WO2019109862A2 - 角膜塑形镜以及用于制造角膜塑形镜的方法 - Google Patents

角膜塑形镜以及用于制造角膜塑形镜的方法 Download PDF

Info

Publication number
WO2019109862A2
WO2019109862A2 PCT/CN2018/118438 CN2018118438W WO2019109862A2 WO 2019109862 A2 WO2019109862 A2 WO 2019109862A2 CN 2018118438 W CN2018118438 W CN 2018118438W WO 2019109862 A2 WO2019109862 A2 WO 2019109862A2
Authority
WO
WIPO (PCT)
Prior art keywords
region
curvature
base arc
ortho
radius
Prior art date
Application number
PCT/CN2018/118438
Other languages
English (en)
French (fr)
Other versions
WO2019109862A3 (zh
Inventor
王曌
解江冰
Original Assignee
爱博诺德(北京)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711278012.0A external-priority patent/CN108008544B/zh
Priority claimed from CN201721682214.7U external-priority patent/CN208092366U/zh
Priority claimed from CN201711276716.4A external-priority patent/CN107728338B/zh
Priority claimed from CN201811416151.XA external-priority patent/CN111221146A/zh
Priority claimed from CN201821953457.4U external-priority patent/CN209417454U/zh
Application filed by 爱博诺德(北京)医疗科技有限公司 filed Critical 爱博诺德(北京)医疗科技有限公司
Priority to US16/770,314 priority Critical patent/US11662606B2/en
Priority to JP2020547273A priority patent/JP7028987B2/ja
Publication of WO2019109862A2 publication Critical patent/WO2019109862A2/zh
Publication of WO2019109862A3 publication Critical patent/WO2019109862A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/047Contact lens fitting; Contact lenses for orthokeratology; Contact lenses for specially shaped corneae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00105Production of contact lenses covering a large part of the cornea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00951Measuring, controlling or regulating

