WO2019112184A1 - Three-dimensional fiber-type scaffold - Google Patents

Three-dimensional fiber-type scaffold Download PDF

Info

Publication number
WO2019112184A1
WO2019112184A1 PCT/KR2018/013216 KR2018013216W WO2019112184A1 WO 2019112184 A1 WO2019112184 A1 WO 2019112184A1 KR 2018013216 W KR2018013216 W KR 2018013216W WO 2019112184 A1 WO2019112184 A1 WO 2019112184A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
biodegradable
scaffold
acid
fibers
Prior art date
Application number
PCT/KR2018/013216
Other languages
French (fr)
Korean (ko)
Inventor
김태희
임정남
도성준
김채화
김윤진
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2019112184A1 publication Critical patent/WO2019112184A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a three-dimensional fiber-type scaffold. More specifically, the present invention relates to a three-dimensional fiber-type scaffold which can be molded into a desired shape and is effective for cell and tissue regeneration, to be.
  • tissue engineering which is used almost synonymous with regenerative medicine, cells or tissues biologically obtained from a patient's body are cultivated in a scaffold to apply the damaged part to the damaged area, thereby improving or maintaining the function of the tissue, The goal is to ensure that.
  • Tissue engineering is defined as the use of the principles and methods of engineering and life sciences to understand the relationship between the structure and function of mammalian tissues that are normal or pathological and to develop biological substitutes for the recovery and improvement of tissue function .
  • Tissue engineering uses a porous three-dimensional scaffold for tissue or organ regeneration, and the scaffold is used as a template for tissue formation.
  • a scaffold should have responsive properties to various types of mechanical and chemical stimuli that include cells or growth factors, have a function in response to bio-physical stimuli in the form of a bioreactor, or are applied to cells.
  • existing tissue regeneration scaffolds are easy to support cells, but they are difficult to be molded into a desired shape or shape, or have physical properties suitable for the tissue, and thus, application to the actual tissue has been limited.
  • existing scaffolds are disadvantageous for cell proliferation due to the structure in which the internal pores are not connected to each other, and it is difficult to control the biodegradation rate of the scaffold to match the regeneration rate of the tissue, .
  • the scaffold containing the cells can be cultured out of the living body through a bioreactor or the like and the partially synthesized tissue can be easily collected from the scaffold to be implanted on the wound site, or placed directly on the wound site,
  • a scaffold which can be applied to regenerate a tissue without limitation and which can be formed into a desired shape or shape.
  • a problem to be solved by the present invention is to provide a three-dimensional fiber-type scaffold which can be freely formed into a desired form, is highly effective for cell adhesion, proliferation and regeneration, and is easy to collect cells or tissues regenerated after cell or tissue regeneration will be.
  • a three-dimensional fiber-type scaffold of the following embodiment In order to solve this problem, according to one aspect of the present invention, there is provided a three-dimensional fiber-type scaffold of the following embodiment.
  • the scaffold includes a fiber structure having two kinds of fibers having different biodegradation rates
  • the two types of fibers having different biodegradation rates include a biodegradable first fiber and a biodegradable second fiber having a slower biodegradation rate than the first fiber or a biodegradable first fiber and a non biodegradable second fiber To a three-dimensional fiber-type scaffold.
  • the biodegradable first fiber has a melting point higher than that of the biodegradable second fiber or the non-biodegradable second fiber, or has no melting point.
  • the fourth embodiment is, in any one of the first to third embodiments,
  • biodegradable first fibers and the biodegradable second fibers are selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, copolymers of polylactic acid-glycolic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxybutyric acid- Valeric acid copolymer, collagen, hyaluronic acid, cellulose oxide, chitosan, chitin, gelatin, silk fibroin or a mixture of two or more thereof.
  • the fifth embodiment is, in any one of the first through fourth embodiments,
  • non-biodegradable second fiber comprises a polyolefin, a polyester, a polyamide, or a mixture of two or more thereof.
  • the sixth embodiment is, in any one of the first through fifth embodiments,
  • the biodegradable first fiber comprises polyglycolic acid (PGA), a copolymer of polylactic acid-glycolic acid (PLGA), or a mixture thereof
  • the biodegradable second fiber comprises polylactic acid
  • 1 fiber is selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, copolymers of polylactic acid-glycolic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxybutyric acid-valeric acid copolymer, collagen, hyaluronic acid
  • the non-biodegradable second fibers are selected from the group consisting of polypropylene, polyethylene, polyethylene terephthalate (PET), polyethylene terephthalate copolymer, polybutylene Terephthalate (PBT), polytrimethylene terephthalate (PTT), polycyclohexanedimethanol terephthalate (PCT), and poly Dimensional fibrous scaffold comprising tilene naphthalate (PEN), nylon
  • the seventh embodiment is, in any one of the first through sixth embodiments,
  • Said scaffold being in the form of a nonwoven; Fabric type; Knitted form; Fiber bundle type; A cylindrical shape having a fiber bundle and a tube into which the fiber bundle is inserted, or a three-dimensional fiber type scaffold that is a mixture of two or more thereof.
  • the eighth embodiment is, in any one of the first through seventh embodiments,
  • the ninth embodiment is, in any one of the first through eighth embodiments,
  • fibrous structure in which the fibrous structure further comprises one or more fibers having different biodegradation rates.
  • the three-dimensional fiber-type scaffold according to an embodiment of the present invention can control the rate of biodegradation by complexing a fiber material having a different biodegradation rate so that the fiber material having a slow biodegradation rate acts as a binder or a skeleton, It is possible to provide a scaffold having a structure capable of maintaining a scaffold shape, capable of forming a thermoplastic material into a desired shape by thermoforming, and exhibiting excellent cell adhesion and cell proliferation.
  • the three-dimensional fiber-type scaffold according to an embodiment of the present invention has a scaffold pore size gradually increased according to the degree of cell culture and proliferation as a result of complexing fibrous materials having different biodegradation rates, The cultured cells can be easily separated (collected) from the scaffold.
  • the fibrous scaffold according to an embodiment of the present invention is easy to be manufactured in a large amount, is convenient to be inserted into a necessary portion due to the flexibility of the fiber, is easy to modify the surface so as to increase cell affinity , And internal pores are connected to each other, which can be very advantageous for cell attachment and growth.
  • Figure 1 is a photograph of a vial undergoing a biodegradation test on the scaffolds prepared in Examples 1-3.
  • FIG. 2 is a graph showing changes in average pore size of the scaffold prepared in Examples 1 to 3 with time.
  • 3A and 3B are SEM photographs showing the average pore size and surface change of the scaffold prepared in Examples 1 to 3 with time.
  • FIGS. 4 to 6 are graphs showing the results of biodegradation experiments according to the irradiation dose of gamma rays of the scaffolds prepared in Examples 1 to 3.
  • Example 7 is an SEM photograph showing the results of biodegradation experiments of the scaffold prepared in Example 3 after 12 days of gamma irradiation dose of 0 kGy.
  • FIG. 8 is an SEM photograph showing the result of biodegradation test of the scaffold prepared in Example 3 after the lapse of 12 days from the irradiation dose of 40 kGy of the gamma ray.
  • FIG. 9 is a graph showing the results of analysis of the initial cell adhesion rate of the scaffolds prepared in Examples 1 to 3. Fig.
  • FIG. 10 is a graph showing cell growth analysis results of the scaffolds prepared in Examples 1 to 3.
  • FIG. 10 is a graph showing cell growth analysis results of the scaffolds prepared in Examples 1 to 3.
  • FIG. 11 is a schematic view of a manufacturing process of a cylindrical scaffold according to the fourth embodiment.
  • FIG. 12 to 14 are graphs showing the results of analysis of the biodegradation rate according to the irradiation dose of gamma rays of the scaffolds prepared in Examples 4 to 6.
  • FIG. 12 to 14 are graphs showing the results of analysis of the biodegradation rate according to the irradiation dose of gamma rays of the scaffolds prepared in Examples 4 to 6.
  • FIG. 12 to 14 are graphs showing the results of analysis of the biodegradation rate according to the irradiation dose of gamma rays of the scaffolds prepared in Examples 4 to 6.
  • 15 to 17 are photographs showing SEM observation results of gamma ray irradiation amounts OkGy, 30 kGy, and 50 kGy of the scaffolds prepared in Examples 4 to 6.
  • FIG. 15 to 17 are photographs showing SEM observation results of gamma ray irradiation amounts OkGy, 30 kGy, and 50 kGy of the scaffolds prepared in Examples 4 to 6.
  • FIG. 15 to 17 are photographs showing SEM observation results of gamma ray irradiation amounts OkGy, 30 kGy, and 50 kGy of the scaffolds prepared in Examples 4 to 6.
  • FIG. 19 is a graph showing the results obtained by taking a sample on the 12th day and the 33rd day after incubation of the sample prepared in Example 3, completely drying the sample in a 40 ° C convection oven, freezing it in liquid nitrogen and heating it for 150 seconds with an ion coater (E-1045) Coated, and the surface was observed using a field emission scanning microscope (FESEM, SU 8010).
  • FESEM field emission scanning microscope
  • a three-dimensional fiber-type scaffold having a plurality of pores, wherein the scaffold includes a fiber structure having two types of fibers having different biodegradation rates, wherein the fiber comprises a biodegradable first fiber and a biodegradable second fiber having a slower biodegradation rate than the first fiber, or a three-dimensional fiber type scaffold comprising a biodegradable first fiber and a non-biodegradable second fiber / RTI >
  • the three-dimensional fiber type scaffold according to an embodiment of the present invention is a composite material in which fibers having different biodegradation characteristics are combined or thermally deformable are combined together, Can be molded into a desired shape.
  • the biodegradable first fiber may have a higher melting point than the biodegradable second fiber or the non-biodegradable second fiber.
  • the biodegradable second fiber or the non-biodegradable second fiber having a relatively low melting point can be molded into a desired shape through heat treatment during the production of the scaffold.
  • the biodegradable first fiber may be pyrolyzed immediately without melting point.
  • the scaffold according to an embodiment of the present invention is characterized in that even if the biodegradable first fiber having a large biodegradation rate is decomposed or cut first after the cells are seeded, the biodegradable rate is slow.
  • the biodegradable second fiber or the non-biodegradable non-biodegradable second fiber serves as a skeleton capable of stably growing cells while maintaining the morphology of the scaffold.
  • the average size of the pores of the scaffold may increase with time.
  • the scaffold according to an embodiment of the present invention was prepared as a sample cut into a size of 2.5 x 2.5 cm and 100 ml of a phosphate buffered saline (PBS) (pH 7.4) solution was added to a 100 ml vial, After the sample was taken out in time, the sample was completely dried in a convection oven at 40 ° C., and then a capillary flow porometer (CFP-A) was placed in a shaking bath (60 ° C., 80 rpm) 1200AEL, Porous Materials Inc.), the pore size may increase from the start of observation of the biodegradation rate, for example, from 9 to 15 days.
  • PBS phosphate buffered saline
  • the average size of the pores of the scaffold according to an embodiment of the present invention increases, a sufficient space can be secured in the inside of the scaffold, and the cells seeded on the scaffold can exhibit an excellent effect for stably growing and propagating. Furthermore, there is an advantage in that the cells can be easily separated (collected) from the scaffold through the enlarged pores.
  • the biodegradable fiber refers to a fiber made of a polymer capable of being degraded by water or an internal degradation enzyme, and the biodegradation rate means a degree of speed at which the fiber is decomposed with time .
  • the biodegradation rate of such a biodegradable fiber or a scaffold having such a biodegradable fiber can be confirmed by measuring a pH which is changed by an acid generated upon hydrolysis of the biodegradable fiber. For example, the rate of biodegradation can be compared based on the degree of change in pH that decreases over time relative to the initial time.
  • the sample was cut into a predetermined size (for example, 2.5 ⁇ 2.5 cm), and 50 ml of a phosphate buffered saline (PBS, pH 7.4) solution was added to a 50 ml Falcone tube.
  • PBS phosphate buffered saline
  • the sample was immersed in a 50 ml Falcone tube and shaken in a shaker incubator. (37 ° C, 1000 rpm), and the pH of the PBS is measured at each time point to confirm the biodegradation rate.
  • the two kinds of fibers having different biodegradation rates include the biodegradable first fiber and the biodegradable second fiber having a slower biodegradation rate than the first fiber
  • the biodegradable first fiber and the biodegradable second fiber are biodegradable If the fibers are made of a biodegradable polymer material of which the speed of the fibers is different, the fiber can be selected and applied without limitation.
  • biodegradable first fibers and the biodegradable second fibers fibers made of various biodegradable polymer materials can be applied.
  • the biodegradable first fibers include polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid Copolymers of polyhydroxybutyric acid and valeric acid, collagen, hyaluronic acid, cellulose oxide, chitosan, chitin, gelatin, silk fibroin or a mixture of two or more thereof And mixtures thereof.
  • the biodegradable first fibers and the biodegradable second fibers can be appropriately selected so that the difference in biodegradation rate can be obtained.
  • the non-biodegradable second fiber may be a fiber made of one or more kinds of polymer materials selected from various non-biodegradable synthetic fibers, and examples thereof include polyolefins, polyesters, polyamides, ≪ / RTI > Specifically, the non-biodegradable second fibers may be selected from the group consisting of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polycyclohexanedimethanol terephthalate (PCT) A phthalate (PEN); Polyamide-based polymers selected from nylon 6, nylon 6,6, nylon 4, and nylon 4,6; Or a polyolefin-based polymer selected from polyethylene or polypropylene, or a mixture of two or more thereof.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • PCT polycyclohexaned
  • the biodegradable first fiber comprises polyglycolic acid (PGA), a copolymer of polylactic acid-glycolic acid (PLGA), or a mixture of two or more thereof, May include polylactic acid.
  • PGA polyglycolic acid
  • PLGA polylactic acid-glycolic acid
  • the first biodegradable fiber may be polylactic acid (PLA), polyglycolic acid , Copolymers of polycaprolactone, copolymers of polylactic acid-glycolic acid (PLGA), polyhydroxybutyric acid, polyhydroxyvaleric acid and polyhydroxybutyric acid-valeric acid, or a mixture of two or more thereof
  • the second fiber is selected from the group consisting of polypropylene, polyethylene, polyethylene terephthalate (PET), polyethylene terephthalate copolymer, polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polycyclohexanedimethanol terephthalate ) And polyethylene naphthalate (PEN), nylon 6, nylon 6,6, nylon 4, and nylon 4,6 or a mixture of two or more thereof .
  • the weight ratio of the biodegradable first fiber and the biodegradable second fiber, the biodegradable first fiber, and the non-biodegradable second fiber among the two types of fibers having different biodegradation rates is 10:90 To 90:10, or 20:80 to 80:20, or 30:70 to 70:30.
  • lactide and glycolide may be copolymerized at various weight ratios, for example, at a weight ratio of 10:90 to 30:70.
  • the scaffold is in the form of a nonwoven fabric; Fabric type; Knitted form; Fiber bundle type; A cylindrical shape having a fiber bundle and a tube into which the fiber bundle is inserted, or a mixture of two or more thereof.
  • the scaffold of the present invention can perform functions such as cell culture, cell delivery, or drug delivery using a space formed by the fibers contained in such a fiber structure.
  • the fiber structure may further include one or more fibers having different biodegradation rates.
  • the scaffold including the above-described fiber structure is a non-woven fabric, a woven fabric, a knitted fabric, a fiber bundle, or a cylinder
  • each of these fibers may have three kinds of fibers having different biodegradation rates, Fibers.
  • the fiber bundle when the scaffold is in the form of a cylinder having a fiber bundle and a tube into which the fiber bundle is inserted, the fiber bundle may include two or more kinds of fibers having different biodegradation rates, The fiber bundle and the tube may include two or more kinds of fibers having different biodegradation rates from each other.
  • a fiber, fiber form, or fiber refers to a group of linear filaments that are long, thin, and small in bending resistance so that they can bend, and such fibers may have micro- (Short cut fibers) cut into 0.1 to 40 mm, dry nonwoven short fibers (staple fibers) having a length of 10 to 130 mm, continuous fibers (long fibers, filaments) for fabrics and knitted fabrics, And the like.
  • the nonwoven fabric refers to a nonwoven fabric in which the fibers are arranged in a parallel or non-uniform direction (uneven direction) without being subjected to a woven fabric process, and the fibers are mechanically entangled or thermally bonded, Means a kind of fiber structure obtained by joining together.
  • Such a nonwoven fabric may be manufactured by various methods such as wet (or sinking or super-knowledge), dry, spun lace, electrospinning, and the like.
  • a thermal bonding nonwoven fabric prepared by mixing fibers having low melting point plasticity and igniting or dissolving them by heat, pressure, or the like, and bonding fiber structures, airborne (air laid nonwoven fabric, or a needle punching nonwoven fabric produced by physically combining a web with a fiber using a special needle, and is preferable in terms of improving the tensile strength, that is, the morphological stability of the nonwoven fabric.
  • the wet nonwoven fabric the same process as that of the papermaking process is used. However, various fibers are used as raw materials but not as pulp.
  • the papermaking solvent is removed through a papermaking wire or a screen It is advantageous in that it can be made into a nonwoven fabric by drying and is preferable from the viewpoint of improvement of uniformity and can use short fibers which are relatively short compared to a dry process like microfibril.
  • fabric refers to a fabric structure fabricated by crossing fibers with warp yarns and weft yarns
  • the knitted fabric refers to a fabric structure produced by continuous looping of one fiber, and is manufactured by various methods applicable in the art .
  • the pores of the scaffold refer to spaces formed by the fibers contained in the fiber structure constituting the scaffold, that is, pores formed between adjacent fibers or entangled fibers.
  • the size of the pores has a pore size of, for example, 1 to 150 mu m, particularly 5 to 50 mu m. At this time, when the pore size satisfies the above range, the cells and the drug can be improved in retention ability because the cells and the drug content that can be delivered in vivo can be appropriately controlled in favor of cell proliferation during cell culture.
  • the average pore size of the scaffold when the average pore size of the scaffold is about 15 days from the start of cell culture, the average pore size may be increased by about 1.2 to 3 times the average pore size of the initial scaffold have. This is because the biodegradable fibers constituting the scaffold are biodegraded or cut and the pores between the fibers are further expanded.
  • the biodegradable first fiber, the biodegradable second fiber, and the non-biodegradable second fiber are each independently in the form of monofilament of 1 to 50 denier, or one strand of 0.5 to 4
  • the denier fibers may be tens or hundreds of strands of fibers that are spinnable in the form of multifilaments of 20 to 500 denier, or synthetic and natural staple fibers.
  • the cylinder shape having a fiber bundle and a tube into which the fiber bundle is inserted which is a form of a scaffold according to an embodiment of the present invention, is characterized in that a multifilament twist yarn is inserted and fixed in a tubular circular- .
  • the tube may be formed of a non-biodegradable second fiber or a biodegradable second fiber having a slow biodegradation rate
  • the fiber bundle inserted in the tube may be a biodegradable first fiber alone or a biodegradable first A mixture of the fiber and the biodegradable second fiber, or a mixture of the biodegradable first fiber and the non-biodegradable second fiber.
  • additional fibers with different biodegradable rates may also be included independently in the tube or fiber bundle, respectively.
  • a multi-filament false twist yarn secured in the connection of the inner space by the bulkiness characteristic in which the volume increase rate of 150 to 1000% Can be applied.
  • a cylindrical scaffold according to an embodiment of the present invention is characterized in that 1) a multifilament yarn made of a biodegradable polymer (or a non-biodegradable polymer) is put into a knot ring knitting machine to prepare a tubular circular piece, 2) Polymer (or two or more biodegradable polymers having different biodegradation rates, or biodegradable polymers and non-biodegradable polymers) may be spun into monofilaments or multifilament yarns by melt spinning or wet spinning and then spun into a biodegradable multifilament yarn 3) inserting the biodegradable multifilament false-twist yarn of step 2) into the tubular circular piece of step 1), and 4) inserting the inserted biodegradable multifilament false-twist yarn in an amount of about 10 to 50% Can be produced by stretching the false-twist yarn to give a bulky property at about 15 to 30%. (See Fig. 11)
  • further gamma-ray irradiation may be further performed.
  • This gamma irradiation step can further improve the degree of biodegradation of the biodegradable first fiber constituting the three-dimensional fiber-type scaffold.
  • the biodegradable first fiber and non-biodegradable In the case of containing the second fiber, the difference in the biodegradation rate between these two fibers can be made larger.
  • this gamma irradiation step may have the effect of sterilizing the three-dimensional fiber-type scaffold directly applied to the growing cells without using heat or chemicals.
  • the gamma irradiation may be carried out at an irradiation dose of, for example, 1 to 100 kGy, particularly 5 to 70 kGy.
  • the three-dimensional fiber-type scaffold according to an embodiment of the present invention has a scaffold pore size gradually increased according to the degree of cell culture and proliferation as a result of complexing a fiber material having a different biodegradation rate, , And the cultured cells can be easily separated (collected) from the scaffold.
  • the degree of collection of the cultured cells that is, the cell collection ratio (%), can be evaluated according to the following method:
  • Trptin HyClone TM, 0.25% Trpsin
  • TM Trypsin
  • 0.25% Trpsin diluted trypsin solution into the scaffold sample by seeding the cells on a 24-well plate After incubation for 30 minutes at 37 ° C, 1 ml of medium was added per well, pipetted with a pipette to remove the cells attached to the scaffold, transferred to a tube and centrifuged at 1500 rpm The number of cells harvested relative to the number of cells grown in the scaffold is calculated and analyzed for cell collection rates.
  • the three dimensional fiber scaffold according to an embodiment of the present invention may have a cell collection rate of 70% or more, 70% to 100%, or 80% to 100%.
  • the weight ratio of the biodegradable first fiber and the biodegradable second fiber, the biodegradable first fiber and the non-biodegradable second fiber among the two kinds of fibers having different biodegradation rates is 30:70 to 70:30 , ≪ / RTI > 80% to 100%.
  • the three-dimensional fiber-type scaffold according to an embodiment of the present invention is a cylindrical shape having a fiber bundle and a tube into which the fiber bundle is inserted, the cells are grown while biodegradation occurs, And the tube, which is not an external structure, are separated naturally, and cell collection can be facilitated.
  • Example 1 Production of nonwoven fabric type scaffold
  • PLGA fiber fineness: 2 denier, fiber length: 3 mm, melting point: 210 DEG C
  • PLGA lactic acid-glycolic acid copolymer
  • PP polypropylene
  • PE polyethylene
  • the prepared fibers were first washed with 95% ethanol to remove the remaining emulsion, and then a wet nonwoven fabric was prepared using 100% distilled water as a dispersion medium.
  • the prepared fiber mixture was sufficiently kneaded in an edible solution, and wet water was removed using a hand sheet former to prepare a wet nonwoven fabric. Thereafter, it was dried in a convection oven at 40 DEG C for 2 hours and thermally fused at 140 DEG C for 30 minutes to prepare a 200 g / m < 2 > nonwoven fabric type scaffold composed of PLGA fibers and ES fibers at a weight ratio of 30:70.
  • Nonwoven fabric type scaffold was prepared in the same manner as in Example 1, except that PLGA fibers and ES fibers were mixed at a weight ratio of 50:50.
  • Nonwoven fabric type scaffold was prepared in the same manner as in Example 1, except that PLGA fibers and ES fibers were compounded at a weight ratio of 70:30.
  • a nonwoven fabric constituting a scaffold can be formed into a desired shape by combining a PLGA fiber as a biodegradable material and a low melting point ES fiber to produce a scaffold made of a wet nonwoven fabric, It is possible to make collection convenient after cell culture.
  • the samples prepared in Examples 1 to 3 were cut to a size of 2.5 x 2.5 cm and then 100 ml of a phosphate buffered saline (PBS) (pH 7.4) solution was added to 100 ml vials and immersed in a 100 ml vial, (60 ° C, 80 rpm), and the rate of biodegradation was observed at intervals of 3 days (see FIG. 1).
  • PBS phosphate buffered saline
  • the sample taken out over time was completely dried in a 40 ° C convection oven and then the average pore size was measured using a Capillary Flow Porometer (CFP-1200AEL, Porous Materials Inc.), frozen in liquid nitrogen, Coater, E-1045) coated with gold for 150 seconds, and the surface was observed using a field emission scanning microscope (FE-SEM, SU 8010).
  • the change of the average pore size with time is shown in the graph of FIG. 2 and the SEM photograph of FIGS. 3A to 3B.
  • the biodegradation test was conducted for about 15 days.
  • the disrupted fibers were observed from about 6 days, and the decomposed form of the wet nonwoven fabric having a high PLGA fiber content And the average pore size was increased.
  • Each sample prepared in Examples 1 to 3 was irradiated with a dose of 10, 20, 30, 40, 50 kGy using a gamma ray irradiation equipment (MDS Nordion Inc C-188).
  • Samples prepared according to the irradiation amount were cut into a size of 2.5 ⁇ 2.5 cm and 50 ml of a phosphate buffer saline (PBS, pH 7.4) solution was added to a 50 ml Falcone tube.
  • the samples were immersed in a shaker incubator (37 ° C., 1000 rpm), and the pH of the PBS was measured at each time point to confirm the biodegradation rate. The results are shown in Fig. 4 to Fig.
  • the biodegradation rate of the nonwoven fabric samples was increased with increasing gamma irradiation dose, and the faster the biodegradation rate, the faster the biodegradation rate was, Respectively.
  • NIH 3T3 mouse embryonic fibroblast cell line
  • NIH 3T3 human embryonic fibroblast cell line
  • Samples were cut using a 5 mm diameter punch and placed on a 96-well plate, and 2 x 10 4 cells were seeded onto the scaffold and dispersed evenly therein. In order to determine the initial number of cells, the same number of cells were seeded in an empty well, allowing the cell attachment rate to be calculated.
  • the cell-seeded scaffold sample was transferred to a new well and MTT ((3- (4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) assay , The absorbance of the cells adhering to the sample was compared with the absorbance of cells seeded at the early stage, and the cell adhesion rate was calculated as follows. The results are shown in Fig.
  • the degree of cell growth by PLGA / ES nonwoven fabric content was examined. As the content of PLGA was increased, cell adhesion was improved.
  • NIH 3T3 mouse embryonic fibroblast cell line
  • the degree of cell growth was checked by PLGA / ES nonwoven fabric content, and it was confirmed that the higher the content of PLGA, the better the cell growth.
  • the PET scrap was prepared by using a 12Gauge 20needle circular knitting machine, PLA warp knitting yarn (75de / 36fila) was inserted into the knitted yarn, and the twist yarn was pulled up to 15-20% of the conventional length to make a cylindrical scaffold.
  • the manufacturing process is schematically shown in Fig.
  • a cylindrical scaffold was prepared in the same manner as in Example 4, except that PLA warp yarns and PLGA warp yarns (220de / 112fila) were used at a weight ratio of 25/75 instead of PLA warp yarns (75de / 36fila).
  • a cylindrical scaffold was prepared in the same manner as in Example 4, except that PLGA false twist yarn (220de / 112fila) was used instead of PLA false twist yarn (75de / 36fila).
  • the cylindrical scaffolds prepared in Examples 4 to 6 were cut at intervals of 1 cm and 50 ml of a phosphate buffered saline (PBS, pH 7.4) solution was added to a 50 ml Falcone tube. The samples were immersed in a 50 ml Falcon tube, rpm), and the pH of the PBS was measured at each time point to confirm the biodegradation rate.
  • the evaluation results for Examples 4 to 6 are shown in Figs. 12 to 14, respectively.
  • the sample On the 12th day and the 33th day after incubation, the sample was taken out and completely dried in a convection oven at 40 ° C. After that, the sample was frozen in liquid nitrogen to cut a cross section (cut in half in the longitudinal direction) (FE-SEM, SU 8010) to examine the cross-section and the surface. SEM observation results of the gamma ray irradiation amounts OkGy, 30 kGy, and 50 kGy in Examples 4 to 6 are shown in Figs. 15 to 17, respectively.
  • Nonwoven fabric type scaffold was prepared in the same manner as in Example 1 except that PLGA fiber (fineness: 2 denier, fiber length: 3 mm, melting point: 210 ° C) was used alone.
  • Example 3 and Comparative Example 1 Each sample prepared in Example 3 and Comparative Example 1 was irradiated at different doses at 0, 10, 20, 30, and 50 kGy using a gamma irradiation facility (MDS Nordion Inc C-188).
  • NIH 3T3 mouse embryonic fibroblast cell line
  • NIH 3T3 mouse embryonic fibroblast cell line
  • Example 3 the PLGA fiber is biodegraded to provide a space for cell growth while the cell growth is being performed, the ES fiber is not biodegraded, and the PLGA fiber is biodegraded and the scaffold skeleton is maintained so that the provided cell growth space is not collapsed .
  • Comparative Example 1 which is a non-woven fabric type spade made of PLGA fibers, which is a biodegradable material, the space of the scaffold can be secured by the biodegradation of the PLGA fiber, but there is no skeleton to support such space with time Collapse and cell growth becomes insufficient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a three-dimensional fiber-type scaffold having a plurality of pores, wherein the scaffold includes a fiber structure having two types of fibers having different biodegradation rates, wherein the two types of fibers having different biodegradation rates comprise a biodegradable first fiber and a biodegradable second fiber which has a slower biodegradation rate than the first fiber, or comprise a biodegradable first fiber and a non-biodegradable second fiber.

