WO2019111527A1 - Fertilization designing method and fertilization designing device - Google Patents

Fertilization designing method and fertilization designing device Download PDF

Info

Publication number
WO2019111527A1
WO2019111527A1 PCT/JP2018/037796 JP2018037796W WO2019111527A1 WO 2019111527 A1 WO2019111527 A1 WO 2019111527A1 JP 2018037796 W JP2018037796 W JP 2018037796W WO 2019111527 A1 WO2019111527 A1 WO 2019111527A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration curve
fertilization
crop
amount
index
Prior art date
Application number
PCT/JP2018/037796
Other languages
French (fr)
Japanese (ja)
Inventor
片桐 哲也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201880077989.2A priority Critical patent/CN111432628B/en
Priority to JP2019558037A priority patent/JP7243635B2/en
Publication of WO2019111527A1 publication Critical patent/WO2019111527A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining

Definitions

  • the present invention relates to a fertilization design method and a fertilization design apparatus for determining the amount of fertilizer (fertilization amount) to be given to a culture medium for growing a crop.
  • the fertilization amount is determined as follows. First, referring to the database, the target nitrogen amount (target nitrogen amount) in the target culture medium is acquired. Next, the amount of nitrogen contained in the target medium is estimated by a predetermined experiment to obtain an estimated amount of nitrogen. Then, the difference between the target nitrogen amount and the estimated nitrogen amount (nitrogen deficiency amount) is calculated. Since the amount of nitrogen per unit amount contained in the fertilizer to be given to the target culture medium is known, the total amount (appropriate fertilization amount) of the fertilizer capable of compensating for the nitrogen deficiency can be obtained by calculation. That is, by executing this calculation, the appropriate fertilization amount to the target culture medium is determined.
  • a map including a field is displayed, and after input of designation of a field and fertilization design conditions (fertilizer combination pattern, reference amount, etc.) on the displayed map, a database is referred to.
  • a plurality of fertilizer application patterns for the field are designed, and the plurality of fertilization patterns designed are displayed on the same screen as the field.
  • Such a display enables the user to determine an appropriate fertilizer type and fertilization amount while comparing a plurality of fertilization patterns on the same screen.
  • a field generally refers to a paddy field or field surrounded by a fence.
  • JP-A-2015-027296 see claim 1, paragraphs [0043] to [0087], FIG. 1, etc.
  • JP 2011-215697 A see claim 1, paragraphs [0007], [0019] to [0030], and FIGS. 11 to 15
  • Patent Documents 1 and 2 described above are methods for determining the fertilization amount regardless of the actual growth condition of the crop, so appropriate fertilization (variable) according to the actual growth condition of the crop Fertilization can not be done.
  • the growth conditions of crops vary depending on environmental conditions such as temperature, precipitation, and sunshine, and soil conditions. Therefore, in order to grow good crops and increase their yield, variable fertilization should be performed. Needed.
  • FIG. 18 is a graph showing the breeding guidelines for certain varieties of rice presented from certain prefectures in Japan.
  • the horizontal axis of the graph indicates the number of rice stalks per unit area (here, 1 m 2 ), and the vertical axis indicates SPAD values.
  • the SPAD value is a value obtained by measuring the amount of chlorophyll (chlorophyll) contained in the leaves of a crop (plant) with a measuring instrument (chlorophyll meter).
  • SPAD is an abbreviation of Soil & Plant Analyzer Development (a large-scale management body soil, crop and product analysis system commercialization project of the Ministry of Agriculture, Forestry and Fisheries, Agriculture and Horticulture Bureau, Agricultural Production Division).
  • the fertilization amount is increased or decreased according to the SPAD value in the above-mentioned growth guideline. Since the amount of chlorophyll changes according to the growing condition of the crop, the chlorophyll amount is measured to obtain the SPAD value, and the fertilization amount is increased or decreased according to this SPAD value, and appropriate fertilization according to the growing condition of the crop It is believed that you can do However, such a variable fertilization method causes the following problems.
  • the above-mentioned growth guidelines are rough guidelines to increase or decrease the fertilization amount when the SPAD value is out of the proper range. Therefore, although the SPAD value can be detected with high accuracy, it is not possible to accurately obtain the appropriate fertilization amount (fertilization amount to be increased or decreased) according to the SPAD value. As a result, highly accurate variable fertilization can not be performed.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to obtain an indicator indicating the growth state of a crop by a simple method, and using the indicator, for all varieties of crop, It is an object of the present invention to provide a fertilization design method and a fertilization design apparatus capable of accurately performing variable fertilization according to the growth state.
  • the fertilization design method includes a crop information acquisition step of acquiring crop information on crop varieties and cultivation areas, and measurement values by remote sensing for a plurality of regions included in a culture medium for cultivating the crop. Based on the measurement value acquisition process to be acquired and the measurement value, an index calculation process for calculating an index indicating the growth state of the crop for each area, and the relationship between the index and the fertilization amount for the crop are optimized. Based on a standard calibration curve which is a past calibration curve for the crop, or an optimal calibration curve estimation step of estimating the crop information and the indicator, and the indicator and the optimal calibration curve, the optimal calibration curve to be shown is And a fertilization amount determining step of determining the fertilization amount to be fertilized to the culture medium.
  • the fertilization design apparatus cultivates the crop when an input unit for receiving an input of information by a user and crop information on a crop variety and a cultivation area are input by the input unit.
  • An indicator calculation unit that calculates an indicator indicating the growth state of the crop for each region based on the measured values by remote sensing for a plurality of regions included in the culture medium, and the indicator and fertilization amount for the crop
  • a standard calibration curve which is a past calibration curve of the crop, or an optimal calibration curve estimation unit which estimates the crop information and the index; an index and the optimum calibration curve;
  • a fertilization amount determination unit that determines the fertilization amount to be fertilized to the culture medium based on the above.
  • an index indicating the growth state of the crop is obtained by a simple method, and using the index, the variable fertilization according to the growth state is accurate for all varieties of the crop. It can be done well.
  • FIG. 1 is a block diagram which shows typically the whole structure of the fertilization design system 1 of this embodiment.
  • the fertilization design system 1 is configured by communicably connecting the imaging unit 10, the server 20, and the fertilization design apparatus 30 via the communication line NW.
  • the communication line NW is configured by, for example, a network (whether wired or wireless) such as a LAN (Local Area Network) or an internet line.
  • the imaging unit 10 is configured of, for example, a multispectral camera, and captures an image by photographing the culture medium FD for cultivating the crop PL from above. Thus, acquiring information (image) of the crop PL (medium FD) at a position far from the crop PL (medium FD) is called remote sensing. In order to realize such remote sensing, the imaging unit 10 is attached to the flying object 11.
  • the flying object 11 is configured by, for example, an unmanned air vehicle (drone) capable of autonomous flight.
  • the imaging unit 10 By flying the flying object 11 along the culture medium FD, the imaging unit 10 captures a plurality of areas T (cultivation areas) constituting the culture medium FD from above by the imaging unit 10, and acquires an image of each area T and hence the entire culture medium FD. be able to.
  • the flying object 11 may be configured of a balloon, an airship, an airplane, a helicopter or the like.
  • the imaging part 10 may image
  • the imaging unit 10 includes a visible imaging unit that captures a subject (here, the crop PL or the culture medium FD) and obtains a visible image, and a near infrared imaging unit that captures a subject and acquires a near infrared image. ing.
  • the visible imaging unit includes a first band pass filter, a first imaging optical system, a first image sensor (optical sensor), a first digital signal processor, a first communication unit, and the like.
  • the first band pass filter transmits light in a relatively narrow band whose center wavelength is, for example, 650 nm.
  • the first imaging optical system forms an optical image of visible light of the measurement object (the crop PL or the culture medium FD) transmitted through the first band pass filter on a predetermined first imaging surface.
  • the first image sensor is disposed with the light receiving surface aligned with the first imaging surface, detects relatively narrow band light having a wavelength of 650 nm included in the sunlight reflected by the measurement target, and is the measurement target Convert an optical image of visible light into an electrical signal.
  • the first digital signal processor performs image processing on the output of the first image sensor to form a visible image.
  • the first communication unit is a communication interface for transmitting visible image data to the outside (for example, the server 20), includes a transmission circuit, an antenna, and the like, and is communicably connected to the communication line NW.
  • the near-infrared imaging unit includes a second band pass filter, a second imaging optical system, a second image sensor (optical sensor), a second digital signal processor, a second communication unit, and the like.
  • the second band pass filter transmits light in a relatively narrow band whose center wavelength is a predetermined wavelength of 750 nm or more (for example, a wavelength of 800 nm).
  • the second imaging optical system forms an optical image of the near-infrared light of the measuring object transmitted through the second band pass filter on a predetermined second imaging surface.
  • the second image sensor is disposed with the light receiving surface aligned with the second imaging surface, detects relatively narrow band light having a central wavelength of 800 nm included in the sunlight reflected by the measurement target, and the measurement target Convert an optical image of near-infrared light into an electrical signal.
  • the second digital signal processor performs image processing on the output of the second image sensor to form a near infrared image.
  • the second communication unit is an interface for transmitting near-infrared image data to the outside (for example, the server 20), includes a transmission circuit, an antenna, and the like, and is communicably connected to the communication line NW. .
  • the image sensor of VGA type (640 pixels x 480 pixels) can be used, for example.
  • the server 20 is a terminal device that stores various data.
  • FIG. 2 is a block diagram schematically showing the configuration of the server 20. As shown in FIG.
  • the server 20 includes a first database 21, a second database 22, a third database 23, a communication unit 24, and a control unit 25.
  • the first database 21 stores measurement values obtained by remote sensing of the imaging unit 10. That is, the first database 21 is stored as data of the captured image (visible image, near-infrared image) of a plurality of areas T included in the culture medium FD acquired by the imaging unit 10 and transmitted to the server 20 Do. Note that the first database 21 may store measurement values acquired by a unit other than the imaging unit 10 as measurement values by remote sensing. For example, the first database 21 may store data of an image (visible image, near infrared image) acquired by imaging with a satellite and transmitted to the server 20. In this case, the fertilization design system 1 can be configured without providing the imaging unit 10.
  • the second database 22 stores data of calibration curves acquired in the past for each variety and cultivation area of the crop PL.
  • the crop PL is rice (rice)
  • the second database 22 is for each rice cultivar (eg, cultivar A, B,...)
  • each cultivar cultivation area eg, by region, by prefecture, by city
  • FIG. 3 schematically shows a calibration curve for a certain cultivar A of the crop PL.
  • the standard curve is an indicator that indicates the growth state of the crop PL on the horizontal axis, and the coordinate plane on which the amount of fertilizer application to the culture medium FD in which the crop PL is grown is on the vertical axis. Points to a line that indicates a relationship.
  • the second database 22 further stores data of the past harvest amount of the crop PL in the medium D.
  • the yield data is stored in the second database 22 by, for example, being input by the fertilization design apparatus 30 and transmitted to the server 20, but transmitted from another terminal and stored in the second database 22. It may be
  • the third database 23 stores cultivation information on cultivation conditions of the crop PL.
  • cultivation conditions it is possible to consider, for example, the accumulated air temperature, the average precipitation or the average sunshine in the cultivation period in the cultivation area of the crop PL.
  • said integrated temperature refers to the value which took out and integrated only the temperature more than the said minimum temperature by invalidating the temperature less than the minimum temperature effective with respect to the growth of crop PL in arbitrary cultivation periods. .
  • the first database 21, the second database 22, and the third database 23 described above are configured of storage media such as a hard disk and a non-volatile memory, for example.
  • the first database 21, the second database 22 and the third database 23 are all provided in the same server 20, but at least one of them is provided in a server different from the server 20. May be
  • the communication unit 24 is an interface for communicating with the imaging unit 10 and the fertilization design device 30.
  • the communication unit 24 includes a transmission circuit, a reception circuit, a modulation circuit, a demodulation circuit, an antenna, and the like, and is communicably connected to the communication line NW.
  • the control unit 25 is constituted by a CPU (Central Processing Unit; central processing unit) that controls the operation of each unit of the server 20, and operates according to an operation program stored in a memory (not shown).
  • CPU Central Processing Unit; central processing unit
  • FIG. 4 is a block diagram schematically showing the configuration of the fertilization design device 30.
  • the fertilization design device 30 is a device that determines the appropriate fertilization amount to the culture medium FD and provides it to the user, and is configured by, for example, a PC (personal computer).
  • the fertilization design apparatus 30 may be comprised by the multifunctional portable terminal (for example, a smart phone, a tablet terminal).
  • the fertilization design device 30 has an input unit 31, a display unit 32, a storage unit 33, a communication unit 34, and a control unit 35.
  • the input unit 31 is operated by the user and is provided to receive input of information by the user.
  • an input unit 31 includes an operation unit such as a keyboard, a mouse, and a touch pad.
  • the display unit 32 is a display that displays various types of information, and is configured of, for example, a liquid crystal display device.
  • the storage unit 33 is a memory for storing a program for operating the control unit 35 and various types of information (for example, information acquired from the server 20), and is configured by, for example, a hard disk.
  • the communication unit 34 is an interface for communicating with the server 20, includes a transmission circuit, a reception circuit, a modulation circuit, a demodulation circuit, an antenna, etc., and is communicably connected to the communication line NW. There is.
  • the control unit 35 is constituted by a CPU, and operates according to the operation program stored in the storage unit 33.
  • the control unit 35 includes an overall control unit 35a, an index calculation unit 35b, an optimum calibration curve estimation unit 35c, a fertilization amount determination unit 35d, a map creation unit 35e, a first histogram creation unit 35f, a second histogram creation unit 35g, and ordering.
  • a control unit 35h is included to realize each of these functions. Note that each block described above of the control unit 35 may be configured by a separate CPU.
  • the overall control unit 35a controls the operation of each unit of the fertilization design device 30 (including display control in the display unit 32 and communication control in the communication unit 34). The functions of blocks other than the general control unit 35a in the control unit 35 will be described together in the description of the processing described below.
  • FIG. 5 is a flowchart showing a flow of processing in the fertilization design system 1 of the present embodiment.
  • the fertilization design method realized by the fertilization design system 1 includes a crop information acquisition step (S1), a measured value acquisition step (S2), an index calculation step (S3), a cultivation information acquisition step (S4), and an optimal calibration curve estimation step ( S5) Fertilization amount determination step (S6), Fertilization amount map creation step (S7), first histogram creation step (S8), second histogram creation step (S9), total fertilization amount calculation step (S10), display step (S10) S11), an optimum calibration curve adjustment step (S12), an adjustment determination step (S13), and an order control step (S14 to S16).
  • S1 crop information acquisition step
  • S2 measured value acquisition step
  • S3 an index calculation step
  • S4 a cultivation information acquisition step
  • S5 optimal calibration curve estimation step
  • Fertilization amount determination step S6
  • Fertilization amount map creation step S7
  • S1 Crop information acquisition process
  • the fertilization design apparatus 30 when the user operates the input unit 31, crop information on the variety (for example, variety A) of the crop PL and the cultivation area (for example, aa city in AA prefecture) is input.
  • the crop information is obtained by this input.
  • the acquired crop information is stored in the storage unit 33.
  • the control unit 35 (for example, the overall control unit 35a) sends the first database 21 to the control unit 25 of the server 20 based on the crop information (type of crop PL, cultivation area) input in S1.
  • the control unit 25 of the server 20 transmits the data of the measurement value stored in the first database 21 to the fertilization design device 30. Thereby, in the fertilization design apparatus 30, the said measured value is acquired.
  • the acquired measurement value is stored in the storage unit 33.
  • the measurement values of the respective culture media FD are transmitted to the fertilization design device 30 and stored in the storage unit 33.
  • the index calculation unit 35b calculates an index indicating the growth state of the crop PL for each region T of the culture medium FD, based on the measurement value.
  • the index calculation unit 35 b calculates an NDVI (Normalized Difference Vegetation Index; normalized vegetation index) as the above-described index.
  • NDVI indicates a normalized value between -1 and 1, and the larger the positive number, the thicker the vegetation.
  • S2 when a measured value is acquired about several culture medium FD, said index is calculated for every area
  • the index calculation unit 35b may calculate the following values instead of the NDVI as the above-described index.
  • RVI Rao Vegetation Index
  • DVI Difference Vegetation Index
  • TVI Transformed Vegetation Index, TVI
  • the index calculation unit 35b may calculate the coverage rate instead of the NDVI and use it as the above-mentioned index.
  • the coverage rate indicates the rate at which the crop PL covers the ground surface of the culture medium FD.
  • the index calculation unit 35 b binarizes the near-infrared image acquired by the imaging unit 10 to form a binarized image of white and black, and in the binarized image, a white portion is The vegetation coverage can be calculated by calculating the proportion occupied. In the binarized image, the white part corresponds to the crop PL, and the black part corresponds to the soil.
  • the control unit 35 (for example, the overall control unit 35a) sends the third database 23 to the control unit 25 of the server 20 based on the crop information (type of crop PL, cultivation area) input in S1. Make a transmission request for the stored cultivation information. That is, the server 20 is sent the cultivation information on the cultivation conditions of the crop PL (for example, the accumulated temperature of this year and the past in the cultivation area of the crop PL) stored in the third database 23 to the fertilization design device 30. Send command In response to this command, the control unit 25 of the server 20 transmits the cultivation information stored in the third database 23 to the fertilization design device 30. Thereby, in the fertilization design apparatus 30, the said cultivation information is acquired. The acquired cultivation information is stored in the storage unit 33. In S4, instead of the above-mentioned integrated temperature, information on average precipitation and average sunshine may be acquired from the third database 23 as cultivation information.
  • the optimum calibration curve estimation unit 35c indicates the optimum calibration curve (the calibration curve most suitable for cultivating the crop PL), which optimally indicates the relationship between the index (for example, NDVI) of the crop PL and the fertilization amount, It is estimated from the reference standard curve which is a past standard curve or the crop information acquired in S1 and the index acquired in S3.
  • the optimum calibration curve estimation unit 35c acquires the data of the calibration curve from the second database 22. Estimate the best calibration curve, but if the data of the above calibration curve is not stored in the second database 22, estimate the best calibration curve from the crop information acquired in S1 and the index calculated in S3. .
  • the details of the process of S5 will be described.
  • FIG. 6 is a flowchart showing details of the optimal calibration curve estimation step of S5.
  • the optimal calibration curve estimation unit 35c refers to the second database 22, and the same variety as the variety of the crop PL input by the input unit 31 (for example, it is determined whether or not data of a past (for example, one year ago) calibration curve of the same cultivation area (for example, aa city AA) is stored (S21).
  • the past fiscal year of the data of the calibration curve to be referred to (how many years ago the data of the calibration curve is to be referred to) may be designated by the user operating the input unit 31, for example.
  • the calibration curve (data) is received and acquired from the second database 22 as a reference calibration curve serving as a reference for estimating the optimum calibration curve. To do (S22).
  • the surrounding area of the cultivation area of the crop PL input by the input unit 31 (for example, bb city in AA prefecture) It is determined whether or not data of a past calibration curve is stored for the variety (for example, the same variety A or different variety B) grown in (S24).
  • the said surrounding area is an area close
  • the above-mentioned surrounding area may be an area of a neighboring farmer of a farmer who grows the above-mentioned crop PL. If the data of the past calibration curve is stored in S24, the calibration curve (data) is received and acquired from the second database 22 as a reference calibration curve (S22).
  • the cultivar A and the direct cultivar refer to cultivars having the same lineage as the cultivar A and similar quality, for example, cultivar A1 before generation (parent) of cultivar A in the genealogy, one generation after (child) It is possible to consider the variety A1 ', the variety A2 two generations ago, the variety A2' two generations later, and so on.
  • the calibration curve (data) is received and acquired from the second database 22 as a reference calibration curve (S22).
  • the optimum calibration curve estimation unit 35c refers to the second database 22 again, and the crop corresponding to the above-mentioned standard calibration curve (the same variety, the variety of the same cultivation area, the periphery) It is determined whether or not the data of the past harvest amount is stored for the variety of the cultivation area or the variety of direct line (S26).
  • the optimum calibration curve estimation unit 35c receives and acquires the data of the above harvest amount from the second database 22 (S27), Based on the reference calibration curve acquired in S22 and the harvest amount acquired in S27, the optimum calibration curve for this year is estimated (S28).
  • FIG. 7 and FIG. 8 show an example of a past standard calibration curve (for example, one year ago) and an example of this year's optimum calibration curve estimated from the standard calibration curve. For example, if the harvest amount one year ago is larger than that two years ago, it is considered that lowering the upper limit of the fertilization amount can provide some harvest amount. On the contrary, if the harvest amount one year ago is smaller than two years ago, it is considered that a certain harvest amount can not be obtained unless the lower limit of the fertilization amount is raised.
  • the optimum calibration curve estimating unit 35c determines the upper limit of the fertilization amount in the reference calibration curve (calibration curve one year ago). Estimate the best calibration curve for the current year by lowering the yield according to the year-on-year ratio. Specifically, when the harvest amount one year ago is a% higher than the harvest amount two years ago, the optimum calibration curve estimating unit 35c lowers the upper limit of the fertilization amount in the reference calibration curve by a%. To estimate the optimal calibration curve. On the contrary, when the harvest amount one year ago is smaller than that of the previous year, the optimum calibration curve estimating unit 35c determines, as shown in FIG.
  • the optimum calibration curve estimating unit 35c should increase the lower limit of the fertilization amount in the reference calibration curve by b%. To estimate the optimal calibration curve.
  • the optimum calibration curve estimating unit 35c determines the reference calibration curve according to the cultivation conditions acquired in S4. By changing, the best calibration curve of this year is estimated (S29). For example, if the yearly accumulated temperature is higher than one year ago, it can be considered that the growth of the crop PL is earlier than at the same time one year ago, and in this case, the fertilization amount is compared to one year ago. It is considered that the upper limit of may be lowered.
  • the optimal calibration curve estimating unit 35c estimates the optimal calibration curve for this year by lowering the upper limit or the lower limit of the fertilization amount in the reference calibration curve according to the rate of change of the integrated air temperature. Specifically, when the accumulated air temperature this year is c% higher than that of one year ago, the optimum calibration curve estimating unit 35c lowers the upper limit of the fertilization amount in the reference calibration curve by c% as in FIG. To estimate the optimal calibration curve. On the contrary, when the accumulated temperature this year is d% lower than that of one year ago, the optimum calibration curve estimating unit 35c estimates the optimum calibration curve by raising the lower limit of the fertilization amount in the reference calibration curve by d%. Do.
  • the optimal calibration curve estimation unit 35c obtains the crop information and the information acquired in S1.
  • An optimal calibration curve is estimated based on the distribution in the medium FL of the index for each region T calculated in S3 (S30).
  • the optimum calibration curve estimation unit 35c changes the fertilization amount according to the horizontal part H1 and H2 indicating the upper limit and the lower limit of the fertilization amount according to the crop PL and the value of the NDVI.
  • the inclination of the inclined portion S (portion connecting the ends of the horizontal portions H1 and H2) is determined.
  • the horizontal position of the inclined portion S is determined such that the median value of the NDVI becomes the standard fertilization amount (for example, 2 kg per unit area when the crop PL is rice).
  • the upper limit (horizontal part H1) and the lower limit (horizontal part H2) of the fertilization amount are adjusted.
  • the optimal calibration curve estimating unit 35c estimates the optimal calibration curve of this year.
  • the optimum calibration curve estimating unit 35c adjusts the upper or lower limit of the amount of fertilization according to the degree of variation (standard deviation) of the NDVI instead of the above average value of the NDVI to estimate the optimum calibration curve. It is also good.
  • the fertilization amount determination unit 35d fertilizes the medium FD based on the index (NDVI) calculated in S3 and the optimal calibration curve estimated in S5 or the optimal calibration curve adjusted in S14 described later Determine the amount of fertilization.
  • the fertilization amount determination unit 35d can determine the fertilization amount for one medium FD by adding up the fertilization amounts corresponding to the value of NDVI of each region T.
  • the fertilization amount about each culture medium FD can be determined by performing the calculation similar to the above for every culture medium FD.
  • the map creation unit 35e creates a fertilization amount map indicating the distribution of the fertilization amount determined in S6 in the culture medium FD.
  • FIG. 11 shows the distribution of NDVI when the value of the index (NDVI) for each region T calculated in S3 is simply divided into three stages (small, medium, large) in the culture medium FD. It shows an index map.
