WO2019109835A1 - 利用木质纤维素类原料连续制备糠醛的系统及方法 - Google Patents

利用木质纤维素类原料连续制备糠醛的系统及方法 Download PDF

Info

Publication number
WO2019109835A1
WO2019109835A1 PCT/CN2018/117649 CN2018117649W WO2019109835A1 WO 2019109835 A1 WO2019109835 A1 WO 2019109835A1 CN 2018117649 W CN2018117649 W CN 2018117649W WO 2019109835 A1 WO2019109835 A1 WO 2019109835A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
furfural
liquid
temperature
unit
Prior art date
Application number
PCT/CN2018/117649
Other languages
English (en)
French (fr)
Inventor
徐彬
萧锦诚
吕俊德
周晓莹
Original Assignee
易高环保能源研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711277935.4A external-priority patent/CN107827847B/zh
Priority claimed from CN201721685502.8U external-priority patent/CN207877625U/zh
Application filed by 易高环保能源研究院有限公司 filed Critical 易高环保能源研究院有限公司
Priority to FIEP18885815.3T priority Critical patent/FI3733655T3/fi
Priority to CA3083387A priority patent/CA3083387A1/en
Priority to EP18885815.3A priority patent/EP3733655B1/en
Priority to ES18885815T priority patent/ES2936518T3/es
Priority to DK18885815.3T priority patent/DK3733655T3/da
Priority to PL18885815.3T priority patent/PL3733655T3/pl
Publication of WO2019109835A1 publication Critical patent/WO2019109835A1/zh
Priority to US16/894,672 priority patent/US11767304B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/148Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step in combination with at least one evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation

Definitions

  • the invention belongs to the technical field of furfural production, and in particular relates to a technique for continuously preparing furfural by a two-step method.
  • Furfural also known as furfural
  • Furfural is an important chemical product widely used in synthetic plastics, pharmaceuticals, pesticides and other industrial fields.
  • the annual demand for furfural is enormous.
  • Furfural can selectively extract unsaturated components from petroleum and vegetable oils, and extract aromatic components from lubricating oils and diesel oils.
  • With the intensification of the energy crisis and environmental protection requirements, the use of renewable agricultural and forestry waste to produce high value-added furfural has received increasing attention.
  • the only method for obtaining furfural is still obtained by hydrolyzing corn cob as a raw material.
  • the pentosan hydrolysis in the corncob hemicellulose and the dehydration cyclization of the pentose monomer are carried out in the same reactor, the furfural production technology can be further divided into a one-step method and a two-step method.
  • the hemicellulose-containing raw material is charged into a hydrolysis pot, and the hemicellulose is hydrolyzed to pentose sugar under acid catalysis and a certain temperature, and the pentose sugar is dehydrated to form furfural.
  • the one-step method is widely used in the furfural industry because of its low equipment investment and simple operation. However, the one-step method is not uniform in heating of the raw materials, the yield of furfural is low, the steam consumption is large, and the environmental pollution is serious.
  • the two-step method divides the hydrolysis reaction of hemicellulose and the dehydration reaction of pentose sugar into two steps, which are respectively carried out in different equipments, and the reaction formula is as follows:
  • the existing acid hydrolysis devices are batch reactors, High labor intensity, low production efficiency, large floor space and serious pollution.
  • the acid solution existing in the existing reactor is only attached to the surface of the material, the mixing of the material and the acid solution is uneven, and the water vapor is not heated uniformly, the decomposition of the hydrolyzed sugar is serious, the by-products are large, the sugar yield is small, and the sugar is The concentration is low.
  • the furfural yield is low due to the decomposition reaction of furfural itself and the polycondensation reaction with the reaction intermediate. Since developed countries such as Europe and the United States have already stopped furfural production, there have been few reports on furfural technology.
  • the present invention has been made in view of the above problems in the prior art.
  • the invention provides a system for continuously preparing furfural by using a lignocellulosic material, and further provides a method for continuously preparing furfural by using a lignocellulosic material, which at least solves the problem that the prior art cannot continuously react, and the yield of furfural is low.
  • Many reaction by-products, high labor intensity, high production cost, low production efficiency, serious environmental pollution, etc. can effectively improve labor productivity, reduce labor intensity, increase furfural yield, avoid side reactions as much as possible, and have low unit energy consumption. , environmental pollution is small, and the use of energy is rational.
  • a system for continuously preparing furfural using a lignocellulosic material comprising: an acid liquid output unit for respectively outputting a first acid liquid and a second acid liquid; a raw material mixing unit, Connected to the acid liquid output unit for mixing the raw material with the first acid liquid to form a mixture and continuously conveying the mixture; and a feeding unit connected to the raw material mixing unit for receiving the mixture, Compressing the mixture and delivering the mixture outward; a main reaction unit coupled to the feed unit and the acid output unit for receiving the mixture and the second acid, respectively, above The mixture and the second acid solution are sufficiently stirred and mixed under normal pressure to react; the discharge unit is connected to the main reaction unit for solid-liquid separation of the product obtained by the reaction, and the output is contained.