Description

3차원 섬유형 스캐폴드Three-dimensional fiber type scaffold
본 발명은 3차원 섬유형 스캐폴드에 관한 것으로서, 구체적으로는 원하는 형태로 성형이 가능하고, 세포나 조직의 재생에 효과적이면서 재생 이후 재생된 세포나 조직의 수거에 용이한 3차원 섬유형 스캐폴드이다.The present invention relates to a three-dimensional fiber-type scaffold. More specifically, the present invention relates to a three-dimensional fiber-type scaffold which can be molded into a desired shape and is effective for cell and tissue regeneration, to be.
본 출원은 2017년 12월 5일에 출원된 한국출원 제10-2017-0165617호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.This application is based upon and claims the benefit of Korean Patent Application No. 10-2017-0165617, filed December 5, 2017, the entire contents of which are incorporated herein by reference.
질병이나 상해로 인하여 손상된 인체의 조직을 대체하거나 재건 또는 복원하기 위한 수많은 외과수술이 매일 세계적으로 시행되고 있다. 조직의 손상을 대체하는 목적으로 환자의 다른 부위의 조직을 이용하거나 다른 사람의 신체의 조직을 이식한다. 이러한 치료로 생명을 연장할 수 있으나 조직의 이식에는 고통스러우며 많은 경비를 요할 뿐 아니라 감염의 문제점을 가지고 있으며 이식 장기의 확보에도 어려움이 있다. 더구나 환자의 면역체계에 의한 거부반응이 있을 수 있다.Numerous surgical operations are being undertaken every day worldwide to replace, rebuild or restore the tissue of a human body damaged by disease or injury. Use tissues from other parts of the patient for the purpose of replacing tissue damage or implant tissue of another person's body. These treatments can prolong life, but the transplantation of the tissue is painful, requires a lot of expenses, has infection problems, and has difficulties in securing organ transplants. Furthermore, there may be rejection by the patient's immune system.
재생의학과 거의 동의어로 사용되는 조직공학 분야에서는 손상된 부위를 환자의 몸에서 생물학적으로 획득한 세포나 조직을 지지체(scaffold)에 배양하여 손상된 부위에 적용함으로써 조직의 기능을 향상시키거나 유지하여 조직이 재생되도록 하는 것을 목표로 하고 있다. 조직공학이란 정상적이거나 병리현상을 보이는 포유류 조직의 구조와 기능 간의 관계를 이해하고 이를 바탕으로 조직기능의 회복과 향상을 위한 생물학적 대체물을 개발하기 위한 공학과 생명과학의 원리와 방법을 활용하는 것이라고 정의될 수 있다.In the field of tissue engineering, which is used almost synonymous with regenerative medicine, cells or tissues biologically obtained from a patient's body are cultivated in a scaffold to apply the damaged part to the damaged area, thereby improving or maintaining the function of the tissue, The goal is to ensure that. Tissue engineering is defined as the use of the principles and methods of engineering and life sciences to understand the relationship between the structure and function of mammalian tissues that are normal or pathological and to develop biological substitutes for the recovery and improvement of tissue function .
조직공학은 조직이나 기관의 재생을 위해 다공성의 3차원적 스캐폴드를 사용하는데 스캐폴드는 조직형성에 주형으로 사용된다. 이러한 스캐폴드는 세포나 성장인자를 포함하거나 바이오반응기의 형태로 바이오 물리적인 자극에 대응하는 기능을 가지거나 세포에 가해지는 다양한 형태의 기계적, 화학적 자극에 응답성을 가지고 있어야 한다. Tissue engineering uses a porous three-dimensional scaffold for tissue or organ regeneration, and the scaffold is used as a template for tissue formation. Such a scaffold should have responsive properties to various types of mechanical and chemical stimuli that include cells or growth factors, have a function in response to bio-physical stimuli in the form of a bioreactor, or are applied to cells.
한편, 기존 조직재생용 스캐폴드는 세포지지는 용이하나 원하는 모양이나 형태로 성형을 하거나, 조직에 적합한 물성을 갖게 하기 어려워 실제 조직에 적용하는데 한계가 있었다. 또한 기존 스캐폴드는 내부 기공들이 서로 연결되어 있지 않은 구조를 가짐으로 인해 세포 증식에 불리하였고, 조직이 재생되는 속도에 맞도록 스캐폴드의 생분해 속도 조절이 쉽지 않고, 대량으로 제조하기 어려워 상업화 하는데도 어려움이 있었다. On the other hand, existing tissue regeneration scaffolds are easy to support cells, but they are difficult to be molded into a desired shape or shape, or have physical properties suitable for the tissue, and thus, application to the actual tissue has been limited. In addition, existing scaffolds are disadvantageous for cell proliferation due to the structure in which the internal pores are not connected to each other, and it is difficult to control the biodegradation rate of the scaffold to match the regeneration rate of the tissue, .
게다가, 종래에 사용되는 스캐폴드에서는 세포를 시딩(seeding) 하여 키운 후 스캐폴드와 함께 인체에 삽입을 하는 형태에만 적용 가능하였고, 바이오 리액터 내에서 스캐폴드를 통하여 대량으로 세포를 배양해야 하는 경우, 스캐폴드로부터 세포를 분리해내어 수거하는 것이 용이하지 않았다. In addition, in conventional scaffolds, it is possible to apply only to a form in which cells are seeded and cultured and then inserted into a human body together with a scaffold. When a large amount of cells must be cultured in a bioreactor through a scaffold, It was not easy to separate cells from the scaffold and collect them.
따라서, 세포를 포함하는 스캐폴드는 생체 밖에서 바이오리액터 등을 통하여 배양되어 부분적으로 합성된 조직을 스캐폴드로부터 용이하게 수거하여 상처부위에 임플란트하거나, 또는 직접 상처부위에 위치시켜 신체의 기능을 이용하여 조직을 재생시키는데 제한 없이 적용가능하고, 또한, 원하는 모양이나 형태로 성형이 가능한 스캐폴드의 개발이 현저히 요구되고 있는 실정이다. Therefore, the scaffold containing the cells can be cultured out of the living body through a bioreactor or the like and the partially synthesized tissue can be easily collected from the scaffold to be implanted on the wound site, or placed directly on the wound site, There is a great demand for development of a scaffold which can be applied to regenerate a tissue without limitation and which can be formed into a desired shape or shape.
본 발명이 해결하려는 과제는 원하는 형태로 자유롭게 성형할 수 있으며, 세포 부착과 증식, 재생에 매우 효과적이면서도 세포나 조직 재생 후 재생된 세포나 조직의 수거에 용이한 3차원 섬유형 스캐폴드를 제공하는 것이다.A problem to be solved by the present invention is to provide a three-dimensional fiber-type scaffold which can be freely formed into a desired form, is highly effective for cell adhesion, proliferation and regeneration, and is easy to collect cells or tissues regenerated after cell or tissue regeneration will be.
이러한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 3차원 섬유형 스캐폴드가 제공된다.In order to solve this problem, according to one aspect of the present invention, there is provided a three-dimensional fiber-type scaffold of the following embodiment.
제1 구현예는,In a first embodiment,
복수의 기공을 갖는 3차원 섬유형 스캐폴드로서,A three-dimensional fiber-type scaffold having a plurality of pores,
상기 스캐폴드가 생분해 속도가 상이한 2종의 섬유를 구비하는 섬유 구조체를 포함하고,Wherein the scaffold includes a fiber structure having two kinds of fibers having different biodegradation rates,
상기 생분해 속도가 상이한 2종의 섬유가 생분해성 제1 섬유 및 상기 제1 섬유에 비해 생분해 속도가 느린 생분해성 제2 섬유를 포함하거나, 또는 생분해성 제1 섬유 및 비생분해성 제2 섬유를 포함하는 3차원 섬유형 스캐폴드에 관한 것이다.Wherein the two types of fibers having different biodegradation rates include a biodegradable first fiber and a biodegradable second fiber having a slower biodegradation rate than the first fiber or a biodegradable first fiber and a non biodegradable second fiber To a three-dimensional fiber-type scaffold.
제2 구현예는, 제1 구현예에 있어서,The second embodiment, in the first embodiment,
상기 생분해성 제1 섬유가 생분해성 제2 섬유 또는 비생분해성 제2 섬유 보다 융점이 높거나, 또는 융점이 없는 3차원 섬유형 스캐폴드에 관한 것이다. Dimensional fibrous scaffold in which the biodegradable first fiber has a melting point higher than that of the biodegradable second fiber or the non-biodegradable second fiber, or has no melting point.
제3 구현예는, 제1 구현에 또는 제2 구현예에 있어서,The third embodiment, in the first or second embodiment,
상기 스캐폴드의 기공의 평균 크기가 시간이 경과함에 따라 증가하는 3차원 섬유형 스캐폴드에 관한 것이다.Dimensional scaffold in which the average size of the pores of the scaffold increases with time.
제4 구현예는, 제1 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,The fourth embodiment is, in any one of the first to third embodiments,
상기 생분해성 제1 섬유 및 상기 생분해성 제2 섬유가 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-글리콜산의 공중합체, 폴리하이드로옥시부티르산, 폴리하이드로옥시발레르산, 폴리하이드로옥시부티르산-발레르산의 공중합체, 콜라겐, 히알루론산, 산화셀룰로오스, 키토산, 키틴, 젤라틴, 실크 피브로인 또는 이들의 2 이상의 혼합물을 포함하는 3차원 섬유형 스캐폴드에 관한 것이다.Wherein the biodegradable first fibers and the biodegradable second fibers are selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, copolymers of polylactic acid-glycolic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxybutyric acid- Valeric acid copolymer, collagen, hyaluronic acid, cellulose oxide, chitosan, chitin, gelatin, silk fibroin or a mixture of two or more thereof.
제5 구현예는, 제1 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,The fifth embodiment is, in any one of the first through fourth embodiments,
상기 비생분해성 제2 섬유가 폴리올레핀, 폴리에스테르, 폴리아미드, 또는 이들의 2 이상의 혼합물을 포함하는 3차원 섬유형 스캐폴드에 관한 것이다.Wherein the non-biodegradable second fiber comprises a polyolefin, a polyester, a polyamide, or a mixture of two or more thereof.
제6 구현예는, 제1 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,The sixth embodiment is, in any one of the first through fifth embodiments,
상기 생분해성 제1 섬유가 폴리글리콜산(PGA), 폴리락트산-글리콜산의 공중합체(PLGA), 또는 이들의 혼합물을 포함하고, 생분해성 제2 섬유가 폴리락트산을 포함하거나, 상기 생분해성 제1 섬유가 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-글리콜산의 공중합체, 폴리하이드로옥시부티르산, 폴리하이드로옥시발레르산, 폴리하이드로옥시부티르산-발레르산의 공중합체, 콜라겐, 히알루론산, 산화셀룰로오스, 키토산, 키틴, 젤라틴, 실크 피브로인 또는 이들의 2 이상의 혼합물을 포함하고, 상기 비생분해성 제2 섬유가 폴리프로필렌, 폴리에틸렌, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌테레프탈레이트 공중합체, 폴리부틸렌테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리사이클로헥산디메탄올 테레프탈레이트(PCT) 및 폴리에틸렌 나프탈레이트(PEN), 나일론 6, 나일론 6,6, 나일론 4 및 나일론 4,6 또는 이들의 2 이상의 혼합물을 포함하는 3차원 섬유형 스캐폴드에 관한 것이다.Wherein the biodegradable first fiber comprises polyglycolic acid (PGA), a copolymer of polylactic acid-glycolic acid (PLGA), or a mixture thereof, the biodegradable second fiber comprises polylactic acid, 1 fiber is selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, copolymers of polylactic acid-glycolic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxybutyric acid-valeric acid copolymer, collagen, hyaluronic acid, Wherein the non-biodegradable second fibers are selected from the group consisting of polypropylene, polyethylene, polyethylene terephthalate (PET), polyethylene terephthalate copolymer, polybutylene Terephthalate (PBT), polytrimethylene terephthalate (PTT), polycyclohexanedimethanol terephthalate (PCT), and poly Dimensional fibrous scaffold comprising tilene naphthalate (PEN), nylon 6, nylon 6,6, nylon 4 and nylon 4,6 or a mixture of two or more thereof.
제7 구현예는, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,The seventh embodiment is, in any one of the first through sixth embodiments,
상기 스캐폴드가 부직포 형태; 직물 형태; 편물 형태; 섬유 다발 형태; 섬유 다발 및 상기 섬유 다발이 삽입되는 튜브를 구비하는 실린더 형태, 또는 이들의 2종 이상의 혼합물인 3차원 섬유형 스캐폴드에 관한 것이다.Said scaffold being in the form of a nonwoven; Fabric type; Knitted form; Fiber bundle type; A cylindrical shape having a fiber bundle and a tube into which the fiber bundle is inserted, or a three-dimensional fiber type scaffold that is a mixture of two or more thereof.
제8 구현예는, 제1 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,The eighth embodiment is, in any one of the first through seventh embodiments,
상기 생분해 속도가 감마선 조사에 의해 제어될 수 있는 3차원 섬유형 스캐폴드에 관한 것이다.Dimensional fibrous scaffold in which the biodegradation rate can be controlled by gamma irradiation.
제9 구현예는, 제1 구현예 내지 제8 구현예 중 어느 한 구현예에 있어서,The ninth embodiment is, in any one of the first through eighth embodiments,
상기 섬유 구조체가 생분해 속도가 상이한 1종 이상의 섬유를 더 구비하는 3차원 섬유형 스캐폴드에 관한 것이다.Dimensional fibrous scaffold in which the fibrous structure further comprises one or more fibers having different biodegradation rates.
본 발명의 일 실시예에 따른 3차원 섬유형 스캐폴드는, 생분해 속도가 다른 섬유 소재를 복합화하여 생분해 속도를 제어함으로써, 생분해 속도가 느린 섬유 소재가 바인더 또는 골격 역할을 함으로써 분해가 진행되는 과정에서도 스캐폴드 형상을 유지할 수 있고, 열가소성 소재를 바인더 기능을 갖도록 복합화하여 열 가공에 의해 원하는 모양으로 성형이 가능하여, 세포 부착력, 세포 증식에 탁월한 성능을 보이는 구조를 가지는 스캐폴드를 제공할 수 있다.The three-dimensional fiber-type scaffold according to an embodiment of the present invention can control the rate of biodegradation by complexing a fiber material having a different biodegradation rate so that the fiber material having a slow biodegradation rate acts as a binder or a skeleton, It is possible to provide a scaffold having a structure capable of maintaining a scaffold shape, capable of forming a thermoplastic material into a desired shape by thermoforming, and exhibiting excellent cell adhesion and cell proliferation.
또한, 본 발명의 일 실시예에 따른 3차원 섬유형 스캐폴드는, 생분해 속도가 다른 섬유 소재를 복합화한 결과 세포 배양 및 증식 정도에 따라 스캐폴드 기공 크기가 점차 증가됨으로써 세포 배양 효율을 개선시키고, 배양된 세포를 스캐폴드로부터 쉽게 분리(수거)해낼 수 있다.In addition, the three-dimensional fiber-type scaffold according to an embodiment of the present invention has a scaffold pore size gradually increased according to the degree of cell culture and proliferation as a result of complexing fibrous materials having different biodegradation rates, The cultured cells can be easily separated (collected) from the scaffold.
