WO2019114583A1 - 一种基于交变电场的绝对式时栅角位移传感器 - Google Patents

一种基于交变电场的绝对式时栅角位移传感器 Download PDF

Info

Publication number
WO2019114583A1
WO2019114583A1 PCT/CN2018/119280 CN2018119280W WO2019114583A1 WO 2019114583 A1 WO2019114583 A1 WO 2019114583A1 CN 2018119280 W CN2018119280 W CN 2018119280W WO 2019114583 A1 WO2019114583 A1 WO 2019114583A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrode
wave signal
pole piece
reflection
Prior art date
Application number
PCT/CN2018/119280
Other languages
English (en)
French (fr)
Inventor
刘小康
于治成
彭凯
郑方燕
蒲红吉
Original Assignee
重庆理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆理工大学 filed Critical 重庆理工大学
Priority to JP2020513923A priority Critical patent/JP6821288B2/ja
Priority to GB2002131.7A priority patent/GB2579311B/en
Priority to EP18888532.1A priority patent/EP3667229B8/en
Publication of WO2019114583A1 publication Critical patent/WO2019114583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders

Definitions

  • the cloth composition wherein the 4n 1 +1 fan annular pole pieces are connected into a group to form an A excitation phase, and the 4n 1 + 2 fan annular pole pieces are connected into a group to form a B excitation phase, the 4th 1 + 3 fan
  • the annular pole pieces are connected in a group to form a C excitation phase, and the 4n 1 + 4 fan annular pole pieces are connected in a group to form a D excitation phase
  • n 1 sequentially takes all integers from 0 to M 1 -1
  • M 1 represents an excitation electrode. The number of poles.
  • the 4n 4 + 4 fan annular pole pieces II are connected in a group to form the D 2 reflection group, n 4 sequentially takes all integers from 0 to M 4 -1, and M 4 represents the number of opposite poles of the reflective electrode II;
  • a 2 The reflection group is connected to the A sensing group, the B 2 reflection group is connected to the B induction group, the C 2 reflection group is connected to the C induction group, and the D 2 reflection group is connected to the D induction group.
  • the receiving electrode I is composed of a circle of the same blade-shaped pole piece I arranged in the circumferential direction with equal arc lengths, the radial height of the blade-shaped pole piece I being smaller than the radial height of the fan-shaped pole piece I, the fan
  • the receiving electrode II is composed of a circle of the same blade-shaped pole piece II which are equally spaced in the circumferential direction, and the radial height of the blade-shaped pole piece II is smaller than the radial height of the fan-shaped pole piece II, the fan
  • the four-way traveling wave signal induced by the sensing electrode is used as the excitation signal of the secondary coupling modulation, and the excitation signal of the secondary coupling modulation is reflected back to the receiving electrode I, II through the reflective electrode I, II, and the receiving electrode I, II
  • the output of the traveling wave signal, the rotor base body does not need to lead the signal output line, and the application range is wider.
  • the wave signal is processed by the phase difference after the phase to obtain the coarse measured polar positioning value; the coarse measuring position and the fine measuring are both the first and second fine measuring sinusoidal traveling wave signals, and the combination of "rough measurement + fine measurement"
  • the method not only realizes the absolute angular displacement measurement, but also reduces the signal difference, thereby ensuring the measurement accuracy.
  • the receiving electrodes I and II adopt a symmetrical differential structure, which improves the stability of measurement, suppresses common mode interference, enhances signal amplitude, and is more industrially adaptable.
  • FIG. 1 is a schematic view of an electrode on a stator base and an electrode on a rotor base in the present invention.
  • Figure 4 is a schematic view of the lead of the rotor base of the present invention.
  • FIG. 5 is a block diagram showing the principle of signal processing of the present invention.
  • An absolute time-gear angular displacement sensor based on an alternating electric field as shown in FIGS. 1 to 4 includes a stator base 1 and a rotor base 2 mounted coaxially with the stator base 1, a lower surface of the rotor base 2 and an upper surface of the stator base 1.
  • the pair is parallel and has a gap of 0.5 mm.
  • the stator base 1 and the rotor base 2 are made of ceramic as a base material.
  • the sensing electrode 2-1 is composed of a circle of identical double cosine-shaped pole pieces arranged at equal intervals in the circumferential direction, and the central angle corresponding to the interval (ie, the central angle of the interval between two adjacent double cosine-shaped pole pieces) is 4.5.
  • each double cosine pole piece has a radial height of 3.4mm and a corresponding central angle of 18°; wherein the 4n 2 +1 double cosine pole piece in the clockwise direction passes through the first induction
  • the signal connection lines are connected into a group to form an A-sensing group, and the 4n 2 + 2 double cosine-shaped pole pieces are connected into a group through a second sensing signal connection line to form a B-induction group, and
  • the B 2 reflection group is connected to the B induction group through the signal lead, and the 4n 4 + 3 fan annular pole piece II is connected into a group through the seventh reflection signal connection line to form a C 2 reflection group, and the C 2 reflection group passes the signal lead induction and group C is connected to the first sector number + 4n 4 ii annular pole pieces through the eighth root reflex signal cable connected to Group, consisting of D 2 group reflection, reflection groups D 2 and D through a signal lead connected to sensor group, n 4 sequentially takes all integer of 0 to 2.
  • Second line wave signal The first way of measuring the sinusoidal traveling wave signal U o1 is synthesized by the subtraction circuit:
  • the first sinusoidal traveling wave signal U o1 (which may also be the second sine traveling wave signal U o2 ) and the same-frequency reference sinusoidal signal U r with a phase fixed are formed into a square wave by the shaping circuit and then sent to the FPGA.
  • the phase ratio is compared, and the phase difference after the phase is represented by the number of interpolated high-frequency clock pulses, and is transformed to obtain the refined angular displacement value; the first road sine wave signal U o1 and the first
  • the two-way fine-sampling sinusoidal traveling wave signal U o2 is formed into a square wave by the shaping circuit and then sent to the FPGA signal processing system for phase comparison, the phase difference after the phase ratio and the same-frequency reference signal U which is formed by the phase of the square wave.
  • the r then performs the phase comparison, the phase difference after the phase is represented by the number of interpolated high frequency clock pulses, and is transformed to obtain the coarse measured polar positioning value, and the FPGA signal processing system will accurately measure the angular displacement value and the coarse measurement pair.
  • the polar positioning values are combined to obtain an absolute angular displacement value (see Figure 5).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种基于交变电场的绝对式时栅角位移传感器,包括转子基体(2)和定子基体(1),转子基体(2)下表面设有反射电极Ⅰ(2-2)、感应电极(2-1)、反射电极Ⅱ(2-3),反射电极Ⅰ、Ⅱ(2-2、2-3)分别与感应电极(2-1)相连;定子基体(1)上表面设有接收电极Ⅰ(1-2)、激励电极(1-1)和接收电极Ⅱ(1-3),激励电极(1-1)的四个激励相分别连接四路激励信号,接收电极Ⅰ(1-2)输出第一路精测正弦行波信号,接收电极Ⅱ(1-3)输出第二路精测正弦行波信号,利用第一路与第二路精测正弦行波信号的相位差计算粗测对极定位值,利用第一路或者第二路精测正弦行波信号计算精测角位移值,将精测角位移值与粗测对极定位值相结合得到绝对角位移值。传感器能实现绝对角位移测量,同时扩大应用范围,增强工业适应性。