Definitions

  • the present disclosure relates to Ortho-K CLs, and more particularly to Ortho-K CLs having more than one radius of curvature in the base arc region.
  • the present disclosure also relates to a method for making a Ortho-K CL.
  • Presbyopia is a visual problem that people must inevitably appear after entering middle-aged and old age. With age, the ability of eye regulation gradually declines, causing patients to be near-difficulty. In close-range work, a convex lens must be added in addition to its static refractive correction to have clear near vision. This phenomenon is called presbyopia. With the improvement of people's living standards in modern times, especially when they are in middle age, their demands for image are increasing. I hope that I can maintain a young state at any time. I don't want to expose my old-fashioned state. The more serious it is. The current presbyopia is mainly solved by wearing presbyopic glasses, surgery, and wearing multi-focal contact lenses.
  • Wearing glasses such as reading glasses or contact lenses worn during the day have problems in convenience, corrective effect, and corrective stability, especially wearing reading glasses, which seriously affects the wearer's image.
  • Surgery mainly refers to corneal implants, or implanted with various types of multifocal intraocular lenses. These correction methods are irreversible and cause damage to human eye tissue.
  • the 1/6 avascular transparent fiber membrane at the front end of the eye wall is called the cornea.
  • the normal cornea is highly transparent and histologically divided into five layers from the front to the back: the epithelial cell layer, the anterior elastic layer, the stromal layer, the posterior elastic layer, and the endothelial cell layer.
  • the epithelial cell layer is rich in sensory nerve endings and is a barrier to the cornea, regenerable and deformable.
  • the Orthokeratology Mirror is a lens made of a hard gas permeable material. It is worn at night and exerts pressure through the eyelid-keratoplasty-corneal membrane to promote the migration/deformation of the corneal epithelial cells and change the radius of curvature of the cornea (lens).
  • the principle of refractive correction of keratoplasty is different from that of ordinary contact lens. It is worn at night, and the optical zone itself does not play an optical role. Instead, it is worn by a certain period of time to shape the anterior surface of the cornea into a Ortho-K CL.
  • the shape of the posterior surface of the optic zone also known as the base arc region
  • Ortho-K CL has gone through several stages, including three arc zones, four arc zones, and multiple arc zones. No matter which stage of design, the design of the base arc zone is consistent and complete. Arc, the other arcs together constitute a geometric design, the auxiliary base arc achieves compression and shaping of the cornea, so that the fluid dynamics generated by the inner surface of the lens, the tears, the corneal epithelium, the mechanical compression of the lens and the activity of the eyelids The resultant force exerts power on the central region of the cornea.
  • the Ortho-K CL is generally divided into four areas: the base arc area, the reverse arc area, the matching arc area, and the side arc area.
  • Figure 1 shows a schematic view of a Ortho-K CL, where BC is the base arc region, RC is the reverse arc region, AC is the arc area, and PC is the optional edge arc region.
  • the Ortho-K CL can also have no arc area.
  • some three-arc design keratoplasty mirrors are suitable for linear arcs with side arcs.
  • the base arc area is the main treatment area of the Orthokeratology mirror.
  • the base area of the traditional Orthokeratology mirror is designed as a spherical surface, and the radius of curvature is designed according to the patient's descending requirements.
  • Most of the existing Orthokeratology mirrors are designed for myopia correction. During clinical use, some patients were found to be able to produce myopia-type peripheral defocus after wearing a Ortho-K CL and control the growth of the axial length. Therefore, the Ortho-K CL was used for the correction and prevention of myopia in adolescents.
  • WO2004/015479 discloses A Orthokeratology Orthokeratology mirror that is steeper than the flattened axis of the cornea.
  • Hyperopia is different from presbyopia. Hyperopia is a kind of refractive error, and presbyopia is a loss of accommodation. Presbyopic patients need to achieve near-sighted functions while ensuring clear vision. At present, there is no keratoplasty that can correct the presbyopia.
  • the cornea is an elastic body, and the change characteristics occurring in the shaping conform to the deformation characteristics of the elastic body.
  • the total volume of the cornea is constant, the shape of the cornea is gradually changed, and the cornea is in the shaping mirror.
  • the force is not equal, the center is the most stressed, and gradually weakens outward.
  • the pressure on both sides of the correction area of the presbyopia is low or high, or only one side is under pressure, which will result in the failure of the prosthetic correction zone to be smoothly arched and failed to shape; After the cornea is shaped, the shape is gradual.
  • the diameter of the oversized central region (for example, greater than 1.75 mm) will cause the area around the central area (usually the presbyopic correction area) to exceed the outer edge of the pupil, losing the old The ability to correct the correction area.
  • a Ortho-K CL including an inner surface facing a cornea of a human eye when worn and an outer surface opposite the inner surface, the inner surface
  • the base arc region is located at the center, wherein the base arc region is for pressing the anterior surface of the cornea and shaping the anterior surface of the cornea to have a shape conforming to the base arc region, wherein the base arc region includes two or More regions, at least two of the two or more regions having different radii of curvature.
  • the two or more regions of the base arc region comprise a central central region of the circle and one or more concentric annular regions surrounding the central region.
  • the radius of curvature of the two or more regions of the base arc region alternates in a radial direction.
  • the radius of curvature of the two or more regions of the base arc region tapers outwardly from the center.
  • the central region has a diameter greater than 1 mm, preferably greater than 2 mm.
  • the two or more regions of the base arc region are two or more sector regions, and the two or more sector regions collectively comprise the base arc Area.
  • the two or more regions of the base arc region are two or more sector regions, and the base arc region further includes two adjacent sector regions. a smooth transition region therebetween, and wherein the two or more sector regions and the smooth transition region collectively comprise the base arc region.
  • the two or more regions of the base arc region are irregularly shaped.
  • the two or more regions of the base arc region are a first region located in the middle and a second region and a third region located on both sides of the first region, and The first region, the second region, and the third region collectively constitute the base arc region.
  • the two or more regions of the base arc region are a first region located in the middle and a second region and a third region located on both sides of the first region
  • the base arc region further includes a first smooth transition region between the first region and the second region and a second smooth transition region between the first region and the third region, and wherein The first region, the second region, the third region, the first smooth transition region, and the second smooth transition region collectively comprise the base arc region.
  • the two or more regions of the base arc region are a first region and a second region, the first region being part of a ring, the center of the second region There is a complete circular portion, and wherein the first region and the second region together comprise the base arc region.
  • the two or more regions of the base arc region are a first region and a second region, the first region being part of a ring, the center of the second region Having a complete circular portion, the base arc region further comprising a smooth transition region between the first region and the second region, and wherein the first region, the second region, and the The smooth transition regions collectively make up the base arc region.
  • the ⁇ T calculated by the following formula is +0.5D to +5.0D, preferably +0.75D to +3.5D, more preferably +1.0D to +3.0D:
  • R 1 is the maximum radius of curvature of the base arc region, the unit is mm, and R 2 is the minimum radius of curvature of the base arc region, the unit is mm, and n is the refractive index of the cornea, and the value is 1.3375.
  • the base arc region has a maximum radius of curvature of from 6.0 mm to 10.5 mm, preferably from 7.0 mm to 10.0 mm.
  • the base curvature zone has a minimum radius of curvature of from 5.51 mm to 10.34 mm, preferably from 5.65 mm to 9.85 mm, more preferably from 6.53 mm to 9.71 mm.
  • the base arc region has a diameter of from 4.5 mm to 7.0 mm, preferably from 5.0 mm to 6.8 mm, more preferably from 5.2 mm to 6.5 mm.
  • the base arc region is circular.
  • the base arc region is elliptical.
  • a method for manufacturing a Ortho-Knife Mirror comprising an inner surface facing the cornea of a human eye when worn and an outer surface opposite the inner surface
  • the inner surface includes a base arc region located at the center, and the method includes the following steps:
  • n is the refractive index of the cornea
  • R1 is the maximum radius of curvature of the determined base arc region
  • the unit is mm
  • ⁇ T is the determined amount of presbyopia required by the wearer
  • the unit is D
  • R2 is the base arc region.
  • step (a) comprises:
  • n is the determined refractive index of the cornea
  • R is the determined original radius of curvature of the anterior surface of the wearer's cornea, in mm
  • ⁇ K is the determined amount of refractive error correction
  • the unit is D
  • R1 is the base curve The maximum radius of curvature of the zone, in mm;
  • the method further comprises the steps of:
  • n is the refractive index of the cornea
  • R1 is the maximum radius of curvature of the determined base arc region
  • the unit is mm
  • ⁇ T' is the determined mid-range add power
  • the unit is D
  • R3 is the middle of the base arc region. Radius of curvature in mm;
  • the step (d) further includes fabricating the Ortho-K CL such that a third one of the two or more regions has the intermediate radius of curvature.
  • step (e) comprises determining the mid-range add power required by the wearer using the following formula:
  • ⁇ T' is the mid-range add power required by the wearer, that is, the amount of presbyopia required in the view
  • the unit is D
  • M' is the visual view of the wearer based on the correct correction of far vision Distance
  • the unit is mm.
  • step (b) comprises determining the amount of presbyopia correction required by the wearer using the following formula:
  • ⁇ T is the amount of presbyopia required by the wearer
  • the unit is D
  • M is the closest distance that the wearer can reach on the basis of correct correction of far vision
  • the unit is mm.
  • a Ortho-K CL including an inner surface facing a cornea of a human eye when worn and an outer surface opposite the inner surface, the inner surface A base arc region located at a center, wherein the base arc region includes a circular first region located at a center, a circular second region surrounding the first region, and a third region surrounding the second region a region, wherein a radius of curvature of the second region is smaller than a radius of curvature of the first region, and a radius of curvature of the second region is smaller than a radius of curvature of the third region.
  • the first zone and the third zone have the same radius of curvature.
  • the radius of curvature of the first zone and the second zone satisfy the following relationship:
  • R A is a radius of curvature of the first zone, the unit is mm, and R B is a radius of curvature of the second zone, and the unit is mm.
  • the first zone and the third zone have a radius of curvature of from 6.0 mm to 10.5 mm, preferably from 7.0 mm to 10.0 mm.
  • the second zone has a radius of curvature of 5.42 mm to 10.34 mm, preferably 6.22 mm to 9.85 mm.
  • the base arc region is circular.
  • the base arc region has a diameter of from 4.5 mm to 8.0 mm, preferably from 5.0 mm to 7.0 mm, more preferably from 5.2 mm to 6.5 mm.
  • the first zone has a diameter of from 0.50 mm to 1.75 mm, preferably from 0.50 mm to 1.5 mm, more preferably 1.0 mm.
  • the second zone has a diameter of from 0.75 mm to 1.5 mm, preferably from 1.0 mm to 1.25 mm, more preferably 1.0 mm.
  • the third zone has a diameter of from 0.75 mm to 3.0 mm, preferably from 1.0 mm to 2.0 mm, more preferably from 1.0 mm to 1.75 mm.
  • the base arc region is elliptical.
  • the present disclosure has at least the following advantages.
  • the keratoplasty of the present disclosure or the keratoplasty of the keratoplasty produced by the method of the present invention has more than one radius of curvature, enabling the cornea to form more than one focus after shaping, using nighttime wear Mirror, the way to wear the mirror during the day, to achieve the combination of refractive error and presbyopia correction, convenient, beautiful, effective, more in line with modern people's pursuit of quality of life.
  • Ortho-K CL is based on the activity of the corneal cells and is reversible. When the period of time is stopped, the cornea will return to its original state without any damage, which is convenient for the patient to follow other eye treatments, compared with the surgical method. It is safer.
  • the base arc area (BC) is located at the center of the Ortho-K CL and is the inner surface of the optic zone for pressing the anterior surface of the cornea and shaping the anterior surface of the cornea into a shape.
  • the area of the cornea after shaping is the optical zone. To the role of optical imaging.
  • the reverse arc area is a second area closely connected to the base arc area, and functions to connect the base arc area and the matching arc area to form a gap between the keratoplasty mirror and the front surface of the cornea. Stores tears and promotes the circulation of tears.
  • the arc area is also called the positioning arc area, the matching arc area, etc., and is adjacent to the reverse arc area, which matches the shape of the cornea and plays a role of positioning.
  • the edge arc area is optional, located at the outermost edge of the Ortho-K CL, and is closely connected with the matching arc area. It is generally flatter than the matching arc area, and has a certain turning angle with the corneal surface to ensure the cornea and Exchange and circulation of tears and oxygen around the shaping mirror.
  • the near point generally refers to the distance of about 30cm from the eye, the corresponding vision is near vision.
  • the farsightedness refers to looking far away, generally refers to the distance of about 5m from the eye, and the corresponding visual acuity is far vision.
  • the middle finger refers to the distance between the far and the near, generally refers to the distance of about 30cm from the eye and within 5m, and the corresponding visual acuity is the mid-range vision.
  • the diameter is the width along the radial direction.
  • Fig. 1 schematically shows a cross-sectional side view of a Ortho-K CL.
  • Fig. 2 schematically shows a base arc region of a Ortho-K CL according to the present disclosure.
  • FIG. 3A schematically illustrates a base arc region of a Ortho-K CL according to one embodiment of the present disclosure.
  • FIG. 3B schematically illustrates a base arc region of a Ortho-K CL according to an embodiment of the present disclosure.
  • FIG. 4A schematically illustrates a base arc region of a Ortho-Knife Mirror according to an embodiment of the present disclosure.
  • FIG. 4B schematically illustrates a base arc region of a Ortho-K CL according to an embodiment of the present disclosure.
  • FIG. 5A schematically illustrates a base arc region of a Ortho-K CL according to one embodiment of the present disclosure.
  • FIG. 5B schematically illustrates a base arc region of a Ortho-K CL according to an embodiment of the present disclosure.
  • FIG. 5C schematically illustrates a base arc region of a Ortho-K CL according to one embodiment of the present disclosure.
  • FIG. 5D schematically illustrates a base arc region of a Ortho-K CL according to one embodiment of the present disclosure.
  • Fig. 6 is a view schematically showing the "seesaw" three-zone structure of the base arc region of the keratoplasty of the present disclosure and the cell migration after the cornea is stressed.
  • Figure 7 is a schematic view showing the tendency of the diopter of the cornea before and after wearing the Ortho-K CL on the abscissa, wherein the abscissa is the corneal diameter in mm, and the ordinate is the corneal diopter change before and after wearing, that is, the cornea after wearing The diopter at this point minus the diopter at that point in the anterior cornea, the unit is D, where the solid line shows the case where the diameter of the first zone of the base arc zone is 1 mm, and the dashed line shows the section of the base arc zone. The diameter of a zone is 2mm.
  • Fig. 8 is a view schematically showing changes in corneal diopter before and after wearing the Ortho-K CL on the wearer 1 in Embodiment 1 of the present disclosure, wherein the abscissa is the corneal diameter in mm, and the ordinate is the corneal diopter before and after wearing.
  • Fig. 9a shows the depth of field of the wearer 1 before wearing the Ortho-K CL on the first embodiment of the present disclosure, measured by the depth of field measurement function of the iTrace visual function analyzer, wherein the pupil size is measured to be 3.0 mm, wherein The abscissa is the diopter, the unit is D, which means that different diopter is added before and after the human eye is facing (the diopter is 0), and the ordinate is the normalized contrast sensitivity, and the contrast sensitivity is reduced to 50%, and the front and back are attached.
  • the difference in diopter is the depth of field (DOF) of the human eye.
  • Fig. 9b shows the depth of field of the wearer 1 after wearing the Ortho-K CL on the first embodiment of the present disclosure, measured by the depth of field measurement function of the iTrace visual function analyzer, wherein the pupil size is measured to be 3.0 mm, wherein The abscissa is the diopter, the unit is D, which means that different diopter is added before and after the human eye is facing (the diopter is 0), and the ordinate is the normalized contrast sensitivity, and the contrast sensitivity is reduced to 50%, and the front and back are attached.
  • the difference in diopter is the depth of field (DOF) of the human eye.
  • Fig. 10 is a view schematically showing a change in corneal diopter before and after wearing a Ortho-K CL on the wearer 2 in Embodiment 2 of the present disclosure, wherein the abscissa is a corneal diameter in mm, and the ordinate is a cornea before and after wearing.
  • the change in diopter that is, the diopter at that point after wearing, minus the diopter at that point before wearing the cornea, in units of D.
  • Figure 11a shows the depth of field of the wearer 2 before wearing the Orthokeratology in Example 2 of the present disclosure, measured using the depth of field measurement function of the iTrace visual function analyzer, wherein the pupil size is measured to be 3.0 mm, wherein The abscissa is the diopter, the unit is D, which means that different diopter is added before and after the human eye is facing (the diopter is 0), and the ordinate is the normalized contrast sensitivity, and the contrast sensitivity is reduced to 50%, and the front and back are attached. The difference in diopter is the depth of field (DOF) of the human eye.
