WO2019111848A1 - Coil module - Google Patents

Coil module Download PDF

Info

Publication number
WO2019111848A1
WO2019111848A1 PCT/JP2018/044365 JP2018044365W WO2019111848A1 WO 2019111848 A1 WO2019111848 A1 WO 2019111848A1 JP 2018044365 W JP2018044365 W JP 2018044365W WO 2019111848 A1 WO2019111848 A1 WO 2019111848A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
coil
coil module
diamagnetic
module according
Prior art date
Application number
PCT/JP2018/044365
Other languages
French (fr)
Japanese (ja)
Inventor
勝利 平川
中村 浩一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019111848A1 publication Critical patent/WO2019111848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention is applied to an antenna module or a non-contact charging module equipped with wireless power supply such as Qi formulated by NFC (Near Field Communication) or WPC (Wireless Power Consortium) and Powermat formulated by PMA (Power Matters Alliance).
  • the present invention relates to a coil module to be used.
  • the RFID Rasio Frequency IDentification supporting the ubiquitous society has been put to practical use in various fields, and one example is the installation of a noncontact IC card function on a portable terminal.
  • a transmitting coil is disposed on the charger side, and a receiving coil is disposed on the portable terminal.
  • a transmitting coil is disposed on the charger side
  • a receiving coil is disposed on the portable terminal.
  • electromagnetic induction is generated between both coils at a frequency of 100 kHz band (100 to 300 kHz).
  • NFC is a short-distance wireless communication that communicates by electromagnetic induction using a frequency of 13.56 MHz band, while non-contact charging performs power transmission by electromagnetic induction of a coil using a frequency of 100 kHz band. is there. Therefore, when trying to configure the NFC antenna and the noncontact charging coil in the same module, the resonance frequency of the 13.56 MHz band of the NFC antenna and the resonance frequency of the 100 kHz band of the noncontact charging coil are different.
  • a means has been proposed to improve both the communication efficiency of NFC and the power transfer efficiency of contactless charging by laminating two different types of magnetic materials. (For example, patent document 1).
  • WPC generates electromagnetic induction between both coils at a frequency of 100 kHz band as described above to charge the portable terminal, but PMA needs to adjust the environment of special detection operation, Frequencies in the 200-400 kHz band are used.
  • the combo type module currently being implemented includes a heat dissipation layer 5 (usually carbon such as graphite), an FPC (Flexible Printed Circuit) 6 composed of a coil 2 and a substrate 3, and high permeability ( It is known to be provided with a magnetic sheet 1 made of a magnetic material having ⁇ ′) and a magnetic sheet 4 made of a magnetic material having a high saturation magnetic flux density (Bs).
  • a heat dissipation layer 5 usually carbon such as graphite
  • FPC Flexible Printed Circuit
  • Bs high saturation magnetic flux density
  • ferrite having a high permeability as the magnetic material, but the ferrite has a lower saturation magnetic flux density as compared with metal-based magnetic materials such as amorphous (noncrystalline metal) and nanocrystal metal. Therefore, when the thickness of the magnetic sheet is reduced, a good PMA detection operation can not be obtained, and there is a problem that the demand for thinning of a module used for a mobile phone can not be sufficiently satisfied.
  • the coil module comprises a planar coil used for non-contact charge power transmission and a first magnetic body forming a magnetic path of the planar coil, and has a thickness of 10 to 300 ⁇ m, A magnetic sheet having a hole at a central portion, and a diamagnetic part disposed adjacent to the hole are characterized.
  • FIG. 1 is a schematic cross-sectional view showing an example of a conventional combo-type coil module.
  • FIG. 2 is a schematic cross-sectional view showing an example of the coil module of the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing still another example of the coil module of the present embodiment.
  • FIG. 4 is a schematic plan view showing an example of the shape of the central portion of the magnetic sheet used in the coil module of the present embodiment.
  • FIG. 5 is a schematic cross-sectional view showing an example of a conventional antenna module.
  • FIG. 6 is a schematic cross-sectional view showing an example of the antenna module of the present embodiment.
  • a combo-type coil capable of supporting power transmission in both WPC (Qi) and PMA (Powermat) non-contact charging. It becomes possible to provide a module.
  • each symbol is: 1 Magnetic sheet (first magnetic body), 2 planar coils, 3 substrates, 4 Magnetic sheet different from the magnetic sheet made of the first magnetic material, 5 heat radiation layers, 6 FPC, 7 diamagnetic part, 8 holes, 9 Second magnetic body, 10 Indicates the periphery.
  • FIG. 2 is a schematic cross-sectional view showing an example of the coil module of the present embodiment.
  • a planar coil 2 As shown in FIG. 2, in the coil module of this embodiment, a planar coil 2, a magnetic sheet 1 having a hole 8 at the center, and a diamagnetic part 7 disposed adjacent to the hole are included. At least equipped.
  • the planar coil 2 is disposed on the substrate 3.
  • two or more layers may be stacked with the substrate 3 interposed therebetween.
  • the coil module of the present embodiment may include two or more types of planar coils, and for example, is used for near-field wireless communication in addition to the planar coil used for non-contact charge power transmission.
  • a planar coil may be provided.
  • An adhesive layer may be provided between the planar coil 2 and the magnetic sheet 1 as necessary.
  • the substrate 3 is not particularly limited as long as it is a relatively thin insulating layer, but materials having good heat resistance and mechanical properties are preferably used.
  • a flexible substrate formed of a flexible insulating film (sheet) or the like is preferable.
  • an insulating film the film of a polyimide, PET, an epoxy resin composition type
  • FPC flexible printed circuit board
  • polyimide, PET, or the like it is preferable to use a polyimide film having a thickness of 10 to 200 ⁇ m.
  • the planar coil 2 of the present embodiment is a so-called charging coil that performs non-contact charge power transfer such as non-contact charge by electromagnetic induction using a frequency of about 100 to 400 kHz according to the standard such as WPC or PMA.
  • the charging coil is formed, for example, by plating a copper foil having a line width of about 800 ⁇ m and a thickness of about 60 ⁇ m, using two terminals as a start and an end, and draws a vortex on the surface centering on the hollow portion. It is preferable that it is wound.
  • the planar coil may be, for example, a coil that performs near-field wireless communication by electromagnetic induction using a specific frequency band called RFID.
  • RFID a specific frequency band
  • a frequency of 13.56 MHz can be used.
  • the NFC antenna is an antenna that communicates by electromagnetic induction using a frequency of 13.56 MHz band, and a seat antenna is generally used.
  • a single substrate has two types of planar coils, multifunctionality and miniaturization can be realized.
  • the planar coil 2 is usually wound on a substrate 3.
  • a so-called ⁇ winding is mentioned as a specific example of the winding method of the planar coil 2, it is not limited to this winding method, and any shape such as a substantially rectangular shape including a substantially rectangular shape, a substantially square, an oval or a polygon It may be Moreover, in FIG. 2, although the number of turns of the planar coil 2 is 3 turns, it is not necessarily limited to this number of turns. There are no particular limitations on the material, height, and width of the conductors constituting the planar coil 2 and the gap between the adjacent conductors.
  • a metal foil such as copper foil can be used as the material of the conductor, and the height of the conductor, that is, the thickness of the planar coil 2 is preferably 30 to 150 ⁇ m, and about 70 to 80 ⁇ m. More preferable.
  • planar coils When two types of planar coils are provided, it is preferable that one of the planar coils be provided inside the other planar coil. From the viewpoint of less interference with communication, it is preferable that a flat coil for performing non-contact power transmission be provided inside, and a flat coil for performing near-field wireless communication be provided on the outside.
  • planar coils 2 are provided on the first surface and the second surface of the substrate 3 respectively.
  • the planar coil 2 may be electrically connected by a copper plating through hole.
  • a protective layer may be provided on the first surface and the second surface of the substrate to protect the planar coil 2 (not shown).
  • a protective layer the hardened
  • a protective layer may or may not be provided, and planar coil 2 may be provided on both the first surface and the second surface of substrate 3 (two-layer structure), the first surface of the substrate Alternatively, it may be provided on any one side of the second surface (one-layer structure).
  • the magnetic sheet 1 of the present embodiment is disposed to be in contact with the planar coil 2 (an adhesive layer may be present between them).
  • the magnetic sheet 1 is made of a first magnetic material that forms the magnetic path of the planar coil 2, has a thickness of 10 to 300 ⁇ m, and has a hole 8 at its central portion.
  • a ferrite sintered body As the first magnetic body used in the present embodiment, a ferrite sintered body, an amorphous, a silicon steel plate or the like can be used, and in particular, a ferrite sintered body is preferable.
  • a ferrite sintered body By forming the magnetic sheet 1 with a ferrite sintered body, in addition to supporting both the WPC (Qi) system and the PMA system, it is effective to reduce the thickness of the entire coil module.
  • the ferrite sintered body specifically, Mn—Zn based ferrite and, depending on the application, magnetic materials such as Ni—Zn based ferrite, Mn—Ni based ferrite, Mg—Zn based ferrite and the like can be used.
  • the thickness of the magnetic sheet 1 is less than 10 ⁇ m, the magnetic effect is reduced and it can not be an effective magnetic path. On the other hand, if it exceeds 300 ⁇ m, it may become an effective magnetic path, but it will go against thinning of the module. In recent years, there has been a strong demand for thinning modules, and the thickness of a more preferable magnetic sheet for meeting such needs is 10 to 150 ⁇ m.
  • the central portion in the magnetic sheet 1 of the present embodiment means the insulating layer portion of the substrate 3 which is the innermost diameter portion of the planar coil 2 and is not in contact with the conductor circuit of the innermost diameter.
  • the saturation magnetic flux density is higher than that of the peripheral portion 10 in the peripheral portion 10 of the air hole 8 ′ (same as the air hole 8 in FIG.
  • the height is preferably higher than that of the outer region, and preferably 1.1 times or more.
  • the peripheral portion 10 refers to a range of about 1 mm to 1 cm from the outer end of the hole 8 '.
  • the breaking process is a process of forming a protective layer of PET film on the upper and lower surfaces of the magnetic body when making the magnetic sheet, and pressing (breaking process) the cylindrical rigid body in the longitudinal and lateral directions.