  • An acid pentose solution a stripping reaction column comprising a steam outlet at the top and a first feed inlet, and a stripping steam inlet and an acid outlet at the bottom, wherein a first feed inlet for receiving an acid-containing pentose solution from a first temperature of the discharge unit as a feedstock for performing a dehydration cyclization reaction, the stripping steam inlet for receiving a stripping vapor of a second temperature, a steam outlet for providing the furfural-containing vapor obtained from the reaction, the acid liquid outlet for extracting the acid liquid from the bottom of the column, and a separation unit connected to the steam outlet for neutralizing the acid in the furfural-containing vapor And separating the obtained salt from the furfural-containing vapor to provide a furfural-containing vapor having a reduced acid content; and a purification unit for purifying the obtained furfural.
  • a method for continuously preparing furfural using a lignocellulosic material comprising: an acid liquid output step of respectively outputting a first acid liquid and a second acid liquid; and a raw material mixing step, Mixing the raw material with the first acid liquid to form a mixture; feeding step, compressing the mixture and conveying the mixture outward; hydrolyzing the reaction step, mixing the mixture and the second acid liquid uniformly, and The hydrolysis reaction is carried out under a pressure higher than normal pressure; the discharging step is to separate the solid obtained by the hydrolysis reaction, and the obtained liquid is an acid-containing pentose solution; the stripping reaction step uses a stripping reaction tower Carrying out a stripping reaction step, so that the acid-containing pentose solution from the discharging step at the first temperature enters the stripping reaction column from the top, so that the stripping steam of the second temperature enters the stripping reaction tower from the bottom, and the stripping steam is The pentose solution is
  • the invention is a continuous production system in a true sense, realizes continuous acquisition of products in time, reduces labor intensity and improves production efficiency, and the hydrolysis reaction of lignocellulosic materials only occurs in the main reaction unit, which is reduced.
  • the sugar obtained by the reaction can be discharged in time, and the sugar yield and the sugar concentration are improved.
  • the liquid inorganic acid can be used as a catalyst in the stripping reaction tower, the catalytic ability is strong, and the reaction temperature is low; the stripping reaction tower can also process the low concentration sugar liquid without concentrating the sugar liquid, simplifying The production process.
  • the invention adopts a steam reverse flow stripping reaction process, in which no extractant is added in the reaction process, and the acid-containing pentose sugar solution is contacted with steam from top to bottom, and the furfural formed by the dehydration cyclization reaction is formed by steam. Bring it out, thus avoiding the side reaction of furfural in a liquid acidic environment for a long time.
  • the bottom of the stripping reaction tower of the present invention may not have a reboiler, and the top of the stripping reaction tower may not have a condensing reflux device; since the pentose-containing solution usually contains salts and other sugar impurities, it is in an acidic environment.
  • the heat exchange in the boiler easily causes the reboiler surface to coke and the reaction cannot be continuously carried out.
  • the use of steam direct stripping heating avoids this problem and saves equipment investment.
  • direct steam stripping heating can also control the residence time of the liquid by adjusting the amount of steam to avoid overreaction.
  • the invention simplifies the production process of furfural, and the subsequent separation and purification of furfural is simple and easy, and the whole process design is reasonable. Compared with the traditional one-step process, the yield of furfural is 10-30% higher, and the unit energy consumption is 10-20% lower.
  • FIG. 1 is a schematic diagram of a system for continuously preparing furfural using a lignocellulosic material according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a system for continuously preparing furfural using a lignocellulosic material according to another embodiment of the present invention.
  • FIG. 1 schematically illustrates an embodiment in accordance with the present invention.
  • FIG. 1 it is a system for continuously preparing furfural by using a lignocellulosic material, comprising an acid liquid output unit 10, a raw material mixing unit 20, a feeding unit 30, a main reaction unit 40, a discharging unit 50, and a steam.
  • the reaction column 60, the steam outlet 61, the first raw material inlet 62, the stripping steam inlet 63, the acid liquid outlet 64, the separation unit 70, and the purification unit 80 are provided.
  • the system can continuously produce furfural using a lignocellulosic material in the following process.
  • the lignocellulosic raw material is mixed with the first acid liquid output from the acid liquid output unit 10 in the raw material mixing unit 20 in a certain ratio to form a mixture.
  • the mixture is continuously fed to a feed unit 30 which compresses the mixture and delivers the mixture outward.
