WO2019114490A1 - 生产线上的单细胞架构式自动化检测方法和系统 - Google Patents

生产线上的单细胞架构式自动化检测方法和系统 Download PDF

Info

Publication number
WO2019114490A1
WO2019114490A1 PCT/CN2018/115540 CN2018115540W WO2019114490A1 WO 2019114490 A1 WO2019114490 A1 WO 2019114490A1 CN 2018115540 W CN2018115540 W CN 2018115540W WO 2019114490 A1 WO2019114490 A1 WO 2019114490A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic product
tested
detecting device
station
production line
Prior art date
Application number
PCT/CN2018/115540
Other languages
English (en)
French (fr)
Inventor
林淼
张春平
薛春花
陈志列
Original Assignee
研祥智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研祥智能科技股份有限公司 filed Critical 研祥智能科技股份有限公司
Publication of WO2019114490A1 publication Critical patent/WO2019114490A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station

Definitions

  • the present application relates to the field of automated detection technology, and in particular to a single cell architecture type automatic detection method and system on a production line.
  • a single cell architecture automated detection method and system on a production line is provided.
  • a single cell architecture automated detection method on a production line comprising:
  • the detecting device detects the electronic product to be tested
  • the next electronic product to be tested is placed on the to-be-detected workstation through at least one to-be-detected workstation disposed on the production line station.
  • a single cell architecture automated detection system on a production line comprising:
  • the detecting device is disposed at the production line station, and is configured to obtain a function test item selected by the user, and perform testing according to the function test item to be tested for the electronic product;
  • the station to be inspected is set at the production line station, and is used for placing the next electronic product to be tested when the detecting device detects the electronic product to be tested.
  • FIG. 1 is a flow chart of a single cell architecture type automatic detection method on a production line in an embodiment
  • FIG. 2 is a structural diagram of a device corresponding to a single cell architecture type automatic detection method on a production line in an embodiment
  • FIG. 3 is a block diagram of a single cell architecture automated detection system on a production line in an embodiment.
  • a single cell architecture type automatic detection method and system on a production line includes steps S110 and S112.
  • step S110 the function test item selected by the user is acquired by the detecting device disposed on the production line station, and the electronic product to be tested is tested according to the function test item.
  • the user when testing the electronic product, the user can select different functional test items according to requirements or for different electronic products, and then test the corresponding electronic products according to the functional test items selected by the user. For example, for different display devices of mobile phones and televisions, different functional test items can be separately set for testing.
  • the method before step S110, the method further includes sending the tooling board carrying the electronic product to be tested to the detecting device.
  • a detecting device is disposed on the pipeline, and the tooling board carrying the electronic product to be tested flows to the plugging station with the pipeline, and the electronic product to be tested is first inserted, that is, the manual (or robot) is connected to the docking device. The wire of the end is connected with the interface of the electronic product to be tested, and then the tooling plate carrying the electronic product to be tested is sent to the detecting device by the transfer trolley, and the detecting device is notified that the electronic product to be tested is in place.
  • the step of testing the electronic product to be tested according to the functional test item comprises: when the detecting device performs analysis to obtain the electronic product to be tested provided on the tooling board, controlling the docking male end to push the cylinder to make the docking male end and the docking The female end completes the docking; the electronic product to be tested is tested according to the functional measurement selected by the user.
  • the detecting device acquires RFID (Radio Frequency Identification) information of the tooling board carrying the electronic product to be tested, and passes the sensing module (such as a photoelectric switch). Whether there is any electronic product to be tested on the tooling board. If there is an electronic product to be tested, the detecting device controls the docking male end to push the cylinder, so that the docking male end and the docking female end complete the docking, and then perform the detection according to the functional test item set by the user.
  • RFID Radio Frequency Identification
  • the method further includes: when the test is completed, generating a test report and saving.
  • a test report is generated according to the detection result, saved to the local storage medium, and uploaded to the upper computer.
  • the board signal is sent out, the tested electronic product is sent out, and then the next electronic product to be tested is tested. If there is a problem in the test, an alarm signal is issued and a board signal is issued.
  • Step S112 When the detecting device tests the electronic product to be tested, the next electronic product to be tested is placed on the station to be tested through at least one station to be tested disposed at the working line station.
  • a detecting station is disposed corresponding to each side of the detecting device, and when the detecting device is working, an electronic product to be tested is placed on the station to be tested, and after the detecting device completes the detecting, the station to be detected is immediately detected.
