WO2019111661A1 - Liquid-feeding screw compressor - Google Patents

Liquid-feeding screw compressor Download PDF

Info

Publication number
WO2019111661A1
WO2019111661A1 PCT/JP2018/042100 JP2018042100W WO2019111661A1 WO 2019111661 A1 WO2019111661 A1 WO 2019111661A1 JP 2018042100 W JP2018042100 W JP 2018042100W WO 2019111661 A1 WO2019111661 A1 WO 2019111661A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
suction
check valve
casing
recovery
Prior art date
Application number
PCT/JP2018/042100
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 高野
茂幸 頼金
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2019558101A priority Critical patent/JP6862576B2/en
Priority to CN201880076955.1A priority patent/CN111417784B/en
Priority to US16/769,940 priority patent/US11313370B2/en
Priority to EP18887144.6A priority patent/EP3722610A4/en
Publication of WO2019111661A1 publication Critical patent/WO2019111661A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/20Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with dissimilar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • F04C29/0014Injection of a fluid in the working chamber for sealing, cooling and lubricating with control systems for the injection of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a liquid feed screw compressor that supplies liquid into a working chamber for lubrication, cooling, sealing, and the like.
  • the screw compressor has a rotating screw rotor and a casing that accommodates the screw rotor and forms a plurality of working chambers with the screw rotor, and the working chamber is in the axial direction of the rotor as the screw rotor rotates.
  • the gas for example, air
  • a suction throttle valve that opens and closes for adjusting the intake amount of the compressor or adjusting the load is provided.
  • a liquid supply type that supplies a liquid such as oil or water into the working chamber for the purpose of cooling compressed gas, lubricating a screw rotor, sealing a gap between a screw rotor and a casing, etc. .
  • the compressed gas on the discharge side (high pressure side) in the casing instantaneously flows back to the suction side (low pressure side) due to the pressure difference.
  • the suction throttle valve is fully closed to prevent the liquid from leaking to the primary side (the upstream side of the suction throttle valve) of the suction throttle valve.
  • a plurality of systems including piping exposed to the outside of the casing (hereinafter referred to as "external piping") is connected to the casing.
  • Some of these systems, including external piping are in communication with the suction chamber in the casing.
  • the liquid may intrude into the system (in the external piping) and flow back.
  • a check valve is usually installed in the system to prevent backflow of liquid.
  • the screw rotor of the liquid feed screw compressor has a structure in which a shaft on one side extends to the outside of the casing in order to connect with a rotational drive source such as an electric motor.
  • a bearing for supporting the screw rotor is disposed in the casing, and is lubricated to lubricate the bearing.
  • a shaft seal device is provided on the shaft portion on one side thereof in order to prevent the lubricating oil from leaking out of the gap between the screw rotor and the casing.
  • a recovery pipe which is an external pipe, is provided for recovering the lubricating oil that has leaked from the shaft sealing device, and this recovery pipe is used as a primary side and secondary side of the suction throttle. It connects so as to be communicated with the two spaces, and a non-return mechanism is provided on the recovery pipe on the secondary side.
  • system of respiratory piping As another example of a system of external piping provided with a check valve and communicated with the suction chamber, for example, a system of external piping for securing a pressure source for driving a suction throttle valve at the time of startup of the compressor ( Hereinafter, it will be referred to as “system of respiratory piping”.
  • system BS of the breathing pipe P communicates with the housing H of the suction throttle valve V so that one side communicates with the space (suction flow path I) on the primary side of the suction throttle valve V.
  • the other side is connected to the casing C so as to communicate with the space on the secondary side of the suction throttle valve V (the suction chamber R in the casing C), and is exposed to the outside of the housing H and the casing C. Since the suction throttle valve V is closed at the start of the compressor, the gas in the suction flow path I on the primary side of the suction throttle valve V passes through the system BS of the breathing pipe P and the secondary side of the suction throttle valve V It is introduced into the suction chamber R in the casing C. This intake air is compressed by the compressor body, and the compressed gas is used as a pressure source for operating the suction throttle valve V.
  • the system BS of the breathing pipe P is a non-return valve for preventing the liquid splashed in the suction chamber R at the time of driving stop of the compressor from flowing back into the system BS and leaking to the primary side of the suction throttle valve V It has a mechanism CV.
  • the recovery system for lubricating oil in the screw compressor described in Patent Document 1 includes a recovery pipe (external pipe) exposed to the outside of the casing and a non-return mechanism installed on the recovery pipe.
  • a recovery pipe external pipe
  • the non-return mechanism can be removed from the collection pipe and easily replaced.
  • the function of the non-return mechanism may be impaired.
  • the recovery pipe is an external pipe, the installation position of the nonreturn mechanism on the recovery pipe can be easily changed in order to suppress the occurrence of such a nonreturn failure.
  • the system BS of the breathing pipe P described above is also a system of external piping exposed to the outside of the housing H of the suction throttle valve V similarly to the recovery system of lubricating oil, and therefore has the same advantages as the recovery system of lubricating oil doing.
  • the system of the external piping there is an advantage of ensuring the reliability of the check valve and the ease of replacing the check valve.
  • the present application includes a plurality of means for solving the above problems, and an example thereof is a screw rotor for compressing a gas, a bearing for rotatably supporting the screw rotor, the screw rotor and the bearing And a casing having a suction port for sucking in gas and a suction chamber connected to the suction port, and a suction throttle valve installed at the suction port and having a housing forming a suction flow passage communicating with the suction port
  • An intake bypass system for communicating the primary side and the secondary side of the suction throttle valve, wherein the intake bypass system is provided on a wall of the housing and is opened at the primary side of the suction throttle valve;
  • An intake bypass channel having an opening and a second opening opened to the secondary side, and the primary side of the suction throttle valve disposed in the intake bypass channel And a first check valve for blocking the flow from the secondary side to the primary side of the suction throttle valve while permitting the flow to the secondary side, and the intake bypass flow path is provided outside the housing It is characterized
  • the intake bypass passage communicating the primary side and the secondary side of the intake throttle valve is provided on the wall of the housing of the intake throttle valve, and the first check valve is disposed in the intake bypass passage. Since the first check valve can be inserted and removed through the third opening of the intake bypass channel that opens to the outside of the housing, the intake bypass system can be pipeless without losing the advantage of the external piping. can do. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
  • FIG. 3 is a cross-sectional view of a portion of the liquid feed screw compressor according to the embodiment shown in FIG. 2 as viewed in the direction of arrows III-III. It is sectional drawing which looked at the liquid supply type screw compressor which concerns on one Embodiment shown in FIG. 2 from IV-IV arrow. It is sectional drawing shown in the state which expanded the suction
  • FIG. 1 is a front view showing a liquid supply type screw compressor according to an embodiment of the present invention in a partially sectional view.
  • FIG. 2 is a side view of the liquid feed screw compressor according to the embodiment shown in FIG.
  • FIG. 3 is a cross-sectional view of a portion of the liquid feed type screw compressor according to the embodiment shown in FIG. 2 as viewed in the direction of arrows III-III.
  • FIG. 4 is a cross-sectional view of the liquid feed type screw compressor according to the embodiment shown in FIG. 2 as viewed from the arrow IV-IV.
  • the liquid feed screw compressor includes a compressor body 1 for compressing a gas such as air, and a suction installed on the suction side (upper side in FIGS. 1 and 2) of the compressor body 1 A throttle valve 2 is provided.
  • the compressor body 1 has a male rotor 4 and a female rotor 5 which are screw rotors having a plurality of helical teeth, and a casing 6 for housing the male rotor 4 and the female rotor 5.
  • the male rotor 4 and the female rotor 5 rotate while their rotational axes are parallel and mesh with each other.
  • a plurality of working chambers are formed between the male rotor 4 and the female rotor 5 and the casing 6. As the working chamber moves in the axial direction of the rotor as the male rotor 4 and the female rotor 5 rotate, the gas in the working chamber is compressed.
  • the male rotor 4 is, as shown in FIG. 3, a rotor tooth portion 8 having a plurality of male teeth, and a shaft portion 9 integrally provided on both sides in the axial direction of the rotor tooth portion 8 (in FIG. And consists of.
  • the shaft portion 9 on the suction side of the male rotor 4 extends outside the casing 6 in order to connect with the rotation shaft of a rotational drive source such as an electric motor.
  • the male rotor 4 is rotatably supported by the suction side bearing 10 and the discharge side bearing (not shown).
  • the suction side bearing 10 and the discharge side bearing are accommodated in the casing 6. Lubricating oil is supplied to the suction side bearing 10 and the discharge side bearing.
  • a shaft seal device 12 for sealing a gap with the casing 6 is provided at the suction side shaft portion 9.
  • the shaft seal device 12 prevents the leakage of the lubricating oil supplied to the suction side bearing 10 to the outside of the casing 6.
  • a mechanical seal is used as the shaft sealing device 12.
  • the female rotor 5 is composed of a rotor tooth portion 14 having a plurality of female teeth, and a shaft portion 15 integrally provided on both sides in the axial direction of the rotor tooth portion 14 (only the suction side is shown in FIG. 3).
  • the female rotor 5 is rotatably supported by the suction side bearing 16 and the discharge side bearing (not shown), and is configured to rotate while meshing with the male rotor 4 as the male rotor 4 rotates.
  • the suction side bearing 16 and the discharge side bearing (not shown) are accommodated in the casing 6. A lubricating oil is supplied to the suction side bearing 16 and the discharge side bearing.
  • the casing 6 includes a main casing 21 and a discharge side casing 22 which covers the discharge side (right side in FIG. 2) of the main casing 21.
  • a suction port 27 for sucking in gas is provided on the outer peripheral portion of the main casing 21, and a suction throttle valve 2 is installed at the suction port 27.
  • a suction chamber 28 connected to the suction port 27 is formed inside the main casing 21. The suction chamber 28 communicates with the bore 26 and is a space through which the gas sucked from the suction port 27 flows to the working chamber of the intake stroke. As shown in FIG.
  • suction side bearing chambers 29 and 30 for holding the suction side bearings 10 and 16 are provided at axial end portions on the suction side of the main casing 21.
  • the suction side bearing chambers 29 and 30 and the bore 26 are separated by a partition 31.
  • a suction side cover 23 that covers the suction side bearing chambers 29 and 30 is attached to the main casing 21.
  • the suction side cover 23 accommodates the shaft sealing device 12.
  • the main casing 21 is provided with a liquid supply passage (not shown) for supplying liquid to the working chamber.
  • a scattering cover 32 is provided in the suction chamber 28 in the casing 6 so as to cover the meshing portion between the male rotor 4 and the female rotor 5.
  • compressed gas in the working chamber is generated from the gap between the meshing portion of the male rotor 4 and the female rotor 5 due to the pressure difference between the high pressure side working chamber and the low pressure side working chamber during operation.
  • the liquid contained therein spouts (arrow A in FIG. 4 indicates the spouted liquid).
  • the scattering cover 32 suppresses the flow of the liquid ejected from the gap of the meshing portion toward the suction throttle valve 2 and suppresses the heating of the intake air by the ejected liquid.
  • the scattering cover 32 also has a function of distributing the intake air flowing in from the suction port 27 of the casing 6 to the working chamber of the suction stroke on the male rotor 4 side and the working chamber of the suction stroke on the female rotor 5 side.
  • the scattering cover 32 is formed, for example, in a concave shape (substantially U-shaped in cross section) toward the meshing portion, and is limited to a predetermined size so as not to be a resistance to intake.
  • a discharge passage (not shown) for guiding the gas compressed in the working chamber to the outside, and a discharge side bearing (not shown) of the male rotor 4 and the female rotor 5 are held.
  • Side bearing chambers (not shown) are provided respectively.
  • a discharge side cover 24 covering the discharge side bearing chamber is attached to the discharge side casing 22.
  • the casing 6 is configured by the main casing 21, the discharge side casing 22, the suction side cover 23, and the discharge side cover 24.
  • the suction throttle valve 2 adjusts the suction amount of the compressor main body 1 according to, for example, the amount of compressed gas used by the customer. Further, in order to perform no-load operation control (unload operation control) for reducing the discharge side pressure while continuing the operation of the compressor body 1, the suction of the compressor body 1 is shut off. Further, when the driving of the compressor body 1 is stopped, leakage of the compressed gas flowing backward from the discharge side to the suction side of the compressor body 1 and the liquid contained in the gas to the upstream side is prevented. As shown in FIGS. 1 and 4, the suction throttle valve 2 includes a housing 41 forming the suction flow passage 42 and the cylinder 43, a valve seat 44 formed at the downstream end of the suction flow passage 42, and the cylinder 43.
  • the suction flow channel 42 is, for example, a flow channel bent substantially at a right angle.
  • the spring 49 applies, for example, a biasing force to the piston 45 to move the stopper portion 48 to the upstream side (upper side in FIGS. 1 and 4).
  • An operation pressure system (not shown) is connected to the operation chamber 43 b in the cylinder 43.
  • the operation pressure system counteracts the biasing force of the spring 49 of the spring chamber 43a by introducing a part of the compressed air extracted from the compressed air system on the discharge side of the compressor body 1 into the operation chamber 43b in the cylinder 43.
  • a pressure is applied to the piston 45 to move the stopper portion 48 downstream (downward in FIGS. 1 and 4).
  • the operation pressure system includes, for example, a solenoid valve (not shown) opened and closed by a drive signal from a control device (not shown), and opening and closing of the solenoid valve causes the compressed air to be supplied to the operation chamber 43b in the cylinder 43 Adjust the input.
  • intake bypass system 60 which bypasses suction throttle valve 2 in the closed state and introduces the intake air to compressor main body 1 Is equipped. Details of the intake bypass system 60 will be described later.
  • FIG. 5 is a cross-sectional view showing an enlarged intake bypass system of the liquid feed screw compressor according to the embodiment shown by symbol V in FIG. 1.
  • the same reference numerals as those shown in FIGS. 1 to 4 denote the same parts, so the detailed description thereof will be omitted.
  • the intake bypass system 60 includes the suction flow path 42 (primary side of the suction throttle valve 2) of the suction throttle valve 2 and the suction chamber 28 (secondary of the suction throttle valve 2) in the casing 6. And a first check valve 62 disposed in the intake bypass channel 61.
  • the intake bypass channel 61 is provided in the wall of the housing 41, and the first check valve 62 is disposed in the intake bypass channel 61.
  • the intake bypass passage 61 has, for example, a primary side opening 64 a that opens to the suction flow passage 42 side of the suction throttle valve 2 and a first external opening 64 b that opens to the outside of the housing 41.
  • the first bypass passage hole 64 provided in the wall of the housing 41 so as to extend to the second side, the secondary side opening 65a opening to the suction chamber 28 side in the casing 6, and the outside of the housing 41 (2)
  • a second bypass passage hole 65 provided in the wall portion of the housing 41 so as to have an outer opening 65b and extend linearly in the vertical direction and communicate with the first bypass passage hole 64 It is done.
  • the first plug 66 is detachably attached to the first external opening 64 b of the first bypass passage hole 64.
  • the second plug 67 is detachably attached to the second external opening 65 b.
  • the second bypass passage hole 65 has a large diameter portion 70 having a second external opening 65 b, a middle diameter portion 71 adjacent to the large diameter portion 70, and a secondary side opening portion 65 a adjacent to the middle diameter portion 71. It is comprised with the small diameter part 72 which it has.
  • the large diameter portion 70 is larger in diameter than the first check valve 62.
  • the medium diameter portion 71 is smaller in diameter than the large diameter portion 70 and slightly larger in diameter than the first check valve 62.
  • the small diameter portion 72 is smaller in diameter than the first check valve 62. That is, the second bypass passage hole 65 is a two-step stepped hole.
  • the middle diameter portion 71 is a portion where the first check valve 62 is disposed.
  • the small diameter portion 72 regulates movement of the first check valve 62 to the suction chamber 28 side.
  • the second outer opening 65 b of the large diameter portion 70 enables insertion of the first check valve 62 into the middle diameter portion 71 and removal thereof from the middle diameter portion 71.
  • the large diameter portion 70 is formed in a hole diameter that facilitates insertion and removal of the first check valve 62.
  • the first bypass passage hole 64 can be formed by forming a lateral hole penetrating the wall of the housing 41 from the side outer surface of the housing 41 to the suction passage 42.
  • the second bypass passage hole 65 is provided with a first vertical hole penetrating from the upper outer surface of the housing 41 to the suction chamber 28, and the second vertical hole having a larger diameter than the first vertical hole is a first vertical hole And the third vertical hole having a larger diameter than the second vertical hole coaxially with the first vertical hole and shorter than the second vertical hole. It is possible to form.
  • the first check valve 62 permits the flow from the suction flow passage 42 side to the suction chamber 28 side, and blocks the flow from the suction chamber 28 side to the suction flow passage 42 side. That is, in the first check valve 62, the liquid backflowing from the discharge side of the compressor main body 1 to the suction chamber 28 when the operation of the compressor is stopped leaks to the primary side of the suction throttle valve 2 via the intake bypass channel 61. To prevent that.
  • a retaining ring 74 and an O-ring 75 are attached to the outer peripheral portion of the first check valve 62. The retaining ring 74 regulates movement of the first check valve 62 in the middle diameter portion 71.
  • the O-ring 75 is to prevent the leakage flow from the gap between the outer peripheral surface of the first check valve 62 and the inner wall surface of the intake bypass channel 61.
  • the first check valve 62 can be replaced by accessing through the second external opening 65 b of the large diameter portion 70 of the second bypass passage hole 65.
  • the second plug 67 closing the second external opening 65b is removed, and a tool, for example, is used.
  • the linear first bypass passage hole 64 and the second bypass passage hole 65 are drawn into the wall of the housing 41 of the throttle valve 2 to form the intake bypass passage 61. It is possible to easily manufacture the intake bypass channel 61. Further, as compared with the case where an intake bypass system (external pipe) is configured by connecting a pipe with a check valve to the housing 41 of the suction throttle valve 2, a joint that connects the pipe and the pipe to the housing 41, a check valve There is no need for fittings to attach to the piping.
  • the responsiveness of the valve body of the first check valve 62 may be reduced due to the influence of the liquid, which may cause a non-return failure.
  • the pressure difference between the high pressure side working chamber and the low pressure side working chamber causes the liquid contained in the compressed gas in the working chamber to be the male rotor 4 and the female. It spouts to the suction chamber 28 in the casing 6 from the gap of the meshing portion of the rotor 5.
  • the intake bypass system 60 since the intake bypass system 60 is built in the housing 41, the liquid spouted into the suction chamber 28 may enter the intake bypass channel 61 and stay in the vicinity of the first check valve 62.
  • the first shielding portion 76 is interposed between the secondary side opening 65a of the intake bypass passage 61 and the meshing portion of the male and female rotors 4 and 5. It is provided.
  • the first shielding portion 76 prevents the liquid ejected from the meshing portion during the operation of the compressor from intruding into the intake bypass channel 61.
  • the first shielding portion 76 is disposed on a line from the meshing portion between the male rotor 4 and the female rotor 5 to the secondary side opening 65 a of the intake bypass channel 61, It projects from the wall portion of the main casing 21 toward the suction chamber 28 so as to cover the secondary side opening 65 a in a separated state.
  • FIG. 6 is a cross-sectional view showing an enlarged part of an oil recovery system of the liquid feed screw compressor according to the embodiment indicated by symbol VI in FIG.
  • the same reference numerals as those shown in FIGS. 1 to 5 denote the same parts, so the detailed description thereof will be omitted.
  • the oil recovery system 80 includes a recovery groove portion 81 as an oil storage portion capable of temporarily storing the lubricating oil leaked from the shaft sealing device 12, the recovery groove portion 81 and the inside of the casing 6.
  • An oil recovery passage 82 communicating with the suction chamber 28 and a second check valve 83 disposed in the oil recovery passage 82 are provided.
  • the recovery groove portion 81 is provided on the inner side surface of the suction side cover 23 along the outer peripheral surface side of the shaft portion 9 on the suction side of the male rotor 4.
  • the oil recovery flow path 82 is provided in the suction side cover 23 constituting a part of the casing 6 and the wall portion of the main casing 21 as shown in FIG. 1 to FIG. It has a side opening 85a and a collection side opening 88a that opens to the suction chamber 28 side.
  • the oil recovery flow passage 82 includes, for example, a first recovery flow passage hole 85 communicating with the recovery groove portion 81, a second recovery flow passage hole 86 communicating with the first recovery flow passage hole 85, and a second recovery flow passage hole 86
  • the third recovery passage hole 87 communicates with the third recovery passage hole 87
  • the fourth recovery passage hole 88 communicates with the third recovery passage hole 87 and the suction chamber 28 in the casing 6.
  • the first recovery passage hole 85 is provided in the wall portion of the suction side cover 23.
  • the first recovery passage hole 85 has a storage side opening 85 a on the side of the recovery groove 81 and a third external opening 85 b opened to the outside of the suction side cover 23, and from the lowermost end of the annular recovery groove 81 It extends linearly in the tangential direction of the recovery groove portion 81.
  • the third plug 90 is detachably attached to the third outer opening 85 b of the first recovery passage hole 85.
  • the second recovery passage hole 86 is provided in the suction side cover 23 and the wall portion of the main casing 21.
  • the second recovery passage hole 86 has a fourth external opening 86 a opening to the outside of the suction side cover 23, and discharges along the axial direction of the male rotor 4 so as to intersect the first recovery passage hole 85. It extends linearly in the lateral direction.
  • the fourth plug 91 is detachably attached to the fourth outer opening 86 a of the second recovery passage hole 86.
  • the third recovery passage hole 87 is provided in the wall portion of the main casing 21.
  • the third recovery passage hole 87 has a fifth external opening 87a opened to the outside of the main casing 21, and the suction throttle valve 2 side from the end of the second recovery passage hole 86 (in FIGS. 2 and 4) , And linearly extending).
  • the fifth plug 92 is detachably attached to the fifth outer opening 87 a of the third recovery passage hole 87.
  • the fourth recovery passage hole 88 is provided in the wall portion of the main casing 21 as shown in FIGS. 4 and 6.
  • the fourth recovery passage hole 88 has a recovery side opening 88 a on the suction chamber 28 side and a sixth external opening 88 b opened to the outside of the main casing 21, and a third recovery flow at a position higher than the male rotor 4. It extends in a straight line in the horizontal direction so as to intersect the passage hole 87.
  • the sixth plug 93 is detachably attached to the sixth outer opening 88 b of the fourth recovery passage hole 88.
  • the fourth recovery passage hole 88 is located on the outer side and has a large diameter portion 95 having a sixth outer opening 88b, a middle diameter portion 96 adjacent to the large diameter portion 95, and a suction chamber adjacent to the middle diameter portion 96. It is comprised by the small diameter part 97 which has the collection
  • the large diameter portion 95 is larger in diameter than the second check valve 83.
  • the medium diameter portion 96 is smaller in diameter than the large diameter portion 95 and slightly larger in diameter than the second check valve 83.
  • the small diameter portion 97 is smaller in diameter than the second check valve 83. That is, the fourth recovery passage hole 88 is a two-step stepped hole.
  • the middle diameter portion 96 is a portion where the second check valve 83 is disposed.
  • the small diameter portion 97 regulates movement of the second check valve 83 to the suction chamber 28 side.
  • the sixth outer opening 88 b of the large diameter portion 95 enables insertion of the second check valve 83 into the middle diameter portion 96 and removal thereof from the middle diameter portion 96.
  • the large diameter portion 95 is formed in a diameter that facilitates the insertion and removal of the second check valve 83.
  • the first recovery passage hole 85 can be formed by forming a lateral hole that penetrates the wall portion of the suction side cover 23 from the lateral outer surface of the suction side cover 23 to the lowermost end of the recovery groove portion 81.
  • the second recovery passage hole 86 can be formed by drilling a horizontal hole of a predetermined length extending from the outer surface of the suction side cover 23 along the axial direction of the male rotor 4.
  • the third recovery passage hole 87 can be formed by drilling a vertical hole to reach the end of the second recovery passage hole 86 from the upper outer surface of the main casing 21 downward.
  • the fourth recovery passage hole 88 is provided with a first lateral hole penetrating from the side outer surface of the main casing 21 on the male rotor 4 side to the suction chamber 28 in the casing 6, and the hole diameter is larger than the first lateral hole.
  • a second lateral hole is provided coaxially with the first lateral hole so as not to penetrate through the suction chamber 28, and a third lateral hole larger in diameter than the second lateral hole is coaxial with the first lateral hole. It can be formed by providing it shorter than the second horizontal hole.
  • the second check valve 83 allows the flow from the side of the collection groove 81 to the side of the suction chamber 28 and blocks the flow from the side of the suction chamber 28 to the side of the collection groove 81. That is, in the second check valve 83, the liquid flowing back from the discharge side of the compressor main body 1 to the suction chamber 28 when the driving of the compressor is stopped flows through the oil recovery passage 82 and the recovery groove portion 81 to the casing 6 (suction side cover 23) to prevent leakage to the outside.
  • a retaining ring 99 and an O-ring 100 are attached to the outer peripheral surface of the second check valve 83. The retaining ring 99 regulates movement of the second check valve 83 in the middle diameter portion 96.
  • the O-ring 100 is to prevent the leakage flow from the gap between the outer circumferential surface of the second check valve 83 and the inner wall surface of the oil recovery passage 82.
  • the second check valve 83 can be replaced by accessing through the sixth outer opening 88 b of the large diameter portion 95 of the fourth recovery passage hole 88.
  • the sixth plug 93 closing the sixth external opening 88b is removed, and a tool, for example, is used.
  • the four first recovery passage holes 85, the second recovery passage holes 86, the third recovery passage holes 87, and the fourth recovery passage holes 88 in the linear form are arranged in the casing 6. Since the oil recovery channel 82 can be formed by piercing the wall, the oil recovery channel 82 can be easily manufactured. Moreover, compared with the case where an oil recovery system (external piping) is configured by connecting a pipe with a check valve to the casing 6, a pipe connecting the pipe and the pipe to the casing 6 and a joint connecting the check valve to the pipe Is unnecessary.
  • the liquid spouted into the suction chamber 28 intrudes into the oil recovery flow path 82 as in the first check valve 62 described above. There is a possibility of staying in the vicinity of the second check valve 83. In this case, there is a concern that the backflow of the liquid from the suction chamber 28 to the outside of the casing 6 via the oil recovery passage 82 can not be prevented when the driving of the compressor is stopped due to the non-return failure of the second check valve 83. .
  • the second shielding portion 101 is provided between the recovery side opening 88a of the oil recovery flow path 82 and the meshing portion of the male and female rotors 4 and 5. ing.
  • the second shielding portion 101 prevents the liquid (indicated by arrow A in FIG. 4) ejected from the meshing portion during operation of the compressor from intruding into the oil recovery flow path 82.
  • the second shielding portion 101 is disposed on a line from the meshing portion between the male rotor 4 and the female rotor 5 to the recovery side opening 88a of the oil recovery flow path 82, It projects from the wall of the main casing 21 toward the suction chamber 28 so as to cover the side opening 88a in a separated state.
  • the intake bypasses the valve body 47 in the closed state of the intake throttle valve 2 and the suction in the casing 6 via the intake bypass channel 61 provided in the wall of the housing 41 Since it is introduced into the chamber 28, a pressure source for operating the suction throttle valve 2 can be secured at the start of the compressor.
  • the first shielding portion 76 is provided to cover the secondary side opening 65a of the intake bypass passage 61 in a separated state. The entry of the splashed liquid into the intake bypass channel 61 is prevented. As a result, the first check valve 62 in the intake bypass channel 61 is not placed in the stagnant state of the liquid. Therefore, it is possible to prevent the occurrence of the non-return failure of the first check valve 62 due to the decrease in responsiveness due to the liquid.
  • the recovery side opening 88a of the oil recovery passage 82 is covered in a separated state.
  • the second shielding portion 101 provided prevents the scattered liquid from intruding into the oil recovery flow path 82.
  • the second check valve 83 in the oil recovery channel 82 is not placed in the stagnant state of the liquid. Therefore, it is possible to prevent the occurrence of the non-return failure of the second check valve 83 due to the decrease in responsiveness due to the liquid.
  • the pressure of the compressed air system on the discharge side of the compressor body 1 shown in FIG. 1 is reduced and the suction throttle valve 2 is completely closed.
  • the secondary side (the suction chamber 28 in the casing 6) of the suction throttle valve 2 has a negative pressure close to vacuum.
  • the recovery groove portion 81 storing the lubricating oil leaking from the shaft sealing device 12 has a clearance between the shaft portion 9 on the suction side of the male rotor 4 and the casing 6 (suction side cover 23). Since it is in communication with the outside of the casing 6, the pressure is substantially the same as the atmospheric pressure (usually atmospheric pressure) of the atmosphere outside the casing 6.
  • the lubricating oil stored in the recovery groove portion 81 is provided on the wall portion of the casing 6 shown in FIGS. 1 and 2 by using a differential pressure between the recovery groove portion 81 and the secondary side of the suction throttle valve 2 as a driving force.
  • the oil is recovered in the suction chamber 28 in the casing 6 via the oil recovery flow path 82 and the second check valve 83 disposed in the oil recovery flow path 82.
  • the lubricating oil leaking from the shaft sealing device 12 can be recovered to the secondary side of the suction throttle valve 2 by periodically performing the unloading operation.
  • valve body 47 of the suction throttle valve 2 shown in FIG. 4 slides to the upstream valve seat 44 along the rod 46 by the compressed air flowing back to the suction chamber 28 in the casing 6, and the valve seat 44 is closed. Be done. That is, the suction throttle valve 2 is automatically closed by the backflowed compressed air. Thereby, the backflow of the compressed air and the liquid to the primary side of the suction throttle valve 2 at the time of the driving stop of the compressor is prevented.
  • the compressed air that has flowed back into the suction chamber 28 tends to flow back to the suction flow path 42 (primary side of the suction throttle valve 2) of the suction throttle valve 2 via the intake bypass flow path 61.
  • the reverse flow is blocked by the first check valve 62 disposed in the intake bypass passage 61.
  • the first check valve 62 is less likely to cause a drop in responsiveness due to liquid retention during load operation, and can respond to compressed air and liquid that instantaneously flows back to the suction chamber 28 side when the compressor is stopped. It is. That is, it is possible to prevent the backflow to the primary side of the suction throttle valve 2 of the compressed air that has flowed back into the suction chamber 28.
  • the compressed air that has flowed back into the suction chamber 28 tends to flow back to the outside of the casing 6 (the suction side cover 23) via the oil recovery flow path 82.
  • this backflow is blocked by the second check valve 83 disposed in the oil recovery flow path 82.
  • the second check valve 83 is less likely to cause a drop in responsiveness due to liquid retention during load operation, and can respond to compressed air and liquid that instantaneously flows back to the suction chamber 28 side when the compressor is stopped. It is. That is, it is possible to prevent the backflow of the compressed air flowing back into the suction chamber 28 to the outside of the casing 6.
  • the suction passage 42 (primary side of the suction throttle valve 2) of the suction throttle valve 2 and the suction chamber 28 (secondary side of the suction throttle valve 2) in the casing 6 are communicated Of the intake bypass passage 61 provided in the wall of the housing 41 of the intake throttle valve 2, the first check valve 62 is disposed in the intake bypass passage 61, and opened to the outside of the housing 41. Since the first check valve 62 can be inserted and removed through the second external opening 65b, the intake bypass system 60 can be pipeless without losing the advantage of the external piping. Therefore, there is no need to worry about the occurrence of cracks due to compressor vibrations.
  • the pipeless structure reduces the spatial occupancy of the compressor body, reduces the possibility of breakage during movement, and also improves the convenience of handling.
  • the secondary side opening 65 a is covered in a separated state between the secondary side opening 65 a of the intake bypass flow passage 61 and the meshing portion of the male and female rotors 4 and 5.
  • the first shielding portion 76 is provided, it is possible to suppress the entry of the liquid ejected from the meshing portion during the operation of the compressor into the intake bypass channel 61. Therefore, the stagnation of the liquid in the vicinity of the first check valve 62 disposed in the intake bypass flow passage 61 is suppressed, so that the non-return failure of the first check valve 62 can be prevented. That is, the reliability of the first check valve 62 can be reliably ensured.
  • the linear second bypass passage hole 65 for arranging the first check valve 62 has the second outer opening 65 b and has a diameter larger than that of the first check valve 62.
  • the oil recovery passage 82 communicating the recovery groove portion 81 (oil storage portion) with the suction chamber 28 is provided in the wall portion of the casing 6, and the second reverse Since the stop valve 83 is disposed and the second check valve 83 can be inserted and extracted through the sixth external opening 88 b of the oil recovery flow path 82 opened to the outside of the casing 6, the oil recovery system 80
  • a pipeless structure can be made without losing the advantage of the external piping. Therefore, there is no need to worry about the occurrence of cracks due to compressor vibrations.
  • the pipeless structure reduces the spatial occupancy of the compressor body, reduces the possibility of breakage during movement, and also improves the convenience of handling.
  • the recovery side opening 88a is covered in a separated state between the recovery side opening 88a of the oil recovery flow path 82 and the meshing portion of the male and female rotors 4 and 5. Since the second shielding portion 101 is provided, it is possible to suppress the entry of the liquid ejected from the meshing portion during the operation of the compressor into the oil recovery flow path 82. Therefore, the stagnation of the liquid in the vicinity of the second check valve 83 disposed in the oil recovery flow path 82 is suppressed, so that the non-return failure of the second check valve 83 can be prevented. That is, the reliability of the second check valve 83 can be reliably ensured.
  • the linear fourth recovery passage hole 88 for disposing the second check valve 83 is provided with the sixth external opening 88 b, and the second recovery valve hole 88 is smaller than the second check valve 83.
  • the oil recovery passage 82 is constituted by the passage hole 86, the third recovery passage hole 87, and the fourth recovery passage hole 88, the oil recovery passage 82 is formed by forming a plurality of holes in the wall portion of the casing 6. It is possible. Therefore, the manufacturing cost of the oil recovery system 80 can be further reduced.
  • the second check valve 83 is positioned higher than the male rotor 4 and closer to the recovery side opening 88a than the storage side opening 85a in the oil recovery flow path 82. Therefore, even if the lubricating oil leaked from the shaft seal device 12 overflows the recovery groove 81, the second check valve 83 is not affected by the lubricant oil leaked from the shaft seal device 12. Therefore, the reliability of the second check valve 83 can be secured.
  • the present invention is not limited to the present embodiment, and includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the intake bypass passage 61 is constituted by two passage holes of the first bypass passage hole 64 and the second bypass passage hole 65.
  • the intake throttle valve Depending on the shape of the wall portion of the second housing 41, three or more flow path holes may be used.
  • the oil recovery flow passage 82 is configured by four flow passage holes of a first recovery flow passage hole 85, a second recovery flow passage hole 86, a third recovery flow passage hole 87, and a fourth recovery flow passage hole 88
  • the first check valve 62 is disposed in the second bypass passage hole 65 of the intake bypass passage 61, but the arrangement position of the first check valve 62 is It is optional in the region in the intake bypass channel 61 where the liquid ejected from the meshing portion of the male and female rotors 4 and 5 does not stagnate when the compressor is operated.
  • the arrangement position of the second check valve 83 is determined by the male and female at the time of operation of the compressor.
  • the first shielding portion 76 is provided in the suction chamber 28 in the suction chamber 28 is shown, but at a position where the liquid spouted into the suction chamber 28 does not easily enter during operation of the compressor.
  • the intake bypass channel 61 can be incorporated in the housing 41, the first shielding portion 76 can be omitted.
  • the example of the structure which provided the 2nd shielding part 101 in the suction chamber 28 was shown, when the oil collection
  • the second shielding unit 101 can be omitted.
  • suction throttle valve 4 ... male rotor (screw rotor), 5 ... female rotor (screw rotor), 6 ... casing, 9 ... shaft portion, 10 ... suction side bearing (bearing), 12 ... shaft sealing device, 16 ... Suction side bearing (bearing), 27 ... suction port, 28 ... suction chamber, 41 ... housing, 42 ... suction flow path, 60 ... intake bypass system, 61 ... intake bypass flow path, 62 ... first check valve, 64 ... First bypass flow passage hole (bypass flow passage hole), 64a: primary side opening (first opening), 64b: first external opening (outside opening), 65: second bypass flow passage (bypass flow) Road hole), 65a ...
  • fifth external aperture (external opening), 88 ... fourth recovery channel hole (Recovery flow passage hole)
  • 88a recovery side opening (fifth opening, second opening)
  • 88b sixth external opening (sixth opening, third opening, external opening)
  • 95 Large diameter portion 96
  • Medium diameter portion 97
  • Small diameter portion 101 Second shielding portion (shielding portion).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This liquid-feeding screw compressor is provided with: a casing that accommodates a screw rotor and a bearing, and that has an air intake and an intake chamber connected to the air intake; an intake throttle valve that is installed at the air intake, and that has a housing; and an intake air bypass system communicating between a primary side and a secondary side of the intake throttle valve. The intake air bypass system comprises: an intake air bypass channel that is provided to a wall section of the housing and comprises a primary-side opening that opens to a primary side of the intake throttle valve and a secondary-side opening that opens to a secondary side; and a first check valve arranged within the intake air bypass channel. The intake air bypass channel has an external opening that opens to the exterior of the housing, and allows for insertion and withdrawal of the first check valve. Due to this configuration, it is possible to make a system that communicates with an intake chamber in a casing and that is provided with a check valve mechanism into a pipeless structure, without compromising on the advantages of an external tubing.