  • a portion corresponding to the culture medium FD is indicated by FD ′, and a portion corresponding to each region T of the culture medium FD is indicated by T ′ (the same applies to the next fertilization amount map).
  • the fertilization amount map As the fertilization amount map, as shown in FIG. 12, a map corresponding to the index map shown in FIG. 11 is obtained. That is, the fertilizer amount map in which the magnitude of the fertilization amount is reversed to the magnitude of the value of the NDVI is obtained.
  • a fertilization amount map is created for every culture medium FD.
  • the first histogram creating unit 35g calculates, for each medium FD, the average value of the indices in the medium FD, and creates a first histogram indicating the relationship between the average value of the above indices and the number of mediums FD. Do. FIG. 13 schematically shows an example of the first histogram.
  • the number of fields where the average value of NDVI is lower than the median of the horizontal axis is relatively small, and the average value of NDVI is relatively higher, the number of fields higher than the median of the horizontal axis From these facts, it can be said that these fields have a relatively favorable growth environment (eg, climate, soil, etc.), and it is expected that the harvest amount of the crop PL cultivated in these fields will be large in total (all fields combined). .
  • a relatively favorable growth environment eg, climate, soil, etc.
  • the second histogram creating unit 35h calculates the average value of the fertilization amount of each region T determined in the fertilization amount determination step of S6 for each culture medium FD, and the relationship between the average value of the fertilization amount and the number of culture media Create a second histogram showing FIG. 14 schematically shows an example of the second histogram.
  • FIG. 15 shows an example of the average value of the fertilization amount for each culture medium FD (for convenience, these culture medium FD is distinguished by field 1, 2, 3 ).
  • the number of fields where the average amount of fertilizer application is lower than the median of the horizontal axis is relatively high, and the number of fields where the average value of fertilizer application is higher than the median of the horizontal axis is relative In these fields, it is expected that the crop PL can be harvested with a relatively small amount of fertilization in total (all fields combined).
  • the fertilization amount determination unit 35d determines the total fertilization amount for all culture media FD, that is, the fertilization amount for each culture medium FD.
  • the total value is calculated (in the case of one medium FD, the fertilization amount determined in S6 is the total fertilization amount).
  • the total fertilization amount about all the culture media FD was 75 kg is shown.
  • FIG. 16 schematically shows an example of the display screen 32 a of the display unit 32.
  • the information displayed on the display unit 32 includes, for example, crop information (variety and cultivation area) input in S1, designation information of a calibration curve by the input unit 31 (calibration for several years ago) See the line), the optimal calibration curve estimated in S5, the fertilization amount map prepared in S7, the first histogram prepared in S8, the second histogram prepared in S9 and the average value of the fertilization amount for each medium FD, S10
  • the box for the user to specify the management policy (designation box for attack / defense), the approval button for asking for the user's approval, and the order button for accepting the user's order are included.
  • the price of fertilizer (fertilizer unit price x total fertilization amount) corresponding to the total fertilization amount may also be
  • S12 Optimal calibration curve adjustment process
  • the user can check the displayed information and check the optimum calibration curve and the fertilization amount to be ordered. Further, when it is desired to correct the optimal calibration curve, the user can correct the optimal calibration curve by operating the input unit 31.
  • the optimum calibration curve estimation unit 35c adjusts the optimum calibration curve based on the user's instruction input, as necessary. When the user does not input an instruction for the optimum calibration curve, the process of S12 is skipped.
  • FIG. 17 shows the optimal calibration curve displayed on the display screen 32 a of the display unit 32.
  • the user sets a control point P which is a connection point between the horizontal portion H1 and the inclined portion S in the optimum calibration curve or a control point Q which is a connection point between the horizontal portion H2 and the inclined portion S on the display screen 32a.
  • the mouse pointer as the input unit 31 is positioned, and the pointer is moved vertically and horizontally while clicking on the mouse at that position.
  • the optimal calibration curve estimating unit 35c can adjust the optimal calibration curve to a desired shape by moving the control point P or the control point Q vertically and horizontally in response to such movement of the mouse (pointer). .
  • the user can also realize an optimal calibration curve according to the management policy by specifying the management policy (aggressive / defense) by the input unit 31 as necessary on the display screen 32a shown in FIG. It becomes possible.
  • the management policy asgressive / defense
  • attack refers to a policy in which a large yield can be expected but a risk (damage) also increases if it fails, for example, an optimal calibration curve that widens the range between the upper and lower limits of the fertilization amount. Adjustment corresponds to this "offensive” policy.
  • defense refers to a policy in which the yield is stable and the risk is small, and for example, “adaptation” is the adjustment of the optimal calibration curve to narrow the range between the upper limit and the lower limit of the fertilization rate.
  • the optimum calibration curve estimation unit 35c increases the width between the upper limit and the lower limit of the fertilization amount in the estimated optimum calibration curve by a predetermined amount (attack Adjust the best calibration curve by (if it is) or reduce (if protection).
  • the display information on the display screen 32a and the input unit 31 can be said to constitute a GUI (Graphical User Interface).
  • the overall control unit 35a determines the presence or absence of the adjustment of the optimal calibration curve in S12, and controls each part of the fertilization design apparatus 10 based on the determination result. More specifically, when the overall control unit 35a determines that the adjustment of the optimal calibration curve has been performed in S12 (in the case of Yes in S13), the processes after S6 are executed again based on the optimal calibration curve after adjustment. Control each part of the control unit 35 and the display unit 32.
  • the determination of the fertilization amount of the culture medium FD (S6), the preparation of the fertilization amount map (S7), the preparation of the first histogram (S8), the preparation of the second histogram (S8) S9), calculation of total fertilization amount (S10), and display of various information (S11) are performed again.
  • the overall control unit 35a determines that the adjustment of the optimal calibration curve has not been performed in S12 (in the case of No in S13), the process shifts to the order control process described below.
  • the order control unit 35 h controls the order of the fertilizer based on the instruction input by the input unit 31. More specifically, order control unit 35h first determines whether or not the user's approval has been accepted by a user's instruction input (for example, a click with a mouse) on the approval button displayed on display unit 32 (S14) . When the user's approval is received, next, the order control unit 35h determines whether the user's order has been received by the user's instruction input (for example, a click with a mouse) on the order button (S15).
  • a user's instruction input for example, a click with a mouse
  • the order control unit 35h orders the fertilizer for the total fertilization amount displayed in S12 from the company (fertilizer maker, agent or distributor, etc.) of the supplier (S16; Ordering process). Then, the series of processing ends.
  • confirmation display may be performed to confirm the approval or the order again.
  • the confirmation sentence of “Is it really approve?” Is displayed, and “Yes” and “No” selection boxes are displayed, and one of these is selected by the user You may make it input as needed and prompt for confirmation again.
  • the index calculation unit 35b calculates an index indicating the growth state of the crop PL for each region T of the culture medium FD based on the measurement value by remote sensing acquired in S2 ( S3).
  • the index is NDVI
  • NDVI can be obtained by a simple calculation using the above measured values (pixel values IR and R). Therefore, it is possible to obtain an indicator by a simple method without performing measurement with a measuring instrument (for example, measurement with a chlorophyll meter) for examining the growth state of each crop PL, as in the past. .
  • the optimum calibration curve estimation unit 35c may calculate the optimum calibration curve obtained by optimizing the relationship between the index for the crop PL and the fertilization amount with the past calibration curve (reference calibration curve), or the crop information acquired in S1 and S3. It estimates from the parameter
  • the fertilization amount is determined for such cultivar by estimating the optimal calibration curve from the crop information and the index. Further, since the fertilization amount is determined based on the index and the optimal calibration curve, the determined fertilization amount sufficiently reflects the current growth condition of the crop PL indicated by the index. Therefore, it is possible to perform fertilization (variable fertilization) according to the growth state of the crop PL, using the determined fertilizer amount for all the varieties of the crop PL.
  • the optimal calibration curve is a calibration curve that optimizes the relationship between the index and the fertilization amount, the accuracy is high by determining the fertilization amount using the above optimal calibration curve (the excess and deficiency of the fertilizer is sufficiently It is possible to realize (reduced) variable fertilization.
  • the optimal calibration curve estimation unit 35c acquires the above data from the second database 22. Estimate the best calibration curve. As a result, the fertilization design device 30 does not have to have a large capacity memory for storing data of the reference calibration curve, and the configuration of the device can be simplified.
  • the optimal calibration curve estimation unit 35c estimates the optimal calibration curve from the crop information acquired in S1 and the index calculated in S3, The optimal calibration curve can be estimated even for varieties that do not have a reference calibration curve in the past.
  • cultivation information on cultivation conditions of the crop PL is acquired from the third database 23 of the server 20.
  • the optimal calibration curve estimating unit 35c estimates the optimal calibration curve by changing the reference calibration curve based on the above-mentioned cultivation conditions (S29). In this case, it becomes possible to determine the fertilization amount (fertilization design) in consideration of the actual cultivation conditions of the crop PL using the above-mentioned optimal calibration curve, and variable fertilization can be performed accurately based on such fertilization design. .
  • the above-mentioned cultivation conditions include any of the integrated temperature, the average precipitation, and the average sunshine in the cultivation period in the cultivation area of the crop PL. Since the accumulated air temperature, the average precipitation, and the average amount of sunshine are all indispensable requirements for the cultivation of the crop PL, fertilization design considering the cultivation conditions of the crop PL is surely possible.
  • the optimum calibration curve estimation unit 35c acquires data of a reference calibration curve for the crop PL and data of past harvest amount for the crop PL from the second database 22, and based on the above-mentioned reference calibration curve and the above-mentioned harvest amount Then, the optimum calibration curve is estimated (S22, S26 to S28). In order to estimate the optimum calibration curve taking into consideration not only the standard calibration curve for the crop PL but also the past harvest amount, it becomes possible to design fertilization considering the past performance, and the reliability of such fertilization design is improved. .
  • the reference calibration curve may be a calibration curve acquired in the past for the same breed as the crop PL (S21, S22).
  • the reference calibration curve may be a calibration curve acquired in the past for the same cultivation area as the crop PL (S21, S23, S22).
  • the standard calibration curve may be a calibration curve acquired in the past for varieties grown in the surrounding area of the cultivation area of the crop PL (S24, S22).
  • the standard calibration curve may be a calibration curve acquired in the past for the crop PL and the straight varieties (S25, S22). Since these calibration curves are highly related to the varieties or cultivation area of the crop PL contained in the input crop information (because the varieties or cultivation areas are identical or close thereto), any calibration curve is used as a standard calibration. Even when used as a line, the fertilization amount can be determined by appropriately estimating the optimum calibration curve for the crop PL from the reference calibration curve.
  • the optimal calibration curve estimating unit 35c estimates the optimal calibration curve based on the crop information and the distribution of the index in the culture medium FD (S30). As a result, even when the reference calibration curve is not stored in the second database 22, it becomes possible to determine the fertilization amount based on the estimated optimal calibration curve and perform variable fertilization.
  • the display unit 32 displays the estimated optimal calibration curve (S11). Thereby, it is possible to recommend (recommend) the estimated optimal calibration curve to the user. In addition, the user can customize (fine-tune) the optimum calibration curve by operating the input unit 31 as needed, as in S12, by viewing the displayed optimum calibration curve (see FIG. 17). ).
  • the optimal calibration curve estimation unit 35c adjusts the optimal calibration curve based on the user's instruction input (S12, S13), and the fertilization amount determination unit 35d is based on the index and the optimal calibration curve after adjustment.
  • the fertilization amount is determined (S6).
  • the map creation unit 35e creates a fertilization amount map indicating the distribution of the fertilization amount in the culture medium FD determined by the fertilization amount determination unit 35d (S7), and the display unit 32 further displays the fertilization amount map ( S11).
  • the user can confirm the displayed fertilization amount map and, based on the fertilization amount map, can operate the input unit 31 to finely adjust the optimum calibration curve as needed. For example, when the user sees the displayed fertilizer amount map and determines that the fertilization amount in the region T where the fertilizer amount is small may be increased, the user operates the input unit 31 to set the lower limit of the optimal calibration curve. Fine adjustment such as raising can be performed.
  • the first histogram creation unit 35f calculates the average value of the index in the culture medium FD for each culture medium FD, and creates a first histogram indicating the relationship between the average value of the index and the number of culture media (S8). Then, the display unit 32 further displays the first histogram (S11). In this case, based on the displayed first histogram, the user can operate the input unit 31 to finely adjust the optimum calibration curve as needed.
  • the user can operate the input unit 31 to perform fine adjustment such as lowering the upper limit of the fertilization amount of the optimal calibration curve for each culture medium FD specified by the fertilization amount map (overall). Thereby, it becomes possible to suppress the total fertilization amount about all the culture media FD, and to aim at the cost reduction of fertilizer.
  • the second histogram creating unit 35g calculates, for each culture medium FD, the average value of the fertilization quantity determined by the fertilization amount determination unit 35d for each culture medium FD, and the relationship between the average value of the fertilization quantity and the number of culture mediums FD. To create a second histogram (S9). Then, the display unit 32 further displays the second histogram (S11). In this case, based on the displayed second histogram, the user can operate the input unit 31 to finely adjust the optimal calibration curve as needed.
  • the user operates the input unit 31 to perform fine adjustment such as lowering the upper limit of the fertilization amount of the optimal calibration curve for each culture medium FD specified in the fertilization amount map (overall) By carrying out, it becomes possible to suppress the total fertilization amount about all the culture media FD, and to aim at the cost reduction of fertilizer.
  • the fertilization amount determination unit 35d calculates the total fertilization amount of all the culture media FD, that is, the total value of the fertilization amounts of the respective culture media FD, based on the fertilization amount of each culture medium FD determined in S6 S10). Then, the display unit 32 displays the total fertilization amount described above, an approval button for requesting the user's approval, and an order button for receiving the user's order. Thereby, the user confirms the total fertilization amount on the display screen 32 a of the display unit 32 and, if necessary, gives an input instruction (click) by the input unit 31 to the approval button and the order button to order the fertilizer Can be instructed.
  • the order control unit 35 h receives the user's approval by the user's instruction input on the approval button on the display screen 32 a of the display unit 32, and only when the user's order is received by the user's instruction input on the order button Order fertilizer for the total fertilization amount (S14 to S16). Since the fertilizer can not be ordered unless the user's approval is obtained, it is possible to prevent the occurrence of troubles related to the fertilizer order.
  • the fertilization design method, the fertilization design apparatus, and the fertilization design system described in the present embodiment can also be expressed as follows.
  • the optimal calibration curve estimation step when the data of the reference calibration curve for the crop is stored in a database, the data is acquired from the database to estimate the optimal calibration curve, while the data is The fertilization design method according to A1, wherein the optimal calibration curve is estimated from the crop information and the index, when is not stored in the database.
  • the method further includes a cultivation information acquisition step of acquiring cultivation information on cultivation conditions of the crop, and the optimal calibration curve estimation step estimates the optimal calibration curve by changing the reference calibration curve based on the cultivation conditions.
  • the fertilization design method as described in A1, or A2.
  • A5 data of the standard calibration curve for the crop and data of past harvest amount for the crop are obtained from a database, and the optimal calibration is obtained based on the baseline calibration curve and the harvest amount.
  • the fertilization design method as described in A1 or A2 which estimates a line.
  • A6 The fertilization design method according to any one of A1 to A5, wherein the standard calibration curve is a calibration curve acquired in the past for the same cultivar as the crop.
  • A8 The fertilization design method according to A6, wherein the standard calibration curve is a calibration curve acquired in the past for varieties grown in a surrounding area of the crop cultivation area.
  • A9 The fertilization design method according to any one of A1 to A5, wherein the standard calibration curve is a calibration curve acquired in the past for the crop and the direct cultivar.
  • the fertilization design method in any one of A1 to A10 further including the display process which displays the said optimal calibration curve estimated at the said optimal calibration curve estimation process.
  • the method further includes an optimal calibration curve adjusting step of adjusting the optimal calibration curve based on a user's instruction input, and the fertilization amount determining step comprises applying the fertilization amount based on the index and the optimal calibration curve after adjustment.
  • the method further includes a first histogram creation step of calculating an average value of the index in the culture medium for each culture medium, and creating a first histogram indicating a relationship between the average value of the index and the number of culture media, the display
  • the fertilization design method in any one of A11 to A13 which further displays a said 1st histogram in a process.
  • A15 The average value of the fertilization amount determined in the fertilization amount determination step in the culture medium is calculated for each of the culture media, and a second histogram indicating the relationship between the average value of the fertilization amount and the number of the culture media is created
  • the fertilization design method of A14 which further includes a 2nd histogram preparation process, and the said display process further displays the said 2nd histogram.
  • the method further includes a total fertilization amount calculating step of calculating a total fertilization amount of all the culture media based on the fertilization amount of each culture medium determined in the fertilization amount determination step, and in the display step, the total fertilization amount;
  • the fertilization design method in any one of A11 to 15 which further displays the approval button for asking for a user's approval, and the order button for receiving a user's order.
  • the method further includes an ordering step of ordering the fertilizer for the total fertilization amount only when the user's approval is received by the user's instruction input to the approval button and the user's order is received by the user's instruction input to the order button. , The fertilization design method as described in A16.
  • An input unit for receiving input of information by a user, and, when crop information on a crop variety and a cultivation area is input by the input unit, remote sensing is performed on a plurality of regions included in a culture medium for cultivating the crop
  • An index calculation unit that calculates an index indicating the growth state of the crop for each region based on measured values, and an optimal calibration curve that optimally indicates the relationship between the index and the fertilization amount for the crop, for the crop
  • the fertilization amount applied to the culture medium based on a standard calibration curve which is a past calibration curve or an optimum calibration curve estimation unit estimated from the crop information and the index, the index and the optimum calibration curve Fertilization design device provided with the fertilization amount determination part to determine.
  • the optimal calibration curve estimating unit estimates the optimal calibration curve based on the reference calibration curve when the data of the reference calibration curve for the crop is stored in the database, while the data is stored in the database.
  • the fertilization design apparatus according to B1 wherein the optimal calibration curve is estimated from the crop information and the index if not stored in the.
  • the optimal calibration curve estimation unit estimates the optimal calibration curve by changing the reference calibration curve based on the cultivation conditions when cultivation information on cultivation conditions of the crop is input by the input unit. Do.
  • the fertilization design apparatus as described in B1 or B2.
  • the fertilization design device wherein the cultivation conditions include any one of an accumulated temperature, an average precipitation, and an average sunshine amount in the cultivation period of the crop in the cultivation area.
  • the optimal calibration curve estimating unit estimates the optimal calibration curve based on the data of the standard calibration curve for the crop and the data of past harvest amounts for the crop stored in the database, B1 or Fertilization design apparatus described in B2.
  • the fertilization design device in any one of B1 to B10 further including the display part which displays the said optimal calibration curve estimated by the said optimal calibration curve estimation part.
  • the optimum calibration curve estimation unit adjusts the optimum calibration curve based on a user's instruction input, and the fertilization amount determination unit controls the fertilization amount based on the index and the adjustment optimal calibration curve.
  • the fertilization design apparatus of B11 to determine.
  • B13 B11 or B11, which further includes a fertilization amount map creation unit that generates a fertilization amount map showing distribution of the fertilization amount in the culture medium determined by the fertilization amount determination unit, the display unit further displays the fertilization amount map Fertilization design apparatus described in B12.
  • the display device further includes a first histogram generation unit that calculates an average value of the index in the culture medium for each culture medium, and generates a first histogram indicating a relationship between the average value of the index and the number of culture media, and the display
  • the fertilization design device according to any one of B11 to B13, wherein the unit further displays the first histogram.
  • the average value of the fertilization amount determined by the fertilization amount determination unit in the culture medium is calculated for each culture medium, and a second histogram indicating the relationship between the average value of the fertilization amount and the number of the culture medium is created
  • the fertilization design device according to B14 further including a second histogram creation unit, wherein the display unit further displays the second histogram.
  • the fertilization amount determination unit calculates a total fertilization amount for the entire culture medium based on the fertilization amount for each of the culture media, and the display unit includes the total fertilization amount and an approval button for obtaining user approval.
  • the fertilization design device according to any one of B11 to B15, which further displays an order button for receiving a user's order.
  • the order control unit for ordering the fertilizer for the total fertilization amount only when the user's approval is received by the user's instruction input to the approval button, and only when the user's order is received by the user's instruction input to the order button The fertilization design apparatus as described in B16 including.
  • a total fertilization amount calculation unit for calculating a total fertilization amount for all culture media based on the fertilization amount for each culture medium determined by the fertilization amount determination unit, the total fertilization amount for calculating the total fertilization amount, and approval for the user
  • the fertilization design device further comprising a display unit that displays an approval button and an order button for receiving a user's order.
  • the system further includes an order control unit that controls fertilizer ordering based on an instruction input by the input unit, and the order control unit receives the user's approval by the user's instruction input to the approval button, and then the user for the order button
  • the fertilization design device according to B18 which orders the fertilizer for the total fertilization amount only when the user's order is accepted by the instruction input of.
  • the first database storing the measured values
  • the second database storing at least the data of the reference calibration curve, wherein the index calculation of the fertilizing design device is performed.
  • the unit calculates the index based on the measurement values stored in the first database
  • the optimal calibration curve estimation unit is data of the reference calibration curve stored in the second database, or
  • the fertilization design system which estimates the said optimal calibration curve from the said crop information and the said parameter
  • the system further includes a third database storing cultivation information on cultivation conditions of the crop, and the optimum calibration curve estimation unit changes the reference calibration curve based on the data of the cultivation conditions stored in the third database.
  • the fertilization design system as described in C1 which estimates the said optimal standard curve by.
  • the imaging apparatus according to any one of C1 and C2, further comprising: an imaging unit configured to capture the culture medium for growing the crop and acquire an image, and the first database stores data of the image acquired by the imaging unit as the measurement value. Fertilizer design system.
  • the present invention is applicable to an apparatus and system for determining the amount of fertilization to a culture medium.
  • Fertilization design apparatus 31 Input unit 32 Display unit 35 b Index calculation unit 35 c Optimal calibration curve estimation unit 35 d Fertilization amount determination unit 35 h Order control unit

Abstract

Provided is a fertilization designing method, comprising: a crop information acquisition step (S1); a measured value acquisition step (S2); an index calculation step (S3); an optimum calibration-curve estimation step (S5); and a fertilization-amount determination step (S6). In S1, crop information concerning a variety of crops and a cultivation area is acquired. In S2, a measured value by remote sensing is acquired for a plurality of areas included in a medium in which the crop is cultivated. In S3, on the basis of the measured value, an index indicating a growing state of the crop is calculated for each area. In S5, an optimum calibration curve for the crop is estimated from a standard calibration curve or from the crop information and the index. In S6, a fertilization amount for fertilizing the medium is determined on the basis of the index and the optimum calibration curve.