또한, 본 발명의 일 실시예에 따른 섬유형 스캐폴드는, 대량으로 제조하기가 쉽고, 섬유가 갖는 유연성 때문에 필요한 부분에 삽입하기에 편리하며, 세포친화력을 높여줄 수 있도록 표면을 개질하기 용이이고, 내부 기공들이 서로 연결되어 있어 세포 부착과 성장에 매우 유리할 수 있다.Further, the fibrous scaffold according to an embodiment of the present invention is easy to be manufactured in a large amount, is convenient to be inserted into a necessary portion due to the flexibility of the fiber, is easy to modify the surface so as to increase cell affinity , And internal pores are connected to each other, which can be very advantageous for cell attachment and growth.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description of the invention given below, serve to further the understanding of the technical idea of the invention, And should not be construed as limiting.
도 1는 실시예 1 내지 3에서 제조된 스캐폴드에 대한 생분해 시험 중인 바이알의 사진이다.Figure 1 is a photograph of a vial undergoing a biodegradation test on the scaffolds prepared in Examples 1-3.
도 2는 실시예 1 내지 3에서 제조된 스캐폴드의 시간 경과에 따른 평균 기공 크기의 변화를 나타낸 그래프이다.FIG. 2 is a graph showing changes in average pore size of the scaffold prepared in Examples 1 to 3 with time. FIG.
도 3a 및 3b는 실시예 1 내지 3에서 제조된 스캐폴드의 시간 경과에 따른 평균 기공 크기 및 표면 변화를 관찰한 SEM 사진이다.3A and 3B are SEM photographs showing the average pore size and surface change of the scaffold prepared in Examples 1 to 3 with time.
도 4 내지 도 6은 실시예 1 내지 3에서 제조된 스캐폴드의 감마선 조사량에 따른 생분해 실험 결과를 나타낸 그래프이다.FIGS. 4 to 6 are graphs showing the results of biodegradation experiments according to the irradiation dose of gamma rays of the scaffolds prepared in Examples 1 to 3. FIG.
도 7은 실시예 3에서 제조된 스캐폴드의 감마선 조사량 0kGy, 12일 경과후의 생분해 실험 결과를 나타낸 SEM 사진이다.7 is an SEM photograph showing the results of biodegradation experiments of the scaffold prepared in Example 3 after 12 days of gamma irradiation dose of 0 kGy.
도 8은 실시예 3에서 제조된 스캐폴드의 감마선 조사량 40kGy, 12일 경과후의 생분해 실험 결과를 나타낸 SEM 사진이다.8 is an SEM photograph showing the result of biodegradation test of the scaffold prepared in Example 3 after the lapse of 12 days from the irradiation dose of 40 kGy of the gamma ray.
도 9는 실시예 1 내지 3에서 제조된 스캐폴드의 초기 세포 부착률의 분석 결과를 나타낸 그래프이다.9 is a graph showing the results of analysis of the initial cell adhesion rate of the scaffolds prepared in Examples 1 to 3. Fig.
도 10은 실시예 1 내지 3에서 제조된 스캐폴드의 세포 성장 분석 결과를 나타낸 그래프이다.10 is a graph showing cell growth analysis results of the scaffolds prepared in Examples 1 to 3. FIG.
도 11은 실시예 4에 따른 실린더형 스캐폴드의 제조 과정의 개략도이다.11 is a schematic view of a manufacturing process of a cylindrical scaffold according to the fourth embodiment.
도 12 내지 도 14는 실시예 4 내지 6에서 제조된 스캐폴드의 감마선 조사량에 따른 생분해 속도의 분석 결과를 나타낸 그래프이다.12 to 14 are graphs showing the results of analysis of the biodegradation rate according to the irradiation dose of gamma rays of the scaffolds prepared in Examples 4 to 6. FIG.
도 15 내지 17은 실시예 4 내지 6에서 제조된 스캐폴드의 감마선 조사량 OkGy, 30kGy, 및 50kGy의 SEM 관찰 결과를 나타낸 사진이다.15 to 17 are photographs showing SEM observation results of gamma ray irradiation amounts OkGy, 30 kGy, and 50 kGy of the scaffolds prepared in Examples 4 to 6. FIG.
[규칙 제91조에 의한 정정 08.01.2019] 
도 18은 실시예 3 및 비교예 1에서 스캐폴드의 감마선 조사량 변화에 따른 세포성장 분석 결과를 나타낸 그래프이다.
도 19는 실시예 3에서 제조된 시료를 인큐베이션한지 12일과 33일째 샘플을 꺼내어 40℃ 컨벡션 오븐에서 완전히 건조한 후, 액체 질소에 동결하여 이온 코터(Ion Coater, E-1045)로 150초 동안 금으로 코팅하여 전계방사형주사현미경(FESEM, SU 8010)을 사용하여 표면을 관찰한 결과를 나타낸 것이다.
[Correction according to Rule 91 of the Regulations of 08.01.2019]
18 is a graph showing the results of cell growth analysis according to the variation of irradiation dose of the scaffold in Example 3 and Comparative Example 1. Fig.
FIG. 19 is a graph showing the results obtained by taking a sample on the 12th day and the 33rd day after incubation of the sample prepared in Example 3, completely drying the sample in a 40 ° C convection oven, freezing it in liquid nitrogen and heating it for 150 seconds with an ion coater (E-1045) Coated, and the surface was observed using a field emission scanning microscope (FESEM, SU 8010).
이하, 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the configurations shown in the embodiments described herein are merely the most preferred embodiments of the present invention, and are not intended to represent all of the technical ideas of the present invention, so that various equivalents And variations are possible.
본 발명의 일 측면에 따르면, 복수의 기공을 갖는 3차원 섬유형 스캐폴드로서, 상기 스캐폴드가 생분해 속도가 상이한 2종의 섬유를 구비하는 섬유 구조체를 포함하고, 상기 생분해 속도가 상이한 2종의 섬유가 생분해성 제1 섬유 및 상기 제1 섬유에 비해 생분해 속도가 느린 생분해성 제2 섬유를 포함하거나, 또는 생분해성 제1 섬유 및 비생분해성 제2 섬유를 포함하는 3차원 섬유형 스캐폴드가 제공된다.According to an aspect of the present invention, there is provided a three-dimensional fiber-type scaffold having a plurality of pores, wherein the scaffold includes a fiber structure having two types of fibers having different biodegradation rates, Wherein the fiber comprises a biodegradable first fiber and a biodegradable second fiber having a slower biodegradation rate than the first fiber, or a three-dimensional fiber type scaffold comprising a biodegradable first fiber and a non-biodegradable second fiber / RTI >
기존 조직재생용 스캐폴드와 비교하여, 이와 같이 본 발명의 일 실시예에 따른 3차원 섬유형 스캐폴드는, 생분해 특성이 서로 다른 섬유를 복합화하거나 열적 변형이 가능한 섬유소재를 함께 복합화됨으로써, 스캐폴드를 원하는 형태로 성형할 수 있다.As compared with the existing tissue regeneration scaffold, the three-dimensional fiber type scaffold according to an embodiment of the present invention is a composite material in which fibers having different biodegradation characteristics are combined or thermally deformable are combined together, Can be molded into a desired shape.
기존 스캐폴드는 세포지지는 용이하나 원하는 모양이나 형태로 성형을 하거나, 조직에 적합한 물성을 갖게 하기 어려워 실제 조직에 적용하는데 한계가 있었다. 하지만, 본 발명의 일 실시예에 따르면, 상기 생분해성 제1 섬유는 생분해성 제2 섬유 또는 비생분해성 제2 섬유 보다 융점이 높을 수 있다. 융점이 상대적으로 낮은 생분해성 제2 섬유나 비생분해성 제2 섬유가 스캐폴드의 제조시 열처리를 통하여 원하는 형태로 성형될 수 있게 한다. 본 발명의 일 실시예에 따르면, 생분해성 제1 섬유는 융점이 없이 바로 열분해 되는 것일 수도 있다.Conventional scaffolds are easy to support cells, but they are difficult to be molded into a desired shape or shape, or to have a proper physical property for a tissue, and thus, application to a real tissue has been limited. However, according to one embodiment of the present invention, the biodegradable first fiber may have a higher melting point than the biodegradable second fiber or the non-biodegradable second fiber. The biodegradable second fiber or the non-biodegradable second fiber having a relatively low melting point can be molded into a desired shape through heat treatment during the production of the scaffold. According to one embodiment of the present invention, the biodegradable first fiber may be pyrolyzed immediately without melting point.
또한, 종래의 스캐폴드는 내부 기공들이 서로 연결되어 있지 않은 구조를 가짐으로 인해 세포 증식에 어려움이 있으며, 조직이 재생되는 속도에 맞도록 스캐폴드의 생분해 속도 조절이 쉽지 않았다. 하지만, 본 발명의 일 실시예에 따른 스캐폴드는 세포가 시딩(seeding)된 후에 시간의 경과에 따라 생분해성 속도가 큰 생분해성 제1 섬유가 먼저 분해 또는 절단되는 경우에도, 생분해성 속도가 느린 생분해성 제2 섬유나 또는 생분해되지 않는 비생분해성 제2 섬유는 스캐폴드의 형태 구조를 유지하면서 세포를 안정적으로 생장시키는 골격 역할을 하게 된다. 더불어, 상기 생분해성 속도가 큰 생분해성 제1 섬유가 분해되면서 스캐폴드의 기공의 평균 크기가 시간이 경과함에 따라 증가하게 될 수 있다. In addition, since conventional scaffolds have a structure in which internal pores are not connected to each other, cell proliferation is difficult, and it is not easy to control the biodegradation rate of the scaffold to match the regeneration speed of the tissue. However, the scaffold according to an embodiment of the present invention is characterized in that even if the biodegradable first fiber having a large biodegradation rate is decomposed or cut first after the cells are seeded, the biodegradable rate is slow The biodegradable second fiber or the non-biodegradable non-biodegradable second fiber serves as a skeleton capable of stably growing cells while maintaining the morphology of the scaffold. In addition, as the biodegradable first fiber having a large biodegradable rate is decomposed, the average size of the pores of the scaffold may increase with time.
본 발명의 일 실시예에 따른 스캐폴드는 2.5×2.5cm 크기로 절단된 시료로 준비하여, 100ml 바이알(vial)에 포스페이트 버퍼드 살린(phosphate buffered saline; PBS) (pH 7.4) 용액을 100ml 넣고 침지 시킨 후, 쉐이킹 배스(Shaking bath) (60℃, 80 rpm)에 넣은 후 생분해 속도를 관찰하고, 시간별로 꺼낸 샘플을 40℃ 컨벡션 오븐에서 완전히 건조한 후, 기공크기 측정기기(Capillary Flow Porometer, CFP-1200AEL, Porous Materials Inc)를 이용하여 평균 기공크기를 측정하는 경우에, 생분해 속도 관찰 시작부터 예를 들어, 9일 내지 15일까지는 기공 크기가 증가할 수 있다. The scaffold according to an embodiment of the present invention was prepared as a sample cut into a size of 2.5 x 2.5 cm and 100 ml of a phosphate buffered saline (PBS) (pH 7.4) solution was added to a 100 ml vial, After the sample was taken out in time, the sample was completely dried in a convection oven at 40 ° C., and then a capillary flow porometer (CFP-A) was placed in a shaking bath (60 ° C., 80 rpm) 1200AEL, Porous Materials Inc.), the pore size may increase from the start of observation of the biodegradation rate, for example, from 9 to 15 days.
본 발명의 일 실시예에 따른 스캐폴드도 그 기공의 평균 크기가 증가하게 되면서, 내부에 공간이 충분히 확보되어, 스캐폴드에 시딩된 세포가 안정적으로 성장 및 증식하는데 탁월한 효과를 발휘할 수 있다. 나아가, 크기가 커진 기공을 통하여, 세포를 스캐폴드로부터 용이하게 분리(수거)해낼 수 있는 잇점도 있다. As the average size of the pores of the scaffold according to an embodiment of the present invention increases, a sufficient space can be secured in the inside of the scaffold, and the cells seeded on the scaffold can exhibit an excellent effect for stably growing and propagating. Furthermore, there is an advantage in that the cells can be easily separated (collected) from the scaffold through the enlarged pores.
본 발명에 있어서, 생분해성 섬유라 함은, 수분이나 체내 분해 효소에 의해 분해될 수 있는 고분자로 제조된 섬유를 말하고, 생분해 속도라 함은 이러한 섬유가 시간 경과에 따라 분해되는 빠르기 정도를 의미한다. 본 발명의 일 실시예에서는 이러한 생분해성 섬유, 또는 이러한 생분해성 섬유를 구비한 스캐폴드의 생분해 속도를 생분해성 섬유의 가수분해시 발생하는 산에 의해 변화하는 pH를 측정하여 확인할 수 있다. 예를 들어, 초기 대비 시간의 경과에 따라 감소하는 pH의 변화 정도를 근거로 생분해성 속도를 비교할 수 있다. 구체적으로는, 시료를 소정 크기(예를 들어 2.5×2.5cm)로 자른 후 50ml Falcone tube에 포스페이트 버퍼드 살린 (PBS, pH 7.4)용액을 50ml 넣고 샘플을 침지 시킨 후, 쉐이커 인큐베이터(shaker incubator) (37℃, 1000 rpm)에 넣은 후 시간대 별로 PBS의 pH를 측정함으로써 생분해 속도를 확인할 수 있다.In the present invention, the biodegradable fiber refers to a fiber made of a polymer capable of being degraded by water or an internal degradation enzyme, and the biodegradation rate means a degree of speed at which the fiber is decomposed with time . In one embodiment of the present invention, the biodegradation rate of such a biodegradable fiber or a scaffold having such a biodegradable fiber can be confirmed by measuring a pH which is changed by an acid generated upon hydrolysis of the biodegradable fiber. For example, the rate of biodegradation can be compared based on the degree of change in pH that decreases over time relative to the initial time. Specifically, the sample was cut into a predetermined size (for example, 2.5 × 2.5 cm), and 50 ml of a phosphate buffered saline (PBS, pH 7.4) solution was added to a 50 ml Falcone tube. The sample was immersed in a 50 ml Falcone tube and shaken in a shaker incubator. (37 ° C, 1000 rpm), and the pH of the PBS is measured at each time point to confirm the biodegradation rate.
상기 생분해 속도가 상이한 2종의 섬유가 생분해성 제1 섬유 및 상기 제1 섬유에 비해 생분해 속도가 느린 생분해성 제2 섬유를 포함하는 경우, 상기 생분해성 제1 섬유와 생분해성 제2 섬유는 생분해성 속도가 차이가 나는 생분해성 고분자 소재로 제조된 섬유라면 제한 없이 선택되어 적용될 수 있다. When the two kinds of fibers having different biodegradation rates include the biodegradable first fiber and the biodegradable second fiber having a slower biodegradation rate than the first fiber, the biodegradable first fiber and the biodegradable second fiber are biodegradable If the fibers are made of a biodegradable polymer material of which the speed of the fibers is different, the fiber can be selected and applied without limitation.
