WO2019114474A1 - 电机转子位置修正方法、装置及设备、存储介质 - Google Patents

电机转子位置修正方法、装置及设备、存储介质 Download PDF

Info

Publication number
WO2019114474A1
WO2019114474A1 PCT/CN2018/114873 CN2018114873W WO2019114474A1 WO 2019114474 A1 WO2019114474 A1 WO 2019114474A1 CN 2018114873 W CN2018114873 W CN 2018114873W WO 2019114474 A1 WO2019114474 A1 WO 2019114474A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor position
avg
angular difference
correction
Prior art date
Application number
PCT/CN2018/114873
Other languages
English (en)
French (fr)
Inventor
陈景熙
金帅
刘辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019114474A1 publication Critical patent/WO2019114474A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the control method of the permanent magnet synchronous motor can include two types of position sensorless and position sensor.
  • the present disclosure provides a motor rotor position correction method, apparatus and device, and a storage medium to eliminate or even completely eliminate the influence of interference on the permanent magnet synchronous motor control process.
  • An embodiment of the present disclosure provides a motor rotor position correction method, the method comprising the steps of: obtaining an angular difference ⁇ k of a motor rotor position; determining an average angle of the motor rotor position according to an angular difference ⁇ k of the motor rotor position; The difference ⁇ avg is corrected based on the average angular difference ⁇ avg of the rotor position of the motor and the interference determination coefficient.
  • An embodiment of the present disclosure provides a motor rotor position correction device, the device comprising an acquisition module, a determination module, and a correction module; the acquisition module is configured to: obtain an angular difference ⁇ k of a motor rotor position; the determining module, setting The average angular difference ⁇ avg of the rotor position of the motor is determined according to the angular difference ⁇ k of the rotor position of the motor; the correction module is configured to: determine an average angular difference ⁇ avg and interference according to the rotor position of the motor The coefficient corrects the rotor position of the motor.
  • An embodiment of the present disclosure further provides a motor rotor position correction device, the device comprising: a memory, a processor, and a motor rotor position correction program stored on the memory and operable on the processor, the motor rotor
  • the step of the motor rotor position correction method described above is implemented when the position correction program is executed by the processor.
  • the embodiment of the present disclosure further provides a storage medium on which a motor rotor position correction program is stored, and the motor rotor position correction program is implemented by the processor to implement the steps of the motor rotor position correction method described above.
  • FIG. 1 is a schematic flow chart of a method for correcting a rotor position of a motor according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a rotor position correction device for a motor according to a second embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of a determining module in a rotor position correction device for a motor according to a second embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of a correction module in a rotor position correction device for a motor according to a second embodiment of the present disclosure
  • FIG. 5 is a schematic structural view of a rotor position correction device for a motor according to a third embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of an application structure of a rotor position correction of a motor according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a decoder in an application structure according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an anti-interference circuit in an application structure according to an embodiment of the present disclosure.
  • a first embodiment of the present disclosure provides a motor rotor position correction method, and the method may include the following steps:
  • the rotor position of the motor can be detected by adding a resolver to the permanent magnet synchronous motor while adding a decoder circuit, if ⁇ k is expressed as the angle of the currently detected rotor position of the motor, ⁇ k-1
  • the angle difference ⁇ k ⁇ k - ⁇ k-1 of the motor rotor position is expressed as the angle of the motor rotor position detected last time. It can be noted that the time interval between the current detection and the last detection is not limited.
  • the determining the average angular difference ⁇ avg of the rotor position of the motor according to the angular difference ⁇ k of the rotor position of the motor may include the following steps:
  • the average angular difference ⁇ avg of the rotor position of the motor is calculated based on the angular difference ⁇ k of the filtered plurality of motor rotor positions.
  • the angular difference ⁇ k of the plurality of motor rotor positions is filtered, and digital filtering methods such as sliding filtering, average filtering, and the like may be employed.
  • the interference determination coefficient can be used to determine the degree of interference of the average angular difference ⁇ avg of the rotor position of the motor.
  • the selection of the interference judgment coefficient depends on the application of the motor, and the interference judgment coefficient can be determined according to the rotation speed of the motor, or the acceleration of the motor, or the rotation speed and acceleration of the motor.
  • the interference determination coefficient may include k 1 and k 2 , and the k 1 and the k 2 satisfy the formula k 2 >k 1 >1.
  • the correcting the rotor position of the motor according to the average angular difference ⁇ avg of the rotor position of the motor and the interference determination coefficient may include the following steps:
  • the position information of the rotor of the motor is normal, and the position of the rotor of the motor before and after the correction is the same, so that the position information does not need to be corrected.
  • the average angular difference ⁇ avg of the rotor position of the motor is updated according to the corrected motor rotor position ⁇ ′ k .
  • the average angular difference ⁇ avg of the rotor position of the motor is updated according to the corrected motor rotor position ⁇ ′ k .
  • the average angular difference ⁇ avg of the motor rotor position may not be updated.
  • the interference determination coefficient is not limited to the above case, and the number of interference determination coefficients may be one or more.
  • a resolver can be added to the permanent magnet synchronous motor, and the resolver is configured to obtain rotor position information of the permanent magnet synchronous motor.
  • the resolver can be connected to the anti-interference circuit in the permanent magnet synchronous motor through the resolver interface; the rotor position information of the permanent magnet synchronous motor obtained by the resolver can be filtered out by the anti-interference circuit, and the sin signal and cos can be filtered out.
  • the high frequency interference component in the signal; the anti-interference circuit can adopt the RC filter circuit shown in FIG.
  • the decoder After filtering out the high frequency interference component in the sin signal and the cos signal, it can be transmitted to the digital control circuit through the decoder, and the decoder can adopt the AD2S1205 chip and its circuit shown in FIG. A buffer circuit (BUFFER CIRCUIT) is included in FIG.
  • the digital control circuit After the digital control circuit obtains the rotor position information of the permanent magnet synchronous motor, the rotor position information of the obtained permanent magnet synchronous motor can be estimated and corrected.
  • the average angular difference ⁇ avg of the motor rotor position can then be calculated from ⁇ k .
  • the value of k 1 may be 1.2, and the value of k 2 may be 1.5.
  • the rotor position information of the permanent magnet synchronous motor can be estimated and corrected according to the following rules:
  • the motor rotor position correction method of the embodiment of the present invention determines the interference severity of the motor rotor position by correcting the interference degree of the motor rotor position, and corrects the position of the motor rotor; the position information of the motor rotor can be more accurately obtained, and the reliability and the reliability are improved. Control performance.
  • a second embodiment of the present disclosure provides a motor rotor position correction device, which may include an acquisition module 21, a determination module 22, and a correction module 23;
  • the acquisition module 21 is configured to acquire an angular difference ⁇ k of the rotor position of the motor.
  • the rotor position of the motor can be detected by adding a resolver to the permanent magnet synchronous motor while adding a decoder circuit, if ⁇ k is expressed as the angle of the currently detected rotor position of the motor, ⁇ k-1
  • the angle difference ⁇ k ⁇ k - ⁇ k-1 of the motor rotor position is expressed as the angle of the motor rotor position detected last time. It can be noted that the time interval between the current detection and the last detection is not limited.
  • the determining module 22 is configured to determine an average angular difference ⁇ avg of the rotor position of the motor according to an angular difference ⁇ k of the rotor position of the motor.
  • the determining module 22 may include a filtering unit 221 and a computing unit 222;
  • the filtering unit 221 is configured to filter an angular difference ⁇ k of a plurality of the rotor positions of the motor;
  • the calculating unit 222 is configured to calculate an average angular difference ⁇ avg of the rotor position of the motor according to the angle difference ⁇ k of the filtered plurality of motor rotor positions.
  • the angular difference ⁇ k of the plurality of motor rotor positions is filtered, and digital filtering methods such as sliding filtering, average filtering, and the like may be employed.
  • the correction module 23 is configured to correct the rotor position of the motor according to the average angular difference ⁇ avg of the rotor position of the motor and the interference determination coefficient.
  • the interference determination coefficient can be used to determine the degree of interference of the average angular difference ⁇ avg of the rotor position of the motor.
  • the selection of the interference judgment coefficient depends on the application of the motor, and the interference judgment coefficient can be determined according to the rotation speed of the motor, or the acceleration of the motor, or the rotation speed and acceleration of the motor.
  • the interference determination coefficient may include k 1 and k 2 , and the k 1 and the k 2 satisfy the formula k 2 >k 1 >1;
  • the correction module 23 may include a first correction unit 231, a second correction unit 232, and a third correction unit 233;
  • the position information of the rotor of the motor is normal, and the position of the rotor of the motor before and after the correction is the same, so that the position information does not need to be corrected.
  • the average angular difference ⁇ avg of the rotor position of the motor is updated according to the corrected motor rotor position ⁇ ′ k .
  • ⁇ ' k-1 is the corrected previous motor rotor position
  • the average angular difference ⁇ avg of the rotor position of the motor is updated according to the corrected motor rotor position ⁇ ′ k .
  • the average angular difference ⁇ avg of the motor rotor position may not be updated.
  • the interference determination coefficient is not limited to the above case, and the number of interference determination coefficients may be one or more.
  • a resolver can be added to the permanent magnet synchronous motor, and the resolver is configured to obtain rotor position information of the permanent magnet synchronous motor.