Description

施肥設計方法および施肥設計装置Fertilization design method and fertilization design apparatus
 本発明は、作物を栽培する培地に与える肥料の量(施肥量)を決定する施肥設計方法および施肥設計装置に関する。 The present invention relates to a fertilization design method and a fertilization design apparatus for determining the amount of fertilizer (fertilization amount) to be given to a culture medium for growing a crop.
 従来から、培地への施肥量を決定する施肥設計方法が種々提案されている。例えば特許文献1では、以下のようにして施肥量を決定するようにしている。まず、データベースを参照して、対象培地における目標となる窒素量(目標窒素量)を取得する。次に、対象培地に含まれている窒素の量を所定の実験によって推定し、推定窒素量を取得する。そして、目標窒素量と推定窒素量との差(窒素不足量)を算出する。対象培地に与える肥料に含まれる単位量あたりの窒素量は既知であるため、上記窒素不足量を補うことができる肥料の全量(適正施肥量)は、演算により求まる。すなわち、この演算を実行することにより、対象培地への適正施肥量を決定している。 Conventionally, various fertilization design methods for determining the amount of fertilization to the culture medium have been proposed. For example, in Patent Document 1, the fertilization amount is determined as follows. First, referring to the database, the target nitrogen amount (target nitrogen amount) in the target culture medium is acquired. Next, the amount of nitrogen contained in the target medium is estimated by a predetermined experiment to obtain an estimated amount of nitrogen. Then, the difference between the target nitrogen amount and the estimated nitrogen amount (nitrogen deficiency amount) is calculated. Since the amount of nitrogen per unit amount contained in the fertilizer to be given to the target culture medium is known, the total amount (appropriate fertilization amount) of the fertilizer capable of compensating for the nitrogen deficiency can be obtained by calculation. That is, by executing this calculation, the appropriate fertilization amount to the target culture medium is determined.
 また、例えば特許文献2では、圃場を含む地図を表示し、表示された地図上で圃場の指定および施肥設計条件(肥料の組み合わせパターン、目安量など)の入力を受け付けた後、データベースを参照して、圃場に対する施肥パターンを複数設計し、設計した複数の施肥パターンを、圃場と同一画面上に表示している。このような表示により、ユーザは、同一画面上で複数の施肥パターンを比較しながら、適正な肥料の種類および施肥量を決定することが可能となる。なお、圃場とは、一般的に、周囲が畦畔で囲まれた水田または畑を指す。 Further, for example, in Patent Document 2, a map including a field is displayed, and after input of designation of a field and fertilization design conditions (fertilizer combination pattern, reference amount, etc.) on the displayed map, a database is referred to. A plurality of fertilizer application patterns for the field are designed, and the plurality of fertilization patterns designed are displayed on the same screen as the field. Such a display enables the user to determine an appropriate fertilizer type and fertilization amount while comparing a plurality of fertilization patterns on the same screen. In addition, a field generally refers to a paddy field or field surrounded by a fence.
特開2015-027296号公報(請求項1、段落〔0043〕~〔0087〕、図1等参照)JP-A-2015-027296 (see claim 1, paragraphs [0043] to [0087], FIG. 1, etc.) 特開2011-215697号公報(請求項1、段落〔0007〕、〔0019〕~〔0030〕、図11~図15等参照)JP 2011-215697 A (see claim 1, paragraphs [0007], [0019] to [0030], and FIGS. 11 to 15)
 ところが、上記した特許文献1および2の方法は、いずれも、実際の作物の生育状態とは無関係に施肥量を決定する方法であるため、実際の作物の生育状態に応じた適切な施肥(可変施肥)を行うことができない。作物の生育状態は、例えば気温、降水量、日照量などの環境条件や土壌の状態によって変動するため、品質の良い作物を育てて、その収穫量を増やすためには、可変施肥を行うことが必要とされる。 However, the methods of Patent Documents 1 and 2 described above are methods for determining the fertilization amount regardless of the actual growth condition of the crop, so appropriate fertilization (variable) according to the actual growth condition of the crop Fertilization can not be done. The growth conditions of crops vary depending on environmental conditions such as temperature, precipitation, and sunshine, and soil conditions. Therefore, in order to grow good crops and increase their yield, variable fertilization should be performed. Needed.
 ここで、可変施肥については、以下の方法が従来公知である。例えば、図18は、日本のある県から提示されている稲のある品種についての育成指針を示すグラフである。グラフの横軸は、単位面積(ここでは1m2とする)あたりの稲の茎数を示し、縦軸は、SPAD値を示している。ここで、SPAD値とは、作物(植物)の葉に含まれる葉緑素(クロロフィル)量を計測器(葉緑素計)で計測して得られる値である。なお、SPADの綴りは、Soil & Plant Analyzer Development(農林水産省農蚕園芸局農産課の大規模経営体土壌・作物・生産物分析システム実用化事業)の略である。 Here, as for variable fertilization, the following methods are conventionally known. For example, FIG. 18 is a graph showing the breeding guidelines for certain varieties of rice presented from certain prefectures in Japan. The horizontal axis of the graph indicates the number of rice stalks per unit area (here, 1 m 2 ), and the vertical axis indicates SPAD values. Here, the SPAD value is a value obtained by measuring the amount of chlorophyll (chlorophyll) contained in the leaves of a crop (plant) with a measuring instrument (chlorophyll meter). In addition, the spelling of SPAD is an abbreviation of Soil & Plant Analyzer Development (a large-scale management body soil, crop and product analysis system commercialization project of the Ministry of Agriculture, Forestry and Fisheries, Agriculture and Horticulture Bureau, Agricultural Production Division).
 同図のように、上記育成指針では、SPAD値に応じて施肥量を増減させることが示されている。葉緑素量は、作物の生育状態に応じて変化するため、葉緑素量を計測してSPAD値を求め、このSPAD値に応じて施肥量を増減させることにより、作物の生育状態に応じた適切な施肥を行うことができると考えられる。しかし、このような可変施肥の方法では、以下の問題が生ずる。 As shown in the figure, it is indicated that the fertilization amount is increased or decreased according to the SPAD value in the above-mentioned growth guideline. Since the amount of chlorophyll changes according to the growing condition of the crop, the chlorophyll amount is measured to obtain the SPAD value, and the fertilization amount is increased or decreased according to this SPAD value, and appropriate fertilization according to the growing condition of the crop It is believed that you can do However, such a variable fertilization method causes the following problems.
 まず、SPAD値を得るにあたっては、計測器によって1つ1つの作物の葉に光を当てて計測することが必要である。この作業を培地(圃場)全体の植物に対して行うことは、多大な手間や労力を要する。このため、簡易な方法によって作物の生育状態を示す指標を取得して、その指標を用いて施肥量を決める施肥設計を行うことが望まれる。 First, in order to obtain the SPAD value, it is necessary to apply light to the leaves of each crop by using a measuring instrument. It takes a lot of time and effort to carry out this work on the whole culture medium (field) plant. For this reason, it is desirable to acquire an index indicating the growth state of a crop by a simple method, and to conduct fertilization design to determine the amount of fertilization using the index.
 また、上記の育成指針(SPAD値に応じて施肥量を増減させる施肥設計)は、作物の一部の品種についてのみ示されたものであり、全品種について示されているわけではない。このため、残りの品種については、SPAD値に応じた適切な可変施肥を行うことができない。 In addition, the above-mentioned growth guidelines (fertilization design in which the amount of fertilization is increased or decreased according to the SPAD value) are indicated only for some varieties of crops, and not for all varieties. Therefore, for the remaining varieties, appropriate variable fertilization can not be performed according to the SPAD value.
 さらに、上記の育成指針は、SPAD値が適正な範囲から外れている場合に、施肥量を増加または減少させるという粗い指針である。このため、SPAD値を精度よく検出することはできても、そのSPAD値に応じた適切な施肥量(増減させる施肥量)までを精度よく求めることはできない。その結果、精度の高い可変施肥を行うことができない。 Furthermore, the above-mentioned growth guidelines are rough guidelines to increase or decrease the fertilization amount when the SPAD value is out of the proper range. Therefore, although the SPAD value can be detected with high accuracy, it is not possible to accurately obtain the appropriate fertilization amount (fertilization amount to be increased or decreased) according to the SPAD value. As a result, highly accurate variable fertilization can not be performed.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、作物の生育状態を示す指標を簡易な方法で取得し、その指標を用いて、作物の全ての品種について、生育状態に応じた可変施肥を精度よく行うことができる施肥設計方法および施肥設計装置を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to obtain an indicator indicating the growth state of a crop by a simple method, and using the indicator, for all varieties of crop, It is an object of the present invention to provide a fertilization design method and a fertilization design apparatus capable of accurately performing variable fertilization according to the growth state.
 本発明の一側面に係る施肥設計方法は、作物の品種および栽培地域に関する作物情報を取得する作物情報取得工程と、前記作物を栽培する培地に含まれる複数の領域について、リモートセンシングによる測定値を取得する測定値取得工程と、前記測定値に基づいて、前記作物の生育状態を示す指標を各領域ごとに算出する指標算出工程と、前記作物についての前記指標と施肥量との関係を最適に示す最適検量線を、前記作物についての過去の検量線である基準検量線、または、前記作物情報および前記指標から推定する最適検量線推定工程と、前記指標と前記最適検量線とに基づいて、前記培地に施肥する前記施肥量を決定する施肥量決定工程とを含む。 The fertilization design method according to one aspect of the present invention includes a crop information acquisition step of acquiring crop information on crop varieties and cultivation areas, and measurement values by remote sensing for a plurality of regions included in a culture medium for cultivating the crop. Based on the measurement value acquisition process to be acquired and the measurement value, an index calculation process for calculating an index indicating the growth state of the crop for each area, and the relationship between the index and the fertilization amount for the crop are optimized. Based on a standard calibration curve which is a past calibration curve for the crop, or an optimal calibration curve estimation step of estimating the crop information and the indicator, and the indicator and the optimal calibration curve, the optimal calibration curve to be shown is And a fertilization amount determining step of determining the fertilization amount to be fertilized to the culture medium.
 本発明の他の側面に係る施肥設計装置は、ユーザによる情報の入力を受け付けるための入力部と、前記入力部によって作物の品種および栽培地域に関する作物情報が入力されたときに、前記作物を栽培する培地に含まれる複数の領域についてのリモートセンシングによる測定値に基づいて、前記作物の生育状態を示す指標を各領域ごとに算出する指標算出部と、前記作物についての前記指標と施肥量との関係を最適に示す最適検量線を、前記作物についての過去の検量線である基準検量線、または、前記作物情報および前記指標から推定する最適検量線推定部と、前記指標と前記最適検量線とに基づいて、前記培地に施肥する前記施肥量を決定する施肥量決定部とを備えている。 The fertilization design apparatus according to another aspect of the present invention cultivates the crop when an input unit for receiving an input of information by a user and crop information on a crop variety and a cultivation area are input by the input unit. An indicator calculation unit that calculates an indicator indicating the growth state of the crop for each region based on the measured values by remote sensing for a plurality of regions included in the culture medium, and the indicator and fertilization amount for the crop A standard calibration curve which is a past calibration curve of the crop, or an optimal calibration curve estimation unit which estimates the crop information and the index; an index and the optimum calibration curve; And a fertilization amount determination unit that determines the fertilization amount to be fertilized to the culture medium based on the above.
 上記の施肥設計方法および施肥設計装置によれば、作物の生育状態を示す指標を簡易な方法で取得し、その指標を用いて、作物の全ての品種について、生育状態に応じた可変施肥を精度よく行うことができる。 According to the above fertilization design method and fertilization design apparatus, an index indicating the growth state of the crop is obtained by a simple method, and using the index, the variable fertilization according to the growth state is accurate for all varieties of the crop. It can be done well.
本発明の実施の一形態に係る施肥設計システムの全体構成を模式的に示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows typically the whole structure of the fertilization design system which concerns on one Embodiment of this invention. 上記施肥設計システムに含まれるサーバーの構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the server contained in the said fertilization design system. 作物のある品種についての検量線を模式的に示す説明図である。It is explanatory drawing which shows typically the calibration curve about a kind with a crop. 上記施肥設計システムに含まれる施肥設計装置の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the fertilization design apparatus contained in the said fertilization design system. 上記施肥設計システムにおける処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process in the said fertilization design system. 最適検量線推定工程の詳細を示すフローチャートである。It is a flowchart which shows the detail of the optimal calibration curve estimation process. 基準検量線および最適検量線の一例を示す説明図である。It is an explanatory view showing an example of a standard calibration curve and an optimal calibration curve. 基準検量線および最適検量線の他の例を示す説明図である。It is an explanatory view showing other examples of a standard calibration curve and an optimal calibration curve. 最適検量線のさらに他の例を示す説明図である。It is explanatory drawing which shows the further another example of the optimal calibration curve. 最適検量線のさらに他の例を示す説明図である。It is explanatory drawing which shows the further another example of the optimal calibration curve. 指標マップの一例を示す説明図である。It is an explanatory view showing an example of an index map. 施肥量マップの一例を示す説明図である。It is an explanatory view showing an example of a fertilization amount map. 第1ヒストグラムの一例を説明図である。It is explanatory drawing of an example of a 1st histogram. 第2ヒストグラムの一例を説明図である。It is explanatory drawing of an example of a 2nd histogram. 各培地ごとの施肥量の平均値の一例を示す説明図である。It is explanatory drawing which shows an example of the average value of the fertilization amount for every culture medium. 表示部の表示画面の一例を示す説明図である。It is explanatory drawing which shows an example of the display screen of a display part. 上記表示部に表示された最適検量線の一例を示す説明図である。It is explanatory drawing which shows an example of the optimal calibration curve displayed on the said display part. 稲のある品種についての育成指針を示すグラフである。It is a graph which shows the nurturing | raising guideline about a certain rice variety.
 本発明の実施の形態について、図面に基づいて説明すれば、以下の通りである。 It will be as follows if an embodiment of the present invention is described based on a drawing.
 〔施肥設計システムの構成〕
 図1は、本実施形態の施肥設計システム1の全体構成を模式的に示すブロック図である。施肥設計システム1は、撮像部10と、サーバー20と、施肥設計装置30とを、通信回線NWを介して通信可能に接続して構成されている。通信回線NWは、例えばLAN(Local Area Network)やインターネット回線などのネットワーク(有線、無線を問わない)で構成されている。
[Composition of fertilization design system]
FIG. 1: is a block diagram which shows typically the whole structure of the fertilization design system 1 of this embodiment. The fertilization design system 1 is configured by communicably connecting the imaging unit 10, the server 20, and the fertilization design apparatus 30 via the communication line NW. The communication line NW is configured by, for example, a network (whether wired or wireless) such as a LAN (Local Area Network) or an internet line.
 (撮像部)
 撮像部10は、例えばマルチスペクトルカメラにより構成され、作物PLを栽培する培地FDを上空から撮影して画像を取得する。このように、作物PL(培地FD)から遠く離れた位置で作物PL(培地FD)の情報(画像)を取得することを、リモートセンシングと呼ぶ。このようなリモートセンシングを実現するため、撮像部10は、飛行体11に取り付けられている。飛行体11は、例えば自律飛行可能な無人航空機(ドローン)によって構成されている。飛行体11を培地FDに沿って飛行させることにより、培地FDを構成する複数の領域T(栽培領域)を撮像部10によって上空から撮影して、各領域Tひいては培地FD全体の画像を取得することができる。なお、飛行体11は、無人航空機以外に、気球、飛行船、飛行機、ヘリコプターなどで構成されてもよい。また、撮像部10は、飛行体11に取り付けられる以外にも、例えば鉄塔やクレーンに完全固定または回動可能に固定された状態で、培地FDを撮影して画像を取得してもよい。
(Imaging unit)
The imaging unit 10 is configured of, for example, a multispectral camera, and captures an image by photographing the culture medium FD for cultivating the crop PL from above. Thus, acquiring information (image) of the crop PL (medium FD) at a position far from the crop PL (medium FD) is called remote sensing. In order to realize such remote sensing, the imaging unit 10 is attached to the flying object 11. The flying object 11 is configured by, for example, an unmanned air vehicle (drone) capable of autonomous flight. By flying the flying object 11 along the culture medium FD, the imaging unit 10 captures a plurality of areas T (cultivation areas) constituting the culture medium FD from above by the imaging unit 10, and acquires an image of each area T and hence the entire culture medium FD. be able to. In addition to the unmanned aerial vehicle, the flying object 11 may be configured of a balloon, an airship, an airplane, a helicopter or the like. Moreover, the imaging part 10 may image | photograph the culture medium FD and acquire an image in the state fixed to the iron tower or a crane, for example completely fixed or rotatably fixable other than being attached to the flying body 11.
 撮像部10は、被写体(ここでは作物PLや培地FD)を撮影して可視画像を取得する可視撮像部と、被写体を撮影して近赤外画像を取得する近赤外撮像部とを有している。 The imaging unit 10 includes a visible imaging unit that captures a subject (here, the crop PL or the culture medium FD) and obtains a visible image, and a near infrared imaging unit that captures a subject and acquires a near infrared image. ing.
 可視撮像部は、第1バンドパスフィルタ、第1結像光学系、第1イメージセンサ(光学センサ)および第1デジタルシグナルプロセッサ、第1通信部等を有している。第1バンドパスフィルタは、例えば波長650nmを中心波長とする比較的狭帯域で光を透過させる。第1結像光学系は、第1バンドパスフィルタを透過した測定対象(作物PLまたは培地FD)の可視光の光学像を所定の第1結像面上に結像する。第1イメージセンサは、第1結像面に受光面を一致させて配置され、測定対象で反射する太陽光に含まれる波長650nmを中心波長とする比較的狭帯域の光を検知し、測定対象の可視光の光学像を電気的な信号に変換する。第1デジタルシグナルプロセッサは、第1イメージセンサの出力に対して画像処理を施し、可視画像を形成する。第1通信部は、可視画像のデータを外部(例えばサーバー20)に送信するための通信インターフェースであり、送信回路やアンテナ等を含んで構成され、通信回線NWと通信可能に接続されている。 The visible imaging unit includes a first band pass filter, a first imaging optical system, a first image sensor (optical sensor), a first digital signal processor, a first communication unit, and the like. The first band pass filter transmits light in a relatively narrow band whose center wavelength is, for example, 650 nm. The first imaging optical system forms an optical image of visible light of the measurement object (the crop PL or the culture medium FD) transmitted through the first band pass filter on a predetermined first imaging surface. The first image sensor is disposed with the light receiving surface aligned with the first imaging surface, detects relatively narrow band light having a wavelength of 650 nm included in the sunlight reflected by the measurement target, and is the measurement target Convert an optical image of visible light into an electrical signal. The first digital signal processor performs image processing on the output of the first image sensor to form a visible image. The first communication unit is a communication interface for transmitting visible image data to the outside (for example, the server 20), includes a transmission circuit, an antenna, and the like, and is communicably connected to the communication line NW.
 近赤外撮像部は、第2バンドパスフィルタ、第2結像光学系、第2イメージセンサ(光学センサ)および第2デジタルシグナルプロセッサ、第2通信部等を有している。第2バンドパスフィルタは、750nm以上の所定波長(例えば波長800nm)を中心波長とする比較的狭帯域で光を透過させる。第2結像光学系は、第2バンドパスフィルタを透過した測定対象の近赤外光の光学像を所定の第2結像面上に結像する。第2イメージセンサは、第2結像面に受光面を一致させて配置され、測定対象で反射する太陽光に含まれる波長800nmを中心波長とする比較的狭帯域の光を検知し、測定対象の近赤外光の光学像を電気的な信号に変換する。第2デジタルシグナルプロセッサは、第2イメージセンサの出力に対して画像処理を施し、近赤外画像を形成する。第2通信部は、近赤外画像のデータを外部(例えばサーバー20)に送信するためのインターフェースであり、送信回路やアンテナ等を含んで構成され、通信回線NWと通信可能に接続されている。 The near-infrared imaging unit includes a second band pass filter, a second imaging optical system, a second image sensor (optical sensor), a second digital signal processor, a second communication unit, and the like. The second band pass filter transmits light in a relatively narrow band whose center wavelength is a predetermined wavelength of 750 nm or more (for example, a wavelength of 800 nm). The second imaging optical system forms an optical image of the near-infrared light of the measuring object transmitted through the second band pass filter on a predetermined second imaging surface. The second image sensor is disposed with the light receiving surface aligned with the second imaging surface, detects relatively narrow band light having a central wavelength of 800 nm included in the sunlight reflected by the measurement target, and the measurement target Convert an optical image of near-infrared light into an electrical signal. The second digital signal processor performs image processing on the output of the second image sensor to form a near infrared image. The second communication unit is an interface for transmitting near-infrared image data to the outside (for example, the server 20), includes a transmission circuit, an antenna, and the like, and is communicably connected to the communication line NW. .
 なお、撮像部10の第1イメージセンサおよび第2イメージセンサとしては、例えばVGAタイプ(640画素×480画素)のイメージセンサを用いることができる。 In addition, as a 1st image sensor of the imaging part 10 and a 2nd image sensor, the image sensor of VGA type (640 pixels x 480 pixels) can be used, for example.
 (サーバー)
 サーバー20は、各種データを記憶する端末装置である。図2は、サーバー20の構成を模式的に示すブロック図である。サーバー20は、第1データベース21と、第2データベース22と、第3データベース23と、通信部24と、制御部25とを有している。
(server)
The server 20 is a terminal device that stores various data. FIG. 2 is a block diagram schematically showing the configuration of the server 20. As shown in FIG. The server 20 includes a first database 21, a second database 22, a third database 23, a communication unit 24, and a control unit 25.
 第1データベース21は、撮像部10のリモートセンシングによる測定値を記憶する。つまり、第1データベース21は、撮像部10によって取得されてサーバー20に送信される、培地FDに含まれる複数の領域Tの撮像画像(可視画像、近赤外画像)のデータ上記測定値として記憶する。なお、第1データベース21は、リモートセンシングによる測定値として、撮像部10以外で取得された測定値を記憶してもよい。例えば、第1データベース21は、人工衛星での撮影によって取得されてサーバー20に送信された画像(可視画像、近赤外画像)のデータを記憶してもよい。この場合は、撮像部10を設けることなく、施肥設計システム1を構成することができる。 The first database 21 stores measurement values obtained by remote sensing of the imaging unit 10. That is, the first database 21 is stored as data of the captured image (visible image, near-infrared image) of a plurality of areas T included in the culture medium FD acquired by the imaging unit 10 and transmitted to the server 20 Do. Note that the first database 21 may store measurement values acquired by a unit other than the imaging unit 10 as measurement values by remote sensing. For example, the first database 21 may store data of an image (visible image, near infrared image) acquired by imaging with a satellite and transmitted to the server 20. In this case, the fertilization design system 1 can be configured without providing the imaging unit 10.
 第2データベース22は、作物PLの品種および栽培地域ごとに、過去に取得された検量線のデータを記憶する。例えば、作物PLが稲(米)であれば、第2データベース22は、米の品種(例えば品種A、B、・・・)および各品種の栽培地域ごとに(例えば地方ごと、県ごと、市ごと、町ごと、または村ごとに)、過去(例えば1年前、2年前、3年前・・・)に取得された検量線のデータを記憶する。ここで、図3は、作物PLのある品種Aについての検量線を模式的に示している。検量線とは、作物PLの生育状態を示す指標を横軸にとり、作物PLが栽培される培地FDへの施肥量を縦軸にとった座標平面を考えたときに、指標と施肥量との関係を示す線を指す。 The second database 22 stores data of calibration curves acquired in the past for each variety and cultivation area of the crop PL. For example, if the crop PL is rice (rice), the second database 22 is for each rice cultivar (eg, cultivar A, B,...) And each cultivar cultivation area (eg, by region, by prefecture, by city) It stores data of calibration curves acquired every, every town, or every village, in the past (for example, 1 year ago, 2 years ago, 3 years ago, etc.). Here, FIG. 3 schematically shows a calibration curve for a certain cultivar A of the crop PL. The standard curve is an indicator that indicates the growth state of the crop PL on the horizontal axis, and the coordinate plane on which the amount of fertilizer application to the culture medium FD in which the crop PL is grown is on the vertical axis. Points to a line that indicates a relationship.
 また、第2データベース22は、上記培地Dにおける作物PLの過去の収穫量のデータをさらに記憶する。上記収穫量のデータは、例えば施肥設計装置30にて入力されてサーバー20に送信されることで、第2データベース22に記憶されるが、他の端末から送信されて第2データベース22に記憶されていてもよい。 Further, the second database 22 further stores data of the past harvest amount of the crop PL in the medium D. The yield data is stored in the second database 22 by, for example, being input by the fertilization design apparatus 30 and transmitted to the server 20, but transmitted from another terminal and stored in the second database 22. It may be
 第3データベース23は、作物PLの栽培条件に関する栽培情報を記憶する。上記の栽培条件としては、例えば作物PLの栽培地域における栽培期間での積算気温、平均降水量または平均日照量を考えることができる。なお、上記の積算気温とは、任意の栽培期間での作物PLの生長に対して有効な最低温度未満の温度を無効として除去し、上記最低温度以上の温度だけを取り出して積算した値を指す。 The third database 23 stores cultivation information on cultivation conditions of the crop PL. As the above-mentioned cultivation conditions, it is possible to consider, for example, the accumulated air temperature, the average precipitation or the average sunshine in the cultivation period in the cultivation area of the crop PL. In addition, said integrated temperature refers to the value which took out and integrated only the temperature more than the said minimum temperature by invalidating the temperature less than the minimum temperature effective with respect to the growth of crop PL in arbitrary cultivation periods. .
 上記した第1データベース21、第2データベース22、および第3データベース23は、例えばハードディスクや不揮発性メモリなどの記憶媒体で構成されている。本実施形態では、第1データベース21、第2データベース22、および第3データベース23は、全て同じサーバー20に設けられているが、その少なくとも1つは、サーバー20とは別のサーバーに設けられていてもよい。 The first database 21, the second database 22, and the third database 23 described above are configured of storage media such as a hard disk and a non-volatile memory, for example. In the present embodiment, the first database 21, the second database 22 and the third database 23 are all provided in the same server 20, but at least one of them is provided in a server different from the server 20. May be
 通信部24は、撮像部10および施肥設計装置30との間で通信を行うためのインターフェースである。この通信部24は、送信回路、受信回路、変調回路、復調回路、アンテナなどを含んで構成され、通信回線NWと通信可能に接続されている。制御部25は、サーバー20の各部の動作を制御するCPU(Central Processing Unit;中央演算処理装置)で構成されており、図示しないメモリに記憶される動作プログラムに従って動作する。 The communication unit 24 is an interface for communicating with the imaging unit 10 and the fertilization design device 30. The communication unit 24 includes a transmission circuit, a reception circuit, a modulation circuit, a demodulation circuit, an antenna, and the like, and is communicably connected to the communication line NW. The control unit 25 is constituted by a CPU (Central Processing Unit; central processing unit) that controls the operation of each unit of the server 20, and operates according to an operation program stored in a memory (not shown).
 (施肥設計装置)
 図4は、施肥設計装置30の構成を模式的に示すブロック図である。施肥設計装置30は、培地FDへの適切な施肥量を決定してユーザに提供する装置であり、例えばPC(パーソナルコンピュータ)で構成されている。なお、施肥設計装置30は、多機能携帯端末(例えばスマートフォン、タブレット端末)で構成されていてもよい。
(Fertilizer design device)
FIG. 4 is a block diagram schematically showing the configuration of the fertilization design device 30. As shown in FIG. The fertilization design device 30 is a device that determines the appropriate fertilization amount to the culture medium FD and provides it to the user, and is configured by, for example, a PC (personal computer). In addition, the fertilization design apparatus 30 may be comprised by the multifunctional portable terminal (for example, a smart phone, a tablet terminal).
 施肥設計装置30は、入力部31と、表示部32と、記憶部33と、通信部34と、制御部35とを有している。 The fertilization design device 30 has an input unit 31, a display unit 32, a storage unit 33, a communication unit 34, and a control unit 35.
 入力部31は、ユーザによって操作され、ユーザによる情報の入力を受け付けるために設けられている。このような入力部31は、具体的には、キーボード、マウス、タッチパッドなどの操作部で構成される。表示部32は、各種の情報を表示するディスプレイであり、例えば液晶表示装置で構成されている。 The input unit 31 is operated by the user and is provided to receive input of information by the user. Specifically, such an input unit 31 includes an operation unit such as a keyboard, a mouse, and a touch pad. The display unit 32 is a display that displays various types of information, and is configured of, for example, a liquid crystal display device.