  • DOF depth of field
  • Figure 11b shows the depth of field of the wearer 2 after wearing the Ortho-Knife Mirror in Example 2 of the present disclosure, measured using the depth of field measurement function of the iTrace visual function analyzer, wherein the pupil size is measured to be 3.0 mm, wherein The abscissa is the diopter, the unit is D, which means that different diopter is added before and after the human eye is facing (the diopter is 0), and the ordinate is the normalized contrast sensitivity, and the contrast sensitivity is reduced to 50%, and the front and back are attached.
  • the difference in diopter is the depth of field (DOF) of the human eye.
  • the refractive state of the cornea is mainly determined by its radius of curvature.
  • K is the diopter of the cornea
  • the unit is D
  • R is the radius of curvature of the anterior surface of the cornea, in units of mm
  • n is the refractive index of the cornea.
  • n can be 1.3375.
  • the Ortho-K CL includes an inner surface IS facing the cornea of the human eye when worn and an outer surface OS opposite the inner surface.
  • the inner surface IS of the Ortho-K CL includes a central arc region BC located at the center.
  • the base arc region BC of the Ortho-K CL is in contact with the front surface of the cornea of the human eye.
  • the radius of curvature of the anterior surface of the cornea of the human eye is adjusted by the base arc region BC of the Ortho-K CL, that is, the R in the above formula (1) is adjusted, thereby achieving Correction of the refractive error of the human eye.
  • the base arc zone BC is shown as being circular. However, in some embodiments, the base arc region BC may also have other shapes, such as elliptical, oval, and the like.
  • the inner surface IS of the Ortho-K CL can also include a circular inversion arc region RC located radially outward of the base arc region BC and a circle radially outward of the reverse arc region RC.
  • the inner surface IS of the Ortho-K CL can also include a circular arc-arc region PC located radially outward of the arc area of the arc.
  • the base arc region assumes a therapeutic effect and is designed to be related to the original shape of the wearer's cornea and the refractive state of the wearer.
  • the radius of curvature of the base arc region is calculated by the refractive optical calculation formula by the original shape of the wearer's cornea (mainly the radius of curvature) and its required amount of refractive correction.
  • the matching arc area matches the shape of the cornea at the corresponding position, so that the lens fits well and stabilizes the lens position.
  • the parameters of the fitting arc area are determined by the try-on piece trial method.
  • the parameters of the matching arc are determined by accurate measurement of the corneal surface shape to match the surface measurement results.
  • the present disclosure creatively proposes a method for manufacturing a Ortho-Knife Mirror that produces a basal arc region having at least two different radii of curvature such that the human eye is After wearing the Ortho-K CL, at least two focal points are produced in the optic zone of the cornea, so that the wearer's refractive error can be corrected at the same time as the presbyopia.
  • the method of the present disclosure for manufacturing a Ortho-K CL is similar to the prior art in determining parameters of other auxiliary regions.
  • the wearer's eye parameters are first measured.
  • the corneal topography, keratometer, and the like are used to determine the corneal morphology, including the radius of curvature of the cornea in all directions, astigmatism, Aspheric coefficient, etc.
  • the test piece with known parameters is assisted, and the parameters of the auxiliary area other than the base arc area of the wearer are determined by repeated trial and evaluation. Or through the auxiliary software simulation to determine the adaptation of the auxiliary area, and then determine its parameters.
  • the base arc region of the existing Orthokeratology mirror only functions as a refractive correction and contains only one radius of curvature.
  • the base arc region of a Ortho-K CL is manufactured by the method of the present disclosure having more than one radius of curvature.
  • the maximum radius of curvature of the base arc region is first determined; then, based on the determined maximum radius of curvature of the base arc region and the amount of presbyopia required by the wearer, the minimum of the base arc region is calculated by the optical calculation formula.
  • the radius of curvature, wherein the amount of presbyopia correction required by the wearer can be determined by insert optometry, try-on, and the like.
  • the curvature radius of the anterior surface of the cornea is adjusted by the base arc area of the Ortho-K CL to achieve correction of refractive error.
  • the maximum radius of curvature of the base arc region can be determined in a variety of ways, such as lens fitting, software simulation, mathematical calculations, and the like.
  • the wearer can wear several kinds of Ortho-K CL test pieces (the parameters of the base arc area of these Ortho-K lenses are known), if a certain kind of corneal plastic
  • the shape test piece makes the distance vision of the wearer just correct, and the radius of curvature of the base arc region of the dermatoglyphic lens test piece is determined as the maximum curvature of the base arc region of the Orthokeratology mirror to be manufactured according to the disclosure. radius.
  • a corneal topographer can be used to measure the corneal topography of the wearer, an optometry device is used to determine the amount of refractive error correction required by the wearer, and then the method of vector height calculation is used to determine the corneal plastic to be manufactured in the present disclosure.
  • the maximum radius of curvature of the base arc of the mirror can be used to measure the corneal topography of the wearer.
  • the amount of refractive error correction required by the wearer is ⁇ K
  • the vector height of the wearer's original cornea at the radius r is h
  • the difference in the vector height caused by the refractive error correction amount ⁇ K is ⁇ h
  • the maximum radius of curvature of the base arc region of the Ortho-K CL can be determined based on the original radius of curvature and the amount of refractive error correction of the anterior surface of the wearer's cornea, wherein a computer optometry can be employed. Instrument, insert optometry, etc. measure the original radius of curvature and refractive error correction of the wearer's anterior surface of the cornea.
  • the maximum radius of curvature of the base arc region can be determined according to the following formula:
  • n is the refractive index of the cornea
  • R is the original radius of curvature of the anterior surface of the wearer's cornea
  • the unit is mm
  • ⁇ K is the amount of refractive error correction
  • the unit is D
  • R1 is the maximum radius of curvature of the base arc area
  • the unit is mm .
  • the minimum radius of curvature of the base arc region is determined according to the following formula:
  • n is the refractive index of the cornea
  • R1 is the maximum radius of curvature of the base arc region
  • the unit is mm
  • ⁇ T is the amount of presbyopia correction required by the wearer
  • the unit is D
  • R2 is the minimum radius of curvature of the base arc region
  • the base arc region of a Ortho-K CL is manufactured according to the method of the present disclosure including two or more regions.
  • the first of the two or more regions of the base arc region has a maximum radius of curvature and the second region of the two or more regions of the base arc region has a minimum radius of curvature.
  • the shape of the two or more regions of the base arc region may be spherical or both aspherical, or the shape of a portion of the region may be a spherical surface and the surface of the remaining region may be aspherical.
  • the base arc region of the Ortho-Knife Mirror made using the method of the present disclosure may include one or more intermediate radii of curvature other than the maximum radius of curvature, the minimum radius of curvature, depending on the presbyopia state of the wearer, thereby The wearer forms one or more mid-range vision between the far and near vision.
  • the intermediate radius of curvature of the base arc region is determined according to the following formula:
  • n is the refractive index of the cornea
  • R1 is the maximum radius of curvature of the base arc region, in mm
  • ⁇ T' is the additional power required for the wearer's mid-range vision (also known as the mid-range add power)
  • the unit is D
  • R3 is the radius of curvature of the base arc area
  • the unit is mm.
  • a third of the two or more regions of the base arc region of the Ortho-K CL is manufactured according to the methods of the present disclosure having an intermediate radius of curvature.
  • the amount of presbyopia required by the wearer is determined based on the degree of presbyopia of the wearer. If the wearer is based on the correct correction of far vision, the nearest distance that can be reached is M, the unit is mm, then the amount of presbyopia required by the wearer is:
  • the normal flower correction amount ⁇ T of a normal human eye is +0.5D to +5.0D.
  • the manner in which the mid-range add power is determined is similar to the manner in which the amount of presbyopia correction required by the wearer is determined.
  • the mid-range add power required by the wearer is determined based on the wearer's mid-range line of sight. If the wearer is based on the correct correction of distance vision and the mid-range line of sight is M', the unit is mm, then the mid-range add power required by the wearer is:
  • the present disclosure creatively proposes that the base arc region of the Ortho-K CL has at least two different radii of curvature such that the human eye produces at least two focal points in the corneal optic zone after wearing the Ortho-K CL, thereby refraction of the patient Not corrected at the same time as presbyopia.
  • the base arc region includes two or more regions. At least two of the two or more regions of the base arc region have different radii of curvature.
  • the shape of the two or more regions of the base arc region may be spherical or both aspherical, or the shape of a portion of the region may be a spherical surface and the surface of the remaining region may be aspherical.
  • Figure 2 shows that the base arc region comprises four regions A, B, C and D. The four areas A, B, C, and D may be of any shape as needed. At least two of the four regions A, B, C, and D have different radii of curvature.
  • the two or more regions of the base arc region 100 include a central central region 100 1 at the center and one or more concentric annular regions 100 2 surrounding the central region 100 1 , 100 3 , 100 4 ....
  • the radii of curvature of the two or more regions 100 1 , 100 2 , 100 3 , 100 4 ... of the base arc region 100 alternate in a radial direction.
  • the base arc region 100 has two different radii of curvature that alternate in a radial direction, wherein the region 100 2m-1 of the base arc region 100 has a first radius of curvature, and the base arc region The region 100 2m of 100 has a second radius of curvature different from the first radius of curvature, where m is an integer greater than or equal to one.
  • the base arc region 100 has three different radii of curvature that alternate in a radial direction, wherein the region 100 3m-2 of the base arc region 100 has a first radius of curvature, the base arc region 100 The region 100 3m-1 has a second radius of curvature different from the first radius of curvature, and the region 100 3m of the base arc region 100 has a third radius of curvature different from the first radius of curvature and the second radius of curvature, where m Is an integer greater than or equal to 1.
  • the base arc region 100 can similarly have other numbers of different radii of curvature that alternate in a radial direction.
  • the Ortho-Knife Mirror 10 is made of a highly oxygen permeable rigid material.
  • the inner surface of the Ortho-Knife 10 includes a base arc region 100, a reverse arc region, an arc-matching region, and a side arc region.
  • the total diameter of the Ortho-Knife 10 is 10.4 mm, wherein the base arc region 100 has a diameter of 6.0 mm, the reverse arc region has an inner diameter of 6.0 mm, and the outer diameter is 7.8 mm.
  • the inner diameter of the arc area is 7.8 mm and the outer diameter is 9.4 mm.
  • the inner arc has an inner diameter of 9.4 mm and an outer diameter of 10.4 mm.
  • the central thickness of the Ortho-Knife 10 is 0.22 mm.
  • the base arc region 100 includes a central region 100 1 and three concentric annular regions 100 2 , 100 3 , and 100 4 surrounding the central region 100 1 .
  • the central region 100 1 has a diameter of 3 mm.
  • the annular region 100 2 has an inner diameter of 3 mm and an outer diameter of 4 mm.
  • the annular region 100 3 has an inner diameter of 4 mm and an outer diameter of 5 mm.
  • the annular region 100 3 has an inner diameter of 5 mm and an outer diameter of 6 mm.
  • the radius of curvature of the regions 100 1 , 100 2 , 100 3 and 100 4 alternates, wherein the central region 100 1 and the annular region 100 3 have the same radius of curvature, for example 8.88 mm, and the annular regions 100 2 and 100
  • the radius of curvature of 4 is the same, for example, it can be 8.54 mm.
  • the cornea By wearing the Ortho-K CL 10, the cornea provides both the far and the near two focal points after the patient picks up the lens.
  • the refractive power of the cornea in the two regions corresponding to the central region 100 1 and the annular region 100 3 is 38.0 D, achieving correction of -5.0 D myopia, thereby achieving clear distance vision.
  • the refractive power of the cornea in the two regions corresponding to the ring regions 100 2 and 100 4 is 39.5 D, and an additional power of +1.5 D is added to the far vision force, thereby realizing the function of the presbyopia correction.
  • the base arc region includes three concentric annular regions.
  • the base arc region may also include other numbers of concentric annular regions.
  • the various regions of the base arc region alternate with two different radii of curvature, providing two focal points.
  • each region of the base arc region may also be alternated with more than two different radii of curvature, resulting in more than two focal points.
  • the diameter of the central region and the width of the annular region i.e., half the difference between the outer diameter and the inner diameter) can be adjusted according to the size of the patient's pupil, the requirement for near-parity, and the like.
  • the radius of curvature of the two or more regions 100 1 , 100 2 , 100 3 ... of the base arc region 100 gradually decreases outward from the center.
  • the Ortho-Knife Mirror 10 is made of a highly oxygen permeable hard material, including a base arc region 100, a reverse arc region, an arcing region, and a side arc region.
  • the total diameter of the Ortho-Knife 10 is 10.9 mm, wherein the base arc region 100 has a diameter of 6.5 mm, the reverse arc region has an inner diameter of 6.5 mm, and the outer diameter is 8.3 mm.
  • the inner diameter of the arc area is 8.3 mm and the outer diameter is 9.9 mm.
  • the inner arc has an inner diameter of 9.9 mm and an outer diameter of 10.9 mm.
  • the central thickness of the Ortho-Knife 10 is 0.22 mm.
  • the base arc region 100 includes a central region 100 1 and four concentric annular regions 100 2 , 100 3 , 100 4 , and 100 5 surrounding the central region 100 1 .
  • the central region 100 1 has a diameter of 4 mm.
  • the annular region 100 2 has an inner diameter of 4 mm and an outer diameter of 4.5 mm.
  • the annular region 100 3 has an inner diameter of 4.5 mm and an outer diameter of 5 mm.
  • the annular region 100 4 has an inner diameter of 5 mm and an outer diameter of 5.5 mm.
  • the annular region 100 5 has an inner diameter of 5.5 mm and an outer diameter of 6.5 mm.
  • the radius of curvature of the regions 100 1 , 100 2 , 100 3 , 100 4 and 100 5 gradually decreases from the center outward.
  • the radius of curvature of the central region 100 1 may be 7.85 mm
  • the radius of curvature of the annular region 100 2 may be 7.76 mm
  • the radius of curvature of the annular region 100 3 may be 7.67 mm
  • the radius of curvature of the annular region 100 4 may be 7.58 mm
  • the radius of curvature of the annular region 100 5 may be 7.50 mm.
  • the Ortho-Knife Mirror 10 can shape the wearer's cornea from center to edge refractive power of 43.0D, 43.5D, 44.0D, 44.5D, 45.0D, and realize gradually changing diopter, achieving +0.5D to +2.0.
  • the add power of the D gradient can be used to shape the wearer's cornea from center to edge refractive power of 43.0D, 43.5D, 44.0D, 44.5D, 45.0D, and realize gradually changing diopter, achieving +0.5D to +2.0.
  • the add power of the D gradient The add power of the D gradient.
  • the base arc region includes a central region and four concentric annular regions with a radius of curvature that tapers outwardly from the center to provide five different diopters.
  • the base arc region may also include other numbers of concentric annular regions to provide other numbers of different diopter.
  • the diameter of the central region and the width of the annular region i.e., half the difference between the outer diameter and the inner diameter) can be adjusted according to the size of the patient's pupil, the requirement for near-resolution, and the like.
  • the peripheral defocus of myopia means that the refractive power of the human eye's optical system is large in the periphery, and the focal point formed falls before the retina.
  • Clinical evidence indicates that the peripheral defocus of myopia can be used for the control of juvenile myopia.
  • the technical effects brought by the technical solutions of the present disclosure further include: the adolescent wearing the Ortho-K CL as described in the technical solution can form myopic defocus, prevent the growth of the axial axis, and delay the deepening of myopia.
  • the central region 1001 has a diameter greater than 1 mm, preferably greater than 2 mm.
  • two or more regions of the base arc region are two or more sector regions, and two or more sector regions collectively comprise a base arc region.
  • two or more regions of the base arc region are two or more sector regions, and the base arc region further includes a smooth transition between each two adjacent sector regions A region, and two or more sector regions and a smooth transition region together form a base arc region.
  • the Ortho-K CL is made of a highly oxygen permeable hard material, including a base arc region 100', a reverse arc region, an arcing region, and a side arc region.
  • the total diameter of the Ortho-Knife 10' is 10.6 mm, wherein the base arc region 100' has a diameter of 6.2 mm, the reverse arc region has an inner diameter of 6.2 mm, and the outer diameter is 8.0 mm.
  • the inner diameter of the arc area is 8.0 mm and the outer diameter is 9.6 mm.
  • the inner arc has an inner diameter of 9.6 mm and an outer diameter of 10.6 mm.
  • the central thickness of the Ortho-K CL is 0.16 mm.
  • two or more regions of the base arc region 100' of the Ortho-K CL are sectoral regions 100' 1 and 100' 2 and the sector regions 100' 1 and 100' 2 jointly form a base arc region 100'.
  • the central angle of the sector area 100' 1 is 240°
  • the central angle of the sector area 100' 2 is 120°.
  • two or more regions of the base arc region 100' of the Ortho-K CL are the sector regions 100' 1 and 100' 2 .
  • Base curve zone 100 'further includes a sector region 100' a and 100 'a smooth transition between the region 100' and 100 3 '4, and the fan-shaped area 100' a and 100 ', and a smooth transition area 100 2' and 3 100 ' 4 collectively forms a base arc region 100'.