  • the resolver can be connected to the anti-interference circuit in the permanent magnet synchronous motor through the resolver interface; the rotor position information of the permanent magnet synchronous motor obtained by the resolver can be filtered out by the anti-interference circuit, and the sin signal and cos can be filtered out.
  • the high frequency interference component in the signal; the anti-interference circuit can adopt the RC filter circuit shown in FIG.
  • the decoder After filtering out the high frequency interference component in the sin signal and the cos signal, it can be transmitted to the digital control circuit through the decoder, and the decoder can adopt the AD2S1205 chip and its circuit shown in FIG.
  • the digital control circuit After the digital control circuit obtains the rotor position information of the permanent magnet synchronous motor, the rotor position information of the obtained permanent magnet synchronous motor can be estimated and corrected.
  • the average angular difference ⁇ avg of the motor rotor position can then be calculated from ⁇ k .
  • the value of k 1 may be 1.2, and the value of k 2 may be 1.5.
  • the rotor position information of the permanent magnet synchronous motor can be estimated and corrected according to the following rules:
  • the motor rotor position correcting device of the embodiment of the present invention judges the severity of the interference by the angle difference of the rotor position of the motor, and corrects the position of the rotor of the motor; the position information of the rotor of the motor can be more accurately obtained, and the reliability and the reliability are improved. Control performance.
  • a third embodiment of the present disclosure provides a motor rotor position correction device, which may include a memory 31, a processor 32, and is stored on the memory 31 and may be on the processor 32.
  • the operating motor rotor position correction program when the motor rotor position correction program is executed by the processor 32, is configured to implement the steps of the motor rotor position correction method described below:
  • the rotor position of the motor is corrected based on the average angular difference ⁇ avg of the rotor position of the motor and the interference determination coefficient.
  • the motor rotor position correction program When executed by the processor 32, it may also be configured to implement the steps of the motor rotor position correction method described below:
  • the average angular difference ⁇ avg of the rotor position of the motor is calculated based on the angular difference ⁇ k of the filtered plurality of motor rotor positions.
  • the motor rotor position correction program When executed by the processor 32, it may also be configured to implement the steps of the motor rotor position correction method described below:
  • the interference judgment coefficient includes k 1 and k 2 , and the k 1 and the k 2 satisfy the formula k 2 >k 1 >1;
  • the correcting the rotor position of the motor according to the average angular difference ⁇ avg of the rotor position of the motor and the interference determination coefficient includes the following steps:
  • the motor rotor position correction program When executed by the processor 32, it may also be configured to implement the steps of the motor rotor position correction method described below:
  • the motor rotor position correction device of the embodiment of the present invention judges the severity of the interference by the angle difference of the rotor position of the motor, and corrects the position of the rotor of the motor; the position information of the rotor of the motor can be more accurately obtained, and the reliability and the reliability are improved. Control performance.
  • a fourth embodiment of the present disclosure provides a storage medium on which a motor rotor position correction program is stored, and when the motor rotor position correction program is executed by a processor, the motor rotor position correction described in the first embodiment can be implemented. The steps of the method.
  • the storage medium of the embodiment can be applied to a DSP chip (Digital Signal Processor), a single chip microcomputer, or the like, and the processor chip is not limited herein.
  • the storage medium may be a storage module in the processor chip; or a separate storage module, the processor chip may read and execute the motor rotor position correction program in the independent storage module.
  • the storage medium of the embodiment of the present disclosure judges the severity of the interference by the angular difference of the rotor position of the motor, and corrects the position of the rotor of the motor; the position information of the rotor of the motor can be more accurately obtained, and the reliability and control performance are improved.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware.
  • the technical solution of the present disclosure may be embodied in the form of a software product in essence or in some cases, and the computer software product is stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the method described in each embodiment of the present disclosure.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology configured to store information, such as computer readable instructions, data structures, program modules, or other data. Sex, removable and non-removable media.
  • Computer storage media include, but are not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), and Electrically Erasable Programmable Read-only Memory (EEPROM). Flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical disc storage, magnetic cassette, magnetic tape, disk storage or other magnetic storage device, or Any other medium that is set to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种电机转子位置修正方法包括步骤:获取(S11)电机转子位置的角度差Δθ k;根据所述电机转子位置的角度差Δθ k,确定(S12)所述电机转子位置的平均角度差Δθ avg;根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正(S13)。