 記憶部33は、制御部35を動作させるためのプログラムおよび各種の情報(例えばサーバー20から取得した情報)を記憶するメモリであり、例えばハードディスクで構成されている。通信部34は、サーバー20との間で通信を行うためのインターフェースであり、送信回路、受信回路、変調回路、復調回路、アンテナなどを含んで構成され、通信回線NWと通信可能に接続されている。 The storage unit 33 is a memory for storing a program for operating the control unit 35 and various types of information (for example, information acquired from the server 20), and is configured by, for example, a hard disk. The communication unit 34 is an interface for communicating with the server 20, includes a transmission circuit, a reception circuit, a modulation circuit, a demodulation circuit, an antenna, etc., and is communicably connected to the communication line NW. There is.
 制御部35は、CPUで構成されており、記憶部33に記憶された動作プログラムに従って動作する。この制御部35は、全体制御部35a、指標算出部35b、最適検量線推定部35c、施肥量決定部35d、マップ作成部35e、第1ヒストグラム作成部35f、第2ヒストグラム作成部35g、および発注制御部35hを含み、これらの各機能を実現する。なお、制御部35の上記した各ブロックは、別々のCPUで構成されてもよい。全体制御部35aは、施肥設計装置30の各部の動作を制御する(表示部32における表示制御や通信部34における通信制御を含む)。制御部35における全体制御部35a以外のブロックの機能については、以下で示す処理の説明の中で併せて説明する。 The control unit 35 is constituted by a CPU, and operates according to the operation program stored in the storage unit 33. The control unit 35 includes an overall control unit 35a, an index calculation unit 35b, an optimum calibration curve estimation unit 35c, a fertilization amount determination unit 35d, a map creation unit 35e, a first histogram creation unit 35f, a second histogram creation unit 35g, and ordering. A control unit 35h is included to realize each of these functions. Note that each block described above of the control unit 35 may be configured by a separate CPU. The overall control unit 35a controls the operation of each unit of the fertilization design device 30 (including display control in the display unit 32 and communication control in the communication unit 34). The functions of blocks other than the general control unit 35a in the control unit 35 will be described together in the description of the processing described below.
 〔施肥設計システムにおける処理について〕
 図5は、本実施形態の施肥設計システム1における処理の流れを示すフローチャートである。施肥設計システム1によって実現される施肥設計方法は、作物情報取得工程(S1)、測定値取得工程(S2)、指標算出工程(S3)、栽培情報取得工程(S4)、最適検量線推定工程(S5)、施肥量決定工程(S6)、施肥量マップ作成工程(S7)、第1ヒストグラム作成工程(S8)、第2ヒストグラム作成工程(S9)、総施肥量算出工程(S10)、表示工程(S11)、最適検量線調整工程(S12)、調整判断工程(S13)、および発注制御工程(S14~S16)を含む。以下、各工程について説明する。
[About processing in fertilization design system]
FIG. 5 is a flowchart showing a flow of processing in the fertilization design system 1 of the present embodiment. The fertilization design method realized by the fertilization design system 1 includes a crop information acquisition step (S1), a measured value acquisition step (S2), an index calculation step (S3), a cultivation information acquisition step (S4), and an optimal calibration curve estimation step ( S5) Fertilization amount determination step (S6), Fertilization amount map creation step (S7), first histogram creation step (S8), second histogram creation step (S9), total fertilization amount calculation step (S10), display step (S10) S11), an optimum calibration curve adjustment step (S12), an adjustment determination step (S13), and an order control step (S14 to S16). Each step will be described below.
 (S1;作物情報取得工程)
 S1では、施肥設計装置30において、ユーザが入力部31を操作することにより、作物PLの品種(例えば品種A)および栽培地域(例えばAA県aa市)に関する作物情報が入力される。この入力により、上記作物情報が取得される。取得した作物情報は、記憶部33に記憶される。
(S1: Crop information acquisition process)
In S1, in the fertilization design apparatus 30, when the user operates the input unit 31, crop information on the variety (for example, variety A) of the crop PL and the cultivation area (for example, aa city in AA prefecture) is input. The crop information is obtained by this input. The acquired crop information is stored in the storage unit 33.
 (S2;測定値取得工程)
 S2では、制御部35(例えば全体制御部35a)が、サーバー20の制御部25に対して、S1で入力された作物情報(作物PLの品種、栽培地域)に基づいて、第1データベース21に記憶されている測定値の送信要求を行う。つまり、第1データベース21に記憶されている測定値であって、上記作物PLを栽培する培地FDに含まれる複数の領域Tについてのリモートセンシングによる測定値を施肥設計装置30に送信するように、サーバー20にコマンドを送る。このコマンドを受けて、サーバー20の制御部25は、第1データベース21に記憶されている上記測定値のデータを施肥設計装置30に送信する。これにより、施肥設計装置30では、上記測定値が取得される。取得された上記測定値は、記憶部33に記憶される。上記栽培地域に同じ所有者(農家)が管理する培地FDが複数ある場合は、個々の培地FDについての上記測定値が施肥設計装置30に送信され、記憶部33に記憶される。
(S2: Measurement value acquisition process)
In S2, the control unit 35 (for example, the overall control unit 35a) sends the first database 21 to the control unit 25 of the server 20 based on the crop information (type of crop PL, cultivation area) input in S1. Send a request to transmit stored measurement values. That is, the measurement values stored in the first database 21 are transmitted to the fertilization design apparatus 30 so as to transmit measurement values by remote sensing for a plurality of areas T included in the culture medium FD for cultivating the crop PL. Send a command to the server 20. In response to this command, the control unit 25 of the server 20 transmits the data of the measurement value stored in the first database 21 to the fertilization design device 30. Thereby, in the fertilization design apparatus 30, the said measured value is acquired. The acquired measurement value is stored in the storage unit 33. When there are a plurality of culture media FD managed by the same owner (farmer) in the cultivation area, the measurement values of the respective culture media FD are transmitted to the fertilization design device 30 and stored in the storage unit 33.
 (S3;指標算出工程)
 S3では、指標算出部35bが、上記測定値に基づいて、作物PLの生育状態を示す指標を培地FDの各領域Tごとに算出する。本実施形態では、指標算出部35bは、上記の指標として、NDVI(Normalized Difference Vegetation Index;正規化差植生指数、正規化植生指数)を算出する。NDVIは、植生の分布状況や活性度を示す指標であり、撮像部10によるリモートセンシングによって取得された測定値(画素値)を用いて算出される。つまり、撮像部10で取得された可視画像の画素値をRとし、近赤外画像の画素値をIRとすると、NDVI={(IR-R)/(IR+R)}である。NDVIは、-1と1との間に正規化した数値を示し、正の大きい数字になるほど植生が濃いことを表す。なお、S2にて、複数の培地FDについて測定値が取得されている場合には、各培地FDの各々について、指標算出部35bによって上記の指標が各領域Tごとに算出される。
(S3: Index calculation process)
In S3, the index calculation unit 35b calculates an index indicating the growth state of the crop PL for each region T of the culture medium FD, based on the measurement value. In the present embodiment, the index calculation unit 35 b calculates an NDVI (Normalized Difference Vegetation Index; normalized vegetation index) as the above-described index. The NDVI is an index indicating the distribution status and activity of vegetation, and is calculated using a measurement value (pixel value) acquired by remote sensing by the imaging unit 10. That is, when the pixel value of the visible image acquired by the imaging unit 10 is R and the pixel value of the near-infrared image is IR, NDVI = {(IR−R) / (IR + R)}. NDVI indicates a normalized value between -1 and 1, and the larger the positive number, the thicker the vegetation. In addition, in S2, when a measured value is acquired about several culture medium FD, said index is calculated for every area | region T by the index calculation part 35b about each of each culture medium FD.
 なお、指標算出部35bは、上記指標として、NDVIの代わりに以下の値を算出してもよい。NDVI以外の指標としては、例えば、RVI(Ratio Vegetation Index;比植生指数、RVI=IR/R)、DVI(Difference Vegetation Index;差植生指数、DVI=IR-R)、TVI(Transformed Vegetation Index、TVI=NDVI0.5+0.5)、またはIPVI(Infrared Percentage Vegetation Index、IPVI=IR/(IR+R)=(NDVI+1)/2)等が挙げられる。 The index calculation unit 35b may calculate the following values instead of the NDVI as the above-described index. As indexes other than NDVI, for example, RVI (Ratio Vegetation Index; RVI = IR / R), DVI (Difference Vegetation Index; Difference Vegetation Index, DVI = IR-R), TVI (Transformed Vegetation Index, TVI) = NDVI 0.5 + 0.5) or IPVI (Infrared Percentage Vegetation Index, IPVI = IR / (IR + R) = (NDVI + 1) / 2), and the like.
 また、指標算出部35bは、NDVIの代わりに、植被率を算出し、上記指標として用いてもよい。植被率とは、培地FDの地表面を作物PLが覆っている割合を示す。例えば、指標算出部35bは、撮像部10で取得された近赤外画像を二値化処理して、白色と黒色との二値化画像を形成し、この二値化画像において、白色部分が占める割合を算出することにより、植被率を算出することができる。なお、二値化画像において、白色部分は作物PLに相当し、黒色部分は土壌に相当する。 Also, the index calculation unit 35b may calculate the coverage rate instead of the NDVI and use it as the above-mentioned index. The coverage rate indicates the rate at which the crop PL covers the ground surface of the culture medium FD. For example, the index calculation unit 35 b binarizes the near-infrared image acquired by the imaging unit 10 to form a binarized image of white and black, and in the binarized image, a white portion is The vegetation coverage can be calculated by calculating the proportion occupied. In the binarized image, the white part corresponds to the crop PL, and the black part corresponds to the soil.
 (S4;栽培情報取得工程)
 S4では、制御部35(例えば全体制御部35a)が、サーバー20の制御部25に対して、S1で入力された作物情報(作物PLの品種、栽培地域)に基づいて、第3データベース23に記憶されている栽培情報の送信要求を行う。つまり、第3データベース23に記憶されている、作物PLの栽培条件(例えば作物PLの栽培地域での今年および過去の積算気温)に関する栽培情報を施肥設計装置30に送信するように、サーバー20にコマンドを送る。このコマンドを受けて、サーバー20の制御部25は、第3データベース23に記憶されている上記栽培情報を施肥設計装置30に送信する。これにより、施肥設計装置30では、上記栽培情報が取得される。取得された上記栽培情報は、記憶部33に記憶される。なお、S4では、上記の積算気温の代わりに、平均降水量や平均日照量の情報を栽培情報として第3データベース23から取得してもよい。
(S4; cultivation information acquisition process)
In S4, the control unit 35 (for example, the overall control unit 35a) sends the third database 23 to the control unit 25 of the server 20 based on the crop information (type of crop PL, cultivation area) input in S1. Make a transmission request for the stored cultivation information. That is, the server 20 is sent the cultivation information on the cultivation conditions of the crop PL (for example, the accumulated temperature of this year and the past in the cultivation area of the crop PL) stored in the third database 23 to the fertilization design device 30. Send command In response to this command, the control unit 25 of the server 20 transmits the cultivation information stored in the third database 23 to the fertilization design device 30. Thereby, in the fertilization design apparatus 30, the said cultivation information is acquired. The acquired cultivation information is stored in the storage unit 33. In S4, instead of the above-mentioned integrated temperature, information on average precipitation and average sunshine may be acquired from the third database 23 as cultivation information.
 (S5;最適検量線推定工程)
 S5では、最適検量線推定部35cが、作物PLについての指標(例えばNDVI)と施肥量との関係を最適に示す最適検量線(作物PLの栽培に最も適した検量線)を、作物PLについての過去の検量線である基準検量線、または、S1で取得した作物情報およびS3で取得した指標から推定する。特に、S5では、最適検量線推定部35cは、作物PLについての過去の検量線のデータが第2データベース22に記憶されている場合には、第2データベース22から上記検量線のデータを取得して最適検量線を推定する一方、上記検量線のデータが第2データベース22に記憶されていない場合には、S1で取得された作物情報およびS3で算出された指標から、最適検量線を推定する。以下、S5の工程の詳細について説明する。
(S5: Optimal calibration curve estimation process)
In S5, the optimum calibration curve estimation unit 35c indicates the optimum calibration curve (the calibration curve most suitable for cultivating the crop PL), which optimally indicates the relationship between the index (for example, NDVI) of the crop PL and the fertilization amount, It is estimated from the reference standard curve which is a past standard curve or the crop information acquired in S1 and the index acquired in S3. In particular, in S5, when the data of the past calibration curve for the crop PL is stored in the second database 22, the optimum calibration curve estimation unit 35c acquires the data of the calibration curve from the second database 22. Estimate the best calibration curve, but if the data of the above calibration curve is not stored in the second database 22, estimate the best calibration curve from the crop information acquired in S1 and the index calculated in S3. . Hereinafter, the details of the process of S5 will be described.
 図6は、S5の最適検量線推定工程の詳細を示すフローチャートである。まず、最適検量線推定部35cは、通信部34を介してサーバー20との通信を確立した後、第2データベース22を参照し、入力部31によって入力された作物PLの品種と同一の品種(例えば品種A)で、かつ、同一の栽培地域(例えばAA県aa市)の過去の(例えば1年前の)検量線のデータが記憶されているか否かを判断する(S21)。なお、参照する検量線のデータの過去の年度(過去何年前の検量線のデータを参照するか)については、例えばユーザが入力部31を操作することによって指定することができる。S21にて、上記過去の検量線のデータが記憶されている場合には、その検量線(データ)を、最適検量線を推定する基準となる基準検量線として第2データベース22から受信して取得する(S22)。 FIG. 6 is a flowchart showing details of the optimal calibration curve estimation step of S5. First, after establishing communication with the server 20 via the communication unit 34, the optimal calibration curve estimation unit 35c refers to the second database 22, and the same variety as the variety of the crop PL input by the input unit 31 ( For example, it is determined whether or not data of a past (for example, one year ago) calibration curve of the same cultivation area (for example, aa city AA) is stored (S21). The past fiscal year of the data of the calibration curve to be referred to (how many years ago the data of the calibration curve is to be referred to) may be designated by the user operating the input unit 31, for example. When the data of the past calibration curve is stored in S21, the calibration curve (data) is received and acquired from the second database 22 as a reference calibration curve serving as a reference for estimating the optimum calibration curve. To do (S22).
 S21にて、上記過去の検量線のデータが第2データベース22に記憶されていない場合には、次に、入力部31によって入力された作物PLの品種とは異なる品種(例えば品種B)で、同一の栽培地域(例えばAA県aa市)の過去の検量線のデータが記憶されているか否かを判断する(S23)。S23にて、上記過去の検量線のデータが記憶されている場合には、その検量線(データ)を基準検量線として第2データベース22から受信して取得する(S22)。 If the data of the past calibration curve is not stored in the second database 22 in S21, next, with a variety (for example, variety B) different from the variety of the crop PL input by the input unit 31, It is judged whether the data of the past calibration curve of the same cultivation area (for example, AA aa city) are stored (S23). If the data of the past calibration curve is stored in S23, the calibration curve (data) is received and acquired from the second database 22 as a reference calibration curve (S22).
 S23にて、上記過去の検量線のデータが第2データベース22に記憶されていない場合には、次に、入力部31によって入力された作物PLの栽培地域の周辺地域(例えばAA県bb市)で栽培された品種(例えば同一の品種Aまたは異種の品種B)について、過去の検量線のデータが記憶されているか否かを判断する(S24)。なお、上記の周辺地域は、作物PLの栽培地域(AA県aa市)と近い地域であることが望ましく、上記栽培地域と隣接する地域であることがより望ましい。また、上記の周辺地域は、上記作物PLを栽培する農家の近隣農家の地域であってもよい。S24にて、上記過去の検量線のデータが記憶されている場合には、その検量線(データ)を基準検量線として第2データベース22から受信して取得する(S22)。 When the data of the past calibration curve is not stored in the second database 22 at S23, next, the surrounding area of the cultivation area of the crop PL input by the input unit 31 (for example, bb city in AA prefecture) It is determined whether or not data of a past calibration curve is stored for the variety (for example, the same variety A or different variety B) grown in (S24). In addition, it is preferable that the said surrounding area is an area close | similar to the cultivation area (AA city aa AA) of crop PL, and it is more desirable that it is an area adjacent to the said cultivation area. In addition, the above-mentioned surrounding area may be an area of a neighboring farmer of a farmer who grows the above-mentioned crop PL. If the data of the past calibration curve is stored in S24, the calibration curve (data) is received and acquired from the second database 22 as a reference calibration curve (S22).
 S24にて、上記過去の検量線のデータが記憶されていない場合には、次に、入力部31によって入力された作物PLの品種(例えば品種A)と直系の品種について、過去の検量線のデータが記憶されているか否かを判断する(S25)。なお、品種Aと直系の品種とは、品種Aと血統が同じで品質が近い品種のことを指し、例えば系譜図において品種Aの一世代前(親)の品種A1、一世代後(子)の品種A1’、二世代前の品種A2、二世代後の品種A2’などを考えることができる。また、S24では、S25にて、上記過去の検量線のデータが記憶されている場合には、その検量線(データ)を基準検量線として第2データベース22から受信して取得する(S22)。 If the data of the past calibration curve is not stored at S24, next, for the variety of crop PL (for example, variety A) and direct varieties which are input by input unit 31, It is determined whether data is stored (S25). In addition, the cultivar A and the direct cultivar refer to cultivars having the same lineage as the cultivar A and similar quality, for example, cultivar A1 before generation (parent) of cultivar A in the genealogy, one generation after (child) It is possible to consider the variety A1 ', the variety A2 two generations ago, the variety A2' two generations later, and so on. In S24, if the data of the past calibration curve is stored in S25, the calibration curve (data) is received and acquired from the second database 22 as a reference calibration curve (S22).
 S22にて、基準検量線を取得すると、次に、最適検量線推定部35cは、第2データベース22を再び参照し、上記基準検量線に対応する作物(同一品種、同一栽培地域の品種、周辺栽培地域の品種、または直系の品種)について、過去の収穫量のデータが記憶されているか否かを判断する(S26)。 When the standard calibration curve is acquired in S22, next, the optimum calibration curve estimation unit 35c refers to the second database 22 again, and the crop corresponding to the above-mentioned standard calibration curve (the same variety, the variety of the same cultivation area, the periphery) It is determined whether or not the data of the past harvest amount is stored for the variety of the cultivation area or the variety of direct line (S26).
 S26にて、過去の収穫量のデータが第2データベース22に記憶されている場合、最適検量線推定部35cは、第2データベース22から上記収穫量のデータを受信して取得し(S27)、S22にて取得した基準検量線と、S27にて取得した収穫量とに基づいて、今年の最適検量線を推定する(S28)。 At S26, when the data of the past harvest amount is stored in the second database 22, the optimum calibration curve estimation unit 35c receives and acquires the data of the above harvest amount from the second database 22 (S27), Based on the reference calibration curve acquired in S22 and the harvest amount acquired in S27, the optimum calibration curve for this year is estimated (S28).
 図7および図8は、過去(例えば1年前)の基準検量線と、その基準検量線から推定される今年の最適検量線の例をそれぞれ示している。例えば、1年前の収穫量がその前年の2年前よりも多い場合には、施肥量の上限を下げてもある程度の収穫量を見込めると考えられる。逆に、1年前の収穫量が2年前よりも少ない場合は、施肥量の下限を上げないとある程度の収穫量は得られないと考えられる。 FIG. 7 and FIG. 8 show an example of a past standard calibration curve (for example, one year ago) and an example of this year's optimum calibration curve estimated from the standard calibration curve. For example, if the harvest amount one year ago is larger than that two years ago, it is considered that lowering the upper limit of the fertilization amount can provide some harvest amount. On the contrary, if the harvest amount one year ago is smaller than two years ago, it is considered that a certain harvest amount can not be obtained unless the lower limit of the fertilization amount is raised.
 そこで、1年前の収穫量がその前年よりも多い場合には、最適検量線推定部35cは、図7に示すように、基準検量線(1年前の検量線)における施肥量の上限を収穫量の対前年比に応じて下げることにより、今年の最適検量線を推定する。具体的には、1年前の収穫量が2年前の収穫量よりもa%上がっている場合には、最適検量線推定部35cは、基準検量線における施肥量の上限をa%下げることにより、最適検量線を推定する。逆に、1年前の収穫量がその前年よりも少ない場合には、最適検量線推定部35cは、図8に示すように、基準検量線における施肥量の下限を収穫量の対前年比に応じて上げることにより、今年の最適検量線を推定する。具体的には、1年前の収穫量が2年前の収穫量よりもb%下がっている場合には、最適検量線推定部35cは、基準検量線における施肥量の下限をb%上げることにより、最適検量線を推定する。 Therefore, when the harvest amount one year ago is larger than that of the previous year, the optimum calibration curve estimating unit 35c, as shown in FIG. 7, determines the upper limit of the fertilization amount in the reference calibration curve (calibration curve one year ago). Estimate the best calibration curve for the current year by lowering the yield according to the year-on-year ratio. Specifically, when the harvest amount one year ago is a% higher than the harvest amount two years ago, the optimum calibration curve estimating unit 35c lowers the upper limit of the fertilization amount in the reference calibration curve by a%. To estimate the optimal calibration curve. On the contrary, when the harvest amount one year ago is smaller than that of the previous year, the optimum calibration curve estimating unit 35c determines, as shown in FIG. Estimate this year's best calibration curve by raising accordingly. Specifically, when the harvest amount one year ago is b% lower than the harvest amount two years ago, the optimum calibration curve estimating unit 35c should increase the lower limit of the fertilization amount in the reference calibration curve by b%. To estimate the optimal calibration curve.
 一方、図6のS26にて、上記過去の収穫量のデータが第2データベース22に記憶されていない場合、最適検量線推定部35cは、S4で取得された栽培条件に応じて基準検量線を変更することにより、今年の最適検量線を推定する(S29)。例えば、今年の積算気温が1年前と比べて高い場合には、作物PLの生育が1年前の同時期と比べて早いと考えることができ、この場合、1年前に比べて施肥量の上限は下げてもよいと考えられる。逆に、今年の積算気温が1年前と比べて低い場合、作物PLの生育が1年前の同時期と比べて遅く、1年前に比べて施肥量の下限を上げる必要があると考えられる。 On the other hand, when the data of the past harvest amount is not stored in the second database 22 in S26 of FIG. 6, the optimum calibration curve estimating unit 35c determines the reference calibration curve according to the cultivation conditions acquired in S4. By changing, the best calibration curve of this year is estimated (S29). For example, if the yearly accumulated temperature is higher than one year ago, it can be considered that the growth of the crop PL is earlier than at the same time one year ago, and in this case, the fertilization amount is compared to one year ago. It is considered that the upper limit of may be lowered. Conversely, if the yearly accumulated temperature is lower than one year ago, it is considered that it is necessary to increase the lower limit of the amount of fertilizer application compared to one year ago, when the growth of crop PL is late compared to the same period one year ago. Be
 そこで、最適検量線推定部35cは、基準検量線における施肥量の上限または下限を積算気温の変化の割合に応じて下げることにより、今年の最適検量線を推定する。具体的には、今年の積算気温が1年前よりもc%上がっている場合には、最適検量線推定部35cは、図7と同様に、基準検量線における施肥量の上限をc%下げることにより、最適検量線を推定する。逆に、今年の積算気温が1年前よりもd%下がっている場合には、最適検量線推定部35cは、基準検量線における施肥量の下限をd%上げることにより、最適検量線を推定する。 Therefore, the optimal calibration curve estimating unit 35c estimates the optimal calibration curve for this year by lowering the upper limit or the lower limit of the fertilization amount in the reference calibration curve according to the rate of change of the integrated air temperature. Specifically, when the accumulated air temperature this year is c% higher than that of one year ago, the optimum calibration curve estimating unit 35c lowers the upper limit of the fertilization amount in the reference calibration curve by c% as in FIG. To estimate the optimal calibration curve. On the contrary, when the accumulated temperature this year is d% lower than that of one year ago, the optimum calibration curve estimating unit 35c estimates the optimum calibration curve by raising the lower limit of the fertilization amount in the reference calibration curve by d%. Do.
 また、S25にて、作物PLの品種と直系の品種について、過去の検量線のデータが第2データベース22に記憶されていない場合、最適検量線推定部35cは、S1で取得された作物情報およびS3で算出された各領域Tごとの指標の培地FLにおける分布に基づいて、最適検量線を推定する(S30)。 Further, in the case where the data of the past calibration curve is not stored in the second database 22 for the variety of crop PL and the straight variety in S25, the optimal calibration curve estimation unit 35c obtains the crop information and the information acquired in S1. An optimal calibration curve is estimated based on the distribution in the medium FL of the index for each region T calculated in S3 (S30).
 例えば、図9に示す座標平面上で、最適検量線推定部35cは、作物PLに応じて、施肥量の上限および下限を示す水平部H1およびH2と、NDVIの値に応じて施肥量を変化させる傾斜部S(水平部H1およびH2の端部をつなぐ部分)の傾きとを決める。このとき、NDVIの中央値が標準施肥量(例えば、作物PLが稲の場合、単位面積あたり2kg)となるように、傾斜部Sの水平方向の位置を決める。そして、培地FD内のNDVIの分布に応じて、施肥量の上限(水平部H1)および下限(水平部H2)を調整する。例えば、NDVIの平均値が閾値以上である場合、作物PLの生育が比較的良好であり、施肥量の上限を下げることができると考えられるため、NDVIの平均値と閾値との差に応じた量だけ、施肥量の上限を下げる(水平部H1を下方へシフトさせる)。逆に、NDVIの平均値が閾値未満である場合、作物PLの生育が遅く、施肥量の下限を増やす必要があると考えられるため、図10に示すように、NDVIの平均値と閾値との差に応じた量だけ、施肥量の下限を上げる(水平部H2を上方へシフトさせる)。このようにして、最適検量線推定部35cは、今年の最適検量線を推定する。なお、最適検量線推定部35cは、上記したNDVIの平均値の代わりに、NDVIのばらつき度合い(標準偏差)に応じて、施肥量の上限または下限を調整して、最適検量線を推定してもよい。 For example, on the coordinate plane shown in FIG. 9, the optimum calibration curve estimation unit 35c changes the fertilization amount according to the horizontal part H1 and H2 indicating the upper limit and the lower limit of the fertilization amount according to the crop PL and the value of the NDVI. The inclination of the inclined portion S (portion connecting the ends of the horizontal portions H1 and H2) is determined. At this time, the horizontal position of the inclined portion S is determined such that the median value of the NDVI becomes the standard fertilization amount (for example, 2 kg per unit area when the crop PL is rice). Then, according to the distribution of NDVI in the culture medium FD, the upper limit (horizontal part H1) and the lower limit (horizontal part H2) of the fertilization amount are adjusted. For example, when the average value of NDVI is equal to or higher than the threshold value, it is considered that the growth of the crop PL is relatively good and the upper limit of the fertilization amount can be lowered. Therefore, according to the difference between the average value of NDVI and the threshold value Lower the upper fertilization rate by the amount (shift H1 downward). Conversely, when the average value of NDVI is less than the threshold value, it is considered that the growth of crop PL is slow and it is necessary to increase the lower limit of the fertilization amount. Therefore, as shown in FIG. Increase the lower limit of the amount of fertilization by an amount according to the difference (shift the horizontal portion H2 upward). Thus, the optimal calibration curve estimating unit 35c estimates the optimal calibration curve of this year. The optimum calibration curve estimating unit 35c adjusts the upper or lower limit of the amount of fertilization according to the degree of variation (standard deviation) of the NDVI instead of the above average value of the NDVI to estimate the optimum calibration curve. It is also good.
 (S6;施肥量決定工程)
 S6では、施肥量決定部35dが、S3で算出された指標(NDVI)と、S5で推定された最適検量線または後述するS14で調整された最適検量線とに基づいて、培地FDに施肥する施肥量を決定する。上述のS3では、培地FDに含まれる個々の領域TごとにNDVIの値が得られているため、各領域Tごとに、NDVIの値に対応する施肥量が上記最適検量線(図7~図10参照)からわかる。したがって、施肥量決定部35dは、各領域TのNDVIの値に対応する施肥量を合算することにより、1つの培地FDについての施肥量を決定することができる。なお、S3にて、複数の培地FDについて指標が算出されている場合は、上記と同様の演算を各培地FDごとに行うことにより、各培地FDについての施肥量を決定することができる。
(S6; Fertilization amount determination process)
In S6, the fertilization amount determination unit 35d fertilizes the medium FD based on the index (NDVI) calculated in S3 and the optimal calibration curve estimated in S5 or the optimal calibration curve adjusted in S14 described later Determine the amount of fertilization. In S3 described above, since the value of NDVI is obtained for each of the individual regions T included in the culture medium FD, the fertilization amount corresponding to the value of NDVI is the above-mentioned optimal calibration curve (FIG. 7 to FIG. See 10). Therefore, the fertilization amount determination unit 35d can determine the fertilization amount for one medium FD by adding up the fertilization amounts corresponding to the value of NDVI of each region T. In addition, when an index is calculated about several culture medium FD in S3, the fertilization amount about each culture medium FD can be determined by performing the calculation similar to the above for every culture medium FD.
 (S7;施肥量マップ作成工程)