  • the central angle of the sector area 100' 1 is 220°
  • the central angle of the sector area 100' 2 is 100°.
  • the radius of curvature of the sector area 100' 1 is 9.0 mm
  • the radius of curvature of the sector area 100' 2 is 9.78 mm.
  • the central angles of the smooth transition regions 100' 3 and 100' 4 are both 20°.
  • the refractive power of the distal region is 37.5D
  • the refractive power of the near-field is 34.5D
  • the sector 100' 1 and 100 of the base arc region 100' of the Ortho-K CL. ' 2 can provide +3.0D additional power for the cornea, so that the wearer can achieve both the far vision and the near-focal focus.
  • the light energy ratio of the two focal points is 2.2:1. Since the two sectoral regions are connected by the smooth transition region, there is no obvious partitioning of the cornea after the patient wears.
  • the base arc region includes two sector regions. Additionally, the base arc region may also include more than two sector regions, resulting in more than two focus points. The central angle of the sector area and the smooth transition area can be adjusted as needed.
  • two or more regions of the base arc region may be irregularly shaped.
  • two or more regions of the base arc region 100" are the first region 100" 1 in the middle and on both sides of the first region 100" 1 .
  • the second region 100" 2 and the third region 100" 3 , and the first region 100" 1 , the second region 100" 2, and the third region 100" 3 together comprise a base arc region 100".
  • the base curve zone 100 "of the two or more regions of the first region 100 is located in the middle" and the 100 1 "1 100 on both sides of the second region” and the first region 2
  • the three regions 100" 3 , the base arc region 100" may further include a first smooth transition region 100" 4 between the first region 100" 1 and the second region 100" 2 and a first region 100" 1 and a third region region 100 "of the second smooth transition region between 3100" 5, and the first region 100, "1, the second region 100" 2 and 100 "3, a first smooth transition area 100" the third region 4 and the second smoothing
  • the transition regions 100" 5 collectively form a base arc region 100".
  • the radius of curvature of the first region 100" 1 is 7.30 mm
  • the radius of curvature of the second region 100" 2 is 7.00 mm
  • the radius of curvature of the third region 100" 3 is 7.63 mm.
  • the first region 100" 1 produces a refractive power of 46.2D
  • the second region 100" 2 produces a 48.2D refractive power
  • the third region 100" 3 produces a refractive power of 44.2D, which can achieve vision for the human eye, + 2.0D visual, +4.0D near full vision.
  • the two or more regions of the base arc region are three irregularly shaped regions. Additionally, two or more regions of the base arc region may also be other numbers of shape irregular regions, resulting in other numbers of focal points.
  • two or more regions of the base arc region 100"" are a first region 100"" 1 and a second region 100"" 2 , a first region 100"' 1 ' is a part of the ring, the center of the second area 100'' 2 has a complete circular portion, and the first area 100'' 1 and the second area 100'' 2 together form a base arc area 100''.
  • a second region 100"' 2 is a curvature radius of 7.85mm.
  • the first region 100'" 1 produces a refractive power of 45.0D
  • the second region 100"" 2 produces a refractive power of 43.0D, which enables the human eye to achieve vision with a far vision and a depth of +2.0D.
  • the central angle of the first region 100'" 1 is 200°
  • the central angle of the second region 100'' 2 is 160°
  • the center of the second region 100'' 2 has a complete circular portion having a diameter of 2.0 mm.
  • two or more regions of the base arc region 100"" are a first region 100"" 1 and a second region 100"" 2 , a first region 100"” 1 is a portion of the ring, the center of the second region 100'" 2 has a complete circular portion, and the base arc region 100"" further includes a region between the first region 100"" 1 and the second region 100"" 2 a smooth transition zone 100 ' "3, and the first region 100"' 1, the second region 100 " '2 and a smooth transition area 100"' together form 3-yl arc region 100 '".
  • the radius of curvature of the first region 100'" 1 is 8.44 mm
  • the radius of curvature of the second region 100"" 2 is 7.85 mm
  • the third region 100"" 3 is a smooth transition portion having a width of 0.1 mm.
  • the radius of curvature is between the radius of curvature of the first region and the second region.
  • the first region 100"" 1 produces a refractive power of 40.0D
  • the second region 100"" 2 produces a refractive power of 43.0D.
  • +3.0D near vision.
  • the central angle of the first region 100′′′ 1 is 220°
  • the central angle of the second region 100′′′ 2 is 120°
  • the second region 100′′′ 2 center It has a complete circular portion with a diameter of 1.8mm.
  • the two or more regions of the base arc region are two irregularly shaped regions. Additionally, two or more regions of the base arc region may also be other numbers of shape irregular regions, resulting in other numbers of focal points.
  • the diopter K of the human cornea is 38.0D to 47.0D
  • the refractive error correction amount ⁇ K is -6.0D to 1.0D
  • the maximum radius of curvature of the base arc region can be calculated according to the formula (2).
  • R 1 is from 6.0 mm to 10.5 mm.
  • the minimum radius of curvature R 2 of the base arc region can be calculated according to the formula (5).
  • Table 1 shows data in accordance with some embodiments of the present disclosure, wherein the refractive index n of the cornea is 1.3375.
  • the Orthokeratology for the human eye achieves a presbyopic correction ⁇ T of +0.5D to +5.0D, preferably +0.75D to +3.5D, more preferably +1.0D to +3.0 D.
  • the base curvature region of the Ortho-K CL is greater than 6.0 mm to 10.5 mm, preferably 7.0 mm to 10.0 mm.
  • the minimum radius of curvature of the base arc region of the Ortho-K CL is from 5.51 mm to 10.34 mm, preferably from 5.65 mm to 9.85 mm, more preferably from 6.53 mm to 9.71 mm.
  • the base arc region of the Ortho-K CL is 4.5 mm to 7.0 mm, preferably 5.0 mm to 6.8 mm, more preferably 5.2 mm to 6.5 mm.
  • the radius of curvature of the anterior surface of the cornea of the human eye is adjusted by the base arc region BC of the Ortho-K CL, that is, the R in the formula (1) and the formula (10) is adjusted, thereby realizing the human eye. Correction of light is not correct.
  • the base arc region BC is circular as viewed in a direction parallel to the optical axis.
  • the base arc region BC may have other shapes, such as an ellipse, an oval, etc., as viewed in a direction parallel to the optical axis.
  • the eyelids exert a compressive force on the Ortho-K CL and the cornea. Since the human eye is an approximately spherical shape, the pressing force gradually decreases from the highest point of the cornea to the edge. This characteristic of the compressive force makes it impossible to bulge the central region of the cornea after the Orthokeratology is worn, regardless of the central region of the Ortho-K CL. The central region of the cornea must be flattened. Therefore, the area used for presbyopia correction cannot be located in the central area of the Ortho-K CL.
  • the presbyopic correction zone In order for the human eye to receive images of the presbyopic correction zone of the cornea under normal pupillary conditions, the presbyopic correction zone must be close enough to the center.
  • the correction zone of the cornea has a smaller radius of curvature relative to other locations, and is in an "arched" state. There must be pressure from other parts to cause the corneal cells to migrate to the correction zone.
  • the present disclosure creatively proposes that the base arc region of the Ortho-K CL has at least two different radii of curvature such that the human eye produces a gradual change in the optical zone of the cornea after wearing the Ortho-K CL The diopter changes, so that the depth of field of the patient is expanded, and the refractive error is corrected at the same time as the presbyopia.
  • the Ortho-Knife Mirror of the present disclosure includes an inner surface facing the cornea of the human eye and an outer surface opposite the inner surface when worn. The inner surface includes a base arc region located at the center.
  • the base arc region includes a circular first region located at the center, a circular second region surrounding the first region, and a third region surrounding the second region, the faces of the first region, the second region, and the third region They can all be spherical.
  • the radius of curvature of the second zone is smaller than the radius of curvature of the first zone, and the radius of curvature of the second zone is smaller than the radius of curvature of the third zone.
  • the design value of the presbyopic correction amount should be 0.5D to 6.0D, that is, the radii of curvature of the first zone and the second zone satisfy the following relationship:
  • R A and R B are the radius of curvature of the first zone and the second zone, respectively, in millimeters (mm), then Represents the amount of presbyopia correction of the second zone of the Ortho-K CL on the first zone.
  • the three regions of the base arc region are designed in a flat-arch-flat configuration to form a see-saw shape that directs the corneal cells to move toward the second region, as indicated by the arrows in FIG.
  • the first region 110 of the base arc region has a relatively flat shape (that is, a large radius of curvature), so that the cornea is subjected to a flattening force at the center point, and the corneal cells are pressed to both sides, which is consistent with the corneal lens when the lens is closed.
  • the law of force is the fulcrum of the Orthokeratology.
  • the third zone 130 of the base arc zone also has a relatively flat shape (i.e., a larger radius of curvature) that squeezes the corneal cells toward both sides.
  • the second zone 120 of the base arc zone has a relatively steep shape (i.e., a smaller radius of curvature) leaving a space between the cornea to create a reverse attraction that is subject to the first zone 110 and the third zone 130.
  • the pressed cells move toward the second zone 120, causing the corneal surface at the second zone 120 to be steeper or arched, thereby successfully shaping the "presbyopia correction zone" of the cornea.
  • the greater the pressure on both sides of the second zone 120 the easier the archeal surface at the second zone 120 is to arch.
  • the smaller the diameter of the second zone 120 the easier the archeal surface at the second zone 120 is to arch.
  • the first region of the base arc region has a diameter of 0.50 mm to 1.75 mm, preferably 0.50 mm to 1.5 mm, and more preferably 1.0 mm.
  • the first region of the base arc region has a diameter of 1 mm. It can be seen that the first zone has a flattening effect on the cornea to correct myopia in the human eye, and the resulting diopter change is about -2.5D.
  • the second area is a presbyopic shaping area, which deforms the cornea so that the diopter change in the second area is smaller than that in the first area, so that the cornea forms a presbyopic correction area at the second area. .
  • the position of the correction zone of the cornea should correspond to the position of the second zone of the base arc zone.
  • the prosthetic correction area of the cornea appears at a larger diameter than the second area, that is, at a diameter of about 1.5 mm, and from the center to the outside.
  • the diopter is gradual.
  • the broken line in Fig. 7 shows the tendency of the diopter of the cornea to change after wearing the Ortho-K lens according to the present disclosure, wherein the first region of the base arc region has a diameter of 2 mm. It can be seen that if the diameter of the first zone exceeds 1.75 mm, the correction zone of the cornea, that is, the area where the change of the diopter is reduced, will be about 3 mm in diameter, which cannot make the human eye realize the function of simultaneously looking far and clear.
  • the principles of the present disclosure are to cause changes in the optical properties of the cornea through changes in the shape of the cornea, thereby reducing the need for accommodation power to the lens of the human eye. It is known from the mechanism that the Ortho-K CL can be used to alleviate visual fatigue. Moreover, after the corneal shaping mirror of the present disclosure shapes the cornea, the refractive power of the cornea at the second region is greater than the refractive power at the first region, so that the human eye can form a near-sighted peripheral defocus, and thus can also be applied. Myopia control for adolescents.
  • the wearer 1 has a corneal refracting power of K.42.00D, a radius of curvature of 8.04 mm, and a myopic degree of -2.50 D.
  • the parameters of the Ortho-K CL for the wearer 1 are shown in Table 2.
  • Table 2 shows the parameters of the custom-made Ortho-K CL on the wearer 1.
  • Diameter of the base arc 10.6mm Diameter of the first zone 1.0mm
  • the width of the second zone 1.0mm
  • the width of the third zone 1.6mm Radius of curvature of the first zone 8.71mm Radius of curvature of the second zone 8.28mm Radius of curvature of the third zone 8.71mm Radius of curvature of the outer surface of the base arc region 8.65mm
  • the radius of curvature of the first zone is 8.71 mm, which is larger than the radius of curvature of the cornea of the wearer 1, and thus the face shape of the first zone is flatter with respect to the cornea of the wearer 1, It acts to flatten the cornea and correct myopia.
  • the radius of curvature of the second zone is 8.28 mm, which is smaller than the radius of curvature of the first zone, so that the shape of the second zone is steeper than that of the first zone, and relaxes the compression of the cornea, and acts as a presbyopic shaping zone.
  • the radius of curvature of the third zone is 8.71 mm, which is the same as the radius of curvature of the first zone, and acts to flatten the cornea and migrate the corneal cells to both sides.
  • the reverse arc zone, the matching arc zone and the edge arc zone may be of conventional construction.
  • the reverse arc region has a diameter of 0.8 mm and a radius of curvature of 7.60 mm;
  • the arc area has a diameter of 0.9 mm, a radius of curvature of 8.04 mm, a side arc region with a diameter of 0.5 mm, and a radius of curvature of 10.26 mm.
  • the pressure exerted by the cornea from the center outward showed a high-low-high distribution, causing the corneal cells to move from the first zone and the third zone to the second zone, respectively.
  • the movement and deformation are such that the cornea is shaped into a shape that is highly flattened at the first zone, slightly flattened at the second zone, and height-flattened at the third zone.
  • Fig. 8 shows changes in corneal diopter before and after wearing the Ortho-K CL on Example 1.
  • the diopter change within 1 mm of the central region of the cornea is about -2.5 D
  • the cornea of the wearer 1 achieves sufficient diopter change to achieve myopia correction.
  • the first region of the base arc region of the Ortho-K CL is 1 mm in diameter, but the cornea changes from the radius of curvature of the first region to the radius of curvature of the second region, requiring a transition region of about 0.5 mm, from a corneal diameter of about 1.5 mm.
  • the amount of change in diopter began to decrease.
  • the amount of change in diopter was greatly reduced.
  • the amount of change in diopter was reduced to -1.5 D, so that the human eye could be formed within the normal pupil diameter.
  • the wearer 2 has a corneal refracting power K of 44.75 D and a radius of curvature of 7.54 mm without myopia.
  • the parameters of the Ortho-K CL for the wearer 2 are shown in Table 3.
  • Table 3 shows the parameters of the custom-made Ortho-K CL on the wearer 2
  • Diameter of the base arc 10.6mm Diameter of the first zone 1.0mm
  • the width of the second zone 1.0mm
  • the width of the third zone 1.6mm Radius of curvature of the first zone 7.54mm Radius of curvature of the second zone 6.78mm Radius of curvature of the third zone 7.54mm Radius of curvature of the outer surface of the base arc region 7.61mm
  • the radius of curvature of the first zone is 7.54 mm, which is the same as the radius of curvature of the cornea of the wearer 2, and functions as a normal vision.
  • the radius of curvature of the second zone is 6.78 mm, which is smaller than the radius of curvature of the first zone, so that the shape of the second zone is steeper than that of the first zone, and acts as a presbyopic shaped area, which acts as a negative pressure on the cornea to attract the periphery.
  • the corneal cells of the area migrate to this area.
  • the radius of curvature of the third zone is 7.54 mm, which is the same as the radius of curvature of the first zone, and serves to migrate the corneal cells to both sides.
  • the reverse arc zone, the matching arc zone and the edge arc zone may be of conventional construction.
  • the reverse arc area has a diameter of 0.8 mm, a curvature radius of 8.12 mm, a suitable arc area with a diameter of 0.9 mm, a radius of curvature of 7.54 mm, a side arc area with a diameter of 0.5 mm, and a radius of curvature of 9.39 mm.
  • the pressure exerted by the cornea from the center outward is low-lower-lower, causing the corneal cells to move from the first zone and the third zone to the second.
  • the zone is moved and deformed such that the cornea is shaped into a shape that is slightly flattened at the first zone, arched at the second zone, and slightly flattened at the third zone.
  • the wearer 2 itself has no nearsightedness, so a slight flattening at the first zone causes the wearer 2 to drift toward the hyperopia in the first zone, but because the cornea is arched at the second zone, it provides a higher degree than the human eye itself.
  • the diopter has a transition zone from the first zone to the second zone, which provides the human eye with a positive diopter.
  • Fig. 10 shows changes in corneal diopter before and after wearing the Ortho-K CL on Example 2.
  • the cornea of the wearer 2 changes within ⁇ 2 D within a diameter of 1 mm, indicating that the wearer 2 maintains a state of elevation in the central region of the cornea, and does not substantially change the original refractive state of the wearer 2.
  • the refractive power of the cornea rapidly increased, and the highest point of diopter change was achieved at 3.0 mm.
  • 11a and 11b respectively show the depth of field measurement before and after wearing the Ortho-K CL on the wearer 2 using the depth of field measurement function of the iTrace visual function analyzer. It can be seen that the Ortho-K CL is worn with the embodiment 2 After that, the depth of field of the wearer 2 has been improved accordingly.
  • the base arc region may have a diameter of 4.5 mm to 8.0 mm, preferably 5.0 mm to 7.0 mm, and more preferably 5.2 mm to 6.5 mm.
  • the wearer's corneal diopter K is 40.15D to 56.25D and the refractive error K A is 0 to -8.0D. More commonly, the corneal diopter K is from 39.75D to 46.22D, and the refractive error K A is from 0 to -6.0D.
  • the radius of curvature of the first zone and the third zone may be from 6.0 mm to 10.5 mm, preferably from 7.0 mm to 10.0 mm.
  • the radius of curvature of the second zone may range from 5.42 mm to 10.34 mm, preferably from 6.22 mm to 9.85 mm.
  • the diameter of the first zone may be from 0.50 mm to 1.75 mm, preferably from 0.50 mm to 1.5 mm, more preferably 1.0 mm.
  • the second zone may have a diameter of from 0.75 mm to 1.5 mm, preferably from 1.0 mm to 1.25 mm, more preferably 1.0 mm.
  • the third zone may have a diameter of from 0.75 mm to 3.0 mm, preferably from 1.0 mm to 2.0 mm, more preferably from 1.0 mm to 1.75 mm.
  • Table 4 shows the parameter unit of the custom-made Ortho-K CL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)