상기 생분해성 제1 섬유 및 상기 생분해성 제2 섬유로는 다양한 생분해성 고분자 소재로 제조된 섬유를 적용할 수 있고, 그 비제한적인 예로서, 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-글리콜산의 공중합체, 폴리하이드로옥시부티르산, 폴리하이드로옥시발레르산, 폴리하이드로옥시부티르산-발레르산의 공중합체, 콜라겐, 히알루론산, 산화셀룰로오스, 키토산, 키틴, 젤라틴, 실크 피브로인 또는 이들의 2 이상의 혼합물을 포함할 수 있다. 여기에서, 생분해 속도의 차이가 나도록, 상기 생분해성 제1 섬유와 생분해성 제2 섬유를 적절히 선택할 수 있다.As the biodegradable first fibers and the biodegradable second fibers, fibers made of various biodegradable polymer materials can be applied. Non-limiting examples of the biodegradable first fibers include polylactic acid, polyglycolic acid, polycaprolactone, polylactic acid Copolymers of polyhydroxybutyric acid and valeric acid, collagen, hyaluronic acid, cellulose oxide, chitosan, chitin, gelatin, silk fibroin or a mixture of two or more thereof And mixtures thereof. Here, the biodegradable first fibers and the biodegradable second fibers can be appropriately selected so that the difference in biodegradation rate can be obtained.
또한, 상기 비생분해성 제2 섬유는 생분해성이 아닌 다양한 합성 섬유 중에서 선택된 1종 이상의 고분자 소재로 제조된 섬유가 적용될 수 있고, 그 비제한적인 예로서, 폴리올레핀, 폴리에스테르, 폴리아미드, 또는 이들의 2 이상의 혼합물을 포함할 수 있다. 구체적으로, 상기 비생분해성 제2 섬유로는 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리사이클로헥산디메탄올 테레프탈레이트(PCT) 및 폴리에틸렌 나프탈레이트(PEN)으로 이루어진 군에서 선택되는 폴리에스테르계 고분자; 나일론 6, 나일론 6,6, 나일론 4 및 나일론 4,6에서 선택되는 폴리아미드계 고분자; 또는 폴리에틸렌 또는 폴리프로필렌에서 선택되는 폴리올레핀계 고분자, 또는 이들 중 2 이상의 혼합물을 포함할 수 있다. 예를 들어, 상기 2 이상의 혼합물에는 폴리에스테르계 고분자 중 2개 이상을 선택할 수도 있고, 폴리에스테르계 고분자 중 1 이상과, 폴리올레핀계 고분자 중 1상을 각각 선택한 혼합물일 수도 있다.The non-biodegradable second fiber may be a fiber made of one or more kinds of polymer materials selected from various non-biodegradable synthetic fibers, and examples thereof include polyolefins, polyesters, polyamides, ≪ / RTI > Specifically, the non-biodegradable second fibers may be selected from the group consisting of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polycyclohexanedimethanol terephthalate (PCT) A phthalate (PEN); Polyamide-based polymers selected from nylon 6, nylon 6,6, nylon 4, and nylon 4,6; Or a polyolefin-based polymer selected from polyethylene or polypropylene, or a mixture of two or more thereof. For example, two or more of the polyester-based polymers may be selected as the mixture of the two or more, or a mixture of one or more of the polyester-based polymers and one of the polyolefin-based polymers may be respectively selected.
본 발명의 일 실시예에 따르면, 상기 생분해성 제1 섬유는 폴리글리콜산(PGA), 폴리락트산-글리콜산의 공중합체(PLGA), 또는 이들의 2 이상의 혼합물을 포함하고, 생분해성 제2 섬유는 폴리락트산을 포함할 수 있다. According to one embodiment of the present invention, the biodegradable first fiber comprises polyglycolic acid (PGA), a copolymer of polylactic acid-glycolic acid (PLGA), or a mixture of two or more thereof, May include polylactic acid.
또한, 상기 생분해 속도가 상이한 2종의 섬유가 생분해성 제1 섬유 및 비생분해성 제2 섬유를 포함하는 경우에는, 예를 들어, 상기 생분해성 제1 섬유는 폴리락트산(PLA), 폴리글리콜산, 폴리카프로락톤, 폴리락트산-글리콜산의 공중합체(PLGA), 폴리하이드로옥시부티르산, 폴리하이드로옥시발레르산 및 폴리하이드로옥시부티르산-발레르산의 공중합체 또는 이들의 2 이상의 혼합물을 포함하고, 비생분해성 제2 섬유가 폴리프로필렌, 폴리에틸렌, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌테레프탈레이트 공중합체, 폴리부틸렌테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리사이클로헥산디메탄올 테레프탈레이트(PCT) 및 폴리에틸렌 나프탈레이트(PEN), 나일론 6, 나일론 6,6, 나일론 4 및 나일론 4,6 또는 이들의 2 이상의 혼합물을 포함할 수 있다.When the two kinds of fibers having different biodegradation rates include the biodegradable first fiber and the non-biodegradable second fiber, for example, the first biodegradable fiber may be polylactic acid (PLA), polyglycolic acid , Copolymers of polycaprolactone, copolymers of polylactic acid-glycolic acid (PLGA), polyhydroxybutyric acid, polyhydroxyvaleric acid and polyhydroxybutyric acid-valeric acid, or a mixture of two or more thereof, Wherein the second fiber is selected from the group consisting of polypropylene, polyethylene, polyethylene terephthalate (PET), polyethylene terephthalate copolymer, polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polycyclohexanedimethanol terephthalate ) And polyethylene naphthalate (PEN), nylon 6, nylon 6,6, nylon 4, and nylon 4,6 or a mixture of two or more thereof .
본 발명의 일 실시예에 따르면, 상기 생분해 속도가 상이한 2종의 섬유 중 생분해성 제1 섬유 및 생분해성 제2 섬유나, 생분해성 제1 섬유 및 비생분해성 제2 섬유의 중량비는 10:90 내지 90:10, 또는 20:80 내지 80:20, 또는 30:70 내지 70:30일 수 있다.According to an embodiment of the present invention, the weight ratio of the biodegradable first fiber and the biodegradable second fiber, the biodegradable first fiber, and the non-biodegradable second fiber among the two types of fibers having different biodegradation rates is 10:90 To 90:10, or 20:80 to 80:20, or 30:70 to 70:30.
또한, 폴리락트산-글리콜산의 공중합체의 경우에는 락타이드 및 글리콜라이드가 다양한 중량비로 공중합될 수 있고, 예를 들어 10:90 내지 30:70 중량비율로 공중합될 수 있다. In the case of polylactic acid-glycolic acid copolymers, lactide and glycolide may be copolymerized at various weight ratios, for example, at a weight ratio of 10:90 to 30:70.
본 발명의 일 실시예에 따르면, 상기 스캐폴드가 부직포 형태; 직물 형태; 편물 형태; 섬유 다발 형태; 섬유 다발 및 상기 섬유 다발이 삽입되는 튜브를 구비하는 실린더 형태, 또는 이들의 2종 이상의 혼합물일 수 있다.According to an embodiment of the present invention, the scaffold is in the form of a nonwoven fabric; Fabric type; Knitted form; Fiber bundle type; A cylindrical shape having a fiber bundle and a tube into which the fiber bundle is inserted, or a mixture of two or more thereof.
본 발명의 스캐폴드는 이러한 섬유 구조체에 포함되어 있는 섬유들에 의해 형성되는 공간을 이용하여 세포배양, 세포전달 또는 약물전달 등의 기능을 수행할 수 있다.The scaffold of the present invention can perform functions such as cell culture, cell delivery, or drug delivery using a space formed by the fibers contained in such a fiber structure.
본 발명의 일 실시예에 따르면, 상기 섬유 구조체는 생분해 속도가 상이한 1종 이상의 섬유를 더 구비할 수 있다. 예를 들어, 상기 섬유 구조체를 포함하는 스캐폴드가 부직포 형태, 직물 형태, 편물 형태, 섬유 다발 형태, 실린더 형태인 경우에 이들 각각은 생분해 속도가 서로 차이가 있는 3종의 섬유, 또는 4종 이상의 섬유를 포함할 수 있다. According to an embodiment of the present invention, the fiber structure may further include one or more fibers having different biodegradation rates. For example, when the scaffold including the above-described fiber structure is a non-woven fabric, a woven fabric, a knitted fabric, a fiber bundle, or a cylinder, each of these fibers may have three kinds of fibers having different biodegradation rates, Fibers.
특히, 상기 스캐폴드가 섬유 다발 및 상기 섬유 다발이 삽입되는 튜브를 구비하는 실린더 형태인 경우에, 섬유 다발이 생분해 속도가 서로 차이가 있는 2종 이상의 섬유를 포함할 수 있고, 튜브가 생분해 속도가 서로 차이가 있는 2종 이상의 섬유를 포함할 수 있고, 또한 섬유 다발과 튜브 모두 생분해 속도가 서로 차이가 있는 2종 이상의 섬유를 포함할 수도 있다.In particular, when the scaffold is in the form of a cylinder having a fiber bundle and a tube into which the fiber bundle is inserted, the fiber bundle may include two or more kinds of fibers having different biodegradation rates, The fiber bundle and the tube may include two or more kinds of fibers having different biodegradation rates from each other.
본원 명세서에서, 섬유상, 섬유 형태, 또는 섬유라 함은 길고 가늘며 굽힘 저항이 작아서 연하게 굽힐 수 있는 일군의 선상 물질을 의미하고, 이러한 섬유는 그 길이에 따라서, 1 mm 이하의 길이를 갖는 마이크로피브릴, 0.1 내지 40 mm로 절단된 습식 부직포용 단섬유(Short cut 섬유), 10 내지 130 mm의 길이를 갖는 건식 부직포용 단섬유(스테이플 파이버), 직물 및 편물용 연속 섬유 (장섬유, 필라멘트) 등으로 구분될 수 있다.As used herein, a fiber, fiber form, or fiber refers to a group of linear filaments that are long, thin, and small in bending resistance so that they can bend, and such fibers may have micro- (Short cut fibers) cut into 0.1 to 40 mm, dry nonwoven short fibers (staple fibers) having a length of 10 to 130 mm, continuous fibers (long fibers, filaments) for fabrics and knitted fabrics, And the like.
여기서 부직포라 함은, 섬유를 직포 공정을 거치지 않고, 평행 또는 부정방향(일정하지 않은 방향)으로 배열하여, 섬유간의 기계적인 얽힘, 또는 수지 접착제의 첨가, 열융착, 또는 화학적 복합체의 형성을 통하여 결합되어 얻어지는 섬유 구조체의 일종을 의미한다. Here, the nonwoven fabric refers to a nonwoven fabric in which the fibers are arranged in a parallel or non-uniform direction (uneven direction) without being subjected to a woven fabric process, and the fibers are mechanically entangled or thermally bonded, Means a kind of fiber structure obtained by joining together.
이러한 부직포는 습식(또는 침지식 또는 초지식이라고도 함), 건식, 스펀 레이스, 전기방사 등의 다양한 방법으로 제조될 수 있다. Such a nonwoven fabric may be manufactured by various methods such as wet (or sinking or super-knowledge), dry, spun lace, electrospinning, and the like.
이중에서, 건식 부직포는 저융점의 가소성을 지닌 섬유를 혼합하여 열 또는 압력 등으로 착화하거나 녹여서 섬유조직을 결합시켜 제조하는 써멀 본딩(thermal bonding) 부직포, 압축공기를 이용하여 제조하는 에어레이(air lay) 부직포, 섬유를 특수 바늘을 이용하여 물리적으로 웹브(Web)를 결합시켜 제조되는 니들펀칭 부직포 등이 있을 수 있고, 부직포의 인장 강도, 즉 형태안정성 향상 측면에서 바람직하다. 또한, 습식 부직포는 초지법과 동일한 공정이나 단지 원료가 펄프로 사용되지 않고 각종 섬유를 사용하고, 이러한 섬유를 초조용매, 즉 분산용 용액에 분산시킨 후 제지용 와이어 또는 스크린을 통해 초조용매를 제거한 후 건조하여 부직포 형태로 제조될 수 있고, 균제도 향상 측면에서 바람직하며 마이크로피브릴과 같이 건식 공정에 비해 상대적으로 짧은 단섬유를 사용할 수 있다는 장점이 있다.In the dry nonwoven fabric, a thermal bonding nonwoven fabric prepared by mixing fibers having low melting point plasticity and igniting or dissolving them by heat, pressure, or the like, and bonding fiber structures, airborne (air laid nonwoven fabric, or a needle punching nonwoven fabric produced by physically combining a web with a fiber using a special needle, and is preferable in terms of improving the tensile strength, that is, the morphological stability of the nonwoven fabric. In the wet nonwoven fabric, the same process as that of the papermaking process is used. However, various fibers are used as raw materials but not as pulp. After the fibers are dispersed in an agate solvent, that is, a dispersion solution, the papermaking solvent is removed through a papermaking wire or a screen It is advantageous in that it can be made into a nonwoven fabric by drying and is preferable from the viewpoint of improvement of uniformity and can use short fibers which are relatively short compared to a dry process like microfibril.
또한, 직물이라 함은 섬유를 경사, 위사로 구분하여 서로 교차하여 제조된 섬유 구조체이고, 편물은 한 개의 섬유로 루프를 연속시켜 제조된 섬유 구조체를 의미하고, 당업계에서 적용 가능한 다양한 방법으로 제조될 수 있다.  The term "fabric" refers to a fabric structure fabricated by crossing fibers with warp yarns and weft yarns, and the knitted fabric refers to a fabric structure produced by continuous looping of one fiber, and is manufactured by various methods applicable in the art .
또한, 상기 스캐폴드의 기공이라 함은, 스캐폴드를 구성하는 섬유 구조체에 포함되어 있는 섬유들에 의해 형성되는 공간, 즉 서로 인접하거나, 얽혀 있는 섬유들 사이에 형성되는 기공을 의미한다.In addition, the pores of the scaffold refer to spaces formed by the fibers contained in the fiber structure constituting the scaffold, that is, pores formed between adjacent fibers or entangled fibers.
상기 기공의 크기는 예를 들어, 1 내지 150㎛, 상세하게는 5 내지 50㎛의 기공을 갖는다. 이때, 기공 크기가 이러한 범위를 만족하는 경우, 세포 배양시 세포 증식에 유리하고, 생체 내로 전달할 수 있는 세포나 약물 함유량이 적절히 조절될 수 있어 세포나 약물 등의 보유 능력이 개선될 수 있다. The size of the pores has a pore size of, for example, 1 to 150 mu m, particularly 5 to 50 mu m. At this time, when the pore size satisfies the above range, the cells and the drug can be improved in retention ability because the cells and the drug content that can be delivered in vivo can be appropriately controlled in favor of cell proliferation during cell culture.
본 발명의 일 실시예에 따르면, 상기 스캐폴드의 평균 기공 크기는 세포 배양 시작부터 약 15일이 경과하게 되면 초기 스캐폴드의 평균 기공 크기 대비하여 1.2 내지 3배 정도 더 평균 기공 크기가 증가할 수 있다. 이는 스캐폴드를 구성하는 생분해성 섬유가 생분해 내지 절단되어 섬유 사이의 기공이 더 확장되기 때문이다. According to one embodiment of the present invention, when the average pore size of the scaffold is about 15 days from the start of cell culture, the average pore size may be increased by about 1.2 to 3 times the average pore size of the initial scaffold have. This is because the biodegradable fibers constituting the scaffold are biodegraded or cut and the pores between the fibers are further expanded.
본 발명의 일 실시예에 따르면, 상기 생분해성 제1 섬유, 생분해성 제2 섬유, 및 비생분해성 제2 섬유는 각각 독립적으로, 1 내지 50 데니어의 모노 필라멘트 형태, 또는 한 가닥이 0.5 내지 4 데니어인 섬유가 수십 내지 수백가닥 합쳐져 20 내지 500 데니어의 멀티필라멘트 형태로 방사 가능한 섬유 또는 합성 및 천연 단섬유 방적사일 수 있다. According to one embodiment of the present invention, the biodegradable first fiber, the biodegradable second fiber, and the non-biodegradable second fiber are each independently in the form of monofilament of 1 to 50 denier, or one strand of 0.5 to 4 The denier fibers may be tens or hundreds of strands of fibers that are spinnable in the form of multifilaments of 20 to 500 denier, or synthetic and natural staple fibers.