 S7では、マップ作成部35eが、S6で決定した施肥量の培地FDにおける分布を示す施肥量マップを作成する。例えば、図11は、培地FDにおいて、S3で算出された各領域Tごとの指標(NDVI)の値を簡易的に3段階(小、中、大)に分けたときの、NDVIの分布である指標マップを示している。なお、指標マップ上では、培地FDと対応する部分をFD’で示し、培地FDの各領域Tと対応する部分をT’で示す(次の施肥量マップについても同じ)。培地FDにおいて、NDVIの値が高い領域では、作物PLの生育が良好であるため、必要な施肥量は少なくて済み、逆に、NDVIの値が低い領域では、必要な施肥量は多くなる。したがって、施肥量マップとしては、図12で示すように、図11で示した指標マップと対応するマップが得られる。すなわち、施肥量の大小がNDVIの値の大小とは逆転した施肥量マップが得られる。なお、培地FDが複数ある場合は、各培地FDごとに施肥量マップが作成される。
(S7; Fertilization map making process)
In S7, the map creation unit 35e creates a fertilization amount map indicating the distribution of the fertilization amount determined in S6 in the culture medium FD. For example, FIG. 11 shows the distribution of NDVI when the value of the index (NDVI) for each region T calculated in S3 is simply divided into three stages (small, medium, large) in the culture medium FD. It shows an index map. In the index map, a portion corresponding to the culture medium FD is indicated by FD ′, and a portion corresponding to each region T of the culture medium FD is indicated by T ′ (the same applies to the next fertilization amount map). In the medium FD, in the region where the value of NDVI is high, since the growth of the crop PL is good, the required fertilization amount is small, and conversely, in the region where the value of NDVI is low, the necessary fertilization amount is large. Therefore, as the fertilization amount map, as shown in FIG. 12, a map corresponding to the index map shown in FIG. 11 is obtained. That is, the fertilizer amount map in which the magnitude of the fertilization amount is reversed to the magnitude of the value of the NDVI is obtained. In addition, when there exist multiple culture medium FD, a fertilization amount map is created for every culture medium FD.
 (S8;第1ヒストグラム作成工程)
 S8では、第1ヒストグラム作成部35gが、培地FD内での指標の平均値を、培地FDごとに算出し、上記指標の平均値と、培地FDの数との関係を示す第1ヒストグラムを作成する。図13は、第1ヒストグラムの一例を模式的に示している。第1ヒストグラムを参照すると、NDVIの平均値が横軸の中央値よりも低い圃場の数が相対的に少なく、NDVIの平均値が横軸の中央値よりも高い圃場の数が相対的に多いことから、これらの圃場は比較的生育環境(例えば気候や土壌など)がよいと言え、これらの圃場で栽培される作物PLの収穫量は、トータルで(全圃場合わせて)多いことが見込まれる。
(S8; first histogram creation step)
In S8, the first histogram creating unit 35g calculates, for each medium FD, the average value of the indices in the medium FD, and creates a first histogram indicating the relationship between the average value of the above indices and the number of mediums FD. Do. FIG. 13 schematically shows an example of the first histogram. Referring to the first histogram, the number of fields where the average value of NDVI is lower than the median of the horizontal axis is relatively small, and the average value of NDVI is relatively higher, the number of fields higher than the median of the horizontal axis From these facts, it can be said that these fields have a relatively favorable growth environment (eg, climate, soil, etc.), and it is expected that the harvest amount of the crop PL cultivated in these fields will be large in total (all fields combined). .
 (S9;第2ヒストグラム作成工程)
 S9では、第2ヒストグラム作成部35hが、S6の施肥量決定工程で決定された各領域Tの施肥量の平均値を培地FDごとに算出し、施肥量の平均値と培地の数との関係を示す第2ヒストグラムを作成する。図14は、第2ヒストグラムの一例を模式的に示している。また、図15は、各培地FD(便宜的にこれらの培地FDを圃場1、2、3、・・・で区別する)ごとの施肥量の平均値の一例を示している。第2ヒストグラムを参照すると、施肥量の平均値が横軸の中央値よりも低い圃場の数が相対的に多く、施肥量の平均値が横軸の中央値よりも高い圃場の数が相対的に少ないため、これらの圃場では、トータルで(全圃場合わせて)比較的少ない施肥量で作物PLを収穫できることが見込まれる。
(S9; second histogram creation step)
In S9, the second histogram creating unit 35h calculates the average value of the fertilization amount of each region T determined in the fertilization amount determination step of S6 for each culture medium FD, and the relationship between the average value of the fertilization amount and the number of culture media Create a second histogram showing FIG. 14 schematically shows an example of the second histogram. Moreover, FIG. 15 shows an example of the average value of the fertilization amount for each culture medium FD (for convenience, these culture medium FD is distinguished by field 1, 2, 3 ...). Referring to the second histogram, the number of fields where the average amount of fertilizer application is lower than the median of the horizontal axis is relatively high, and the number of fields where the average value of fertilizer application is higher than the median of the horizontal axis is relative In these fields, it is expected that the crop PL can be harvested with a relatively small amount of fertilization in total (all fields combined).
 (S10;総施肥量算出工程)
 S10では、施肥量決定部35dが、S6の施肥量決定工程で決定された各培地FDについての施肥量に基づいて、全培地FDについての総施肥量、つまり、各培地FDについての施肥量の合算値を算出する(培地FDが1つの場合は、S6で決定された施肥量が総施肥量となる)。図15では、全培地FDについての総施肥量が75kgであった場合を示している。
(S10; total fertilization amount calculation process)
In S10, based on the fertilization amount for each culture medium FD determined in the fertilization amount determination step of S6, the fertilization amount determination unit 35d determines the total fertilization amount for all culture media FD, that is, the fertilization amount for each culture medium FD. The total value is calculated (in the case of one medium FD, the fertilization amount determined in S6 is the total fertilization amount). In FIG. 15, the case where the total fertilization amount about all the culture media FD was 75 kg is shown.
 (S11;表示工程)
 S11では、全体制御部35aの制御のもとで、表示部32は、各種の情報を表示する。図16は、表示部32の表示画面32aの一例を模式的に示している。同図に示すように、表示部32に表示される情報には、例えば、S1で入力された作物情報(品種、栽培地域)、入力部31による検量線の指定情報(過去何年前の検量線を参照するか)、S5で推定した最適検量線、S7で作成した施肥量マップ、S8で作成した第1ヒストグラム、S9で作成した第2ヒストグラムおよび培地FDごとの施肥量の平均値、S10で算出した総施肥量のほか、ユーザが経営方針を指定するためのボックス(攻め/守りの指定ボックス)、ユーザの承認を求めるための承認ボタン、ユーザの発注を受け付けるための発注ボタンも含まれる。なお、表示画面32aには、総施肥量に相当する肥料の価格(肥料の単価×総施肥量)も併せて表示させてもよい。
(S11; display process)
In S11, the display unit 32 displays various types of information under the control of the overall control unit 35a. FIG. 16 schematically shows an example of the display screen 32 a of the display unit 32. As shown in the figure, the information displayed on the display unit 32 includes, for example, crop information (variety and cultivation area) input in S1, designation information of a calibration curve by the input unit 31 (calibration for several years ago) See the line), the optimal calibration curve estimated in S5, the fertilization amount map prepared in S7, the first histogram prepared in S8, the second histogram prepared in S9 and the average value of the fertilization amount for each medium FD, S10 In addition to the total fertilization amount calculated in the box, the box for the user to specify the management policy (designation box for attack / defense), the approval button for asking for the user's approval, and the order button for accepting the user's order are included. . Note that the price of fertilizer (fertilizer unit price x total fertilization amount) corresponding to the total fertilization amount may also be displayed on the display screen 32a.
 なお、図16では、培地FDが複数ある場合に、複数の培地FDの全体のマップをまず表示し、その後、所定の培地FDが入力部31によって指定されたときに(例えば所定の培地FDがマウスでクリックされたときに)、その指定された培地FDの最適検量線に対応する施肥量マップを拡大して表示するようにしている。なお、次に説明する最適検量線調整工程が行われた場合は、調整後の最適検量線について、S6~S10で得られる情報が表示部32に表示される。 Note that, in FIG. 16, when there are a plurality of culture media FD, first, a map of the whole of the plurality of culture media FD is displayed, and then, when a predetermined culture medium FD is designated by the input unit 31 (for example, the predetermined culture medium FD When the mouse is clicked), the fertilization amount map corresponding to the optimum calibration curve of the designated medium FD is enlarged and displayed. When the optimal calibration curve adjustment step described below is performed, the information obtained in S6 to S10 is displayed on the display unit 32 for the optimal calibration curve after adjustment.
 (S12;最適検量線調整工程)
 S11にて、各種の情報を表示部32の表示画面32aに表示させることにより、ユーザは表示された情報を見て、最適検量線および発注する施肥量を確認することが可能となる。また、最適検量線を修正したい場合、ユーザは、入力部31を操作することにより、最適検量線を修正することができる。S12では、最適検量線推定部35cが、必要に応じて、ユーザの指示入力に基づいて最適検量線を調整する。なお、ユーザによる最適検量線の指示入力がない場合、S12の工程はスキップされる。
(S12: Optimal calibration curve adjustment process)
By displaying various types of information on the display screen 32a of the display unit 32 in S11, the user can check the displayed information and check the optimum calibration curve and the fertilization amount to be ordered. Further, when it is desired to correct the optimal calibration curve, the user can correct the optimal calibration curve by operating the input unit 31. In S12, the optimum calibration curve estimation unit 35c adjusts the optimum calibration curve based on the user's instruction input, as necessary. When the user does not input an instruction for the optimum calibration curve, the process of S12 is skipped.
 例えば、図17は、表示部32の表示画面32aに表示された最適検量線を示している。ユーザは、表示画面32a面上で、最適検量線における水平部H1と傾斜部Sとの接続点である制御点P、または水平部H2と傾斜部Sとの接続点である制御点Qに、入力部31としてのマウスのポインタを位置させ、その位置でマウスをクリックしながらポインタを上下左右に移動させる。最適検量線推定部35cは、このようなマウス(ポインタ)の移動に応じて、制御点Pまたは制御点Qを上下左右に移動させることにより、最適検量線を所望の形状に調整することができる。 For example, FIG. 17 shows the optimal calibration curve displayed on the display screen 32 a of the display unit 32. The user sets a control point P which is a connection point between the horizontal portion H1 and the inclined portion S in the optimum calibration curve or a control point Q which is a connection point between the horizontal portion H2 and the inclined portion S on the display screen 32a. The mouse pointer as the input unit 31 is positioned, and the pointer is moved vertically and horizontally while clicking on the mouse at that position. The optimal calibration curve estimating unit 35c can adjust the optimal calibration curve to a desired shape by moving the control point P or the control point Q vertically and horizontally in response to such movement of the mouse (pointer). .
 また、ユーザは、図16に示した表示画面32aにおいて、入力部31によって経営方針(攻め/守り)を必要に応じて指定することにより、その経営方針に応じた最適検量線を実現することも可能となる。ここで、上記の「攻め」とは、多い収穫量を期待できるが、失敗するとリスク(損害)も大きい方針を指し、例えば、施肥量の上限と下限との間の幅を広げる最適検量線の調整が、この「攻め」の方針に相当する。逆に、「守り」とは、収穫量が安定しており、リスクも少ない方針を指し、例えば、施肥量の上限と下限との間の幅を狭める最適検量線の調整が、この「守り」の方針に相当する。つまり、最適検量線推定部35cは、入力部31によって経営方針(攻め/守り)が指定されると、推定された最適検量線における施肥量の上限と下限との幅を所定量増大(攻めの場合)または減少(守りの場合)させることにより、最適検量線を調整する。 In addition, the user can also realize an optimal calibration curve according to the management policy by specifying the management policy (aggressive / defense) by the input unit 31 as necessary on the display screen 32a shown in FIG. It becomes possible. Here, the above-mentioned "attack" refers to a policy in which a large yield can be expected but a risk (damage) also increases if it fails, for example, an optimal calibration curve that widens the range between the upper and lower limits of the fertilization amount. Adjustment corresponds to this "offensive" policy. Conversely, "defense" refers to a policy in which the yield is stable and the risk is small, and for example, "adaptation" is the adjustment of the optimal calibration curve to narrow the range between the upper limit and the lower limit of the fertilization rate. Corresponds to the policy of That is, when the management policy (aggression / defense) is designated by the input unit 31, the optimum calibration curve estimation unit 35c increases the width between the upper limit and the lower limit of the fertilization amount in the estimated optimum calibration curve by a predetermined amount (attack Adjust the best calibration curve by (if it is) or reduce (if protection).
 このように、本実施形態では、表示画面32aに表示された情報に対して入力部31の操作によって各種の指示および入力を行うことが可能であることから、表示画面32aの表示情報および入力部31は、GUI(グラフィカル・ユーザ・インターフェース)を構成していると言える。 As described above, in the present embodiment, since various instructions and inputs can be performed on the information displayed on the display screen 32a by the operation of the input unit 31, the display information on the display screen 32a and the input unit 31 can be said to constitute a GUI (Graphical User Interface).
 (S13;調整判断工程)
 S13では、全体制御部35aが、S12での最適検量線の調整の有無を判断し、その判断結果に基づいて、施肥設計装置10の各部を制御する。より詳しくは、全体制御部35aは、S12にて最適検量線の調整が行われたと判断した場合(S13でYesの場合)、調整後の最適検量線に基づいてS6以降の処理が再度実行されるように、制御部35の各部および表示部32を制御する。したがって、この場合、調整後の最適検量線に基づいて、培地FDの施肥量の決定(S6)、施肥量マップの作成(S7)、第1ヒストグラムの作成(S8)、第2ヒストグラムの作成(S9)、総施肥量の算出(S10)、各種情報の表示(S11)が再度行われる。一方、全体制御部35aが、S12にて最適検量線の調整が行われなかったと判断した場合(S13でNoの場合)、以下に示す発注制御工程に移行する。
(S13; adjustment determination process)
In S13, the overall control unit 35a determines the presence or absence of the adjustment of the optimal calibration curve in S12, and controls each part of the fertilization design apparatus 10 based on the determination result. More specifically, when the overall control unit 35a determines that the adjustment of the optimal calibration curve has been performed in S12 (in the case of Yes in S13), the processes after S6 are executed again based on the optimal calibration curve after adjustment. Control each part of the control unit 35 and the display unit 32. Therefore, in this case, the determination of the fertilization amount of the culture medium FD (S6), the preparation of the fertilization amount map (S7), the preparation of the first histogram (S8), the preparation of the second histogram (S8) S9), calculation of total fertilization amount (S10), and display of various information (S11) are performed again. On the other hand, when the overall control unit 35a determines that the adjustment of the optimal calibration curve has not been performed in S12 (in the case of No in S13), the process shifts to the order control process described below.
 (S14~S16;発注制御工程)
 発注制御部35hは、入力部31による指示入力に基づいて肥料の発注を制御する。より具体的には、発注制御部35hは、まず、表示部32に表示された承認ボタンに対するユーザの指示入力(例えばマウスでのクリック)によってユーザの承認を受け付けたか否かを判断する(S14)。ユーザの承認を受け付けた場合、次に、発注制御部35hは、発注ボタンに対するユーザの指示入力(例えばマウスでのクリック)によってユーザの発注を受け付けたか否かを判断する(S15)。ユーザの発注を受け付けた場合、発注制御部35hは、発注先の会社(肥料メーカー、代理店または販売店など)に対して、S12で表示された総施肥量分の肥料を発注する(S16;発注工程)。そして、一連の処理を終了する。
(S14 to S16; order control process)
The order control unit 35 h controls the order of the fertilizer based on the instruction input by the input unit 31. More specifically, order control unit 35h first determines whether or not the user's approval has been accepted by a user's instruction input (for example, a click with a mouse) on the approval button displayed on display unit 32 (S14) . When the user's approval is received, next, the order control unit 35h determines whether the user's order has been received by the user's instruction input (for example, a click with a mouse) on the order button (S15). When the user's order is received, the order control unit 35h orders the fertilizer for the total fertilization amount displayed in S12 from the company (fertilizer maker, agent or distributor, etc.) of the supplier (S16; Ordering process). Then, the series of processing ends.
 なお、承認ボタンまたは発注ボタンに対するユーザの指示入力があった後に、承認または発注を再度確認するための確認表示が行われてもよい。例えば、承認ボタンに対するユーザの指示入力の後、「本当に承認しますか?」の確認文を表示させるとともに、「はい」および「いいえ」の選択ボックスを表示させ、これらのいずれかをユーザに選択的に入力させて、再度、確認を促すようにしてもよい。 Note that after the user inputs an instruction to the approval button or the order button, confirmation display may be performed to confirm the approval or the order again. For example, after the user's instruction input to the approval button, the confirmation sentence of “Is it really approve?” Is displayed, and “Yes” and “No” selection boxes are displayed, and one of these is selected by the user You may make it input as needed and prompt for confirmation again.
 一方、S14にてユーザの承認を受け付けなかった場合(例えば承認を受け付けずに表示画面32aが閉じられた場合)、およびS15にてユーザの発注を受け付けなかった場合(例えば発注を受け付けずに表示画面32aが閉じられた場合)は、肥料の発注を行わずに一連の処理を終了する。なお、承認ボタンに対するユーザの指示入力がない状態で、発注ボタンに対するユーザの指示入力があった場合は、ユーザの承認を受け付けていないため、肥料の発注は行われない。したがって、S16の発注工程は、承認ボタンに対するユーザの指示入力によってユーザの承認を受け付けた後に、発注ボタンに対するユーザの指示入力によってユーザの発注を受け付けたときのみ実行されることになる。 On the other hand, when the user's approval is not received in S14 (for example, when the display screen 32a is closed without receiving the approval) and when the user's order is not received in S15 (for example, the display is not received). In the case where the screen 32a is closed), the series of processes is ended without ordering the fertilizer. In addition, when there is no user's instruction input with respect to the approval button and there is a user's instruction input with respect to the order button, since the user's approval is not received, the fertilizer order is not performed. Therefore, the ordering process of S16 is executed only when the user's order is accepted by the user's instruction input to the order button after the user's approval is accepted by the user's instruction input to the approval button.
 〔効果〕
 以上のように、本実施形態では、指標算出部35bが、S2で取得されたリモートセンシングによる測定値に基づいて、作物PLの生育状態を示す指標を培地FDの各領域Tごとに算出する(S3)。例えば指標がNDVIである場合、前述したように、NDVIは、上記測定値(画素値IRおよびR)を用いた簡単な演算によって取得できる。したがって、従来のように、作物PLの1つ1つについて、その生育状態を調べるための計測器による測定(例えば葉緑素計による測定)を行うことなく、簡単な方法で指標を取得することができる。
〔effect〕
As described above, in the present embodiment, the index calculation unit 35b calculates an index indicating the growth state of the crop PL for each region T of the culture medium FD based on the measurement value by remote sensing acquired in S2 ( S3). For example, when the index is NDVI, as described above, NDVI can be obtained by a simple calculation using the above measured values (pixel values IR and R). Therefore, it is possible to obtain an indicator by a simple method without performing measurement with a measuring instrument (for example, measurement with a chlorophyll meter) for examining the growth state of each crop PL, as in the past. .
 また、最適検量線推定部35cは、作物PLについての指標と施肥量との関係を最適化した最適検量線を、過去の検量線(基準検量線)、またはS1で取得された作物情報およびS3で取得された指標から推定する(S5)。そして、施肥量決定部35dが、上記指標と上記最適検量線とに基づいて、培地FDに施肥される施肥量を決定する(S6)。これにより、作物PLの生育に必要な(最適な)施肥量が、作物PLについての基準検量線が存在する場合は勿論のこと、基準検量線が存在しない場合でも求められる。つまり、作物PLによっては基準検量線が存在しない品種もあるが、そのような品種についても、作物情報および指標から最適検量線が推定されて施肥量が決定される。また、指標および最適検量線に基づいて施肥量が決定されるため、その決定される施肥量には、指標が示す現在の作物PLの生育状態も十分に反映される。したがって、作物PLの全ての品種について、決定された施肥量の肥料を用いて、作物PLの生育状態に応じた施肥(可変施肥)を行うことができる。 Further, the optimum calibration curve estimation unit 35c may calculate the optimum calibration curve obtained by optimizing the relationship between the index for the crop PL and the fertilization amount with the past calibration curve (reference calibration curve), or the crop information acquired in S1 and S3. It estimates from the parameter | index acquired by (S5). Then, the fertilization amount determination unit 35d determines the fertilization amount to be fertilized to the culture medium FD based on the index and the optimal calibration curve (S6). Thereby, the (optimum) fertilization amount necessary for the growth of the crop PL can be obtained not only when the standard calibration curve for the crop PL exists but also when the standard calibration curve does not exist. That is, although there is a cultivar in which a standard calibration curve does not exist depending on the crop PL, the fertilization amount is determined for such cultivar by estimating the optimal calibration curve from the crop information and the index. Further, since the fertilization amount is determined based on the index and the optimal calibration curve, the determined fertilization amount sufficiently reflects the current growth condition of the crop PL indicated by the index. Therefore, it is possible to perform fertilization (variable fertilization) according to the growth state of the crop PL, using the determined fertilizer amount for all the varieties of the crop PL.
 また、最適検量線は、指標と施肥量との関係を最適化した検量線であるため、上記最適検量線を用いて施肥量を決定することにより、精度の高い(肥料の過不足を十分に低減した)可変施肥を実現することが可能となる。 In addition, since the optimal calibration curve is a calibration curve that optimizes the relationship between the index and the fertilization amount, the accuracy is high by determining the fertilization amount using the above optimal calibration curve (the excess and deficiency of the fertilizer is sufficiently It is possible to realize (reduced) variable fertilization.
 また、S5では、最適検量線推定部35cは、作物PLについての基準検量線のデータが、サーバー20の第2データベース22に記憶されている場合には、第2データベース22から上記データを取得して、最適検量線を推定する。これにより、施肥設計装置30は、上記基準検量線のデータを記憶する大容量のメモリを備えなくても済み、装置の構成を簡素化することができる。一方、上記データが第2データベース22に記憶されていない場合には、最適検量線推定部35cは、S1で取得された作物情報およびS3で算出された指標から最適検量線を推定するため、上述のように基準検量線が過去に存在しない品種についても、最適検量線を推定することができる。 Further, in S5, when the data of the reference calibration curve for the crop PL is stored in the second database 22 of the server 20, the optimal calibration curve estimation unit 35c acquires the above data from the second database 22. Estimate the best calibration curve. As a result, the fertilization design device 30 does not have to have a large capacity memory for storing data of the reference calibration curve, and the configuration of the device can be simplified. On the other hand, when the above data is not stored in the second database 22, the optimal calibration curve estimation unit 35c estimates the optimal calibration curve from the crop information acquired in S1 and the index calculated in S3, The optimal calibration curve can be estimated even for varieties that do not have a reference calibration curve in the past.
 また、S4では、作物PLの栽培条件に関する栽培情報が、サーバー20の第3データベース23から取得される。そして、最適検量線推定部35cは、上記栽培条件に基づいて基準検量線を変更することにより、最適検量線を推定する(S29)。この場合、上記最適検量線を用いて、実際の作物PLの栽培条件を考慮した施肥量の決定(施肥設計)が可能となり、そのような施肥設計に基づいて可変施肥を精度よく行うことができる。 In S4, cultivation information on cultivation conditions of the crop PL is acquired from the third database 23 of the server 20. Then, the optimal calibration curve estimating unit 35c estimates the optimal calibration curve by changing the reference calibration curve based on the above-mentioned cultivation conditions (S29). In this case, it becomes possible to determine the fertilization amount (fertilization design) in consideration of the actual cultivation conditions of the crop PL using the above-mentioned optimal calibration curve, and variable fertilization can be performed accurately based on such fertilization design. .
 このとき、上記の栽培条件は、作物PLの栽培地域における栽培期間での積算気温、平均降水量、平均日照量のいずれかを含んでいる。積算気温、平均降水量、平均日照量は、いずれも作物PLの栽培には欠かせない要件であるため、作物PLの栽培条件を考慮した施肥設計が確実に可能となる。 At this time, the above-mentioned cultivation conditions include any of the integrated temperature, the average precipitation, and the average sunshine in the cultivation period in the cultivation area of the crop PL. Since the accumulated air temperature, the average precipitation, and the average amount of sunshine are all indispensable requirements for the cultivation of the crop PL, fertilization design considering the cultivation conditions of the crop PL is surely possible.
 また、最適検量線推定部35cは、作物PLについての基準検量線のデータおよび作物PLについての過去の収穫量のデータを第2データベース22から取得し、上記基準検量線および上記収穫量に基づいて、最適検量線を推定する(S22、S26~S28)。作物PLについての基準検量線のみならず、過去の収穫量も考慮して最適検量線を推定するため、過去の実績を考慮した施肥設計が可能となり、そのような施肥設計の信頼性が向上する。 In addition, the optimum calibration curve estimation unit 35c acquires data of a reference calibration curve for the crop PL and data of past harvest amount for the crop PL from the second database 22, and based on the above-mentioned reference calibration curve and the above-mentioned harvest amount Then, the optimum calibration curve is estimated (S22, S26 to S28). In order to estimate the optimum calibration curve taking into consideration not only the standard calibration curve for the crop PL but also the past harvest amount, it becomes possible to design fertilization considering the past performance, and the reliability of such fertilization design is improved. .
 ここで、基準検量線は、作物PLと同一品種について、過去に取得された検量線であってもよい(S21、S22)。また、基準検量線は、作物PLと同一栽培地域について、過去に取得された検量線であってもよい(S21、S23、S22)。さらに、基準検量線は、作物PLの栽培地域の周辺地域で栽培された品種について、過去に取得された検量線であってもよい(S24、S22)。さらにまた、基準検量線は、作物PLと直系の品種について、過去に取得された検量線であってもよい(S25、S22)。これらの検量線は、入力された作物情報に含まれる作物PLの品種または栽培地域と関連性が高いため(品種または栽培地域が同一であるか、それに近いため)、いずれの検量線を基準検量線として用いた場合でも、その基準検量線から、作物PLについての最適検量線を適切に推定して、施肥量を決定することができる。 Here, the reference calibration curve may be a calibration curve acquired in the past for the same breed as the crop PL (S21, S22). The reference calibration curve may be a calibration curve acquired in the past for the same cultivation area as the crop PL (S21, S23, S22). Furthermore, the standard calibration curve may be a calibration curve acquired in the past for varieties grown in the surrounding area of the cultivation area of the crop PL (S24, S22). Furthermore, the standard calibration curve may be a calibration curve acquired in the past for the crop PL and the straight varieties (S25, S22). Since these calibration curves are highly related to the varieties or cultivation area of the crop PL contained in the input crop information (because the varieties or cultivation areas are identical or close thereto), any calibration curve is used as a standard calibration. Even when used as a line, the fertilization amount can be determined by appropriately estimating the optimum calibration curve for the crop PL from the reference calibration curve.
 また、最適検量線推定部35cは、作物情報および培地FDにおける指標の分布に基づいて、最適検量線を推定する(S30)。これにより、基準検量線が第2データベース22に記憶されていない場合でも、推定された上記最適検量線に基づいて施肥量を決定して可変施肥を行うことが可能となる。 Further, the optimal calibration curve estimating unit 35c estimates the optimal calibration curve based on the crop information and the distribution of the index in the culture medium FD (S30). As a result, even when the reference calibration curve is not stored in the second database 22, it becomes possible to determine the fertilization amount based on the estimated optimal calibration curve and perform variable fertilization.
 また、全体制御部35aの制御のもとで、表示部32は、推定された最適検量線を表示する(S11)。これにより、推定された最適検量線をユーザに推奨(レコメンド)することができる。また、ユーザは、表示された最適検量線を見て、S12のように、必要に応じて入力部31を操作して最適検量線をカスタマイズ(微調整)することも可能となる(図17参照)。 Also, under the control of the overall control unit 35a, the display unit 32 displays the estimated optimal calibration curve (S11). Thereby, it is possible to recommend (recommend) the estimated optimal calibration curve to the user. In addition, the user can customize (fine-tune) the optimum calibration curve by operating the input unit 31 as needed, as in S12, by viewing the displayed optimum calibration curve (see FIG. 17). ).
 また、最適検量線推定部35cは、ユーザの指示入力に基づいて最適検量線を調整し(S12、S13)、施肥量決定部35dは、指標と、調整後の最適検量線とに基づいて、施肥量を決定する(S6)。これにより、ユーザの意図によって最適検量線が調整されても、調整後の最適検量線をもとに施肥量を決定して、可変施肥を行うことができる。 Further, the optimal calibration curve estimation unit 35c adjusts the optimal calibration curve based on the user's instruction input (S12, S13), and the fertilization amount determination unit 35d is based on the index and the optimal calibration curve after adjustment. The fertilization amount is determined (S6). As a result, even if the optimum calibration curve is adjusted according to the user's intention, the fertilization amount can be determined based on the adjusted optimum calibration curve, and variable fertilization can be performed.