Description

电机转子位置修正方法、装置及设备、存储介质 技术领域
本公开涉及但不限于电机控制技术领域,尤其是一种电机转子位置修正方法、装置及设备、存储介质。
背景技术
永磁同步电机与交流异步电机相比,具有结构简单、效率高等多方面的优点,因此在新能源汽车、风力发电等领域有非常广泛的应用。永磁同步电机的控制方法可以包括无位置传感器和有位置传感器两大类。
永磁同步电机无位置传感器控制方法需要建立电机的精确模型,通过检测电机定子电压、电流等参数,估算永磁同步电机的定子位置和转速。永磁同步电机无位置传感器控制方法控制性能的优劣取决于电机模型的精确程度,但由于电机是非线性强耦合系统,目前并无法建立精确的电机模型,因此在新能源汽车等对电机控制性能要求比较高的场景,一般不使用无位置传感器控制方法。
通过在永磁同步电机中加入旋转变压器、霍尔等位置传感器器件,同时在电机控制器中加入解码器电路对电机的转子位置进行检测,可以对电机进行精确控制。旋转变压器相比霍尔可以获得更精确的位置信息,因此得到了更为广泛的应用。但旋转变压器和解码器电路之间传输的是模拟信号,并且线缆往往比较长,因此容易受到干扰。由于永磁同步电机的控制依赖于电机转子位置进行,而位置传感器受到干扰时,电机输出转矩将可能出现较大的波动,甚至停机。通用的方法是在解码器电路上增加抗干扰设计,以减少干扰影响。但这种方法并不能消除干扰影响。
发明概述
本公开提供一种电机转子位置修正方法、装置及设备、存储介质,以消除甚至完全消除干扰对于永磁同步电机控制过程的影响。
本公开实施例所采用的技术方案如下:
本公开实施例提供一种电机转子位置修正方法,所述方法包括步骤:获取电机转子位置的角度差Δθ k;根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg;根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
本公开实施例提供一种电机转子位置修正装置,所述装置包括获取模块、确定模块和修正模块;所述获取模块,设置为:获取电机转子位置的角度差Δθ k;所述确定模块,设置为:根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg;所述修正模块,设置为:根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
本公开实施例还提供一种电机转子位置修正装置,所述装置包括获取模块、确定模块和修正模块;所述获取模块,设置为获取电机转子位置的角度差Δθ k;所述确定模块,设置为根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg;所述修正模块,设置为根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
本公开实施例还提供一种电机转子位置修正设备,所述设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的电机转子位置修正程序,所述电机转子位置修正程序被所述处理器执行时实现上述的电机转子位置修正方法的步骤。
本公开实施例还提供一种存储介质,所述存储介质上存储有电机转子位置修正程序,所述电机转子位置修正程序被处理器执行时实现上述的电机转子位置修正方法的步骤。
附图概述
图1为本公开第一实施例的电机转子位置修正方法流程示意图;
图2为本公开第二实施例的电机转子位置修正装置结构示意图;
图3为本公开第二实施例的电机转子位置修正装置中确定模块结构示意图;
图4为本公开第二实施例的电机转子位置修正装置中修正模块结构示意图;
图5为本公开第三实施例的电机转子位置修正设备结构示意图;
图6为本公开实施例的电机转子位置修正的应用结构示意图;
图7为本公开实施例的应用结构中的解码器结构示意图;
图8为本公开实施例的应用结构中的抗干扰电路结构示意图。
详述
下面结合附图对本公开的实施方式进行描述。
第一实施例
如图1所示,本公开第一实施例提供一种电机转子位置修正方法,所述方法可以包括步骤:
S11、获取电机转子位置的角度差Δθ k
作为示例地,可以通过在永磁同步电机中加入旋转变压器,同时加入解码器电路对电机的转子位置进行检测,若θ k表示为当前检测到的所述电机转子位置的角度,θ k-1表示为上次检测到的所述电机转子位置的角度,则电机转子位置的角度差Δθ k=θ kk-1。可以说明的是,当前检测和上次检测之间的时间间隔并不作限定。
S12、根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg
在一种实施方式中,所述根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg可以包括步骤:
对多个所述电机转子位置的角度差Δθ k进行滤波;
根据滤波后的多个所述电机转子位置的角度差Δθ k,计算所述电机转子位置的平均角度差Δθ avg
在该实施方式中,对多个所述电机转子位置的角度差Δθ k进行滤波,可采用数字滤波方法,例如滑动滤波、平均值滤波等等。
S13、根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
在本实施例中,所述干扰判断系数可以用于判断电机转子位置的平均角度差Δθ avg的干扰程度。干扰判断系数的选取取决于电机的应用场合,可根据电机的转速、或电机的加速度、或电机的转速和加速度确定所述干扰判断系数。
在一种实施方式中,所述干扰判断系数可以包括k 1和k 2,所述k 1和所述k 2满足公式k 2>k 1>1。
在该实施方式中,所述根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正可以包括步骤:
若Δθ k<k 1·Δθ avg,则修正所述电机转子位置为θ′ k=θ k,其中θ′ k为修正后的电机转子位置,θ k为修正前的电机转子位置;
在该情形下,电机转子位置信息正常,修正前后的电机转子位置相同,即可不需要对位置信息进行修正。可选地,根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
若k 1·Δθ avg≤Δθ k<k 2·Δθ avg,则可以修正所述电机转子位置为θ′ k=θ′ k-1+k 1·Δθ avg,其中θ′ k-1为修正后的前一电机转子位置;
在该情形下,电机转子位置信息受到了轻微干扰,修正后的电机转子位置可以为θ′ k=θ′ k-1+k 1·Δθ avg。可选地,根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
