WO2019114390A1 - 一种传感器及其制备方法 - Google Patents

一种传感器及其制备方法 Download PDF

Info

Publication number
WO2019114390A1
WO2019114390A1 PCT/CN2018/109628 CN2018109628W WO2019114390A1 WO 2019114390 A1 WO2019114390 A1 WO 2019114390A1 CN 2018109628 W CN2018109628 W CN 2018109628W WO 2019114390 A1 WO2019114390 A1 WO 2019114390A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sensor
substrate
lower electrode
projection
Prior art date
Application number
PCT/CN2018/109628
Other languages
English (en)
French (fr)
Inventor
周国富
周蕤
沈振鹏
李君�
德·罗伊尼克
Original Assignee
华南师范大学
深圳市国华光电科技有限公司
深圳市国华光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学, 深圳市国华光电科技有限公司, 深圳市国华光电研究院 filed Critical 华南师范大学
Publication of WO2019114390A1 publication Critical patent/WO2019114390A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00142Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00841Cleaning during or after manufacture
    • B81C1/00849Cleaning during or after manufacture during manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0221Variable capacitors

Definitions

  • the invention relates to the field of sensors, in particular to a sensor and a method for its preparation.
  • the single-function sensors can no longer meet the increasing measurement needs of people, and can not meet the needs of automated measurement and control systems.
  • the miniaturization, intelligence and standardization of sensors are the trend of the times. Reducing the size and weight of sensors, increasing sensitivity, anti-interference and multi-function have become urgent requirements for sensors in people's lives and social production.
  • the capacitive sensor has simple structure, low price, high sensitivity, zero hysteresis, vacuum compatibility, strong overload capability, good dynamic response characteristics and strong adaptability to harsh conditions such as high temperature, radiation and strong vibration. The advantages of contact measurement and the like are widely used.
  • the capacitive multi-function sensors are of variable dielectric constant type, and a layer of sensing material is coated on the substrate to achieve sensing, and the sensitivity is poor. At the same time, the measured gas or other impurities adhere to the substrate during the measurement process. The measurement noise caused by the change in the dielectric constant has a low accuracy.
  • an object of the present invention is to provide a sensor and a method of fabricating the same for improving the sensitivity and accuracy of the sensor.
  • the technical solution adopted by the present invention is: a sensor comprising a substrate, the sensor further comprising at least one lower electrode, at least one middle electrode and at least one upper electrode; the lower electrode is disposed above the substrate, the middle electrode, An upper electrode is disposed above the lower electrode and the lower electrode, the middle electrode, and the upper electrode are respectively disposed on different planes parallel to each other in a space, a projection of a lower electrode of the sensor, a projection of the middle electrode, and an upper electrode The projections intersect at a projection intersection to form at least one microbridge, the sensor further comprising a sensing material in contact with the middle electrode, the sensing material being disposed at a point of intersection of the projections.
  • orthographic projection of the lower electrode of the sensor, the orthographic projection of the middle electrode, and the orthographic projection of the upper electrode intersect at a point of intersection of the projections.
  • orthographic projection of the lower electrode of the sensor, the orthographic projection of the middle electrode, and the orthographic projection of the upper electrode intersect perpendicularly to the intersection of the projections.
  • the material of the lower electrode, the middle electrode and the upper electrode is a nano silver material.
  • the sensing material has a thickness of 2-3 ⁇ m.
  • the sensing material comprises cellulose acetate butyrate, nano copper functional composite or paraffin-based functional composite.
  • the substrate is a PET substrate.
  • the middle electrode has a thickness of 2 ⁇ m, a width of 80 ⁇ m, and a length of 2 mm.
  • the upper electrode has a thickness of 2 ⁇ m, a width of 65 ⁇ m, and a length of 1888 ⁇ m.
  • Another technical solution adopted by the present invention is: a method for preparing a sensor, which is applied to the sensor, and includes the following steps:
  • the photoresist is removed by using a developing solution.
  • a sensor includes a substrate, at least one lower electrode, at least one middle electrode and at least one upper electrode; a lower electrode is disposed above the substrate, and a middle electrode and an upper electrode are disposed above the lower electrode and the lower electrode, the middle electrode, The upper electrodes are respectively disposed on different planes parallel to each other in the space, and the projection of the lower electrode of the sensor, the projection of the middle electrode and the projection of the upper electrode intersect at a projection intersection to form at least one microbridge, and the sensor further includes contact with the middle electrode
  • the sensing material, the sensing material is disposed at the intersection of the projections.