 また、マップ作成部35eは、施肥量決定部35dによって決定された施肥量の培地FDにおける分布を示す施肥量マップを作成し(S7)、表示部32は、上記施肥量マップをさらに表示する(S11)。この場合、ユーザは、表示された施肥量マップを確認できるとともに、その施肥量マップに基づき、入力部31を操作して必要に応じて最適検量線を微調整することが可能となる。例えば、ユーザは、表示された施肥量マップを見て、施肥量の少ない領域Tの上記施肥量を増やしてもよいと判断した場合は、入力部31を操作して、最適検量線の下限を上げるなどの微調整を行うことができる。 Further, the map creation unit 35e creates a fertilization amount map indicating the distribution of the fertilization amount in the culture medium FD determined by the fertilization amount determination unit 35d (S7), and the display unit 32 further displays the fertilization amount map ( S11). In this case, the user can confirm the displayed fertilization amount map and, based on the fertilization amount map, can operate the input unit 31 to finely adjust the optimum calibration curve as needed. For example, when the user sees the displayed fertilizer amount map and determines that the fertilization amount in the region T where the fertilizer amount is small may be increased, the user operates the input unit 31 to set the lower limit of the optimal calibration curve. Fine adjustment such as raising can be performed.
 また、第1ヒストグラム作成部35fは、指標の培地FD内での平均値を培地FDごとに算出し、指標の平均値と培地の数との関係を示す第1ヒストグラムを作成する(S8)。そして、表示部32は、上記第1ヒストグラムをさらに表示する(S11)。この場合、ユーザは、表示された第1ヒストグラムに基づき、入力部31を操作して必要に応じて最適検量線を微調整することが可能となる。 In addition, the first histogram creation unit 35f calculates the average value of the index in the culture medium FD for each culture medium FD, and creates a first histogram indicating the relationship between the average value of the index and the number of culture media (S8). Then, the display unit 32 further displays the first histogram (S11). In this case, based on the displayed first histogram, the user can operate the input unit 31 to finely adjust the optimum calibration curve as needed.
 例えば、表示された第1ヒストグラムにおいて、指標としてのNDVIの平均値が高い培地FD(圃場)の数が多く、作物PLの生育環境のよい培地FDが多いと考えられる場合、全培地FDのトータルでの施肥量を下げても、ある程度の収穫量が見込まれる。この場合、ユーザは入力部31を操作して、施肥量マップ(全体)で指定される培地FDごとに、最適検量線の施肥量の上限を下げるなどの微調整を行うことができる。これにより、全培地FDについてのトータルの施肥量を抑えて、肥料のコスト削減を図ることが可能となる。 For example, in the first histogram displayed, when the number of medium FD (field) having a high average value of NDVI as index is large and the medium FD having a good growth environment of crop PL is considered to be large, the total of all medium FD Even if the amount of fertilizer application is reduced, some yield can be expected. In this case, the user can operate the input unit 31 to perform fine adjustment such as lowering the upper limit of the fertilization amount of the optimal calibration curve for each culture medium FD specified by the fertilization amount map (overall). Thereby, it becomes possible to suppress the total fertilization amount about all the culture media FD, and to aim at the cost reduction of fertilizer.
 また、第2ヒストグラム作成部35gは、施肥量決定部35dで決定された施肥量の培地FD内での平均値を培地FDごとに算出し、施肥量の平均値と培地FDの数との関係を示す第2ヒストグラムを作成(S9)。そして、表示部32は、上記第2ヒストグラムをさらに表示する(S11)。この場合、ユーザは、表示された第2ヒストグラムに基づき、入力部31を操作して必要に応じて最適検量線を微調整することが可能となる。 Further, the second histogram creating unit 35g calculates, for each culture medium FD, the average value of the fertilization quantity determined by the fertilization amount determination unit 35d for each culture medium FD, and the relationship between the average value of the fertilization quantity and the number of culture mediums FD. To create a second histogram (S9). Then, the display unit 32 further displays the second histogram (S11). In this case, based on the displayed second histogram, the user can operate the input unit 31 to finely adjust the optimal calibration curve as needed.
 例えば、表示された第2ヒストグラムにおいて、施肥量の平均値が高い培地FD(圃場)の数が少なく、作物PLの生育環境のよい培地FDが多いと考えられる場合、全培地FDのトータルでの施肥量を下げても、ある程度の収穫量が見込まれる。したがって、この場合は上記と同様に、ユーザは入力部31を操作して、施肥量マップ(全体)で指定される培地FDごとに、最適検量線の施肥量の上限を下げるなどの微調整を行うことにより、全培地FDについてのトータルの施肥量を抑えて、肥料のコスト削減を図ることが可能となる。 For example, in the displayed second histogram, when it is considered that the number of medium FD (field) having a high average value of the fertilization amount is small and the medium FD having a good growth environment of the crop PL is large, Even if the amount of fertilization is lowered, a certain amount of harvest is expected. Therefore, in this case, as described above, the user operates the input unit 31 to perform fine adjustment such as lowering the upper limit of the fertilization amount of the optimal calibration curve for each culture medium FD specified in the fertilization amount map (overall) By carrying out, it becomes possible to suppress the total fertilization amount about all the culture media FD, and to aim at the cost reduction of fertilizer.
 また、施肥量決定部35dは、S6で決定される各培地FDについての施肥量に基づいて、全培地FDについての総施肥量、つまり、各培地FDについての施肥量の合算値を算出する(S10)。そして、表示部32は、上記の総施肥量と、ユーザの承認を求めるための承認ボタンと、ユーザの発注を受け付けるための発注ボタンとを表示する。これにより、ユーザは、表示部32の表示画面32a上で総施肥量を確認し、必要に応じて承認ボタンおよび発注ボタンに対して入力部31による入力指示(クリック)を行って、肥料の発注を指示することが可能となる。 In addition, the fertilization amount determination unit 35d calculates the total fertilization amount of all the culture media FD, that is, the total value of the fertilization amounts of the respective culture media FD, based on the fertilization amount of each culture medium FD determined in S6 S10). Then, the display unit 32 displays the total fertilization amount described above, an approval button for requesting the user's approval, and an order button for receiving the user's order. Thereby, the user confirms the total fertilization amount on the display screen 32 a of the display unit 32 and, if necessary, gives an input instruction (click) by the input unit 31 to the approval button and the order button to order the fertilizer Can be instructed.
 また、発注制御部35hは、表示部32の表示画面32aにおいて、承認ボタンに対するユーザの指示入力によってユーザの承認を受け付けた後に、発注ボタンに対するユーザの指示入力によってユーザの発注を受け付けたときのみ、総施肥量分の肥料を発注する(S14~S16)。ユーザの承認を得ないと肥料が発注されないため、肥料の注文に関するトラブルの発生を防止することができる。 Further, the order control unit 35 h receives the user's approval by the user's instruction input on the approval button on the display screen 32 a of the display unit 32, and only when the user's order is received by the user's instruction input on the order button Order fertilizer for the total fertilization amount (S14 to S16). Since the fertilizer can not be ordered unless the user's approval is obtained, it is possible to prevent the occurrence of troubles related to the fertilizer order.
 以上、本実施形態で説明した施肥設計方法、施肥設計装置および施肥設計システムは、以下のように表現することもできる。 The fertilization design method, the fertilization design apparatus, and the fertilization design system described in the present embodiment can also be expressed as follows.
 A1.作物の品種および栽培地域に関する作物情報を取得する作物情報取得工程と、前記作物を栽培する培地に含まれる複数の領域について、リモートセンシングによる測定値を取得する測定値取得工程と、前記測定値に基づいて、前記作物の生育状態を示す指標を各領域ごとに算出する指標算出工程と、前記作物についての前記指標と施肥量との関係を最適に示す最適検量線を、前記作物についての過去の検量線である基準検量線、または、前記作物情報および前記指標から推定する最適検量線推定工程と、前記指標と前記最適検量線とに基づいて、前記培地に施肥する前記施肥量を決定する施肥量決定工程とを含む施肥設計方法。 A1. A crop information acquisition step of acquiring crop information on crop varieties and cultivation areas; a measured value acquisition step of acquiring measured values by remote sensing for a plurality of regions included in a culture medium for cultivating the crop; Based on the index calculation step of calculating an index indicating the growth state of the crop for each region, and an optimal calibration curve that optimally indicates the relationship between the index of the crop and the fertilization amount, the past for the crop Fertilization to determine the fertilization amount to be fertilized to the culture medium based on a standard calibration curve which is a calibration curve or an optimum calibration curve estimation step estimated from the crop information and the index, the index and the optimum calibration curve Fertilizer design method including quantity determination process.
 A2.前記最適検量線推定工程では、前記作物についての前記基準検量線のデータがデータベースに記憶されている場合には、前記データベースから前記データを取得して、前記最適検量線を推定する一方、前記データが前記データベースに記憶されていない場合には、前記作物情報および前記指標から前記最適検量線を推定する、A1に記載の施肥設計方法。 A2. In the optimal calibration curve estimation step, when the data of the reference calibration curve for the crop is stored in a database, the data is acquired from the database to estimate the optimal calibration curve, while the data is The fertilization design method according to A1, wherein the optimal calibration curve is estimated from the crop information and the index, when is not stored in the database.
 A3.前記作物の栽培条件に関する栽培情報を取得する栽培情報取得工程をさらに含み、前記最適検量線推定工程では、前記栽培条件に基づいて前記基準検量線を変更することにより、前記最適検量線を推定する、A1またはA2に記載の施肥設計方法。 A3. The method further includes a cultivation information acquisition step of acquiring cultivation information on cultivation conditions of the crop, and the optimal calibration curve estimation step estimates the optimal calibration curve by changing the reference calibration curve based on the cultivation conditions. The fertilization design method as described in A1, or A2.
 A4.前記栽培条件は、前記作物の前記栽培地域における栽培期間での積算気温、平均降水量、平均日照量のいずれかを含む、A3に記載の施肥設計方法。 A4. The fertilization design method according to A3, wherein the cultivation conditions include any one of an accumulated temperature, an average precipitation, and an average sunshine amount in the cultivation period of the crop in the cultivation area.
 A5.前記最適検量線推定工程では、前記作物についての前記基準検量線のデータおよび前記作物についての過去の収穫量のデータをデータベースから取得し、前記基準検量線および前記収穫量に基づいて、前記最適検量線を推定する、A1またはA2に記載の施肥設計方法。 A5. In the optimal calibration curve estimation step, data of the standard calibration curve for the crop and data of past harvest amount for the crop are obtained from a database, and the optimal calibration is obtained based on the baseline calibration curve and the harvest amount. The fertilization design method as described in A1 or A2 which estimates a line.
 A6.前記基準検量線は、前記作物と同一品種について、過去に取得された検量線である、A1からA5のいずれかに記載の施肥設計方法。 A6. The fertilization design method according to any one of A1 to A5, wherein the standard calibration curve is a calibration curve acquired in the past for the same cultivar as the crop.
 A7.前記基準検量線は、前記作物と同一栽培地域について、過去に取得された検量線である、A6に記載の施肥設計方法。 A7. The fertilization design method according to A6, wherein the standard calibration curve is a calibration curve acquired in the past for the same cultivation area as the crop.
 A8.前記基準検量線は、前記作物の栽培地域の周辺地域で栽培された品種について、過去に取得された検量線である、A6に記載の施肥設計方法。 A8. The fertilization design method according to A6, wherein the standard calibration curve is a calibration curve acquired in the past for varieties grown in a surrounding area of the crop cultivation area.
 A9.前記基準検量線は、前記作物と直系の品種について、過去に取得された検量線である、A1からA5のいずれかに記載の施肥設計方法。 A9. The fertilization design method according to any one of A1 to A5, wherein the standard calibration curve is a calibration curve acquired in the past for the crop and the direct cultivar.
 A10.前記最適検量線推定工程では、前記作物情報および前記培地における前記指標の分布に基づいて、最適検量線を推定する、A1またはA2に記載の施肥設計方法。 A10. The fertilization design method according to A1 or A2, wherein in the optimal calibration curve estimation step, an optimal calibration curve is estimated based on the crop information and the distribution of the index in the culture medium.
 A11.前記最適検量線推定工程で推定された前記最適検量線を表示する表示工程をさらに含む、A1からA10のいずれかに記載の施肥設計方法。 A11. The fertilization design method in any one of A1 to A10 further including the display process which displays the said optimal calibration curve estimated at the said optimal calibration curve estimation process.
 A12.ユーザの指示入力に基づいて前記最適検量線を調整する最適検量線調整工程をさらに含み、前記施肥量決定工程では、前記指標と、調整後の前記最適検量線とに基づいて、前記施肥量を決定する、A11に記載の施肥設計方法。 A12. The method further includes an optimal calibration curve adjusting step of adjusting the optimal calibration curve based on a user's instruction input, and the fertilization amount determining step comprises applying the fertilization amount based on the index and the optimal calibration curve after adjustment. The fertilization design method as described in A11 to determine.
 A13.前記施肥量決定工程で決定された前記施肥量の前記培地における分布を示す施肥量マップを作成する施肥量マップ作成工程をさらに含み、前記表示工程では、前記施肥量マップをさらに表示する、A11またはA12に記載の施肥設計方法。 A13. A11 or A11 or A11 or A11, further comprising a fertilization amount map creation step of preparing a fertilization amount map showing distribution of the fertilization amount in the culture medium determined in the fertilization amount determination step, wherein the display step further displays the fertilization amount map Fertilization design method described in A12.
 A14.前記指標の前記培地内での平均値を前記培地ごとに算出し、前記指標の平均値と前記培地の数との関係を示す第1ヒストグラムを作成する第1ヒストグラム作成工程をさらに含み、前記表示工程では、前記第1ヒストグラムをさらに表示する、A11からA13のいずれかに記載の施肥設計方法。 A14. The method further includes a first histogram creation step of calculating an average value of the index in the culture medium for each culture medium, and creating a first histogram indicating a relationship between the average value of the index and the number of culture media, the display The fertilization design method in any one of A11 to A13 which further displays a said 1st histogram in a process.
 A15.前記施肥量決定工程で決定された前記施肥量の前記培地内での平均値を前記培地ごとに算出し、前記施肥量の平均値と前記培地の数との関係を示す第2ヒストグラムを作成する第2ヒストグラム作成工程をさらに含み、前記表示工程では、前記第2ヒストグラムをさらに表示する、A14に記載の施肥設計方法。 A15. The average value of the fertilization amount determined in the fertilization amount determination step in the culture medium is calculated for each of the culture media, and a second histogram indicating the relationship between the average value of the fertilization amount and the number of the culture media is created The fertilization design method of A14 which further includes a 2nd histogram preparation process, and the said display process further displays the said 2nd histogram.
 A16.前記施肥量決定工程で決定された各培地についての前記施肥量に基づいて、全培地についての総施肥量を算出する総施肥量算出工程をさらに含み、前記表示工程では、前記総施肥量と、ユーザの承認を求めるための承認ボタンと、ユーザの発注を受け付けるための発注ボタンとをさらに表示する、A11から15のいずれかに記載の施肥設計方法。 A16. The method further includes a total fertilization amount calculating step of calculating a total fertilization amount of all the culture media based on the fertilization amount of each culture medium determined in the fertilization amount determination step, and in the display step, the total fertilization amount; The fertilization design method in any one of A11 to 15 which further displays the approval button for asking for a user's approval, and the order button for receiving a user's order.
 A17.前記承認ボタンに対するユーザの指示入力によってユーザの承認を受け付けた後に、前記発注ボタンに対するユーザの指示入力によってユーザの発注を受け付けたときのみ、前記総施肥量分の肥料を発注する発注工程をさらに含む、A16に記載の施肥設計方法。 A17. The method further includes an ordering step of ordering the fertilizer for the total fertilization amount only when the user's approval is received by the user's instruction input to the approval button and the user's order is received by the user's instruction input to the order button. , The fertilization design method as described in A16.
 B1.ユーザによる情報の入力を受け付けるための入力部と、前記入力部によって作物の品種および栽培地域に関する作物情報が入力されたときに、前記作物を栽培する培地に含まれる複数の領域についてのリモートセンシングによる測定値に基づいて、前記作物の生育状態を示す指標を各領域ごとに算出する指標算出部と、前記作物についての前記指標と施肥量との関係を最適に示す最適検量線を、前記作物についての過去の検量線である基準検量線、または、前記作物情報および前記指標から推定する最適検量線推定部と、前記指標と前記最適検量線とに基づいて、前記培地に施肥する前記施肥量を決定する施肥量決定部とを備えている施肥設計装置。 B1. An input unit for receiving input of information by a user, and, when crop information on a crop variety and a cultivation area is input by the input unit, remote sensing is performed on a plurality of regions included in a culture medium for cultivating the crop An index calculation unit that calculates an index indicating the growth state of the crop for each region based on measured values, and an optimal calibration curve that optimally indicates the relationship between the index and the fertilization amount for the crop, for the crop The fertilization amount applied to the culture medium based on a standard calibration curve which is a past calibration curve or an optimum calibration curve estimation unit estimated from the crop information and the index, the index and the optimum calibration curve Fertilization design device provided with the fertilization amount determination part to determine.
 B2.前記最適検量線推定部は、前記作物についての前記基準検量線のデータがデータベースに記憶されている場合には、前記基準検量線に基づいて前記最適検量線を推定する一方、前記データが前記データベースに記憶されていない場合には、前記作物情報および前記指標から前記最適検量線を推定する、B1に記載の施肥設計装置。 B2. The optimal calibration curve estimating unit estimates the optimal calibration curve based on the reference calibration curve when the data of the reference calibration curve for the crop is stored in the database, while the data is stored in the database The fertilization design apparatus according to B1, wherein the optimal calibration curve is estimated from the crop information and the index if not stored in the.
 B3.前記最適検量線推定部は、前記入力部によって、前記作物の栽培条件に関する栽培情報が入力されたときに、前記栽培条件に基づいて前記基準検量線を変更することにより、前記最適検量線を推定する。B1またはB2に記載の施肥設計装置。 B3. The optimal calibration curve estimation unit estimates the optimal calibration curve by changing the reference calibration curve based on the cultivation conditions when cultivation information on cultivation conditions of the crop is input by the input unit. Do. The fertilization design apparatus as described in B1 or B2.
 B4.前記栽培条件は、前記作物の前記栽培地域における栽培期間での積算気温、平均降水量、平均日照量のいずれかを含む、B3に記載の施肥設計装置。 B4. The fertilization design device according to B3, wherein the cultivation conditions include any one of an accumulated temperature, an average precipitation, and an average sunshine amount in the cultivation period of the crop in the cultivation area.
 B5.前記最適検量線推定部は、前記データベースに記憶されている前記作物についての前記基準検量線のデータおよび前記作物についての過去の収穫量のデータに基づいて、前記最適検量線を推定する、B1またはB2に記載の施肥設計装置。 B5. The optimal calibration curve estimating unit estimates the optimal calibration curve based on the data of the standard calibration curve for the crop and the data of past harvest amounts for the crop stored in the database, B1 or Fertilization design apparatus described in B2.
 B6.前記基準検量線は、前記作物と同一品種について、過去に取得された検量線である、B1からB5のいずれかに記載の施肥設計装置。 B6. The fertilization design device according to any one of B1 to B5, wherein the reference calibration curve is a calibration curve acquired in the past for the same cultivar as the crop.
 B7.前記基準検量線は、前記作物と同一栽培地域について、過去に取得された検量線である、B6に記載の施肥設計装置。 B7. The fertilization design device according to B6, wherein the reference calibration curve is a calibration curve acquired in the past for the same cultivation area as the crop.
 B8.前記基準検量線は、前記作物の栽培地域の周辺地域で栽培された品種について、過去に取得された検量線である、B6に記載の施肥設計装置。 B8. The fertilization design device according to B6, wherein the standard calibration curve is a calibration curve acquired in the past for varieties grown in a surrounding area of a cultivation area of the crop.
 B9.前記基準検量線は、前記作物と直系の品種について、過去に取得された検量線である、B1からB5のいずれかに記載の施肥設計装置。 B9. The fertilization design device according to any one of B1 to B5, wherein the reference calibration curve is a calibration curve acquired in the past for the crop and the direct cultivar.
 B10.前記最適検量線推定部は、前記作物情報および前記培地における前記指標の分布に基づいて、最適検量線を推定する、B1またはB2に記載の施肥設計装置。 B10. The fertilization design device according to B1 or B2, wherein the optimal calibration curve estimation unit estimates an optimal calibration curve based on the crop information and the distribution of the index in the culture medium.
 B11.前記最適検量線推定部によって推定された前記最適検量線を表示する表示部をさらに含む、B1からB10のいずれかに記載の施肥設計装置。 B11. The fertilization design device in any one of B1 to B10 further including the display part which displays the said optimal calibration curve estimated by the said optimal calibration curve estimation part.
 B12.前記最適検量線推定部は、ユーザの指示入力に基づいて前記最適検量線を調整し、前記施肥量決定部は、前記指標と、調整後の前記最適検量線とに基づいて、前記施肥量を決定する、B11に記載の施肥設計装置。 B12. The optimum calibration curve estimation unit adjusts the optimum calibration curve based on a user's instruction input, and the fertilization amount determination unit controls the fertilization amount based on the index and the adjustment optimal calibration curve. The fertilization design apparatus of B11 to determine.
 B13.前記施肥量決定部によって決定された前記施肥量の前記培地における分布を示す施肥量マップを作成する施肥量マップ作成部をさらに含み、前記表示部は、前記施肥量マップをさらに表示する、B11またはB12に記載の施肥設計装置。 B13. B11 or B11, which further includes a fertilization amount map creation unit that generates a fertilization amount map showing distribution of the fertilization amount in the culture medium determined by the fertilization amount determination unit, the display unit further displays the fertilization amount map Fertilization design apparatus described in B12.
 B14.前記指標の前記培地内での平均値を前記培地ごとに算出し、前記指標の平均値と前記培地の数との関係を示す第1ヒストグラムを作成する第1ヒストグラム作成部をさらに含み、前記表示部は、前記第1ヒストグラムをさらに表示する、B11からB13のいずれかに記載の施肥設計装置。 B14. The display device further includes a first histogram generation unit that calculates an average value of the index in the culture medium for each culture medium, and generates a first histogram indicating a relationship between the average value of the index and the number of culture media, and the display The fertilization design device according to any one of B11 to B13, wherein the unit further displays the first histogram.
 B15.前記施肥量決定部によって決定された前記施肥量の前記培地内での平均値を前記培地ごとに算出し、前記施肥量の平均値と前記培地の数との関係を示す第2ヒストグラムを作成する第2ヒストグラム作成部をさらに含み、前記表示部は、前記第2ヒストグラムをさらに表示する、B14に記載の施肥設計装置。 B15. The average value of the fertilization amount determined by the fertilization amount determination unit in the culture medium is calculated for each culture medium, and a second histogram indicating the relationship between the average value of the fertilization amount and the number of the culture medium is created The fertilization design device according to B14, further including a second histogram creation unit, wherein the display unit further displays the second histogram.
 B16.前記施肥量決定部は、前記培地ごとの前記施肥量に基づいて、全培地についての総施肥量を算出し、前記表示部は、前記総施肥量と、ユーザの承認を求めるための承認ボタンと、ユーザの発注を受け付けるための発注ボタンとをさらに表示する、B11から15のいずれかに記載の施肥設計装置。 B16. The fertilization amount determination unit calculates a total fertilization amount for the entire culture medium based on the fertilization amount for each of the culture media, and the display unit includes the total fertilization amount and an approval button for obtaining user approval. The fertilization design device according to any one of B11 to B15, which further displays an order button for receiving a user's order.
 B17.前記承認ボタンに対するユーザの指示入力によってユーザの承認を受け付けた後に、前記発注ボタンに対するユーザの指示入力によってユーザの発注を受け付けたときのみ、前記総施肥量分の肥料を発注する発注制御部をさらに含む、B16に記載の施肥設計装置。 B17. The order control unit for ordering the fertilizer for the total fertilization amount only when the user's approval is received by the user's instruction input to the approval button, and only when the user's order is received by the user's instruction input to the order button The fertilization design apparatus as described in B16 including.
 B18.前記施肥量決定部によって決定された各培地についての前記施肥量に基づいて、全培地についての総施肥量を算出する総施肥量算出部と、前記総施肥量と、ユーザの承認を求めるための承認ボタンと、ユーザの発注を受け付けるための発注ボタンとを表示する表示部をさらに備えている、B1に記載の施肥設計装置。 B18. A total fertilization amount calculation unit for calculating a total fertilization amount for all culture media based on the fertilization amount for each culture medium determined by the fertilization amount determination unit, the total fertilization amount for calculating the total fertilization amount, and approval for the user The fertilization design device according to B1, further comprising a display unit that displays an approval button and an order button for receiving a user's order.
 B19.前記入力部による指示入力に基づいて肥料の発注を制御する発注制御部をさらに備え、前記発注制御部は、前記承認ボタンに対するユーザの指示入力によってユーザの承認を受け付けた後に、前記発注ボタンに対するユーザの指示入力によってユーザの発注を受け付けたときのみ、前記総施肥量分の肥料を発注する、B18に記載の施肥設計装置。 B19. The system further includes an order control unit that controls fertilizer ordering based on an instruction input by the input unit, and the order control unit receives the user's approval by the user's instruction input to the approval button, and then the user for the order button The fertilization design device according to B18, which orders the fertilizer for the total fertilization amount only when the user's order is accepted by the instruction input of.
 C1.B1からB19のいずれかに記載の施肥設計装置と、前記測定値を記憶する第1データベースと、少なくとも前記基準検量線のデータを記憶する第2データベースとを含み、前記施肥設計装置の前記指標算出部は、前記第1データベースに記憶されている前記測定値に基づいて前記指標を算出し、前記最適検量線推定部は、前記第2データベースに記憶されている前記基準検量線のデータ、または、前記作物情報および前記指標から前記最適検量線を推定する、施肥設計システム。 C1. B1 to B19, the first database storing the measured values, and the second database storing at least the data of the reference calibration curve, wherein the index calculation of the fertilizing design device is performed. The unit calculates the index based on the measurement values stored in the first database, and the optimal calibration curve estimation unit is data of the reference calibration curve stored in the second database, or The fertilization design system which estimates the said optimal calibration curve from the said crop information and the said parameter | index.
 C2.前記作物の栽培条件に関する栽培情報を記憶する第3データベースをさらに含み、前記最適検量線推定部は、前記第3データベースに記憶されている前記栽培条件のデータに基づいて前記基準検量線を変更することにより、前記最適検量線を推定する、C1に記載の施肥設計システム。 C2. The system further includes a third database storing cultivation information on cultivation conditions of the crop, and the optimum calibration curve estimation unit changes the reference calibration curve based on the data of the cultivation conditions stored in the third database. The fertilization design system as described in C1 which estimates the said optimal standard curve by.
 C3.前記作物を栽培する前記培地を撮影して画像を取得する撮像部をさらに含み、前記第1データベースは、前記撮像部によって取得された画像のデータを前記測定値として記憶する、C1またはC2に記載の施肥設計システム。 C3. The imaging apparatus according to any one of C1 and C2, further comprising: an imaging unit configured to capture the culture medium for growing the crop and acquire an image, and the first database stores data of the image acquired by the imaging unit as the measurement value. Fertilizer design system.
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で拡張または変更して実施することができる。 As mentioned above, although embodiment of this invention was described, the scope of the present invention is not limited to this, and it can extend or change and carry out within the range which does not deviate from the main point of invention.
 本発明は、培地への施肥量を決定する装置およびシステムに利用可能である。 The present invention is applicable to an apparatus and system for determining the amount of fertilization to a culture medium.
  30   施肥設計装置
  31   入力部
  32   表示部
  35b  指標算出部
  35c  最適検量線推定部
  35d  施肥量決定部
  35h  発注制御部
30 Fertilization design apparatus 31 Input unit 32 Display unit 35 b Index calculation unit 35 c Optimal calibration curve estimation unit 35 d Fertilization amount determination unit 35 h Order control unit