Description

一种基于交变电场的绝对式时栅角位移传感器 技术领域
本发明涉及精密角位移传感器,具体涉及一种基于交变电场的绝对式时栅角位移传感器。
背景技术
传统的精密位移测量主要是采用光栅、磁栅和容栅等栅式传感器,其测量基准采用的是空间均分的周期性栅线,通过对栅线的计数而得到角位移量。为了提高测量精度和分辨率,这些栅式传感器采用精密刻线且需要依靠高精度电子细分技术,复杂严苛的刻线工艺和电子细分电路,从而造成传感器的成本高,抗干扰能力差。近年来研制出一种以时钟脉冲作为位移测量基准的时栅传感器,并在此基础上研制出了一种电场式时栅角位移传感器(公开号为CN103968750 A),这种传感器以高频时钟脉冲作为测量基准,采用平行电容板构建交变电场进行精密位移测量,虽然能够实现精密测量,但是其仍然存在如下问题:(1)采用增量计数方式,存在累计误差且只能识别一个周期内的角位移量;(2)感应信号是从转子基体上的转子电极输出,转子基体上需要引信号输出线,有些场合不能使用,应用范围窄。
发明内容
本发明的目的是提供一种基于交变电场的绝对式时栅角位移传感器,以实现绝对角位移测量,同时扩大应用范围,增强工业适应性。
本发明所述的基于交变电场的绝对式时栅角位移传感器,包括定子基体和与定子基体同轴安装的转子基体,转子基体下表面与定子基体上表面正对平行,并留有间隙,转子基体下表面设有感应电极,定子基体上表面设有与感应电极正对的激励电极,所述激励电极由一圈径向高度相同、圆心角相等的扇环形极片沿圆周方向等间隔排布组成,其中,第4n 1+1号扇环形极片连成一组,组成A激励相,第4n 1+2号扇环形极片连成一组,组成B激励相,第4n 1+3号扇环形极片连成一组,组成C激励相,第4n 1+4号扇环形极片连成一组,组成D激励相,n 1依次取0至M 1-1的所有整数,M 1表示激励电极的对极数。
所述定子基体上表面设有差动式的接收电极Ⅰ和差动式的接收电极Ⅱ,接收电极Ⅰ位于激励电极的外侧,接收电极Ⅱ位于激励电极的内侧,所述转子基体下表面设有与接收电极Ⅰ正对的反射电极Ⅰ和与接收电极Ⅱ正对的反射电极Ⅱ(即反射电极Ⅰ位于感应电极的 外侧,反射电极Ⅱ位于感应电极的内侧);所述感应电极由一圈相同的双余弦形极片沿圆周方向等间隔排布组成,该双余弦形极片的径向高度小于所述扇环形极片的径向高度,其中,第4n 2+1号双余弦形极片连成一组,组成A感应组,第4n 2+2号双余弦形极片连成一组,组成B感应组,第4n 2+3号双余弦形极片连成一组,组成C感应组,第4n 2+4号双余弦形极片连成一组,组成D感应组,n 2依次取0至M 2-1的所有整数,M 2表示感应电极的对极数;所述反射电极Ⅰ具有A 1反射组、B 1反射组、C 1反射组和D 1反射组,A 1、B 1、C 1、D 1反射组分别与对应的A、B、C、D感应组相连,所述反射电极Ⅱ具有A 2反射组、B 2反射组、C 2反射组和D 2反射组,A 2、B 2、C 2、D 2反射组分别与对应的A、B、C、D感应组相连。
测量时,转子基体与定子基体相对平行转动,对定子基体的A、B、C、D激励相分别施加相位依次相差90°的四路同频等幅正弦激励电压,激励信号经激励电极与感应电极之间的一次耦合电场,在感应电极上产生四路同频等幅相位相差90°的电信号,这四路电信号经反射电极Ⅰ与接收电极Ⅰ以及反射电极Ⅱ与接收电极Ⅱ之间的二次耦合电场,在接收电极Ⅰ上产生相位相差180°的同频等幅的第一、第二行波信号,在接收电极Ⅱ上产生相位相差180°的同频等幅的第三、第四行波信号,第一行波信号与第二行波信号经减法电路合成第一路精测正弦行波信号,第三行波信号与第四行波信号经减法电路合成第二路精测正弦行波信号,第一路精测正弦行波信号或者第二路精测正弦行波信号经处理后得到精测角位移值(即对极内角位移值),第一路精测正弦行波信号与第二路精测正弦行波信号比相后的相位差经处理后得到粗测对极定位值,将精测角位移值与粗测对极定位值相结合得到绝对角位移值。
所述感应电极中的双余弦形极片沿圆周方向展开后的形状为两条幅值相等、相位相差180°的余弦曲线在[-π,π]区间围成的全封闭轴对称图形。
所述激励电极中的相邻两个扇环形极片之间间隔的圆心角等于一个扇环形极片的圆心角。