Description

給液式スクリュー圧縮機Liquid feed screw compressor
 本発明は、潤滑や冷却、シール等のために作動室内へ液体を供給する給液式スクリュー圧縮機に関する。 The present invention relates to a liquid feed screw compressor that supplies liquid into a working chamber for lubrication, cooling, sealing, and the like.
 スクリュー圧縮機は、回転するスクリューロータと、スクリューロータを収納してスクリューロータと共に複数の作動室を形成するケーシングとを有しており、スクリューロータの回転に伴って作動室がロータの軸方向に移動することで作動室内の気体(例えば、空気)を圧縮するようになっている。ケーシングの吸込側には、圧縮機の吸気量の調整又は負荷調整のために開閉する吸込み絞り弁が設けられている。 The screw compressor has a rotating screw rotor and a casing that accommodates the screw rotor and forms a plurality of working chambers with the screw rotor, and the working chamber is in the axial direction of the rotor as the screw rotor rotates. By moving, the gas (for example, air) in the working chamber is compressed. On the suction side of the casing, a suction throttle valve that opens and closes for adjusting the intake amount of the compressor or adjusting the load is provided.
 スクリュー圧縮機の中には、圧縮気体の冷却、スクリューロータの潤滑、スクリューロータとケーシングの隙間のシール等を目的として、作動室内に油や水等の液体を供給する給液式のものがある。給液式スクリュー圧縮機では、駆動の停止の際に、ケーシング内の吐出側(高圧側)の圧縮気体が吸込側(低圧側)へ圧力差によって瞬時に逆流する。この圧縮空気の逆流に伴い、圧縮気体中に含まれる液体(作動室に供給された液体)がケーシング内の吸込室に逆流して飛散する。このとき、吸込み絞り弁を全閉状態とすることで、吸込み絞り弁の一次側(吸込み絞り弁の上流側)への液体の漏出を防止している。 Among screw compressors, there is a liquid supply type that supplies a liquid such as oil or water into the working chamber for the purpose of cooling compressed gas, lubricating a screw rotor, sealing a gap between a screw rotor and a casing, etc. . In the liquid feed screw compressor, when the drive is stopped, the compressed gas on the discharge side (high pressure side) in the casing instantaneously flows back to the suction side (low pressure side) due to the pressure difference. With the back flow of the compressed air, the liquid (liquid supplied to the working chamber) contained in the compressed gas flows back to the suction chamber in the casing and is scattered. At this time, the suction throttle valve is fully closed to prevent the liquid from leaking to the primary side (the upstream side of the suction throttle valve) of the suction throttle valve.
 ところで、ケーシングには、ケーシングの外部に露出している配管(以下、「外部配管」という。)を含む系統が複数接続されている。外部配管を含むこれらの系統の中には、ケーシング内の吸込室に連通するものがある。吸込室に連通する外部配管の系統では、圧縮機の駆動停止の際に吸込室内に液体が飛散すると、系統内(外部配管内)に液体が侵入して逆流することがある。しかし、これらの系統の中には、系統内に液体が侵入し逆流すると問題になるものがある。このような系統では、通常、液体の逆流を阻止する逆止弁が系統中に設置される。 By the way, a plurality of systems including piping exposed to the outside of the casing (hereinafter referred to as "external piping") is connected to the casing. Some of these systems, including external piping, are in communication with the suction chamber in the casing. In the system of external piping communicating with the suction chamber, when the liquid scatters into the suction chamber at the time of driving stop of the compressor, the liquid may intrude into the system (in the external piping) and flow back. However, some of these systems have problems when liquid intrudes into the system and flows back. In such systems, a check valve is usually installed in the system to prevent backflow of liquid.
 逆止弁を備え、吸込室に連通する外部配管の系統として、例えば、スクリューロータに設けた軸封装置から漏れ出た潤滑油を回収する系統がある(例えば、特許文献1を参照)。給液式スクリュー圧縮機のスクリューロータは、電動モータ等の回転駆動源と接続するために、一方側の軸部がケーシングの外部へ延長した構造となっている。ケーシング内にはスクリューロータを支持する軸受が配置されており、軸受の潤滑のために給油されている。その一方側の軸部には、スクリューロータと、ケーシングとの隙間から外部へ潤滑油が漏出することを防止するために、軸封装置が設けられている。しかし、この軸封装置から潤滑油が僅かに漏出することがある。そこで、特許文献1に記載のスクリュー圧縮機では、軸封装置から漏れ出た潤滑油の回収用に外部配管である回収配管を設け、この回収配管を吸込み絞り弁の一次側と同二次側の2ヶ所の空間に連通するように接続し、二次側の回収配管上に逆止機構を設けている。 As a system of external piping provided with a check valve and communicating with the suction chamber, for example, there is a system for recovering lubricating oil that leaked from a shaft seal device provided on a screw rotor (see, for example, Patent Document 1). The screw rotor of the liquid feed screw compressor has a structure in which a shaft on one side extends to the outside of the casing in order to connect with a rotational drive source such as an electric motor. A bearing for supporting the screw rotor is disposed in the casing, and is lubricated to lubricate the bearing. A shaft seal device is provided on the shaft portion on one side thereof in order to prevent the lubricating oil from leaking out of the gap between the screw rotor and the casing. However, lubricating oil may leak slightly from this shaft seal device. Therefore, in the screw compressor described in Patent Document 1, a recovery pipe, which is an external pipe, is provided for recovering the lubricating oil that has leaked from the shaft sealing device, and this recovery pipe is used as a primary side and secondary side of the suction throttle. It connects so as to be communicated with the two spaces, and a non-return mechanism is provided on the recovery pipe on the secondary side.
 また、逆止弁を備え、吸込室に連通する外部配管の系統の別の一例として、例えば、圧縮機の起動時に吸込み絞り弁を駆動するための圧力源を確保するための外部配管の系統(以下、「呼吸配管の系統」という。)がある。具体的には、図7に示すように、呼吸配管Pの系統BSは、一方側が吸込み絞り弁Vの一次側の空間(吸込流路I)に連通するように吸込み絞り弁VのハウジングHに接続され、他方側が吸込み絞り弁Vの二次側の空間(ケーシングC内の吸込室R)と連通するようにケーシングCに接続され、ハウジングH及びケーシングCの外部に露出するものである。圧縮機の起動時では、吸込み絞り弁Vが閉止状態なので、吸込み絞り弁Vの一次側の吸込流路I内の気体は呼吸配管Pの系統BSを介して吸込み絞り弁Vの二次側のケーシングC内の吸込室Rに導入される。この吸気は圧縮機本体で圧縮され、圧縮された気体は吸込み絞り弁Vの操作用の圧力源として用いられる。呼吸配管Pの系統BSは、圧縮機の駆動停止の際に吸込室R内に飛散した液体が系統BS内を逆流して吸込み絞り弁Vの一次側へ漏れ出ることを防止するための逆止機構CVを備えている。 Further, as another example of a system of external piping provided with a check valve and communicated with the suction chamber, for example, a system of external piping for securing a pressure source for driving a suction throttle valve at the time of startup of the compressor ( Hereinafter, it will be referred to as “system of respiratory piping”. Specifically, as shown in FIG. 7, the system BS of the breathing pipe P communicates with the housing H of the suction throttle valve V so that one side communicates with the space (suction flow path I) on the primary side of the suction throttle valve V. The other side is connected to the casing C so as to communicate with the space on the secondary side of the suction throttle valve V (the suction chamber R in the casing C), and is exposed to the outside of the housing H and the casing C. Since the suction throttle valve V is closed at the start of the compressor, the gas in the suction flow path I on the primary side of the suction throttle valve V passes through the system BS of the breathing pipe P and the secondary side of the suction throttle valve V It is introduced into the suction chamber R in the casing C. This intake air is compressed by the compressor body, and the compressed gas is used as a pressure source for operating the suction throttle valve V. The system BS of the breathing pipe P is a non-return valve for preventing the liquid splashed in the suction chamber R at the time of driving stop of the compressor from flowing back into the system BS and leaking to the primary side of the suction throttle valve V It has a mechanism CV.
 特許文献1に記載のスクリュー圧縮機における潤滑油の回収系統は、ケーシングの外部に露出している回収配管(外部配管)及び回収配管上に設置した逆止機構により構成されている。このような構成の場合、逆止機構自体に不具合が生じても、逆止機構を回収配管から取り外して簡単に交換することができる。また、逆止機構の近傍に潤滑油等の液体が滞留している場合、逆止機構の機能を損なうことがある。しかし、回収配管は外部配管であるので、このような逆止不良の発生を抑制するため、逆止機構の回収配管上の設置位置を容易に変更することができる。前述した呼吸配管Pの系統BSも、潤滑油の回収系統と同様に、吸込み絞り弁VのハウジングHの外部に露出する外部配管の系統なので、上記の潤滑油の回収系統と同様な利点を有している。このように、外部配管の系統では、逆止弁の信頼性の確保及び逆止弁の交換容易性という利点がある。 The recovery system for lubricating oil in the screw compressor described in Patent Document 1 includes a recovery pipe (external pipe) exposed to the outside of the casing and a non-return mechanism installed on the recovery pipe. In such a configuration, even if a failure occurs in the non-return mechanism itself, the non-return mechanism can be removed from the collection pipe and easily replaced. In addition, when liquid such as lubricating oil is stagnant in the vicinity of the non-return mechanism, the function of the non-return mechanism may be impaired. However, since the recovery pipe is an external pipe, the installation position of the nonreturn mechanism on the recovery pipe can be easily changed in order to suppress the occurrence of such a nonreturn failure. The system BS of the breathing pipe P described above is also a system of external piping exposed to the outside of the housing H of the suction throttle valve V similarly to the recovery system of lubricating oil, and therefore has the same advantages as the recovery system of lubricating oil doing. Thus, in the system of the external piping, there is an advantage of ensuring the reliability of the check valve and the ease of replacing the check valve.
特開2001-173585号公報JP 2001-173585
 しかし、上述したこれらの外部配管の系統では、圧縮機の振動に起因して外部配管に亀裂が発生する懸念がある。また、外部配管や逆止機構をケーシング等に接続するには、複数の継手(図7中、F1、F2、F3)が必要となるので、部品点数が多くコストが高くなるという問題がある。また、外部配管を多数設置すると、埃や汚れの付着箇所も増え、機器保守等の面から不利であるとも言える。更には、外部配管による空間的な占有は、圧縮機本体の移動等の際にも衝突による破損の虞が高く、取扱いにも不利な面がある。そのため、ケーシング内の吸込室に連通し逆止弁を備える系統に対して、外部配管の場合の利点を損なうことなく、パイプレス構造にすることが求められている。 However, in the above-described external piping system, there is a concern that the external piping may be cracked due to the vibration of the compressor. Further, since a plurality of joints (F1, F2 and F3 in FIG. 7) are required to connect the external piping and the non-return mechanism to the casing etc., there is a problem that the number of parts is large and the cost is high. In addition, if a large number of external pipes are installed, the locations where dust and dirt adhere are also increased, which may be disadvantageous in terms of equipment maintenance and the like. Furthermore, spatial occupancy by the external piping has a high risk of breakage due to a collision even when moving the compressor body, etc., and there is a disadvantage in handling. Therefore, there is a need for a pipeless structure for a system including a check valve in communication with the suction chamber in the casing without losing the advantage of the external piping.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、気体を圧縮するためのスクリューロータと、前記スクリューロータを回転可能に支持する軸受と、前記スクリューロータ及び前記軸受を収納すると共に、気体を吸い込む吸込口及び前記吸込口に接続する吸込室を有するケーシングと、前記吸込口に設置され、前記吸込口に連通する吸込流路を形成するハウジングを有する吸込み絞り弁と、前記吸込み絞り弁の一次側と二次側とを連通する吸気バイパス系統とを備え、前記吸気バイパス系統は、前記ハウジングの壁部に設けられ、前記吸込み絞り弁の一次側に開口する第1開口部及び二次側に開口する第2開口部を有する吸気バイパス流路と、前記吸気バイパス流路内に配置され、前記吸込み絞り弁の一次側から二次側への流れを許可する一方、前記吸込み絞り弁の二次側から一次側への流れを阻止する第1逆止弁とを有し、前記吸気バイパス流路は、前記ハウジングの外部に開口し、前記第1逆止弁の挿入及び抜き取りが可能な第3開口部を有することを特徴とする。 The present application includes a plurality of means for solving the above problems, and an example thereof is a screw rotor for compressing a gas, a bearing for rotatably supporting the screw rotor, the screw rotor and the bearing And a casing having a suction port for sucking in gas and a suction chamber connected to the suction port, and a suction throttle valve installed at the suction port and having a housing forming a suction flow passage communicating with the suction port An intake bypass system for communicating the primary side and the secondary side of the suction throttle valve, wherein the intake bypass system is provided on a wall of the housing and is opened at the primary side of the suction throttle valve; An intake bypass channel having an opening and a second opening opened to the secondary side, and the primary side of the suction throttle valve disposed in the intake bypass channel And a first check valve for blocking the flow from the secondary side to the primary side of the suction throttle valve while permitting the flow to the secondary side, and the intake bypass flow path is provided outside the housing It is characterized by having a 3rd opening which is open and can insert and extract said 1st nonreturn valve.
 本発明によれば、吸込み絞り弁の一次側と、二次側とを連通する吸気バイパス流路を吸込み絞り弁のハウジングの壁部に設け、吸気バイパス流路内に第1逆止弁を配置し、ハウジングの外部に開口する吸気バイパス流路の第3開口部を介して第1逆止弁の挿入及び抜き取りを可能としたので、吸気バイパス系統を外部配管の利点を損なうことなくパイプレス構造にすることができる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the intake bypass passage communicating the primary side and the secondary side of the intake throttle valve is provided on the wall of the housing of the intake throttle valve, and the first check valve is disposed in the intake bypass passage. Since the first check valve can be inserted and removed through the third opening of the intake bypass channel that opens to the outside of the housing, the intake bypass system can be pipeless without losing the advantage of the external piping. can do.
Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明の一実施の形態に係る給液式スクリュー圧縮機を一部断面の状態で示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the liquid supply type screw compressor which concerns on one embodiment of this invention in the state of a partial cross section. 図1に示す一実施の形態に係る給液式スクリュー圧縮機の側面図である。It is a side view of the liquid feeding type screw compressor concerning one embodiment shown in FIG. 図2に示す一実施の形態に係る給液式スクリュー圧縮機の一部をIII-III矢視から見た断面図である。FIG. 3 is a cross-sectional view of a portion of the liquid feed screw compressor according to the embodiment shown in FIG. 2 as viewed in the direction of arrows III-III. 図2に示す一実施の形態に係る給液式スクリュー圧縮機をIV-IV矢視から見た断面図である。It is sectional drawing which looked at the liquid supply type screw compressor which concerns on one Embodiment shown in FIG. 2 from IV-IV arrow. 図1の符号Vに示す一実施の形態に係る給液式スクリュー圧縮機の吸気バイパス系統を拡大した状態で示す断面図である。It is sectional drawing shown in the state which expanded the suction | inhalation bypass system of the liquid supply type screw compressor which concerns on one Embodiment shown to code | symbol V of FIG. 図1の符号VIに示す一実施の形態に係る給液式スクリュー圧縮機の油回収系統の一部を拡大した状態で示す断面図である。It is sectional drawing shown in the state which expanded a part of oil recovery system of the liquid feeding type screw compressor which concerns on one Embodiment shown to code | symbol VI of FIG. 従来の給液式スクリュー圧縮機を一部断面の状態で示す正面図である。It is a front view which shows the conventional liquid supply type screw compressor in the state of a partial cross section.
 以下、本発明に係る給液式スクリュー圧縮機の実施の形態について図面を用いて例示説明する。
  [一実施の形態]
  先ず、本発明の一実施の形態に係る給液式スクリュー圧縮機の構成を図1~図4を用いて説明する。図1は、本発明の一実施の形態に係る給液式スクリュー圧縮機を一部断面の状態で示す正面図である。図2は、図1に示す一実施の形態に係る給液式スクリュー圧縮機の側面図である。図3は、図2に示す一実施の形態に係る給液式スクリュー圧縮機の一部をIII-III矢視から見た断面図である。図4は、図2に示す一実施の形態に係る給液式スクリュー圧縮機をIV-IV矢視から見た断面図である。
Hereinafter, an embodiment of a liquid feed screw compressor according to the present invention will be described by way of example with reference to the drawings.
[One embodiment]
First, the configuration of a liquid feed type screw compressor according to an embodiment of the present invention will be described using FIGS. 1 to 4. FIG. FIG. 1 is a front view showing a liquid supply type screw compressor according to an embodiment of the present invention in a partially sectional view. FIG. 2 is a side view of the liquid feed screw compressor according to the embodiment shown in FIG. FIG. 3 is a cross-sectional view of a portion of the liquid feed type screw compressor according to the embodiment shown in FIG. 2 as viewed in the direction of arrows III-III. FIG. 4 is a cross-sectional view of the liquid feed type screw compressor according to the embodiment shown in FIG. 2 as viewed from the arrow IV-IV.
 図1及び図2において、給液式スクリュー圧縮機は、空気等の気体を圧縮する圧縮機本体1と、圧縮機本体1の吸込側(図1及び図2中、上側)に設置された吸込み絞り弁2とを備えている。 1 and 2, the liquid feed screw compressor includes a compressor body 1 for compressing a gas such as air, and a suction installed on the suction side (upper side in FIGS. 1 and 2) of the compressor body 1 A throttle valve 2 is provided.