  • the sensor of the present invention is a variable pitch type capacitive sensor and has at least one differential microbridge to realize high sensitivity sensing measurement and reduce nonlinear error.
  • the present invention also provides a method for preparing a sensor for fabricating the sensor, and the preparation method is simple.
  • FIG. 1 is a schematic view of a specific embodiment of a sensor of the present invention.
  • FIG. 2 is a cross-sectional view showing a specific embodiment of a microbridge of a sensor of the present invention
  • FIG. 3 is a perspective view showing a specific embodiment of a microbridge of a sensor of the present invention.
  • 1-PET substrate 2-lower electrode; 3-middle electrode; 4-upper electrode; 5-sensor material; A-microbridge.
  • a sensor includes a substrate, at least one lower electrode, at least one middle electrode, and at least one upper electrode; a lower electrode is disposed above the substrate, a middle electrode and an upper electrode are disposed above the lower electrode, and the lower electrode, the middle electrode, and the upper electrode are respectively Disposed on different planes parallel to each other in space, the projection of the lower electrode of the sensor, the projection of the middle electrode and the projection of the upper electrode intersect at a projection intersection to form at least one microbridge, and the sensor further includes a sensing contact with the middle electrode Material, the sensing material is placed at the intersection of the projections.
  • the sensor of the invention adopts a pole-changing differential structure, wherein the lower electrode and the upper electrode are fixed electrodes, the sensing material is in contact with the middle electrode, and the sensing material is measured (ie, the measured physical quantity, such as humidity, temperature, etc.)
  • the middle electrode is a movable electrode; and since there is at least one differential micro
  • the bridge and the plurality of differential micro-bridges simultaneously perform sensing detection, and the micro-bridge parallel structure of the present invention has unparalleled sensitivity with respect to the existing single-pole variable pitch type capacitive sensor, and the nonlinear error is reduced.
  • the orthographic projection of the lower electrode of the sensor, the orthographic projection of the middle electrode and the orthographic projection of the upper electrode intersect at the intersection of the projections, ie the upper electrode, the middle electrode and the lower electrode are spatially parallel and in the orthographic projection direction At the intersection, the intersection constitutes the microbridge structure of the sensor for sensing detection.
  • 1 is a schematic view of a specific embodiment of a sensor of the present invention.
  • FIG. 2 is a cross-sectional view of a specific embodiment of a microbridge of the sensor of the present invention
  • a schematic perspective view of a specific embodiment of a microbridge of a sensor wherein, the substrate is a PET substrate 1 having a surface size of 2 mm*2 mm and a thickness of 100 ⁇ m; in FIG. 1, the outer frame is a PET substrate 1, and the horizontal line represents a sensor.
  • the middle electrode 3, the vertical line is the coincident lower electrode 2 and the upper electrode 4, the horizontal line and the vertical line in Fig. 1 intersect to form a projection intersection point, that is, the micro bridge A, and the eight columns of the lower electrode 2, the ten rows in Fig.
  • FIGS. 2 and 3 illustrate the schematic structure of the microbridge A of FIG. 1 with the sensing material 5 disposed at the middle electrode
  • the sensing material 5 can also be disposed below the middle electrode 3, and the sensing material 5 can be disposed at the intersection of the projections and in contact with the middle electrode 3.
  • the middle electrode 3 straddles the left and right sides of the PET substrate 1, and the upper electrode 4 and the lower electrode 2 straddle the upper and lower sides of the PE substrate 1.
  • the orthographic projection of the lower electrode 2 of the sensor, the orthographic projection of the middle electrode 3, and the orthographic projection of the upper electrode 4 intersect perpendicularly to the intersection of the projections.
  • the material of the lower electrode 2, the middle electrode 3, and the upper electrode 4 is a nano silver material.
  • the lower electrode 2 has a thickness of 200 nm, a width of 65 ⁇ m, and a length of 1880 ⁇ m;
  • the middle electrode 3 has a thickness of 2 ⁇ m, a width of 80 ⁇ m, and a length of 2 mm;
  • the upper electrode 4 has a thickness of 2 ⁇ m, a width of 65 ⁇ m, and a length of 1888 ⁇ m.
  • the thickness of the sensing material 5 is 2-3 ⁇ m.
  • the sensing material 5 may be a cellulose acetate butyrate, a nano copper functional composite or a paraffin-based functional composite.