若Δθ k≥k 2·Δθ avg,则修正所述电机转子位置可以为θ′ k=θ′ k-1+k 2·Δθ avg
在该情形下,电机转子位置信息受到了严重干扰,修正后的电机转子位置可以为θ′ k=θ′ k-1+k 2·Δθ avg。可以不更新所述电机转子位置的平均角度差Δθ avg
可以说明的是,干扰判断系数并不限于上述情形,干扰判断系数的个数可以为一个或多个。
为了更好地理解本实施例,以下结合图6至图8对电机转子位置修正过 程进行说明:
可以在永磁同步电机中加入旋转变压器,旋转变压器设置为获取永磁同步电机的转子位置信息。如图6所示,旋转变压器可以通过旋转变压器接口与永磁同步电机中的抗干扰电路连接;旋转变压器获取的永磁同步电机的转子位置信息经过抗干扰电路,可以滤除掉sin信号及cos信号中的高频干扰成分;抗干扰电路可采用图8所示的RC滤波电路。
在滤除掉sin信号及cos信号中的高频干扰成分之后,可以通过解码器传输到数字控制电路,解码器可采用到图7所示的AD2S1205芯片及其电路。图7中包括缓存电路(BUFFER CIRCUIT)。
数字控制电路获取到永磁同步电机的转子位置信息之后,可以对获取的永磁同步电机的转子位置信息进行估算和修正。
可选地,数字控制电路模块首先计算电机转子当前位置的角度θ k与前一位置的角度θ k-1的差值Δθ k=θ kk-1。然后可以根据Δθ k计算电机转子位置的平均角度差Δθ avg
假设该方式应用于新能源汽车中的商用车中,由于对加速性能要求不高、电机加速度比较小,因此k 1的取值可以为1.2,k 2的取值可以为1.5。
在确定k 1和k 2的值后,按照以下规则即可完成对永磁同步电机的转子位置信息进行估算和修正:
1、当Δθ k<1.2·Δθ avg时,判断电机转子位置信息正常,可以不需要对位置信息进行修正,即修正所述电机转子位置为θ′ k=θ k,并根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
2、当1.2·Δθ avg≤Δθ k<1.5·Δθ avg时,判断电机转子位置信息受到了轻微干扰,修正所述电机转子位置为θ′ k=θ′ k-1+1.2·Δθ avg,并根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
3、当Δθ k≥1.5·Δθ avg时,判断电机转子位置信息受到了严重干扰,修正所述电机转子位置为θ′ k=θ′ k-1+1.5·Δθ avg,不更新所述电机转子位置的平均角度差Δθ avg
本公开实施例的电机转子位置修正方法,通过对电机转子位置的角度差 进行干扰严重程度的判断,并对电机转子位置进行修正;可以更准确的获取电机转子的位置信息,提高了可靠性和控制性能。
第二实施例
如图2所示,本公开第二实施例提供一种电机转子位置修正装置,所述装置可以包括获取模块21、确定模块22和修正模块23;
所述获取模块21,设置为获取电机转子位置的角度差Δθ k
作为示例地,可以通过在永磁同步电机中加入旋转变压器,同时加入解码器电路对电机的转子位置进行检测,若θ k表示为当前检测到的所述电机转子位置的角度,θ k-1表示为上次检测到的所述电机转子位置的角度,则电机转子位置的角度差Δθ k=θ kk-1。可以说明的是,当前检测和上次检测之间的时间间隔并不作限定。
所述确定模块22,设置为根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg
请参考图3所示,在一种实施方式中,所述确定模块22可以包括滤波单元221和计算单元222;
所述滤波单元221,设置为对多个所述电机转子位置的角度差Δθ k进行滤波;
所述计算单元222,设置为根据滤波后的多个所述电机转子位置的角度差Δθ k,计算所述电机转子位置的平均角度差Δθ avg
在该实施方式中,对多个所述电机转子位置的角度差Δθ k进行滤波,可采用数字滤波方法,例如滑动滤波、平均值滤波等等。
所述修正模块23,设置为根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
在本实施例中,所述干扰判断系数可以用于判断电机转子位置的平均角度差Δθ avg的干扰程度。干扰判断系数的选取取决于电机的应用场合,可根据电机的转速、或电机的加速度、或电机的转速和加速度确定所述干扰判断系 数。
在一种实施方式中,所述干扰判断系数可以包括k 1和k 2,所述k 1和所述k 2满足公式k 2>k 1>1;
请参考图4所示,所述修正模块23可以包括第一修正单元231、第二修正单元232以及第三修正单元233;
所述第一修正单元231,设置为若Δθ k<k 1·Δθ avg,则修正所述电机转子位置为θ′ k=θ k,其中θ′ k为修正后的电机转子位置,θ k为修正前的电机转子位置;
在该情形下,电机转子位置信息正常,修正前后的电机转子位置相同,即可不需要对位置信息进行修正。可选地,根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
所述第二修正单元232,设置为若k 1·Δθ avg≤Δθ k<k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 1·Δθ avg,其中θ′ k-1为修正后的前一电机转子位置;
在该情形下,电机转子位置信息受到了轻微干扰,修正后的电机转子位置可以为θ′ k=θ′ k-1+k 1·Δθ avg。可选地,根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
所述第三修正单元233,设置为若Δθ k≥k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 2·Δθ avg
在该情形下,电机转子位置信息受到了严重干扰,修正后的电机转子位置可以为θ′ k=θ′ k-1+k 2·Δθ avg。可以不更新所述电机转子位置的平均角度差Δθ avg
可以说明的是,干扰判断系数并不限于上述情形,干扰判断系数的个数可以为一个或多个。
为了更好地理解本实施例,以下结合图6至图8对电机转子位置修正过程进行说明:
可以在永磁同步电机中加入旋转变压器,旋转变压器设置为获取永磁同步电机的转子位置信息。如图6所示,旋转变压器可以通过旋转变压器接口 与永磁同步电机中的抗干扰电路连接;旋转变压器获取的永磁同步电机的转子位置信息经过抗干扰电路,可以滤除掉sin信号及cos信号中的高频干扰成分;抗干扰电路可采用图8所示的RC滤波电路。
在滤除掉sin信号及cos信号中的高频干扰成分之后,可以通过解码器传输到数字控制电路,解码器可采用到图7所示的AD2S1205芯片及其电路。