  • the electronic product to be tested is sent to the detecting device for detection, thereby avoiding wasting time for the detecting device to wait for the electronic product to be tested, thereby improving the detection efficiency and satisfying the tempo of the entire pipeline.
  • the electronic product to be tested must be sent to the wire drawing station, and the wire of the electronic product can be unplugged and classified on the tooling plate box by manual (or robot), and then the next step is performed.
  • the detecting device After receiving the completion instruction of the wire drawing station, the detecting device acquires the RFID information of the tooling plate on the wire drawing station, and then queries the test report. If the test report is completed, the electronic product is released, and if the test report shows an error, The electronic product is sent to the repair station for repair.
  • the electronic product to be tested when the electronic product to be tested is detected by the detecting device, the electronic product to be tested is tested according to the functional test item selected by the user; wherein the electronic product to be tested is tested by a plurality of detecting devices disposed on the working line station Each detection device is correspondingly provided with a station to be inspected.
  • the single cell architecture type automatic detection method on the production line further comprises: controlling a plurality of detecting devices that are to be detected into the production line one by one; and controlling the electrons to be detected when the plurality of detecting devices are in a testing state The products flow into the corresponding station to be tested corresponding to the detection device.
  • the single cell architecture automatic detection method on the production line further includes: when the detecting device completes the detection of the electronic product to be detected, controlling the electronic product outflow detecting device that has completed the detection, and then controlling the corresponding waiting device of the detecting device.
  • the electronic product to be detected on the inspection station flows into the detection device, and the electronic product to be tested is tested according to the functional test item set by the user.
  • the single cell architecture automated detection method on the production line further comprises: controlling the electronic product to be detected to preferentially flow into the detection device located at the most downstream of the production line. Specifically, as long as the most downstream detecting device is not working, the tooling board carrying the electronic product to be tested is preferentially arranged to flow to the most downstream detecting device.
  • the electronic product to be detected is preferentially flowed into a detection station corresponding to the detection device located most downstream of the production line.
  • the electronic product to be detected is preferentially flowed into the station to be inspected corresponding to the detecting device located at the most downstream of the production line.
  • the detecting device and the detecting device are provided with a station to be inspected, and a tooling plate carrying the electronic product to be tested is pre-installed for buffering.
  • the tooling board carrying the electronic product to be tested is preferentially dispatched to the most downstream station to be inspected, and so on.
  • the electronic products to be tested of other detection devices are entered from the station to be inspected.
  • the transfer trolley corresponding to the station to be detected moves upward to allow the station to be tested to communicate with the line body, and the tool board carrying the electronic product to be tested enters the station to be tested from the back end, and then The transfer trolley corresponding to the station to be tested moves downward, and the upper end is connected with the line body, so that the assembly line can continue to pass through the tooling board.
  • the detecting device when the detecting device is empty, the left and right conveying belts of the transfer trolley corresponding to the station to be inspected rotate, and the tooling plate carrying the electronic product to be tested is sent to the detecting device; the detecting device has the electronic product to be tested When the station to be tested is in a waiting state.
  • the detecting device When detecting that the transfer trolley is in place, the detecting device acquires the RFID information of the tooling board, and then senses whether there is a product to be tested on the tooling board through the sensing module (photoelectric opening), and the product to be tested controls the docking male end to push the cylinder to perform docking. Because the butt male end is directly installed on the transfer trolley, as shown in Figure 2. It is only necessary to ensure that the left and right position error of the tooling plate is within the allowable range of the left and right error of the docking device each time the board enters the board, and there is no problem in the left and right direction.
  • the front-back direction error of the docking device is solved by the detection bit width, and the width of the tooling plate ⁇ the width of the detection position ⁇ the width of the tool plate + the forward and backward stroke error of the docking device.
  • the upper and lower direction is due to the thickness error of the tooling plate ⁇ 5mm, the error of the butt female guide hole is mm5mm, the combined error is ⁇ 10mm, and the docking device reserves ⁇ 50mm error in the up and down direction, so it is more than enough.