  • Micro-scale micro-bridge structures as shown in Figure 2 can be fabricated as much as possible in the PET substrate. This is the smallest unit of sensing. The more the number of micro-bridges A per unit area, compared to other variable-pole distance types. Sensor, the higher the sensitivity of the sensor.
  • the lead of the middle electrode can be drawn from the left side or the right side of the substrate, and the leads of the upper and lower electrodes can be respectively taken out from the upper side and the lower side of the substrate, and the vertical parallelism is advantageous for subsequent sensor testing.
  • a method of preparing a sensor for use in the sensor includes the following steps:
  • the substrate was successively soaked with acetone, isopropyl alcohol and deionized water for 10 minutes, and dried with nitrogen.
  • the substrate hot plate was then heated to 140 degrees Celsius for 30 minutes.
  • the surface of the substrate is subjected to oxygen plasma treatment and then heated.
  • the treated substrate surface was subjected to oxygen plasma treatment at a power of 50 W and a frequency of 13.56 MHz for 35 seconds, in order to enhance the wettability of the substrate surface, improve the hydrophilicity of the substrate, and prevent the subsequently added solution from being on the surface of the substrate. Flowing around, allowing the solution to adhere to the surface of the substrate facilitates accurate electrode structure fabrication.
  • the treated substrate was placed in an oven and baked at 120 degrees Celsius for 5 minutes in order to maintain the wettability of the substrate while preventing the printing ink from spreading over the substrate to cause the printed line to be too wide.
  • the nano silver solution is printed by an inkjet printing technique to obtain a lower electrode and then heated.
  • the ink jet dot pitch was set to 40 ⁇ m by inkjet printing, the number of printed layers was 2 layers, and a nano silver paste (ie, a nanosilver solution) having a solid content of 20% was printed on the treated substrate as a lower electrode.
  • a nano silver paste ie, a nanosilver solution
  • the resulting sample was placed in an oven and baked at 140 degrees Celsius for 30 minutes to allow the lower electrode to cure.
  • the photoresist and propylene glycol methyl ether acetate are mixed at a mass ratio of 1:9 to prepare a preparation solution, and the preparation solution is printed on the lower electrode and heated by inkjet printing technology.
  • the photoresist and propylene glycol methyl ether acetate are thoroughly mixed at a mass ratio of 1:9 to prepare an inkjet cartridge.
  • the inkjet dot pitch was set to 20 ⁇ m
  • the nozzle temperature was 55 degrees
  • the excitation speed and frequency were 9 m/s and 7 kHz, respectively
  • the number of printed layers was 2 layers.
  • the prepared solution was printed along the lower electrode path. Forming a space between the lower electrode and the middle electrode, and removing the photoresist of the sensor in a subsequent step to form a void of the capacitor structure, as shown in FIGS. 2 and 3.
  • the resulting sample was placed on a hot plate at 115 ° C for 10 minutes to cure the photoresist.
  • the above nano silver paste was set by inkjet printing with an ink jet dot pitch of 20 ⁇ m, and 6 layers were printed as a middle electrode in a direction perpendicular to the lower electrode, and the sample was heated by a hot plate at 115 ° C for 30 minutes after each layer of the middle electrode was printed. This is to prevent the top nano silver paste from flowing down the photoresist wall. This will cause the micro-bridge structure of the middle electrode to be too weak.
  • a sensing material such as cellulose acetate butyrate for measuring humidity is printed on the overlapping area of the middle electrode and the photoresist by inkjet printing (in addition, the sensing material may also be under the middle electrode, and the sensing material is measured by the sensing material)
  • the change occurs and the expansion or condensation causes the electrode to bend, changing its pole distance from the upper and lower electrodes to cause a change in capacitance, and the device is placed on the hot plate at 110 degrees for 30 minutes depending on the nature of the sensing material.
  • the sensing material can also be a thermally expanded nano-copper/paraffin-based functional composite for temperature measurement as well as other functional materials.
  • the preparation solution is printed on the sensing material by inkjet printing technology and then heated.
  • the photoresist and propylene glycol methyl ether acetate were thoroughly mixed at a mass ratio of 1:9, and inkjet printing was used to set the ink jet dot pitch to 20 ⁇ m, the nozzle temperature to 55 degrees, and the excitation speed and frequency to be 9 m/s, respectively.
  • the number of printed layers was 2, and the prepared solution was printed along the lower electrode path to form a gap between the middle electrode and the upper electrode.
  • the resulting sample was placed on a hot plate at 115 ° C for 10 minutes to cure the photoresist.