所述反射电极Ⅰ由一圈径向高度相同、圆心角相等的扇环形极片Ⅰ沿圆周方向等间隔排布组成;其中,第4n 3+1号扇环形极片Ⅰ连成一组,组成所述A 1反射组,第4n 3+2号扇环形极片Ⅰ连成一组,组成所述B 1反射组,第4n 3+3号扇环形极片Ⅰ连成一组,组成所述C 1反射组,第4n 3+4号扇环形极片Ⅰ连成一组,组成所述D 1反射组,n 3依次取0至M 3-1的 所有整数,M 3表示反射电极Ⅰ的对极数;A 1反射组与A感应组相连,B 1反射组与B感应组相连,C 1反射组与C感应组相连,D 1反射组与D感应组相连。
反射电极Ⅱ由一圈径向高度相同、圆心角相等的扇环形极片Ⅱ沿圆周方向等间隔排布组成;其中,第4n 4+1号扇环形极片Ⅱ连成一组,组成所述A 2反射组,第4n 4+2号扇环形极片Ⅱ连成一组,组成所述B 2反射组,第4n 4+3号扇环形极片Ⅱ连成一组,组成所述C 2反射组,第4n 4+4号扇环形极片Ⅱ连成一组,组成所述D 2反射组,n 4依次取0至M 4-1的所有整数,M 4表示反射电极Ⅱ的对极数;A 2反射组与A感应组相连,B 2反射组与B感应组相连,C 2反射组与C感应组相连,D 2反射组与D感应组相连。
接收电极Ⅰ由一圈相同的扇叶形极片Ⅰ沿圆周方向间隔相等的弧长排布组成,该扇叶形极片Ⅰ的径向高度小于扇环形极片Ⅰ的径向高度,该扇叶形极片Ⅰ的形状为[-π,0]区间的两条相同的余弦极坐标曲线段Ⅰ在起止点与同心的内外圆弧相交而围成的全封闭图形Ⅰ,所述的两条相同的余弦极坐标曲线段Ⅰ的起始点所夹的圆心角为α;其中,第2n 5+1号扇叶形极片Ⅰ连成一组,作为第一行波信号的输出电极,第2n 5+2号扇叶形极片Ⅰ连成一组,作为第二行波信号的输出电极,n 5依次取0至M 5-1的所有整数,M 5表示接收电极Ⅰ的对极数,M 5=M 3
接收电极Ⅱ由一圈相同的扇叶形极片Ⅱ沿圆周方向间隔相等的弧长排布组成,该扇叶形极片Ⅱ的径向高度小于扇环形极片Ⅱ的径向高度,该扇叶形极片Ⅱ的形状为[-π,0]区间的两条相同的余弦极坐标曲线段Ⅱ在起止点与同心的内外圆弧相交而围成的全封闭图形Ⅱ,所述的两条相同的余弦极坐标曲线段Ⅱ的起始点所夹的圆心角为β;其中,第2n 6+1号扇叶形极片Ⅱ连成一组,作为第三行波信号的输出电极,第2n 6+2号扇叶形极片Ⅱ连成一组,作为第四行波信号的输出电极,n 6依次取0至M 6-1的所有整数,M 6表示接收电极Ⅱ的对极数,M 6=M 4
本发明具有如下效果:
(1)将感应电极感应到的四路行波信号作为二次耦合调制的激励信号,二次耦合调制的激励信号经反射电极Ⅰ、Ⅱ反射回接收电极Ⅰ、Ⅱ,由接收电极Ⅰ、Ⅱ输出行波信号, 转子基体无需引信号输出线,应用范围更广。
(2)对第一路精测正弦行波信号或者第二路精测正弦行波信号进行处理得到精测角位移值,将第一路精测正弦行波信号与第二路精测正弦行波信号比相后的相位差进行处理得到粗测对极定位值;粗测定位与精测均采用第一路、第二路精测正弦行波信号,“粗测+精测”相结合的方式,既实现了绝对角位移测量,又减小了信号的差异性,进而保证了测量精度。
(3)接收电极Ⅰ、Ⅱ采用对称的差动结构,提高了测量的稳定性,抑制了共模干扰,增强了信号幅值,工业适应性更强。
附图说明
图1为本发明中定子基体上的电极与转子基体上的电极示意图。
图2为本发明中定子基体与转子基体的安装示意图。
图3为本发明中定子基体的引线示意图。
图4为本发明中转子基体的引线示意图。
图5为本发明的信号处理原理框图。
具体实施方式
下面结合附图对本发明作详细说明。
如图1至图4所示的基于交变电场的绝对式时栅角位移传感器,包括定子基体1和与定子基体1同轴安装的转子基体2,转子基体2下表面与定子基体1上表面正对平行,并留有0.5mm间隙,定子基体1、转子基体2均采用陶瓷作为基体材料。
如图1至图3所示,定子基体上表面由外圈到内圈依次设有差动式的接收电极Ⅰ1-2、激励电极1-1和差动式的接收电极Ⅱ1-3。
激励电极1-1由一圈内圆半径为17.72mm、径向高度为6.4mm、圆心角为2.25°的扇环形极片沿圆周方向等间隔排布组成,该间隔对应的圆心角(即相邻两个扇环形极片之间间隔的圆心角)为2.25°,激励电极1-1的对极数M 1=20,每相邻的四个扇环形极片形成一个对极,则总共有80个扇环形极片;其中,沿圆周顺时针方向第4n 1+1号扇环形极片通过第一根激励信号连接线连成一组,组成A激励相,第4n 1+2号扇环形极片通过第二根激励信号连接线连成一组,组成B激励相,第4n 1+3号扇环形极片通过第三根激励信号连接线连成一组,组成C激励相,第4n 1+4号扇环形极片通过第四根激励信号连接线连成一组, 组成D激励相,n 1依次取0至19的所有整数。