  • the mixture continuously and stably enters the main reaction unit 40, and is mixed with the second acid liquid output from the acid liquid output unit 10 at a pressure higher than normal pressure to reach a set solid-liquid ratio to cause it to react.
  • the product after completion of the reaction is continuously and stably conveyed to the discharge unit 50, and the product is subjected to solid-liquid separation in the discharge unit 50, and the output liquid is an acid-containing pentose solution.
  • the acid-containing pentose solution heated by the heater to the first temperature enters the column from the first feed inlet 62 at the top of the stripping reaction column 60, and the stripped steam at the second temperature is stripped from the bottom of the stripping reaction column 60.
  • the inlet 63 enters the column, and the acid-containing pentose solution undergoes a dehydration cyclization reaction in the stripping reaction column 60 to form furfural, and the acid is a catalyst. Subsequently, the produced furfural is taken from the steam outlet 61 at the top of the stripping reaction column 60 with steam.
  • the acid solution is taken from the acid outlet 64 at the bottom of the stripping reaction column 60; the produced furfural-containing vapor enters the separation unit 70 connected to the stripping reaction column 60, and the acid in the furfural vapor is contained in the separation unit 70. Neutralization, a furfural-containing vapor having a reduced acid content is obtained; the furfural-containing vapor having a reduced acid amount is introduced into the purification unit 80 connected to the separation unit 70, and is purified in the purification unit 80.
  • the feedstock mixing unit 20 can include a spiral mixer for mixing the feedstock and the first acid liquor under agitation to form a mixture and providing a continuous feed to the feed unit 30.
  • a spiral mixer allows the raw material to be more evenly mixed with the acid to ensure a smooth subsequent hydrolysis reaction.
  • the feed unit 30 may comprise a screw feeder with a compression function, preferably the screw feeder comprises a compression section, the inner diameter and the pitch of the compression section being gradually reduced in the feed direction, more preferably the spiral feed
  • the device includes a plug section, the plug section is located after the compression section and the inner diameter and pitch remain unchanged.
  • the hydrolysis reaction in the main reaction unit 40 is carried out under conditions higher than normal pressure, and the screw feeder of the feed unit 30 can ensure that the material in the main reaction unit 40 does not back into the feed unit 30 and maintain the host reaction.
  • the pressure in the unit 40 is stabilized, ensuring that the hydrolysis reaction in the main reaction unit 40 is carried out under a stable pressure; moreover, by using the screw feeder, continuous and stable feeding can be provided without clogging.
  • the feed unit 30 may further include a first tapered lowering tube connected to the raw material mixing unit 20 and the screw feeder, respectively, for receiving the mixture from the raw material mixing unit 20 and feeding it to Screw feeder.
  • the use of the first conical blanking tube at the feeding unit 30 to receive and convey the mixture ensures that the mixture smoothly enters the screw feeder, thereby avoiding the poor fluidity of the mixed mixture output from the raw material mixing unit 20 The resulting blockage or poor delivery.
  • the bulk reaction unit 40 can include a spiral reactor that is a flat push flow and has no compression function.
  • the mixture undergoes a hydrolysis reaction in the spiral reactor of the main reaction unit 40.
  • the spiral reactor is set to a flat flow, the reaction can be completed and the reaction efficiency can be improved, so that the mixture in the reactor has the same solid-liquid mixing ratio in any reaction stage. The efficiency of the hydrolysis reaction is increased.
  • the main body reaction unit 40 may further include a second conical dropping tube connected to the feeding unit 30 for receiving the mixture, and the top of the second conical discharging tube is further provided with an acid An acid addition device connected to the liquid output unit 10 for adding a second acid solution.
  • the use of the second conical blanking tube in the main reaction unit 40 to receive and transport the mixture ensures that the mixture smoothly enters the spiral reactor, avoiding clogging or poor transport due to poor fluidity of the solid-liquid mixture output from the feed unit 30.
  • the acid addition device disposed at the top of the second tapered lowering tube further supplements the acid solution required for the reaction to achieve a set solid-liquid ratio, so that the hydrolysis reaction can be efficiently performed.
  • the acid addition device can add a second acid solution by spraying.
  • the spraying is used to more uniformly spray the second acid to the mixture from the feed unit 30, and also to facilitate uniform mixing of the second acid and the mixture.
  • the body reaction unit 40 may also include a steam input port for receiving high temperature steam. This steam input can maintain the reaction temperature of the main reaction unit 40 in an appropriate range, and avoid a decrease in the reaction rate caused by the temperature drop.
  • the body reaction unit 40 may also include a vent valve to vent non-condensable gases generated during the reaction.
  • a vent valve to vent non-condensable gases generated during the reaction.
  • the temperature and pressure of the main reaction unit 40 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed, controlling the vent valve, and the like.