  • the way in which the butt male end is directly mounted on the transfer trolley has the advantage that as long as the position of the tooling plate flowing into the transfer trolley relative to the transfer trolley is within the allowable range of the docking, it is ensured that the docking is stable each time. Compared with the conventional method (installed on the ground or installed on the testing equipment), there is no need to worry about the moving error of the moving trolley. This method greatly reduces the complexity of the system and improves the stability and reliability of the docking.
  • the docking device sends a docking completion signal to the detecting device, and the detecting device starts detecting after receiving the docking completion signal.
  • the detection items and the detection order are set by the user in advance.
  • the detecting device performs the detection in the order set by the user in advance.
  • the above-mentioned electronic products to be tested may be display devices such as televisions, displays, and iPads.
  • the detecting device first controls the remote control module to remotely control the display device, switches to the channel (or screen) corresponding to the detection item, and then detects the device to control the image capturing module. Then, the image processing module performs channel (or picture) determination on the acquired image, whether the feedback remote control is successfully switched, the switching is successful, the image capturing module takes image, the audio collecting module collects audio data, and the image processing module collects images. Processing, the audio processing module analyzes the collected audio, records the processing result, then executes the next detection item, and so on, until all items are completed.
  • the transfer trolley corresponding to the detecting device moves upward to make the detection position communicate with the line body, and when the downstream detecting device is empty, the left and right conveyor belts of the rotation detecting device send the tooling plate to the downstream detecting device to complete the placing of the board, and the board is completed. After that, the transfer trolley corresponding to the detecting device moves down to the home position.
  • the above single-cell architecture detection method is compared with the straight-through architecture: the straight-through architecture line body, when there is equipment failure, affects all subsequent station production; and the single-cell architecture does not have such a problem.
  • Single-cell architecture line body When there is a fault in the detection device, other detection devices continue to work without affecting the back-end pipeline.
  • a single-cell architecture automatic detection system on a production line includes: a detecting device 201 disposed at a production line station for acquiring a functional test item selected by a user, and performing an electronic product to be tested according to the functional test item.
  • the test station 202 is set at the production line station, and is used for placing the next electronic product to be tested when the detecting device 201 detects the electronic product to be tested.
  • the electronic device to be tested when the electronic device to be tested is detected by the detecting device 201, the electronic product to be tested is tested according to the functional test item selected by the user; wherein the electronic product to be tested is detected by a plurality of detecting devices 201 disposed at the production line station To perform the test, each detecting device 201 is correspondingly provided with a station 202 to be detected.
  • the single cell architecture automated detection system on the production line also includes a product delivery device.
  • the product conveying device is configured to control the plurality of detecting devices 201 that are to be detected into the production line one by one; when the plurality of detecting devices 201 are in the testing state, the product conveying device is used to control the inflow of the electronic products to be detected one by one
  • the detecting device 201 corresponds to the station 202 to be detected.
  • the product conveying device is configured to control the electronic product outflow detecting device 201 that has completed the detection, and then control the corresponding detecting station 202 corresponding to the detecting device 201.
  • the electronic product to be detected flows into the detecting device 201, and the electronic product to be tested is tested according to the functional test item set by the user.
  • the product conveying device is further configured to control the electronic product to be detected to preferentially flow into the detecting device 201 located at the most downstream of the production line or the detecting station corresponding to the detecting device 201 or the to-be-detected station 202 corresponding to the detecting device 201. .
  • the single cell architecture type automatic detection system and method on the above production line obtains the function test item selected by the user through the detecting device set on the production line station, and tests the electronic product to be tested according to the function test item; and is set on the production line station.
  • At least one station to be inspected when the detecting device detects the electronic product to be tested, the other electronic products to be tested are placed on the station to be tested.
  • the electronic product to be tested is placed in the station to be tested, so that the electronic product to be tested on the station to be tested is sent to the detecting device for detection after the detecting device completes the testing. Therefore, even if the detected electronic products to be tested are increased, it is ensured that the test items of the stage can be completed within a preset time period in which one station stays, and the utilization rate of the detecting device is high to meet the pipeline tempo.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Assembly (AREA)
  • General Factory Administration (AREA)