  • the ink jet dot pitch was set to 40 ⁇ m by inkjet printing, the number of printed layers was 2 layers, and a nano silver paste having a solid content of 20% was printed on the treated substrate as an upper electrode.
  • the resulting sample was placed in an oven and baked at 140 degrees Celsius for 30 minutes.
  • the photoresist is removed by using a developing solution.
  • the photoresist is isolated by a photoresist, and the photoresist is removed by heat curing.
  • the photoresist in the obtained sample is removed by a developing solution to complete the fabrication of the differential structure of the sensor That is, a capacitive sensor structure including an upper electrode, a lower electrode, and a middle electrode as shown in FIG. 2 is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种传感器及其制备方法,包括基板(1)、至少一个下电极(2)、至少一个中电极(3)和至少一个上电极(4);下电极(2)设置于基板(1)上方,中电极(3)、上电极(4)设置于所述下电极(2)的上方且下电极(2)、中电极(3)、上电极(4)分别设置于空间中相互平行的不同平面上,传感器的下电极(2)的投影、中电极(3)的投影和上电极(4)的投影相交于投影相交点以形成至少一个微桥,传感器还包括与中电极(3)接触的传感材料(5),传感材料(5)设置于投影相交点上。传感器为变极距型电容式传感器,并且具有至少一个差动微桥,实现高灵敏度传感测量,减小非线性误差。

Description

一种传感器及其制备方法
技术领域
本发明涉及传感器领域,尤其一种传感器及其制备方法。
背景技术
当今社会生产过程自动化不断扩展到各个领域,功能单一的传感器已经不能满足人们日益增长的测量需求,更不能满足自动化测控系统的需求。随着人类迈入工业4.0时代,传感器小型化、智能化以及标准化是大势所趋,减小传感器体积和重量,提高灵敏度,抗干扰和多功能成为人们生活和社会生产中对传感器的迫切要求。众多传感器中由于电容式传感器结构简单,价格便宜,灵敏度高,零磁滞,真空兼容,过载能力强,动态响应特性好和对高温、辐射、强振等恶劣条件的适应性强,能实现非接触测量等优点,从而得到广泛应用。
但是,电容式多功能传感器多数属于变介电常数型,在基板上涂布一层传感材料实现传感,灵敏度较差,同时在测量过程中会出现由于被测气体或其他杂质附着在基板上导致介电常数变化而引起的测量噪声,精确度低。
发明内容
为了解决上述技术问题,本发明的目的是提供一种传感器及其制备方法,用于提高传感器的灵敏度和精确度。
本发明所采用的技术方案是:一种传感器,包括基板,所述传感器还包括至少一个下电极、至少一个中电极和至少一个上电极;所述下电极设置于基板上方,所述中电极、上电极设置于所述下电极的上方且所述下电极、中电极、上电极分别设置于空间中相互平行的的不同平面上,所述传感器的下电极的投影、中电极的投影和上电极的投影相交于投影相交点以形成至少一个微桥,所述传感器还包括与中电极接触的传感材料,所述传感材料设置于投影相交点上。
进一步地,所述传感器的下电极的正投影、中电极的正投影和上电极的正投影相交于投影相交点。
进一步地,所述传感器的下电极的正投影、中电极的正投影和上电极的正投影垂直相交于投影相交点。
进一步地,所述下电极、中电极、上电极的材质为纳米银材料。
进一步地,所述传感材料的厚度为2-3μm。
进一步地,所述传感材料包括醋酸丁酸纤维素、纳米铜功能复合材料或石蜡基功能复合材料。
进一步地,所述基板为PET基板。
进一步地,所述中电极的厚度为2μm,宽度为80μm,长度为2mm。
进一步地,所述上电极的厚度为2μm,宽度为65μm,长度为1888μm。
本发明所采用的另一技术方案是:一种传感器的制备方法,应用于所述的传感器,包括以下步骤:
S1、清洗并吹干基板,加热所述基板;
S2、对所述基板的表面进行氧等离子处理后进行加热;
S3、在所述基板上,利用喷墨打印技术将纳米银溶液打印得到下电极后进行加热;
S4、将光刻胶和丙二醇甲醚醋酸酯进行混合配制得到配制溶液,沿着所述下电极,利用喷墨打印技术将所述配制溶液打印在所述下电极上方后进行加热;
S5、沿与所述下电极垂直的方向,利用喷墨打印技术将所述纳米银溶液在所述光刻胶上进行打印得到中电极后进行加热;
S6、利用喷墨打印技术将传感材料打印在所述中电极与所述光刻胶的重叠区域上后进行加热;