본 발명의 일 실시예에 따른 스캐폴드의 일 형태인, 섬유 다발 및 상기 섬유 다발이 삽입되는 튜브를 구비하는 실린더 형태는, 네트형 망 구조의 튜브형의 환편 내부에, 멀티 필라멘트 가연사가 삽입 고정될 수 있다. 상세하게는 상기 튜브는 비생분해성 제2 섬유나, 생분해성 속도가 느린 생분해성 제2 섬유로 형성될 수 있고, 상기 튜브 내에 삽입되는 섬유 다발은 생분해성 제1 섬유 단독, 또는 생분해성 제1 섬유와 생분해성 제2 섬유의 혼합물, 또는 생분해성 제1 섬유와 비생분해성 제2 섬유의 혼합물로 구성될 수 있다. 물론 이 경우에도 생분해성 속도가 상이한 추가의 섬유가 튜브나, 섬유 다발에 각각 독립적으로 더 포함될 수 있다.The cylinder shape having a fiber bundle and a tube into which the fiber bundle is inserted, which is a form of a scaffold according to an embodiment of the present invention, is characterized in that a multifilament twist yarn is inserted and fixed in a tubular circular- . Specifically, the tube may be formed of a non-biodegradable second fiber or a biodegradable second fiber having a slow biodegradation rate, and the fiber bundle inserted in the tube may be a biodegradable first fiber alone or a biodegradable first A mixture of the fiber and the biodegradable second fiber, or a mixture of the biodegradable first fiber and the non-biodegradable second fiber. Of course, additional fibers with different biodegradable rates may also be included independently in the tube or fiber bundle, respectively.
본 발명의 일 실시예에 따르면, 상기 삽입되는 섬유 다발로는 벌키성이 부여되지 않은 멀티 필라멘트 가연사 대비 150 내지 1000% 부피증가율이 구현된 벌키성에 의해 내부 공간의 연결성이 확보된 멀티 필라멘트 가연사가 적용될 수 있다.According to an embodiment of the present invention, as the fiber bundle to be inserted, a multi-filament false twist yarn secured in the connection of the inner space by the bulkiness characteristic in which the volume increase rate of 150 to 1000% Can be applied.
본 발명의 일 실시예에 따른 실린더형 스캐폴드는, 1) 생분해성 고분자(또는 비생분해성 고분자)로 이루어진 멀티 필라멘트 합사사를 세폭 환편직기에 투입하여 튜브형의 환편을 준비하고, 2) 생분해성 고분자(또는 생분해성 속도가 상이한 2종 이상의 생분해성 고분자, 또는 생분해성 고분자와 비생분해성 고분자)를 용융방사법 또는 습식방사법에 따라 모노 필라멘트 또는 멀티 필라멘트사로 방사한 후 합사 가연하여 생분해성 멀티 필라멘트 가연사를 준비하고, 3) 상기 단계 1)의 튜브형의 환편에 단계 2)의 생분해성 멀티 필라멘트 가연사를 삽입하고, 4) 상기 삽입된 생분해성 멀티 필라멘트 가연사를 10 내지 50% 정도, 상세하게는 15 내지 30% 정도로 가연사를 인장시켜 벌키성을 부여하여 제조될 수 있다. (도 11 참조)A cylindrical scaffold according to an embodiment of the present invention is characterized in that 1) a multifilament yarn made of a biodegradable polymer (or a non-biodegradable polymer) is put into a knot ring knitting machine to prepare a tubular circular piece, 2) Polymer (or two or more biodegradable polymers having different biodegradation rates, or biodegradable polymers and non-biodegradable polymers) may be spun into monofilaments or multifilament yarns by melt spinning or wet spinning and then spun into a biodegradable multifilament yarn 3) inserting the biodegradable multifilament false-twist yarn of step 2) into the tubular circular piece of step 1), and 4) inserting the inserted biodegradable multifilament false-twist yarn in an amount of about 10 to 50% Can be produced by stretching the false-twist yarn to give a bulky property at about 15 to 30%. (See Fig. 11)
본 발명의 일 실시예에 따르면, 3차원 섬유형 스캐폴드를 제조한 후에 추가적으로 감마선 조사를 더 실시할 수 있다. 이러한 감마선 조사 단계는 3차원 섬유형 스캐폴드를 구성하는 생분해성 제1 섬유의 생분해 정도를 더 개선시킬 수 있으며, 그 결과, 상기 생분해 속도가 상이한 2종의 섬유로 생분해성 제1 섬유 및 비생분해성 제2 섬유를 포함하는 경우에, 이들 2종 섬유 간의 생분해 속도 차이를 더 크게 할 수 있다.According to an embodiment of the present invention, after the three-dimensional fiber-type scaffold is manufactured, further gamma-ray irradiation may be further performed. This gamma irradiation step can further improve the degree of biodegradation of the biodegradable first fiber constituting the three-dimensional fiber-type scaffold. As a result, the biodegradable first fiber and non-biodegradable In the case of containing the second fiber, the difference in the biodegradation rate between these two fibers can be made larger.
나아가, 이러한 감마선 조사 단계는 생장되는 세포에 직접 적용되는 3차원 섬유형 스캐폴드를 열이나 화학 약품을 사용하지 않으면서도 살균하는 효과를 가질 수 있다. 상기 감마선 조사는 예를 들어, 1 내지 100 kGy, 상세하게는 5 내지 70 kGy의 조사량으로 실시될 수 있다. Furthermore, this gamma irradiation step may have the effect of sterilizing the three-dimensional fiber-type scaffold directly applied to the growing cells without using heat or chemicals. The gamma irradiation may be carried out at an irradiation dose of, for example, 1 to 100 kGy, particularly 5 to 70 kGy.
전술한 바와 같이, 본 발명의 일 실시예에 따른 3차원 섬유형 스캐폴드는, 생분해 속도가 다른 섬유 소재를 복합화한 결과 세포 배양 및 증식 정도에 따라 스캐폴드 기공 크기가 점차 증가됨으로써 세포 배양 효율을 개선시키고, 배양된 세포를 스캐폴드로부터 쉽게 분리(수거)해낼 수 있다.As described above, the three-dimensional fiber-type scaffold according to an embodiment of the present invention has a scaffold pore size gradually increased according to the degree of cell culture and proliferation as a result of complexing a fiber material having a different biodegradation rate, , And the cultured cells can be easily separated (collected) from the scaffold.
이러한 배양된 세포의 수거 정도, 즉 세포 수거율(%)은 하기 방법에 따라서 평가할 수 있다:The degree of collection of the cultured cells, that is, the cell collection ratio (%), can be evaluated according to the following method:
"24well plate에 세포를 시딩(seeding)하여 키운 스캐폴드 샘플을 넣고 희석한 트립신 용액을 well 당 2ml씩 넣어 스캐폴드가 충분히 잠기게 한다. 이때, 트립신 (HyClone™, 0.25% Trpsin)은 PBS에 10배 희석하여 사용한다. 30분동안 37℃에서 인큐베이션 시킨 후, 1ml 배지를 각 well당 추가한 후 피펫으로 피펫팅 하여 스캐폴드에 붙어있는 세포를 다 떨어뜨린 다음, 튜브(tube)에 옮겨 담아 1500rpm으로 원심분리하여 세포수를 센다. 스캐폴드에 자란 세포 수 대비 수거된 세포수의 비율을 계산하여 세포 수거율을 분석한다.""Tryptin (HyClone ™, 0.25% Trpsin) is added to the PBS in 10 ml of PBS by adding 2 ml of diluted trypsin solution into the scaffold sample by seeding the cells on a 24-well plate After incubation for 30 minutes at 37 ° C, 1 ml of medium was added per well, pipetted with a pipette to remove the cells attached to the scaffold, transferred to a tube and centrifuged at 1500 rpm The number of cells harvested relative to the number of cells grown in the scaffold is calculated and analyzed for cell collection rates. "
본 발명의 일 실시예에 따른 3차원 섬유형 스캐폴드는 70% 이상, 또는 70% 내지 100%, 또는 80% 내지 100%의 세포 수거율을 가질 수 있다. 또한, 상기 생분해 속도가 상이한 2종의 섬유 중 생분해성 제1 섬유 및 생분해성 제2 섬유나, 생분해성 제1 섬유 및 비생분해성 제2 섬유의 중량비가 30:70 내지 70:30인 경우에, 80% 내지 100%의 탁월한 세포 수거율을 가질 수 있다. The three dimensional fiber scaffold according to an embodiment of the present invention may have a cell collection rate of 70% or more, 70% to 100%, or 80% to 100%. When the weight ratio of the biodegradable first fiber and the biodegradable second fiber, the biodegradable first fiber and the non-biodegradable second fiber among the two kinds of fibers having different biodegradation rates is 30:70 to 70:30 , ≪ / RTI > 80% to 100%.
또한, 본 발명의 일 실시예에 따른 3차원 섬유형 스캐폴드가 섬유 다발 및 상기 섬유 다발이 삽입되는 튜브를 구비하는 실린더 형태인 경우 생분해가 일어나면서 세포가 성장하여 세포가 성장한 삽입된 섬유 다발 부분과 그렇지 않은 외부 구조인 튜브가 자연스럽게 분리가 되어 세포 수거가 용이할 수 있다. In the case where the three-dimensional fiber-type scaffold according to an embodiment of the present invention is a cylindrical shape having a fiber bundle and a tube into which the fiber bundle is inserted, the cells are grown while biodegradation occurs, And the tube, which is not an external structure, are separated naturally, and cell collection can be facilitated.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the following embodiments. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art.
실시예 1 (부직포형 스캐폴드의 제조)Example 1 (Production of nonwoven fabric type scaffold)
락트산-글리콜산 공중합체(PLGA) (락트산: 글리콜산 = 10:90 중량비)섬유 (이하, 'PLGA 섬유'라 함) (섬도: 2 데니어, 섬유장: 3mm, 융점: (210℃ )) 30 중량부와, 코어는 폴리프로필렌(PP)(융점: 160℃)이고, 쉬스(sheath)는 폴리에틸렌(PE)(융점: 130℃)로 구성되어 있는 이성분(biocomponent) 섬유(이하 'ES 섬유'라 함) (섬도: 3 데니어, 섬유장: 6mm) 70 중량부로 구성된 섬유 혼합물을 준비하였다. PLGA fiber) (fineness: 2 denier, fiber length: 3 mm, melting point: 210 DEG C) 30 (lactic acid-glycolic acid copolymer (PLGA) (lactic acid: glycolic acid = 10:90 weight ratio) (Hereinafter referred to as " ES fiber ") composed of polypropylene (PP) (melting point: 160 DEG C) and a sheath made of polyethylene (PE) ) (Fineness: 3 denier, fiber length: 6 mm) was prepared.
남아있는 유제를 제거하기 위해 상기 준비된 섬유를 95% 에탄올에 먼저 수세한후 100% 증류수를 초조용매(dispersion medium)로 사용하여 습식부직포를 제조하였다. 상기 준비된 섬유 혼합물을 초조용액에 충분히 혼련한 후, 수동제지기(hand sheet former)를 이용하여 초조용매인 물을 제거하여 습식 부직포를 제조하였다. 이후, 컨벡션 오븐에서 40℃로 2 시간 건조하고, 140℃에서 30분간 열융착하여 PLGA 섬유 및 ES 섬유가 중량비 30:70으로 복합화된 200 g/m2의 부직포형 스캐폴드를 제조하였다. The prepared fibers were first washed with 95% ethanol to remove the remaining emulsion, and then a wet nonwoven fabric was prepared using 100% distilled water as a dispersion medium. The prepared fiber mixture was sufficiently kneaded in an edible solution, and wet water was removed using a hand sheet former to prepare a wet nonwoven fabric. Thereafter, it was dried in a convection oven at 40 DEG C for 2 hours and thermally fused at 140 DEG C for 30 minutes to prepare a 200 g / m < 2 > nonwoven fabric type scaffold composed of PLGA fibers and ES fibers at a weight ratio of 30:70.
실시예 2 (부직포형 스캐폴드의 제조)Example 2 (Production of nonwoven fabric type scaffold)
PLGA 섬유 및 ES 섬유가 중량비 50:50으로 복합화한 점을 제외하고는 실시예 1과 동일한 방법으로 부직포형 스캐폴드를 제조하였다.Nonwoven fabric type scaffold was prepared in the same manner as in Example 1, except that PLGA fibers and ES fibers were mixed at a weight ratio of 50:50.
실시예 3 (부직포형 스캐폴드의 제조)Example 3 (Production of nonwoven fabric type scaffold)
PLGA 섬유 및 ES 섬유가 중량비 70:30으로 복합화한 점을 제외하고는 실시예 1과 동일한 방법으로 부직포형 스캐폴드를 제조하였다.Nonwoven fabric type scaffold was prepared in the same manner as in Example 1, except that PLGA fibers and ES fibers were compounded at a weight ratio of 70:30.
실시예 1 내지 3은 생분해성 소재인 PLGA 섬유와 저융점 ES 섬유를 복합하여 습식부직포로 이루어진 스캐폴드를 제조함으로써 스캐폴드를 이루는 부직포를 원하는 형태로 성형할 수 있는 동시에 생분해를 통한 큰 기공 확보로 세포배양 후 수거가 편리하도록 할 수 있다.In Examples 1 to 3, a nonwoven fabric constituting a scaffold can be formed into a desired shape by combining a PLGA fiber as a biodegradable material and a low melting point ES fiber to produce a scaffold made of a wet nonwoven fabric, It is possible to make collection convenient after cell culture.
실험예 1 (생분해 시험)Experimental Example 1 (Biodegradation test)
실시예 1 내지 3에서 제조된 시료를 2.5×2.5cm 크기로 자른 후, 100ml 바이알(vial)에 포스페이트 버퍼드 살린(phosphate buffered saline; PBS) (pH 7.4) 용액을 100ml 넣고 침지 시킨 후, 쉐이킹 배스(Shaking bath) (60℃, 80 rpm)에 넣은 후 3일 간격으로 생분해 속도를 관찰하였다 (도 1 참조). 시간별로 꺼낸 샘플은 40℃ 컨벡션 오븐에서 완전히 건조한 후, 기공크기 측정기기(Capillary Flow Porometer, CFP-1200AEL, Porous Materials Inc)를 이용하여 평균 기공크기를 측정하고, 액체 질소에 동결하여 이온 코터 (Ion Coater, E-1045)로 150초 동안 금으로 코팅하여 전계방사형 주사현미경(FE-SEM, SU 8010)을 사용하여 표면을 관찰하였다. 시간 경과에 따른 평균 기공 크기의 변화를 도 2의 그래프와 도 3a 내지 도 3b의 SEM 사진으로 나타내었다. The samples prepared in Examples 1 to 3 were cut to a size of 2.5 x 2.5 cm and then 100 ml of a phosphate buffered saline (PBS) (pH 7.4) solution was added to 100 ml vials and immersed in a 100 ml vial, (60 ° C, 80 rpm), and the rate of biodegradation was observed at intervals of 3 days (see FIG. 1). The sample taken out over time was completely dried in a 40 ° C convection oven and then the average pore size was measured using a Capillary Flow Porometer (CFP-1200AEL, Porous Materials Inc.), frozen in liquid nitrogen, Coater, E-1045) coated with gold for 150 seconds, and the surface was observed using a field emission scanning microscope (FE-SEM, SU 8010). The change of the average pore size with time is shown in the graph of FIG. 2 and the SEM photograph of FIGS. 3A to 3B.
도 2, 도 3a, 및 도 3b를 참조하면, 생분해 시험을 약 15일 동안 진행하였으며, 약 6일 정도부터 분해되어 단절된 섬유들을 관찰할 수 있었고, PLGA 섬유 함량이 높은 습식 부직포일수록 분해된 형상이 많이 관찰되었으며 그에 따른 평균기공 사이즈가 커지는 경향을 관찰할 수 있었다.Referring to FIGS. 2, 3A, and 3B, the biodegradation test was conducted for about 15 days. The disrupted fibers were observed from about 6 days, and the decomposed form of the wet nonwoven fabric having a high PLGA fiber content And the average pore size was increased.
실험예 2: 감마선 조사량에 따른 생분해 실험Experimental Example 2: Biodegradation Experiment with Gamma Irradiation
실시예 1 내지 3에서 제조된 각 시료는 감마선 조사 설비(MDS Nordion Inc C-188)를 이용하여 10, 20, 30, 40, 50kGy로 선량을 달리하여 조사하였다. 조사량에 따라 제조된 시료는 2.5 ×2.5cm 크기로 자른 후 50ml Falcone tube에 포스페이트 버퍼드 살린 (PBS, pH 7.4)용액을 50ml 넣고 샘플을 침지 시킨 후, 쉐이커 인큐베이터(shaker incubator) (37℃, 1000 rpm)에 넣은 후 시간대 별로 PBS의 pH를 측정함으로써 생분해 속도를 확인하였다. 그 결과를 도 4 내지 도 6에 나타내었다.Each sample prepared in Examples 1 to 3 was irradiated with a dose of 10, 20, 30, 40, 50 kGy using a gamma ray irradiation equipment (MDS Nordion Inc C-188). Samples prepared according to the irradiation amount were cut into a size of 2.5 × 2.5 cm and 50 ml of a phosphate buffer saline (PBS, pH 7.4) solution was added to a 50 ml Falcone tube. The samples were immersed in a shaker incubator (37 ° C., 1000 rpm), and the pH of the PBS was measured at each time point to confirm the biodegradation rate. The results are shown in Fig. 4 to Fig.