  • the breaking process is a process of forming a protective layer of PET film on the upper and lower surfaces of the magnetic body when making the magnetic sheet, and pressing (breaking process) the cylindrical rigid body in the longitudinal and lateral directions.
  • the magnetic sheet 1 may have a protective layer (not shown) on the front side and the back side, respectively.
  • a protective layer an ultraviolet curable resin, a visible light curable resin, a thermoplastic resin, a thermosetting resin, a heat resistant resin, a synthetic rubber, a double-sided tape, an adhesive layer, a film or the like can be used.
  • the protective layer may not be provided.
  • the “diamagnetic part” means a region having a higher diamagnetism than a peripheral region (outside the diamagnetic portion in a plan view). Specifically, it refers to a region which can be expressed as a numerical value of the diamagnetic susceptibility and in which the diamagnetic susceptibility shows a value higher than -1.6 ⁇ 10 -5 .
  • the diamagnetic part 7 is disposed adjacent to the air holes 8 of the magnetic sheet 1. Further, in plan view, the diamagnetic portion 7 is preferably the same size as the area of the air holes 8 or smaller in size.
  • any material having high diamagnetic properties is considered to be usable without particular limitation, but specifically, for example, pyrolytic carbon Or silver foil can be used.
  • Pyrolytic carbon is a heat diffusion material with high thermal conductivity.
  • a commercial item can also be used as such thermal decomposition carbon, For example, "PGS (Pyrolytic Graphite Sheet: thermal decomposition graphite sheet)" made from Panasonic etc. is mentioned.
  • the periphery of the diamagnetic part 7 may be formed of a support or the like, but preferably, in the coil module of this embodiment, the heat dissipation layer 5 is disposed adjacent to (laminated with) the magnetic sheet 1.
  • the diamagnetic portion 7 may occupy the central region of the heat dissipation layer 5.
  • a Hall element sensor and a magnet are used for the wireless charger (Tx) to transmit power in order to detect the coil position on the side of the mobile phone terminal (Rx) to receive power.
  • the presence of the diamagnetic region at the central portion of the heat dissipation layer is considered to cause the magnetic flux from the magnet to be bent and the magnetic flux to be directed to the magnetic sheet (magnetic body).
  • PMA detection does not occur in a coil module using a thin magnetic sheet only by providing a general carbon sheet used until now as a heat dissipation layer.
  • a sheet having diamagnetism in the entire region is used as the heat dissipation layer, the saturation magnetic flux density of the magnetic sheet decreases, and the PMA detection operation becomes unstable.
  • the battery pack (described later) disposed near the heat dissipation layer does not reach the magnetic flux due to the diamagnetism of the diamagnetic portion 7 in the heat dissipation layer 5. No eddy current is generated on the surface of Therefore, according to the present embodiment, there is also an advantage that the heat generation of the battery pack is suppressed at the time of charging.
  • the diamagnetic portion 7 is made of pyrolytic carbon or silver foil, and the peripheral region outside the diamagnetic portion 7 is made of a material having a lower diamagnetic susceptibility than the diamagnetic portion 7. Is preferred. More preferably, the peripheral region is made of a graphite sheet.
  • the diamagnetic portion 7 is present in the central region of the heat dissipation layer 5, but in the present embodiment, the central region of the heat dissipation layer is the innermost portion of the planar coil 2 and is the conductor circuit of the innermost diameter.
  • the area of the insulating layer portion of the substrate 3 which is not in contact is referred to.
  • the presence of the diamagnetic portion 7 in the central region can more reliably obtain the above-described effect.
  • the thickness of the heat dissipation layer 5 in the present embodiment is preferably 10 to 100 ⁇ m. If the thickness of the heat dissipation layer 5 is within the above range, there is an advantage that a relatively thin heat dissipation effect with high efficiency can be obtained. A more preferable thickness range for thinning is 10 to 30 ⁇ m.
  • the coil module of the present embodiment may further include a metal plate disposed adjacent to the diamagnetic portion 7 (or the heat dissipation layer 5) and used as a battery pack.
  • the metal plate that can be used as the battery pack in the present embodiment is not particularly limited as long as it is a metal plate used for non-contact charging, and examples thereof include an aluminum alloy and the like.
  • the holes 8 in FIG. 2 have the second magnetic body 9 different from the first magnetic body constituting the magnetic sheet 1 Is preferred.
  • the second magnetic body 9 it is preferable to use a material having a saturation magnetic flux density higher than that of the first magnetic body.
  • the “material having high saturation magnetic flux density” is a material having a saturation magnetic flux density of 1 (unit T: Tesla) or more, and specifically, for example, a silicon steel plate (saturation magnetic flux density: 1.7 to 2. 1), electromagnetic soft iron (saturation magnetic flux density: 2.1 to 2.3), Fe-based amorphous (saturation magnetic flux density: 0.8 to 1.8), and the like.
  • the coil module according to the second embodiment of the present invention includes the planar coil 2 and the magnetic sheet 1 having the second magnetic body 9 at the center and having a thickness of less than 130 ⁇ m, and the second magnetic body 9. At least the adjacent diamagnetic portion 7 (or the heat dissipation layer 5 having the diamagnetic portion 7 in the central region) is provided.
  • the planar coil 2 and the diamagnetic portion 7 (or the heat dissipation layer 5) have the same configuration as the coil module of the first embodiment described above. Furthermore, you may provide the metal plate for battery packs which was mentioned above.
  • the second magnetic body 9 receives the magnetic field from the permanent magnet incorporated in the wireless charger (Tx) due to its high saturation magnetic flux density, and the coil module in the mobile phone terminal (Rx) It plays a role of greatly changing the saturation flux density in the periphery.
  • the saturation magnetic flux density is largely changed, and the Hall element sensor immediately below the permanent magnet detects the change, which is advantageous in that PMA wireless charging can be easily activated. There is.
  • the size of the second magnetic body 9 is not particularly limited as long as it is present at the central portion of the magnetic sheet 1, but the second magnetic body 9 preferably has the same shape as the holes 8 of the magnetic sheet 1. It is preferable that it be inserted inside. Thereby, there is an advantage that the thickness reduction of the coil module can be further achieved.
  • the thickness of the second magnetic body 9 is preferably equal to or greater than the thickness of the magnetic sheet 1.
  • the inside of the air hole 8 of the magnetic sheet 1 may be a void (that is, the second magnetic body 9 or the like need not be provided in the air hole 8) ).
  • the present invention further includes an antenna module including a planar coil used for non-contact charge power transmission, a magnetic sheet made of a ferrite sheet, and a heat dissipation layer.
  • the antenna module according to the present embodiment is characterized in that the magnetic sheet and the planar coil are directly stacked, and the antenna module is fixed to the antenna substrate by the adhesive surface of the heat dissipation layer.
  • the conventional antenna module Fe-based amorphous metal or the like is used as the magnetic material in the magnetic sheet. Since such a magnetic body is a conductor, it is necessary to put some sort of insulator between the magnetic sheet and the coil. Therefore, in the conventional antenna module, as shown in FIG. 5, the double-sided tape 11 and the protective layer 12 which also play a role as an insulator were provided on the front and back of the magnetic sheet 1.
  • the double-sided tape which was conventionally required, can omit the protective layer, and can realize further thinning and cost reduction of the antenna module.
  • the FPC 6 having an antenna coil, the magnetic sheet 1, and the heat dissipation layer 5 are stacked in this order.
  • the FPC 6 and the magnetic sheet 1 can be directly stacked without being bonded.
  • the magnetic sheet 1 and the heat dissipation layer 5 may be joined using the double-sided tape 11.
  • the central portion of the magnetic sheet 1 may be provided with a magnetic sheet 4 made of a magnetic material different from the magnetic sheet 1.
  • the same FPC as that used in the above-described coil module can be used.
  • the magnetic body constituting the magnetic sheet 1 is a ferrite sintered body, and more specifically, Mn—Zn ferrite, Ni—Zn ferrite, Mn— depending on the application. Magnetic materials such as Ni-based ferrite and Mg-Zn-based ferrite can be used.
  • the thermal radiation layer 5 of this embodiment is a graphite sheet.
  • a magnetic body which comprises the magnetic sheet 4 which consists of a magnetic body different from the magnetic sheet 1 it is preferable that they are materials with high saturation magnetic flux density, such as a silicon steel plate, electromagnetic soft iron, an amorphous sheet, for example.
  • the antenna module of the present embodiment is fixed to the antenna substrate by the adhesive surface of the heat dissipation layer 5.
  • the adhesive surface refers to on the polyimide film or on a conductor other than the planar coil at the margin portion outside the conductor circuit of the outermost diameter of the planar coil in the FPC 6.
  • Magnetic sheet Ferrite sheet having a thickness of 100, 120 or 200 ⁇ m (“MC1900”, manufactured by Panasonic Excel Products Co., Ltd.)
  • Magnetic material different from the above magnetic sheet Silicon steel sheet ("GT-100", manufactured by Nichigan Denka Kogyo Co., Ltd.)
  • Antimagnetic part Pyrolytic carbon sheet (graphite carbon, "PGS” made by Panasonic Corporation)
  • Heat dissipation sheet General graphite sheet (sheet with a diamagnetic susceptibility lower than -1.6 ⁇ 10 -5 , "TGS series” manufactured by Tanyuan Co.)
  • a hole for a copper plating through hole was arbitrarily created in a polyimide flexible copper clad laminate having a copper foil of 50 ⁇ m thickness on both sides, and 10 ⁇ m thick copper plating was applied on both sides.
  • a design circuit functioning as a wireless charging antenna coil was formed by etching to obtain a planar coil.
  • PMA detection and charging Whether the PMA detection was performed by removing the existing antenna module built in to the actual smartphone using the battery pack ("Battery pack for GALAXY NOTE FE manufactured by Samsung Electronics Co., Ltd.") and attaching the antenna module of this creation, Then I checked if it was charged.
  • the coil module of the present invention is a so-called combo-type coil module that is very thin and enables power transfer in both PMA and WPC non-contact charging. Therefore, the present invention is extremely useful for various electronic devices such as an antenna device provided with a non-contact charging coil, a portable terminal, particularly a smartphone, a portable audio, a personal computer, a digital camera, a video camera and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