S7、沿着所述下电极,利用喷墨打印技术将所述配制溶液打印在所述传感材料上后进行加热;
S8、利用喷墨打印技术将所述纳米银溶液打印在处理后的基板上得到上电极后进行加热;
S9、利用显影液清除光刻胶。
本发明的有益效果是:
本发明一种传感器,包括基板、至少一个下电极、至少一个中电极和至少一个上电极;下电极设置于基板上方,中电极、上电极设置于所下电极的上方且下电极、中电极、上电极分别设置于空间中相互平行的的不同平面上,传感器的下电极的投影、中电极的投影和上电极的投影相交于投影相交点以形成至少一个微桥,传感器还包括与中电极接触的传感材料,传感材料设置于投影相交点上。本发明的传感器为变极距型电容式传感器,并且具有至少一个差动微桥,实现高灵敏度传感测量,减小非线性误差。
另外,本发明还提供一种传感器的制备方法,用于制作所述传感器,制备方法简单。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明:
图1是本发明一种传感器的一具体实施例示意图;
图2是本发明一种传感器的微桥的一具体实施例截面图;
图3是本发明一种传感器的微桥的一具体实施例立体示意图;
其中,1-PET基板;2-下电极;3-中电极;4-上电极;5-传感材料;A-微桥。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
一种传感器,包括基板、至少一个下电极、至少一个中电极和至少一个上电极;下电极设置于基板上方,中电极、上电极设置于下电极的上方且下电极、中电极、上电极分别设置于空间中相互平行的的不同平面上,传感器的下电极的投影、中电极的投影和上电极的投影相交于投影相交点以形成至少一个微桥,传感器还包括与中电极接触的传感材料,传感材料设置于投影相交点上。
本发明的传感器采用的是变极距型差动结构,其中下电极和上电极为固定电极,传感材料和中电极接触,传感材料因被测量(即被测物理量,如湿度、温度等)改变而发生膨胀或缩聚带动中电极发生弯曲,改变其与上、下电极的极距从而引起电容变化,实现传感检测,因此,中电极为可动电极;而且由于具有至少一个差动微桥,多个差动微桥同时进行传感检测,则本发明的微桥并联结构相对于现有的单极变极距型电容式传感器具有无与伦比的灵敏度,非线性误差减小。
作为技术方案的进一步改进,传感器的下电极的正投影、中电极的正投影和上电极的正投影相交于投影相交点,即上电极、中电极和下电极在空间上平行且在正投影方向上的交点,所述交点即构成传感器的微桥结构,用于传感检测。进一步地,参考图1、图2和图3,图1是本发明一种传感器的一具体实施例示意图;图2是本发明一种传感器的微桥的一具体实施例截面图;图3是本发明一种传感器的微桥的一具体实施例立体示意图;其中,基板是表面尺寸为2mm*2mm,厚度为100μm的PET基板1;图1中,外边框为PET基板1,横线表示传感器的中电极3,竖线为重合的下电极2和上电极4,图1中的横线和竖线相交形成投影相交点,即微桥A,图1中包括八列下电极2、十行中电极3和八列上电极4并形成八十个微桥A(边缘的交点除外);图2和图3示意的是图1中微桥A的示意结构,传感材料5设置在中电极3的上方,事实上,传感材料5也可以设置在中电极3的下方,传感材料5只要设置在投影相交点上且与中电极3接触即可。实际上,中电极3横跨PET基板1的左右侧,上电极4和下电极2横跨PE基板1的上下侧。另外,本实施例中,传感器的下电极2的正投影、中电极3的正投影和上电极4的正投影垂直相交于投影相交点。下电极2、中电极3、上电极4的材质为纳米银材料。下电极2的厚度为200nm,宽度为65μm,长度为1880μm;中电极3的厚度为2μm,宽度为80μm,长度为2mm;上电极4的厚度为2μm,宽度为65μm,长度为1888μm。传感材料5的厚度为2-3μm。进一步地,传感材料5可以采用醋酸丁酸纤维素、纳米铜功能复合材料或石蜡基功能复合材料。
参考图1,可以在不同微桥A中打印不同的传感材料,实现多个物理量的测量。可以在PET基板中尽可能多地制造出如图2所示的微米级的微桥结构,这个是传感的最小单位,单位面积中微桥A的数量越多,相比其他变极距型传感器,传感器的灵敏度越高。其次,中电极的引线可以从基板的左侧或右侧引出,上、下电极的引线可以分别从基板上侧和下侧引出,采用垂直平行有利于后续的传感器测试。
一种传感器的制备方法,应用于所述的传感器,包括以下步骤:
S1、清洗并吹干基板,加热基板。
依次用丙酮、异丙醇和去离子水连续浸泡基板10分钟,并用氮气吹干。
再对所述基板热板加热到140摄氏度,持续30分钟。
S2、对基板的表面进行氧等离子处理后进行加热。
对处理后的基板表面进行功率为50W,频率为13.56MHz的氧等离子处理,持续35秒,这是为了增强基板表面的润湿性,提高基板的亲水性,防止后续加入的溶液在基板表面四处流动,让溶液粘附在基板表面,有利于精准制作电极结构。把处理后的基板放进烤箱以120摄氏度烘烤5分钟,这是为了维持基板润湿性的同时防止打印墨水在基板漫延导致打印的线太宽。
S3、在基板上,利用喷墨打印技术将纳米银溶液打印得到下电极后进行加热。
利用喷墨打印设置喷墨点间距为40μm,打印层数为2层,将固含量为20%的纳米银浆(即纳米银溶液)打印在处理后的基板上作为下电极。
对所得样品放进烤箱以140摄氏度烘烤30分钟,让下电极固化。
