soit sensiblement égale à une tension de consigne suffisante pour alimenter le circuit de commande 4 et le rendre fonctionnel. Cette tension de consigne est déterminée par la valeur des résistances d'un pont diviseur dont la tension de point milieu est comparée à la tension de référence.
Plutôt que d' intégrer cette fonction de régulation de la tension d'alimentation Va dans le circuit d'alimentation 7 comme cela est proposé ici, on peut prévoir d'intégrer cette fonction dans le circuit de commande 4. On retrouve alors une configuration similaire à celle représentée sur la figure 1.
D'une manière générale, un dispositif de commutation conforme à l'invention permet donc d'accumuler des charges dans la capacité réservoir Cm du circuit d'alimentation 7 pendant les phases où le dispositif 1 est bloquant. Pendant les phases où le dispositif 1 est passant, le circuit d'alimentation est isolé des nœuds où circule un fort courant. On choisira donc la capacité réservoir Cm pour qu'elle accumule suffisamment de charges pour alimenter le circuit de commande lorsque le circuit d'alimentation 7 est isolé. Similairement, on maintiendra l'interrupteur 7c fermé suffisamment longtemps, pendant les phases où le dispositif 1 est bloquant, pour charger suffisamment la capacité réservoir Cm. Dans la pratique , cette durée pendant laquelle l'interrupteur 7c est fermé peut-être très courte (par exemple de l'ordre de quelques centaines de nanosecondes par exemple) , de manière à ne pas limiter la faculté du dispositif 1 à commuter d'une phase à l'autre à très grande fréquence .
La présente invention décrit donc un dispositif de commutation comportant un circuit d'alimentation interne permettant d'alimenter le dispositif sans nécessiter une quelconque source d'alimentation externe.
On notera que le circuit d'alimentation n'est exposé qu'a des tensions de faible grandeur (de l'ordre de la tension d'avalanche VBR du transistor basse tension 6), si bien qu' il peut être constitué de composant qu' il ait aisé de fabriquer ou de se fournir, et donc peu onéreux. On peut donc se passer, à faible coût, d'une alimentation externe au dispositif .
Bien entendu l'invention n'est pas limitée au mode de mise en œuvre décrit et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention tel que défini par les revendications.
Ainsi, bien que l'on ait représenté le transistor basse tension 6 et le transistor basse tension 5 reliés en configuration cascode, un dispositif de commutation 1 conforme à l'invention peut être mis en œuvre dans une configuration « cascade ». Dans cette configuration, la grille du transistor haute tension 5 n'est pas reliée à la source du transistor basse tension 6, et le circuit de commande 4 élabore alors un deuxième signal de commande IN' pour commander la grille du transistor haute tension 5. On contrôlera les deux signaux IN, IN' pour permettre d'accumuler des charges dans le circuit d'alimentation 7 pendant les phases ou le dispositif 1 est bloquant comme cela a bien été illustré dans la présente description. Un dispositif de commutation conforme à l'invention peut être employé dans un système de conversion d'énergie, en configuration de demi-pont. Comme cela est bien connu en soi, un tel système comprend un commutateur haut et un commutateur bas (chacun de ces commutateurs pouvant être conforme à l'invention) reliés à deux bornes de connexion.
Une de ces bornes est reliée à une source de haute tension continue, et l'autre à la masse. Les deux commutateurs définissent un point milieu auquel est connectée une charge résonnante .