  • the main reaction unit 40 can be set to a temperature of 100-200 ° C and a pressure of 0.1-1.8 MPa; preferably, the temperature is 100-160 ° C, the pressure is 0.1-0.8 MPa; more preferably, the temperature is 115-125 ° C, The pressure is from 0.15 to 0.25 MPa; most preferably, the temperature is 120 ° C and the pressure is 0.2 MPa.
  • the discharge unit 50 can include a screw discharger with a compression function for squeezing filtration and solid-liquid separation of the product.
  • the screw discharger comprises a compression section, and the inner diameter and the pitch of the compression section gradually become smaller along the discharge direction; more preferably, the screw discharger further comprises a plug section, the plug section is located after the compression section and the inner diameter and the pitch remain unchanged;
  • the spiral discharger has a screen at the wall, the screw discharger discharges the liquid through the screen; the spiral discharger has a solid discharge opening at the end for discharging solids.
  • the screw discharger of the discharge unit 50 can ensure that the discharge does not occur during the process of outputting the product, can maintain the pressure in the main reaction unit 40, and can provide continuous and stable discharge without clogging.
  • the temperature of the first acid liquid is preferably 40-95 ° C, more preferably 55-65 ° C, most preferably 60 ° C; the temperature of the second acid liquid is preferably 110-200 ° C, more preferably It is 125-135 ° C, most preferably 130 ° C.
  • Any acid concentration capable of effecting hydrolysis of lignocellulose is within the scope of the present invention.
  • the acid concentration of the first acid liquid and/or the second acid liquid may be from 0.1% by weight to 10% by weight.
  • the second acid liquid added to the main reaction unit 40 is also capable of bringing the solid-liquid mixture to a set solid-liquid mass ratio, preferably a solid-liquid mass ratio of 1:3-1:8.
  • the temperature and pressure within the feed mixing unit 20 and within the feed unit 30 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed.
  • the raw material mixing unit 20 may be set to have a temperature of 40 to 90 ° C and a pressure of normal pressure; and the feeding unit 30 may be set to have a temperature of 40 to 90 ° C.
  • the first acid solution may be an acid solution taken from the acid solution outlet
  • the second acid solution may also be an acid solution produced from the acid solution outlet.
  • Acid recycling can reduce the processing cost of the acid solution and reduce environmental pollution.
  • the separation unit 70 may further comprise a filtration device, preferably a ceramic filter, for filtering the furfural-containing vapor having a reduced acid content to further remove impurities in the furfural-containing vapor.
  • a filtration device preferably a ceramic filter
  • the use of the filter device can effectively reduce the amount of aldehyde sludge generated in the subsequent furfural refining process, and prolong the service life of the reboiler and heat exchange unit of the first distillation column.
  • the system for preparing furfural may further comprise a heat exchange unit comprising: a feedstock passage and a furfural passage.
  • the feed channel receives the acid containing pentose solution as a feedstock and the furfural passage receives the furfural-containing vapor from separation unit 70.
  • the acid-containing pentose solution and the furfural-containing vapor pass through the raw material passage and the furfural passage, respectively, and the channels are separated from each other, but the acid-containing pentose solution and the furfural-containing vapor are exchanged for heat exchange, and the obtained acid-containing is respectively obtained after heat exchange.
  • the pentose solution and the furfural solution are sent to the stripping reaction column 60 and the purification unit 80.
  • the heat exchange unit can effectively utilize the heat of the furfural-containing vapor to increase the temperature of the acid-containing pentose solution, so that the reaction temperature can be reached faster and energy waste is avoided.
  • the purification unit 80 may include a preliminary distillation column having a preliminary distillation column feed port at the middle, a preliminary distillation column vapor outlet at the top and an aqueous liquid inlet, and a reboiled steam at the bottom.
  • the first distillation column reboiler and the top of the column are provided with a condensing reflux device; the condensing reflux device comprises a first distillation column condenser and a preliminary distillation column liquid separation tank; a part of the bottom liquid is reheated by the primary distillation column reboiler to become a re
  • the boiling steam is returned to the preliminary distillation column through the reboiled steam inlet; the first distillation column condenser is connected to the vapor outlet of the preliminary distillation column, and is used for condensing the purified furfural-containing vapor to the fourth temperature condensate; a tank connected to the first distillation column condenser for receiving the condensate, performing liquid separation to
  • the separation unit 70 can include a lye input to input the lye for neutralization to neutralize the acid in the furfural-containing vapor to prevent the acid from decomposing or polycondensing the furfural in subsequent processing.
  • the separation method of the separation unit 70 may be one or several of inertial separation, filtration separation, and centrifugal separation.
  • the present invention preferably employs a cyclone separator belonging to a centrifugal separation method for using a salt.