Abstract

一种生产线上的单细胞架构式自动化检测方法和系统,设置有检测装置和待检测工位,并且待检测电子产品置于待检测工位。当检测装置完成检测时,能够及时地将置于待检测工位的待检测产品送给检测装置进行检测。

Description

生产线上的单细胞架构式自动化检测方法和系统 技术领域
本申请涉及自动化检测技术领域,特别是涉及一种生产线上的单细胞架构式自动化检测方法和系统。
背景技术
近年来,由于智能电视、网络电视、平板电脑等电子产品的快速发展,市场一直处在不断扩张中,且随着人们对音视频的体验要求不断提高,现有的电子产品的功能及接口越来越多。现各大电子产品厂商为了保证产品质量,在电子产品出厂前都会对其进行质量检测,随着电子产品的功能和接口的增多,所需要检测的项目也就随之增加。
在自动化检测的流水线上都有一定的节拍(流水线节拍,即工装板在一个工位停留的时间加上移动到下一个工位所耗的时间之合),那么进行电子产品检测时,单件产品在同一工位停留的时间就有限制要求,以满足流水线节拍。
采用自动化设备对电子产品进行检测时,每一项功能及接口的检测时间是固定的,那么接口、功能等检测项目的增多必然导致单件电子产品的检测总时间增加。如此一来,就会出现无法满足流水线节拍的问题。
发明内容
根据本申请的各种实施例,提供一种生产线上的单细胞架构式自动化检测方法和系统。
一种生产线上的单细胞架构式自动化检测方法,所述方法包括:
通过设置于生产线工位上的检测装置获取用户选择的功能测试项,根据所述功能测试项对待测电子产品进行测试;
所述检测装置检测所述待测电子产品时,通过设置于生产线工位上的至少一个待检测工位,将下一个待测电子产品置于所述待检测工位上。
一种生产线上的单细胞架构式自动化检测系统,所述系统包括:
检测装置,设置于生产线工位上,用于获取用户选择的功能测试项,根据所述功能测试项对待测电子产品进行测试;
待检测工位,设置于生产线工位上,在所述检测装置检测待测电子产品时,用于放置下一个待测电子产品。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一实施例中生产线上的单细胞架构式自动化检测方法的流程图;
图2为一实施例中生产线上的单细胞架构式自动化检测方法对应的装置结构图;
图3为一实施例中生产线上的单细胞架构式自动化检测系统的模块图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技 术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,一种生产线上的单细胞架构式自动化检测方法和系统,包括步骤S110和步骤S112。
步骤S110,通过设置于生产线工位上的检测装置获取用户选择的功能测试项,根据功能测试项对待测电子产品进行测试。
具体地,在进行电子产品的测试时,用户可以根据需求或者针对不同的电子产品,选择不同的功能测试项,然后根据用户所选择的功能测试项依次对相应的电子产品进行测试。例如,针对手机和电视机两种不同的显示设备,可以分别设置不同的功能测试项进行测试。
在一个实施例中,步骤S110之前,还包括将载有待测电子产品的工装板送到检测装置。
具体地,在流水线上设置检测装置,载有待测电子产品的工装板随流水线流至插线工位,先对待测电子产品进行插线操作,即人工(或机器人)将连接到对接装置母端的线材与待测电子产品的接口相连接,然后再用移载小车把载有待测电子产品的工装板送到检测装置,并通知检测装置待测电子产品已就位。
在一个实施例中,根据功能测试项对待测电子产品进行测试的步骤包括:当检测装置进行分析得到工装板上设置有待测电子产品时,控制对接公端推动气缸,使对接公端与对接母端完成对接;根据用户选择的功能测项对待测电子产品进行测试。
具体地,检测装置感应到检测工位待测电子产品就位后,获取载有待测电子产品的工装板的RFID(Radio Frequency Identification,无线射频识别)信息,并通过感应模组(如光电开关)感知工装板上是否有待测电子产品。如果存在待测电子产品,检测装置控制对接公端推动气缸,使对接公端与对接母端完成对接,然后依据用户设定的功能测试项进行检测。
在一个实施例中,根据用户选择的功能测项对待测电子产品进行测试的步骤之后,还包括:当测试完成时,生成测试报告并保存。