接收电极Ⅰ1-2由一圈相同的扇叶形极片Ⅰ沿圆周方向间隔相等的弧长排布组成,接收电极Ⅰ1-2的对极数M 5=4,沿圆周顺时针方向,每相邻的两个扇叶形极片Ⅰ形成一个对极,则总共有8个扇叶形极片Ⅰ,相邻两个扇叶形极片Ⅰ之间间隔的弧长为0.2mm,一个扇叶形极片Ⅰ和一个弧长间隔所对应的圆心角为45°,扇叶形极片Ⅰ的形状为[-π,0]区间的两条相同的余弦极坐标曲线段Ⅰ在起止点与同心的内外圆弧相交而围成的全封闭图形Ⅰ,即[-π,0]区间的两条相同的余弦极坐标曲线段Ⅰ中的一条在其起始点与内圆弧相交、在其终止点与外圆弧相交,另一条也在其起始点与内圆弧相交、在其终止点与外圆弧相交,从而围成全封闭图形Ⅰ,全封闭图形Ⅰ(相当于扇叶形极片Ⅰ)的内圆半径为25.78mm,径向高度为2.12mm,则其外圆半径为27.9mm,两条相同的余弦极坐标曲线段Ⅰ的起始点所夹的圆心角(即全封闭图形Ⅰ的内圆弧对应的圆心角)α=44.56°;其中,沿圆周顺时针方向第2n 5+1号(即奇数号)扇叶形极片Ⅰ通过信号输出连接线连成一组,作为第一行波信号的输出电极,第2n 5+2号(即偶数号)扇叶形极片Ⅰ通过信号输出连接线连成一组,作为第二行波信号的输出电极,n 5依次取0至3的所有整数。
接收电极Ⅱ1-3由一圈相同的扇叶形极片Ⅱ沿圆周方向间隔相等的弧长排布组成,接收电极Ⅱ1-3的对极数M 6=3,沿圆周顺时针方向,每相邻的两个扇叶形极片Ⅱ形成一个对极,则总共有6个扇叶形极片Ⅱ,相邻两个扇叶形极片Ⅱ之间间隔的弧长为0.2mm,一个扇叶形极片Ⅱ和一个弧长间隔所对应的圆心角为60°,扇叶形极片Ⅱ的形状为[-π,0]区间的两条相同的余弦极坐标曲线段Ⅱ在起止点与同心的内外圆弧相交而围成的全封闭图形Ⅱ,即[-π,0]区间的两条相同的余弦极坐标曲线段Ⅱ中的一条在其起始点与内圆弧相交、在其终止点与外圆弧相交,另一条也在其起始点与内圆弧相交、在其终止点与外圆弧相交,从而围成全封闭图形Ⅱ,全封闭图形Ⅱ(相当于扇叶形极片Ⅱ)的内圆半径为13mm,径向高度为3.08mm,则其外圆半径为16.08mm,两条相同的余弦极坐标曲线段Ⅱ的起始点所夹的圆心角(即全封闭图形Ⅱ的内圆弧对应的圆心角)β=59.12°;其中,沿圆周顺时针方向第2n 6+1号(即奇数号)扇叶形极片Ⅱ通过信号输出连接线连成一组,作为第三行波信号的输出电极,第2n 6+2号(即偶数号)扇叶形极片Ⅱ通过信号输出连接线连成一组,作为第四行波 信号的输出电极,n 6依次取0至2的所有整数。
如图1、图2、图4所示,转子基体2下表面由外圈到内圈依次设有反射电极Ⅰ2-2、感应电极2-1和反射电极Ⅱ2-3,反射电极Ⅰ2-2与接收电极Ⅰ1-2正对,感应电极2-1与激励电极1-1正对,反射电极Ⅱ2-3与接收电极Ⅱ1-3正对。
感应电极2-1由一圈相同的双余弦形极片沿圆周方向等间隔排布组成,该间隔对应的圆心角(即相邻两个双余弦形极片之间间隔的圆心角)为4.5°,感应电极2-1的对极数M 2=4,每相邻的四个双余弦形极片形成一个对极,则总共有16个双余弦形极片,双余弦形极片沿圆周方向展开后的形状为两条幅值相等、相位相差180°的余弦曲线在[-π,π]区间围成的全封闭轴对称图形,16个双余弦形极片的波谷到圆心的距离都为19.22mm,每个双余弦形极片的径向高度为3.4mm、对应的圆心角为18°;其中,沿圆周顺时针方向第4n 2+1号双余弦形极片通过第一根感应信号连接线连成一组,组成A感应组,第4n 2+2号双余弦形极片通过第二根感应信号连接线连成一组,组成B感应组,第4n 2+3号双余弦形极片通过第三根感应信号连接线连成一组,组成C感应组,第4n 2+4号双余弦形极片通过第四根感应信号连接线连成一组,组成D感应组,n 2依次取0至3的所有整数。