 圧縮機本体1は、図3及び図4に示すように、螺旋状の歯部を複数有するスクリューロータである雄ロータ4及び雌ロータ5と、雄ロータ4及び雌ロータ5を収納するケーシング6とを備えている。雄ロータ4及び雌ロータ5は、回転軸が平行で互いに噛み合いながら回転する。雄ロータ4及び雌ロータ5とケーシング6との間には、複数の作動室が形成されている。雄ロータ4及び雌ロータ5の回転に伴って作動室がロータの軸方向に移動することで、作動室内の気体が圧縮される。作動室内には、作動室内の圧縮気体の冷却、雄雌両ロータ4、5の潤滑、雄雌両ロータ4、5の歯先と主ケーシング21の内壁との隙間や雄雌ロータ4、5の噛合い部の隙間のシールを目的として、油や水等の液体が供給される。 As shown in FIGS. 3 and 4, the compressor body 1 has a male rotor 4 and a female rotor 5 which are screw rotors having a plurality of helical teeth, and a casing 6 for housing the male rotor 4 and the female rotor 5. Is equipped. The male rotor 4 and the female rotor 5 rotate while their rotational axes are parallel and mesh with each other. A plurality of working chambers are formed between the male rotor 4 and the female rotor 5 and the casing 6. As the working chamber moves in the axial direction of the rotor as the male rotor 4 and the female rotor 5 rotate, the gas in the working chamber is compressed. In the working chamber, cooling of compressed gas in the working chamber, lubrication of both the male and female rotors 4, 5, clearance between the tips of the male and female rotors 4, 5 and the inner wall of the main casing 21, A liquid such as oil or water is supplied for the purpose of sealing the gap of the meshing portion.
 雄ロータ4は、図3に示すように、複数の雄歯を有するロータ歯部8と、ロータ歯部8の軸方向両側に一体に設けられた軸部9(図3中、吸込側のみ図示)とで構成されている。雄ロータ4の吸込側の軸部9は、電動機等の回転駆動源の回転軸と連結するために、ケーシング6の外側に延出している。雄ロータ4は、吸込側軸受10及び吐出側軸受(図示せず)により回転可能に支持されている。吸込側軸受10及び吐出側軸受は、ケーシング6内に収納されている。吸込側軸受10及び吐出側軸受には、潤滑油が供給される。吸込側の軸部9には、ケーシング6との隙間を封止する軸封装置12が設けられている。軸封装置12は、吸込側軸受10に供給された潤滑油のケーシング6の外部への漏洩を防止するものである。軸封装置12として、例えば、メカニカルシールが用いられている。 The male rotor 4 is, as shown in FIG. 3, a rotor tooth portion 8 having a plurality of male teeth, and a shaft portion 9 integrally provided on both sides in the axial direction of the rotor tooth portion 8 (in FIG. And consists of. The shaft portion 9 on the suction side of the male rotor 4 extends outside the casing 6 in order to connect with the rotation shaft of a rotational drive source such as an electric motor. The male rotor 4 is rotatably supported by the suction side bearing 10 and the discharge side bearing (not shown). The suction side bearing 10 and the discharge side bearing are accommodated in the casing 6. Lubricating oil is supplied to the suction side bearing 10 and the discharge side bearing. A shaft seal device 12 for sealing a gap with the casing 6 is provided at the suction side shaft portion 9. The shaft seal device 12 prevents the leakage of the lubricating oil supplied to the suction side bearing 10 to the outside of the casing 6. For example, a mechanical seal is used as the shaft sealing device 12.
 雌ロータ5は、複数の雌歯を有するロータ歯部14と、ロータ歯部14の軸方向両側に一体設けられた軸部15(図3中、吸込側のみ図示)とで構成されている。雌ロータ5は、吸込側軸受16及び吐出側軸受(図示せず)により回転可能に支持されており、雄ロータ4の回転に伴って雄ロータ4と噛み合いながら回転するように構成されている。吸込側軸受16及び吐出側軸受(図示せず)は、ケーシング6内に収納されている。吸込側軸受16及び吐出側軸受には、潤滑油が供給される。 The female rotor 5 is composed of a rotor tooth portion 14 having a plurality of female teeth, and a shaft portion 15 integrally provided on both sides in the axial direction of the rotor tooth portion 14 (only the suction side is shown in FIG. 3). The female rotor 5 is rotatably supported by the suction side bearing 16 and the discharge side bearing (not shown), and is configured to rotate while meshing with the male rotor 4 as the male rotor 4 rotates. The suction side bearing 16 and the discharge side bearing (not shown) are accommodated in the casing 6. A lubricating oil is supplied to the suction side bearing 16 and the discharge side bearing.
 ケーシング6は、図2に示すように、主ケーシング21と、主ケーシング21の吐出側(図2中、右側)を覆う吐出側ケーシング22とを含んでいる。 As shown in FIG. 2, the casing 6 includes a main casing 21 and a discharge side casing 22 which covers the discharge side (right side in FIG. 2) of the main casing 21.
 主ケーシング21内には、図4に示すように、一部重複する2つの円筒状のボア26が形成されており、ボア26内には、雄ロータ4及び雌ロータ5が収納されている。主ケーシング21の外周部には、図1及び図4に示すように、気体を吸い込む吸込口27が設けられており、吸込口27には、吸込み絞り弁2が設置されている。主ケーシング21の内部には、吸込口27に接続する吸込室28が形成されている。吸込室28は、ボア26に連通しており、吸込口27から吸い込まれた気体が吸気行程の作動室へ流通する空間である。主ケーシング21の吸込側の軸方向端部には、図3に示すように、吸込側軸受10、16をそれぞれ保持する吸込側軸受室29、30が設けられている。吸込側軸受室29、30とボア26とは、隔壁31により隔てられている。主ケーシング21には、吸込側軸受室29、30を覆う吸込側カバー23が取り付けられている。吸込側カバー23は、軸封装置12を収容している。主ケーシング21には、作動室に液体を供給するための給液路(図示せず)が設けられている。 In the main casing 21, as shown in FIG. 4, two cylindrical bores 26 partially overlapping are formed, and in the bores 26, a male rotor 4 and a female rotor 5 are accommodated. As shown in FIGS. 1 and 4, a suction port 27 for sucking in gas is provided on the outer peripheral portion of the main casing 21, and a suction throttle valve 2 is installed at the suction port 27. A suction chamber 28 connected to the suction port 27 is formed inside the main casing 21. The suction chamber 28 communicates with the bore 26 and is a space through which the gas sucked from the suction port 27 flows to the working chamber of the intake stroke. As shown in FIG. 3, suction side bearing chambers 29 and 30 for holding the suction side bearings 10 and 16 are provided at axial end portions on the suction side of the main casing 21. The suction side bearing chambers 29 and 30 and the bore 26 are separated by a partition 31. A suction side cover 23 that covers the suction side bearing chambers 29 and 30 is attached to the main casing 21. The suction side cover 23 accommodates the shaft sealing device 12. The main casing 21 is provided with a liquid supply passage (not shown) for supplying liquid to the working chamber.
 ケーシング6内の吸込室28には、図4に示すように、雄ロータ4と雌ロータ5との噛合い部を覆うように飛散用カバー32が設けられている。給液式スクリュー圧縮機では、運転中に、高圧側の作動室と低圧側の作動室との圧力差によって、雄ロータ4と雌ロータ5との噛合い部の隙間から、作動室内の圧縮気体中に含まれる液体が噴出する(図4中、矢印Aは噴出する液体を示している)。飛散用カバー32は、当該噛合い部の隙間から噴出する液体が吸込み絞り弁2へ向かうのを抑制し、噴出した液体による吸気の加熱を抑制するものである。また、この飛散用カバー32は、ケーシング6の吸込口27から流入した吸気を雄ロータ4側の吸込行程の作動室と雌ロータ5側の吸込行程の作動室へ分配する機能も有する。飛散用カバー32は、例えば、当該噛合い部側に向かって凹形状(断面略U字状)に形成されており、吸気の抵抗にならないように所定の大きさに制限されている。 As shown in FIG. 4, a scattering cover 32 is provided in the suction chamber 28 in the casing 6 so as to cover the meshing portion between the male rotor 4 and the female rotor 5. In the liquid feed screw compressor, compressed gas in the working chamber is generated from the gap between the meshing portion of the male rotor 4 and the female rotor 5 due to the pressure difference between the high pressure side working chamber and the low pressure side working chamber during operation. The liquid contained therein spouts (arrow A in FIG. 4 indicates the spouted liquid). The scattering cover 32 suppresses the flow of the liquid ejected from the gap of the meshing portion toward the suction throttle valve 2 and suppresses the heating of the intake air by the ejected liquid. The scattering cover 32 also has a function of distributing the intake air flowing in from the suction port 27 of the casing 6 to the working chamber of the suction stroke on the male rotor 4 side and the working chamber of the suction stroke on the female rotor 5 side. The scattering cover 32 is formed, for example, in a concave shape (substantially U-shaped in cross section) toward the meshing portion, and is limited to a predetermined size so as not to be a resistance to intake.
 図2に示す吐出側ケーシング22には、作動室で圧縮された気体を外部へ導く吐出通路(図示せず)、雄ロータ4及び雌ロータ5の吐出側軸受(図示せず)を保持する吐出側軸受室(図示せず)がそれぞれ設けられている。吐出側ケーシング22には、吐出側軸受室を覆う吐出側カバー24が取り付けられている。 In the discharge side casing 22 shown in FIG. 2, a discharge passage (not shown) for guiding the gas compressed in the working chamber to the outside, and a discharge side bearing (not shown) of the male rotor 4 and the female rotor 5 are held. Side bearing chambers (not shown) are provided respectively. A discharge side cover 24 covering the discharge side bearing chamber is attached to the discharge side casing 22.
 本実施の形態においては、主ケーシング21、吐出側ケーシング22、吸込側カバー23、吐出側カバー24によりケーシング6が構成されている。 In the present embodiment, the casing 6 is configured by the main casing 21, the discharge side casing 22, the suction side cover 23, and the discharge side cover 24.
 吸込み絞り弁2は、例えば、顧客の圧縮気体の使用量に応じて圧縮機本体1の吸込み量を調整するものである。また、圧縮機本体1の運転を継続したままで吐出側圧力を低下させる無負荷運転制御(アンロード運転制御)を行うために圧縮機本体1の吸込みを遮断するものである。また、圧縮機本体1の駆動停止の際に圧縮機本体1の吐出側から吸込側へ逆流する圧縮気体及びその気体中に含まれる液体の上流側への漏出を防止するものである。吸込み絞り弁2は、図1及び図4に示すように、吸込流路42及びシリンダ43を形成するハウジング41と、吸込流路42の下流側端部に形成された弁座44と、シリンダ43内に摺動可能に配置され、シリンダ43内をばね室43aと操作室43bとに区画するピストン45と、一端がピストン45に接続されシリンダ43を貫通して吸込流路42の下流側(図1及び図4中、下側)に延在するロッド46と、ロッド46にスライド可能に挿通され、弁座44の下流側に位置して弁座44の開閉が可能な弁体47と、ロッド46の先端部に設けられ、弁体47の下流側へのスライドを規制するストッパ部48と、シリンダ43内のばね室43aに配置されたばね49とを備えている。吸込流路42は、例えば、略直角に屈曲した流路である。ばね49は、例えば、ストッパ部48を上流側(図1及び図4中、上側)に移動させる付勢力をピストン45に付与するものである。 The suction throttle valve 2 adjusts the suction amount of the compressor main body 1 according to, for example, the amount of compressed gas used by the customer. Further, in order to perform no-load operation control (unload operation control) for reducing the discharge side pressure while continuing the operation of the compressor body 1, the suction of the compressor body 1 is shut off. Further, when the driving of the compressor body 1 is stopped, leakage of the compressed gas flowing backward from the discharge side to the suction side of the compressor body 1 and the liquid contained in the gas to the upstream side is prevented. As shown in FIGS. 1 and 4, the suction throttle valve 2 includes a housing 41 forming the suction flow passage 42 and the cylinder 43, a valve seat 44 formed at the downstream end of the suction flow passage 42, and the cylinder 43. A piston 45 slidably disposed therein, which divides the inside of the cylinder 43 into a spring chamber 43a and an operation chamber 43b, and one end thereof is connected to the piston 45 and penetrates the cylinder 43 to the downstream side of the suction passage 42 (see FIG. In FIG. 1 and FIG. 4, the rod 46 extends downward, and the valve body 47 slidably inserted in the rod 46 and located on the downstream side of the valve seat 44 and capable of opening and closing the valve seat 44; A stopper portion 48 provided at the tip end portion of 46 and restricting the slide of the valve body 47 to the downstream side is provided, and a spring 49 disposed in a spring chamber 43 a in the cylinder 43. The suction flow channel 42 is, for example, a flow channel bent substantially at a right angle. The spring 49 applies, for example, a biasing force to the piston 45 to move the stopper portion 48 to the upstream side (upper side in FIGS. 1 and 4).
 シリンダ43内の操作室43bには、操作圧力系統(図示せず)が接続されている。操作圧力系統は、圧縮機本体1の吐出側の圧縮空気系統から抽出した圧縮空気の一部をシリンダ43内の操作室43bに導入することで、ばね室43aのばね49の付勢力に対抗してストッパ部48を下流側(図1及び図4中、下側)に移動させる圧力をピストン45に付与するものである。操作圧力系統は、例えば、制御装置(図示せず)からの駆動信号により開閉する電磁弁(図示せず)を備えており、電磁弁の開閉によりシリンダ43内の操作室43bへの圧縮空気の入力を調整する。 An operation pressure system (not shown) is connected to the operation chamber 43 b in the cylinder 43. The operation pressure system counteracts the biasing force of the spring 49 of the spring chamber 43a by introducing a part of the compressed air extracted from the compressed air system on the discharge side of the compressor body 1 into the operation chamber 43b in the cylinder 43. A pressure is applied to the piston 45 to move the stopper portion 48 downstream (downward in FIGS. 1 and 4). The operation pressure system includes, for example, a solenoid valve (not shown) opened and closed by a drive signal from a control device (not shown), and opening and closing of the solenoid valve causes the compressed air to be supplied to the operation chamber 43b in the cylinder 43 Adjust the input.
 ところで、圧縮機の起動時、吸込み絞り弁2を操作するための圧力源である圧縮機本体1の吐出側の圧縮空気系統は圧力が低下した状態にある。そこで、本実施の形態では、圧縮機起動時の吸込み絞り弁2の操作圧力を確保するために、閉止状態の吸込み絞り弁2を迂回して圧縮機本体1に吸気を導入する吸気バイパス系統60を備えている。吸気バイパス系統60の詳細は後述する。 By the way, when the compressor is started, the pressure is reduced in the compressed air system on the discharge side of the compressor body 1, which is a pressure source for operating the suction throttle valve 2. So, in this embodiment, in order to secure the operation pressure of suction throttle valve 2 at the time of compressor start, intake bypass system 60 which bypasses suction throttle valve 2 in the closed state and introduces the intake air to compressor main body 1 Is equipped. Details of the intake bypass system 60 will be described later.
 また、図3に示す雄ロータ4の吸込側の軸部9に設けた軸封装置12では、吸込側軸受10、16に供給した潤滑油が僅かに漏出することがある。そこで、本実施の形態では、図1及び図4に示すように、軸封装置12から漏出した潤滑油を吸込み絞り弁2の二次側(ケーシング6の吸込室28)に回収する油回収系統80を備えている。油回収系統80の詳細は後述する。 Further, in the shaft seal device 12 provided on the suction side shaft portion 9 of the male rotor 4 shown in FIG. 3, the lubricating oil supplied to the suction side bearings 10 and 16 may slightly leak. Therefore, in the present embodiment, as shown in FIG. 1 and FIG. 4, an oil recovery system for collecting the lubricating oil leaked from the shaft sealing device 12 into the secondary side (suction chamber 28 of the casing 6) of the suction valve 2. It has 80. Details of the oil recovery system 80 will be described later.
 次に、本発明の一実施の形態に係る給液式スクリュー圧縮機の吸気バイパス系統の詳細について図4及び図5を用いて説明する。図5は、図1の符号Vに示す一実施の形態に係る給液式スクリュー圧縮機の吸気バイパス系統を拡大した状態で示す断面図である。図5において、図1~図4に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。 Next, the details of the intake bypass system of the liquid feed screw compressor according to the embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. 5 is a cross-sectional view showing an enlarged intake bypass system of the liquid feed screw compressor according to the embodiment shown by symbol V in FIG. 1. In FIG. 5, the same reference numerals as those shown in FIGS. 1 to 4 denote the same parts, so the detailed description thereof will be omitted.
 吸気バイパス系統60は、図4及び図5に示すように、吸込み絞り弁2の吸込流路42(吸込み絞り弁2の一次側)とケーシング6内の吸込室28(吸込み絞り弁2の二次側)とを連通するものであり、ハウジング41の壁部に設けられた吸気バイパス流路61と、吸気バイパス流路61内に配置された第1逆止弁62とを有している。 As shown in FIGS. 4 and 5, the intake bypass system 60 includes the suction flow path 42 (primary side of the suction throttle valve 2) of the suction throttle valve 2 and the suction chamber 28 (secondary of the suction throttle valve 2) in the casing 6. And a first check valve 62 disposed in the intake bypass channel 61. The intake bypass channel 61 is provided in the wall of the housing 41, and the first check valve 62 is disposed in the intake bypass channel 61.
 吸気バイパス流路61は、例えば、吸込み絞り弁2の吸込流路42側に開口する一次側開口部64a及びハウジング41の外部に開口する第1外部開口部64bを有し、水平方向へ直線状に延在するようにハウジング41の壁部内に設けられた第1バイパス流路孔64と、ケーシング6内の吸込室28側に開口する二次側開口部65a及びハウジング41の外部に開口する第2外部開口部65bを有し、上下方向へ直線状に延在して第1バイパス流路孔64に連通するようにハウジング41の壁部内に設けられた第2バイパス流路孔65とで構成されている。第1バイパス流路孔64の第1外部開口部64bには、第1プラグ66が着脱可能に取り付けられている。第2外部開口部65bには、第2プラグ67が着脱可能に取り付けられている。 The intake bypass passage 61 has, for example, a primary side opening 64 a that opens to the suction flow passage 42 side of the suction throttle valve 2 and a first external opening 64 b that opens to the outside of the housing 41. The first bypass passage hole 64 provided in the wall of the housing 41 so as to extend to the second side, the secondary side opening 65a opening to the suction chamber 28 side in the casing 6, and the outside of the housing 41 (2) A second bypass passage hole 65 provided in the wall portion of the housing 41 so as to have an outer opening 65b and extend linearly in the vertical direction and communicate with the first bypass passage hole 64 It is done. The first plug 66 is detachably attached to the first external opening 64 b of the first bypass passage hole 64. The second plug 67 is detachably attached to the second external opening 65 b.
 第2バイパス流路孔65は、第2外部開口部65bを有する大径部70と、大径部70に隣接する中径部71と、中径部71に隣接し二次側開口部65aを有する小径部72とで構成されている。大径部70は、第1逆止弁62よりも径が大きい。中径部71は、大径部70よりも径が小さく第1逆止弁62よりも僅かに径が大きい。小径部72は、第1逆止弁62よりも径が小さい。すなわち、第2バイパス流路孔65は、2段の段付き孔である。中径部71は、第1逆止弁62を配置する部分である。小径部72は、第1逆止弁62の吸込室28側への移動を規制するものである。大径部70の第2外部開口部65bは、第1逆止弁62の中径部71への挿入及び中径部71からの抜き取りを可能にするものである。大径部70は、第1逆止弁62の挿入及び抜き取りが容易となる孔径に形成されている。 The second bypass passage hole 65 has a large diameter portion 70 having a second external opening 65 b, a middle diameter portion 71 adjacent to the large diameter portion 70, and a secondary side opening portion 65 a adjacent to the middle diameter portion 71. It is comprised with the small diameter part 72 which it has. The large diameter portion 70 is larger in diameter than the first check valve 62. The medium diameter portion 71 is smaller in diameter than the large diameter portion 70 and slightly larger in diameter than the first check valve 62. The small diameter portion 72 is smaller in diameter than the first check valve 62. That is, the second bypass passage hole 65 is a two-step stepped hole. The middle diameter portion 71 is a portion where the first check valve 62 is disposed. The small diameter portion 72 regulates movement of the first check valve 62 to the suction chamber 28 side. The second outer opening 65 b of the large diameter portion 70 enables insertion of the first check valve 62 into the middle diameter portion 71 and removal thereof from the middle diameter portion 71. The large diameter portion 70 is formed in a hole diameter that facilitates insertion and removal of the first check valve 62.