Abstract

本公开涉及角膜塑形镜,所述角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与所述内表面相对的外表面,所述内表面包括位于中心的基弧区,其中,所述基弧区用于压迫角膜前表面并将角膜前表面塑造成具有与所述基弧区一致的形状,其中,所述基弧区包括两个或更多个区域,所述两个或更多个区域中的至少两个具有不同的曲率半径。本公开还涉及用于制造角膜塑形镜的方法。

Description

角膜塑形镜以及用于制造角膜塑形镜的方法 技术领域
本公开涉及角膜塑形镜,更具体地涉及基弧区具有多于一种曲率半径的角膜塑形镜。本公开还涉及用于制造角膜塑形镜的方法。
背景技术
老视是人们步入中老年后必然出现的视觉问题。随着年龄增长,眼调节能力逐渐下降从而引起患者视近困难以致在近距离工作中,必须在其静态屈光矫正之外另加凸透镜才能有清晰的近视力,这种现象称为老视。随着现代人们生活水平的提高,尤其是爱美女性到了中年,他们对形象的要求日益提高,希望自己随时保持年轻的状态,不希望暴露自己老花的状态,老花问题造成的困扰越来越严重。目前的老视主要通过外戴老花眼镜、手术、佩戴多焦隐形眼镜等方式解决。外戴老花镜或日间配戴的隐形眼镜等外戴方式在方便性、矫正效果、矫正稳定性方面存在问题,尤其是外戴老花镜,严重影响佩戴者形象。手术主要指角膜植入物,或是植入各类多焦点人工晶状体,这类矫正方式都是不可逆的,对人眼组织产生损伤,在安全性方面均存在不同程度的问题,且这个年龄段的人普遍到了白内障高发期,后续面临其它的眼部治疗,比如白内障手术等,手术的方式给后续手术带来严重困扰。因此急需一种隐蔽、有效、安全的老视矫正措施。
眼球壁前端1/6无血管的透明纤维膜称角膜。正常角膜高度透明,组织学上由前向后分为五层:上皮细胞层、前弹性层、基质层、后弹性层和内皮细胞层。上皮细胞层含丰富感觉神经末梢,是角膜的屏障,可再生,可变形。角膜塑形镜是一种硬性透气性材料制成的镜片,夜间佩戴,通过眼睑-角膜塑形镜-角膜施加压迫力,促进角膜上皮细胞移行/变形,改变角膜(透镜)的曲率半径,从而改变角膜屈光度,暂时改变角膜形态,矫治屈光不正。这是一种可逆性的、非手术性屈光矫正产品,通常为夜戴的模式(晚上戴镜睡眠,白天摘镜),佩戴者佩戴后认为自己的屈光不正问题“被治愈”,且在白天不受任何外界条件的约束,与其它视力矫正手段相比,不会带来任何附加困扰,是一种非常优秀的视力矫正手段。
角膜塑形镜屈光矫治原理与普通角膜接触镜有本质的不同,其在夜间佩戴,光学区本身并不起光学作用,而是通过一定时间的佩戴,将角膜前表面塑造为角膜塑形镜光学区后表面(又称基弧区)的形状,使角膜自身的屈光力发生变化,实现屈光矫治的作用。如果将角膜塑形镜的基弧区做的比角膜自身平坦轴曲率半径更为平坦,则起到近视矫正的作用;如果将角膜塑形镜基弧区做的比角膜自身平坦轴曲率半径更为陡峭,则起到远视矫正的作用。
角膜塑形镜的发展经历了好几个阶段,分为三弧区、四弧区、多弧区等多种设计,无论哪个阶段的设计,其基弧区设计都是一致的,是一段完整的圆弧,其它几个弧段共同构成几何设计,辅助基弧达成对角膜的压迫和塑形,使镜片内表面、泪液、角膜上皮之间产生的流体学动力、镜片机械压迫以及眼睑的活动产生的合力对角膜中央区域施以力量。角膜塑形镜一般分为基弧区、反转弧区、配适弧区、边弧区四个区域。图1示出了角膜塑形镜的示意图,其中,BC是基弧区,RC是反转弧区,AC是配适弧区,PC是任选的边弧区。角膜塑形镜也可以不具有边弧区,比如一些三弧区设计的角膜塑形镜,其配适弧与边弧是一体的直线弧。
基弧区是角膜塑形镜主要的治疗区,传统的角膜塑形镜基弧区均被设计为一个球面,其曲率半径根据患者的降度要求进行设计。现有的角膜塑形镜绝大多数针对近视矫治进行设计。在临床使用过程中发现部分患者佩戴角膜塑形镜后能够产生近视型周边离焦,控制眼轴增长,因而角膜塑形镜多被用于青少年近视矫治与防控,WO2004/015479中则披露了一种基弧区比角膜平坦轴更为陡峭的矫正远视的角膜塑形镜。
远视与老视有着本质不同,远视是一种屈光不正,而老视是一种调节力丧失。老视患者需要在保证远视力清晰的情况下同时实现视近的功能。目前没有任何一种角膜塑形镜能够对老视起到矫治作用。
然而,角膜是一个弹性体,在塑形中发生的变化特征符合弹性体变形特征,当其受到外力压迫后变形,角膜总体积是恒定的,面形是逐渐变化的,且角膜在塑形镜的压力之下,受力是不均等的,中心受力最高,逐渐向外减弱。这些特征都导致最终角膜的形状不会与塑形镜基弧区的形状设计完全一致,从而影响最终的老花矫正效果。对于 现有的角膜塑形镜而言,主要存在以下问题:(1)弹性体的变形特征无法呈现小范围内过于频繁的曲率半径变化,基弧区过多的光学分区设计无法实现近视塑形区和老花塑形区的区分;(2)扇形区域设计、不对称的区域设计存在位置对准的困难,不能保证每次佩戴角膜塑形镜时各塑形区都在一样的位置,导致塑形失败;(3)没有考虑弹性体在压力下的变形特征,如果希望角膜作为弹性体在某个部位隆起,具体而言,使角膜的老花矫正区隆起,则必须在该部位的两侧均受到压迫力,压力不对称设计,例如老花矫正区两侧受的压力一边低一边高,或仅有一侧受到压力,都会导致老花矫正区无法顺利拱起而塑形失败;(4)角膜被塑形后,形状是渐变的,过大的中心区域直径(例如大于1.75mm)会导致中心区域外围的区域(一般为老花矫正区)超出瞳孔外沿,失去老花矫正区的矫正能力。
发明内容
在本公开的第一方面中,提供了一种角膜塑形镜,所述角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与所述内表面相对的外表面,所述内表面包括位于中心的基弧区,其中,所述基弧区用于压迫角膜前表面并将角膜前表面塑造成具有与所述基弧区一致的形状,其中,所述基弧区包括两个或更多个区域,所述两个或更多个区域中的至少两个具有不同的曲率半径。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域包括位于中心的圆形的中心区域以及围绕所述中心区域的一个或多个同心的圆环区域。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域的曲率半径沿径向呈现交替变化。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域的曲率半径从中心向外逐渐减小。
在第一方面的一个实施例中,所述中心区域的直径大于1mm,优选地大于2mm。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域是两个或更多个扇形区域,并且所述两个或更多个扇形区域共同组成所述基弧区。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域是两个或更多个扇形区域,所述基弧区还包括位于每两个相邻的扇形区域之间的平滑过渡区域,并且其中,所述两个或更多个扇形区域以及所述平滑过渡区域共同组成所述基弧区。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域是形状不规则的。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域是位于中间的第一区域以及位于所述第一区域两侧的第二区域和第三区域,并且所述第一区域、所述第二区域和所述第三区域共同组成所述基弧区。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域是位于中间的第一区域以及位于所述第一区域两侧的第二区域和第三区域,所述基弧区还包括位于所述第一区域和所述第二区域之间的第一平滑过渡区域以及位于所述第一区域和所述第三区域之间的第二平滑过渡区域,并且其中,所述第一区域、所述第二区域、所述第三区域、所述第一平滑过渡区域和所述第二平滑过渡区域共同组成所述基弧区。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域是第一区域和第二区域,所述第一区域是圆环的一部分,所述第二区域的中心具有完整的圆形部分,并且其中,所述第一区域和所述第二区域共同组成所述基弧区。
在第一方面的一个实施例中,所述基弧区的两个或更多个区域是第一区域和第二区域,所述第一区域是圆环的一部分,所述第二区域的中心具有完整的圆形部分,所述基弧区还包括位于所述第一区域和所述第二区域之间的平滑过渡区域,并且其中,所述第一区域、所述第二区域和所述平滑过渡区域共同组成所述基弧区。
在第一方面的一个实施例中,由下式计算得出的ΔT为+0.5D至+5.0D,优选为+0.75D至+3.5D,更优选为+1.0D至+3.0D:
Figure PCTCN2018118438-appb-000001
其中,R 1为所述基弧区的最大曲率半径,单位为mm,R 2为所述基弧区的最小曲率半径,单位为mm,n为角膜的折射率,取值为1.3375。
在第一方面的一个实施例中,所述基弧区的最大曲率半径为6.0mm 至10.5mm,优选为7.0mm至10.0mm。
在第一方面的一个实施例中,所述基弧区的最小曲率半径为5.51mm至10.34mm,优选为5.65mm至9.85mm,更优选为6.53mm至9.71mm。
在第一方面的一个实施例中,所述基弧区的直径为4.5mm至7.0mm,优选为5.0mm至6.8mm,更优选为5.2mm至6.5mm。
在第一方面的一个实施例中,所述基弧区是圆形的。
在第一方面的一个实施例中,所述基弧区是椭圆形的。
在本公开的第二方面中,提供了一种用于制造角膜塑形镜的方法,所述角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与所述内表面相对的外表面,所述内表面包括位于中心的基弧区,所述方法包括如下步骤:
(a)确定所述基弧区的最大曲率半径;
(b)确定佩戴者所需的老花矫正量;
(c)利用下式确定所述基弧区的最小曲率半径:
Figure PCTCN2018118438-appb-000002
其中,n为角膜的折射率,R1为所确定的基弧区的最大曲率半径,单位为mm,ΔT为所确定的佩戴者所需的老花矫正量,单位为D,R2为基弧区的最小曲率半径,单位为mm;和
(d)制造角膜塑形镜,使得所述基弧区包括两个或更多个区域,并且使得所述两个或更多个区域中的第一区域具有所述最大曲率半径,并且所述两个或更多个区域中的第二区域具有所述最小曲率半径。
在第二方面的一个实施例中,步骤(a)包括:
(a1)确定角膜的折射率;
(a2)确定佩戴者的角膜前表面的原始曲率半径;
(a3)确定佩戴者所需的屈光不正矫正量;
(a4)利用下式确定所述基弧区的最大曲率半径:
Figure PCTCN2018118438-appb-000003
其中,n为所确定的角膜的折射率,R为所确定的佩戴者角膜前表面的原始曲率半径,单位为mm,ΔK为所确定的屈光不正矫正量,单位为 D,R1为基弧区的最大曲率半径,单位为mm;
在第二方面的一个实施例中,所述方法还包括如下步骤:
(e)确定佩戴者所需的中程附加光焦度;
(f)利用下式确定所述基弧区的中间曲率半径:
Figure PCTCN2018118438-appb-000004
其中,n为角膜的折射率,R1为所确定的基弧区的最大曲率半径,单位为mm,ΔT′为所确定的中程附加光焦度,单位为D,R3为基弧区的中间曲率半径,单位为mm;并且其中
所述步骤(d)还包括制造所述角膜塑形镜,使得所述两个或更多个区域中的第三区域具有所述中间曲率半径。
在第二方面的一个实施例中,步骤(e)包括利用下式确定佩戴者所需的中程附加光焦度:
Figure PCTCN2018118438-appb-000005
其中,ΔT’为佩戴者所需的中程附加光焦度,即视中所需的老花矫正量,单位为D,M’是佩戴者在远视力正确矫正的基础上的视中的视距,单位为mm。
在第二方面的一个实施例中,步骤(b)包括利用下式确定佩戴者所需的老花矫正量:
Figure PCTCN2018118438-appb-000006
其中,ΔT为佩戴者所需的老花矫正量,单位为D,M是佩戴者在远视力正确矫正的基础上看近所能达到的最近距离,单位为mm。
在本公开的第三方面中,提供了一种角膜塑形镜,所述角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与所述内表面相对的外表面,所述内表面包括位于中心的基弧区,其中,所述基弧区包括位于中心的圆形的第一区、围绕所述第一区的圆环形的第二区以及围绕所述第二区的第三区,其中,所述第二区的曲率半径小于所述第一区的曲率半径,并且所述第二区的曲率半径小于所述第三区的曲率半径。
在第三方面的一个实施例中,所述第一区和所述第三区具有相同的曲率半径。
在第三方面的一个实施例中,所述第一区和所述第二区的曲率半径满足如下关系:
Figure PCTCN2018118438-appb-000007
其中,R A是所述第一区的曲率半径,单位为mm,R B是所述第二区的曲率半径,单位为mm。
在第三方面的一个实施例中,所述第一区和所述第三区的曲率半径为6.0mm至10.5mm,优选为7.0mm至10.0mm。
在第三方面的一个实施例中,所述第二区的曲率半径为5.42mm至10.34mm,优选为6.22mm至9.85mm。
在第三方面的一个实施例中,所述基弧区是圆形的。
在第三方面的一个实施例中,所述基弧区的直径为4.5mm至8.0mm,优选为5.0mm至7.0mm,更优选为5.2mm至6.5mm。
在第三方面的一个实施例中,所述第一区的直径为0.50mm至1.75mm,优选为0.50mm至1.5mm,更优选为1.0mm。
在第三方面的一个实施例中,所述第二区的径宽为0.75mm至1.5mm,优选为1.0mm至1.25mm,更优选为1.0mm。
在第三方面的一个实施例中,所述第三区的径宽为0.75mm至3.0mm,优选为1.0mm至2.0mm,更优选为1.0mm至1.75mm。
在第三方面的一个实施例中,所述基弧区是椭圆形的。
本公开至少具有如下优点。
(1)本公开的角膜塑形镜或者本公开的方法制造的角膜塑形镜的基弧区具有多于一种的曲率半径,能使角膜在塑形后形成多于一个焦点,采用晚上戴镜,白天摘镜的佩戴方式,实现屈光不正与老视的合并矫正,方便、美观、有效,更符合现代人对生活品质的追求。
(2)普通框架老花镜、普通多焦隐形眼镜等矫正方式镜片与眼球无法保持同步,患者佩戴后需要根据镜片位置和看东西的位置进行不断调整,或是在镜片出现不居中时出现眩光、视物模糊、眩晕等状态;角膜塑形镜佩戴时天然处于居中状态,使用者无论看向哪个方位,都不会出现因镜片位置变化而产生的视物模糊与不适用。
(3)老视患者年龄较大,多数进入白内障高发期。本公开的角膜塑形镜基于角膜细胞的活性,是可逆矫正,当停用一段时间后,角膜 会恢复到原有状态,没有任何损害,方便患者后续其它的眼部治疗,相对于手术方式而言更加安全。
术语定义
除非特殊情况,否则下列定义适用于本说明书中使用的术语。
基弧区(BC)位于角膜塑形镜最中央,是光学区的内表面,用于压迫角膜前表面并将角膜前表面塑造为其形状,塑形后的角膜该区域即为光学区,起到光学成像的作用。
反转弧区(RC)是与基弧区紧密相连的第二个区域,起到连接基弧区和配适弧区的作用,在角膜塑形镜与角膜前表面之间形成间隙,起到储存泪液并促进泪液流通的作用。
配适弧区(AC)又叫定位弧区、匹配弧区等,紧邻反转弧区,该区域与角膜形状匹配,起到定位的作用。
边弧区(PC)是任选的,位于角膜塑形镜最外缘,与配适弧区紧密相连,一般比配适弧区更平坦,与角膜表面呈现一定的翻翘角度,保证角膜与塑形镜周边泪液、氧气的交换与流通。
视近指的是看近处,一般指看距离眼睛约30cm处,对应的视力为近视力。
视远指的是看远处,一般指看距离眼睛约5m远处,对应的视力为远视力。
视中指的是看远、近之间,一般指看距离眼睛约30cm以外、5m以内的距离,对应的视力为中程视力。
径宽是指沿半径方向的宽度。
此外,除非另行定义,否则本文所用的所有科技术语的含义与本公开所属领域的技术人员通常理解是一致的。如有不一致,以本说明书及其包括的定义为准。
附图说明
图1示意性地示出了角膜塑形镜的截面侧视图。
图2示意性地示出了根据本公开的角膜塑形镜的基弧区。
图3A示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图3B示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图4A示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图4B示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图5A示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图5B示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图5C示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图5D示意性地示出了根据本公开的一个具体实施例的角膜塑形镜的基弧区。
图6示意性地示出了本公开的角膜塑形镜基弧区的“跷跷板”三区结构及角膜受力后细胞移行情况。