反射电极Ⅰ2-2由一圈内圆半径为25.53mm、径向高度为2.62mm、圆心角为22.05°的扇环形极片Ⅰ沿圆周方向等间隔排布组成,该间隔对应的圆心角(即相邻两个扇环形极片Ⅰ之间间隔的圆心角)为0.45°,该间隔对应的内圆弧长为0.2mm,反射电极Ⅰ2-2的对极数M 3=4,每相邻的四个扇环形极片Ⅰ形成一个对极,则总共有16个扇环形极片Ⅰ;其中,沿圆周顺时针方向第4n 3+1号扇环形极片Ⅰ通过第一根反射信号连接线连成一组,组成A 1反射组,A 1反射组通过信号引线与A感应组相连,第4n 3+2号扇环形极片Ⅰ通过第二根反射信号连接线连成一组,组成B 1反射组,B 1反射组通过信号引线与B感应组相连,第4n 3+3号扇环形极片Ⅰ通过第三根反射信号连接线连成一组,组成C 1反射组,C 1反射组通过信号引线与C感应组相连,第4n 3+4号扇环形极片Ⅰ通过第四根反射信号连接线连成一组,组成D 1反射组,D 1反射组通过信号引线与D感应组相连,n 3依次取0至3的所有整数。
反射电极Ⅱ2-3由一圈内圆半径为12.75mm、径向高度为3.58mm、圆心角为29.1°的 扇环形极片Ⅱ沿圆周方向等间隔排布组成,该间隔对应的圆心角(即相邻两个扇环形极片Ⅱ之间间隔的圆心角)为0.9°,该间隔对应的内圆弧长为0.2mm,反射电极Ⅱ2-3的对极数M 4=3,每相邻的四个扇环形极片Ⅱ形成一个对极,则总共有12个扇环形极片Ⅱ;其中,沿圆周顺时针方向第4n 4+1号扇环形极片Ⅱ通过第五根反射信号连接线连成一组,组成A 2反射组,A 2反射组通过信号引线与A感应组相连,第4n 4+2号扇环形极片Ⅱ通过第六根反射信号连接线连成一组,组成B 2反射组,B 2反射组通过信号引线与B感应组相连,第4n 4+3号扇环形极片Ⅱ通过第七根反射信号连接线连成一组,组成C 2反射组,C 2反射组通过信号引线与C感应组相连,第4n 4+4号扇环形极片Ⅱ通过第八根反射信号连接线连成一组,组成D 2反射组,D 2反射组通过信号引线与D感应组相连,n 4依次取0至2的所有整数。
测量时,转子基体2与定子基体1相对平行转动,对定子基体的A、B、C、D激励相分别施加相位依次相差90°的四路同频等幅正弦激励电压(即四根激励信号连接线中分别通入相位依次相差90°的四路同频等幅正弦激励信号),激励信号经激励电极1-1与感应电极2-1之间的一次耦合电场,在感应电极2-1上产生四路同频等幅相位相差90°的电信号,这四路电信号经反射电极Ⅰ2-2与接收电极Ⅰ1-2以及反射电极Ⅱ2-3与接收电极Ⅱ1-3之间的二次耦合电场;在第一行波信号的输出电极上产生第一行波信号
Figure PCTCN2018119280-appb-000001
在第二行波信号的输出电极上产生第二行波信号
Figure PCTCN2018119280-appb-000002
在第三行波信号的输出电极上产生第三行波信号
Figure PCTCN2018119280-appb-000003
在第四行波信号的输出电极上产生第四行波信号
Figure PCTCN2018119280-appb-000004
第一行波信号
Figure PCTCN2018119280-appb-000005
与第二行波信号
Figure PCTCN2018119280-appb-000006
经减法电路合成第一路精测正弦行波信号U o1
U o1=KeU msin[ωt+(M 1+M 5)θ]=KeU msin(ωt+24θ);
第三行波信号
Figure PCTCN2018119280-appb-000007
与第四行波信号
Figure PCTCN2018119280-appb-000008
经减法电路合成第二路精测正弦行波信号U o2
U o2=KeU msin[ωt+(M 1+M 6)θ]=KeU msin(ωt+23θ);
其中激励信号的幅值U m=5V,频率f=40KHz,角频率ω=2πf=8×10 4π,Ke为电场耦合系数,θ为精测角位移值。
第一路精测正弦行波信号U o1(也可以是第二路精测正弦行波信号U o2)与一路相位固定的同频参考正弦信号U r经整形电路整形成方波后送入FPGA信号处理系统中进行比相,比 相后的相位差由插补的高频时钟脉冲个数表示,并经变换后得到精测角位移值;第一路精测正弦行波信号U o1与第二路精测正弦行波信号U o2经整形电路整形成方波后送入FPGA信号处理系统中进行比相,比相后的相位差与一路整形成方波的相位固定的同频参考信号U r再进行比相,比相后的相位差由插补的高频时钟脉冲个数表示,并经变换后得到粗测对极定位值,FPGA信号处理系统将精测角位移值与粗测对极定位值相结合得到绝对角位移值(参见图5)。