Claims

REVENDICATIONS
1. Dispositif de commutation (1) d'une charge comprenant deux bornes de commutations (2a, 2b) ;
- un transistor haute tension en mode déplétion
(5) et un transistor basse tension en mode enrichissement
(6) disposés en série entre les deux bornes de commutation (2a, 2b) et définissant un point milieu (M) - un circuit de commande (4) générant un signal de commande (IN) de la grille du transistor basse tension (6) pour sélectivement placer le dispositif (1) dans un état passant ou dans un état bloquant ;
un circuit d'alimentation (7) comprenant une entrée (7a) reliée au point milieu (M) et une sortie
(7b) pour fournir une tension d'alimentation (Va) au circuit de commande (4) ;
le circuit d'alimentation comprenant :
- une capacité réservoir (Cm) établissant la tension d'alimentation (Va) fournie au circuit de commande (4) lorsque le dispositif de commutation (1) est relié à la charge ;
- un interrupteur (7c), disposé entre l'entrée (7a) et la capacité réservoir (Cm) , normalement passant et apte à isoler électriquement la capacité réservoir du point milieu (M) lorsqu'il est ouvert.
2. Dispositif de commutation (1) selon la revendication précédente dans lequel la grille du transistor haute tension (5) est électriquement reliée à la source du transistor basse tension (6).
3. Dispositif de commutation (1) selon la revendication 1 dans lequel le circuit de commande génère un deuxième signal de commande de la grille du transistor haute tension (5) .
4. Dispositif de commutation (1) selon l'une des revendications précédentes dans lequel l'interrupteur (7c) comprend un transistor basse tension en mode déplétion et une diode électriquement reliée à l'entrée (7a) du circuit, disposée en série avec le transistor basse tension en mode déplétion.
5. Dispositif de commutation selon l'une des revendications 1 à 3 dans lequel l'interrupteur (7c) comprend un premier et un second transistors basse tension en mode déplétion reliés en série.
6. Dispositif de commutation (1) selon l'une des revendications précédentes dans lequel le circuit d'alimentation (7) comprend également un circuit de régulation de la tension d'alimentation.
7. Dispositif de commutation (1) selon l'une des revendications précédentes dans lequel le circuit de commande (4) est configuré pour générer un signal de désactivation (DIS) de l'interrupteur (7c) tant que le premier signal de commande est généré pour placer le dispositif (1) à l'état passant.
8. Dispositif de commutation (1) selon l'une des revendications précédentes dans lequel le transistor haute tension (5) présentant une tension seuil (Vt' ) supérieure en valeur absolue à la tension d'alimentation (Va) suffisante pour rendre le dispositif de commande (4) fonctionnel.
9. Dispositif de commutation (1) selon l'une des revendications précédentes dans lequel le circuit de commande (4) est configuré pour générer un signal de désactivation (DIS) de l'interrupteur (7c) lorsque la tension d'alimentation (Va) excède une tension seuil
(Vamax) .
10. Dispositif de commutation (1) selon l'une des revendications précédentes dans lequel le circuit de commande (4) est configuré pour placer le dispositif dans une configuration de sécurité lorsque la tension d'alimentation (Va) franchit à la baisse une tension seuil minimale (Vamin) .
11. Procédé de commande d'un dispositif de commutation
(1) selon l'une des revendications précédentes, le procédé comprenant :
- une phase bloquante pendant laquelle le circuit de commande (4) génère un signal de commande pour ouvrir le transistor basse tension (6) ;
- une phase passante pendant lequel le circuit de commande (4) génère un signal de commande pour fermer le transistor basse tension (6) ;
le procédé comprenant la génération par le circuit de commande (4) d'un signal de désactivation (DIS) pour ouvrir l'interrupteur (7c) du circuit d'alimentation (7) au moins pendant la phase passante du dispositif de commutation (1) .
PCT/FR2018/053111 2017-12-15 2018-12-05 Dispositif de commutation autoalimenté et procédé de fonctionnement d'un tel dispositif WO2019115913A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18830917.3A EP3724980A1 (fr) 2017-12-15 2018-12-05 Dispositif de commutation autoalimenté et procédé de fonctionnement d'un tel dispositif
KR1020207017312A KR20200097725A (ko) 2017-12-15 2018-12-05 자체 전원 스위칭 디바이스 및 이러한 디바이스 동작을 위한 방법
CN201880080261.5A CN111713001A (zh) 2017-12-15 2018-12-05 自供电开关装置以及操作这种装置的方法
US16/954,054 US20200328730A1 (en) 2017-12-15 2018-12-05 Self-powered switching device and operating method for such a device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762221A FR3075508A1 (fr) 2017-12-15 2017-12-15 Dispositif de commutation autoalimente et procede de fonctionnement d'un tel dispositif
FR1762221 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019115913A1 true WO2019115913A1 (fr) 2019-06-20

Family

ID=61750313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/053111 WO2019115913A1 (fr) 2017-12-15 2018-12-05 Dispositif de commutation autoalimenté et procédé de fonctionnement d'un tel dispositif

Country Status (6)

Country Link
US (1) US20200328730A1 (fr)
EP (1) EP3724980A1 (fr)
KR (1) KR20200097725A (fr)
CN (1) CN111713001A (fr)
FR (1) FR3075508A1 (fr)
WO (1) WO2019115913A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087716A1 (fr) * 2021-11-16 2023-05-25 东科半导体(安徽)股份有限公司 Procédé auto-alimenté pour la détection de courant d'un tube de puissance à haute tension intégré