One aspect of the present invention relates to a coil module comprising: a flat coil used for power transmission for contactless charging; a magnetic sheet that is made of a first magnetic body forming a magnet path on the flat coil, that is 10-300 µm thick, and that has a hole in the center; and a diamagnetic section disposed adjacent to the hole.

Description

コイルモジュールCoil module
 本発明は、NFC(Near Field Communication)やWPC(Wireless Power Consortium)が策定したQi、及びPMA(Power Matters Alliance)が策定したPowermatなどのワイヤレス給電などを搭載したアンテナモジュールや非接触充電モジュールなどに用いられるコイルモジュールに関する。 The present invention is applied to an antenna module or a non-contact charging module equipped with wireless power supply such as Qi formulated by NFC (Near Field Communication) or WPC (Wireless Power Consortium) and Powermat formulated by PMA (Power Matters Alliance). The present invention relates to a coil module to be used.
 ユビキタス社会を支えるRFID(Rasio Frequency IDentification)は、様々な分野で実用化が進み、その一例として非接触ICカード機能の携帯端末への搭載がある。 The RFID (Rasio Frequency IDentification) supporting the ubiquitous society has been put to practical use in various fields, and one example is the installation of a noncontact IC card function on a portable terminal.
 現在では、13.56MHz帯のNFCを携帯端末に搭載する動きが加速しているが、近年、NFCだけではなく非接触充電モジュールを携帯端末に搭載し、携帯端末の充電を非接触充電にて行うことも提案されている。これは、充電器側に送信用コイル、携帯端末側に受信コイルを配し、例えば、WPCであれば、100kHz帯(100~300kHz)の周波数において両コイル間に電磁誘導を生じさせ、携帯端末を充電させる技術である。 Currently, the movement to mount NFC in the 13.56 MHz band on mobile terminals is accelerating, but in recent years not only NFC but also non-contact charging modules have been mounted on mobile terminals, and charging of mobile terminals is non-contact charging It is also proposed to do. In this case, a transmitting coil is disposed on the charger side, and a receiving coil is disposed on the portable terminal. For example, in the case of WPC, electromagnetic induction is generated between both coils at a frequency of 100 kHz band (100 to 300 kHz). Technology to charge the
 NFCは、13.56MHz帯の周波数を用いて電磁誘導により通信を行う近距離無線通信であり、一方、非接触充電は、100kHz帯の周波数を用いてコイルの電磁誘導により電力伝送を行うものである。したがって、NFCのアンテナと非接触充電コイルを同一のモジュールに構成しようとした場合、NFCアンテナの共振周波数13.56MHz帯と非接触充電コイルの共振周波数100kHz帯の共振周波数が異なることから、特性の異なる2種類の磁性体を積層することによって、NFCの通信効率と非接触充電の電力伝送効率の双方を向上させる手段が提案されている。(例えば、特許文献1)。 NFC is a short-distance wireless communication that communicates by electromagnetic induction using a frequency of 13.56 MHz band, while non-contact charging performs power transmission by electromagnetic induction of a coil using a frequency of 100 kHz band. is there. Therefore, when trying to configure the NFC antenna and the noncontact charging coil in the same module, the resonance frequency of the 13.56 MHz band of the NFC antenna and the resonance frequency of the 100 kHz band of the noncontact charging coil are different. A means has been proposed to improve both the communication efficiency of NFC and the power transfer efficiency of contactless charging by laminating two different types of magnetic materials. (For example, patent document 1).
 また、非接触充電モジュールにおいて、WPCでは上述のように100kHz帯の周波数において両コイル間に電磁誘導を生じさせ、携帯端末を充電させるが、PMAでは特殊な検知作動の環境を整える必要があり、200~400kHz帯の周波数が用いられている。 Also, in the non-contact charging module, WPC generates electromagnetic induction between both coils at a frequency of 100 kHz band as described above to charge the portable terminal, but PMA needs to adjust the environment of special detection operation, Frequencies in the 200-400 kHz band are used.
 このようにワイヤレス充電方式の種類によって周波数帯が異なっているため、これまでWPC用のモジュールとPMA用のモジュールでは、それぞれ異なるモジュールが使用されていた。しかし、最近では、WPCのQi規格にもPMAのPowermat規格にも両方対応できるいわゆるコンボ型のモジュールが開発されつつある。 As described above, since the frequency band is different depending on the type of wireless charging method, different modules have been used in the WPC module and the PMA module. However, recently, so-called combo type modules capable of supporting both WPC's Qi standard and PMA's Powermat standard are being developed.
 現在、実施されつつあるコンボ型モジュールは、図1に示すように、放熱層5(通常は、グラファイトなどのカーボン)、コイル2と基板3からなるFPC(Flexible Printed Circuit)6、高透磁率(μ')を有する磁性体材料からなる磁性シート1、並びに、高飽和磁束密度(Bs)を有する磁性体材料からなる磁性シート4を備えていることが知られている。 As shown in FIG. 1, the combo type module currently being implemented includes a heat dissipation layer 5 (usually carbon such as graphite), an FPC (Flexible Printed Circuit) 6 composed of a coil 2 and a substrate 3, and high permeability ( It is known to be provided with a magnetic sheet 1 made of a magnetic material having μ ′) and a magnetic sheet 4 made of a magnetic material having a high saturation magnetic flux density (Bs).
 しかしながら、高透磁率(μ’)や高飽和磁束密度(Bs)の磁性体材料に種類の異なるアモルファス等の金属系を採用した場合、磁気飽和が早くなり発熱が発生するおそれがある。この発熱により、電送速度が遅くなる為、充電効率が悪化するという問題が生じる。 However, in the case of employing a different metal such as amorphous as the magnetic material having a high magnetic permeability (μ ′) or a high saturation magnetic flux density (Bs), magnetic saturation may be accelerated to generate heat. Due to this heat generation, the transmission speed becomes slow, which causes a problem that the charging efficiency is deteriorated.
 一方、磁性体材料として透滋率の高いフェライトを使用することも考えられるが、フェライトはアモルファス(非結晶金属)やナノ結晶金属等の金属系磁性体材料と比較すると飽和磁束密度が低い。よって、磁性シートの厚みを薄くすると良好なPMA検知動作を得ることができず、携帯電話などに使用されるモジュールの薄型化の要望に対し、十分に応えられないという問題があった。 On the other hand, it is conceivable to use ferrite having a high permeability as the magnetic material, but the ferrite has a lower saturation magnetic flux density as compared with metal-based magnetic materials such as amorphous (noncrystalline metal) and nanocrystal metal. Therefore, when the thickness of the magnetic sheet is reduced, a good PMA detection operation can not be obtained, and there is a problem that the demand for thinning of a module used for a mobile phone can not be sufficiently satisfied.
 上記に鑑み、本発明は、薄型でありながら、PMA方式とWPC方式の両方の非接触充電における電力伝送を可能とする、コンボ型のコイルモジュールを提供することを目的とする。 In view of the above, it is an object of the present invention to provide a combo-type coil module that enables thin-walled power transmission in non-contact charging of both the PMA system and the WPC system.
特開2013-121248号公報JP 2013-121248 A
 本発明者らは、鋭意検討した結果、下記構成を有するモジュールによって上記課題が解決し得ることを見出し、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of intensive studies, the present inventors have found that the above problems can be solved by the module having the following configuration, and completed the present invention by repeating studies based on such findings.
 すなわち、本発明の一局面に関するコイルモジュールは、非接触充電の電力送信に用いられる平面コイルと、前記平面コイルの磁路を形成する第一磁性体からなり、厚みが10~300μmであり、かつ中央部に空孔を有する磁性シートと、前記空孔に隣接して配置された反磁性部とを備えることを特徴とする。 That is, the coil module according to one aspect of the present invention comprises a planar coil used for non-contact charge power transmission and a first magnetic body forming a magnetic path of the planar coil, and has a thickness of 10 to 300 μm, A magnetic sheet having a hole at a central portion, and a diamagnetic part disposed adjacent to the hole are characterized.
図1は、従来のコンボ型コイルモジュールの一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a conventional combo-type coil module. 図2は、本実施形態のコイルモジュールの一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the coil module of the present embodiment. 図3は、本実施形態のコイルモジュールのさらに別の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing still another example of the coil module of the present embodiment. 図4は、本実施形態のコイルモジュールに用いる磁性シートの中央部の形状の一例を示す概略平面図である。FIG. 4 is a schematic plan view showing an example of the shape of the central portion of the magnetic sheet used in the coil module of the present embodiment. 図5は、従来のアンテナモジュールの一例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a conventional antenna module. 図6は、本実施形態のアンテナモジュールの一例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of the antenna module of the present embodiment.