 第1バイパス流路孔64は、ハウジング41の側方外面から吸込流路42へハウジング41の壁部を貫通する横孔を穿つことで形成することが可能である。第2バイパス流路孔65は、ハウジング41の上方外面から吸込室28へ貫通する第1の縦孔を設け、第1の縦孔よりも孔径が大きい第2の縦孔を第1の縦孔と同軸上に吸込室28に貫通しないように設け、第2の縦孔よりも孔径が大きい第3の縦孔を第1の縦孔と同軸上に第2の縦孔よりも短く設けることで形成することが可能である。 The first bypass passage hole 64 can be formed by forming a lateral hole penetrating the wall of the housing 41 from the side outer surface of the housing 41 to the suction passage 42. The second bypass passage hole 65 is provided with a first vertical hole penetrating from the upper outer surface of the housing 41 to the suction chamber 28, and the second vertical hole having a larger diameter than the first vertical hole is a first vertical hole And the third vertical hole having a larger diameter than the second vertical hole coaxially with the first vertical hole and shorter than the second vertical hole. It is possible to form.
 第1逆止弁62は、吸込流路42側から吸込室28側への流れを許可する一方、吸込室28側から吸込流路42側への流れを阻止するものである。すなわち、第1逆止弁62は、圧縮機の作動停止時に圧縮機本体1の吐出側から吸込室28に逆流した液体が吸気バイパス流路61を介して吸込み絞り弁2の一次側へ漏出することを防止するものである。第1逆止弁62の外周部には、止め輪74及びOリング75が取り付けられている。止め輪74は、第1逆止弁62の中径部71内での移動を規制するものである。Oリング75は、第1逆止弁62の外周面と吸気バイパス流路61の内壁面との隙間からの漏れ流れを阻止するものである。第1逆止弁62は、第2バイパス流路孔65の大径部70の第2外部開口部65bを介してアクセスすることで交換が可能である。第1逆止弁62の交換では、第2外部開口部65bを閉塞する第2プラグ67を取り外し、例えば工具を用いる。 The first check valve 62 permits the flow from the suction flow passage 42 side to the suction chamber 28 side, and blocks the flow from the suction chamber 28 side to the suction flow passage 42 side. That is, in the first check valve 62, the liquid backflowing from the discharge side of the compressor main body 1 to the suction chamber 28 when the operation of the compressor is stopped leaks to the primary side of the suction throttle valve 2 via the intake bypass channel 61. To prevent that. A retaining ring 74 and an O-ring 75 are attached to the outer peripheral portion of the first check valve 62. The retaining ring 74 regulates movement of the first check valve 62 in the middle diameter portion 71. The O-ring 75 is to prevent the leakage flow from the gap between the outer peripheral surface of the first check valve 62 and the inner wall surface of the intake bypass channel 61. The first check valve 62 can be replaced by accessing through the second external opening 65 b of the large diameter portion 70 of the second bypass passage hole 65. In the replacement of the first check valve 62, the second plug 67 closing the second external opening 65b is removed, and a tool, for example, is used.
 上記構成の吸気バイパス系統60においては、直線状の第1バイパス流路孔64及び第2バイパス流路孔65を吸込み絞り弁2のハウジング41の壁部に穿つことで吸気バイパス流路61を形成することが可能なので、吸気バイパス流路61の製作が容易である。また、逆止弁付きの配管を吸込み絞り弁2のハウジング41に接続することで吸気バイパス系統(外部配管)を構成する場合と比較すると、配管、配管をハウジング41に接続する継手、逆止弁を配管に取り付ける継手が不要となる。 In the intake bypass system 60 configured as described above, the linear first bypass passage hole 64 and the second bypass passage hole 65 are drawn into the wall of the housing 41 of the throttle valve 2 to form the intake bypass passage 61. It is possible to easily manufacture the intake bypass channel 61. Further, as compared with the case where an intake bypass system (external pipe) is configured by connecting a pipe with a check valve to the housing 41 of the suction throttle valve 2, a joint that connects the pipe and the pipe to the housing 41, a check valve There is no need for fittings to attach to the piping.
 ところで、第1逆止弁62内に油等の液体が滞留していると、液体の影響により第1逆止弁62の弁体の応答性が低下して逆止不良が起こる虞がある。前述したように、給液式スクリュー圧縮機では、運転中に、高圧側の作動室と低圧側の作動室との圧力差によって、作動室内の圧縮気体中に含まれる液体が雄ロータ4と雌ロータ5の噛合い部の隙間からケーシング6内の吸込室28へ噴出する。本実施形態では、吸気バイパス系統60をハウジング41に内蔵する構成としたので、吸込室28に噴出した液体が吸気バイパス流路61内に侵入して第1逆止弁62の近傍に滞留する可能性がある。この場合、第1逆止弁62の逆止不良により、圧縮機の駆動停止時に吸込室28から吸気バイパス流路61を介した吸込み絞り弁2の一次側への液体の逆流を防止できないことが懸念される。 By the way, when a liquid such as oil remains in the first check valve 62, the responsiveness of the valve body of the first check valve 62 may be reduced due to the influence of the liquid, which may cause a non-return failure. As described above, in the liquid feed screw compressor, during operation, the pressure difference between the high pressure side working chamber and the low pressure side working chamber causes the liquid contained in the compressed gas in the working chamber to be the male rotor 4 and the female. It spouts to the suction chamber 28 in the casing 6 from the gap of the meshing portion of the rotor 5. In this embodiment, since the intake bypass system 60 is built in the housing 41, the liquid spouted into the suction chamber 28 may enter the intake bypass channel 61 and stay in the vicinity of the first check valve 62. There is sex. In this case, it is impossible to prevent the backflow of the liquid from the suction chamber 28 to the primary side of the suction throttle valve 2 via the intake bypass passage 61 when the driving of the compressor is stopped due to the non-return failure of the first check valve 62 I am concerned.
 そこで、本実施の形態においては、ケーシング6の吸込室28内において、吸気バイパス流路61の二次側開口部65aと雄雌ロータ4、5の噛合い部と間に第1遮蔽部76を設けている。第1遮蔽部76は、圧縮機の運転時に当該噛合い部から噴出する液体が吸気バイパス流路61へ侵入することを防止するものである。具体的な構造として、第1遮蔽部76は、例えば、雄ロータ4と雌ロータ5との噛合い部から吸気バイパス流路61の二次側開口部65aへと向かう線上に配置されており、二次側開口部65aを離間した状態で覆うように主ケーシング21の壁部から吸込室28側へ突出している。 Therefore, in the present embodiment, in the suction chamber 28 of the casing 6, the first shielding portion 76 is interposed between the secondary side opening 65a of the intake bypass passage 61 and the meshing portion of the male and female rotors 4 and 5. It is provided. The first shielding portion 76 prevents the liquid ejected from the meshing portion during the operation of the compressor from intruding into the intake bypass channel 61. As a specific structure, for example, the first shielding portion 76 is disposed on a line from the meshing portion between the male rotor 4 and the female rotor 5 to the secondary side opening 65 a of the intake bypass channel 61, It projects from the wall portion of the main casing 21 toward the suction chamber 28 so as to cover the secondary side opening 65 a in a separated state.
 次に、本発明の一実施の形態に係る給液式スクリュー圧縮機の油回収系統の詳細を図1~図4、図6を用いて説明する。図6は、図1の符号VIに示す一実施の形態に係る給液式スクリュー圧縮機の油回収系統の一部を拡大した状態で示す断面図である。図6において、図1~図5に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。 Next, the details of the oil recovery system of the liquid feeding screw compressor according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4 and FIG. FIG. 6 is a cross-sectional view showing an enlarged part of an oil recovery system of the liquid feed screw compressor according to the embodiment indicated by symbol VI in FIG. In FIG. 6, the same reference numerals as those shown in FIGS. 1 to 5 denote the same parts, so the detailed description thereof will be omitted.
 油回収系統80は、図1及び図3に示すように、軸封装置12から漏出した潤滑油を一時的に貯留可能な油貯留部としての回収溝部81と、回収溝部81とケーシング6内の吸込室28とを連通する油回収流路82と、油回収流路82内に配置された第2逆止弁83とを備えている。回収溝部81は、吸込側カバー23の内側面に、雄ロータ4の吸込側の軸部9の外周面側に沿うように設けられている。 As shown in FIGS. 1 and 3, the oil recovery system 80 includes a recovery groove portion 81 as an oil storage portion capable of temporarily storing the lubricating oil leaked from the shaft sealing device 12, the recovery groove portion 81 and the inside of the casing 6. An oil recovery passage 82 communicating with the suction chamber 28 and a second check valve 83 disposed in the oil recovery passage 82 are provided. The recovery groove portion 81 is provided on the inner side surface of the suction side cover 23 along the outer peripheral surface side of the shaft portion 9 on the suction side of the male rotor 4.
 油回収流路82は、図1~図4に示すように、ケーシング6の一部を構成する吸込側カバー23及び主ケーシング21の壁部内に設けられており、回収溝部81側に開口する貯留側開口部85a及び吸込室28側に開口する回収側開口部88aを有している。油回収流路82は、例えば、回収溝部81に連通する第1回収流路孔85と、第1回収流路孔85に連通する第2回収流路孔86と、第2回収流路孔86に連通する第3回収流路孔87と、第3回収流路孔87とケーシング6内の吸込室28とに連通する第4回収流路孔88とで構成されている。 The oil recovery flow path 82 is provided in the suction side cover 23 constituting a part of the casing 6 and the wall portion of the main casing 21 as shown in FIG. 1 to FIG. It has a side opening 85a and a collection side opening 88a that opens to the suction chamber 28 side. The oil recovery flow passage 82 includes, for example, a first recovery flow passage hole 85 communicating with the recovery groove portion 81, a second recovery flow passage hole 86 communicating with the first recovery flow passage hole 85, and a second recovery flow passage hole 86 The third recovery passage hole 87 communicates with the third recovery passage hole 87, and the fourth recovery passage hole 88 communicates with the third recovery passage hole 87 and the suction chamber 28 in the casing 6.
 第1回収流路孔85は、吸込側カバー23の壁部内に設けられている。第1回収流路孔85は、回収溝部81側の貯留側開口部85a及び吸込側カバー23の外部に開口する第3外部開口部85bを有し、円環状の回収溝部81の最下端部から回収溝部81の接線方向へ直線状に延在している。第1回収流路孔85の第3外部開口部85bには、第3プラグ90が着脱可能に取り付けられている。 The first recovery passage hole 85 is provided in the wall portion of the suction side cover 23. The first recovery passage hole 85 has a storage side opening 85 a on the side of the recovery groove 81 and a third external opening 85 b opened to the outside of the suction side cover 23, and from the lowermost end of the annular recovery groove 81 It extends linearly in the tangential direction of the recovery groove portion 81. The third plug 90 is detachably attached to the third outer opening 85 b of the first recovery passage hole 85.
 第2回収流路孔86は、吸込側カバー23及び主ケーシング21の壁部内に設けられている。第2回収流路孔86は、吸込側カバー23の外部に開口する第4外部開口部86aを有し、第1回収流路孔85に交差するように雄ロータ4の軸方向に沿って吐出側方向へ直線状に延在している。第2回収流路孔86の第4外部開口部86aには、第4プラグ91が着脱可能に取り付けられている。 The second recovery passage hole 86 is provided in the suction side cover 23 and the wall portion of the main casing 21. The second recovery passage hole 86 has a fourth external opening 86 a opening to the outside of the suction side cover 23, and discharges along the axial direction of the male rotor 4 so as to intersect the first recovery passage hole 85. It extends linearly in the lateral direction. The fourth plug 91 is detachably attached to the fourth outer opening 86 a of the second recovery passage hole 86.
 第3回収流路孔87は、主ケーシング21の壁部内に設けられている。第3回収流路孔87は、主ケーシング21の外部に開口する第5外部開口部87aを有し、第2回収流路孔86の端部から吸込み絞り弁2側(図2及び図4中、上側)へ向かって直線状に延在している。第3回収流路孔87の第5外部開口部87aには、第5プラグ92が着脱可能に取り付けられている。 The third recovery passage hole 87 is provided in the wall portion of the main casing 21. The third recovery passage hole 87 has a fifth external opening 87a opened to the outside of the main casing 21, and the suction throttle valve 2 side from the end of the second recovery passage hole 86 (in FIGS. 2 and 4) , And linearly extending). The fifth plug 92 is detachably attached to the fifth outer opening 87 a of the third recovery passage hole 87.
 第4回収流路孔88は、図4及び図6に示すように、主ケーシング21の壁部内に設けられている。第4回収流路孔88は、吸込室28側の回収側開口部88a及び主ケーシング21の外部に開口する第6外部開口部88bを有し、雄ロータ4よりも高い位置で第3回収流路孔87に交差するように水平方向へ直線状に延在している。第4回収流路孔88の第6外部開口部88bには、第6プラグ93が着脱可能に取り付けられている。 The fourth recovery passage hole 88 is provided in the wall portion of the main casing 21 as shown in FIGS. 4 and 6. The fourth recovery passage hole 88 has a recovery side opening 88 a on the suction chamber 28 side and a sixth external opening 88 b opened to the outside of the main casing 21, and a third recovery flow at a position higher than the male rotor 4. It extends in a straight line in the horizontal direction so as to intersect the passage hole 87. The sixth plug 93 is detachably attached to the sixth outer opening 88 b of the fourth recovery passage hole 88.
 第4回収流路孔88は、外部側に位置し第6外部開口部88bを有する大径部95と、大径部95に隣接する中径部96と、中径部96に隣接し吸込室28側の回収側開口部88aを有する小径部97とで構成されている。大径部95は、第2逆止弁83よりも径が大きい。中径部96は、大径部95よりも径が小さく、第2逆止弁83よりも僅かに径が大きい。小径部97は、第2逆止弁83よりも径が小さい。すなわち、第4回収流路孔88は、2段の段付き孔である。中径部96は、第2逆止弁83を配置する部分である。小径部97は、第2逆止弁83の吸込室28側への移動を規制するものである。大径部95の第6外部開口部88bは、第2逆止弁83の中径部96への挿入及び中径部96からの抜き取りを可能にするものである。大径部95は、第2逆止弁83の挿入及び抜き取りが容易となる径に形成されている。 The fourth recovery passage hole 88 is located on the outer side and has a large diameter portion 95 having a sixth outer opening 88b, a middle diameter portion 96 adjacent to the large diameter portion 95, and a suction chamber adjacent to the middle diameter portion 96. It is comprised by the small diameter part 97 which has the collection | recovery side opening part 88a of 28 side. The large diameter portion 95 is larger in diameter than the second check valve 83. The medium diameter portion 96 is smaller in diameter than the large diameter portion 95 and slightly larger in diameter than the second check valve 83. The small diameter portion 97 is smaller in diameter than the second check valve 83. That is, the fourth recovery passage hole 88 is a two-step stepped hole. The middle diameter portion 96 is a portion where the second check valve 83 is disposed. The small diameter portion 97 regulates movement of the second check valve 83 to the suction chamber 28 side. The sixth outer opening 88 b of the large diameter portion 95 enables insertion of the second check valve 83 into the middle diameter portion 96 and removal thereof from the middle diameter portion 96. The large diameter portion 95 is formed in a diameter that facilitates the insertion and removal of the second check valve 83.
 第1回収流路孔85は、吸込側カバー23の側方外面から回収溝部81の最下端部へ吸込側カバー23の壁部を貫通する横孔を穿つことで形成することが可能である。第2回収流路孔86は、吸込側カバー23の外面から雄ロータ4の軸方向に沿って主ケーシング21に亘る所定の長さの横孔を穿つことで形成することが可能である。第3回収流路孔87は、主ケーシング21の上方外面から下方向へ第2回収流路孔86の端部に到達するように縦孔を穿つことで形成することが可能である。第4回収流路孔88は、主ケーシング21の雄ロータ4側の側方外面からケーシング6内の吸込室28へ貫通する第1の横孔を設け、第1の横孔よりも孔径が大きい第2の横孔を第1の横孔と同軸上に吸込室28に貫通しないように設け、第2の横孔よりも孔径が大きい第3の横孔を第1の横孔と同軸上に第2の横孔よりも短く設けることで形成することが可能である。 The first recovery passage hole 85 can be formed by forming a lateral hole that penetrates the wall portion of the suction side cover 23 from the lateral outer surface of the suction side cover 23 to the lowermost end of the recovery groove portion 81. The second recovery passage hole 86 can be formed by drilling a horizontal hole of a predetermined length extending from the outer surface of the suction side cover 23 along the axial direction of the male rotor 4. The third recovery passage hole 87 can be formed by drilling a vertical hole to reach the end of the second recovery passage hole 86 from the upper outer surface of the main casing 21 downward. The fourth recovery passage hole 88 is provided with a first lateral hole penetrating from the side outer surface of the main casing 21 on the male rotor 4 side to the suction chamber 28 in the casing 6, and the hole diameter is larger than the first lateral hole. A second lateral hole is provided coaxially with the first lateral hole so as not to penetrate through the suction chamber 28, and a third lateral hole larger in diameter than the second lateral hole is coaxial with the first lateral hole. It can be formed by providing it shorter than the second horizontal hole.