Claims (20)

  1.  作物の品種および栽培地域に関する作物情報を取得する作物情報取得工程と、
     前記作物を栽培する培地に含まれる複数の領域について、リモートセンシングによる測定値を取得する測定値取得工程と、
     前記測定値に基づいて、前記作物の生育状態を示す指標を各領域ごとに算出する指標算出工程と、
     前記作物についての前記指標と施肥量との関係を最適に示す最適検量線を、前記作物についての過去の検量線である基準検量線、または、前記作物情報および前記指標から推定する最適検量線推定工程と、
     前記指標と前記最適検量線とに基づいて、前記培地に施肥する前記施肥量を決定する施肥量決定工程とを含む、施肥設計方法。
    A crop information acquisition process for acquiring crop information on crop varieties and cultivation areas;
    A measurement value acquisition step of acquiring measurement values by remote sensing for a plurality of regions included in a culture medium for cultivating the crop;
    An index calculating step of calculating, for each area, an index indicating a growth state of the crop based on the measured value;
    A standard calibration curve which is a past calibration curve of the crop, or an optimal calibration curve estimated from the crop information and the indicator, which optimally shows the relationship between the index and the fertilization amount for the crop. Process,
    A fertilization design method, comprising: a fertilization amount determination step of determining the fertilization amount to be fertilized in the culture medium based on the index and the optimal calibration curve.
  2.  前記最適検量線推定工程では、前記作物についての前記基準検量線のデータがデータベースに記憶されている場合には、前記データベースから前記データを取得して、前記最適検量線を推定する一方、前記データが前記データベースに記憶されていない場合には、前記作物情報および前記指標から前記最適検量線を推定する、請求項1に記載の施肥設計方法。 In the optimal calibration curve estimation step, when the data of the reference calibration curve for the crop is stored in a database, the data is acquired from the database to estimate the optimal calibration curve, while the data is The fertilization design method according to claim 1, wherein the optimal calibration curve is estimated from the crop information and the index, when is not stored in the database.
  3.  前記作物の栽培条件に関する栽培情報を取得する栽培情報取得工程をさらに含み、
     前記最適検量線推定工程では、前記栽培条件に基づいて前記基準検量線を変更することにより、前記最適検量線を推定する、請求項1または2に記載の施肥設計方法。
    The method further includes a cultivation information acquisition step of acquiring cultivation information on cultivation conditions of the crop,
    The fertilization design method according to claim 1 or 2, wherein in the optimal calibration curve estimation step, the optimal calibration curve is estimated by changing the reference calibration curve based on the cultivation conditions.
  4.  前記栽培条件は、前記作物の前記栽培地域における栽培期間での積算気温、平均降水量、平均日照量のいずれかを含む、請求項3に記載の施肥設計方法。 The fertilization design method according to claim 3, wherein the cultivation conditions include any one of an accumulated temperature, an average precipitation, and an average amount of sunshine in the cultivation period of the crop in the cultivation area.
  5.  前記最適検量線推定工程では、前記作物についての前記基準検量線のデータおよび前記作物についての過去の収穫量のデータをデータベースから取得し、前記基準検量線および前記収穫量に基づいて、前記最適検量線を推定する、請求項1または2に記載の施肥設計方法。 In the optimal calibration curve estimation step, data of the standard calibration curve for the crop and data of past harvest amount for the crop are obtained from a database, and the optimal calibration is obtained based on the baseline calibration curve and the harvest amount. The fertilization design method of Claim 1 or 2 which estimates a line.
  6.  前記基準検量線は、前記作物と同一品種について、過去に取得された検量線である、請求項1から5のいずれかに記載の施肥設計方法。 The fertilization design method according to any one of claims 1 to 5, wherein the standard calibration curve is a calibration curve acquired in the past for the same cultivar as the crop.
  7.  前記基準検量線は、前記作物と同一栽培地域について、過去に取得された検量線である、請求項6に記載の施肥設計方法。 The fertilization design method according to claim 6, wherein the standard calibration curve is a calibration curve acquired in the past for the same cultivation area as the crop.
  8.  前記基準検量線は、前記作物の栽培地域の周辺地域で栽培された品種について、過去に取得された検量線である、請求項6に記載の施肥設計方法。 The fertilization design method according to claim 6, wherein the standard calibration curve is a calibration curve acquired in the past with respect to varieties grown in a surrounding area of a cultivation area of the crop.
  9.  前記基準検量線は、前記作物と直系の品種について、過去に取得された検量線である、請求項1から5のいずれかに記載の施肥設計方法。 The fertilization design method according to any one of claims 1 to 5, wherein the standard calibration curve is a calibration curve acquired in the past for the crop and the direct cultivar.
  10.  前記最適検量線推定工程では、前記作物情報および前記培地における前記指標の分布に基づいて、最適検量線を推定する、請求項1または2に記載の施肥設計方法。 The fertilization design method according to claim 1 or 2, wherein in the optimal calibration curve estimation step, an optimal calibration curve is estimated based on the crop information and the distribution of the index in the culture medium.
  11.  前記最適検量線推定工程で推定された前記最適検量線を表示する表示工程をさらに含む、請求項1から10のいずれかに記載の施肥設計方法。 The fertilization design method according to any one of claims 1 to 10, further comprising a display step of displaying the optimal calibration curve estimated in the optimal calibration curve estimation step.
  12.  ユーザの指示入力に基づいて前記最適検量線を調整する最適検量線調整工程をさらに含み、
     前記施肥量決定工程では、前記指標と、調整後の前記最適検量線とに基づいて、前記施肥量を決定する、請求項11に記載の施肥設計方法。
    The method further includes an optimal calibration curve adjustment step of adjusting the optimal calibration curve based on a user's instruction input,
    The fertilization design method according to claim 11, wherein in the fertilization amount determination step, the fertilization amount is determined based on the index and the optimal calibration curve after adjustment.
  13.  前記施肥量決定工程で決定された前記施肥量の前記培地における分布を示す施肥量マップを作成する施肥量マップ作成工程をさらに含み、
     前記表示工程では、前記施肥量マップをさらに表示する、請求項11または12に記載の施肥設計方法。
    Further comprising a fertilization amount map creation step of creating a fertilization amount map showing the distribution of the fertilization amount in the culture medium determined in the fertilization amount determination step;
    The fertilization design method according to claim 11, wherein the fertilization amount map is further displayed in the display step.
  14.  前記指標の前記培地内での平均値を前記培地ごとに算出し、前記指標の平均値と前記培地の数との関係を示す第1ヒストグラムを作成する第1ヒストグラム作成工程をさらに含み、
     前記表示工程では、前記第1ヒストグラムをさらに表示する、請求項11から13のいずれかに記載の施肥設計方法。
    The method further includes a first histogram creation step of calculating an average value of the index in the culture medium for each culture medium, and creating a first histogram indicating a relationship between the average value of the index and the number of culture media,
    The fertilization design method according to any one of claims 11 to 13, wherein the display step further displays the first histogram.
  15.  前記施肥量決定工程で決定された前記施肥量の前記培地内での平均値を前記培地ごとに算出し、前記施肥量の平均値と前記培地の数との関係を示す第2ヒストグラムを作成する第2ヒストグラム作成工程をさらに含み、
     前記表示工程では、前記第2ヒストグラムをさらに表示する、請求項14に記載の施肥設計方法。
    The average value of the fertilization amount determined in the fertilization amount determination step in the culture medium is calculated for each of the culture media, and a second histogram indicating the relationship between the average value of the fertilization amount and the number of the culture media is created Further including a second histogram creation step,
    The fertilization design method according to claim 14, wherein the second histogram is further displayed in the display step.
  16.  前記施肥量決定工程で決定された各培地についての前記施肥量に基づいて、全培地についての総施肥量を算出する総施肥量算出工程をさらに含み、
     前記表示工程では、前記総施肥量と、ユーザの承認を求めるための承認ボタンと、ユーザの発注を受け付けるための発注ボタンとをさらに表示する、請求項11から15のいずれかに記載の施肥設計方法。
    Further including a total fertilization amount calculating step of calculating a total fertilization amount of all the media based on the fertilization amount of each culture medium determined in the fertilization amount determination step;
    The fertilization design according to any one of claims 11 to 15, wherein the display step further displays the total fertilization amount, an approval button for requesting approval of the user, and an order button for receiving an order of the user. Method.
  17.  前記承認ボタンに対するユーザの指示入力によってユーザの承認を受け付けた後に、前記発注ボタンに対するユーザの指示入力によってユーザの発注を受け付けたときのみ、前記総施肥量分の肥料を発注する発注工程をさらに含む、請求項16に記載の施肥設計方法。 The method further includes an ordering step of ordering the fertilizer for the total fertilization amount only when the user's approval is received by the user's instruction input to the approval button and the user's order is received by the user's instruction input to the order button. The fertilization design method according to claim 16.
  18.  ユーザによる情報の入力を受け付けるための入力部と、
     前記入力部によって作物の品種および栽培地域に関する作物情報が入力されたときに、前記作物を栽培する培地に含まれる複数の領域についてのリモートセンシングによる測定値に基づいて、前記作物の生育状態を示す指標を各領域ごとに算出する指標算出部と、
     前記作物についての前記指標と施肥量との関係を最適に示す最適検量線を、前記作物についての過去の検量線である基準検量線、または、前記作物情報および前記指標から推定する最適検量線推定部と、
     前記指標と前記最適検量線とに基づいて、前記培地に施肥する前記施肥量を決定する施肥量決定部とを備えている、施肥設計装置。
    An input unit for receiving input of information by a user;
    Indicates the growth state of the crop based on the measured values by remote sensing for a plurality of regions included in the culture medium for cultivating the crop when crop information on the crop variety and cultivation area is input by the input unit. An index calculation unit that calculates an index for each area;
    A standard calibration curve which is a past calibration curve of the crop, or an optimal calibration curve estimated from the crop information and the indicator, which optimally shows the relationship between the index and the fertilization amount for the crop. Department,
    A fertilization design device comprising: a fertilization amount determination unit that determines the fertilization amount to be fertilized to the culture medium based on the index and the optimal calibration curve.
  19.  前記施肥量決定部によって決定された各培地についての前記施肥量に基づいて、全培地についての総施肥量を算出する総施肥量算出部と、
     前記総施肥量と、ユーザの承認を求めるための承認ボタンと、ユーザの発注を受け付けるための発注ボタンとを表示する表示部をさらに備えている、請求項18に記載の施肥設計装置。
    A total fertilization amount calculation unit that calculates a total fertilization amount of all the media based on the fertilization amount of each culture medium determined by the fertilization amount determination unit;
    The fertilization design apparatus according to claim 18, further comprising a display unit that displays the total fertilization amount, an approval button for requesting user's approval, and an order button for receiving an order of the user.
  20.  前記入力部による指示入力に基づいて肥料の発注を制御する発注制御部をさらに備え、
     前記発注制御部は、前記承認ボタンに対するユーザの指示入力によってユーザの承認を受け付けた後に、前記発注ボタンに対するユーザの指示入力によってユーザの発注を受け付けたときのみ、前記総施肥量分の肥料を発注する、請求項19に記載の施肥設計装置。
    The system further comprises an order control unit that controls fertilizer order based on an instruction input by the input unit,
    The order control unit orders the fertilizer for the total fertilization amount only when accepting the user's order by the user's instruction input to the order button after accepting the user's approval by the user's instruction input to the approval button. The fertilization design apparatus according to claim 19.
PCT/JP2018/037796 2017-12-08 2018-10-10 Fertilization designing method and fertilization designing device WO2019111527A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880077989.2A CN111432628B (en) 2017-12-08 2018-10-10 Fertilization design method and fertilization design device
JP2019558037A JP7243635B2 (en) 2017-12-08 2018-10-10 Fertilization design method and fertilization design device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-235942 2017-12-08
JP2017235942 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019111527A1 true WO2019111527A1 (en) 2019-06-13