具体地,检测完成后,根据检测结果生成测试报告,保存到本地存储媒介并上传到上位机。测试通过后,发出放板信号,把检测工位已测电子产品送出,然后使下一个待测电子产品进来测试,若测试出现问题,则发出报警信号,并发出放板信号。
步骤S112,检测装置测试待测电子产品时,通过设置于生产线工位上的至少一个待检测工位,将下一个待测电子产品置于待检测工位上。
具体地,每个检测装置的旁边对应设置一个待检测工位,在检测装置工作时,放置一个待测电子产品于待检测工位上,在检测装置完成检测后,立即将待检测工位上的待测电子产品送到检测装置上进行检测,因而能够避免检测装置等待待测电子产品而浪费时间,从而能够提高检测效率,并满足整个流水线的节拍。
在完成检测后,需要将检测完成电子产品送到拔线工位,采用人工(或机器人)将电子产品的线材拔掉并分类放在工装板线盒上,然后进行下一步操作。
检测装置在收到拔线工位的完成指令后,获取拔线工位上的工装板的RFID信息,然后查询测试报告,若测试报告显示完成,则放走电子产品,若测试报告显示错误,则将电子产品送到返修工位进行维修。
在一个实施例中,通过检测装置检测待测电子产品时,根据用户选择的功能测试项对待测电子产品进行测试;其中,通过设置于生产线工位上的多个检测装置对待测电子产品进行测试,每个检测装置对应设置有待检测工位。
在一个实施例中,生产线上的单细胞架构式自动化检测方法还包括:控制待检测电子产品一一流入生产线上的多个检测装置;在多个检测装置均处于测试状态时,控制待检测电子产品一一流入检测装置对应设置的待检测工位。
在一个实施例中,生产线上的单细胞架构式自动化检测方法还包括:在 检测装置完成待检测电子产品的检测时,控制已完成检测的电子产品流出检测装置,然后控制该检测装置对应的待检测工位上的待检测电子产品流入该检测装置,根据用户设置的功能测试项对待测电子产品进行测试。
在一个实施例中,生产线上的单细胞架构式自动化检测方法还包括:控制待检测电子产品优先流入位于生产线上最下游的检测装置。具体地,只要最下游的检测装置没有工作,载有待测电子产品的工装板就优先被安排流到最下游的检测装置
在一个实施例中,控制待检测电子产品优先流入位于生产线上最下游的检测装置所对应的检测工位。
在一个实施例中,控制待检测电子产品优先流入位于生产线上最下游的检测装置所对应的待检测工位。
具体地,为了提供效率以及检测装置的利用率,在检测装置与检测装置设有待检测工位,预装一块载有待测电子产品的工装板做缓冲。在最下游检测位有检测品的情况下,载有待测电子产品的工装板被优先调度到最下游待检测工位,以此类推。
在一个实施例中,除了最上游检测装置外,其他检测装置的待测电子产品都是从待检测工位进入的。
基于上述实施例,上述方法中,待检测工位所对应的移载小车向上移动让待检测工位与线体连通,载有待测电子产品的工装板从后端进入待检测工位,然后待检测工位所对应的移载小车向下移动,让上端与线体连通,方便流水线继续通过工装板。
在一个实施例中,检测装置为空时,待检测工位所对应的移载小车的左右传送皮带转动,把载有待测电子产品的工装板送到检测装置;检测装置有待测电子产品时,待检测工位处于等待状态。
检测装置在检测到移载小车就位时,获取工装板的RFID信息,然后通过感应模组(光电开光)感知工装板上是否有待测品,有待测品控制对接公端推动气缸执行对接,由于对接公端直接安装在移载小车上,如图2所示。 只要确保每次进板时工装板左右位置误差在对接装置左右误差允许范围内,左右方向就不会产生问题。对接装置前后方向误差通过检测位宽度解决,工装板的宽度<检测位的宽度≦工装板的宽度+对接装置前后行程误差即可。
上下方向由于工装板厚度误差≦5mm,对接母端导向孔误差≦5mm,两者结合起来误差≦10mm,对接装置上下方向预留±50mm误差,所以足足有余。
对接公端直接安装在移载小车上的方式,其优点是:只要确保工装板流进移载小车的位置相对移载小车的误差在对接允许范围内,就能确保每次稳定对接。相对常规方式(安装在地面上或安装在检测设备上),无需担心移载小车移动误差,该种方式大大降低了系统的复杂性,提高了对接的稳定性和可靠性。
应当指出的是,在一个实施例中,对接完成后,对接装置会向检测设备发送对接完成信号,检测设备收到对接完成信号后,开始进行检测。检测项及检测顺序是用户事先设定的。检测装置按照用户预先设定的顺序执行检测。上述待测电子产品可为电视机、显示器及iPad等显示设备。