  • the solid impurities are separated from the furfural-containing vapor to provide a furfural-containing vapor having a reduced acid content.
  • the cyclone separator has the advantages of simple structure, convenient operation, high temperature resistance and long service life.
  • the furfural system can also include an acid heat exchanger for receiving the acid from the acid outlet 64 at the bottom of the stripping reaction column 60 and recovering the heat.
  • the purification unit 80 may further comprise a refining unit for dehydrating and de-lightening the crude furfural product to obtain the product furfural.
  • the purification unit 80 further includes a wastewater evaporator for evaporating a portion of the bottoms liquid exiting the preliminary distillation column.
  • the first temperature may be set to 80-155 ° C
  • the second temperature may be set to 150-220 ° C
  • the top temperature of the stripping reaction column 60 may be set to 140-
  • the bottom temperature of the stripping reaction column 60 can be set to 150-220 ° C
  • the top pressure of the stripping reaction column 60 can be set to 0.26-2.2 MPa (gauge pressure)
  • the bottom pressure can be set to 0.37- 2.2MPa (gauge pressure).
  • the temperature and pressure of the stripping reaction column 60 can be adjusted and set by adjusting the temperature and pressure of the feed, and the like.
  • the third temperature may be set to 20-100 ° C
  • the fourth temperature may be set to 30-90 ° C
  • the preliminary column top temperature may be set to 100-115 ° C.
  • the bottom temperature of the distillation column can be set to 120-160 ° C; the top pressure of the first distillation column can be set to 0-0.03 MPa (gauge pressure), and the bottom pressure can be set to 0-0.35 MPa (gauge pressure).
  • the temperature and pressure of the first distillation column can be adjusted and set by adjusting the temperature and pressure of the feed, the reboil ratio, the reflux ratio, and the like.
  • the stripping reaction column 60 has no reboiler at the bottom of the column, and the top of the stripping reaction column 60 has a non-condensing reflux unit.
  • Fig. 2 schematically shows a preferred embodiment in accordance with the present invention.
  • a system for continuously preparing furfural using a lignocellulosic material comprising an acid liquid output unit 10, a raw material mixing unit 20, a spiral mixer 21, a feeding unit 30, a screw feeder 31, and a first cone.
  • the apparatus can continuously prepare furfural in the following process.
  • the lignocellulosic material is continuously fed to the raw material mixing unit 20, wherein the raw material mixing unit 20 includes a spiral mixer 21, and the raw material is in the spiral mixer 21 and the first acid liquid from the acid liquid output unit 10 (e.g., arrow F)
  • the mixture is uniformly mixed in a certain ratio to form a mixture and continuously output the mixture.
  • the uniformly mixed solid-liquid mixture enters the feed unit 30, which includes a screw feeder 31 and a first tapered lowering tube 32; the mixture continuously enters the screw feeder 31 through the first tapered lowering tube 32, spiraling into
  • the hopper 31 has a compression function including a compression section and a plug section. The inner diameter and the pitch of the compression section gradually become smaller along the feed direction, and the plug section is located after the compression section and the inner diameter and the pitch remain unchanged.
  • the screw feeder compresses the solid-liquid mixture and outputs it to the main reaction unit 40.
  • the main body reaction unit 40 includes a screw reactor 41, a second conical dropping pipe 42, an acid liquid adding device 43, a steam input port 44, and a vent valve 45.
  • the mixture from the screw feeder 31 is fed into the second tapered lowering tube 42.
  • the mixture is added to the second conical feed pipe 42 with the acid addition unit 10 from the acid output unit 10 and by the acid addition device 43 disposed at the top of the second conical feed tube 42 (preferably by spray addition)
  • the diacid solution (as indicated by the arrow S) is continuously mixed to reach the set solid-liquid ratio, and then enters the screw reactor 41, and is thoroughly stirred and mixed under a pressure higher than normal pressure to carry out the reaction.
  • the spiral reactor 41 is preferably of a flat flow type and has no compression function. The high temperature of the second acid can provide the heat required for the reaction.
  • the steam input port 44 can input steam to the screw reactor 41 to compensate for heat loss.
  • the vent valve 45 can be opened according to the pressure change in the screw reactor 41 to release the non-condensable gas to ensure the system pressure is stable.
  • the discharge unit 50 includes a screw discharger 51 with a compression function, a sugar liquid collection tank 52, and a slag tank 53.
  • the screw discharger 51 includes a compression section and a plug section, and the compression section gradually changes along the inner diameter and the pitch of the discharge direction. Small, the plug section is located after the compression section and the inner diameter and pitch remain unchanged.
  • the product is subjected to solid-liquid separation under the action of the extrusion of the screw discharger 51.