图7示意性地示出了佩戴本公开的角膜塑形镜前后,角膜的屈光度变化趋势,其中,横坐标为角膜直径,单位为mm,纵坐标为佩戴前后的角膜屈光度变化,即佩戴后角膜在该点的屈光度减去佩戴前角膜在该点的屈光度,单位为D,其中,实线示出了基弧区的第一区的直径为1mm的情况,虚线示出了基弧区的第一区的直径为2mm的情况。
图8示意性地示出了在本公开的实施例1中,佩戴者1佩戴角膜塑形镜前后的角膜屈光度变化,其中横坐标为角膜直径,单位为mm,纵坐标为佩戴前后的角膜屈光度变化,即佩戴后角膜在该点的屈光度减去佩戴前角膜在该点的屈光度,单位为D。
图9a示出了在本公开的实施例1中,佩戴者1在佩戴角膜塑形镜前的景深,采用iTrace视功能分析仪的景深测量功能测得,其中,测量瞳孔大小为3.0mm,其中,横坐标为屈光度,单位为D,表示在人眼正视(屈光度为0)前后附加不同的屈光度,纵坐标为归一化的对比敏感度,以对比敏感度下降至50%处,正视前后附加屈光度之差为人眼景深(DOF)。
图9b示出了在本公开的实施例1中,佩戴者1在佩戴角膜塑形镜 后的景深,采用iTrace视功能分析仪的景深测量功能测得,其中,测量瞳孔大小为3.0mm,其中,横坐标为屈光度,单位为D,表示在人眼正视(屈光度为0)前后附加不同的屈光度,纵坐标为归一化的对比敏感度,以对比敏感度下降至50%处,正视前后附加屈光度之差为人眼景深(DOF)。
图10示意性地示出了在本公开的实施例2中,佩戴者2佩戴角膜塑形镜前后的角膜屈光度变化,其中,横坐标为角膜直径,单位为mm,纵坐标为佩戴前后的角膜屈光度变化,即佩戴后角膜在该点的屈光度减去佩戴前角膜在该点的屈光度,单位为D。
图11a示出了在本公开的实施例2中,佩戴者2在佩戴角膜塑形镜前的景深,采用iTrace视功能分析仪的景深测量功能测得,其中,测量瞳孔大小为3.0mm,其中,横坐标为屈光度,单位为D,表示在人眼正视(屈光度为0)前后附加不同的屈光度,纵坐标为归一化的对比敏感度,以对比敏感度下降至50%处,正视前后附加屈光度之差为人眼景深(DOF)。
图11b示出了在本公开的实施例2中,佩戴者2在佩戴角膜塑形镜后的景深,采用iTrace视功能分析仪的景深测量功能测得,其中,测量瞳孔大小为3.0mm,其中,横坐标为屈光度,单位为D,表示在人眼正视(屈光度为0)前后附加不同的屈光度,纵坐标为归一化的对比敏感度,以对比敏感度下降至50%处,正视前后附加屈光度之差为人眼景深(DOF)。
具体实施方式
以下具体实施例只是用于对本公开进行进一步地解释说明,但是本公开并不局限于以下的具体实施方案。任何在这些实施方案基础上的变化,只要符合本公开的原则精神和范围,都将落入本公开的保护范围内。
角膜的屈光状态主要由其曲率半径决定。在实际临床应用中,角膜的曲率半径与角膜屈光度之间常用的换算关系:
Figure PCTCN2018118438-appb-000008
其中,K为角膜的屈光度,单位为D,R为角膜前表面的曲率半径,单 位为mm,n为角膜的折射率。例如,n可以为1.3375。
如图1所示,角膜塑形镜包括在佩戴时面向人眼角膜的内表面IS以及与内表面相对的外表面OS。角膜塑形镜的内表面IS包括位于中心的基弧区BC。在佩戴时,角膜塑形镜的基弧区BC与人眼角膜的前表面接触。当患者(也称为佩戴者)出现屈光不正时,通过角膜塑形镜的基弧区BC来调整人眼角膜前表面的曲率半径,即调整上述式(1)中的R,从而能够实现人眼屈光不正的矫正。在下面图2、图3A-3B、图4A-4B和图5A-5D中,所示的基弧区BC是圆形的。然而,在一些实施例中,基弧区BC也可以具有其它形状,例如椭圆形、卵形等等。
如本领域技术人员已知的,角膜塑形镜的内表面IS还可以包括位于基弧区BC径向外侧的圆环形的反转弧区RC以及位于反转弧区RC径向外侧的圆环形的配适弧区AC。角膜塑形镜的内表面IS还可以包括位于配适弧区AC径向外侧的圆环形的边弧区PC。
基弧区承担治疗作用,其设计与佩戴者角膜原始的形态、佩戴者的屈光状态相关。通过佩戴者角膜的原始形态(主要指曲率半径)和其所需的屈光矫正量,利用屈光学计算公式计算基弧区的曲率半径。
基弧区以外的其它区域(反转弧区、配适弧区和边弧区),主要是承担定位和促进泪液流通的作用,辅助基弧区稳定塑形。配适弧区与角膜在相应位置的形状匹配,从而使镜片贴合良好,稳定镜片位置。通过试戴片试戴的方法来确定配适弧区的参数。通过对角膜面形的精确测量来确定配适弧的参数,使之与面形测量结果吻合。
在本公开的一个方面中,本公开创造性地提出一种用于制造角膜塑形镜的方法,该方法制造的角膜塑形镜的基弧区具有至少两种不同的曲率半径,使得人眼在配戴角膜塑形镜后,在角膜光学区产生至少两个焦点,从而使佩戴者的屈光不正与老视同时得以矫正。
本公开的用于制造角膜塑形镜的方法在确定其它辅助区域的参数时与现有技术相似。具体而言,首先对佩戴者眼部参数进行测量,在一些实施例中,采用角膜地形图仪、角膜曲率计等检测设备确定角膜形态,主要包括角膜在各方向上的曲率半径、散光情况、非球面系数等。在测定参数的基础上,辅助以已知参数的试戴片,通过反复试戴和评价来确定佩戴者除基弧区以外的其它辅助区域的参数。或是通过辅助软件仿真来确定辅助区域的配适情况,进而确定其参数。
现有角膜塑形镜的基弧区仅起到屈光矫正的功能,仅含有一种曲率半径。本公开的方法制造的角膜塑形镜的基弧区具有多于一种的曲率半径。根据本公开的方法,首先确定基弧区的最大曲率半径;然后,基于所确定的基弧区的最大曲率半径和佩戴者所需的老花矫正量,通过屈光学计算公式计算基弧区的最小曲率半径,其中,可以通过插片验光、试戴等方式确定佩戴者所需的老花矫正量。
当佩戴者出现屈光不正时,通过角膜塑形镜的基弧区调整角膜前表面的曲率半径,实现屈光不正的矫正。
在本公开的方法中,可以通过多种方式,例如镜片试戴、软件仿真、数学计算等来确定的基弧区的最大曲率半径。
在一个实施例中,可以给佩戴者佩戴若干种角膜塑形镜试戴片(这些角膜塑形镜试戴片的基弧区的各项参数均是已知的),如果某一种角膜塑形镜试戴片使得佩戴者的远视力恰好被矫正,则将该角膜塑形镜试戴片的基弧区的曲率半径确定为本公开所要制造的角膜塑形镜的基弧区的最大曲率半径。
在另一个实施例中,可以采用角膜地形图仪测量佩戴者的角膜地形,采用验光设备确定佩戴者所需的屈光不正矫正量,然后采用矢高计算的方式,确定本公开所要制造的角膜塑形镜的基弧区的最大曲率半径。例如,首先确定佩戴者所需的屈光不正矫正量为ΔK,佩戴者原始角膜在半径r处的矢高为h,屈光不正矫正量ΔK所能造成的矢高差异为Δh,则基弧区具有最大曲率半径的区域在半径r处的矢高为h’=h+Δh。然后,采用公式
Figure PCTCN2018118438-appb-000009
将矢高换算为角膜塑形镜的基弧区的最大曲率半径R1。
在另一个实施例中,可以基于佩戴者角膜前表面的原始曲率半径和屈光不正矫正量,确定本公开所要制造的角膜塑形镜的基弧区的最大曲率半径,其中,可以采用电脑验光仪、插片验光等方式测量佩戴者的角膜前表面的原始曲率半径和屈光不正矫正量。
例如,可以根据如下公式确定基弧区的最大曲率半径:
Figure PCTCN2018118438-appb-000010
结合式(1)得到:
Figure PCTCN2018118438-appb-000011
其中,n为角膜的折射率,R为佩戴者角膜前表面的原始曲率半径,单位为mm,ΔK为屈光不正矫正量,单位为D,R1为基弧区的最大曲率半径,单位为mm。
在本公开的方法中,根据如下公式确定基弧区的最小曲率半径:
Figure PCTCN2018118438-appb-000012
结合式(2)得到:
Figure PCTCN2018118438-appb-000013
其中,n为角膜的折射率,R1为基弧区的最大曲率半径,单位为mm,ΔT为佩戴者所需的老花矫正量,单位为D,R2为基弧区的最小曲率半径,单位为mm。
在本公开的方法中,根据本公开的方法制造的角膜塑形镜的基弧区包括两个或更多个区域。基弧区的两个或更多个区域中的第一区域具有最大曲率半径并且基弧区的两个或更多个区域中的第二区域具有最小曲率半径。基弧区的两个或更多个区域的面形可以均为球面,或者均为非球面,或者一部分区域的面形为球面而其余区域的面形为非球面。
在一些实施例中,根据佩戴者的老花状态,利用本公开的方法制造的角膜塑形镜的基弧区可以包括除最大曲率半径、最小曲率半径以外的一个或多个中间曲率半径,从而使佩戴者在远、近视力之间形成一个或多个中程视力。
中间曲率半径的确定方式与最小曲率半径的确定方式相似。在本公开的方法中,根据如下公式确定基弧区的中间曲率半径:
Figure PCTCN2018118438-appb-000014
结合式(2)得到:
Figure PCTCN2018118438-appb-000015
其中,n为角膜的折射率,R1为基弧区的最大曲率半径,单位为mm, ΔT′为佩戴者的中程视力处所需要的附加光焦度(也称为中程附加光焦度),单位为D,R3为基弧区的中间曲率半径,单位为mm。
在一些实施例中,根据本公开的方法制造的角膜塑形镜的基弧区的两个或更多个区域中的第三区域具有中间曲率半径。
在一些实施例中,根据佩戴者的老花程度确定佩戴者所需的老花矫正量。如果佩戴者在远视力正确矫正的基础上,看近所能达到的最近距离为M,单位为mm,则佩戴者所需的老花矫正量为:
Figure PCTCN2018118438-appb-000016
一般正常人眼的老花矫正量ΔT为+0.5D至+5.0D。
在本公开的方法中,中程附加光焦度的确定方式与佩戴者所需的老花矫正量的确定方式相似。在一些实施例中,根据佩戴者的中程视距确定佩戴者所需的中程附加光焦度。如果佩戴者在远视力正确矫正的基础上,中程视距为M’,单位为mm,则佩戴者所需的中程附加光焦度为:
Figure PCTCN2018118438-appb-000017
本公开创造性地提出角膜塑形镜的基弧区具有至少两种不同的曲率半径,使得人眼在配戴角膜塑形镜后,在角膜光学区产生至少两个焦点,从而使患者的屈光不正与老视同时得以矫正。
在本公开的另一个方面中,提供了一种角膜塑形镜。在根据本公开的角膜塑形镜中,基弧区包括两个或更多个区域。基弧区的两个或更多个区域中的至少两个具有不同的曲率半径。基弧区的两个或更多个区域的面形可以均为球面,或者均为非球面,或者一部分区域的面形为球面而其余区域的面形为非球面。图2示出了基弧区包括四个区域A、B、C和D。根据需要,四个区域A、B、C和D可以为任意形状。四个区域A、B、C和D中的至少两个具有不同的曲率半径。
在一些实施例中,基弧区100的两个或更多个区域包括位于中心的圆形的中心区域100 1以及围绕所述中心区域100 1的一个或多个同心的圆环区域100 2、100 3、100 4...。
在一些实施例中,基弧区100的两个或更多个区域100 1、100 2、100 3、100 4...的曲率半径沿径向呈现交替变化。特别地,在一些实施例中,基弧区100具有沿径向呈现交替变化的两种不同的曲率半径,其中,基弧区100的区域100 2m-1具有第一曲率半径,并且基弧区100的 区域100 2m具有不同于第一曲率半径的第二曲率半径,其中,m是大于等于1的整数。特别地,在一些实施例中,基弧区100具有沿径向呈现交替变化的三种不同的曲率半径,其中,基弧区100的区域100 3m-2具有第一曲率半径,基弧区100的区域100 3m-1具有不同于第一曲率半径的第二曲率半径,并且,基弧区100的区域100 3m具有不同于第一曲率半径和第二曲率半径的第三曲率半径,其中,m是大于等于1的整数。当然,在另一些实施例中,基弧区100可以类似地具有沿径向呈现交替变化的其他数量的不同的曲率半径。
例如,在一个实施例中,角膜塑形镜10由高透氧硬性材料制成。角膜塑形镜10的内表面包括基弧区100、反转弧区、配适弧区和边弧区。角膜塑形镜10的总直径为10.4mm,其中,基弧区100的直径为6.0mm,反转弧区的内直径为6.0mm,外直径为7.8mm。配适弧区的内直径为7.8mm,外直径为9.4mm。边弧区的内直径为9.4mm,外直径为10.4mm。角膜塑形镜10的中心厚度为0.22mm。
在该实施例中,如图3A所示,基弧区100包括中心区域100 1以及围绕中心区域100 1的三个同心的圆环区域100 2、100 3和100 4。中心区域100 1的直径为3mm。圆环区域100 2的内直径为3mm,外直径为4mm。圆环区域100 3的内直径为4mm,外直径为5mm。圆环区域100 3的内直径为5mm,外直径为6mm。区域100 1、100 2、100 3和100 4的曲率半径呈现交替变化,其中,中心区域100 1和圆环区域100 3的曲率半径相同,例如可以为8.88mm,并且圆环区域100 2和100 4的曲率半径相同,例如可以为8.54mm。
通过佩戴该角膜塑形镜10,患者摘镜后角膜同时提供了远、近两个焦点。角膜在与中心区域100 1和圆环区域100 3对应的两个区域的屈光力为38.0D,实现-5.0D近视的矫正,从而实现清晰的远视力。角膜在与圆环区域100 2和100 4对应的两个区域的屈光力为39.5D,在远视力的基础上附加了+1.5D的附加光焦度,从而实现老视矫正的功能。
在图3A所示的实施例中,基弧区包括三个同心的圆环区域。另外,基弧区也可以包括其他数量的同心圆环区域。在图3A所示的实施例中,基弧区的各个区域采用两种不同的曲率半径交替,提供两个焦点。另外,基弧区的各个区域也可以采用多于两种不同的曲率半径交替,从而产生多于两个焦点。中心区域的直径以及圆环区域的宽度(也即 外直径与内直径之差的一半)可以根据患者的瞳孔大小、对视近清晰度的要求等进行调整。
在一些实施例中,基弧区100的两个或更多个区域100 1、100 2、100 3...的曲率半径从中心向外逐渐减小。
例如,在一个实施例中,角膜塑形镜10由高透氧硬性材料制成,包括基弧区100、反转弧区、配适弧区和边弧区。角膜塑形镜10的总直径为10.9mm,其中,基弧区100的直径为6.5mm,反转弧区的内直径为6.5mm,外直径为8.3mm。配适弧区的内直径为8.3mm,外直径为9.9mm。边弧区的内直径为9.9mm,外直径为10.9mm。角膜塑形镜10的中心厚度为0.22mm。
在该实施例中,如图3B所示,基弧区100包括中心区域100 1以及围绕中心区域100 1的四个同心的圆环区域100 2、100 3、100 4和100 5。中心区域100 1的直径为4mm。圆环区域100 2的内直径为4mm,外直径为4.5mm。圆环区域100 3的内直径为4.5mm,外直径为5mm。圆环区域100 4的内直径为5mm,外直径为5.5mm。圆环区域100 5的内直径为5.5mm,外直径为6.5mm。区域100 1、100 2、100 3、100 4和100 5的曲率半径从中心向外逐渐减小。例如,中心区域100 1的曲率半径可以为7.85mm,圆环区域100 2的曲率半径可以为7.76mm,圆环区域100 3的曲率半径可以为7.67mm,圆环区域100 4的曲率半径可以为7.58mm,圆环区域100 5的曲率半径可以为7.50mm。
该角膜塑形镜10能将佩戴者的角膜塑形为从中心到边缘屈光力依次为43.0D、43.5D、44.0D、44.5D、45.0D,实现逐渐变化的屈光度,实现+0.5D至+2.0D渐变的附加光焦度。
在图3B所示的实施例中,基弧区包括中心区域和四个同心的圆环区域,曲率半径从中心向外逐渐减小,从而提供五种不同的屈光度。另外,基弧区也可以包括其他数量的同心圆环区域,从而提供其他数量的不同的屈光度。中心区域的直径以及圆环区域的宽度(也即外直径与内直径之差的一半)可以根据患者的瞳孔大小、对视近清晰度的要求等进行调整。
近视化的周边离焦是指人眼光学系统在周边的屈光力较大,形成的聚焦点落于视网膜之前,临床证据表明近视化的周边离焦可用于青少年近视的控制。本公开的技术方案所带来的技术效果还包括:青少年 佩戴该技术方案所述的角膜塑形镜,可形成近视化离焦,防止眼轴增长,延缓近视加深。
在本公开的一些实施例中,中心区域1001的直径大于1mm,优选地大于2mm。
在本公开的另一些实施例中,基弧区的两个或更多个区域是两个或更多个扇形区域,两个或更多个扇形区域共同组成基弧区。在本公开的另一些实施例中,基弧区的两个或更多个区域是两个或更多个扇形区域,基弧区还包括位于每两个相邻的扇形区域之间的平滑过渡区域,并且两个或更多个扇形区域以及平滑过渡区域共同组成基弧区。
例如,在一个实施例中,角膜塑形镜由高透氧硬性材料制成,包括基弧区100′、反转弧区、配适弧区和边弧区。角膜塑形镜10′的总直径为10.6mm,其中,基弧区100′的直径为6.2mm,反转弧区的内直径为6.2mm,外直径为8.0mm。配适弧区的内直径为8.0mm,外直径为9.6mm。边弧区的内直径为9.6mm,外直径为10.6mm。角膜塑形镜的中心厚度为0.16mm。
在一个实施例中,如图4A所示,角膜塑形镜的基弧区100′的两个或更多个区域是扇形区域100′ 1和100′ 2,并且扇形区域100′ 1和100′ 2共同组成基弧区100′。在该实施例中,扇形区域100′ 1的圆心角为240°,并且扇形区域100′ 2的圆心角为120°。