 第2逆止弁83は、回収溝部81側から吸込室28側への流れを許可する一方、吸込室28側から回収溝部81側への流れを阻止するものである。すなわち、第2逆止弁83は、圧縮機の駆動停止時に圧縮機本体1の吐出側から吸込室28に逆流した液体が油回収流路82及び回収溝部81を介してケーシング6(吸込側カバー23)の外部へ漏出することを防止するものである。第2逆止弁83の外周面には、止め輪99及びOリング100が取り付けられている。止め輪99は、第2逆止弁83の中径部96内での移動を規制するものである。Oリング100は、第2逆止弁83の外周面と油回収流路82の内壁面との隙間からの漏れ流れを阻止するものである。第2逆止弁83は、第4回収流路孔88の大径部95の第6外部開口部88bを介してアクセスすることで交換が可能である。第2逆止弁83の交換では、第6外部開口部88bを閉塞する第6プラグ93を取り外し、例えば工具を用いる。 The second check valve 83 allows the flow from the side of the collection groove 81 to the side of the suction chamber 28 and blocks the flow from the side of the suction chamber 28 to the side of the collection groove 81. That is, in the second check valve 83, the liquid flowing back from the discharge side of the compressor main body 1 to the suction chamber 28 when the driving of the compressor is stopped flows through the oil recovery passage 82 and the recovery groove portion 81 to the casing 6 (suction side cover 23) to prevent leakage to the outside. A retaining ring 99 and an O-ring 100 are attached to the outer peripheral surface of the second check valve 83. The retaining ring 99 regulates movement of the second check valve 83 in the middle diameter portion 96. The O-ring 100 is to prevent the leakage flow from the gap between the outer circumferential surface of the second check valve 83 and the inner wall surface of the oil recovery passage 82. The second check valve 83 can be replaced by accessing through the sixth outer opening 88 b of the large diameter portion 95 of the fourth recovery passage hole 88. In the replacement of the second check valve 83, the sixth plug 93 closing the sixth external opening 88b is removed, and a tool, for example, is used.
 上記構成の油回収系統80においては、直線状の4つの第1回収流路孔85、第2回収流路孔86、第3回収流路孔87、第4回収流路孔88をケーシング6の壁部に穿つことで油回収流路82を形成することが可能なので、油回収流路82の製作が容易である。また、逆止弁付きの配管をケーシング6に接続することで油回収系統(外部配管)を構成する場合と比較すると、配管、配管をケーシング6に接続する継手、逆止弁を配管に取り付ける継手が不要となる。 In the oil recovery system 80 configured as described above, the four first recovery passage holes 85, the second recovery passage holes 86, the third recovery passage holes 87, and the fourth recovery passage holes 88 in the linear form are arranged in the casing 6. Since the oil recovery channel 82 can be formed by piercing the wall, the oil recovery channel 82 can be easily manufactured. Moreover, compared with the case where an oil recovery system (external piping) is configured by connecting a pipe with a check valve to the casing 6, a pipe connecting the pipe and the pipe to the casing 6 and a joint connecting the check valve to the pipe Is unnecessary.
 本実施形態では、油回収系統80をケーシング6に内蔵する構成としたので、前述した第1逆止弁62と同様に、吸込室28に噴出した液体が油回収流路82内に侵入して第2逆止弁83の近傍に滞留する可能性がある。この場合、第2逆止弁83の逆止不良により、圧縮機の駆動停止時に吸込室28から油回収流路82を介したケーシング6の外部への液体の逆流を防止できないことが懸念される。 In the present embodiment, since the oil recovery system 80 is built in the casing 6, the liquid spouted into the suction chamber 28 intrudes into the oil recovery flow path 82 as in the first check valve 62 described above. There is a possibility of staying in the vicinity of the second check valve 83. In this case, there is a concern that the backflow of the liquid from the suction chamber 28 to the outside of the casing 6 via the oil recovery passage 82 can not be prevented when the driving of the compressor is stopped due to the non-return failure of the second check valve 83. .
 そこで、本実施の形態においては、ケーシング6の吸込室28内において、油回収流路82の回収側開口部88aと雄雌ロータ4、5の噛合い部と間に第2遮蔽部101を設けている。第2遮蔽部101は、圧縮機の運転時に当該噛合い部から噴出する液体(図4中、矢印Aで示す)が油回収流路82内へ侵入することを防止するものである。具体的な構造として、第2遮蔽部101は、例えば、雄ロータ4と雌ロータ5との噛合い部から油回収流路82の回収側開口部88aへと向かう線上に配置されており、回収側開口部88aを離間した状態で覆うように主ケーシング21の壁部から吸込室28側へ突出している。 Therefore, in the present embodiment, in the suction chamber 28 of the casing 6, the second shielding portion 101 is provided between the recovery side opening 88a of the oil recovery flow path 82 and the meshing portion of the male and female rotors 4 and 5. ing. The second shielding portion 101 prevents the liquid (indicated by arrow A in FIG. 4) ejected from the meshing portion during operation of the compressor from intruding into the oil recovery flow path 82. As a specific structure, for example, the second shielding portion 101 is disposed on a line from the meshing portion between the male rotor 4 and the female rotor 5 to the recovery side opening 88a of the oil recovery flow path 82, It projects from the wall of the main casing 21 toward the suction chamber 28 so as to cover the side opening 88a in a separated state.
 次に、本発明の一実施の形態に係る給液式スクリュー圧縮機の起動時、ロード運転時、アンロード運転時、及び停止時の各作用を図1~図6を用いて説明する。 Next, each operation at the time of start-up, load operation, unload operation, and stop operation of the liquid feed type screw compressor according to the embodiment of the present invention will be described with reference to FIGS.
 第1に、圧縮機の起動時の作用を説明する。起動時では、吸込み絞り弁2を操作するための圧力源の圧力が低下しているので、図4に示す吸込み絞り弁2は、ばね49の付勢力によって閉止状態である。この状態で、圧縮機本体1の雄ロータ4及び雌ロータ5が起動すると、吸込み絞り弁2の一次側である吸込流路42から、吸込み絞り弁2のハウジング41の壁部に設けた吸気バイパス流路61及び吸気バイパス流路61内に配置された第1逆止弁62を介して、吸込み絞り弁2の二次側であるケーシング6内の吸込室28に少量の気体が流入する。この気体は、圧縮機本体1で圧縮され、圧縮機本体1の外部へ吐出される。この吐出された圧縮気体は、その一部が抽出されて吸込み絞り弁2の操作用の圧力源として用いられる。 First, the operation at the start of the compressor will be described. At the time of start-up, the pressure of the pressure source for operating the suction throttle valve 2 is reduced, so that the suction throttle valve 2 shown in FIG. In this state, when the male rotor 4 and the female rotor 5 of the compressor body 1 are activated, an intake bypass provided on the wall of the housing 41 of the suction throttle valve 2 from the suction flow path 42 on the primary side of the suction throttle valve 2 A small amount of gas flows into the suction chamber 28 in the casing 6 which is the secondary side of the suction throttle valve 2 via the flow passage 61 and the first check valve 62 disposed in the intake bypass flow passage 61. The gas is compressed by the compressor body 1 and discharged to the outside of the compressor body 1. A portion of the discharged compressed gas is extracted and used as a pressure source for operating the suction throttle valve 2.
 このように、圧縮機の起動時において、吸気が、吸込み絞り弁2の閉止状態の弁体47を迂回し、ハウジング41の壁部に設けた吸気バイパス流路61を介してケーシング6内の吸込室28に導入されるので、吸込み絞り弁2を操作する圧力源を圧縮機の起動時に確保することができる。 Thus, at the time of startup of the compressor, the intake bypasses the valve body 47 in the closed state of the intake throttle valve 2 and the suction in the casing 6 via the intake bypass channel 61 provided in the wall of the housing 41 Since it is introduced into the chamber 28, a pressure source for operating the suction throttle valve 2 can be secured at the start of the compressor.
 第2に、圧縮機のロード運転中の作用を説明する。ロード運転時では、高圧側の作動室内で圧縮された空気の一部が低圧側の作動室との圧力差により雄ロータ4と雌ロータ5との噛合い部の隙間から吸込室28内へ漏出する。図4に示すように、この圧縮空気の漏出に伴い、圧縮気体中に含まれる高温の液体の一部が当該噛合い部から吸込室28内へ放射状に噴出する。当該噛合い部から噴出した液体のうち、吸込み絞り弁2側(図4中、上側)へ噴出した液体が飛散用カバー32により遮蔽される。このため、噴出した高温の液体によって、吸込み絞り弁2から吸込室28へ流入した吸気の加熱を抑制できる。したがって、吸気の温度上昇による密度低下を抑制でき、圧縮機の性能の低下を抑制できる。 Secondly, the operation during the load operation of the compressor will be described. During the loading operation, a portion of the air compressed in the high pressure side working chamber leaks into the suction chamber 28 from the gap between the meshing portion of the male rotor 4 and the female rotor 5 due to the pressure difference with the low pressure side working chamber. Do. As shown in FIG. 4, with the leakage of the compressed air, part of the high-temperature liquid contained in the compressed gas radially spouts from the meshing portion into the suction chamber 28. Among the liquid ejected from the meshing portion, the liquid ejected to the suction throttle valve 2 side (upper side in FIG. 4) is shielded by the scattering cover 32. For this reason, it is possible to suppress the heating of the intake air flowing from the suction throttle valve 2 into the suction chamber 28 by the high temperature liquid that has been jetted out. Therefore, the decrease in density due to the temperature rise of the intake air can be suppressed, and the decrease in performance of the compressor can be suppressed.
 一方、当該噛合い部から噴出した液体の一部(図4中、矢印Aで示す)は、飛散用カバー32では遮蔽されずに吸込室28へ飛散する。本実施の形態の吸気バイパス系統60においては、図4及び図5に示すように、吸気バイパス流路61の二次側開口部65aを離間した状態で覆うように設けた第1遮蔽部76により、飛散した液体の吸気バイパス流路61内への侵入が阻止される。その結果、吸気バイパス流路61内の第1逆止弁62は、液体の滞留した状態に置かれることがない。したがって、液体に起因した応答性低下による第1逆止弁62の逆止不良の発生を防止できる。 On the other hand, a part of the liquid ejected from the meshing portion (indicated by arrow A in FIG. 4) is not shielded by the scattering cover 32 and is scattered into the suction chamber 28. In the intake bypass system 60 according to the present embodiment, as shown in FIGS. 4 and 5, the first shielding portion 76 is provided to cover the secondary side opening 65a of the intake bypass passage 61 in a separated state. The entry of the splashed liquid into the intake bypass channel 61 is prevented. As a result, the first check valve 62 in the intake bypass channel 61 is not placed in the stagnant state of the liquid. Therefore, it is possible to prevent the occurrence of the non-return failure of the first check valve 62 due to the decrease in responsiveness due to the liquid.
 また、本実施の形態の油回収系統80においては、吸気バイパス系統60と同様、図4及び図6に示すように、油回収流路82の回収側開口部88aを離間した状態で覆うように設けた第2遮蔽部101により、飛散した液体の油回収流路82内への侵入が阻止される。その結果、油回収流路82内の第2逆止弁83は、液体の滞留した状態に置かれることがない。したがって、液体に起因した応答性低下による第2逆止弁83の逆止不良の発生を防止できる。 Further, in the oil recovery system 80 according to the present embodiment, as shown in FIGS. 4 and 6, as in the intake bypass system 60, the recovery side opening 88a of the oil recovery passage 82 is covered in a separated state. The second shielding portion 101 provided prevents the scattered liquid from intruding into the oil recovery flow path 82. As a result, the second check valve 83 in the oil recovery channel 82 is not placed in the stagnant state of the liquid. Therefore, it is possible to prevent the occurrence of the non-return failure of the second check valve 83 due to the decrease in responsiveness due to the liquid.
 第3に、圧縮機のアンロード運転時の作用について説明する。本実施の形態においては、軸封装置12から漏出した潤滑油をケーシング6の吸込室28(吸込み絞り弁2の二次側)に回収するために、アンロード運転を定期的に実施する。 Third, the operation during unloading operation of the compressor will be described. In the present embodiment, in order to recover the lubricating oil leaking from the shaft sealing device 12 to the suction chamber 28 (secondary side of the suction throttle valve 2) of the casing 6, the unloading operation is periodically performed.
 具体的には、図1に示す圧縮機本体1の吐出側の圧縮空気系統の圧力を低下させると共に、吸込み絞り弁2を完全に閉止した状態にする。この状態で雄雌両ロータ4、5の回転を継続させることで、吸込み絞り弁2の二次側(ケーシング6内の吸込室28)が真空に近い負圧となる。一方、軸封装置12から漏出した潤滑油を貯留している回収溝部81は、図3に示すように、雄ロータ4の吸込側の軸部9とケーシング6(吸込側カバー23)と隙間を介してケーシング6の外部と連通しているので、ケーシング6の外部雰囲気の気圧(通常は大気圧)と略同じである。したがって、回収溝部81内に貯留している潤滑油は、回収溝部81と吸込み絞り弁2の二次側との差圧を駆動力として、図1及び図2に示すケーシング6の壁部に設けた油回収流路82及び油回収流路82内に配置された第2逆止弁83を介して、ケーシング6内の吸込室28に回収される。このように、アンロード運転を定期的に実施することで、軸封装置12から漏出した潤滑油を吸込み絞り弁2の二次側に回収することができる。 Specifically, the pressure of the compressed air system on the discharge side of the compressor body 1 shown in FIG. 1 is reduced and the suction throttle valve 2 is completely closed. By continuing the rotation of both the male and female rotors 4 and 5 in this state, the secondary side (the suction chamber 28 in the casing 6) of the suction throttle valve 2 has a negative pressure close to vacuum. On the other hand, as shown in FIG. 3, the recovery groove portion 81 storing the lubricating oil leaking from the shaft sealing device 12 has a clearance between the shaft portion 9 on the suction side of the male rotor 4 and the casing 6 (suction side cover 23). Since it is in communication with the outside of the casing 6, the pressure is substantially the same as the atmospheric pressure (usually atmospheric pressure) of the atmosphere outside the casing 6. Therefore, the lubricating oil stored in the recovery groove portion 81 is provided on the wall portion of the casing 6 shown in FIGS. 1 and 2 by using a differential pressure between the recovery groove portion 81 and the secondary side of the suction throttle valve 2 as a driving force. The oil is recovered in the suction chamber 28 in the casing 6 via the oil recovery flow path 82 and the second check valve 83 disposed in the oil recovery flow path 82. Thus, the lubricating oil leaking from the shaft sealing device 12 can be recovered to the secondary side of the suction throttle valve 2 by periodically performing the unloading operation.
 第4に、圧縮機の駆動停止時の作用について説明する。駆動中の圧縮機を停止すると、圧縮機本体1の吐出側の圧縮気体が吸込側へ圧力差により瞬時に逆流する。さらに、圧縮気体の逆流に伴い、圧縮気体中に含まれる液体も同時に吸込側へ逆流する。 Fourth, the operation at the time of driving stop of the compressor will be described. When the compressor being driven is stopped, the compressed gas on the discharge side of the compressor body 1 instantaneously flows back to the suction side due to the pressure difference. Furthermore, with the backflow of the compressed gas, the liquid contained in the compressed gas also flows back to the suction side at the same time.
 このとき、ケーシング6内の吸込室28に逆流した圧縮空気によって、図4に示す吸込み絞り弁2の弁体47がロッド46に沿って上流側の弁座44までスライドし、弁座44が閉塞される。すなわち、吸込み絞り弁2は、逆流した圧縮空気により自動的に閉止状態となる。これにより、圧縮機の駆動停止時における吸込み絞り弁2の一次側への圧縮空気及び液体の逆流が防止される。 At this time, the valve body 47 of the suction throttle valve 2 shown in FIG. 4 slides to the upstream valve seat 44 along the rod 46 by the compressed air flowing back to the suction chamber 28 in the casing 6, and the valve seat 44 is closed. Be done. That is, the suction throttle valve 2 is automatically closed by the backflowed compressed air. Thereby, the backflow of the compressed air and the liquid to the primary side of the suction throttle valve 2 at the time of the driving stop of the compressor is prevented.
 また、吸込室28内に逆流した圧縮空気は、吸気バイパス流路61を介して吸込み絞り弁2の吸込流路42(吸込み絞り弁2の一次側)へ逆流しようとする。本実施の形態においては、この逆流を吸気バイパス流路61内に配置した第1逆止弁62によって阻止する。前述したように、ロード運転中に吸込室28内へ噴出した液体は吸気バイパス流路61内に滞留しにくい。したがって、第1逆止弁62は、ロード運転時の液体の滞留による応答性の低下が生じにくく、圧縮機の駆動停止時に吸込室28側へ瞬時に逆流する圧縮空気及び液体に対して応答可能である。つまり、吸込室28内に逆流した圧縮空気の吸込み絞り弁2の一次側へ逆流を阻止することができる。 Further, the compressed air that has flowed back into the suction chamber 28 tends to flow back to the suction flow path 42 (primary side of the suction throttle valve 2) of the suction throttle valve 2 via the intake bypass flow path 61. In the present embodiment, the reverse flow is blocked by the first check valve 62 disposed in the intake bypass passage 61. As described above, the liquid spouted into the suction chamber 28 during the load operation is unlikely to stay in the suction bypass channel 61. Therefore, the first check valve 62 is less likely to cause a drop in responsiveness due to liquid retention during load operation, and can respond to compressed air and liquid that instantaneously flows back to the suction chamber 28 side when the compressor is stopped. It is. That is, it is possible to prevent the backflow to the primary side of the suction throttle valve 2 of the compressed air that has flowed back into the suction chamber 28.
 また、吸込室28内に逆流した圧縮空気は、油回収流路82を介してケーシング6(吸込側カバー23)の外部へ逆流しようとする。本実施の形態においては、この逆流を油回収流路82内に配置した第2逆止弁83よって阻止する。前述したように、ロード運転中に吸込室28内へ噴出した液体が油回収流路82内に滞留しにくい。したがって、第2逆止弁83は、ロード運転時の液体の滞留による応答性の低下が生じにくく、圧縮機の駆動停止時に吸込室28側へ瞬時に逆流する圧縮空気及び液体に対して応答可能である。つまり、吸込室28内に逆流した圧縮空気のケーシング6の外部への逆流を阻止することができる。 Further, the compressed air that has flowed back into the suction chamber 28 tends to flow back to the outside of the casing 6 (the suction side cover 23) via the oil recovery flow path 82. In the present embodiment, this backflow is blocked by the second check valve 83 disposed in the oil recovery flow path 82. As described above, the liquid spouted into the suction chamber 28 during the loading operation is unlikely to stay in the oil recovery flow path 82. Therefore, the second check valve 83 is less likely to cause a drop in responsiveness due to liquid retention during load operation, and can respond to compressed air and liquid that instantaneously flows back to the suction chamber 28 side when the compressor is stopped. It is. That is, it is possible to prevent the backflow of the compressed air flowing back into the suction chamber 28 to the outside of the casing 6.