S4、将光刻胶和丙二醇甲醚醋酸酯以质量比为1:9进行混合配制得到配制溶液,沿着下电极,利用喷墨打印技术将配制溶液打印在下电极上方后进行加热。
由于光刻胶不能直接用喷墨打印直接喷射,为了方便使用喷墨打印技术对传感器进行加工,将光刻胶和丙二醇甲醚醋酸酯以质量比为1:9进行充分混合配制注入喷墨盒,利用喷墨打印设置喷墨点间距为20μm,喷嘴温度为55度,激励速度和频率分别为9m/s和7kHz,打印层数为2层,将配制溶液沿着下电极路径对所得样品进行打印,形成下电极和中电极之间的间隔,在后续步骤中把传感器的光刻胶去除后从而形成电容结构的空隙,如图2和图3所示。对所得样品放到115摄氏度的热板加热10分钟,固化光刻胶。
S5、沿与下电极垂直的方向,利用喷墨打印技术将纳米银溶液在光刻胶上进行打印得到中电极后进行加热。
将上述纳米银浆利用喷墨打印设置喷墨点间距20μm,沿与下电极垂直的方向打印6层作为中电极,每打印一层中电极之后都要将样品用115摄氏度的热板加热30分钟,这是为了防止最上方的纳米银浆沿着光刻胶壁流下 ,这样会导致中电极的微桥结构过于脆弱。
S6、利用喷墨打印技术将传感材料打印在中电极与光刻胶的重叠区域上后进行加热。
利用喷墨打印将传感材料例如测量湿度的醋酸丁酸纤维素打印在所述中电极与光刻胶的重叠区域(此外,传感材料也可以在中电极下方,通过传感材料因被测量改变而发生膨胀或缩聚带动中电极弯曲,改变其与上下电极的极距从而引起电容变化),并根据传感材料性质把器件放在热板以110度加热30分钟。传感材料也可以是用于测温的受热膨胀的纳米铜/石蜡基功能复合材料以及其他功能性材料。
S7、沿着下电极,利用喷墨打印技术将配制溶液打印在传感材料上后进行加热。
将光刻胶和丙二醇甲醚醋酸酯以质量比为1:9进行充分混合配制,利用喷墨打印设置喷墨点间距为20μm,喷嘴温度为55度,激励速度和频率分别为9m/s和7kHz,打印层数为2层,将配制溶液沿着下电极路径对所得样品进行打印,形成中电极和上电极之间的空隙。
对所得样品放到115摄氏度的热板加热10分钟,固化光刻胶。
S8、利用喷墨打印技术将纳米银溶液打印在处理后的基板上得到上电极后进行加热。
利用喷墨打印设置喷墨点间距为40μm,打印层数为2层,将固含量为20%的纳米银浆打印在处理后的基板上作为上电极。对所得样品放进烤箱以140摄氏度烘烤30分钟。
S9、利用显影液清除光刻胶。
利用光刻胶隔绝电极,加热固化后再把光刻胶去除。
利用显影液清除所得样品中的光刻胶,完成传感器的差动结构的制作 ,即形成如图2所示包括上电极、下电极和中电极的电容式传感器结构。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种传感器,包括基板,其特征在于,所述传感器还包括至少一个下电极、至少一个中电极和至少一个上电极;所述下电极设置于基板上方,所述中电极、上电极设置于所述下电极的上方且所述下电极、中电极、上电极分别设置于空间中相互平行的的不同平面上,所述传感器的下电极的投影、中电极的投影和上电极的投影相交于投影相交点以形成至少一个微桥,所述传感器还包括与中电极接触的传感材料,所述传感材料设置于投影相交点上。
  2. 根据权利要求1所述的传感器,其特征在于,所述传感器的下电极的正投影、中电极的正投影和上电极的正投影相交于投影相交点。
  3. 根据权利要求1所述的传感器,其特征在于,所述传感器的下电极的正投影、中电极的正投影和上电极的正投影垂直相交于投影相交点。
  4. 根据权利要求1所述的传感器,其特征在于,所述下电极、中电极、上电极的材质为纳米银材料。
  5. 根据权利要求1所述的传感器,其特征在于,所述传感材料的厚度为2-3μm。
  6. 根据权利要求1所述的传感器,其特征在于,所述传感材料包括醋酸丁酸纤维素、纳米铜功能复合材料或石蜡基功能复合材料。
  7. 根据权利要求1至6任一项所述的传感器,其特征在于,所述基板为PET基板。
  8. 根据权利要求1至6任一项所述的传感器,其特征在于,所述中电极的厚度为2μm,宽度为80μm,长度为2mm。
  9. 根据权利要求1至6任一项所述的传感器,其特征在于,所述上电极的厚度为2μm,宽度为65μm,长度为1888μm。
  10. 一种传感器的制备方法,应用于权利要求1至9任一项所述的传感器,其特征在于,包括以下步骤:
    S1、清洗并吹干基板,加热所述基板;
    S2、对所述基板的表面进行氧等离子处理后进行加热;
    S3、在所述基板上,利用喷墨打印技术将纳米银溶液打印得到下电极后进行加热;
    S4、将光刻胶和丙二醇甲醚醋酸酯进行混合配制得到配制溶液,沿着所述下电极,利用喷墨打印技术将所述配制溶液打印在所述下电极上方后进行加热;
    S5、沿与所述下电极垂直的方向,利用喷墨打印技术将所述纳米银溶液在所述光刻胶上进行打印得到中电极后进行加热;
    S6、利用喷墨打印技术将传感材料打印在所述中电极与所述光刻胶的重叠区域上后进行加热;
    S7、沿着所述下电极,利用喷墨打印技术将所述配制溶液打印在所述传感材料上后进行加热;
    S8、利用喷墨打印技术将所述纳米银溶液打印在处理后的基板上得到上电极后进行加热;
    S9、利用显影液清除光刻胶。