  • the liquid is an acid-containing pentose solution, and the liquid enters the sugar liquid collection tank 52; the spiral discharger has a solid discharge port at the end Upon exiting the solid, the solid enters the slag pot 53.
  • the second temperature stripping vapor enters the column from the stripping steam inlet 63 at the bottom of the stripping reaction column 60
  • the first temperature acid-containing pentose solution enters the column from the first feed inlet 62 at the top of the stripping reaction column 60.
  • the acid-containing pentose solution is subjected to a dehydration cyclization reaction in the stripping reaction column 60 to form furfural, and the acid is a catalyst. Subsequently, the produced furfural is withdrawn from the vapor outlet 61 at the top of the stripping reaction column 60 with steam.
  • the acid outlet 64 at the bottom of the stripping reaction column 60 is taken out, and a part of the acid solution recovered is exchanged by the acid heat exchanger 110 for heat recovery, and then sent to the spiral mixer 21 as the first acid solution, and the rest.
  • the portion is directly fed as a second acid to the acid addition device 43 for replenishing the acid and providing thermal energy.
  • the produced furfural-containing vapor enters the separation unit 70 connected to the stripping reaction column 60, and the alkali liquid enters the separation unit 70 from the alkali liquid input port 73, neutralizes the acid in the furfural-containing vapor, and then the steam enters the cyclone 72. And the obtained salt is separated from the furfural-containing vapor to obtain a furfural-containing vapor having a reduced acid content, and the furfural-containing vapor having a reduced acid amount is further passed through the ceramic filter 71 to further remove impurities in the steam to prevent steam from coking in the subsequent heat exchange process. And reduce the production of aldehyde mud.
  • the furfural-containing vapor enters the heat exchange unit 90 through the furfural inlet 93, and the acid-containing pentose sugar solution enters the heat exchange unit 90 through the second raw material inlet 91, and the acid-containing pentose sugar solution and the furfural-containing vapor pass through the raw material passage and the furfural passage, respectively.
  • the heat-exchanged pentose sugar solution and the furfural-containing vapor are exchanged with each other, and the heat-exchanged acid-containing pentose sugar solution is output from the raw material outlet 92 and then enters the stripping reaction column 60 through the first raw material inlet 62.
  • the furfural solution obtained after the heat exchange is output from the furfural outlet 94.
  • the furfural solution enters the purification unit 80 connected to the separation unit 70.
  • the furfural solution is cooled to a third temperature by the furfural solution heat exchanger 95, and then enters the preliminary distillation column 82 from the preliminary distillation column feed port 83, in the preliminary distillation column.
  • the purified furfural-containing vapor is recovered from the vapor outlet 84 of the first distillation column at the top of the column, and then the purified furfural-containing vapor is introduced into the first-stage condenser 86 to be cooled to a fourth temperature, and then sent to the initial stage.
  • the distillation column liquid separation tank 87 is divided into a liquid phase liquid and an oil phase liquid by liquid separation in the liquid separation tank 87 of the preliminary distillation column, and the aqueous phase liquid is returned to the preliminary distillation column 82 through the aqueous liquid inlet 85, and the oil phase liquid is output as coarse.
  • the furfural product; a portion of the bottom liquid recovered from the bottom liquid outlet 89 of the first distillation column is exchanged by the primary distillation column reboiler 81 to become reboiled steam, returned to the preliminary distillation column 82 via the reboiled steam inlet, and the remaining portion of the bottom liquid Produced as wastewater.
  • the purification unit 80 may further comprise a refining unit 88 for dehydrating and delighting the crude furfural product to obtain the product furfural.
  • the system may further include a wastewater evaporator 120 for vaporizing a portion of the liquid at the bottom of the preliminary distillation column 82.
  • the first temperature may be set to 80-155 ° C
  • the second temperature may be set to 150-220 ° C
  • the top temperature of the stripping reaction column 60 may be set to 140-
  • the bottom temperature of the stripping reaction column 60 can be set to 150-220 ° C
  • the top pressure can be set to 0.26-2.2 MPa (gauge pressure)
  • the bottom pressure can be set to 0.37-2.2 MPa (gauge pressure).
  • the temperature and pressure of the stripping reaction column 60 can be adjusted and set by adjusting the temperature and pressure of the feed, and the like.
  • the third temperature may be set to 20-100 ° C
  • the fourth temperature may be set to 30-90 ° C
  • the top temperature of the preliminary distillation column 82 may be set to 100-115 ° C.
  • the bottom temperature can be set to 120-160 ° C;
  • the top pressure of the preliminary column 82 can be set to 0-0.03 MPa (gauge pressure), and the bottom pressure can be set to 0-0.35 MPa (gauge pressure).
  • the temperature and pressure of the preliminary distillation column 82 can be adjusted and set by adjusting the temperature and pressure of the feed, the reboil ratio, the reflux ratio, and the like.