 本発明の一実施の形態によれば、吸込み絞り弁2の吸込流路42(吸込み絞り弁2の一次側)とケーシング6内の吸込室28(吸込み絞り弁2の二次側)とを連通する吸気バイパス流路61を吸込み絞り弁2のハウジング41の壁部に設け、吸気バイパス流路61内に第1逆止弁62を配置し、ハウジング41の外部に開口する吸気バイパス流路61の第2外部開口部65bを介して第1逆止弁62の挿入及び抜き取りを可能としたので、吸気バイパス系統60を外部配管の利点を損なうことなくパイプレス構造にすることができる。したがって、圧縮機の振動に起因した亀裂の発生を懸念する必要がない。また、外部配管の系統と比較すると、部品点数の低減及びそれに伴うコストの低減が可能である。さらに、パイプレス構造により圧縮機本体の空間的な占有が低下し、移動時の破損といった虞も低減し取扱いの利便性も向上する。 According to one embodiment of the present invention, the suction passage 42 (primary side of the suction throttle valve 2) of the suction throttle valve 2 and the suction chamber 28 (secondary side of the suction throttle valve 2) in the casing 6 are communicated Of the intake bypass passage 61 provided in the wall of the housing 41 of the intake throttle valve 2, the first check valve 62 is disposed in the intake bypass passage 61, and opened to the outside of the housing 41. Since the first check valve 62 can be inserted and removed through the second external opening 65b, the intake bypass system 60 can be pipeless without losing the advantage of the external piping. Therefore, there is no need to worry about the occurrence of cracks due to compressor vibrations. Moreover, compared with the system of external piping, the reduction of a number of parts and the cost reduction accompanying it are possible. Furthermore, the pipeless structure reduces the spatial occupancy of the compressor body, reduces the possibility of breakage during movement, and also improves the convenience of handling.
 また、本実施の形態によれば、吸気バイパス流路61の二次側開口部65aと雄雌ロータ4、5の噛合い部との間に、二次側開口部65aを離間した状態で覆うように第1遮蔽部76を設けたので、圧縮機の運転時に当該噛合い部から噴出する液体の吸気バイパス流路61への侵入を抑制することができる。したがって、吸気バイパス流路61内に配置した第1逆止弁62の近傍における液体の滞留が抑制されるので、第1逆止弁62の逆止不良を防止できる。つまり、第1逆止弁62の信頼性を確実に確保することができる。 Further, according to the present embodiment, the secondary side opening 65 a is covered in a separated state between the secondary side opening 65 a of the intake bypass flow passage 61 and the meshing portion of the male and female rotors 4 and 5. As described above, since the first shielding portion 76 is provided, it is possible to suppress the entry of the liquid ejected from the meshing portion during the operation of the compressor into the intake bypass channel 61. Therefore, the stagnation of the liquid in the vicinity of the first check valve 62 disposed in the intake bypass flow passage 61 is suppressed, so that the non-return failure of the first check valve 62 can be prevented. That is, the reliability of the first check valve 62 can be reliably ensured.
 さらに、本実施の形態によれば、第1逆止弁62を配置する直線状の第2バイパス流路孔65を、第2外部開口部65bを有し第1逆止弁62よりも径が大きい大径部70と、大径部70に隣接し、大径部70よりも径が小さく第1逆止弁62よりも径が大きい中径部71と、中径部71に隣接し、第1逆止弁62よりも径が小さい小径部72とで構成したので、第1逆止弁62の交換時に、第1逆止弁62の第2バイパス流路孔65内での位置決めが容易で、かつ、第1逆止弁62の第2外部開口部65bを介した挿入及び抜き取りが容易である。すなわち、第1逆止弁62を極めて容易に交換することができる。 Furthermore, according to the present embodiment, the linear second bypass passage hole 65 for arranging the first check valve 62 has the second outer opening 65 b and has a diameter larger than that of the first check valve 62. A large diameter portion 70 and an intermediate diameter portion 71 adjacent to the large diameter portion 70 and having a diameter smaller than the large diameter portion 70 and larger than the first check valve 62 and adjacent to the intermediate diameter portion 71; Since the small diameter portion 72 having a smaller diameter than the one check valve 62 is configured, the positioning of the first check valve 62 in the second bypass passage hole 65 is easy when the first check valve 62 is replaced. Also, the insertion and removal of the first check valve 62 through the second external opening 65 b is easy. That is, the first check valve 62 can be replaced very easily.
 加えて、本実施の形態によれば、吸込み絞り弁2のハウジング41の外部に開口する外部開口部64b、65bを有する2つの(複数)の直線状の第1バイパス流路孔64及び第2バイパス流路孔65で吸気バイパス流路61を構成したので、ハウジング41の壁部に孔を複数穿つことで吸気バイパス流路61を形成することが可能である。したがって、吸気バイパス系統60の製作コストの更なる低減を図ることができる。 In addition, according to the present embodiment, two (plural) linear first bypass passage holes 64 and the second (two or more) having the external openings 64b and 65b opened to the outside of the housing 41 of the suction throttle valve 2 and Since the intake bypass channel 61 is constituted by the bypass channel holes 65, the intake bypass channel 61 can be formed by forming a plurality of holes in the wall portion of the housing 41. Therefore, the manufacturing cost of intake bypass system 60 can be further reduced.
 また、本実施の形態によれば、回収溝部81(油貯留部)と吸込室28とを連通する油回収流路82をケーシング6の壁部に設け、油回収流路82内に第2逆止弁83を配置し、ケーシング6の外部に開口する油回収流路82の第6外部開口部88bを介して第2逆止弁83の挿入及び抜き取りを可能としたので、油回収系統80を外部配管の利点を損なうことなくパイプレス構造にすることができる。したがって、圧縮機の振動に起因した亀裂の発生を懸念する必要がない。また、外部配管の系統と比較すると、部品点数の低減及びそれに伴うコストの低減が可能である。さらに、パイプレス構造により圧縮機本体の空間的な占有が低下し、移動時の破損といった虞も低減し取扱いの利便性も向上する。 Further, according to the present embodiment, the oil recovery passage 82 communicating the recovery groove portion 81 (oil storage portion) with the suction chamber 28 is provided in the wall portion of the casing 6, and the second reverse Since the stop valve 83 is disposed and the second check valve 83 can be inserted and extracted through the sixth external opening 88 b of the oil recovery flow path 82 opened to the outside of the casing 6, the oil recovery system 80 A pipeless structure can be made without losing the advantage of the external piping. Therefore, there is no need to worry about the occurrence of cracks due to compressor vibrations. Moreover, compared with the system of external piping, the reduction of a number of parts and the cost reduction accompanying it are possible. Furthermore, the pipeless structure reduces the spatial occupancy of the compressor body, reduces the possibility of breakage during movement, and also improves the convenience of handling.
 さらに、本実施の形態によれば、油回収流路82の回収側開口部88aと雄雌ロータ4、5の噛合い部との間に、回収側開口部88aを離間した状態で覆うように第2遮蔽部101を設けたので、圧縮機の運転時に当該噛合い部から噴出する液体の油回収流路82への侵入を抑制することができる。したがって、油回収流路82内に配置した第2逆止弁83の近傍における液体の滞留が抑制されるので、第2逆止弁83の逆止不良を防止できる。つまり第2逆止弁83の信頼性を確実に確保することができる。 Furthermore, according to the present embodiment, the recovery side opening 88a is covered in a separated state between the recovery side opening 88a of the oil recovery flow path 82 and the meshing portion of the male and female rotors 4 and 5. Since the second shielding portion 101 is provided, it is possible to suppress the entry of the liquid ejected from the meshing portion during the operation of the compressor into the oil recovery flow path 82. Therefore, the stagnation of the liquid in the vicinity of the second check valve 83 disposed in the oil recovery flow path 82 is suppressed, so that the non-return failure of the second check valve 83 can be prevented. That is, the reliability of the second check valve 83 can be reliably ensured.
 加えて、本実施の形態によれば、第2逆止弁83を配置する直線状の第4回収流路孔88を、第6外部開口部88bを有し、第2逆止弁83よりも径が大きい大径部95と、大径部95に隣接し、大径部95よりも径が小さく第2逆止弁83よりも径が大きい中径部96と、中径部96に隣接し、第2逆止弁83よりも径が小さい小径部97とにより構成したので、第2逆止弁83の交換時に、第2逆止弁83の第4回収流路孔88内での位置決めが容易で、かつ、第2逆止弁83の第6外部開口部88bを介した挿入及び抜き取りが容易である。すなわち、第2逆止弁83を極めて容易に交換することができる。 In addition, according to the present embodiment, the linear fourth recovery passage hole 88 for disposing the second check valve 83 is provided with the sixth external opening 88 b, and the second recovery valve hole 88 is smaller than the second check valve 83. Adjacent to the large diameter portion 95 having the large diameter and the medium diameter portion 96 adjacent to the large diameter portion 95 and having a diameter smaller than the large diameter portion 95 and larger than the second check valve 83; Since the second check valve 83 is replaced by the small diameter portion 97 having a smaller diameter than the second check valve 83, the positioning of the second check valve 83 in the fourth recovery passage hole 88 is It is easy and easy to insert and remove the second check valve 83 through the sixth outer opening 88b. That is, the second check valve 83 can be replaced very easily.
 また、本実施の形態によれば、ケーシング6の外部に開口する外部開口部85b、86a、87a、88bを有する4つの(複数)の直線状の第1回収流路孔85、第2回収流路孔86、第3回収流路孔87、第4回収流路孔88によって油回収流路82を構成したので、ケーシング6の壁部に孔を複数穿つことで油回収流路82を形成することが可能である。したがって、油回収系統80の製作コストの更なる低減を図ることができる。 Further, according to the present embodiment, four (plural) linear first recovery passage holes 85 having the external openings 85b, 86a, 87a, 88b opened to the outside of the casing 6, a second recovery flow Since the oil recovery passage 82 is constituted by the passage hole 86, the third recovery passage hole 87, and the fourth recovery passage hole 88, the oil recovery passage 82 is formed by forming a plurality of holes in the wall portion of the casing 6. It is possible. Therefore, the manufacturing cost of the oil recovery system 80 can be further reduced.
 さらに、本実施の形態によれば、雄ロータ4よりも高い位置で、かつ、油回収流路82内における貯留側開口部85aよりも回収側開口部88aに近い位置に第2逆止弁83を配置したので、軸封装置12から漏出した潤滑油が回収溝部81から溢れたとしても、第2逆止弁83が軸封装置12から漏出した潤滑油により影響を受けることがない。したがって、第2逆止弁83の信頼性を確保することができる。 Furthermore, according to the present embodiment, the second check valve 83 is positioned higher than the male rotor 4 and closer to the recovery side opening 88a than the storage side opening 85a in the oil recovery flow path 82. Therefore, even if the lubricating oil leaked from the shaft seal device 12 overflows the recovery groove 81, the second check valve 83 is not affected by the lubricant oil leaked from the shaft seal device 12. Therefore, the reliability of the second check valve 83 can be secured.
 [その他の実施の形態]
  なお、上述した一実施の形態においては、本発明を雌雄一対のスクリューロータに適用した例を示したが、本発明をシングルロータやトリプルロータ型のスクリュー圧縮機に適用することも可能である。
[Other Embodiments]
In the above-described embodiment, an example in which the present invention is applied to a male and female screw rotor is shown, but the present invention can also be applied to a single rotor or triple rotor type screw compressor.
 また、本発明は本実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 Further, the present invention is not limited to the present embodiment, and includes various modifications. The embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. For example, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
 例えば、上述した一実施の形態においては、第1逆止弁62及び第2逆止弁83を取り付けるために、止め輪74、99を用いた構成の例を示したが、止め輪74、99の代わりに歯付座金を用いる構成も可能である。また、第1逆止弁62及び第2逆止弁83の外周部にねじを切ると共に、第1逆止弁62及び第2逆止弁83を配置する流路孔65、88の内周面にねじを切ることで、第1逆止弁及び第2逆止弁を着脱可能に取り付ける構成も可能である。 For example, in the above-described embodiment, an example of the configuration using the snap rings 74 and 99 for attaching the first check valve 62 and the second check valve 83 is shown. A configuration using a toothed washer instead of the above is also possible. Moreover, while screwing in the outer peripheral part of the 1st non-return valve 62 and the 2nd non-return valve 83, the inner peripheral surface of the flow-path holes 65 and 88 which arrange | positions the 1st non-return valve 62 and the 2nd non-return valve 83. It is also possible that the first check valve and the second check valve are detachably mounted by screwing the screw.
 また、上述した一実施の形態においては、吸気バイパス流路61を第1バイパス流路孔64と第2バイパス流路孔65の2つの流路孔で構成した例を示したが、吸込み絞り弁2のハウジング41の壁部の形状に応じて3つ以上の流路孔により構成することも可能である。同様に、油回収流路82を第1回収流路孔85、第2回収流路孔86、第3回収流路孔87、第4回収流路孔88の4つの流路孔で構成した例を示したが、ケーシング6の壁部の形状に応じて任意の複数の流路孔により構成することも可能である。 In the above-described embodiment, the intake bypass passage 61 is constituted by two passage holes of the first bypass passage hole 64 and the second bypass passage hole 65. However, the intake throttle valve Depending on the shape of the wall portion of the second housing 41, three or more flow path holes may be used. Similarly, an example in which the oil recovery flow passage 82 is configured by four flow passage holes of a first recovery flow passage hole 85, a second recovery flow passage hole 86, a third recovery flow passage hole 87, and a fourth recovery flow passage hole 88 However, depending on the shape of the wall portion of the casing 6, it is also possible to configure by any plurality of flow passage holes.
 また、上述した一実施の形態においては、吸気バイパス流路61の第2バイパス流路孔65に第1逆止弁62を配置する例を示したが、第1逆止弁62の配置位置は、圧縮機の運転時に雄雌ロータ4、5の噛合い部から噴出する液体の滞留が生じない吸気バイパス流路61内の領域において任意である。同様に、油回収流路82の第4回収流路孔88に第2逆止弁83を配置する例を示したが、第2逆止弁83の配置位置は、圧縮機の運転時に雄雌ロータ4、5の噛合い部から噴出する液体の滞留が生じない油回収流路82内の領域で、かつ、軸封装置12から漏出した潤滑油の影響を受けない油回収流路82内の領域において任意である。 In the embodiment described above, the first check valve 62 is disposed in the second bypass passage hole 65 of the intake bypass passage 61, but the arrangement position of the first check valve 62 is It is optional in the region in the intake bypass channel 61 where the liquid ejected from the meshing portion of the male and female rotors 4 and 5 does not stagnate when the compressor is operated. Similarly, although an example in which the second check valve 83 is disposed in the fourth recovery passage hole 88 of the oil recovery passage 82 has been shown, the arrangement position of the second check valve 83 is determined by the male and female at the time of operation of the compressor. In the area within the oil recovery flow path 82 in which the retention of the liquid ejected from the meshing portion of the rotors 4 and 5 does not occur, and in the oil recovery flow path 82 not affected by the lubricating oil leaking from the shaft sealing device 12 It is optional in the area.
 また、上述した一実施の形態においては、吸込室28内に第1遮蔽部76を設けた構成の例を示したが、圧縮機の運転時に吸込室28に噴出する液体が侵入しにくい位置で吸気バイパス流路61をハウジング41に内蔵化できる場合には、第1遮蔽部76を省略することができる。同様に、吸込室28内に第2遮蔽部101を設けた構成の例を示したが、吸込室28に噴出する液体が侵入しにくい位置で油回収流路82をケーシング6に内蔵化できる場合には、第2遮蔽部101を省略することができる。 In the embodiment described above, an example of the configuration in which the first shielding portion 76 is provided in the suction chamber 28 is shown, but at a position where the liquid spouted into the suction chamber 28 does not easily enter during operation of the compressor. When the intake bypass channel 61 can be incorporated in the housing 41, the first shielding portion 76 can be omitted. Similarly, although the example of the structure which provided the 2nd shielding part 101 in the suction chamber 28 was shown, when the oil collection | recovery flow path 82 can be incorporated in the casing 6 in the position where the liquid which ejects into the suction chamber 28 does not easily invade. The second shielding unit 101 can be omitted.
 2…吸込み絞り弁、 4…雄ロータ(スクリューロータ)、 5…雌ロータ(スクリューロータ)、 6…ケーシング、 9…軸部、 10…吸入側軸受(軸受)、 12…軸封装置、 16…吸入側軸受(軸受)、 27…吸込口、 28…吸込室、 41…ハウジング、 42…吸込流路、 60…吸気バイパス系統、 61…吸気バイパス流路、 62…第1逆止弁、 64…第1バイパス流路孔(バイパス流路孔)、 64a…一次側開口部(第1開口部)、 64b…第1外部開口部(外部開口部)、 65…第2バイパス流路孔(バイパス流路孔)、 65a…二次側開口部(第2開口部)、 65b…第2外部開口部(第3開口部、外部開口部)、 70…大径部、 71…中径部、 72…小径部、 76…第1遮蔽部(遮蔽部)、 80…油回収系統、 81…回収溝部(油貯留部)、 82…油回収流路、 83…第2逆止弁(逆止弁)、 85…第1回収流路孔(回収流路孔)、 85a…貯留側開口部(第4開口部、第1開口部)、 85b…第3外部開口部(外部開口部)、 86…第2回収流路孔(回収流路孔)、 86a…第4外部開口部(外部開口部)、 87…第3回収流路孔(回収流路孔)、 87a…第5外部開口部(外部開口部)、 88…第4回収流路孔(回収流路孔)、 88a…回収側開口部(第5開口部、第2開口部)、 88b…第6外部開口部(第6開口部、第3開口部、外部開口部)、 95…大径部、 96…中径部、 97…小径部、 101…第2遮蔽部(遮蔽部)。 2 ... suction throttle valve, 4 ... male rotor (screw rotor), 5 ... female rotor (screw rotor), 6 ... casing, 9 ... shaft portion, 10 ... suction side bearing (bearing), 12 ... shaft sealing device, 16 ... Suction side bearing (bearing), 27 ... suction port, 28 ... suction chamber, 41 ... housing, 42 ... suction flow path, 60 ... intake bypass system, 61 ... intake bypass flow path, 62 ... first check valve, 64 ... First bypass flow passage hole (bypass flow passage hole), 64a: primary side opening (first opening), 64b: first external opening (outside opening), 65: second bypass flow passage (bypass flow) Road hole), 65a ... secondary side opening (second opening), 65b ... second external opening (third opening, external opening) 70 ... large diameter, 71 ... middle diameter, 72 ... Small diameter portion, 76 ... first shielding portion ( Covered portion) 80: Oil recovery system 81: Recovery groove portion (oil storage portion) 82: Oil recovery flow passage 83: Second check valve (check valve) 85: First recovery flow passage hole (recovery Flow path hole), 85a ... storage side opening (fourth opening, first opening), 85b ... third external opening (outside opening), 86 ... second recovery flow path hole (recovery flow path hole) 86a ... fourth external opening (external opening), 87 ... third recovery channel hole (recovery channel hole), 87a ... fifth external aperture (external opening), 88 ... fourth recovery channel hole (Recovery flow passage hole) 88a: recovery side opening (fifth opening, second opening) 88b: sixth external opening (sixth opening, third opening, external opening) 95: Large diameter portion 96 Medium diameter portion 97 Small diameter portion 101 Second shielding portion (shielding portion).