PCT/CN2018/109628 2017-12-11 2018-10-10 一种传感器及其制备方法 WO2019114390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711305897.9A CN108217575A (zh) 2017-12-11 2017-12-11 一种传感器及其制备方法
CN201711305897.9 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019114390A1 true WO2019114390A1 (zh) 2019-06-20

Family

ID=62654056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109628 WO2019114390A1 (zh) 2017-12-11 2018-10-10 一种传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN108217575A (zh)
WO (1) WO2019114390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11967675B2 (en) 2019-07-16 2024-04-23 Factorial Inc. Electrolytes for high-voltage cathode materials and other applications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217575A (zh) * 2017-12-11 2018-06-29 华南师范大学 一种传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236096B1 (en) * 1998-10-06 2001-05-22 National Science Council Of Republic Of China Structure of a three-electrode capacitive pressure sensor
CN1847857A (zh) * 2005-04-15 2006-10-18 威海双丰电子集团有限公司 一种电容式mems加速度传感器
CN101187674A (zh) * 2007-12-14 2008-05-28 紫光通讯科技有限公司 一种差动电容式微机械加速度计
CN102156202A (zh) * 2011-03-07 2011-08-17 东南大学 电极极板的固定结构
CN105865324A (zh) * 2016-05-12 2016-08-17 全普光电科技(上海)有限公司 电容传感装置
CN108217575A (zh) * 2017-12-11 2018-06-29 华南师范大学 一种传感器及其制备方法
CN207688895U (zh) * 2017-12-11 2018-08-03 深圳市国华光电科技有限公司 一种传感器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704685B2 (ja) * 2002-07-29 2005-10-12 株式会社山武 静電容量センサ
CN102507688B (zh) * 2011-10-13 2014-03-12 中国科学院化学研究所 电化学生物传感器及其制备方法与应用
CN102841109A (zh) * 2012-08-28 2012-12-26 浙江工业大学 新型纳米温敏复合材料热膨胀性能测试装置
CN103076370A (zh) * 2012-12-28 2013-05-01 武汉纺织大学 一种常温检测氨气的柔性传感器及其制备方法
CN103105990B (zh) * 2013-01-25 2016-08-31 深圳市汇顶科技股份有限公司 单层电容触摸传感器及触控终端
JP5722954B2 (ja) * 2013-06-23 2015-05-27 日本写真印刷株式会社 押圧検出機能付タッチパネル
CN104555882B (zh) * 2013-10-10 2016-03-23 原相科技股份有限公司 微机电元件与微机电补偿结构
JP6390177B2 (ja) * 2014-06-09 2018-09-19 株式会社リコー 電気−機械変換膜の製造方法
CN106046216B (zh) * 2016-07-07 2019-01-25 广州海谷电子科技有限公司 一种耐高温高湿湿敏聚合物及其制备方法和基于湿敏聚合物制备成的电容传感器
CN105928567B (zh) * 2016-07-13 2017-12-19 中国电子科技集团公司第四十九研究所 集成温湿度传感器的硅基气体敏感芯片及其制作方法
CN106017718B (zh) * 2016-07-28 2018-04-06 国网山西省电力公司忻州供电公司 柔性温度传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236096B1 (en) * 1998-10-06 2001-05-22 National Science Council Of Republic Of China Structure of a three-electrode capacitive pressure sensor