  • the present invention also relates to a method for continuously preparing furfural using a lignocellulosic material, the method comprising: an acid liquid output step of respectively outputting a first acid liquid and a second acid liquid; and a raw material mixing step, the raw material and the raw material
  • the first acid liquid is mixed to form a mixture; in the feeding step, the mixture is compressed and the mixture is transported outward; the hydrolysis reaction step is performed, and the mixture and the second acid liquid are uniformly mixed and made higher than usual a hydrolysis reaction occurs under pressure; a discharge step is performed to separate the solid obtained by the hydrolysis reaction, and the obtained liquid is an acid-containing pentose solution; a stripping reaction step is carried out using a stripping reaction column, and a stripping reaction step is performed.
  • the acid-containing pentose solution from the discharge step at the first temperature is introduced into the stripping reaction column from the top, so that the stripping steam at the second temperature enters the stripping reaction column from the bottom, and the stripping steam is in countercurrent contact with the pentose solution.
  • a dehydration cyclization reaction of the pentose solution to obtain a furfural-containing vapor and an acid solution a separation step of neutralizing the furfural-containing vapor, and separating the obtained salt from the furfural-containing vapor, To obtain a furfural-containing vapor having a reduced acid content; and a purification step, the obtained furfural is purified.
  • the raw material and the first acid liquid may be uniformly mixed by a spiral mixer.
  • the screw feeder with compression function in the feeding step, can be used to compress and deliver the mixture.
  • the mixture can enter the screw feeder through the first conical feed tube.
  • a screw reactor with a flat push flow and no compression function can be employed in the hydrolysis reaction step.
  • the mixture can be passed through a second conical blanking tube into the spiral reactor, and the top of the second conical blanking tube can also be provided with an acid addition device for adding a second acid solution.
  • the acid addition device can add a second acid solution by spraying.
  • high temperature steam can be fed through the steam input port during the hydrolysis reaction step.
  • the non-condensable gas generated during the hydrolysis reaction can be discharged through the vent valve.
  • the temperature in the hydrolysis reaction step may be from 100 to 200 ° C and the pressure may be from 0.1 to 1.8 MPa.
  • the product in the discharging step, may be subjected to extrusion filtration and solid-liquid separation using a screw discharger with a compression function.
  • the temperature of the first acid liquid may be 40-95 ° C; the temperature of the second acid liquid may be 110-200 ° C; the acid concentration of the first acid liquid and the second acid liquid may be 0.1- 10wt%.
  • the main reaction unit may have a reaction temperature of 100 to 200 ° C and a reaction pressure of 0.1 to 1.8 MPa, for example, by adjusting the temperature and pressure of the feed, controlling the vent valve, and the like.
  • the temperature of the raw material mixing step may be 40-90 ° C
  • the pressure may be atmospheric pressure
  • the temperature of the feeding step may be 40-90 ° C, for example, by adjusting the temperature and pressure of the feed, etc. The way to set it up.
  • the first acid liquid and/or the second acid liquid may be an acid liquid obtained by a stripping reaction step.
  • the screw feeder can include a compression section with the inner diameter and pitch of the compression section becoming progressively smaller along the feed direction.
  • the screw feeder can also include a plug section with the plug section located after the compression section and the inner diameter and pitch remain unchanged.
  • the screw discharger can include a compression section, the inner diameter and the pitch of the compression section becoming progressively smaller along the discharge direction.
  • the screw discharger can also include a plug section with the plug section located after the compression section and the inner diameter and pitch remain unchanged.
  • the spiral discharger wall may have a screen through which the screw discharger discharges the liquid; the tip of the screw discharger may also have a solid discharge opening for discharging solids.
  • the separating step can also include filtering the furfural-containing vapor having a reduced acid content to provide filtered furfural-containing vapor.
  • the method may further comprise a heat exchange step, wherein the heat exchange between the furfural-containing vapor from the separation step and the acid-containing pentose solution having a temperature lower than the first temperature is used to isolate each other, thereby The acid-containing pentose solution reaches a first temperature and serves as a feedstock for the stripping reaction step and provides a furfural solution.
  • the purifying step comprises rectification using a preliminary distillation column; the furfural solution is cooled to a third temperature and is introduced into the first distillation column for rectification, and the purified furfural-containing vapor obtained by rectification is condensed to the first stage.
  • the obtained aqueous phase liquid returns to the preliminary distillation column, and the oil phase liquid output is the crude furfural product; a part of the bottom liquid obtained by the rectification leaves the preliminary distillation column, and a part of the bottom liquid passes through the preliminary distillation column.
  • the boiler is exchanged, it is re-entered into the preliminary distillation column as reboiled steam.