 本発明によれば、薄型でありながら、安定的なPMA検知作動を可能にするため、WPC(Qi)方式とPMA(Powermat)方式の両方の非接触充電における電力伝送に対応できるコンボ型のコイルモジュールを提供することが可能となる。 According to the present invention, in order to enable stable PMA detection operation while being thin, a combo-type coil capable of supporting power transmission in both WPC (Qi) and PMA (Powermat) non-contact charging. It becomes possible to provide a module.
 以下、図面等を用いて本発明の実施形態におけるコイルモジュールについて説明するが、本発明のコイルモジュールはこれらに限定されるわけではない。なお、それぞれの図面において各符号は:
1 磁性シート(第一磁性体)、
2 平面コイル、
3 基板、
4 第一磁性体からなる磁性シートとは異なる磁性シート、
5 放熱層、
6 FPC、
7 反磁性部、
8 空孔、
9 第二磁性体、
10 周辺部
を示す。
Hereinafter, although a coil module in an embodiment of the present invention is explained using a drawing etc., a coil module of the present invention is not necessarily limited to these. In each drawing, each symbol is:
1 Magnetic sheet (first magnetic body),
2 planar coils,
3 substrates,
4 Magnetic sheet different from the magnetic sheet made of the first magnetic material,
5 heat radiation layers,
6 FPC,
7 diamagnetic part,
8 holes,
9 Second magnetic body,
10 Indicates the periphery.
 まず、本実施形態のコイルモジュールについて説明する。 First, the coil module of the present embodiment will be described.
 (第1実施形態)
 図2は、本実施形態のコイルモジュールの一例を示す概略断面図である。
First Embodiment
FIG. 2 is a schematic cross-sectional view showing an example of the coil module of the present embodiment.
 この図2に示すように、本実施形態のコイルモジュールは、平面コイル2と、中央部に空孔8を有する磁性シート1と、前記空孔に隣接して配置された反磁性部7とを少なくとも備えている。 As shown in FIG. 2, in the coil module of this embodiment, a planar coil 2, a magnetic sheet 1 having a hole 8 at the center, and a diamagnetic part 7 disposed adjacent to the hole are included. At least equipped.
 前記平面コイル2は、基板3の上に配置されている。また、基板3を挟んで2層以上に積層されていてもよい。さらには、本実施形態のコイルモジュールは、2種類以上の平面コイルを備えていてもよく、例えば、非接触充電の電力伝送用に用いられる平面コイルに加えて、近距離無線通信用に用いられる平面コイルを備えていてもよい。 The planar coil 2 is disposed on the substrate 3. In addition, two or more layers may be stacked with the substrate 3 interposed therebetween. Furthermore, the coil module of the present embodiment may include two or more types of planar coils, and for example, is used for near-field wireless communication in addition to the planar coil used for non-contact charge power transmission. A planar coil may be provided.
 平面コイル2と磁性シート1との間には、必要に応じて、接着層を設けることもできる。 An adhesive layer may be provided between the planar coil 2 and the magnetic sheet 1 as necessary.
 基板3は、比較的薄い絶縁層であれば、特に構成材料の制限はないが、良好な耐熱性や機械特性を有するものが好適に用いられる。特に可撓性を有する絶縁フィルム(シート)等で形成されたフレキシブル基板が好適である。絶縁フィルムの具体例として、ポリイミド、PET、エポキシ樹脂組成物系のフィルムが挙げられる。ガラスクロス等の繊維基材で補強された絶縁基板であってもよい。絶縁フィルム(シート)上に導体回路を平面コイルとして形成したFPC(フレキシブルプリント基板)の形態で用いることもできる。ポリイミド、PETなどを基板にすることで薄くて柔軟性を有するアンテナモジュールを作製することができる。実施形態においては、例えば、厚さが10~200μmのポリイミドフィルムを用いることが好適である。 The substrate 3 is not particularly limited as long as it is a relatively thin insulating layer, but materials having good heat resistance and mechanical properties are preferably used. In particular, a flexible substrate formed of a flexible insulating film (sheet) or the like is preferable. As a specific example of an insulating film, the film of a polyimide, PET, an epoxy resin composition type | system | group is mentioned. It may be an insulating substrate reinforced with a fiber base material such as glass cloth. It can also be used in the form of an FPC (flexible printed circuit board) in which a conductor circuit is formed as a planar coil on an insulating film (sheet). By using polyimide, PET, or the like as a substrate, a thin and flexible antenna module can be manufactured. In the embodiment, for example, it is preferable to use a polyimide film having a thickness of 10 to 200 μm.
 本実施形態の平面コイル2は、WPCやPMA等の規格によって、100~400kHz程度の周波数を用いた電磁誘導により、非接触充電などの非接触充電の電力伝送を行う、いわゆる充電コイルである。充電コイルは、例えば、2つの端子を始端及び終端として、例えば、線幅が800μm、厚みが60μm程度の銅箔をメッキ工程にて形成され、中空部を中心に面上で渦を描くように巻回されていることが好ましい。 The planar coil 2 of the present embodiment is a so-called charging coil that performs non-contact charge power transfer such as non-contact charge by electromagnetic induction using a frequency of about 100 to 400 kHz according to the standard such as WPC or PMA. The charging coil is formed, for example, by plating a copper foil having a line width of about 800 μm and a thickness of about 60 μm, using two terminals as a start and an end, and draws a vortex on the surface centering on the hollow portion. It is preferable that it is wound.
 さらに近距離無線通信用に用いられる平面コイルを備える場合、当該平面コイルは、例えば、RFIDと呼ばれるある特定の周波数帯を用いた電磁誘導により、近距離無線通信を行うコイルであってもよい。例えば、NFC(Near Field Communication)の場合は、13.56MHzの周波数を用いることができる。NFCアンテナは、13.56MHz帯の周波数を用いて電磁誘導により通信をおこなうアンテナであり、一般的にシートアンテナが用いられる。この場合、単一の基板が2種類の平面コイルを有しているので、多機能で小型化を実現することができる。 Furthermore, in the case of including a planar coil used for near-field wireless communication, the planar coil may be, for example, a coil that performs near-field wireless communication by electromagnetic induction using a specific frequency band called RFID. For example, in the case of NFC (Near Field Communication), a frequency of 13.56 MHz can be used. The NFC antenna is an antenna that communicates by electromagnetic induction using a frequency of 13.56 MHz band, and a seat antenna is generally used. In this case, since a single substrate has two types of planar coils, multifunctionality and miniaturization can be realized.
 平面コイル2は通常、基板3の上に巻回されている。平面コイル2の巻き方の具体例として、いわゆるα巻きが挙げられるが、この巻き方には限定されず、略長方形を含める略短形、略正方形、楕円形、多角形など、どのような形状であってもよい。また、図2では、平面コイル2の巻き数は3巻きであるが、この巻き数には限定されるわけではない。平面コイル2を構成する導体の材質、高さ、幅、隣り合う導体間の隙間の間隔は特に限定されない。例えば、導体の材質としては銅箔等の金属箔を使用することができ、導体の高さ、すなわち、平面コイル2の厚みは30~150μmであることが好ましく、70~80μm程度であることがさらに好ましい。 The planar coil 2 is usually wound on a substrate 3. Although a so-called α winding is mentioned as a specific example of the winding method of the planar coil 2, it is not limited to this winding method, and any shape such as a substantially rectangular shape including a substantially rectangular shape, a substantially square, an oval or a polygon It may be Moreover, in FIG. 2, although the number of turns of the planar coil 2 is 3 turns, it is not necessarily limited to this number of turns. There are no particular limitations on the material, height, and width of the conductors constituting the planar coil 2 and the gap between the adjacent conductors. For example, a metal foil such as copper foil can be used as the material of the conductor, and the height of the conductor, that is, the thickness of the planar coil 2 is preferably 30 to 150 μm, and about 70 to 80 μm. More preferable.
 2種類の平面コイルを備える場合、そのうちの一方の平面コイルが他方の平面コイルの内側に設けられていることが好ましい。通信の妨害がより少ないという観点では、非接触電力伝送を行う平面コイルが内側に設けられ、近距離無線通信を行う平面コイルが外側に設けられた形態が好ましい。 When two types of planar coils are provided, it is preferable that one of the planar coils be provided inside the other planar coil. From the viewpoint of less interference with communication, it is preferable that a flat coil for performing non-contact power transmission be provided inside, and a flat coil for performing near-field wireless communication be provided on the outside.
 基板3の表裏をそれぞれ第1面及び第2面とすると、基板3の第1面及び第2面に平面コイル2がそれぞれ設けられている。平面コイル2は、銅めっきスルーホールで電気的に接続されていてもよい。 Assuming that the front and back of the substrate 3 are respectively a first surface and a second surface, planar coils 2 are provided on the first surface and the second surface of the substrate 3 respectively. The planar coil 2 may be electrically connected by a copper plating through hole.