Claims (5)

  1. 一种基于交变电场的绝对式时栅角位移传感器,包括定子基体(1)和与定子基体(1)同轴安装的转子基体(2),转子基体下表面与定子基体上表面正对平行,并留有间隙,转子基体下表面设有感应电极(2-1),定子基体上表面设有与感应电极(2-1)正对的激励电极(1-1),所述激励电极(1-1)由一圈径向高度相同、圆心角相等的扇环形极片沿圆周方向等间隔排布组成,其中,第4n 1+1号扇环形极片连成一组,组成A激励相,第4n 1+2号扇环形极片连成一组,组成B激励相,第4n 1+3号扇环形极片连成一组,组成C激励相,第4n 1+4号扇环形极片连成一组,组成D激励相,n 1依次取0至M 1-1的所有整数,M 1表示激励电极的对极数;其特征是:
    所述定子基体上表面设有差动式的接收电极Ⅰ(1-2)和差动式的接收电极Ⅱ(1-3),接收电极Ⅰ(1-2)位于激励电极(1-1)的外侧,接收电极Ⅱ(1-3)位于激励电极的内侧,所述转子基体下表面设有与接收电极Ⅰ正对的反射电极Ⅰ(2-2)和与接收电极Ⅱ正对的反射电极Ⅱ(2-3);所述感应电极(2-1)由一圈相同的双余弦形极片沿圆周方向等间隔排布组成,该双余弦形极片的径向高度小于所述扇环形极片的径向高度,其中,第4n 2+1号双余弦形极片连成一组,组成A感应组,第4n 2+2号双余弦形极片连成一组,组成B感应组,第4n 2+3号双余弦形极片连成一组,组成C感应组,第4n 2+4号双余弦形极片连成一组,组成D感应组,n 2依次取0至M 2-1的所有整数,M 2表示感应电极的对极数;所述反射电极Ⅰ(2-2)具有A 1反射组、B 1反射组、C 1反射组和D 1反射组,A 1、B 1、C 1、D 1反射组分别与对应的A、B、C、D感应组相连,所述反射电极Ⅱ(2-3)具有A 2反射组、B 2反射组、C 2反射组和D 2反射组,A 2、B 2、C 2、D 2反射组分别与对应的A、B、C、D感应组相连;
    测量时,转子基体与定子基体相对平行转动,对定子基体的A、B、C、D激励相分别施加相位依次相差90°的四路同频等幅正弦激励电压,接收电极Ⅰ上产生相位相差180°的同频等幅的第一、第二行波信号,接收电极Ⅱ上产生相位相差180°的同频等幅的第三、第四行波信号,第一行波信号与第二行波信号经减法电路合成第一路精测正弦行波信号,第三行波信号与第四行波信号经减法电路合成第二路精测正弦行波信号,第一路精测正弦行波信号或者第二路精测正弦行波信号经处理后得到精测角位移值,第一路精测正弦行波信号与第二路精测正弦行波信号比相后的相位差经处理后得到粗测对极定位值,将精测角位移值与粗测对极定位值相结合得到绝对角位移值。
  2. 根据权利要求1所述的基于交变电场的绝对式时栅角位移传感器,其特征是:
    所述感应电极(2-1)中的双余弦形极片沿圆周方向展开后的形状为两条幅值相等、相位相差180°的余弦曲线在[-π,π]区间围成的全封闭轴对称图形。
  3. 根据权利要求1所述的基于交变电场的绝对式时栅角位移传感器,其特征是:所述激励电极(1-1)中的相邻两个扇环形极片之间间隔的圆心角等于一个扇环形极片的圆心角。
  4. 根据权利要求1-3任一所述的基于交变电场的绝对式时栅角位移传感器,其特征是:
    所述反射电极Ⅰ(2-2)由一圈径向高度相同、圆心角相等的扇环形极片Ⅰ沿圆周方向等间隔排布组成,其中,第4n 3+1号扇环形极片Ⅰ连成一组,组成所述A 1反射组,第4n 3+2号扇环形极片Ⅰ连成一组,组成所述B 1反射组,第4n 3+3号扇环形极片Ⅰ连成一组,组成所述C 1反射组,第4n 3+4号扇环形极片Ⅰ连成一组,组成所述D 1反射组,n 3依次取0至M 3-1的所有整数,M 3表示反射电极Ⅰ的对极数;
    所述反射电极Ⅱ(2-3)由一圈径向高度相同、圆心角相等的扇环形极片Ⅱ沿圆周方向等间隔排布组成,其中,第4n 4+1号扇环形极片Ⅱ连成一组,组成所述A 2反射组,第4n 4+2号扇环形极片Ⅱ连成一组,组成所述B 2反射组,第4n 4+3号扇环形极片Ⅱ连成一组,组成所述C 2反射组,第4n 4+4号扇环形极片Ⅱ连成一组,组成所述D 2反射组,n 4依次取0至M 4-1的所有整数,M 4表示反射电极Ⅱ的对极数。
  5. 根据权利要求4所述的基于交变电场的绝对式时栅角位移传感器,其特征是:
    所述接收电极Ⅰ(1-2)由一圈相同的扇叶形极片Ⅰ沿圆周方向间隔相等的弧长排布组成,该扇叶形极片Ⅰ的径向高度小于扇环形极片Ⅰ的径向高度,该扇叶形极片Ⅰ的形状为[-π,0]区间的两条相同的余弦极坐标曲线段Ⅰ在起止点与同心的内外圆弧相交而围成的全封闭图形Ⅰ,所述的两条相同的余弦极坐标曲线段Ⅰ的起始点所夹的圆心角为α;其中,第2n 5+1号扇叶形极片Ⅰ连成一组,作为第一行波信号的输出电极,第2n 5+2号扇叶形极片Ⅰ连成一组,作为第二行波信号的输出电极,n 5依次取0至M 5-1的所有整数,M 5表示接收电极Ⅰ的对极数,M 5=M 3
    所述接收电极Ⅱ(1-3)由一圈相同的扇叶形极片Ⅱ沿圆周方向间隔相等的弧长排布组 成,该扇叶形极片Ⅱ的径向高度小于扇环形极片Ⅱ的径向高度,该扇叶形极片Ⅱ的形状为[-π,0]区间的两条相同的余弦极坐标曲线段Ⅱ在起止点与同心的内外圆弧相交而围成的全封闭图形Ⅱ,所述的两条相同的余弦极坐标曲线段Ⅱ的起始点所夹的圆心角为β;其中,第2n 6+1号扇叶形极片Ⅱ连成一组,作为第三行波信号的输出电极,第2n 6+2号扇叶形极片Ⅱ连成一组,作为第四行波信号的输出电极,n 6依次取0至M 6-1的所有整数,M 6表示接收电极Ⅱ的对极数,M 6=M 4
PCT/CN2018/119280 2017-12-15 2018-12-05 一种基于交变电场的绝对式时栅角位移传感器 WO2019114583A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020513923A JP6821288B2 (ja) 2017-12-15 2018-12-05 交番電界に基づくアブソリュート形タイムグレーティング角変位センサ
GB2002131.7A GB2579311B (en) 2017-12-15 2018-12-05 Absolute time-grating angular displacement sensor based on alternating electric field
EP18888532.1A EP3667229B8 (en) 2017-12-15 2018-12-05 Alternating electric field-based absolute time-grating angular displacement sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711351544.2 2017-12-15
CN201711351544.2A CN109211092B (zh) 2017-12-15 2017-12-15 一种基于交变电场的绝对式时栅角位移传感器