在一个实施例中,由于显示设备的检测特殊性,检测装置首先控制其遥控模组对显示设备进行遥控,切换到检测项对应的频道(或画面),然后检测设备控制取像模组取像,然后图像处理模组对采集得到的图像进行频道(或画面)判定,反馈遥控是否切换成功,切换成功,取像模组取像,音频采集模组采集音频数据,图像处理模组对采集图像进行处理,音频处理模组对采集音频进行分析处理,记录处理结果,然后执行下一项检测项,以此类推,直到所有项完成。随后控制对接公端分离,统计测试结果,结合RFID信息生成测试报告,上传给上位机的数据采集系统和本地数据库,然后通知移载小车执行放板。一次检测完成,等待下一工装板就位。在完成检测后,检测装置所对应的移载小车向上移动让检测位与线体连通,下游检测装置为空时,转动检测装置左右传送带把工装板送给下游检测装置完成放板,放板完成后,检测装置所对应的移载小车向下移动归位。
上述单细胞架构式的检测方法与直通式架构比较:直通式架构线体,当有设备故障时,影响后面所有工位生产;而单细胞架构不存在这种问题。单细胞架构线体当有检测装置故障时,其他检测装置以继续工作,不会对后端的流水线造成影响。
在一个实施例中,检测装置数量的配置方法为:流水线节拍C,单个检测装置完成一个待测电子产品全功能检测需要时间T,那么检测装置需配置数量N=floor(T/C),floor表示向上取整。
请参阅图3,一种生产线上的单细胞架构式自动化检测系统,包括:检测装置201,设置于生产线工位上,用于获取用户选择的功能测试项,根据功能测试项对待测电子产品进行测试;待检测工位202,设置于生产线工位上,在检测装置201检测待测电子产品时,用于放置下一个待测电子产品。
在一个实施例中,通过检测装置201检测待测电子产品时,根据用户选择的功能测试项对待测电子产品进行测试;其中,通过设置于生产线工位上的多个检测装置201对待测电子产品进行测试,每个检测装置201对应设置有待检测工位202。
在一个实施例中,生产线上的单细胞架构式自动化检测系统还包括产品输送装置。
具体地,产品输送装置用于控制待检测电子产品一一流入生产线上的多个检测装置201;在多个检测装置201均处于测试状态时,产品输送装置用于控制待检测电子产品一一流入检测装置201对应设置的待检测工位202。
在一个实施例中,在检测装置201完成待检测电子产品的检测时,产品输送装置用于控制已完成检测的电子产品流出检测装置201,然后控制该检测装置201对应的待检测工位202上的待检测电子产品流入该检测装置201,根据用户设置的功能测试项对待测电子产品进行测试。
在一个实施例中,产品输送装置还用于控制待检测电子产品优先流入位于生产线上最下游的检测装置201或该检测装置201对应的检测工位或该检 测装置201对应的待检测工位202。
上述生产线上的单细胞架构式自动化检测系统和方法,通过设置于生产线工位上的检测装置获取用户选择的功能测试项,根据功能测试项对待测电子产品进行测试;通过设置于生产线工位上的至少一个待检测工位,检测装置当检测到待测电子产品时,将其他的待测电子产品置于待检测工位上。即将待测电子产品置于待检测工位,使得在检测装置完成检测后,及时将待检测工位上的待测电子产品送去检测装置进行检测。从而实现即使检测的待测电子产品增多,也能保证在一个工位停留的预设时间内,能完成该阶段的检测项目的测试,且检测装置的利用率高,以满足流水线节拍。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种生产线上的单细胞架构式自动化检测方法,所述方法包括:
    通过设置于生产线工位上的检测装置获取用户选择的功能测试项,根据所述功能测试项对待测电子产品进行测试;
    所述检测装置检测所述待测电子产品时,通过设置于生产线工位上的至少一个待检测工位,将下一个待测电子产品置于所述待检测工位上。
  2. 根据权利要求1所述的方法,其特征在于,所述通过设置于生产线工位上的检测装置获取用户选择的功能测试项,根据所述功能测试项对待测电子产品进行测试的步骤之前,还包括:
    将载有待测电子产品的工装板送到检测装置。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述功能测试项对待测电子产品进行测试的步骤包括:
    当检测装置进行分析得到所述工装板上设置有待测电子产品时,控制对接公端推动气缸,使对接公端与对接母端完成对接;
    根据用户选择的功能测项对所述待测电子产品进行测试。
  4. 根据权利要求3所述的方法,其特征在于,所述根据用户选择的功能测项对所述待测电子产品进行测试的步骤之后,还包括:
    当测试完成时,生成测试报告并保存。
  5. 根据权利要求1所述的方法,其特征在于,通过检测装置检测所述待测电子产品时,根据用户选择的功能测试项对所述待测电子产品进行测试;其中,通过设置于生产线工位上的多个检测装置对所述待测电子产品进行测试,每个检测装置对应设置有待检测工位。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    控制所述待检测电子产品一一流入生产线上的多个检测装置;
    在所述多个检测装置均处于测试状态时,控制所述待检测电子产品一一流入所述检测装置对应设置的待检测工位。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述检测装置完成待检测电子产品的检测时,控制已完成检测的电子产品流出检测装置,然后控制该检测装置对应的待检测工位上的待检测电子产品流入该检测装置,根据用户设置的功能测试项对所述待测电子产品进行测试。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    控制待检测电子产品优先流入位于生产线上最下游的检测装置。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    控制待检测电子产品优先流入位于生产线上最下游的检测装置所对应的检测工位。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    控制待检测电子产品优先流入位于生产线上最下游的检测装置所对应的待检测工位。
  11. 一种生产线上的单细胞架构式自动化检测系统,所述系统包括:
    检测装置,设置于生产线工位上,用于获取用户选择的功能测试项,根据所述功能测试项对待测电子产品进行测试;
    待检测工位,设置于生产线工位上,在所述检测装置检测待测电子产品时,用于放置下一个待测电子产品。
  12. 根据权利要求11所述的系统,其特征在于,检测装置用于在检测所述待测电子产品时,根据用户设置的功能测试项对所述待测电子产品进行测试;其中,通过设置于生产线工位上的多个检测装置,每个检测装置对应设置有待检测工位。
  13. 根据权利要11所述的系统,其特征在于,所述系统还包括:
    产品输送装置,用于控制所述待检测电子产品一一流入生产线上的多个检测装置;在所述多个检测装置均处于测试状态时,所述产品输送装置用于控制所述待检测电子产品一一流入所述检测装置对应设置的待检测工位。
  14. 根据权利要求13所述的系统,其特征在于,所述系统还包括:
    在所述检测装置完成待检测电子产品的检测时,所述产品输送装置用于 控制已完成检测的电子产品流出检测装置,然后控制该检测装置对应的待检测工位上的待检测电子产品流入该检测装置,根据用户设置的功能测试项对所述待测电子产品进行测试。
  15. 根据权利要求13所述的系统,其特征在于,所述系统还包括:
    所述产品输送装置用于控制待检测电子产品优先流入位于生产线上最下游的检测装置或该检测装置对应的检测工位或该检测装置对应的待检测工位。
PCT/CN2018/115540 2017-12-11 2018-11-15 生产线上的单细胞架构式自动化检测方法和系统 WO2019114490A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711307217.7A CN108318771B (zh) 2017-12-11 2017-12-11 生产线上的单细胞架构式自动化检测方法和系统
CN201711307217.7 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019114490A1 true WO2019114490A1 (zh) 2019-06-20