 また、基板の第1面および第2面には平面コイル2を保護するために保護層が設けられていてもよい(図示せず)。保護層の具体例として、液状のソルダーレジストの硬化物、ソルダーレジストフィルム又はカバーレイが挙げられる。保護層は設けられていてもいなくてもよく、また、平面コイル2は、基板3の第1面及び第2面の両方に設けられていてもよく(2層構造)、基板の第1面又は第2面のいずれか片面に設けられていてもよい(1層構造)。 In addition, a protective layer may be provided on the first surface and the second surface of the substrate to protect the planar coil 2 (not shown). As a specific example of a protective layer, the hardened | cured material of a liquid solder resist, a solder resist film, or a coverlay is mentioned. A protective layer may or may not be provided, and planar coil 2 may be provided on both the first surface and the second surface of substrate 3 (two-layer structure), the first surface of the substrate Alternatively, it may be provided on any one side of the second surface (one-layer structure).
 本実施形態の磁性シート1は、前記平面コイル2に接するように配置されている(間に接着層があってもよい)。磁性シート1は、前記平面コイル2の磁路を形成する第一磁性体からなり、厚みは10~300μmであり、かつ、その中央部に空孔8を有している。 The magnetic sheet 1 of the present embodiment is disposed to be in contact with the planar coil 2 (an adhesive layer may be present between them). The magnetic sheet 1 is made of a first magnetic material that forms the magnetic path of the planar coil 2, has a thickness of 10 to 300 μm, and has a hole 8 at its central portion.
 本実施形態で使用される第一磁性体は、フェライト焼結体、アモルファス、ケイ素鋼板等が使用可能であるが、特にフェライト焼結体であることが好ましい。磁性シート1をフェライト焼結体で構成することにより、WPC(Qi)方式とPMA方式の両方に対応することに加えて、コイルモジュール全体の厚みを薄くすることに有効となる。フェライト焼結体として、具体的には、Mn-Zn系フェライトや、用途によっては、Ni-Zn系フェライト、Mn-Ni系フェライト、Mg-Zn系フェライト等の磁性体を使用することができる。 As the first magnetic body used in the present embodiment, a ferrite sintered body, an amorphous, a silicon steel plate or the like can be used, and in particular, a ferrite sintered body is preferable. By forming the magnetic sheet 1 with a ferrite sintered body, in addition to supporting both the WPC (Qi) system and the PMA system, it is effective to reduce the thickness of the entire coil module. As the ferrite sintered body, specifically, Mn—Zn based ferrite and, depending on the application, magnetic materials such as Ni—Zn based ferrite, Mn—Ni based ferrite, Mg—Zn based ferrite and the like can be used.
 磁性シート1の厚みが10μm未満となると、磁性効果が減少し、有効な磁路になりえない。一方、300μmを超えると、有効な磁路にはなりえるが、モジュールの薄型化に逆行してしまうことになる。近年では、モジュールの薄型化への要望が強く、そのようなニーズに応じるためのより好ましい磁性シートの厚みは、10~150μmである。 When the thickness of the magnetic sheet 1 is less than 10 μm, the magnetic effect is reduced and it can not be an effective magnetic path. On the other hand, if it exceeds 300 μm, it may become an effective magnetic path, but it will go against thinning of the module. In recent years, there has been a strong demand for thinning modules, and the thickness of a more preferable magnetic sheet for meeting such needs is 10 to 150 μm.
 本実施形態の磁性シート1における中央部とは、前記平面コイル2の最内径部分であり且つ、最内径の導体回路に接していない基板3の絶縁層部分のことをいう。 The central portion in the magnetic sheet 1 of the present embodiment means the insulating layer portion of the substrate 3 which is the innermost diameter portion of the planar coil 2 and is not in contact with the conductor circuit of the innermost diameter.
 さらに、本実施形態の磁性シート1においては、図4に示すように、空孔8’(上記図2における空孔8と同じ)の周辺部10において、飽和磁束密度が該周辺部10よりも外側の領域と比べて高くなっていることが好ましく、1.1倍以上高くなっていることが好ましい。ここで、周辺部10とは、空孔8’の外端から1mm~1cmくらいの範囲をいう。 Furthermore, in the magnetic sheet 1 of the present embodiment, as shown in FIG. 4, the saturation magnetic flux density is higher than that of the peripheral portion 10 in the peripheral portion 10 of the air hole 8 ′ (same as the air hole 8 in FIG. The height is preferably higher than that of the outer region, and preferably 1.1 times or more. Here, the peripheral portion 10 refers to a range of about 1 mm to 1 cm from the outer end of the hole 8 '.
 この周辺部10において飽和磁束密度を高くするためには、例えば、第一磁性体(フェライト)の当該周辺部にブレイク処理を行うことが考えられる。ブレイク処理とは、磁性シートを作成する際に、磁性体の上下面にPETフィルムによる保護層が形成し、円筒形の剛体にて縦横2方向から圧接する(ブレイク処理)ことである。この工程により保護層内にある磁性体が細分割され、磁性シートがフレキシブルな状態になる。 In order to increase the saturation magnetic flux density in the peripheral portion 10, for example, it is conceivable to perform a break process on the peripheral portion of the first magnetic body (ferrite). The breaking process is a process of forming a protective layer of PET film on the upper and lower surfaces of the magnetic body when making the magnetic sheet, and pressing (breaking process) the cylindrical rigid body in the longitudinal and lateral directions. By this process, the magnetic material present in the protective layer is finely divided, and the magnetic sheet becomes flexible.
 このようなブレイク処理を周辺部10に施すことにより、その部分の透滋率は低下する傾向にあるが、飽和磁束密度は高くなる。前記周辺部10で、飽和磁束密度が高くなっていると、特にPMAの検知動作が安定するという利点がある。 By applying such a break treatment to the peripheral portion 10, the permeability of that portion tends to decrease, but the saturation magnetic flux density becomes high. When the saturation magnetic flux density is high in the peripheral portion 10, there is an advantage that, in particular, the detection operation of PMA is stabilized.
 磁性シート1は、その表側と裏側にそれぞれ保護層(図示せず)を有していてもよい。保護層としては、紫外線硬化型樹脂、可視光硬化型樹脂、熱可塑性樹脂、熱硬化性樹脂、耐熱性樹脂、合成ゴム、両面テープ、粘着層、フィルム等を使用することができる。保護層は設けられていなくても良い。 The magnetic sheet 1 may have a protective layer (not shown) on the front side and the back side, respectively. As the protective layer, an ultraviolet curable resin, a visible light curable resin, a thermoplastic resin, a thermosetting resin, a heat resistant resin, a synthetic rubber, a double-sided tape, an adhesive layer, a film or the like can be used. The protective layer may not be provided.
 次に、本実施形態のコイルモジュールが備える反磁性部7について説明する。本実施形態において「反磁性部」とは、その周辺の領域(平面視で反磁性部より外側)に比べて反磁性が高い領域のことを意味する。具体的には、反磁性磁化率の数値で表現でき、反磁性磁化率が-1.6×10-5よりも高い値を示す領域をさす。 Next, the diamagnetic part 7 provided in the coil module of the present embodiment will be described. In the present embodiment, the “diamagnetic part” means a region having a higher diamagnetism than a peripheral region (outside the diamagnetic portion in a plan view). Specifically, it refers to a region which can be expressed as a numerical value of the diamagnetic susceptibility and in which the diamagnetic susceptibility shows a value higher than -1.6 × 10 -5 .
 反磁性部7は、前記磁性シート1の前記空孔8に隣接して配置されている。また、平面視において、前記反磁性部7は、前記空孔8の領域と同一か領域内に収まる大きさであることが好ましい。 The diamagnetic part 7 is disposed adjacent to the air holes 8 of the magnetic sheet 1. Further, in plan view, the diamagnetic portion 7 is preferably the same size as the area of the air holes 8 or smaller in size.
 反磁性部7として使用できる材料としては、上述の通り、反磁性特性(反磁性磁化率)の高い材料であれば特に限定なく使用できると考えられるが、具体的には、例えば、熱分解カーボンや銀箔などを使用することができる。熱分解カーボンとは、高熱伝導性を備えた熱拡散材料である。このような熱分解カーボンとして、市販品を用いることもでき、例えば、パナソニック製の「PGS(Pyrolytic Graphite Sheet:熱分解グラファイトシート)」などが挙げられる。 As a material that can be used as the diamagnetic part 7, as described above, any material having high diamagnetic properties (diamagnetic susceptibility) is considered to be usable without particular limitation, but specifically, for example, pyrolytic carbon Or silver foil can be used. Pyrolytic carbon is a heat diffusion material with high thermal conductivity. A commercial item can also be used as such thermal decomposition carbon, For example, "PGS (Pyrolytic Graphite Sheet: thermal decomposition graphite sheet)" made from Panasonic etc. is mentioned.
 反磁性部7の周辺は支持体等で構成されていてもよいが、好ましくは、本実施形態のコイルモジュールにおいては、前記磁性シート1に隣接(積層)して放熱層5が配置されており、前記反磁性部7がその放熱層5の中央領域を占めていてもよい。 The periphery of the diamagnetic part 7 may be formed of a support or the like, but preferably, in the coil module of this embodiment, the heat dissipation layer 5 is disposed adjacent to (laminated with) the magnetic sheet 1. The diamagnetic portion 7 may occupy the central region of the heat dissipation layer 5.