数字控制电路获取到永磁同步电机的转子位置信息之后,可以对获取的永磁同步电机的转子位置信息进行估算和修正。
可选地,数字控制电路模块首先计算电机转子当前位置的角度θ k与前一位置的角度θ k-1的差值Δθ k=θ kk-1。然后可以根据Δθ k计算电机转子位置的平均角度差Δθ avg
假设该方式应用于新能源汽车中的商用车中,由于对加速性能要求不高、电机加速度比较小,因此k 1的取值可以为1.2,k 2的取值可以为1.5。
在确定k 1和k 2的值后,按照以下规则即可完成对永磁同步电机的转子位置信息进行估算和修正:
1、当Δθ k<1.2·Δθ avg时,判断电机转子位置信息正常,可以不需要对位置信息进行修正,即修正所述电机转子位置为θ′ k=θ k,并根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
2、当1.2·Δθ avg≤Δθ k<1.5·Δθ avg时,判断电机转子位置信息受到了轻微干扰,修正所述电机转子位置为θ′ k=θ′ k-1+1.2·Δθ avg,并根据修正后的电机转子位置θ′ k,更新所述电机转子位置的平均角度差Δθ avg
3、当Δθ k≥1.5·Δθ avg时,判断电机转子位置信息受到了严重干扰,修正所述电机转子位置为θ′ k=θ′ k-1+1.5·Δθ avg,不更新所述电机转子位置的平均角度差Δθ avg
本公开实施例的电机转子位置修正装置,通过对电机转子位置的角度差进行干扰严重程度的判断,并对电机转子位置进行修正;可以更准确的获取电机转子的位置信息,提高了可靠性和控制性能。
第三实施例
如图5所示,本公开第三实施例提供一种电机转子位置修正设备,所述设备可以包括:存储器31、处理器32及存储在所述存储器31上并可在所述处理器32上运行的电机转子位置修正程序,所述电机转子位置修正程序被所述处理器32执行时,设置为实现以下所述的电机转子位置修正方法的步骤:
获取电机转子位置的角度差Δθ k
根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg
根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
所述电机转子位置修正程序被所述处理器32执行时,还可以设置为实现以下所述的电机转子位置修正方法的步骤:
对多个所述电机转子位置的角度差Δθ k进行滤波;
根据滤波后的多个所述电机转子位置的角度差Δθ k,计算所述电机转子位置的平均角度差Δθ avg
所述电机转子位置修正程序被所述处理器32执行时,还可以设置为实现以下所述的电机转子位置修正方法的步骤:
所述干扰判断系数包括k 1和k 2,所述k 1和所述k 2满足公式k 2>k 1>1;
所述根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正包括步骤:
若Δθ k<k 1·Δθ avg,则修正所述电机转子位置为θ′ k=θ k,其中θ′ k为修正后的电机转子位置,θ k为修正前的电机转子位置;
若k 1·Δθ avg≤Δθ k<k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 1×Δθ avg,其中θ′ k-1为修正后的前一电机转子位置;
若Δθ k≥k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 2×Δθ avg
所述电机转子位置修正程序被所述处理器32执行时,还可以设置为实现以下所述的电机转子位置修正方法的步骤:
若Δθ k<k 2·Δθ avg,则根据修正后的电机转子位置,更新所述电机转子 位置的平均角度差Δθ avg
若Δθ k≥k 2·Δθ avg,则不更新所述电机转子位置的平均角度差Δθ avg
所述电机转子位置修正程序被所述处理器32执行时,还可以设置为实现以下所述的电机转子位置修正方法的步骤:
根据电机的转速、或电机的加速度、或电机的转速和加速度确定所述干扰判断系数。
本公开实施例的电机转子位置修正设备,通过对电机转子位置的角度差进行干扰严重程度的判断,并对电机转子位置进行修正;可以更准确的获取电机转子的位置信息,提高了可靠性和控制性能。
第四实施例
本公开第四实施例提供一种存储介质,所述存储介质上存储有电机转子位置修正程序,所述电机转子位置修正程序被处理器执行时可以实现第一实施例所述的电机转子位置修正方法的步骤。
可以说明的是,本实施例的存储介质可应用在DSP(Digital Signal Processor,数字信号处理器)、单片机等等类似的处理器芯片中,处理器芯片在此不作限制。存储介质可以为处理器芯片中的存储模块;或者为独立的存储模块,处理器芯片可读取该独立的存储模块中的电机转子位置修正程序并执行。
本公开实施例的存储介质,通过对电机转子位置的角度差进行干扰严重程度的判断,并对电机转子位置进行修正;可以更准确的获取电机转子的位置信息,提高了可靠性和控制性能。
可以说明的是,上述装置实施例与方法实施例属于同一构思,其可选实现过程详见方法实施例,且方法实施例中的技术特征在装置实施例中均对应适用,这里不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件来实现。基于这样的理解,本公开的技术方案本质上或者说在一些情 形下做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开每个实施例所述的方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在设置为存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(RAM,Random Access Memory)、只读存储器(ROM,Read-Only Memory)、电可擦除只读存储器(EEPROM,Electrically Erasable Programmable Read-only Memory)、闪存或其他存储器技术、光盘只读存储器(CD-ROM,Compact Disc Read-Only Memory)、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以设置为存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本领域的普通技术人员可以理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求范围当中。