Claims (10)

  1.  気体を圧縮するためのスクリューロータと、
     前記スクリューロータを回転可能に支持する軸受と、
     前記スクリューロータ及び前記軸受を収納すると共に、気体を吸い込む吸込口及び前記吸込口に接続する吸込室を有するケーシングと、
     前記吸込口に設置され、前記吸込口に連通する吸込流路を形成するハウジングを有する吸込み絞り弁と、
     前記吸込み絞り弁の一次側と二次側とを連通する吸気バイパス系統とを備え、
     前記吸気バイパス系統は、
     前記ハウジングの壁部に設けられ、前記吸込み絞り弁の一次側に開口する第1開口部及び二次側に開口する第2開口部を有する吸気バイパス流路と、
     前記吸気バイパス流路内に配置され、前記吸込み絞り弁の一次側から二次側への流れを許可する一方、前記吸込み絞り弁の二次側から一次側への流れを阻止する第1逆止弁とを有し、
     前記吸気バイパス流路は、前記ハウジングの外部に開口し、前記第1逆止弁の挿入及び抜き取りが可能な第3開口部を有する
     ことを特徴とする給液式スクリュー圧縮機。
    A screw rotor for compressing the gas,
    A bearing rotatably supporting the screw rotor;
    A casing which accommodates the screw rotor and the bearing and has a suction port for sucking in gas and a suction chamber connected to the suction port;
    A suction throttle valve having a housing disposed at the suction port and forming a suction flow passage communicating with the suction port;
    An intake bypass system that communicates the primary side and the secondary side of the suction throttle valve;
    The intake bypass system is
    An intake bypass channel provided on a wall of the housing and having a first opening opening on the primary side of the suction throttle valve and a second opening opening on the secondary side;
    A first non-return valve disposed in the intake bypass passage to allow flow from the primary side to the secondary side of the suction throttle valve while blocking flow from the secondary side to the primary side of the suction throttle valve With a valve,
    The fluid intake screw compressor, wherein the intake bypass passage has a third opening that is open to the outside of the housing and in which the first check valve can be inserted and extracted.
  2.  請求項1に記載の給液式スクリュー圧縮機において、
     前記吸気バイパス流路の前記第2開口部と、前記スクリューロータとの間に、前記第2開口部を離間した状態で覆うように設けられた遮蔽部を更に備える
     ことを特徴とする給液式スクリュー圧縮機。
    In the liquid feed screw compressor according to claim 1,
    The liquid supply system according to claim 1, further comprising: a shielding portion provided between the second opening of the intake bypass flow path and the screw rotor so as to cover the second opening in a separated state. Screw compressor.
  3.  請求項1に記載の給液式スクリュー圧縮機において、
     前記吸気バイパス流路は、前記第3開口部を有し、前記第1逆止弁が配置される直線状のバイパス流路孔を含み、
     前記バイパス流路孔は、
     前記第3開口部を有し、前記第1逆止弁よりも径が大きい大径部と、
     前記大径部に隣接し、前記大径部よりも径が小さく前記第1逆止弁よりも径が大きい中径部と、
     前記中径部に隣接し、前記第1逆止弁よりも径が小さい小径部とで構成されている
     ことを特徴とする給液式スクリュー圧縮機。
    In the liquid feed screw compressor according to claim 1,
    The intake bypass channel includes a straight bypass channel hole having the third opening and in which the first check valve is disposed,
    The bypass passage hole is
    A large diameter portion having the third opening and having a diameter larger than that of the first check valve;
    An intermediate diameter portion adjacent to the large diameter portion and having a diameter smaller than the large diameter portion and larger than the first check valve;
    A liquid feed type screw compressor comprising: a small diameter portion adjacent to the middle diameter portion and smaller in diameter than the first check valve.
  4.  請求項1に記載の給液式スクリュー圧縮機において、
     前記吸気バイパス流路は、直線状に延在する複数のバイパス流路孔で構成され、
     前記複数のバイパス流路孔は、前記ハウジングの外部に開口する外部開口部をそれぞれ有する
     ことを特徴とする給液式スクリュー圧縮機。
    In the liquid feed screw compressor according to claim 1,
    The intake bypass channel is composed of a plurality of linearly extending bypass channel holes,
    The plurality of bypass passage holes each have an external opening that opens to the outside of the housing.
  5.  請求項1~4のいずれか1項に記載の給液式スクリュー圧縮機において、
     前記スクリューロータの軸部と前記ケーシングとの隙間を封止する軸封装置と、
     前記軸封装置から漏出した潤滑油を前記吸込室に回収する油回収系統とを更に備え、
     前記油回収系統は、
     前記ケーシング内に設けられ、前記軸封装置から漏出した潤滑油を一時的に貯留可能な油貯留部と、
     前記ケーシングの壁部に設けられ、前記油貯留部側に開口する第4開口部及び前記吸込室側に開口する第5開口部を有する油回収流路と、
     前記油回収流路内に配置され、前記油貯留部側から前記吸込室側への流れを許可する一方、前記吸込室側から前記油貯留部側への流れを阻止する第2逆止弁とを有し、
     前記油回収流路は、前記ケーシングの外部に開口し、前記第2逆止弁の挿入及び抜き取りが可能な第6開口部を有する
     ことを特徴とする給液式スクリュー圧縮機。
    The liquid feed screw compressor according to any one of claims 1 to 4, wherein
    A shaft seal device for sealing a gap between the shaft portion of the screw rotor and the casing;
    An oil recovery system for recovering the lubricating oil leaked from the shaft sealing device into the suction chamber;
    The oil recovery system is
    An oil storage portion provided in the casing and capable of temporarily storing the lubricating oil leaking from the shaft sealing device;
    An oil recovery channel provided at a wall portion of the casing and having a fourth opening opening to the oil storage portion side and a fifth opening opening to the suction chamber side;
    A second check valve disposed in the oil recovery flow path, permitting flow from the oil storage portion side to the suction chamber side, and blocking flow from the suction chamber side to the oil storage portion side; Have
    The fluid recovery screw compressor, wherein the oil recovery passage has a sixth opening that is open to the outside of the casing and in which the second check valve can be inserted and extracted.
  6.  気体を圧縮するためのスクリューロータと、
     前記スクリューロータを回転可能に支持し、潤滑油が供給される軸受と、
     前記スクリューロータ及び前記軸受を収納すると共に、気体を吸い込む吸込口及び前記吸込口に接続する吸込室を有するケーシングと、
     前記スクリューロータの軸部と前記ケーシングとの隙間を封止する軸封装置と、
     前記軸封装置から漏出した潤滑油を前記吸込室に回収する油回収系統とを備え、
     前記油回収系統は、
     前記ケーシング内に設けられ、前記軸封装置から漏出した潤滑油を一時的に貯留可能な油貯留部と、
     前記ケーシングの壁部に設けられ、前記油貯留部側に開口する第1開口部及び前記吸込室側に開口する第2開口部を有する油回収流路と、
     前記油回収流路内に配置され、前記油貯留部側から前記吸込室側への流れを許可する一方、前記吸込室側から前記油貯留部側への流れを阻止する逆止弁とを有し、
     前記油回収流路は、前記ケーシングの外部に開口し、前記逆止弁の挿入及び抜き取りが可能な第3開口部を有する
     ことを特徴とする給液式スクリュー圧縮機。
    A screw rotor for compressing the gas,
    A bearing rotatably supporting the screw rotor and supplied with lubricating oil;
    A casing which accommodates the screw rotor and the bearing and has a suction port for sucking in gas and a suction chamber connected to the suction port;
    A shaft seal device for sealing a gap between the shaft portion of the screw rotor and the casing;
    An oil recovery system for recovering the lubricating oil leaked from the shaft seal device into the suction chamber;
    The oil recovery system is
    An oil storage portion provided in the casing and capable of temporarily storing the lubricating oil leaking from the shaft sealing device;
    An oil recovery channel provided on a wall of the casing and having a first opening that opens to the oil storage portion and a second opening that opens to the suction chamber;
    There is a check valve which is disposed in the oil recovery flow passage and allows the flow from the oil storage portion side to the suction chamber side, while blocking the flow from the suction chamber side to the oil storage portion side. And
    The liquid recovery type screw compressor, wherein the oil recovery passage has a third opening that is open to the outside of the casing and in which the check valve can be inserted and extracted.
  7.  請求項6に記載の給液式スクリュー圧縮機において、
     前記油回収流路の前記第2開口部と、前記スクリューロータとの間に、前記第2開口部を離間した状態で覆うように設けられた遮蔽部を更に備える
     ことを特徴とする給液式スクリュー圧縮機。
    In the liquid feed screw compressor according to claim 6,
    The liquid supply system according to claim 1, further comprising a shielding portion provided between the second opening of the oil recovery flow passage and the screw rotor so as to cover the second opening in a separated state. Screw compressor.
  8.  請求項6に記載の給液式スクリュー圧縮機において、
     前記逆止弁は、前記スクリューロータよりも高い位置で、かつ、前記油回収流路内における前記第1開口部よりも前記第2開口部に近い位置に配置される
     ことを特徴とする給液式スクリュー圧縮機。
    In the liquid feed screw compressor according to claim 6,
    The liquid supply liquid is characterized in that the check valve is disposed at a position higher than the screw rotor and at a position closer to the second opening than the first opening in the oil recovery channel. Screw compressor.
  9.  請求項6に記載の給液式スクリュー圧縮機において、
     前記油回収流路は、前記第3開口部を有し、前記逆止弁が配置される直線状の回収流路孔を含み、
     前記回収流路孔は、
     前記第3開口部を有し、前記逆止弁よりも径が大きい大径部と、
     前記大径部に隣接し、前記大径部よりも径が小さく前記逆止弁よりも径が大きい中径部と、
     前記中径部に隣接し、前記逆止弁よりも径が小さい小径部とで構成されている
     ことを特徴とする給液式スクリュー圧縮機。
    In the liquid feed screw compressor according to claim 6,
    The oil recovery channel includes the linear recovery channel hole having the third opening and in which the check valve is disposed,
    The recovery channel hole is
    A large diameter portion having the third opening and having a diameter larger than the check valve;
    An intermediate diameter portion adjacent to the large diameter portion and having a diameter smaller than the large diameter portion and larger than the check valve;
    A liquid feed type screw compressor comprising: a small diameter portion adjacent to the medium diameter portion and having a diameter smaller than the check valve.
  10.  請求項6に記載の給液式スクリュー圧縮機において、
     前記油回収流路は、直線状に延在する複数の回収流路孔で構成され、
     前記複数の回収流路孔は、前記ケーシングの外部に開口する外部開口部をそれぞれ有する
     ことを特徴とする給液式スクリュー圧縮機。
    In the liquid feed screw compressor according to claim 6,
    The oil recovery channel is composed of a plurality of recovery channel holes extending in a straight line,
    The plurality of recovery flow path holes each have an external opening that opens to the outside of the casing.
PCT/JP2018/042100 2017-12-08 2018-11-14 Liquid-feeding screw compressor WO2019111661A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019558101A JP6862576B2 (en) 2017-12-08 2018-11-14 Liquid supply type screw compressor
CN201880076955.1A CN111417784B (en) 2017-12-08 2018-11-14 Liquid supply type screw compressor
US16/769,940 US11313370B2 (en) 2017-12-08 2018-11-14 Liquid-injected screw compressor
EP18887144.6A EP3722610A4 (en) 2017-12-08 2018-11-14 Liquid-feeding screw compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-235790 2017-12-08
JP2017235790 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019111661A1 true WO2019111661A1 (en) 2019-06-13