 特に、PMA方式の無線充電の場合、受電する携帯電話端末(Rx)側のコイル位置を検出する為に、送電する無線充電器(Tx)にホール素子センサーと磁石を使用している。本実施形態にように放熱層の中央部に反磁性領域が存在することによって、磁石からの磁束が折れ曲がり、磁性シート(磁性体)の方へ磁束が向かうようになると考えられる。このように磁束が変化することによって、PMA検知動作が得られ、充電が起動する。 In particular, in the case of PMA wireless charging, a Hall element sensor and a magnet are used for the wireless charger (Tx) to transmit power in order to detect the coil position on the side of the mobile phone terminal (Rx) to receive power. As in the present embodiment, the presence of the diamagnetic region at the central portion of the heat dissipation layer is considered to cause the magnetic flux from the magnet to be bent and the magnetic flux to be directed to the magnetic sheet (magnetic body). By changing the magnetic flux in this manner, a PMA detection operation is obtained and charging is started.
 これに対し、これまで使用されている一般的なカーボンシートを放熱層として備えるだけでは、薄型の磁性シートを用いるコイルモジュールではPMA検知が起こらない。一方で、放熱層として、全ての領域で反磁性を有するシートを使用すると、磁性シートの飽和磁束密度が低下してしまい、PMA検知動作が不安定となる。 On the other hand, PMA detection does not occur in a coil module using a thin magnetic sheet only by providing a general carbon sheet used until now as a heat dissipation layer. On the other hand, when a sheet having diamagnetism in the entire region is used as the heat dissipation layer, the saturation magnetic flux density of the magnetic sheet decreases, and the PMA detection operation becomes unstable.
 また、本実施形態のコイルモジュールでは、放熱層5における反磁性部7の反磁性により、充電の際に放熱層の近くに配置される電池パック(後述)にまで磁束が到達しないため、電池パックの表面に渦電流が生じることがない。したがって、本実施形態によれば、充電の際に電池パックの発熱が抑制されるという利点もある。 Further, in the coil module of the present embodiment, the battery pack (described later) disposed near the heat dissipation layer does not reach the magnetic flux due to the diamagnetism of the diamagnetic portion 7 in the heat dissipation layer 5. No eddy current is generated on the surface of Therefore, according to the present embodiment, there is also an advantage that the heat generation of the battery pack is suppressed at the time of charging.
 本実施形態において、放熱層5は、前記反磁性部7が熱分解カーボンまたは銀箔からなり、反磁性部7の外側の周辺領域は、前記反磁性部7より反磁性磁化率が低い材料で構成されていることが好ましい。前記周辺領域は、より具体的には、グラファイトシートで構成されていることが好ましい。 In the present embodiment, in the heat dissipation layer 5, the diamagnetic portion 7 is made of pyrolytic carbon or silver foil, and the peripheral region outside the diamagnetic portion 7 is made of a material having a lower diamagnetic susceptibility than the diamagnetic portion 7. Is preferred. More preferably, the peripheral region is made of a graphite sheet.
 前記反磁性部7は、放熱層5の中心領域に存在しているが、本実施形態において放熱層の中心領域とは、前記平面コイル2の最内径部分であり且つ、最内径の導体回路に接していない基板3の絶縁層部分の領域をさす。 The diamagnetic portion 7 is present in the central region of the heat dissipation layer 5, but in the present embodiment, the central region of the heat dissipation layer is the innermost portion of the planar coil 2 and is the conductor circuit of the innermost diameter. The area of the insulating layer portion of the substrate 3 which is not in contact is referred to.
 このように中心領域に反磁性部7が存在することによって、上述した効果をより確実に得ることができる。 Thus, the presence of the diamagnetic portion 7 in the central region can more reliably obtain the above-described effect.
 本実施形態の放熱層5の厚みは、10~100μmであることが好ましい。放熱層5の厚みが上記範囲内であれば、比較的薄型化、且つ効率の良い放熱効果を得られるという利点がある。薄型化にて、より好ましい厚みの範囲は、10~30μmである。 The thickness of the heat dissipation layer 5 in the present embodiment is preferably 10 to 100 μm. If the thickness of the heat dissipation layer 5 is within the above range, there is an advantage that a relatively thin heat dissipation effect with high efficiency can be obtained. A more preferable thickness range for thinning is 10 to 30 μm.
 さらに、本実施形態のコイルモジュールは、前記反磁性部7(又は放熱層5)に隣接して配置され、電池パックとして用いられる金属板をさらに備えていてもよい。 Furthermore, the coil module of the present embodiment may further include a metal plate disposed adjacent to the diamagnetic portion 7 (or the heat dissipation layer 5) and used as a battery pack.
 本実施形態で電池パックとして使用できる金属板としては、非接触充電に使用される金属板であれば特に限定はされないが、例えば、アルミニウム合金等が挙げられる。 The metal plate that can be used as the battery pack in the present embodiment is not particularly limited as long as it is a metal plate used for non-contact charging, and examples thereof include an aluminum alloy and the like.
 (第2実施形態)
 コイルモジュールが備える磁性シートの厚みが130μm未満である場合、図3に示すように、図2における空孔8に、磁性シート1を構成する第一磁性体とは異なる第二磁性体9を有していることが好ましい。当該第二磁性体9としては、第一磁性体よりも高い飽和磁束密度を有する材料を用いることが好ましい。
Second Embodiment
When the thickness of the magnetic sheet included in the coil module is less than 130 μm, as shown in FIG. 3, the holes 8 in FIG. 2 have the second magnetic body 9 different from the first magnetic body constituting the magnetic sheet 1 Is preferred. As the second magnetic body 9, it is preferable to use a material having a saturation magnetic flux density higher than that of the first magnetic body.
 前記「高い飽和磁束密度を有する材料」とは、飽和磁束密度が1(単位T:テスラ)以上の材料であり、具体的には、例えば、ケイ素鋼板(飽和磁束密度:1.7~2.1)、電磁軟鉄(飽和磁束密度:2.1~2.3)、Fe基アモルファス(飽和磁束密度:0.8~1.8)等が挙げられる。 The “material having high saturation magnetic flux density” is a material having a saturation magnetic flux density of 1 (unit T: Tesla) or more, and specifically, for example, a silicon steel plate (saturation magnetic flux density: 1.7 to 2. 1), electromagnetic soft iron (saturation magnetic flux density: 2.1 to 2.3), Fe-based amorphous (saturation magnetic flux density: 0.8 to 1.8), and the like.
 すなわち、本発明の第2実施形態に係るコイルモジュールは、平面コイル2と、中央部に第二磁性体9を有し、厚みが130μm未満である磁性シート1と、前記第二磁性体9に隣接している反磁性部7(又は、中央領域に反磁性部7を有する放熱層5)を少なくとも備えている。ここで、平面コイル2と反磁性部7(又は放熱層5)は、上述の第1実施形態のコイルモジュールと同じ構成である。さらに、上述したような電池パック用の金属板を備えていてもよい。 That is, the coil module according to the second embodiment of the present invention includes the planar coil 2 and the magnetic sheet 1 having the second magnetic body 9 at the center and having a thickness of less than 130 μm, and the second magnetic body 9. At least the adjacent diamagnetic portion 7 (or the heat dissipation layer 5 having the diamagnetic portion 7 in the central region) is provided. Here, the planar coil 2 and the diamagnetic portion 7 (or the heat dissipation layer 5) have the same configuration as the coil module of the first embodiment described above. Furthermore, you may provide the metal plate for battery packs which was mentioned above.
 本実施形態のコイルモジュールにおいて、第二磁性体9は、その飽和磁束密度が高いことにより、無線充電器(Tx)内蔵の永久磁石からの磁場を受け、携帯電話端末(Rx)内部のコイルモジュール周辺の飽和磁束密度を大きく変化させる役割を果たす。 In the coil module of the present embodiment, the second magnetic body 9 receives the magnetic field from the permanent magnet incorporated in the wireless charger (Tx) due to its high saturation magnetic flux density, and the coil module in the mobile phone terminal (Rx) It plays a role of greatly changing the saturation flux density in the periphery.
 よって、高い飽和磁束密度を有する第二磁性体9を備えることにより、飽和磁束密度を大きく変化させ、永久磁石直下のホール素子センサーが、その変化を検知し、PMA無線充電を起動させやすいという利点がある。 Therefore, by providing the second magnetic body 9 having a high saturation magnetic flux density, the saturation magnetic flux density is largely changed, and the Hall element sensor immediately below the permanent magnet detects the change, which is advantageous in that PMA wireless charging can be easily activated. There is.
 第二磁性体9は、磁性シート1の中央部に存在していればその大きさは特に限定されないが、磁性シート1の空孔8と同じ形状をしていることが好ましく、空孔8の内部に挿入された格好が好ましい。それにより、コイルモジュールの薄型化がより図れるという利点がある。 The size of the second magnetic body 9 is not particularly limited as long as it is present at the central portion of the magnetic sheet 1, but the second magnetic body 9 preferably has the same shape as the holes 8 of the magnetic sheet 1. It is preferable that it be inserted inside. Thereby, there is an advantage that the thickness reduction of the coil module can be further achieved.
 また、第二磁性体9の厚みは、磁性シート1の厚みと同等以上であることが好ましい。 The thickness of the second magnetic body 9 is preferably equal to or greater than the thickness of the magnetic sheet 1.
 (第3実施形態)
 前記磁性シート1の厚みが200μm以上であれば、前記磁性シート1の空孔8内は空隙であってもよい(すなわち、前記空孔8内に前記第二磁性体9等を備える必要はない)。
Third Embodiment
If the thickness of the magnetic sheet 1 is 200 μm or more, the inside of the air hole 8 of the magnetic sheet 1 may be a void (that is, the second magnetic body 9 or the like need not be provided in the air hole 8) ).