Publications (1)

Publication Number Publication Date
WO2019114583A1 true WO2019114583A1 (zh) 2019-06-20

Family

ID=64991452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119280 WO2019114583A1 (zh) 2017-12-15 2018-12-05 一种基于交变电场的绝对式时栅角位移传感器

Country Status (5)

Country Link
EP (1) EP3667229B8 (zh)
JP (1) JP6821288B2 (zh)
CN (1) CN109211092B (zh)
GB (1) GB2579311B (zh)
WO (1) WO2019114583A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008129A (zh) * 2019-12-19 2021-06-22 重庆理工大学 多圈绝对式时栅角位移传感器
WO2021171138A1 (en) * 2020-02-27 2021-09-02 Netzer Precision Motion Sensors Ltd. Angular position sensor with noise compensation
CN114018300A (zh) * 2021-11-12 2022-02-08 德普数控(深圳)有限公司 一种基于正交三角函数双激励的编码器及其运行方法
CN114061513A (zh) * 2020-08-04 2022-02-18 通用技术集团国测时栅科技有限公司 基于纳米圆时栅的自标定方法
CN114061426A (zh) * 2020-08-04 2022-02-18 通用技术集团国测时栅科技有限公司 离散型绝对式时栅角位移传感器
CN114777637A (zh) * 2022-03-29 2022-07-22 重庆理工大学 一种双层正弦补偿式时栅角位移传感器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111137838B (zh) * 2019-12-20 2022-08-30 清华大学 一种mems容栅式角位移传感器及其制造方法
CN111963930A (zh) * 2020-08-21 2020-11-20 广州市浩洋电子股份有限公司 一种电容式旋转角度检测舞台灯
CN114353659B (zh) * 2022-01-06 2023-06-09 重庆理工大学 一种基于单交变电场的时栅角位移传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169751A (ja) * 1997-08-26 1999-03-09 Oriental Motor Co Ltd 回転子位置センサ付き多相モータ
DE19931809A1 (de) * 1998-07-24 2000-01-27 Kostal Leopold Gmbh & Co Kg Lenkwinkelsensor für ein Kraftfahrzeug
US20040046548A1 (en) * 2000-09-04 2004-03-11 Bo Pettersson Angle transducer
CN101245982A (zh) * 2007-02-16 2008-08-20 约翰尼斯海登海恩博士股份有限公司 轴角编码器及其运行方法
CN103968750A (zh) 2014-05-09 2014-08-06 重庆理工大学 一种电场式时栅角位移传感器
CN106643470A (zh) * 2016-12-26 2017-05-10 清华大学 一种绝对式电容角位移测量传感器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541797B2 (ja) * 1985-11-01 1996-10-09 ソニーマグネスケール 株式会社 スケ−ル装置
JPS63139209A (ja) * 1986-09-02 1988-06-11 ヘングストラ ゲゼルシャフト ミット ベシュレンクタ ハフトゥング 容量性トランスミッタ
DE3637529A1 (de) * 1986-09-02 1988-03-17 Hengstler Gmbh Kapazitiver linear- oder drehgeber zum steuern und positionieren von bewegten gegenstaenden
JPH0789066B2 (ja) * 1989-08-11 1995-09-27 株式会社ミツトヨ 静電容量型変位検出器
CN102798405B (zh) * 2011-05-27 2015-08-19 西门子公司 电容式旋转编码器和感应旋转角度的方法
JP6156747B2 (ja) * 2014-12-17 2017-07-05 オリエンタルモーター株式会社 静電エンコーダ
CN105486222B (zh) * 2015-12-29 2019-04-19 崔星 一种电容式角位移传感器
CN106197240B (zh) * 2016-07-06 2018-10-09 重庆理工大学 基于交变电场的绝对式直线时栅位移传感器
CN106767386B (zh) * 2017-03-17 2019-02-15 重庆理工大学 一种绝对式时栅角位移传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169751A (ja) * 1997-08-26 1999-03-09 Oriental Motor Co Ltd 回転子位置センサ付き多相モータ
DE19931809A1 (de) * 1998-07-24 2000-01-27 Kostal Leopold Gmbh & Co Kg Lenkwinkelsensor für ein Kraftfahrzeug
US20040046548A1 (en) * 2000-09-04 2004-03-11 Bo Pettersson Angle transducer
CN101245982A (zh) * 2007-02-16 2008-08-20 约翰尼斯海登海恩博士股份有限公司 轴角编码器及其运行方法