Claims (11)

  1. 一种电机转子位置修正方法,其特征在于,所述方法包括步骤:
    获取电机转子位置的角度差Δθ k
    根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg
    根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
  2. 根据权利要求1所述的一种电机转子位置修正方法,其特征在于,所述根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg包括步骤:
    对多个所述电机转子位置的角度差Δθ k进行滤波;
    根据滤波后的多个所述电机转子位置的角度差Δθ k,计算所述电机转子位置的平均角度差Δθ avg
  3. 根据权利要求1所述的一种电机转子位置修正方法,其特征在于,所述干扰判断系数包括k 1和k 2,所述k 1和所述k 2满足公式k 2>k 1>1;
    所述根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正包括步骤:
    若Δθ k<k 1·Δθ avg,则修正所述电机转子位置为θ′ k=θ k,其中θ′ k为修正后的电机转子位置,θ k为修正前的电机转子位置;
    若k 1·Δθ avg≤Δθ k<k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 1·Δθ avg,其中θ′ k-1为修正后的前一电机转子位置;
    若Δθ k≥k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 2·Δθ avg
  4. 根据权利要求3所述的一种电机转子位置修正方法,其特征在于,所述方法还包括步骤:
    若Δθ k<k 2·Δθ avg,则根据修正后的电机转子位置,更新所述电机转子位置的平均角度差Δθ avg
    若Δθ k≥k 2·Δθ avg,则不更新所述电机转子位置的平均角度差Δθ avg
  5. 根据权利要求1至4中任一权利要求所述的一种电机转子位置修正方法,其特征在于,根据电机的转速、或电机的加速度、或电机的转速和加速度确定所述干扰判断系数。
  6. 一种电机转子位置修正装置,其特征在于,所述装置包括获取模块、确定模块和修正模块;
    所述获取模块,设置为:获取电机转子位置的角度差Δθ k
    所述确定模块,设置为:根据所述电机转子位置的角度差Δθ k,确定所述电机转子位置的平均角度差Δθ avg
    所述修正模块,设置为:根据所述电机转子位置的平均角度差Δθ avg和干扰判断系数,对电机转子位置进行修正。
  7. 根据权利要求6所述的装置,其特征在于,所述确定模块包括滤波单元和计算单元;
    所述滤波单元,设置为:对多个所述电机转子位置的角度差Δθ k进行滤波;
    所述计算单元,设置为:根据滤波后的多个所述电机转子位置的角度差Δθ k,计算所述电机转子位置的平均角度差Δθ avg
  8. 根据权利要求6所述的装置,其特征在于,所述干扰判断系数包括k 1和k 2,所述k 1和所述k 2满足公式k 2>k 1>1;
    所述修正模块包括第一修正单元、第二修正单元以及第三修正单元;
    所述第一修正单元,设置为:若Δθ k<k 1·Δθ avg,则修正所述电机转子位置为θ′ k=θ k,其中θ′ k为修正后的电机转子位置,θ k为修正前的电机转子位置;
    所述第二修正单元,设置为:若k 1·Δθ avg≤Δθ k<k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 1·Δθ avg,其中θ′ k-1为修正后的前一电机转子位置;
    所述第三修正单元,设置为:若Δθ k≥k 2·Δθ avg,则修正所述电机转子位置为θ′ k=θ′ k-1+k 2·Δθ avg
  9. 根据权利要求8所述的装置,其特征在于,所述第一修正单元和所述第二修正单元,还分别设置为:根据修正后的电机转子位置,更新所述电机转子位置的平均角度差Δθ avg
  10. 一种电机转子位置修正设备,其特征在于,所述设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的电机转子位置修正程序,所述电机转子位置修正程序被所述处理器执行时实现如权利要求1至5中任一项所述的电机转子位置修正方法的步骤。
  11. 一种存储介质,其特征在于,所述存储介质上存储有电机转子位置修正程序,所述电机转子位置修正程序被处理器执行时实现如权利要求1至5中任一项所述的电机转子位置修正方法的步骤。
PCT/CN2018/114873 2017-12-11 2018-11-09 电机转子位置修正方法、装置及设备、存储介质 WO2019114474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711310185.6 2017-12-11
CN201711310185.6A CN107947649B (zh) 2017-12-11 2017-12-11 电机转子位置修正方法、装置及设备、存储介质

Publications (1)

Publication Number Publication Date
WO2019114474A1 true WO2019114474A1 (zh) 2019-06-20

Family

ID=61946537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114873 WO2019114474A1 (zh) 2017-12-11 2018-11-09 电机转子位置修正方法、装置及设备、存储介质

Country Status (2)