 (アンテナモジュール)
 本発明にはさらに、非接触充電の電力送信に用いられる平面コイルと、フェライトシートからなる磁性シートと、放熱層とを備えるアンテナモジュールも包含される。本実施形態のアンテナモジュールは、前記磁性シートと前記平面コイルとを直接積層されていること、及び、前記放熱層の接着面によってアンテナ基板に固定されていることを特徴とする。
(Antenna module)
The present invention further includes an antenna module including a planar coil used for non-contact charge power transmission, a magnetic sheet made of a ferrite sheet, and a heat dissipation layer. The antenna module according to the present embodiment is characterized in that the magnetic sheet and the planar coil are directly stacked, and the antenna module is fixed to the antenna substrate by the adhesive surface of the heat dissipation layer.
 従来のアンテナモジュールでは、磁性シートにおける磁性体として、Fe系アモルファス金属などを使用している。このような磁性体は導電体であるため、磁性シートとコイルの間に何らかの絶縁体を入れる必要がある。そのため、これまでのアンテナモジュールでは、図5に示すように、磁性シート1の表裏に絶縁体としての役割も果たすような両面テープ11や保護層12が設けられていた。 In the conventional antenna module, Fe-based amorphous metal or the like is used as the magnetic material in the magnetic sheet. Since such a magnetic body is a conductor, it is necessary to put some sort of insulator between the magnetic sheet and the coil. Therefore, in the conventional antenna module, as shown in FIG. 5, the double-sided tape 11 and the protective layer 12 which also play a role as an insulator were provided on the front and back of the magnetic sheet 1.
 本実施形態のアンテナモジュールでは、磁性体として絶縁物質であるフェライトを使用しているため、直接コイルと接触させても問題が生じない。したがって、従来必要であった両面テープは保護層を省くことが可能となり、アンテナモジュールのよりいっそうの薄型化および低コスト化を実現できる。 In the antenna module of this embodiment, since ferrite, which is an insulating material, is used as the magnetic body, no problem occurs even if it is in direct contact with the coil. Therefore, the double-sided tape, which was conventionally required, can omit the protective layer, and can realize further thinning and cost reduction of the antenna module.
 より具体的に説明すると、本実施形態のアンテナモジュールは、図6に示すように、アンテナコイルを有するFPC6と、磁性シート1と、放熱層5がこの順で積層されている。FPC6と磁性シート1は接合せずに直接重ね合せることができる。 More specifically, as shown in FIG. 6, in the antenna module of the present embodiment, the FPC 6 having an antenna coil, the magnetic sheet 1, and the heat dissipation layer 5 are stacked in this order. The FPC 6 and the magnetic sheet 1 can be directly stacked without being bonded.
 磁性シート1と放熱層5とは、両面テープ11を用いて接合されていてもよい。また、磁性シート1の中央部には、磁性シート1とは異なる磁性体からなる磁性シート4を備えていてもよい。 The magnetic sheet 1 and the heat dissipation layer 5 may be joined using the double-sided tape 11. In addition, the central portion of the magnetic sheet 1 may be provided with a magnetic sheet 4 made of a magnetic material different from the magnetic sheet 1.
 本実施形態のアンテナモジュールに使用する平面コイルを含むFPC6としては、上述したコイルモジュールで使用したものと同じFPCを使用することができる。 As the FPC 6 including the planar coil used in the antenna module of the present embodiment, the same FPC as that used in the above-described coil module can be used.
 また、本実施形態のアンテナモジュールにおいて、磁性シート1を構成する磁性体はフェライト焼結体であり、具体的には、Mn-Zn系フェライトや、用途によっては、Ni-Zn系フェライト、Mn-Ni系フェライト、Mg-Zn系フェライト等の磁性体を使用することができる。 Further, in the antenna module of the present embodiment, the magnetic body constituting the magnetic sheet 1 is a ferrite sintered body, and more specifically, Mn—Zn ferrite, Ni—Zn ferrite, Mn— depending on the application. Magnetic materials such as Ni-based ferrite and Mg-Zn-based ferrite can be used.
 本実施形態の放熱層5はグラファイトシートであることが好ましい。 It is preferable that the thermal radiation layer 5 of this embodiment is a graphite sheet.
 磁性シート1とは異なる磁性体からなる磁性シート4を構成する磁性体としては、例えば、ケイ素鋼板、電磁軟鉄、アモルファスシート等の飽和磁束密度の高い材料であることが好ましい。 As a magnetic body which comprises the magnetic sheet 4 which consists of a magnetic body different from the magnetic sheet 1, it is preferable that they are materials with high saturation magnetic flux density, such as a silicon steel plate, electromagnetic soft iron, an amorphous sheet, for example.
 本実施形態のアンテナモジュールは、放熱層5の接着面によって、アンテナ基板に固定される。ここで、接着面とは、FPC6内の平面コイルの最外径の導体回路の外側の余白部分でポリイミドフィルム上や平面コイル以外の導体上のことをいう。 The antenna module of the present embodiment is fixed to the antenna substrate by the adhesive surface of the heat dissipation layer 5. Here, the adhesive surface refers to on the polyimide film or on a conductor other than the planar coil at the margin portion outside the conductor circuit of the outermost diameter of the planar coil in the FPC 6.
 まず、用いた材料について説明する。
・磁性シート:100、120、200μmの厚みを有するフェライトシート
(「MC1900」、パナソニックエクセルプロダクツ株式会社製)
・上記磁性シートと異なる磁性材料:ケイ素鋼板(「GT-100」、日金電磁工業株式会社製)
・反磁性部:熱分解カーボンシート(グラファイトカーボン、「PGS」パナソニック株式会社製)
・放熱シート:一般的なグラファイトシート(反磁性磁化率が-1.6×10-5よりも低いシート、Tanyuan社製「 TGSシリーズ」)
First, the materials used will be described.
Magnetic sheet: Ferrite sheet having a thickness of 100, 120 or 200 μm (“MC1900”, manufactured by Panasonic Excel Products Co., Ltd.)
Magnetic material different from the above magnetic sheet: Silicon steel sheet ("GT-100", manufactured by Nichigan Denka Kogyo Co., Ltd.)
・ Antimagnetic part: Pyrolytic carbon sheet (graphite carbon, "PGS" made by Panasonic Corporation)
Heat dissipation sheet: General graphite sheet (sheet with a diamagnetic susceptibility lower than -1.6 × 10 -5 , "TGS series" manufactured by Tanyuan Co.)
 (アンテナモジュールの製造)
 両面に50μm厚みの銅箔を有するポリイミドフレキシブル銅張積層板に任意に銅めっきスルーホール用の穴を明け、両面に10μm厚みの銅めっきを施した。無線充電用アンテナコイルとして機能するデザイン回路をエッチング法にて形成して平面コイルを得た。
(Manufacture of antenna module)
A hole for a copper plating through hole was arbitrarily created in a polyimide flexible copper clad laminate having a copper foil of 50 μm thickness on both sides, and 10 μm thick copper plating was applied on both sides. A design circuit functioning as a wireless charging antenna coil was formed by etching to obtain a planar coil.
 そして、下記表1に示すように、上述の磁性シート、反磁性磁化率の高い放熱シート(反磁性部)、放熱シートおよび磁性材料を使用して、実施例1~3および比較例1のアンテナモジュールを作成した。 Then, as shown in Table 1 below, the antennas of Examples 1 to 3 and Comparative Example 1 using the above-mentioned magnetic sheet, the heat dissipation sheet with high diamagnetic susceptibility (diamagnetic part), the heat dissipation sheet, and the magnetic material. I created a module.
 (PMA検知および充電)
 電池パック(「三星電子株式会社製 GALAXY NOTE FE用電池パック)を用いて、実際のスマートフォンに内蔵中の既存アンテナモジュールを取り外し、本作成のアンテナモジュールを取り付けることによって、PMA検知がなされたかどうか、その後充電がなされたかどうかを確認した。
(PMA detection and charging)
Whether the PMA detection was performed by removing the existing antenna module built in to the actual smartphone using the battery pack ("Battery pack for GALAXY NOTE FE manufactured by Samsung Electronics Co., Ltd.") and attaching the antenna module of this creation, Then I checked if it was charged.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明のコイルモジュールを使用することにより、非常に薄型でありながら、PMA検知・充電も可能であることが確認された。 From the results of Table 1, it was confirmed that the use of the coil module of the present invention enables PMA detection and charging while being very thin.
 この出願は、2017年12月6日に出願された日本国特許出願特願2017-234117を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2017-234117 filed on Dec. 6, 2017, the contents of which are included in the present application.
 本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 Although the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples, drawings, etc. in order to express the present invention, those skilled in the art may change and / or improve the above embodiments. It should be recognized that is an easy thing to do. Therefore, unless a change or improvement performed by a person skilled in the art is at a level that deviates from the scope of the claims of the claims, the change or the improvement is the scope of the claims of the claim It is interpreted as being included in
 本発明のコイルモジュールは、非常に薄型でありながら、PMA方式とWPC方式の両方の非接触充電における電力伝送を可能とする、いわゆるコンボ型のコイルモジュールである。したがって、本発明は、非接触充電コイルを備えたアンテナ装置、携帯端末、特にスマートフォン、ポータブルオーディオ、パーソナルコンピュータ、デジタルカメラ、ビデオカメラ等の様々な電子機器に極めて有用である。
 