Family

ID=66751002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037796 WO2019111527A1 (en) 2017-12-08 2018-10-10 Fertilization designing method and fertilization designing device

Country Status (3)

Country Link
JP (1) JP7243635B2 (en)
CN (1) CN111432628B (en)
WO (1) WO2019111527A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141623A (en) * 2019-03-07 2020-09-10 ヤンマーパワーテクノロジー株式会社 Fertilization map creation device and fertilization map creation method
JP2021170999A (en) * 2020-04-27 2021-11-01 国立研究開発法人農業・食品産業技術総合研究機構 Additional fertilizer amount arithmetic unit, additional fertilizer amount calculation method and additional fertilizer amount calculation program
JP2021190108A (en) * 2020-05-25 2021-12-13 国立研究開発法人農業・食品産業技術総合研究機構 Farm crop-related value derivation device and farm crop-related value derivation method
EP3922089A1 (en) * 2020-06-10 2021-12-15 Deere & Company In-field soil analysis system and method
CN117322214A (en) * 2023-11-30 2024-01-02 余姚市农业技术推广服务总站 Crop fertilizer accurate application method and system based on neural network
JP7429964B2 (en) 2020-04-27 2024-02-09 国立研究開発法人農業・食品産業技術総合研究機構 Base fertilizer amount calculation device, basal fertilizer amount calculation method, and basal fertilizer amount calculation program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021067257A1 (en) * 2019-09-30 2021-04-08 Nutrien Ag Solutions, Inc. Agriculture service platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313594A (en) * 1998-04-30 1999-11-16 Omron Corp Support system for determining farm work and method therefor, and storage medium
JP2011215697A (en) * 2010-03-31 2011-10-27 Hitachi Solutions Ltd Map-linked fertilization design system
JP2015027296A (en) * 2014-07-23 2015-02-12 株式会社へんこ Fertilization designing method, and fertilization designing system
JP2017012138A (en) * 2015-07-06 2017-01-19 日立マクセル株式会社 Crop management system and crop management method
JP2017046639A (en) * 2015-09-02 2017-03-09 京都府 Crop raising support device and program thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1010544B (en) * 1986-12-30 1990-11-28 航空工业部六○二研究所 Determination of soil fertility and optimization for manure-applying
US6070539A (en) * 1997-03-21 2000-06-06 Case Corporation Variable rate agricultural product application implement with multiple inputs and feedback

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313594A (en) * 1998-04-30 1999-11-16 Omron Corp Support system for determining farm work and method therefor, and storage medium
JP2011215697A (en) * 2010-03-31 2011-10-27 Hitachi Solutions Ltd Map-linked fertilization design system
JP2015027296A (en) * 2014-07-23 2015-02-12 株式会社へんこ Fertilization designing method, and fertilization designing system
JP2017012138A (en) * 2015-07-06 2017-01-19 日立マクセル株式会社 Crop management system and crop management method
JP2017046639A (en) * 2015-09-02 2017-03-09 京都府 Crop raising support device and program thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141623A (en) * 2019-03-07 2020-09-10 ヤンマーパワーテクノロジー株式会社 Fertilization map creation device and fertilization map creation method
WO2020179215A1 (en) * 2019-03-07 2020-09-10 ヤンマー株式会社 Fertilization map creation device and fertilization map creation method
JP7113773B2 (en) 2019-03-07 2022-08-05 ヤンマーパワーテクノロジー株式会社 Fertilization map creation device and fertilization map creation method
JP2021170999A (en) * 2020-04-27 2021-11-01 国立研究開発法人農業・食品産業技術総合研究機構 Additional fertilizer amount arithmetic unit, additional fertilizer amount calculation method and additional fertilizer amount calculation program
JP7340258B2 (en) 2020-04-27 2023-09-07 国立研究開発法人農業・食品産業技術総合研究機構 Additional fertilizer amount calculation device, additional fertilizer amount calculation method, and additional fertilizer amount calculation program
JP7429964B2 (en) 2020-04-27 2024-02-09 国立研究開発法人農業・食品産業技術総合研究機構 Base fertilizer amount calculation device, basal fertilizer amount calculation method, and basal fertilizer amount calculation program
JP2021190108A (en) * 2020-05-25 2021-12-13 国立研究開発法人農業・食品産業技術総合研究機構 Farm crop-related value derivation device and farm crop-related value derivation method
JP7051161B2 (en) 2020-05-25 2022-04-11 国立研究開発法人農業・食品産業技術総合研究機構 Crop-related value derivation device and crop-related value derivation method
EP3922089A1 (en) * 2020-06-10 2021-12-15 Deere & Company In-field soil analysis system and method
US11844297B2 (en) 2020-06-10 2023-12-19 Deere & Company In-field soil analysis system and method
CN117322214A (en) * 2023-11-30 2024-01-02 余姚市农业技术推广服务总站 Crop fertilizer accurate application method and system based on neural network
CN117322214B (en) * 2023-11-30 2024-02-09 余姚市农业技术推广服务总站 Crop fertilizer accurate application method and system based on neural network

Also Published As

Publication number Publication date
CN111432628A (en) 2020-07-17
JPWO2019111527A1 (en) 2020-11-26
JP7243635B2 (en) 2023-03-22
CN111432628B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2019111527A1 (en) Fertilization designing method and fertilization designing device
US11361256B2 (en) Method for mapping crop yields
US20210224927A1 (en) Machine learning in agricultural planting, growing, and harvesting contexts
US9813512B2 (en) Systems and methods for efficiently generating a geospatial data map for use in agricultural operations
US10171564B2 (en) Systems and methods for cloud-based agricultural data processing and management
US20210342719A1 (en) Using machine learning-based seed harvest moisture predictions to improve a computer-assisted agricultural farm operation
EP3528613B1 (en) Method for mapping temporal and spatial sustainability of a cropping system
CN112106087B (en) Analysis and presentation of agricultural data
CN113168598B (en) Hybrid seed selection and crop yield optimization adjusted by risk in the field
CN113473840A (en) Agricultural field digital modeling and tracking for realizing agricultural field test
US20050038568A1 (en) Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data
CN113228041B (en) Detection of infection of plant diseases using improved machine learning
CN113226009B (en) Predictive seed script processing for soybeans
EP3452953A1 (en) Using digital images of a first type and a feature set dictionary to generate digital images of a second type
CN113226010B (en) Implement agronomic test using spatial statistical model
JP6960698B2 (en) Crop-related value derivation device and crop-related value derivation method
JP2020149201A (en) Method of presenting recommended spot for measuring growth parameters used for crop lodging risk diagnosis, method of lodging risk diagnosis, and information providing apparatus
JP7113773B2 (en) Fertilization map creation device and fertilization map creation method
Charvát et al. Delineation of Management Zones Using Satellite Imageries
Oakes et al. Distinguishing plant population and variety with UAV-derived vegetation indices
US20220398841A1 (en) Information processing device, information processing method, and program
US20220383428A1 (en) Systems and methods for use in planting seeds in growing spaces
JP2023090062A (en) Estimation device, estimation method, and estimation program
BR112017028605B1 (en) SYSTEM AND METHOD FOR MONITORING FIELD OPERATIONS, AND NON-TRANSIENT STORAGE MEDIUM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558037

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886209

Country of ref document: EP

Kind code of ref document: A1