在一个实施例中,如图4B所示,角膜塑形镜的基弧区100′的两个或更多个区域是扇形区域100′ 1和100′ 2。基弧区100′还包括位于扇形区域100′ 1和100′ 2之间的平滑过渡区域100′ 3和100′ 4,并且扇形区域100′ 1和100′ 2以及平滑过渡区域100′ 3和100′ 4共同组成基弧区100′。在该实施例中,扇形区域100′ 1的圆心角为220°,并且扇形区域100′ 2的圆心角为100°。扇形区域100′ 1的曲率半径为9.0mm,并且扇形区域100′ 2的曲率半径为9.78mm。平滑过渡区域100′ 3和100′ 4的圆心角均为20°。
通过佩戴该角膜塑形镜,角膜被塑形后,视远区域的屈光力为37.5D,视近区域的屈光力为34.5D,角膜塑形镜的基弧区100′的扇形区域100′ 1和100′ 2能为角膜提供+3.0D的附加光焦度,使佩戴者同时达成视远与视近双焦点,两个焦点的光能占比为2.2∶1。由于两个扇形区域通过平滑过渡区域衔接,故患者佩戴后角膜无明显分区的痕迹。
在图4A、4B所示的实施例中,基弧区包括两个扇形区域。另外, 基弧区也可以包括多于两个扇形区域,从而产生多于两个焦点。扇形区域和平滑过渡区域的圆心角可以根据需要进行调整。
在本公开的另一些实施例中,基弧区的两个或更多个区域可以是形状不规则的。
例如,在一个实施例中,如图5A所示,基弧区100″的两个或更多个区域是位于中间的第一区域100″ 1以及位于所述第一区域100″ 1两侧的第二区域100″ 2和第三区域100″ 3,并且第一区域100″ 1、第二区域100″ 2和第三区域100″ 3共同组成基弧区100″。在另一个实施例中,如图5B所示,基弧区100″的两个或更多个区域是位于中间的第一区域100″ 1以及位于所述第一区域100″ 1两侧的第二区域100″ 2和第三区域100″ 3,基弧区100″还可以包括位于第一区域100″ 1和第二区域100″ 2之间的第一平滑过渡区域100″ 4以及位于第一区域100″ 1和第三区域100″ 3之间的第二平滑过渡区域100″ 5,并且第一区域100″ 1、第二区域100″ 2、第三区域100″ 3、第一平滑过渡区域100″ 4和第二平滑过渡区域100″ 5共同组成基弧区100″。
在图5A、5B所示的实施例中,第一区域100″ 1的曲率半径为7.30mm,第二区域100″ 2的曲率半径为7.00mm,第三区域100″ 3的曲率半径为7.63mm。角膜被塑形后,第一区域100″ 1产生46.2D的屈光力,第二区域100″ 2产生48.2D屈光力,第三区域100″ 3产生44.2D的屈光力,能为人眼实现视远、+2.0D视中、+4.0D视近的全程视力。
在图5A、5B所示的实施例中,基弧区的两个或更多个区域是三个形状不规则的区域。另外,基弧区的两个或更多个区域也可以是其他数量的形状不规则区域,从而产生其他数量的焦点。
例如,在一个实施例中,如图5C所示,基弧区100″′的两个或更多个区域是第一区域100″′ 1和第二区域100″′ 2,第一区域100″′ 1是圆环的一部分,第二区域100″′ 2的中心具有完整的圆形部分,并且第一区域100″′ 1和第二区域100″′ 2共同组成基弧区100″′。在该实施例中,第一区域100″′ 1的曲率半径为7.50mm,第二区域100″′ 2的曲率半径为7.85mm。角膜被塑形后,第一区域100″′ 1产生45.0D的屈光力,第二区域100″′ 2产生43.0D的屈光力,能为人眼实现视远、+2.0D视近的视力。第一区域100″′ 1的圆心角为200°,第二区域100″′ 2的圆心角为160°,第二区域100″′ 2的中心具有完整的圆形部分,其直径为2.0mm。在另一个实 施例中,如图5D所示,基弧区100″′的两个或更多个区域是第一区域100″′ 1和第二区域100″′ 2,第一区域100″′ 1是圆环的一部分,第二区域100″′ 2的中心具有完整的圆形部分,基弧区100″′还包括位于第一区域100″′ 1和第二区域100″′ 2之间的平滑过渡区域100″′ 3,并且第一区域100″′ 1、第二区域100″′ 2和平滑过渡区域100″′ 3共同组成基弧区100″′。在该实施例中,第一区域100″′ 1的曲率半径为8.44mm,第二区域100″′ 2的曲率半径为7.85mm,第三区域100″′ 3为平滑过渡部分,宽度为0.1mm,其曲率半径处于第一区域和第二区域的曲率半径之间。角膜被塑形后,第一区域100″′ 1产生40.0D的屈光力,第二区域100″′ 2产生43.0D屈光力,能为人眼实现视远、+3.0D视近的视力。第一区域100″′ 1的圆心角为220°,第二区域100″′ 2的圆心角为120°,第二区域100″′ 2中心具有完整的圆形部分,其直径为1.8mm。
在图5C、5D所示的实施例中,基弧区的两个或更多个区域是两个形状不规则的区域。另外,基弧区的两个或更多个区域也可以是其他数量的形状不规则区域,从而产生其他数量的焦点。
在一些实施例中,人眼角膜的屈光度K为38.0D至47.0D,屈光不正矫正量ΔK为-6.0D至1.0D,则可根据式(2)计算得出基弧区的最大曲率半径R 1为6.0mm至10.5mm。结合上述范围,根据式(5)可计算得出基弧区的最小曲率半径R 2。表1示出了根据本公开的一些实施例的数据,其中,角膜的折射率n为1.3375。
表1基弧区的最大曲率半径R 1及其在不同的老花矫正量ΔT下对应的最小曲率半径R 2
Figure PCTCN2018118438-appb-000018
在本公开的一些实施例中,角膜塑形镜为人眼实现的老花矫正量ΔT为+0.5D至+5.0D,优选为+0.75D至+3.5D,更优选为+1.0D至+3.0D。
在本公开的一些实施例中,角膜塑形镜的基弧区的最大曲率半径为6.0mm至10.5mm,优选为7.0mm至10.0mm。
在本公开的一些实施例中,角膜塑形镜的基弧区的最小曲率半径为5.51mm至10.34mm,优选为5.65mm至9.85mm,更优选为6.53mm至9.71mm。
在本公开的一些实施例中,角膜塑形镜的基弧区的直径为4.5mm至7.0mm,优选为5.0mm至6.8mm,更优选为5.2mm至6.5mm。
当n取1.3375时,式(1)表示为:
Figure PCTCN2018118438-appb-000019
当患者出现屈光不正时,通过角膜塑形镜的基弧区BC来调整人眼角膜前表面的曲率半径,即调整式(1)和式(10)中的R,从而能够实现人眼屈光不正的矫正。在本公开的一些实施例中,沿着平行于光轴的方向看,基弧区BC是圆形的。然而,在本公开的另一些实施例中,沿着平行于光轴的方向看,基弧区BC也可以具有其它形状,例如椭圆 形、卵形等等。
人眼佩戴角膜塑形镜闭目睡眠时,眼睑对角膜塑形镜和角膜施加压迫力。由于人眼是近似球形形态,所述压迫力从角膜中心最高点向边缘逐渐递减。压迫力的这种特性使得在佩戴角膜塑形镜后,无论角膜塑形镜的中心区域如何设计,都无法使角膜的中心区域拱起,角膜的中心区域一定是被压平的。故而用于老花矫正的区域不能位于角膜塑形镜的中心区域。
另一方面,为了使人眼在正常瞳孔条件下能够接收到角膜的老花矫正区所成的图像,老花矫正区必须足够靠近中心。
此外,角膜的老花矫正区相对其它位置曲率半径更小,是“拱起”状态,必须有其它部位的压力导致角膜细胞向老花矫正区迁移。
在本公开的另一方面中,本公开创造性地提出角膜塑形镜的基弧区具有至少两种不同的曲率半径,使得人眼在配戴角膜塑形镜后,在角膜光学区产生渐变的屈光度变化,从而使患者的景深得以扩展,屈光不正与老花同时得以矫正。更特别的,本公开的角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与内表面相对的外表面。内表面包括位于中心的基弧区。基弧区包括位于中心的圆形的第一区、围绕第一区的圆环形的第二区以及围绕第二区的第三区,第一区、第二区和第三区的面形均可以是球面。第二区的曲率半径小于第一区的曲率半径,并且第二区的曲率半径小于第三区的曲率半径。
第一区和第二区的曲率半径的差异使角膜塑形镜对角膜产生不同的塑形能力,两个区域的曲率半径差异即为角膜塑形镜的老花矫正量的设计值。在本公开的角膜塑形镜中,优选地,老花矫正量的设计值应为0.5D至6.0D,即第一区和第二区的曲率半径满足如下关系:
Figure PCTCN2018118438-appb-000020
其中,R A、R B分别为第一区和第二区的曲率半径,单位为毫米(mm),则
Figure PCTCN2018118438-appb-000021
表示角膜塑形镜的第二区相对第一区的老花矫正量。
在本公开的角膜塑形镜中,基弧区的三个区采取平-拱-平的设计,形成类似跷跷板形状,引导角膜细胞向第二区移行,如图6中的箭头 所示。基弧区的第一区110具有相对平坦的形状(也即曲率半径较大),使角膜在中心点受到压平的力,将角膜细胞向两边挤压,符合角膜戴镜闭目时的受力规律,是角膜塑形镜的受力支点。基弧区的第三区130也具有相对平坦的形状(也即曲率半径较大),将角膜细胞向两边挤压。基弧区的第二区120具有相对陡峭的形状(也即曲率半径较小),与角膜之间留有空间,形成反向的吸引力,使在第一区110和第三区130处受压的细胞向第二区120移动,从而使第二区120处的角膜表面较陡峭或拱起,从而成功塑造出角膜的“老花矫正区”。第二区120两侧的压力越大,则第二区120处的角膜表面越容易拱起。第二区120的径宽越小,则第二区120处的角膜表面越容易拱起。
角膜被压迫塑形时,由于细胞的弹性表面的连续性,各区处的角膜表面的曲率半径不是突变的,而是逐渐变化的,故而基弧区的第一区110不宜过大,以免基弧区的第二区120所对应的角膜的老花矫正区的位置超出瞳孔能够接收到图像的范围。故而,在本公开的角膜塑形镜中,基弧区的第一区的直径为0.50mm至1.75mm,优选为0.50mm至1.5mm,更优选为1.0mm。图7中的实线示出了佩戴本公开的角膜塑形镜后,角膜的屈光度的变化趋势,其中,基弧区的第一区的直径为1mm。可见,第一区对角膜产生压平的作用,以矫正人眼近视,产生的屈光度变化约为-2.5D。第二区为老花塑形区,对角膜进行塑形,使角膜在第二区处的屈光度变化比在第一区处的屈光度变化小,从而使角膜在第二区处形成老花矫正区。理论上,角膜的老花矫正区的位置应当与基弧区的第二区的位置是对应的。然而,由于角膜表面的曲率半径不是突变而是逐渐变化,角膜的老花矫正区在比第二区的直径更大的地方出现,也即出现在直径约1.5mm左右处,且从中心至外,屈光度是渐变的。图7中的虚线示出了佩戴本公开的角膜塑形镜后,角膜的屈光度的变化趋势,其中,基弧区的第一区的直径为2mm。可见,如果第一区的直径超过1.75mm,则角膜的老花矫正区,即屈光度变化减小的区域将会到直径3mm左右开外,无法使人眼实现同时看远、看近清晰的功能。
本公开的原理是通过角膜的形状变化,引起角膜光学特性的变化,从而降低对人眼晶状体的调节力需求。由其机理可知,本公开的角膜塑形镜可以用于缓解视疲劳。而且,本公开的角膜塑形镜对角膜进行 塑形后,角膜在第二区处的屈光度大于在第一区处的屈光度,故可使人眼形成近视化的周边离焦,因而也可应用于青少年的近视控制。
实施例1
佩戴者1的角膜屈光度K为42.00D,曲率半径为8.04mm,近视度数-2.50D。为佩戴者1定制的角膜塑形镜的参数见表2。
表2为佩戴者1定制的角膜塑形镜的参数
基弧区的直径 10.6mm
第一区的直径 1.0mm
第二区的径宽 1.0mm
第三区的径宽 1.6mm
第一区的曲率半径 8.71mm
第二区的曲率半径 8.28mm
第三区的曲率半径 8.71mm
基弧区外表面的曲率半径 8.65mm
在表2所示的角膜塑形镜的参数下,第一区的曲率半径为8.71mm,大于佩戴者1的角膜的曲率半径,因而第一区的面形相对于佩戴者1的角膜更平坦,起到压平角膜,矫正近视的作用。第二区的曲率半径为8.28mm,小于第一区的曲率半径,因而第二区的面形比第一区更陡峭,起到放松对角膜压迫的作用,充当老花塑形区。第三区的曲率半径为8.71mm,与第一区的曲率半径相同,起到压平角膜,并将角膜细胞向两边迁移的作用。反转弧区、配适弧区和边弧区可以为常规构造。例如,反转弧区径宽0.8mm,曲率半径7.60mm;配适弧区径宽0.9mm,曲率半径8.04mm,边弧区径宽0.5mm,曲率半径10.26mm。
在表2所示的角膜塑形镜的参数下,角膜从中心向外所受的压迫力呈现高-低-高的分布,促使角膜细胞分别由第一区和第三区处向第二区处移动和变形,从而使角膜被塑造为在第一区处被高度压平、在第二区处被轻度压平并且在第三区处被高度压平的形状。
角膜细胞迁移和变形是渐变过程,图8示出了实施例1的角膜塑形镜佩戴前后的角膜屈光度的变化情况。由佩戴结果可见,角膜中心区域1mm以内的屈光度变化约为-2.5D,佩戴者1的角膜实现了足够的 屈光度变化,以实现近视矫正。角膜塑形镜的基弧区的第一区的直径为1mm,但角膜从第一区的曲率半径变化至第二区的曲率半径,约需要0.5mm的过渡区域,从角膜直径约1.5mm,屈光度变化量开始下降,在角膜直径2.0mm左右,屈光度变化量有较大幅度降低,在角膜直径3.0mm左右,屈光度的变化量降低至-1.5D,从而使人眼在正常瞳孔直径以内能够形成多个焦点,扩展景深,矫正老花。
在实施例1的角膜塑形镜的作用下,佩戴者1在3.0mm瞳孔以内,获得了约-1.5D左右的屈光度变化。图9a和图9b分别示出了采用iTrace视功能分析仪的景深测量功能测量佩戴者1佩戴实施例1的角膜塑形镜前、后的景深情况,可见佩戴了实施例1的角膜塑形镜后,佩戴者1的景深获得了大幅度的提升,从而获得老花矫正效果。
实施例2
佩戴者2的角膜屈光度K为44.75D,曲率半径为7.54mm,无近视。为佩戴者2定制的角膜塑形镜的参数见表3。
表3为佩戴者2定制的角膜塑形镜的参数
基弧区的直径 10.6mm
第一区的直径 1.0mm
第二区的径宽 1.0mm
第三区的径宽 1.6mm
第一区的曲率半径 7.54mm
第二区的曲率半径 6.78mm
第三区的曲率半径 7.54mm
基弧区外表面的曲率半径 7.61mm
在表3所示的角膜塑形镜的参数下,第一区的曲率半径为7.54mm,与佩戴者2的角膜的曲率半径相同,起到正常视远的作用。第二区的曲率半径为6.78mm,小于第一区的曲率半径,因而第二区的面形比第一区更陡峭,充当老花塑形区,起到对角膜的负压作用,吸引周边区域的角膜细胞向该区迁移。第三区的曲率半径为7.54mm,与第一区的曲率半径相同,起到将角膜细胞向两边迁移的作用。反转弧区、配适弧区和边弧区可以为常规构造。例如,反转弧区径宽0.8mm,曲率半 径8.12mm,配适弧区径宽0.9mm,曲率半径7.54mm,边弧区径宽0.5mm,曲率半径9.39mm。
在表3所示的角膜塑形镜的参数下,角膜从中心向外所受的压迫力呈现低-更低-低的分布,促使角膜细胞分别由第一区和第三区处向第二区处移动和变形,从而使角膜被塑造为在第一区处被轻度压平、在第二区处拱起并且在第三区处被轻度压平的形状。佩戴者2自身无近视,故而在第一区处被轻度压平会导致佩戴者2在第一区向远视漂移,但因为角膜在第二区处拱起,提供了比人眼自身更高的屈光度,从第一区到第二区存在过渡区域,该过渡区域为人眼提供正视的屈光度。
角膜细胞迁移和变形是渐变过程,图10示出了实施例2的角膜塑形镜佩戴前后的角膜屈光度的变化情况。由佩戴结果可见,佩戴者2的角膜在1mm直径以内屈光度变化在±0.2D以内,表明佩戴者2在角膜的中心区域维持正视的状态,基本不改变佩戴者2原本的屈光状态。从1mm以外,角膜的屈光度迅速变大,在3.0mm实现屈光度变化的最高点。
在实施例2的角膜塑形镜的作用下,佩戴者2的角膜在第二区处拱起,获得了老花矫正效果。图11a和图11b分别示出了采用iTrace视功能分析仪的景深测量功能测量佩戴者2佩戴实施例2的角膜塑形镜前、后的景深情况,可见佩戴了实施例2的角膜塑形镜后,佩戴者2的景深获得了相应的提升。
实施例3-9
表4示出了根据本公开的角膜塑形镜的一些实施例。对于本公开的角膜塑形镜而言,基弧区的直径可以为4.5mm至8.0mm,优选为5.0mm至7.0mm,更优选为5.2mm至6.5mm。通常,佩戴者的角膜屈光度K为40.15D至56.25D,屈光不正量K A为0至-8.0D。更常见地,角膜屈光度K为39.75D至46.22D,屈光不正量K A为0至-6.0D。第一区的曲率半径R A与角膜屈光度K、屈光不正量的关系为:R A=337.5/(K+K A)。
相应的,第一区和第三区的曲率半径可以为6.0mm至10.5mm,优选为7.0mm至10.0mm。第二区的曲率半径可以为5.42mm至10.34mm,优选为6.22mm至9.85mm。第一区的直径可以为0.50mm至1.75mm,优选为0.50mm至1.5mm,更优选为1.0mm。第二区的径宽可以为 0.75mm至1.5mm,优选为1.0mm至1.25mm,更优选为1.0mm。第三区的径宽可以为0.75mm至3.0mm,优选为1.0mm至2.0mm,更优选为1.0mm至1.75mm。
表4为佩戴者定制的角膜塑形镜的参数单位mm
Figure PCTCN2018118438-appb-000022
尽管已经参照(一个或多个)示例性实施例描述了本公开,但本领域技术人员将会理解的是,本公开不限于本文所描述的确切结构和组成部分,而且在不偏离如所附权利要求限定的本公开精神和范围的情况下,从前面的描述可明白各种修改、变化和变形。本公开不受步骤的所示排序的限制,因为一些步骤可以按照不同的顺序和/或与其它步骤同时进行。因此,本公开不限于所公开的(一个或多个)具体实施例,而是将会包括落在所附权利要求的范围内的所有实施例。