[규칙 제91조에 의한 정정 08.01.2019] 
또한, 실시예 3에서 제조된 시료를 인큐베이션한지 12일과 33일째 샘플을 꺼내어 40℃ 컨벡션 오븐에서 완전히 건조한 후, 액체 질소에 동결하여 이온 코터 (Ion Coater, E-1045)로 150초 동안 금으로 코팅하여 전계방사형 주사현미경(FE-SEM, SU 8010)을 사용하여 표면을 관찰하였다. 관찰된 결과를 도 19에 나타내었다. 또한, 실시예 3에서 제조된 시료를 인큐베이션 한지 12일째 꺼내어 SEM으로 관찰한 결과로서 감마선 조사량이 0kGy인 것은 도 7에, 40kGy인 것은 도 8에 각각 나타내었다.
[Correction according to Rule 91 of the Regulations of 08.01.2019]
On the 12th day and the 33rd day after the incubation of the sample prepared in Example 3, the sample was taken out and completely dried in a convection oven at 40 ° C, frozen in liquid nitrogen, and coated with an ion coater (E-1045) And the surface was observed using an electric field-type scanning microscope (FE-SEM, SU 8010). The observed results are shown in Fig. In addition, the sample prepared in Example 3 was taken out on the 12th day after incubation and observed with SEM. As a result, it was found in Fig. 7 that the dose of gamma irradiation was 0 kGy and in Fig. 7 that it was 40 kGy.
도 4 내지 6을 참조하면, 각 부직포 시료에 감마선 조사량을 달리하여 테스트 한 결과 감마선 조사량이 증가할수록 생분해 속도가 빨라졌고, PLGA 함량이 증가할수록 더 가파르게 생분해 속도가 빨랐으며, 30kGy이상에서는 비슷한 생분해 거동을 보였다.As shown in FIGS. 4 to 6, the biodegradation rate of the nonwoven fabric samples was increased with increasing gamma irradiation dose, and the faster the biodegradation rate, the faster the biodegradation rate was, Respectively.
Figure PCTKR2018013216-appb-T000001
Figure PCTKR2018013216-appb-T000001
실험예Experimental Example 3: 초기 세포 부착률 분석 3: Initial cell adhesion rate analysis
세포로 NIH 3T3 (mouse embryonic fibroblast cell line)를 준비하고, 이를 실시예 1 내지 3에서 제조된 부직포형 스캐폴드 샘플위에 세포를 분주하였다. 샘플을 직경 5mm 펀칭을 이용해 커팅 한 후 96well plate에 각각 넣고, 2×104 개의 세포를 스캐폴드 위와 내부에 골고루 분산될 수 있도록 시딩(seeding) 하였다. 또한 초기 세포 수를 결정하기 위해 같은 수의 세포를 빈 well에 시딩하여 세포부착률을 계산할 수 있게 하였다. NIH 3T3 (mouse embryonic fibroblast cell line) was prepared as a cell, and the cells were dispensed on the nonwoven fabric-type scaffold sample prepared in Examples 1 to 3. Samples were cut using a 5 mm diameter punch and placed on a 96-well plate, and 2 x 10 4 cells were seeded onto the scaffold and dispersed evenly therein. In order to determine the initial number of cells, the same number of cells were seeded in an empty well, allowing the cell attachment rate to be calculated.
세포 시딩 후 4시간 경과되면, 세포가 시딩된 스캐폴드 샘플을 각각 새로운 웰(well)로 옮기고, MTT((3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay를 통해 샘플에 부착한 세포의 흡광도와 초기에 시딩한 세포의 흡광도를 비교하여 세포 부착률을 아래와 같이 계산하였고, 그 결과를 하기 도 9에 나타내었다.At 4 hours after cell seeding, the cell-seeded scaffold sample was transferred to a new well and MTT ((3- (4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) assay , The absorbance of the cells adhering to the sample was compared with the absorbance of cells seeded at the early stage, and the cell adhesion rate was calculated as follows. The results are shown in Fig.
세포 부착률(Cell Adhesion) (%) = [As/Ac] × 100Cell Adhesion (%) = [As / Ac] x 100
As: scaffold에 부착된 세포의 흡광도As: absorbance of cells attached to scaffold
Ac: scaffold에 초기 seeding된 세포의 흡광도Ac: Absorbance of cells initially seeded in scaffold
도 9를 참조하면, PLGA/ES 부직포 함량별로 세포 성장 정도를 확인해 본 결과, PLGA의 함량이 높을수록 세포 부착성이 개선되었다.Referring to FIG. 9, the degree of cell growth by PLGA / ES nonwoven fabric content was examined. As the content of PLGA was increased, cell adhesion was improved.
실험예 4: 세포 성장 분석Experimental Example 4: Cell growth assay
세포로 NIH 3T3 (mouse embryonic fibroblast cell line)를 준비하고, 이를 실시예 1 내지 3에서 제조된 부직포형 스캐폴드 샘플위에 세포를 분주하였다. 샘플을 직경 5mm 펀칭을 이용해 커팅 한 후 96 well plate에 각각 넣고, 2×104 개의 세포를 스캐폴드 위와 내부에 골고루 분산될 수 있도록 시딩하였다. NIH 3T3 (mouse embryonic fibroblast cell line) was prepared as a cell, and the cells were dispensed on the nonwoven fabric-type scaffold sample prepared in Examples 1 to 3. Samples were cut using a 5 mm diameter punch, placed in 96-well plates, and seeded so that 2 x 10 4 cells could be spread evenly over the scaffold.
세포 시딩 후 24시간 경과되면, 샘플을 모두 24개의 well plate로 옮긴 후 시간 별 (1, 4, 7일)로 MTS([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] assay를 통해 성장한 세포 수를 정량하였고, 그 결과를 도 10에 나타내었다. MTS 처리 직전에 알고 있는 세포수를 여러 희석배율로 만들어 MTS 처리를 동시에 함으로써 흡광도와 세포수의 관계를 나타낼 수 있는 standard curve를 그렸다. 이를 통해 실제 스캐폴드로부터 얻게 된 흡광도 값을 standard curve에 대입하여 정확한 세포수를 정량해 낼 수 있었다. After 24 h of cell seeding, all samples were transferred to 24-well plates and then MTS ([3- (4,5-dimethylthiazol-2-yl) -5- (3 The number of cells grown through the MTS assay was quantitated and the results are shown in Figure 10. The number of cells known before the MTS treatment was measured By drawing the standard curve to show the relationship between the absorbance and cell number, the absorbance value obtained from the actual scaffold was assigned to the standard curve and the exact cell number could be quantified.
도 10을 참조하면, PLGA/ES 부직포 함량별로 세포 성장 정도를 확인해본 결과, PLGA의 함량이 높을수록 세포 성장 정도가 개선됨을 확인하였다.Referring to FIG. 10, the degree of cell growth was checked by PLGA / ES nonwoven fabric content, and it was confirmed that the higher the content of PLGA, the better the cell growth.
실시예 4 (실린더형 스캐폴드의 제조) Example 4 (Production of cylindrical scaffold )
12Gauge 20needle 환편기를 이용해 PET 환편을 먼저 제조 하고 그 안에 PLA 가연사(75de/36fila)를 삽입한 후, 기존 길이 대비 15 내지 20% 정도로 가연사를 인장 시켜 벌키하게 만들어 실린더형 스캐폴드를 제조하였다. 제조하는 과정을 도 11에 개략적으로 나타내었다.The PET scrap was prepared by using a 12Gauge 20needle circular knitting machine, PLA warp knitting yarn (75de / 36fila) was inserted into the knitted yarn, and the twist yarn was pulled up to 15-20% of the conventional length to make a cylindrical scaffold. The manufacturing process is schematically shown in Fig.
실시예 5 (실린더형 스캐폴드의 제조) Example 5 (Production of cylindrical scaffold )
PLA 가연사(75de/36fila) 대신에 PLA가연사와 PLGA가연사(220de/112fila)를 25/75 중량비로 사용한 점을 제외하고는 실시예 4와 동일한 방법으로 실린더형 스캐폴드를 제조하였다. A cylindrical scaffold was prepared in the same manner as in Example 4, except that PLA warp yarns and PLGA warp yarns (220de / 112fila) were used at a weight ratio of 25/75 instead of PLA warp yarns (75de / 36fila).
실시예 6 (실린더형 스캐폴드의 제조) Example 6 (Production of cylinder type scaffold )
PLA 가연사(75de/36fila) 대신에 PLGA 가연사(220de/112fila)를 사용한 점을 제외하고는 실시예 4와 동일한 방법으로 실린더형 스캐폴드를 제조하였다. A cylindrical scaffold was prepared in the same manner as in Example 4, except that PLGA false twist yarn (220de / 112fila) was used instead of PLA false twist yarn (75de / 36fila).
실험예 5: 감사선 조사량에 따른 생분해 속도 분석Experimental Example 5: Analysis of biodegradation rate according to the amount of irradiation
실시예 4 내지 6에서 제조한 실린더형 스캐폴드를 길이 1cm 간격으로 자른 후, 50ml Falcone tube에 phosphate buffered saline (PBS, pH 7.4)용액을 50ml 넣고 샘플을 침지시킨 후, shaker incubator (37℃, 1000 rpm)에 넣은 후 시간대 별로 PBS의 pH를 측정함으로써 생분해 속도를 확인하였다. 그 실시예 4 내지 6에 대한 평가 결과를 각각 도 12 내지 도 14에 나타내었다.The cylindrical scaffolds prepared in Examples 4 to 6 were cut at intervals of 1 cm and 50 ml of a phosphate buffered saline (PBS, pH 7.4) solution was added to a 50 ml Falcone tube. The samples were immersed in a 50 ml Falcon tube, rpm), and the pH of the PBS was measured at each time point to confirm the biodegradation rate. The evaluation results for Examples 4 to 6 are shown in Figs. 12 to 14, respectively.
또한, 인큐베이션 한지 12일과 33일째 샘플을 꺼내어 40℃ 컨벡션 오븐에서 완전히 건조한 후, 액체 질소에 동결하여 단면(길이방향으로 반을 자름)을 자른 후, 이온 코터 (Ion Coater, E-1045)로 150초 동안 금으로 코팅하여 전계방사형 주사현미경(FE-SEM, SU 8010)을 사용하여 단면 및 표면을 관찰하였다. 또한, 실시예 4 내지 6의 감마선 조사량 OkGy, 30kGy, 및 50kGy의 SEM 관찰 결과를 도 15 내지 17에 각각 나타내었다. On the 12th day and the 33th day after incubation, the sample was taken out and completely dried in a convection oven at 40 ° C. After that, the sample was frozen in liquid nitrogen to cut a cross section (cut in half in the longitudinal direction) (FE-SEM, SU 8010) to examine the cross-section and the surface. SEM observation results of the gamma ray irradiation amounts OkGy, 30 kGy, and 50 kGy in Examples 4 to 6 are shown in Figs. 15 to 17, respectively.
비교예 1 (부직포형 스캐폴드의 제조)Comparative Example 1 (Production of nonwoven fabric type scaffold)
PLGA 섬유 (섬도: 2 데니어, 섬유장: 3mm, 융점: (210℃ ))를 단독으로 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 부직포형 스캐폴드를 제조하였다.Nonwoven fabric type scaffold was prepared in the same manner as in Example 1 except that PLGA fiber (fineness: 2 denier, fiber length: 3 mm, melting point: 210 ° C) was used alone.
실험예 6: 감마선 조사량에 따른 세포 성장 분석Experimental Example 6: Analysis of cell growth according to gamma irradiation
실시예 3 및 비교예 1에서 제조된 각 시료에 감마선 조사 설비(MDS Nordion Inc C-188)를 이용하여 0, 10, 20, 30, 50kGy로 선량을 달리하여 조사하였다. 세포로 NIH 3T3 (mouse embryonic fibroblast cell line)를 준비하고, 이를 조사량에 따라 제조된 부직포형 스캐폴드 샘플위에 세포를 분주하였다.Each sample prepared in Example 3 and Comparative Example 1 was irradiated at different doses at 0, 10, 20, 30, and 50 kGy using a gamma irradiation facility (MDS Nordion Inc C-188). NIH 3T3 (mouse embryonic fibroblast cell line) was prepared as a cell, and cells were dispensed on the nonwoven fabric-type scaffold sample prepared according to the irradiation amount.
샘플은 1 cm x 1 cm로 커팅 한 후 48 well plate에 각각 넣고, 5×104 개의 세포를 스캐폴드 위와 내부에 골고루 분산될 수 있도록 시딩하였다. 세포 시딩 후 24시간 경과되면, 샘플을 모두 24개의 well plate로 옮기고, 세포 시딩 후 10일 되었을 때, MTS([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] assay를 통해 성장한 세포 수를 정량하였고, 그 결과를 도 18에 나타내었다. MTS 처리 직전에 알고 있는 세포수를 여러 희석배율로 만들어 MTS 처리를 동시에 함으로써 흡광도와 세포수의 관계를 나타낼 수 있는 standard curve를 그렸다. 이를 통해 실제 스캐폴드로부터 얻게 된 흡광도 값을 standard curve에 대입하여 정확한 세포수를 정량해 낼 수 있었다. Samples were cut into 1 cm x 1 cm, placed in 48 well plates, and seeded so that 5 x 10 4 cells could be distributed evenly over the scaffold and inside. After 24 h of cell seeding, all samples were transferred to 24 well plates. MTS ([3- (4,5-dimethylthiazol-2-yl) -5- (3- carboxymethoxyphenyl) The number of cells grown through the MTS assay was determined and the results are shown in Figure 18. The number of cells known at the time of MTS treatment was measured at various dilution ratios By drawing the standard curve to show the relationship between the absorbance and the cell number, the absorbance value obtained from the actual scaffold was assigned to the standard curve and the exact cell number could be quantified.
도 18을 참조하면, 생분해성 소재인 PLGA 섬유와 저융점 ES 섬유를 복합하여 습식부직포로 이루어진 실시예 3의 스캐폴드가, PLGA 섬유 만으로 형성된 습식부직포로 이루어진 비교예 1의 스캐폴드와 비교하여, 모든 감마선 조사량에 걸쳐서 세포 성장 정도가 개선됨을 확인하였다. 18, in comparison with the scaffold of Comparative Example 1 in which the scaffold of Example 3 made of wet nonwoven fabric by combining PLGA fiber and low melting point ES fiber, which is a biodegradable material, was a wet nonwoven fabric formed only of PLGA fibers, It was confirmed that the degree of cell growth was improved over all the gamma irradiation dose.
실시예 3에서는 세포 성장이 이루어지는 동안에 PLGA 섬유는 생분해 되면서 세포 성장을 위한 공간을 제공하고, ES 섬유는 생분해되지 않고, PLGA 섬유가 생분해 되면서 제공된 세포 성장 공간이 붕괴되지 않도록 스캐폴드의 골격을 유지하는 역할을 하게 된다. 한편, 생분해성 소재인 PLGA 섬유로만 이루어진 부직포형 스패폴드인 비교예 1에서는 PLGA 섬유의 생분해로 스캐폴드의 공간이 확보될 수 있으나, 시간이 경과함에 따라 이러한 공간을 지지해줄 골격이 없는 바, 결국 붕괴되어 세포 성장이 충분하게 이루어지지 않게 된다. 결국, 실시예 3의 부직포형 스캐폴드에서는 전술한 바와 같이 PLGA 섬유의 생분해로 생긴 공간이 ES 섬유가 지지 역할을 하게되므로, 세포 성장을 위한 최적 조건을 제공하여 많은 세포가 성장한 결과를 확인할 수 있었다.In Example 3, the PLGA fiber is biodegraded to provide a space for cell growth while the cell growth is being performed, the ES fiber is not biodegraded, and the PLGA fiber is biodegraded and the scaffold skeleton is maintained so that the provided cell growth space is not collapsed . On the other hand, in Comparative Example 1, which is a non-woven fabric type spade made of PLGA fibers, which is a biodegradable material, the space of the scaffold can be secured by the biodegradation of the PLGA fiber, but there is no skeleton to support such space with time Collapse and cell growth becomes insufficient. As a result, in the nonwoven fabric-type scaffold of Example 3, since the space formed by the biodegradation of the PLGA fibers plays a role of supporting the ES fibers, it is possible to confirm the growth of many cells by providing the optimal conditions for cell growth .