The coil module of the present invention is a so-called combo-type coil module that is very thin and enables power transfer in both PMA and WPC non-contact charging. Therefore, the present invention is extremely useful for various electronic devices such as an antenna device provided with a non-contact charging coil, a portable terminal, particularly a smartphone, a portable audio, a personal computer, a digital camera, a video camera and the like.

Claims (15)

  1.  非接触充電の電力送信に用いられる平面コイルと、
     前記平面コイルの磁路を形成する第一磁性体からなり、厚みが10~300μmであり、かつ中央部に空孔を有する磁性シートと、
     前記空孔に隣接して配置された反磁性部とを備える、コイルモジュール。
    A planar coil used for non-contact charge power transmission;
    A magnetic sheet made of a first magnetic material forming a magnetic path of the planar coil, having a thickness of 10 to 300 μm, and having a hole at the center portion;
    And a diamagnetic part disposed adjacent to the air hole.
  2.  前記反磁性部は、反磁性磁化率が-1.6×10-5よりも高い値を示す、請求項1に記載のコイルモジュール。 The coil module according to claim 1, wherein the diamagnetic part exhibits a diamagnetic susceptibility higher than −1.6 × 10 −5 .
  3.  前記反磁性部が、熱分解カーボンまたは銀箔からなる、請求項1または2に記載のコイルモジュール。 The coil module according to claim 1, wherein the diamagnetic part is made of pyrolytic carbon or silver foil.
  4.  前記磁性シートに隣接する放熱層を備え、前記反磁性部は前記放熱層の中心領域を占める、請求項1~3のいずれかに記載のコイルモジュール。 The coil module according to any one of claims 1 to 3, further comprising a heat dissipation layer adjacent to the magnetic sheet, wherein the diamagnetic portion occupies a central region of the heat dissipation layer.
  5.  前記放熱層において、前記反磁性部の外側の周辺領域は、前記反磁性部より反磁性磁化率が低い材料で構成されている、請求項4に記載のコイルモジュール。 The coil module according to claim 4, wherein in the heat dissipation layer, a peripheral region outside the diamagnetic portion is made of a material having a diamagnetic susceptibility lower than that of the diamagnetic portion.
  6.  前記放熱層において、前記周辺領域がグラファイトシートで構成されている、請求項5に記載のコイルモジュール。 The coil module according to claim 5, wherein in the heat dissipation layer, the peripheral region is formed of a graphite sheet.
  7.  前記放熱層の厚みが10~100μmである、請求項4~6のいずれかに記載のコイルモジュール。 The coil module according to any one of claims 4 to 6, wherein the thickness of the heat dissipation layer is 10 to 100 μm.
  8.  前記磁性シートの厚みが130μm未満であり、前記磁性シートの空孔中に前記第一磁性体よりも高い飽和磁束密度を有する第二磁性体を備える、請求項1~7のいずれかに記載のコイルモジュール。 The thickness of the said magnetic sheet is less than 130 micrometers, and it is equipped with the 2nd magnetic body which has a saturation magnetic flux density higher than the said 1st magnetic body in the void | hole of the said magnetic sheet. Coil module.
  9.  前記第二磁性体が、ケイ素鋼、電磁軟鉄、アモルファスから選択される少なくとも1つである、請求項8に記載のコイルモジュール。 The coil module according to claim 8, wherein the second magnetic body is at least one selected from silicon steel, electromagnetic soft iron, and amorphous.
  10.  平面視において、前記反磁性部は、前記空孔の領域と同一か領域内に収まる大きさであることを特徴とする、請求項1~9のいずれかに記載のコイルモジュール。 The coil module according to any one of claims 1 to 9, wherein the diamagnetic part has a size equal to or smaller than the area of the void in a plan view.
  11.  前記磁性シートの厚みが200μm以上であり、前記磁性シートの空孔内は空隙である、請求項1に記載のコイルモジュール。 The coil module according to claim 1, wherein the thickness of the magnetic sheet is 200 μm or more, and the inside of the pores of the magnetic sheet is a void.
  12.  前記反磁性部に隣接して配置され、電池パックとして用いられる金属板をさらに備える、請求項1~11のいずれかに記載のコイルモジュール。 The coil module according to any one of claims 1 to 11, further comprising a metal plate disposed adjacent to the diamagnetic part and used as a battery pack.
  13.  前記第一磁性体がフェライトである、請求項1~12のいずれかに記載のコイルモジュール。 The coil module according to any one of claims 1 to 12, wherein the first magnetic body is ferrite.
  14.  前記磁性シートは、前記空孔の周辺部における飽和磁性密度が該周辺部よりも外側の領域と比べて高い、請求項1~13のいずれかに記載のコイルモジュール。 The coil module according to any one of claims 1 to 13, wherein the magnetic sheet has a higher saturation magnetic density at the periphery of the void than in a region outside the periphery.
  15.  非接触充電の電力送信に用いられる平面コイルと、フェライトシートからなる磁性シートと、放熱層とを備え、
     前記磁性シートと前記平面コイルとを直接積層されていること、及び
     前記放熱層の接着面によってアンテナ基板に固定されていることを特徴とする、アンテナモジュール。
    A planar coil used for non-contact charge power transmission, a magnetic sheet made of a ferrite sheet, and a heat dissipation layer,
    An antenna module characterized in that the magnetic sheet and the planar coil are directly stacked, and the antenna sheet is fixed to the antenna substrate by an adhesive surface of the heat dissipation layer.
PCT/JP2018/044365 2017-12-06 2018-12-03 Coil module WO2019111848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234117A JP2019102718A (en) 2017-12-06 2017-12-06 Coil module
JP2017-234117 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019111848A1 true WO2019111848A1 (en) 2019-06-13

Family

ID=66749931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044365 WO2019111848A1 (en) 2017-12-06 2018-12-03 Coil module

Country Status (2)

Country Link
JP (1) JP2019102718A (en)
WO (1) WO2019111848A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014740A (en) * 2020-07-07 2022-01-20 Tdk株式会社 Coil, coil unit, wireless power transmission device, wireless power reception device and wireless power transmission system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327205B2 (en) * 2020-02-25 2023-08-16 株式会社デンソーウェーブ Mobile terminal and battery pack
KR102223098B1 (en) * 2020-08-20 2021-03-04 주식회사 링크플러스온 Chip package, smart card using the same and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241969A (en) * 1997-02-28 1998-09-11 Toko Inc Inductance device
JP2008235860A (en) * 2007-02-20 2008-10-02 Seiko Epson Corp Coil unit, method of manufacturing the same, and electronic instrument
JP2009027025A (en) * 2007-07-20 2009-02-05 Seiko Epson Corp Coil unit, and electronic instrument
JP2013215074A (en) * 2012-04-04 2013-10-17 Panasonic Corp Contactless power transmission apparatus
JP2014027094A (en) * 2012-07-26 2014-02-06 Dexerials Corp Coil module and power receiving device
JP2017077174A (en) * 2012-06-28 2017-04-20 パナソニックIpマネジメント株式会社 Mobile terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241969A (en) * 1997-02-28 1998-09-11 Toko Inc Inductance device
JP2008235860A (en) * 2007-02-20 2008-10-02 Seiko Epson Corp Coil unit, method of manufacturing the same, and electronic instrument
JP2009027025A (en) * 2007-07-20 2009-02-05 Seiko Epson Corp Coil unit, and electronic instrument
JP2013215074A (en) * 2012-04-04 2013-10-17 Panasonic Corp Contactless power transmission apparatus
JP2017077174A (en) * 2012-06-28 2017-04-20 パナソニックIpマネジメント株式会社 Mobile terminal
JP2014027094A (en) * 2012-07-26 2014-02-06 Dexerials Corp Coil module and power receiving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014740A (en) * 2020-07-07 2022-01-20 Tdk株式会社 Coil, coil unit, wireless power transmission device, wireless power reception device and wireless power transmission system
JP7318601B2 (en) 2020-07-07 2023-08-01 Tdk株式会社 Coil, coil unit, wireless power transmitting device, wireless power receiving device, and wireless power transmission system

Also Published As

Publication number Publication date
JP2019102718A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US10475571B2 (en) Wireless power reception module
US10566824B2 (en) Wireless power transfer module for vehicles
KR101629653B1 (en) Heat radiation unit for a wireless charging and wireless charging module having the same
KR101795545B1 (en) Combo antenna unit for Wireless power receive module and Wireless power receive module including the same
KR102565032B1 (en) All-in-one type heat radiation unit having magnetic shielding for a wireless power transfer and wireless power transfer module comprising the same
KR102030704B1 (en) Combo type antenna module
CN110710122B (en) Wireless power transmitting device for vehicle
KR101795546B1 (en) Shielding unit for a wireless charging and wireless power transfer module including the same
JP6714082B2 (en) Magnetic field shielding sheet for wireless power transmission and wireless power receiving module including the same
US9472340B2 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
KR101577425B1 (en) Attractor for a wireless charging receiver module of a PMA wireless charging type, Shielding unit and a wireless charging receiver module having the same
KR20140089192A (en) Soft magnetic sheet, soft magnetic plate and soft magnetic pellet for antenna of wireless power receiving apparatus
WO2019111848A1 (en) Coil module
US10186875B2 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
KR20170017416A (en) antenna unit for wireless power transfer and a wireless charging receiver module having the same
WO2018100975A1 (en) Combined coil module and magnetic sheet
KR102034231B1 (en) Receiving antennas and wireless power receiving apparatus comprising the same
KR20180132205A (en) wireless power transfer module
KR102110400B1 (en) Receiving antennas and wireless power receiving apparatus comprising the same
KR101453465B1 (en) Soft magnetism sheet, wireless power receiving apparatus and wireless charging method of the same
KR101394507B1 (en) Soft magnetism sheet, wireless power receiving apparatus and wireless charging method of the same
US20240029947A1 (en) Magnetic shielding sheet for wireless power reception module, and wireless power reception module including the same
KR20180128539A (en) wireless power transmission module
KR20160100724A (en) Heat radiation unit for a wireless charging and wireless charging module having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886312

Country of ref document: EP

Kind code of ref document: A1