Claims (34)

  1. 一种角膜塑形镜,所述角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与所述内表面相对的外表面,所述内表面包括位于中心的基弧区,其中,所述基弧区用于压迫角膜前表面并将角膜前表面塑造成具有与所述基弧区一致的形状,其中,所述基弧区包括两个或更多个区域,所述两个或更多个区域中的至少两个具有不同的曲率半径。
  2. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域包括位于中心的圆形的中心区域以及围绕所述中心区域的一个或多个同心的圆环区域。
  3. 根据权利要求2所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域的曲率半径沿径向呈现交替变化。
  4. 根据权利要求2所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域的曲率半径从中心向外逐渐减小。
  5. 根据权利要求2所述的角膜塑形镜,其中,所述中心区域的直径大于1mm,优选地大于2mm。
  6. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域是两个或更多个扇形区域,并且所述两个或更多个扇形区域共同组成所述基弧区。
  7. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域是两个或更多个扇形区域,所述基弧区还包括位于每两个相邻的扇形区域之间的平滑过渡区域,并且其中,所述两个或更多个扇形区域以及所述平滑过渡区域共同组成所述基弧区。
  8. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域是形状不规则的。
  9. 根据权利要求8所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域是位于中间的第一区域以及位于所述第一区域两侧的第二区域和第三区域,并且所述第一区域、所述第二区域和所述第三区域共同组成所述基弧区。
  10. 根据权利要求8所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域是位于中间的第一区域以及位于所述第一区域两侧的第二区域和第三区域,所述基弧区还包括位于所述第一区域和所述第二 区域之间的第一平滑过渡区域以及位于所述第一区域和所述第三区域之间的第二平滑过渡区域,并且其中,所述第一区域、所述第二区域、所述第三区域、所述第一平滑过渡区域和所述第二平滑过渡区域共同组成所述基弧区。
  11. 根据权利要求8所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域是第一区域和第二区域,所述第一区域是圆环的一部分,所述第二区域的中心具有完整的圆形部分,并且其中,所述第一区域和所述第二区域共同组成所述基弧区。
  12. 根据权利要求8所述的角膜塑形镜,其中,所述基弧区的两个或更多个区域是第一区域和第二区域,所述第一区域是圆环的一部分,所述第二区域的中心具有完整的圆形部分,所述基弧区还包括位于所述第一区域和所述第二区域之间的平滑过渡区域,并且其中,所述第一区域、所述第二区域和所述平滑过渡区域共同组成所述基弧区。
  13. 根据权利要求1所述的角膜塑形镜,其中,由下式计算得出的ΔT为+0.5D至+5.0D,优选为+0.75D至+3.5D,更优选为+1.0D至+3.0D:
    Figure PCTCN2018118438-appb-100001
    其中,R 1为所述基弧区的最大曲率半径,单位为mm,R 2为所述基弧区的最小曲率半径,单位为mm,n为角膜的折射率,取值为1.3375。
  14. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区的最大曲率半径为6.0mm至10.5mm,优选为7.0mm至10.0mm。
  15. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区的最小曲率半径为5.51mm至10.34mm,优选为5.65mm至9.85mm,更优选为6.53mm至9.71mm。
  16. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区的直径为4.5mm至7.0mm,优选为5.0mm至6.8mm,更优选为5.2mm至6.5mm。
  17. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区是圆形的。
  18. 根据权利要求1所述的角膜塑形镜,其中,所述基弧区是椭圆形的。
  19. 一种用于制造角膜塑形镜的方法,所述角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与所述内表面相对的外表面,所述内表 面包括位于中心的基弧区,所述方法包括如下步骤:
    (a)确定所述基弧区的最大曲率半径;
    (b)确定佩戴者所需的老花矫正量;
    (c)利用下式确定所述基弧区的最小曲率半径:
    Figure PCTCN2018118438-appb-100002
    其中,n为角膜的折射率,R1为所确定的基弧区的最大曲率半径,单位为mm,ΔT为所确定的佩戴者所需的老花矫正量,单位为D,R2为基弧区的最小曲率半径,单位为mm;和
    (d)制造角膜塑形镜,使得所述基弧区包括两个或更多个区域,并且使得所述两个或更多个区域中的第一区域具有所述最大曲率半径,并且所述两个或更多个区域中的第二区域具有所述最小曲率半径。
  20. 根据权利要求19所述的方法,其中,步骤(a)包括:
    (a1)确定角膜的折射率;
    (a2)确定佩戴者的角膜前表面的原始曲率半径;
    (a3)确定佩戴者所需的屈光不正矫正量;
    (a4)利用下式确定所述基弧区的最大曲率半径:
    Figure PCTCN2018118438-appb-100003
    其中,n为所确定的角膜的折射率,R为所确定的佩戴者角膜前表面的原始曲率半径,单位为mm,ΔK为所确定的屈光不正矫正量,单位为D,R1为基弧区的最大曲率半径,单位为mm。
  21. 根据权利要求19-20中任一项所述的方法,其中,所述方法还包括如下步骤:
    (e)确定佩戴者所需的中程附加光焦度;
    (f)利用下式确定所述基弧区的中间曲率半径:
    Figure PCTCN2018118438-appb-100004
    其中,n为角膜的折射率,R1为所确定的基弧区的最大曲率半径,单位为mm,ΔT′为所确定的中程附加光焦度,单位为D,R3为基弧区的中间曲率半径,单位为mm;并且其中
    所述步骤(d)还包括制造所述角膜塑形镜,使得所述两个或更多 个区域中的第三区域具有所述中间曲率半径。
  22. 根据权利要求21所述的方法,其中,步骤(e)包括利用下式确定佩戴者所需的中程附加光焦度:
    Figure PCTCN2018118438-appb-100005
    其中,ΔT’为佩戴者所需的中程附加光焦度,即视中所需的老花矫正量,单位为D,M’是佩戴者在远视力正确矫正的基础上的视中的视距,单位为mm。
  23. 根据权利要求19-20中任一项所述的方法,其中,步骤(b)包括利用下式确定佩戴者所需的老花矫正量:
    Figure PCTCN2018118438-appb-100006
    其中,ΔT为佩戴者所需的老花矫正量,单位为D,M是佩戴者在远视力正确矫正的基础上看近所能达到的最近距离,单位为mm。
  24. 一种角膜塑形镜,所述角膜塑形镜包括在佩戴时面向人眼角膜的内表面以及与所述内表面相对的外表面,所述内表面包括位于中心的基弧区,其中,所述基弧区包括位于中心的圆形的第一区、围绕所述第一区的圆环形的第二区以及围绕所述第二区的第三区,其中,所述第二区的曲率半径小于所述第一区的曲率半径,并且所述第二区的曲率半径小于所述第三区的曲率半径。
  25. 根据权利要求24所述的角膜塑形镜,其中,所述第一区和所述第三区具有相同的曲率半径。
  26. 根据权利要求24所述的角膜塑形镜,其中,所述第一区和所述第二区的曲率半径满足如下关系:,7
    Figure PCTCN2018118438-appb-100007
    其中,R A是所述第一区的曲率半径,单位为mm,R B是所述第二区的曲率半径,单位为mm。
  27. 根据权利要求24所述的角膜塑形镜,其中,所述第一区和所述第三区的曲率半径为6.0mm至10.5mm,优选为7.0mm至10.0mm。
  28. 根据权利要求24所述的角膜塑形镜,其中,所述第二区的曲率半径为5.42mm至10.34mm,优选为6.22mm至9.85mm。
  29. 根据权利要求24所述的角膜塑形镜,其中,所述基弧区是圆形的。
  30. 根据权利要求29所述的角膜塑形镜,其中,所述基弧区的直径为4.5mm至8.0mm,优选为5.0mm至7.0mm,更优选为5.2mm至6.5mm。
  31. 根据权利要求29所述的角膜塑形镜,其中,所述第一区的直径为0.50mm至1.75mm,优选为0.50mm至1.5mm,更优选为1.0mm。
  32. 根据权利要求29所述的角膜塑形镜,其中,所述第二区的径宽为0.75mm至1.5mm,优选为1.0mm至1.25mm,更优选为1.0mm。
  33. 根据权利要求29所述的角膜塑形镜,其中,所述第三区的径宽为0.75mm至3.0mm,优选为1.0mm至2.0mm,更优选为1.0mm至1.75mm。
  34. 根据权利要求24所述的角膜塑形镜,其中,所述基弧区是椭圆形的。
PCT/CN2018/118438 2017-12-06 2018-11-30 角膜塑形镜以及用于制造角膜塑形镜的方法 WO2019109862A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/770,314 US11662606B2 (en) 2017-12-06 2018-11-30 Orthokeratology lens and method for making orthokeratology lenses
JP2020547273A JP7028987B2 (ja) 2017-12-06 2018-11-30 オルソケラトロジーレンズおよびその製造方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201711278012.0 2017-12-06
CN201711278012.0A CN108008544B (zh) 2017-12-06 2017-12-06 用于制造角膜塑形镜的方法
CN201721682214.7U CN208092366U (zh) 2017-12-06 2017-12-06 角膜塑形镜
CN201721682214.7 2017-12-06
CN201711276716.4A CN107728338B (zh) 2017-12-06 2017-12-06 角膜塑形镜
CN201711276716.4 2017-12-06
CN201821953457.4 2018-11-26
CN201811416151.XA CN111221146A (zh) 2018-11-26 2018-11-26 角膜塑形镜
CN201821953457.4U CN209417454U (zh) 2018-11-26 2018-11-26 角膜塑形镜
CN201811416151.X 2018-11-26

Publications (2)

Publication Number Publication Date
WO2019109862A2 true WO2019109862A2 (zh) 2019-06-13
WO2019109862A3 WO2019109862A3 (zh) 2019-08-01

Family

ID=66749899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118438 WO2019109862A2 (zh) 2017-12-06 2018-11-30 角膜塑形镜以及用于制造角膜塑形镜的方法

Country Status (3)

Country Link
US (1) US11662606B2 (zh)
JP (1) JP7028987B2 (zh)
WO (1) WO2019109862A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662606B2 (en) * 2017-12-06 2023-05-30 Eyebright Medical Technology (Beijing) Co., Ltd. Orthokeratology lens and method for making orthokeratology lenses
TWM607519U (zh) * 2020-09-29 2021-02-11 鷗博科技有限公司 吸泵式角膜塑型片
CN114193758B (zh) * 2021-12-03 2023-06-13 北京大学第三医院(北京大学第三临床医学院) 一种基于3d打印的膝关节局部组织分区塑形方法
CN114545659A (zh) * 2022-03-03 2022-05-27 上海艾康特医疗科技有限公司 角膜接触镜及其设计方法
CN114779497A (zh) * 2022-05-09 2022-07-22 天津世纪康泰生物医学工程有限公司 一种基于相位调制技术的巩膜接触镜

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010219A (en) * 1996-06-28 2000-01-04 Contex, Inc. Fenestrated contact lens for treating myopia
US6296867B1 (en) * 2000-04-28 2001-10-02 Gholam A. Peyman Therapeutic contact lens comprising living cells within a matrix
US6652095B2 (en) 2000-11-17 2003-11-25 Hsiao-Ching Tung Orthokeratology and bi-focal contact lens
US6997553B2 (en) 2002-08-07 2006-02-14 Global-Ok Vision, Inc. Contact lens for reshaping the altered corneas of post refractive surgery, previous ortho-K of keratoconus
US7246902B2 (en) 2004-02-25 2007-07-24 Paragon Vision Sciences, Inc. Corneal reshaping apparatus and method
US7559649B2 (en) * 2005-01-12 2009-07-14 Dakota Sciences, LLC Corneal-scleral orthokeratology contact lens
US20060290882A1 (en) * 2005-06-27 2006-12-28 Paragon Vision Sciences, Inc. Laminated contact lens
CN2914127Y (zh) 2006-06-28 2007-06-20 陶悦群 一种用于矫治视力的隐形眼镜
CN102047172B (zh) * 2008-06-06 2012-10-03 全球美好视觉公司 治疗非正视眼的软式隐形眼镜
GB2463514C (en) 2008-09-11 2018-09-26 Galapagos Nv Imidazolidine compounds and uses therefor
US8388130B2 (en) * 2008-11-03 2013-03-05 Vicoh, Llc Non-deforming contact lens
US8083346B2 (en) 2008-11-26 2011-12-27 Liguori Management Contact lens for keratoconus
WO2011049642A1 (en) * 2009-10-22 2011-04-28 Coopervision International Holding Company, Lp Contact lens sets and methods to prevent or slow progression of myopia or hyperopia
EP2598082A4 (en) 2010-07-26 2017-01-25 Vision Crc Limited Treating ocular refractive error
US8801175B2 (en) * 2011-02-23 2014-08-12 Crt Technology, Inc. System and method for communicating the geometry of a contact lens
US8632188B1 (en) * 2011-10-19 2014-01-21 Gregory Gemoules Scleral contact lens manufacturing
US8950859B2 (en) 2011-12-25 2015-02-10 Global-Ok Vision, Inc. Multi-focal optical lenses
KR102047157B1 (ko) 2014-01-31 2019-11-20 오프텍 비.브이. 눈 내 또는 그 위에 착용되는 다초점 광학 렌즈
CN104849875A (zh) 2015-05-06 2015-08-19 王昱程 一种角膜接触镜
EP3349055A4 (en) 2015-07-24 2019-07-24 Eyebright Medical Technology (Beijing) Co., Ltd. VIEW CORRECTION LENSES AND PROCESS FOR PREPARING THE SAME
TWI588562B (zh) 2015-12-31 2017-06-21 星歐光學股份有限公司 隱形眼鏡
CN105974605A (zh) 2016-05-10 2016-09-28 段亚东 四象限区周边离焦角膜接触镜
CN105785591A (zh) 2016-05-10 2016-07-20 段亚东 多基弧角膜接触镜
CN208092366U (zh) * 2017-12-06 2018-11-13 爱博诺德(北京)医疗科技有限公司 角膜塑形镜
CN107728338B (zh) * 2017-12-06 2024-01-26 爱博诺德(北京)医疗科技股份有限公司 角膜塑形镜
CN108008544B (zh) * 2017-12-06 2020-05-12 爱博诺德(北京)医疗科技股份有限公司 用于制造角膜塑形镜的方法
US11662606B2 (en) * 2017-12-06 2023-05-30 Eyebright Medical Technology (Beijing) Co., Ltd. Orthokeratology lens and method for making orthokeratology lenses

Also Published As

Publication number Publication date
WO2019109862A3 (zh) 2019-08-01
US20210181529A1 (en) 2021-06-17
US11662606B2 (en) 2023-05-30
JP2021511918A (ja) 2021-05-13
JP7028987B2 (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
US9551883B2 (en) Contact lens for keratoconus
KR102226668B1 (ko) 시력 교정 렌즈 및 그러한 렌즈의 제조 방법
WO2019109862A2 (zh) 角膜塑形镜以及用于制造角膜塑形镜的方法
TWI526732B (zh) 角膜塑型隱形眼鏡以及利用角膜塑型術治療屈光不正的方法
US10359645B2 (en) Multifunction contact lens
US7377637B2 (en) Hybrid contact lens system and method of fitting
RU2580195C2 (ru) Способ конструирования некруглой мягкой контактной линзы
US8113652B2 (en) Contact lens with meridional sagittal variation and methods for making and using the same
CN108008544B (zh) 用于制造角膜塑形镜的方法
JP2019045883A (ja) フィット特性が改善されたコンタクトレンズ
JP2021092820A (ja) 非回転対称の眼の収差のための快適性が最適化されたコンタクトレンズシステム
TWI686640B (zh) 具最佳效能之隱形眼鏡及設計方法
TW202109141A (zh) 具有妝飾及療效考量的光致變色軟式隱形眼鏡
CN107728338B (zh) 角膜塑形镜
CN215986770U (zh) 重塑角膜前表面形状的角膜塑形镜
CN208092366U (zh) 角膜塑形镜
JP2019045859A (ja) 乱視の矯正のためのコンタクトレンズにおける2次非点収差を最小化する非トーリック面
CN208756305U (zh) 用于老花矫正的角膜塑形镜
JPWO2018079072A1 (ja) 角膜矯正コンタクトレンズ
CN114545659A (zh) 角膜接触镜及其设计方法
RU2780271C1 (ru) Ортокератологическая линза для замедления развития близорукости
WO2023045989A1 (zh) 一种渐变多焦眼科镜片
CN115542575A (zh) 角膜塑形镜及其设计方法
CN116880085A (zh) 一种接触镜
CN111221146A (zh) 角膜塑形镜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020547273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884901

Country of ref document: EP

Kind code of ref document: A2