Claims (9)

  1. 복수의 기공을 갖는 3차원 섬유형 스캐폴드로서,A three-dimensional fiber-type scaffold having a plurality of pores,
    상기 스캐폴드가 생분해 속도가 상이한 2종의 섬유를 구비하는 섬유 구조체를 포함하고,Wherein the scaffold includes a fiber structure having two kinds of fibers having different biodegradation rates,
    상기 생분해 속도가 상이한 2종의 섬유가 생분해성 제1 섬유 및 상기 제1 섬유에 비해 생분해 속도가 느린 생분해성 제2 섬유를 포함하거나, 또는 생분해성 제1 섬유 및 비생분해성 제2 섬유를 포함하는 3차원 섬유형 스캐폴드.Wherein the two types of fibers having different biodegradation rates include a biodegradable first fiber and a biodegradable second fiber having a slower biodegradation rate than the first fiber or a biodegradable first fiber and a non biodegradable second fiber Dimensional fibrous scaffold.
  2. 제1항에 있어서,The method according to claim 1,
    상기 생분해성 제1 섬유가 생분해성 제2 섬유 또는 비생분해성 제2 섬유 보다 융점이 높거나, 또는 융점이 없는 3차원 섬유형 스캐폴드. Wherein the biodegradable first fiber has a higher melting point or no melting point than the biodegradable second fiber or the non-biodegradable second fiber.
  3. 제1항에 있어서,The method according to claim 1,
    상기 스캐폴드의 기공의 평균 크기가 시간이 경과함에 따라 증가하는 3차원 섬유형 스캐폴드. Wherein the average size of the pores of the scaffold increases with time.
  4. 제1항에 있어서,The method according to claim 1,
    상기 생분해성 제1 섬유 및 상기 생분해성 제2 섬유가 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-글리콜산의 공중합체, 폴리하이드로옥시부티르산, 폴리하이드로옥시발레르산, 폴리하이드로옥시부티르산-발레르산의 공중합체, 콜라겐, 히알루론산, 산화셀룰로오스, 키토산, 키틴, 젤라틴, 실크 피브로인 또는 이들의 2 이상의 혼합물을 포함하는 3차원 섬유형 스캐폴드.Wherein the biodegradable first fibers and the biodegradable second fibers are selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, copolymers of polylactic acid-glycolic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxybutyric acid- A three-dimensional fibrous scaffold comprising a copolymer of valeric acid, collagen, hyaluronic acid, cellulose oxide, chitosan, chitin, gelatin, silk fibroin or a mixture of two or more thereof.
  5. 제1항에 있어서,The method according to claim 1,
    상기 비생분해성 제2 섬유가 폴리올레핀, 폴리에스테르, 폴리아미드, 또는 이들의 2 이상의 혼합물을 포함하는 3차원 섬유형 스캐폴드. Wherein the non-biodegradable second fiber comprises a polyolefin, a polyester, a polyamide, or a mixture of two or more thereof.
  6. 제1항에 있어서,The method according to claim 1,
    상기 생분해성 제1 섬유가 폴리글리콜산(PGA), 폴리락트산-글리콜산의 공중합체(PLGA), 또는 이들의 2 이상의 혼합물을 포함하고, 생분해성 제2 섬유가 폴리락트산을 포함하거나, Wherein the biodegradable first fiber comprises polyglycolic acid (PGA), a copolymer of polylactic acid-glycolic acid (PLGA), or a mixture of two or more thereof, the biodegradable second fiber comprises polylactic acid,
    또는 상기 생분해성 제1 섬유가 폴리락트산, 폴리글리콜산, 폴리카프로락톤, 폴리락트산-글리콜산의 공중합체, 폴리하이드로옥시부티르산, 폴리하이드로옥시발레르산, 폴리하이드로옥시부티르산-발레르산의 공중합체, 콜라겐, 히알루론산, 산화셀룰로오스, 키토산, 키틴, 젤라틴, 실크 피브로인 또는 이들의 2 이상의 혼합물을 포함하고, 상기 비생분해성 제2 섬유가 폴리프로필렌, 폴리에틸렌, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌테레프탈레이트 공중합체, 폴리부틸렌테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리사이클로헥산디메탄올 테레프탈레이트(PCT) 및 폴리에틸렌 나프탈레이트(PEN), 나일론 6, 나일론 6,6, 나일론 4 및 나일론 4,6 또는 이들의 2 이상의 혼합물을 포함하는 3차원 섬유형 스캐폴드. Or the biodegradable first fiber is selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, copolymers of polylactic acid-glycolic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid, polyhydroxybutyric acid-valeric acid copolymer, Wherein the non-biodegradable second fiber comprises at least one of polypropylene, polyethylene, polyethylene terephthalate (PET), polyethylene terephthalate (PET), polyethylene terephthalate (PTT), polycyclohexanedimethanol terephthalate (PCT), and polyethylene naphthalate (PEN), nylon 6, nylon 6,6, nylon 4, and nylon (polytetramethylene terephthalate 4,6 or a mixture of two or more thereof.
  7. 제1항에 있어서,The method according to claim 1,
    상기 스캐폴드가 부직포 형태; 직물 형태; 편물 형태; 섬유 다발 형태; 섬유 다발 및 상기 섬유 다발이 삽입되는 튜브를 구비하는 실린더 형태, 또는 이들의 2종 이상의 혼합물인 3차원 섬유형 스캐폴드. Said scaffold being in the form of a nonwoven; Fabric type; Knitted form; Fiber bundle type; A cylindrical shape having a fiber bundle and a tube into which the fiber bundle is inserted, or a mixture of two or more thereof.
  8. 제1항에 있어서,The method according to claim 1,
    상기 생분해 속도가 감마선 조사에 의해 제어될 수 있는 3차원 섬유형 스캐폴드.Wherein the biodegradation rate can be controlled by gamma irradiation.
  9. 제1항에 있어서,The method according to claim 1,
    상기 섬유 구조체가 생분해 속도가 상이한 1종 이상의 섬유를 더 구비하는 3차원 섬유형 스캐폴드.Wherein the fibrous structure further comprises one or more fibers having different biodegradation rates.
PCT/KR2018/013216 2017-12-05 2018-11-01 Three-dimensional fiber-type scaffold WO2019112184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0165617 2017-12-05
KR20170165617 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019112184A1 true WO2019112184A1 (en) 2019-06-13