CN1847857A (zh) * 2005-04-15 2006-10-18 威海双丰电子集团有限公司 一种电容式mems加速度传感器
CN101187674A (zh) * 2007-12-14 2008-05-28 紫光通讯科技有限公司 一种差动电容式微机械加速度计
CN102156202A (zh) * 2011-03-07 2011-08-17 东南大学 电极极板的固定结构
CN105865324A (zh) * 2016-05-12 2016-08-17 全普光电科技(上海)有限公司 电容传感装置
CN108217575A (zh) * 2017-12-11 2018-06-29 华南师范大学 一种传感器及其制备方法
CN207688895U (zh) * 2017-12-11 2018-08-03 深圳市国华光电科技有限公司 一种传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11967675B2 (en) 2019-07-16 2024-04-23 Factorial Inc. Electrolytes for high-voltage cathode materials and other applications

Also Published As

Publication number Publication date
CN108217575A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019052037A1 (zh) 一种电容式传感器及其制备方法
Shibata et al. A digital hygrometer using a polyimide film relative humidity sensor
WO2019114390A1 (zh) 一种传感器及其制备方法
US20180362331A1 (en) Method for forming filter net on mems sensor and mems sensor
Boltshauser et al. Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyimide
CN110371952B (zh) 一种柔性电阻式湿度传感器及其制备方法
CN1327215C (zh) Cmos工艺兼容的相对湿度传感器
US9618469B2 (en) Sensing water vapour
CN108562381B (zh) 用于高温环境下测量热流的薄膜传感器及其制作方法
CN113091811A (zh) 一种柔性温压一体化传感器及其制备方法和应用
Laville et al. Humidity sensors for a pulmonary function diagnostic microsystem
Kühne et al. Wafer-level flame-spray-pyrolysis deposition of gas-sensitive layers on microsensors
Zhang et al. Effect of excitation signal frequency on the electrical response of a MWCNT/HEC composite based humidity sensor
CN106124576B (zh) 集成的湿度传感器和多单元气体传感器及其制造方法
CN1043987A (zh) 一种温湿双功能敏感薄膜元件及其制造方法
Kinkeldei et al. Feasibility of printing woven humidity and temperature sensors for the integration into electronic textiles
CN111007107A (zh) 一种基于碳基柔性湿敏器件的露点测量方法
Kulhari et al. Design, simulation and fabrication of LTCC-based microhotplate for gas sensor applications
Park et al. Fabrication of porous polymeric film for humidity sensing
CN106841285B (zh) 一种简易新颖的薄膜热学性能测试结构
CN105738408A (zh) 一种快速测量半导体薄膜面向导热系数的方法
CN106158743B (zh) 利用多感应像素检测多种气体的传感器的制造方法
Soukup et al. Advanced screen printing for the fabrication of organic humidity sensors
CN115524375A (zh) 微型叉指电容式湿度传感器的设计方法
CN207688895U (zh) 一种传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889887

Country of ref document: EP

Kind code of ref document: A1