CN103968750A (zh) 2014-05-09 2014-08-06 重庆理工大学 一种电场式时栅角位移传感器
CN106643470A (zh) * 2016-12-26 2017-05-10 清华大学 一种绝对式电容角位移测量传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667229A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008129A (zh) * 2019-12-19 2021-06-22 重庆理工大学 多圈绝对式时栅角位移传感器
WO2021171138A1 (en) * 2020-02-27 2021-09-02 Netzer Precision Motion Sensors Ltd. Angular position sensor with noise compensation
CN114061513A (zh) * 2020-08-04 2022-02-18 通用技术集团国测时栅科技有限公司 基于纳米圆时栅的自标定方法
CN114061426A (zh) * 2020-08-04 2022-02-18 通用技术集团国测时栅科技有限公司 离散型绝对式时栅角位移传感器
CN114061426B (zh) * 2020-08-04 2024-03-19 通用技术集团国测时栅科技有限公司 离散型绝对式时栅角位移传感器
CN114061513B (zh) * 2020-08-04 2024-03-19 通用技术集团国测时栅科技有限公司 基于纳米圆时栅的自标定方法
CN114018300A (zh) * 2021-11-12 2022-02-08 德普数控(深圳)有限公司 一种基于正交三角函数双激励的编码器及其运行方法
CN114018300B (zh) * 2021-11-12 2024-05-03 德普数控(深圳)有限公司 一种基于正交三角函数双激励的编码器及其运行方法
CN114777637A (zh) * 2022-03-29 2022-07-22 重庆理工大学 一种双层正弦补偿式时栅角位移传感器
CN114777637B (zh) * 2022-03-29 2023-06-09 重庆理工大学 一种双层正弦补偿式时栅角位移传感器

Also Published As

Publication number Publication date
JP2020532746A (ja) 2020-11-12
GB2579311B (en) 2022-06-29
GB2579311A (en) 2020-06-17
CN109211092B (zh) 2019-06-21
EP3667229B1 (en) 2021-09-01
EP3667229B8 (en) 2021-10-06
JP6821288B2 (ja) 2021-01-27
CN109211092A (zh) 2019-01-15
EP3667229A1 (en) 2020-06-17
EP3667229A4 (en) 2020-10-28
GB202002131D0 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2019114583A1 (zh) 一种基于交变电场的绝对式时栅角位移传感器
JP6086517B2 (ja) 電界式タイムグレーティング角変位センサ
JP6086518B2 (ja) 単列多層構造に基づく電界式タイムグレーティング直線変位センサ
CN109297517B (zh) 一种基于组合调制原理的绝对式时栅角位移传感器
CN109211095B (zh) 一种基于交变电场的绝对式时栅角位移传感器
CN102425987B (zh) 一种基于交变电场的时栅角位移传感器
US4092579A (en) Brushless printed circuit resolver
JP2023523149A (ja) 多重位相レゾルバ装置および差動位相合成装置
JP2018507401A (ja) 誘導性動きセンサ
JP5522845B2 (ja) 回転型位置検出装置
CN208206026U (zh) 一种基于交变电场的差极型绝对式时栅角位移传感器
CN109238119A (zh) 一种基于交变电场的绝对式时栅直线位移传感器
US10551219B2 (en) Electrostatic encoder
CN109211094B (zh) 一种基于交变电场的反射型绝对式时栅角位移传感器
CN113008129B (zh) 多圈绝对式时栅角位移传感器
CN113008128B (zh) 一种电容式角位移传感器及其转子
CN109211093A (zh) 基于交变电场的反射型绝对式时栅角位移传感器
CN114061426B (zh) 离散型绝对式时栅角位移传感器
CN114353659B (zh) 一种基于单交变电场的时栅角位移传感器
CN219368646U (zh) 一种基于单交变电场的角位移传感器
CN108195365B (zh) 一种动力调谐陀螺仪及其角位置传感器
TW201944032A (zh) 編碼器
JP2554472B2 (ja) 回転位置検出器
RU2724150C1 (ru) Емкостной абсолютный преобразователь угловых перемещений
CN117007086B (zh) 高精度磁电编码器及磁电编码器绝对角度的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202002131

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20181205

ENP Entry into the national phase

Ref document number: 2020513923

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018888532

Country of ref document: EP

Effective date: 20200312

NENP Non-entry into the national phase

Ref country code: DE