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022015506A (ja) * 2020-07-09 2022-01-21 ローム株式会社 電源制御装置
US11955900B2 (en) * 2021-06-30 2024-04-09 Abb Schweiz Ag Soft turn-off for motor controllers
CN114744988A (zh) * 2022-06-10 2022-07-12 深圳市芯茂微电子有限公司 一种mos管工作电路及电子设备
CN115411754B (zh) * 2022-11-02 2023-01-24 广东电网有限责任公司中山供电局 一种储能电站的进线备自投方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585788A1 (fr) 1992-09-01 1994-03-09 Power Integrations, Inc. Circuit intégré pour alimentation à découpage avec auto-polarisation au démarrage
US20130234621A1 (en) * 2012-03-12 2013-09-12 Cree, Inc. Power supply that maintains auxiliary bias within target range
US20160344381A1 (en) * 2015-05-21 2016-11-24 Delta Electronics, Inc. Switching circuit
US9590507B1 (en) 2015-12-18 2017-03-07 Infineon Technologies Austria Ag Auxiliary supply for a switched-mode power supply controller using bang-bang regulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380769B1 (en) * 2000-05-30 2002-04-30 Semiconductor Components Industries Llc Low voltage output drive circuit
US8004122B2 (en) * 2008-08-13 2011-08-23 Zarlink Semiconductor (U.S.) Inc. Bootstrap supply for switched mode power converter
JP5236822B1 (ja) * 2012-01-30 2013-07-17 シャープ株式会社 ドライバ回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585788A1 (fr) 1992-09-01 1994-03-09 Power Integrations, Inc. Circuit intégré pour alimentation à découpage avec auto-polarisation au démarrage
US20130234621A1 (en) * 2012-03-12 2013-09-12 Cree, Inc. Power supply that maintains auxiliary bias within target range
US20160344381A1 (en) * 2015-05-21 2016-11-24 Delta Electronics, Inc. Switching circuit
US9590507B1 (en) 2015-12-18 2017-03-07 Infineon Technologies Austria Ag Auxiliary supply for a switched-mode power supply controller using bang-bang regulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087716A1 (fr) * 2021-11-16 2023-05-25 东科半导体(安徽)股份有限公司 Procédé auto-alimenté pour la détection de courant d'un tube de puissance à haute tension intégré

Also Published As

Publication number Publication date
US20200328730A1 (en) 2020-10-15
EP3724980A1 (fr) 2020-10-21
KR20200097725A (ko) 2020-08-19
FR3075508A1 (fr) 2019-06-21
CN111713001A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2019115913A1 (fr) Dispositif de commutation autoalimenté et procédé de fonctionnement d'un tel dispositif
EP0579561B1 (fr) Circuit de protection d'un composant de puissance contre des surtensions directes
FR2911736A1 (fr) Dispositif de commande d'un interrupteur de puissance et variateur comprenant un tel dipositif.
FR2583236A1 (fr) Dispositif electrique de puissance " intelligent " a circuit integre monolithique
FR3002703A1 (fr) Dispositif de commande employe dans un systeme d'alimentation electrique a decoupage
EP2645569A1 (fr) Dispositif de commande employé dans un système d'alimentation électrique à découpage
EP2932588B1 (fr) Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique
FR2727586A1 (fr) Circuit de commande pour un interrupteur a semi-conducteur
EP0710052B1 (fr) Starter électronique pour lampe fluorescente
EP3435505A1 (fr) Procédé de contrôle de courants d'enclenchement susceptibles de circuler dans un commutateur de charge, et circuit électronique correspondant
EP0505234B1 (fr) Circuit de détection de l'état d'un interrupteur, notamment d'une clé de contact dans un régulateur de tension d'alternateur
FR3036222A1 (fr) Procede de commande d'un changement d'etat de fonctionnement d'un organe electromecanique, par exemple un relais, et dispositif correspondant
EP2093868B1 (fr) Dispositif et circuit de commande d'un composant électronique de puissance, procédé de pilotage et allumeur associés
WO2019229341A1 (fr) Dispositif de commutation autoalimente et procede de fonctionnement d'un tel dispositif
EP3545621B1 (fr) Dispositif de commutation d'un circuit de puissance
FR2941577A1 (fr) Dispositif de commande d'un transistor jfet
FR2461407A1 (fr) Interrupteurs de courant alternatif utilisant des transistors a effet de champ
EP3258569B1 (fr) Système d'alimentation comprenant une unité de gestion principale et une unité de gestion de réserve
WO2015145006A1 (fr) Système pour stabiliser la tension d'alimentation lors du démarrage d'un moteur dans un véhicule
EP3185389B1 (fr) Dispositif et appareil électrique de génération d'une tension électrique à destination d'une unité de traitement d'informations, système électronique de traitement d'informations associé
FR3076676A1 (fr) Commande pour thyristor a gachette d'anode
EP0031626B1 (fr) Dispositif de commande de la gâchette d'un interrupteur semiconducteur d'un système bidirectionnel
FR3068847A1 (fr) Dispositif de commutation pour transistor sic ou gan mosfet avec circuit de protection contre les surtensions et procede associe
EP0164770A1 (fr) Relais statique pour courant continu basse tension
FR3140495A1 (fr) Circuit d’alimentation électrique pour aéronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18830917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018830917

Country of ref document: EP

Effective date: 20200715