Family

ID=66751013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042100 WO2019111661A1 (en) 2017-12-08 2018-11-14 Liquid-feeding screw compressor

Country Status (6)

Country Link
US (1) US11313370B2 (en)
EP (1) EP3722610A4 (en)
JP (1) JP6862576B2 (en)
CN (1) CN111417784B (en)
TW (1) TWI681123B (en)
WO (1) WO2019111661A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113090523B (en) * 2021-04-15 2022-09-27 鑫磊压缩机股份有限公司 Take screw compressor host computer of disk seat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173585A (en) 1999-12-17 2001-06-26 Hitachi Ltd Screw compressor
JP2004211568A (en) * 2002-12-27 2004-07-29 Hitachi Industrial Equipment Systems Co Ltd Compressed-air supplying system of fuel cell vehicle
JP2004535528A (en) * 2001-07-17 2004-11-25 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Screw compressor
US20130136638A1 (en) 2011-10-19 2013-05-30 Kaeser Kompressoren Gmbh Gas Inlet Valve for a Compressor, Compressor Comprising a Gas Inlet Valve of This Type and Method for Operating a Compressor Comprising a Gas Inlet Valve of This Type
US20170211575A1 (en) 2014-07-19 2017-07-27 Gea Refrigeration Germany Gmbh Screw compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396345A (en) 1981-05-07 1983-08-02 Ingersoll-Rand Company Unloader valve having bypass valving means
US5207568A (en) * 1991-05-15 1993-05-04 Vilter Manufacturing Corporation Rotary screw compressor and method for providing thrust bearing force compensation
TWM332132U (en) * 2007-12-05 2008-05-11 Fu Sheng Ind Co Ltd Two stage type spiral compressor with lubrication structure
CN201425024Y (en) * 2009-05-15 2010-03-17 南通炜创机械配件制造有限公司 Air inlet valve of screw air compressor
US8539769B2 (en) * 2009-10-14 2013-09-24 Craig N. Hansen Internal combustion engine and supercharger
DE102010015152A1 (en) * 2010-04-16 2011-10-20 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Control valve for an oil-injected screw compressor
JP5389755B2 (en) * 2010-08-30 2014-01-15 日立アプライアンス株式会社 Screw compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173585A (en) 1999-12-17 2001-06-26 Hitachi Ltd Screw compressor
JP2004535528A (en) * 2001-07-17 2004-11-25 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Screw compressor
JP2004211568A (en) * 2002-12-27 2004-07-29 Hitachi Industrial Equipment Systems Co Ltd Compressed-air supplying system of fuel cell vehicle
US20130136638A1 (en) 2011-10-19 2013-05-30 Kaeser Kompressoren Gmbh Gas Inlet Valve for a Compressor, Compressor Comprising a Gas Inlet Valve of This Type and Method for Operating a Compressor Comprising a Gas Inlet Valve of This Type
US20170211575A1 (en) 2014-07-19 2017-07-27 Gea Refrigeration Germany Gmbh Screw compressor

Also Published As

Publication number Publication date
US20200386231A1 (en) 2020-12-10
US11313370B2 (en) 2022-04-26
EP3722610A4 (en) 2021-08-11
JPWO2019111661A1 (en) 2020-11-19
TWI681123B (en) 2020-01-01
TW201925628A (en) 2019-07-01
EP3722610A1 (en) 2020-10-14
CN111417784A (en) 2020-07-14
JP6862576B2 (en) 2021-04-21
CN111417784B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
EP3085926B1 (en) Air turbine starters having oil feed shutoff valves and gas turbine engines including the same
EP3519697B1 (en) Integrated oil system manifold
JPH0361036B2 (en)
JP2009533598A (en) Improved vacuum pump
RU2689237C2 (en) Screw compressor
JP7304711B2 (en) Throttle body or actuation device, especially for supplying high pressure gas, provided with an outlet
US8801395B2 (en) Startup bypass system for a screw compressor
KR100862198B1 (en) Horizontal scroll compressor having an oil injection fitting
US20190226358A1 (en) Oil circuit of an aircraft engine
KR101943135B1 (en) Improved Vacuum Pump
WO2019111661A1 (en) Liquid-feeding screw compressor
US9803639B2 (en) Sectional sealing system for rotary screw compressor
JP5950870B2 (en) Oil-cooled screw compressor
CN110446857B (en) Screw compressor
US1966855A (en) Lubrication shield for superchargers
US7234926B2 (en) Air compressor assembly
EP4350146A1 (en) Screw compressor
US8459972B2 (en) Bi-rotational hydraulic motor with optional case drain
JP5273009B2 (en) Vehicle oil passage coupling device
EP3960998A1 (en) Sealing arrangement with vent for an engine component with a service port
KR100186875B1 (en) Rotary vane type compressor and vacuum pump
CN109952458A (en) The minimum pressure valve of screw compressor for vehicle, especially commercial vehicle
JP6165610B2 (en) Turbocharger lubrication oil supply mechanism
JP6258772B2 (en) Internal combustion engine flow control valve
JP2019065707A (en) Hydraulic screw compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887144

Country of ref document: EP

Effective date: 20200708