Family

ID=62891806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115540 WO2019114490A1 (zh) 2017-12-11 2018-11-15 生产线上的单细胞架构式自动化检测方法和系统

Country Status (2)

Country Link
CN (1) CN108318771B (zh)
WO (1) WO2019114490A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318771B (zh) * 2017-12-11 2020-02-28 研祥智能科技股份有限公司 生产线上的单细胞架构式自动化检测方法和系统
CN110857956A (zh) * 2018-08-09 2020-03-03 青岛海尔滚筒洗衣机有限公司 一种电子产品的安规检测系统及其检测方法
CN110376473A (zh) * 2019-07-16 2019-10-25 海尔智家股份有限公司 冰箱检测设备
CN110376474A (zh) * 2019-07-16 2019-10-25 海尔智家股份有限公司 冰箱检测设备
CN111880503B (zh) * 2020-08-03 2022-04-01 深圳回收宝科技有限公司 流水线的控制方法、控制装置及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808095A (zh) * 2015-04-27 2015-07-29 深圳市共进电子股份有限公司 一种自动化生产测试系统及其产品测试方法
CN204980088U (zh) * 2015-05-13 2016-01-20 东莞市智赢智能装备有限公司 自动检测系统用多工位循环转运装置
CN106302913A (zh) * 2016-08-22 2017-01-04 深圳市联合东创科技有限公司 手机全自动测试装置及手机全自动测试方法
CN106872836A (zh) * 2015-12-11 2017-06-20 研祥智能科技股份有限公司 生产线上的分布式自动化检测系统和方法
CN108318771A (zh) * 2017-12-11 2018-07-24 研祥智能科技股份有限公司 生产线上的单细胞架构式自动化检测方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050276445A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for automatic visual detection, recording, and retrieval of events
CN201740517U (zh) * 2010-07-16 2011-02-09 北京主导时代科技有限公司 轮对三维外形自动检测装置
CN204996730U (zh) * 2015-08-27 2016-01-27 韦士肯(厦门)检测科技有限公司 汽车挺杆涡流视学联合检测设备
CN205257294U (zh) * 2015-11-13 2016-05-25 安徽沛愉包装科技有限公司 一种自动移栽小车
CN106546173B (zh) * 2016-11-01 2020-04-17 宁波舜宇智能科技有限公司 用于检测元器件的设备及其检测方法
CN107132215A (zh) * 2017-07-10 2017-09-05 苏州信诺泰克医疗科技有限公司 避光检测设备及检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808095A (zh) * 2015-04-27 2015-07-29 深圳市共进电子股份有限公司 一种自动化生产测试系统及其产品测试方法
CN204980088U (zh) * 2015-05-13 2016-01-20 东莞市智赢智能装备有限公司 自动检测系统用多工位循环转运装置
CN106872836A (zh) * 2015-12-11 2017-06-20 研祥智能科技股份有限公司 生产线上的分布式自动化检测系统和方法
CN106302913A (zh) * 2016-08-22 2017-01-04 深圳市联合东创科技有限公司 手机全自动测试装置及手机全自动测试方法
CN108318771A (zh) * 2017-12-11 2018-07-24 研祥智能科技股份有限公司 生产线上的单细胞架构式自动化检测方法和系统

Also Published As

Publication number Publication date
CN108318771A (zh) 2018-07-24
CN108318771B (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2019114490A1 (zh) 生产线上的单细胞架构式自动化检测方法和系统
TWI231133B (en) Test system for portable electronic apparatus and test method thereof
CN103776841B (zh) 合成革缺陷自动检测装置及检测方法
US9022204B2 (en) Manufacturing system and manufacturing method
CN106160888B (zh) 一种无线通信模块的测试系统及方法
CN102353683B (zh) 一种基于机器视觉的电纸书外观及装配检测设备及检测方法
CN102905161A (zh) 电视流水线生产自动测试方法及系统
CN102833577A (zh) 电视机功能自动测试的方法和装置
CN110830791B (zh) 一种电视整机软件功能的自动测试方法、装置及系统
CN106646315B (zh) 一种数字测量仪器的自动测试系统及其测试方法
CN109343359A (zh) 智能开关、智能控制系统、方法、装置及电子设备
US20170163979A1 (en) Testing device of display devices and testing method thereof
CN108107226B (zh) 基于ppc软体的aoi多工位系统及方法
CN106226102A (zh) 一种冰箱商品性能检测装置、系统、方法及冰箱
CN109104682B (zh) 一种汽车音响多线程测试方法及测试系统
CN101557437A (zh) 一种手机软件自动测试方法及装置
CN104807397A (zh) 产品检测系统及产品检测方法
CN114578790A (zh) 一种无人机飞控自动测试方法、系统、设备和介质
CN106708736A (zh) 用于通信设备的生产自动化测试方法及系统
CN111901589B (zh) 一种电视机主板自动化测试系统
CN105516717A (zh) 用于电视整机自动测试的电视信源无线切换方法及系统
CN112289345A (zh) 一种可视化智能终端语音诊断的方法
CN210051791U (zh) 一种快速换线的自动测试装置
CN110087066B (zh) 一种应用于网上巡查的一键自动巡检方法
CN110632420B (zh) RTC模块测试方法、Android设备生产多模块自动化测试方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889179

Country of ref document: EP

Kind code of ref document: A1