Family

ID=66751025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013216 WO2019112184A1 (en) 2017-12-05 2018-11-01 Three-dimensional fiber-type scaffold

Country Status (2)

Country Link
KR (1) KR102233499B1 (en)
WO (1) WO2019112184A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116059449A (en) * 2023-02-20 2023-05-05 山东大学齐鲁医院 Double-layer degradable bone tissue engineering scaffold for treating bone defect and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571478B1 (en) * 2003-10-28 2006-04-17 이승진 Fibrous porous support made of biodegradable polymer and method for preparing same
KR20150127262A (en) * 2013-03-14 2015-11-16 에디컨인코포레이티드 Randomly uniform three dimensional tissue scaffold of absorbable and non-absorbable materials
KR101649798B1 (en) * 2014-09-30 2016-08-22 단국대학교 천안캠퍼스 산학협력단 Method for preparation of biodegradable polymer scaffold with microporous structure
JP2016535647A (en) * 2013-09-13 2016-11-17 アボット カーディオバスキュラー システムズ インコーポレイテッド Braided scaffold
KR20170022173A (en) * 2015-08-19 2017-03-02 한국과학기술연구원 Microfiber scaffold coated with extracellular matrix and method for preparing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792336A (en) * 1986-03-03 1988-12-20 American Cyanamid Company Flat braided ligament or tendon implant device having texturized yarns
US5545208A (en) * 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
ATE152597T1 (en) * 1991-03-25 1997-05-15 Medox Medicals Inc VASCULAR PROSTHESIS
US5370682A (en) * 1993-04-26 1994-12-06 Meadox Medicals, Inc. Solid woven tubular prosthesis
US6626939B1 (en) * 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
DE10019604C2 (en) * 2000-04-20 2002-06-27 Ethicon Gmbh implant
US20090275963A1 (en) * 2008-05-01 2009-11-05 May Thomas C High-Strength Suture With Absorbable Components
ES2724587T3 (en) 2011-01-06 2019-09-12 Humacyte Inc Constructs generated by tissue engineering
KR101275163B1 (en) * 2011-05-26 2013-06-17 한국생산기술연구원 3-dimensional porous scaffold and manufacturing method thereof
CA2867167A1 (en) 2012-02-13 2013-08-22 Board Of Regents, The University Of Texas System Scaffold system for tissue repair

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571478B1 (en) * 2003-10-28 2006-04-17 이승진 Fibrous porous support made of biodegradable polymer and method for preparing same
KR20150127262A (en) * 2013-03-14 2015-11-16 에디컨인코포레이티드 Randomly uniform three dimensional tissue scaffold of absorbable and non-absorbable materials
JP2016535647A (en) * 2013-09-13 2016-11-17 アボット カーディオバスキュラー システムズ インコーポレイテッド Braided scaffold
KR101649798B1 (en) * 2014-09-30 2016-08-22 단국대학교 천안캠퍼스 산학협력단 Method for preparation of biodegradable polymer scaffold with microporous structure
KR20170022173A (en) * 2015-08-19 2017-03-02 한국과학기술연구원 Microfiber scaffold coated with extracellular matrix and method for preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116059449A (en) * 2023-02-20 2023-05-05 山东大学齐鲁医院 Double-layer degradable bone tissue engineering scaffold for treating bone defect and preparation method thereof
CN116059449B (en) * 2023-02-20 2023-11-03 山东大学齐鲁医院 Double-layer degradable bone tissue engineering scaffold for treating bone defect and preparation method thereof

Also Published As

Publication number Publication date
KR20190066546A (en) 2019-06-13
KR102233499B1 (en) 2021-03-29

Similar Documents

Publication Publication Date Title
US8071722B2 (en) Silk biomaterials and methods of use thereof
Jin et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats
EP3508641B1 (en) Biomedical patches with aligned fibers
Zong et al. Electrospun fine-textured scaffolds for heart tissue constructs
Sell et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering
CN106540327A (en) A kind of three layers of artificial blood vessel bracket of imitative nature blood vessel and preparation method thereof
WO2004001103A2 (en) Silk biomaterials and methods of use thereof
WO2012161413A4 (en) Three-dimensional porous support body and method for manufacturing same
WO2016192733A1 (en) Conduit for regeneration of biological material
WO2017188635A1 (en) Nanofiber composite membrane for guided bone regeneration, and manufacturing method therefor
CN105999419A (en) Bionical type absorbable dura mater patch and preparation method and application thereof
WO2017204564A1 (en) Yarn for cell culture scaffold, ply yarn comprising same, and fabric comprising same ply yarn
WO2010041816A2 (en) Biodegradable multi-filament false-twisted yarn having bulky structure, production method for same, and application for culture material using same
CN105919694A (en) Multi-layer electrospun membrane and use thereof
WO2019112184A1 (en) Three-dimensional fiber-type scaffold
CN109414524A (en) Tissue substitute material and method of tissue repair
Ding et al. Establishment of 3D culture and induction of osteogenic differentiation of pre-osteoblasts using wet-collected aligned scaffolds
CN113388950A (en) Absorbable high-performance nanofiber woven tendon patch and preparation method thereof
KR20190080899A (en) Aligned Porous Fiber Scaffold for Tissue Engineering and Surgery
KR102265451B1 (en) 3-Dimensional fibrous scaffold, and method for preparing the same
WO2018105980A1 (en) Fiber-filled three-dimensional support and manufacturing method therefor
KR20190006467A (en) Blended yarn for cell culture scaffold and fabric comprising the same
CN111632201B (en) Application of nanofiber felt cloth in preparation of bone defect repair product or osteogenesis promoting product
Peh et al. Novel electrospun-knitted silk scaffolds for ligament tissue engineering
Ko et al. Producing nanofiber structures by electrospinning for tissue engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886525

Country of ref document: EP

Kind code of ref document: A1