Country Link
CN (1) CN107947649B (zh)
WO (1) WO2019114474A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947649B (zh) * 2017-12-11 2022-01-28 中兴通讯股份有限公司 电机转子位置修正方法、装置及设备、存储介质
CN109306577B (zh) * 2018-10-29 2020-11-13 浙江众邦机电科技有限公司 一种平缝纫机的倒缝线迹修正方法、装置、介质及设备
CN111146979A (zh) * 2018-11-02 2020-05-12 宝沃汽车(中国)有限公司 电机转子的初始角修正方法、装置及电动汽车
CN113809969B (zh) * 2021-07-30 2023-10-20 中国电力科学研究院有限公司 一种同步电机转子位置评估方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140292248A1 (en) * 2011-12-14 2014-10-02 Kabushiki Kaisha Yaskawa Denki Motor controller and motor system
CN104201947A (zh) * 2014-08-21 2014-12-10 广东威灵电机制造有限公司 电机驱动方法和装置、电器
CN104702187A (zh) * 2013-12-04 2015-06-10 比亚迪股份有限公司 电机转子位置的估算方法
CN104836506A (zh) * 2015-05-29 2015-08-12 许继集团有限公司 一种永磁同步电机转子零位校正系统及方法
CN105811838A (zh) * 2015-01-20 2016-07-27 株式会社万都 用于测量eps电机位置传感器的偏移的装置和方法
CN107947649A (zh) * 2017-12-11 2018-04-20 中兴通讯股份有限公司 电机转子位置修正方法、装置及设备、存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221307B2 (ja) * 2004-01-07 2009-02-12 日立アプライアンス株式会社 同期電動機の制御装置,電気機器およびモジュール
JP2008182881A (ja) * 2006-12-27 2008-08-07 Matsushita Electric Ind Co Ltd 同期モータの制御装置
CN102648676B (zh) * 2012-05-18 2014-11-19 莱恩农业装备有限公司 一种独立动力非同步插秧机构及其控制方法
CN106533301B (zh) * 2016-12-23 2019-09-06 广东高标电子科技有限公司 一种电角度控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140292248A1 (en) * 2011-12-14 2014-10-02 Kabushiki Kaisha Yaskawa Denki Motor controller and motor system
CN104702187A (zh) * 2013-12-04 2015-06-10 比亚迪股份有限公司 电机转子位置的估算方法
CN104201947A (zh) * 2014-08-21 2014-12-10 广东威灵电机制造有限公司 电机驱动方法和装置、电器
CN105811838A (zh) * 2015-01-20 2016-07-27 株式会社万都 用于测量eps电机位置传感器的偏移的装置和方法
CN104836506A (zh) * 2015-05-29 2015-08-12 许继集团有限公司 一种永磁同步电机转子零位校正系统及方法
CN107947649A (zh) * 2017-12-11 2018-04-20 中兴通讯股份有限公司 电机转子位置修正方法、装置及设备、存储介质

Also Published As

Publication number Publication date
CN107947649A (zh) 2018-04-20
CN107947649B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2019114474A1 (zh) 电机转子位置修正方法、装置及设备、存储介质
US10075107B2 (en) Method and apparatus for motor lock or stall detection
US20070143040A1 (en) Method of estimating load inertia for a motor
CN103825525A (zh) 一种改进的无传感器永磁同步电机速度估测方法
KR101508815B1 (ko) 영구자석 동기 모터의 회전자 위치 검출 방법
US20190312535A1 (en) Method for Adjusting an Amplitude of a Voltage Injection of a Rotating, Multi-Phase Electric Machine, which Electric Machine is Fed by Means of a PWM-Controlled Inverter
CN110661466B (zh) 准比例谐振自适应观测器及永磁同步电机位置估算方法
US10992243B2 (en) System and computer-implemented method for reducing angle error in electric motors
US10554159B2 (en) Monitoring and compensating the angle of a rotor in an electric machine using an angle sensor
WO2015092462A1 (en) Method and system for controlling an electric motor
CN111082725A (zh) 磁旋转编码器角度补偿方法、补偿系统和电机
CN110311599B (zh) 永磁同步电机磁极位置的校正方法、系统、介质及设备
CN105429543A (zh) 一种交流电机矢量控制系统
CN111162717A (zh) 永磁同步电机转子初始位置角检测方法、装置及存储介质
US6429616B1 (en) Method of estimating the DC bus voltage in electric machine drives
CN114172414A (zh) 伺服电机初始电角度确定方法、装置及可读存储介质
CN110492818B (zh) 电机的零位校正方法和校正装置、电机控制系统
CN113794414A (zh) 一种永磁同步电机霍尔信号在线校正方法
KR20220120011A (ko) 리졸버의 위상지연 검출 장치 및 그 방법
CN109738799B (zh) 一种电机磁极相位角的检测方法、装置及设备
CN105553347B (zh) 用于基于电的旋转角求出转子的机械的旋转角的方法
CN115267635B (zh) 霍尔元件安装校验方法、装置、计算机设备及存储介质
CN115001342B (zh) 感应电机的转速估算方法、装置及系统
CN111092582B (zh) 一种位置识别方法和相关装置
CN111313769B (zh) 一种内置式永磁同步电机初始位置角的检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18887288

Country of ref document: EP

Kind code of ref document: A1