  • the furfural-containing vapor can be neutralized using a lye in the separation step.
  • the salt can be separated from the furfural-containing vapor using a cyclone in a separation step to provide a furfural-containing vapor having a reduced acid content.
  • the acid obtained in the stripping reaction step can be subjected to thermal energy recovery.
  • the process may further comprise a refining step wherein the crude furfural product is subjected to dehydration and de-light refining to obtain the product furfural.
  • the method may further comprise evaporating a portion of the bottoms liquid exiting the preliminary column.
  • the first temperature may be 80-155 ° C
  • the second temperature may be 150-220 ° C
  • the stripping reaction column top temperature may be 140-210 ° C
  • the bottom temperature may be 150-220 °C
  • the top pressure of the stripping reaction column may be 0.26-2.2 MPa (gauge pressure)
  • the bottom pressure may be 0.37-2.2 MPa (gauge pressure).
  • the temperature and pressure of the stripping reaction column can be adjusted and set by adjusting the temperature and pressure of the feed.
  • the third temperature may be 20-100 ° C
  • the fourth temperature may be 30-90 ° C
  • the preliminary column top temperature may be 100-115 ° C
  • the bottom temperature may be 120-160 ° C.
  • the pressure at the top of the first distillation column may be 0-0.03 MPa (gauge pressure), and the pressure at the bottom of the column may be 0-0.35 MPa (gauge pressure).
  • the temperature and pressure of the first distillation column can be adjusted and set by adjusting the temperature and pressure of the feed, the reboil ratio, and the reflux ratio.
  • the stripping reaction column bottom has no reboiler and the stripping reaction column top has no condensing reflux unit.
  • the acid may be selected from at least one of sulfuric acid, hydrochloric acid, phosphoric acid or nitric acid, and the concentration of the acid may be from 0.1% by weight to 10% by weight, preferably from 1% by weight to 5% by weight, most preferably from 2% by weight to 4% by weight. %.
  • the pentose solution may have a sugar concentration of from 1 to 100 g/l, preferably from 1 g/l to 50 g/l, most preferably from 5 to 30 g/l.
  • the furfural was continuously prepared using a lignocellulosic material using a system as shown in FIG.
  • the lignocellulosic material is continuously fed to the raw material mixing unit 20, wherein the raw material mixing unit 20 includes a spiral mixer 21, and the raw material is uniformly mixed with the first acid liquid (as indicated by an arrow F) in the spiral mixer 21.
  • the first acid solution is a part of the acid liquid at the bottom of the stripping reaction column 60, and is cooled by the acid heat exchanger 110 to a temperature of 60 °C.
  • the uniformly mixed solid-liquid mixture enters the feed unit 30, which includes a screw feeder 31 and a first tapered lowering tube 32; the mixture continuously enters the screw feeder 31 through the first tapered lowering tube 32, spiraling into
  • the hopper 31 has a compression function, which comprises a compression section and a plug section.
  • the inner diameter and the pitch of the compression section gradually become smaller along the feeding direction, the stopper section is located after the compression section and the inner diameter and the pitch remain unchanged, and the screw feeder 31 can be
  • the solid-liquid mixture is compressed and output to the main reaction unit 40.
  • the main body reaction unit 40 includes a screw reactor 41, a second conical dropping pipe 42, an acid liquid adding device 43, a steam input port 44, and a vent valve 45.
  • the mixture from the screw feeder 31 is fed into the second tapered lowering tube 42.
  • the mixture is continuously mixed with a second acid solution (as indicated by arrow S) in the second conical blanking tube 42 to achieve a set solid-liquid ratio, and the second acid liquid is part of the acid liquid at the bottom of the stripping reaction column 60.
  • It is added by an acid addition device 43 disposed at the top of the second tapered lowering tube 42 (preferably by spray addition), and after solid-liquid mixing, it enters the spiral reactor 41, and is fully pressurized at a pressure higher than normal pressure. Stir and mix to carry out the reaction.
  • the spiral reactor 41 is preferably of a flat flow type and has no compression function.
  • the second acid solution does not undergo heat exchange to cool down, and its own high temperature can provide the temperature required for the reaction.
  • the steam input port 44 can input steam to the screw reactor 41 to compensate for heat loss.
  • the vent valve 45 can be opened according to the pressure change in the screw reactor 41 to release the non-condensable gas to ensure the system pressure is stable.
  • the discharge unit 50 includes a screw discharger 51 with a compression function, a sugar liquid collection tank 52, and a slag tank 53.
  • the screw discharger 51 includes a compression section and a plug section, and the inner diameter and the pitch of the compression section gradually change along the discharge direction. Small, the plug section is located after the compression section and the inner diameter and pitch remain unchanged. Among them, the product is subjected to solid-liquid separation under the action of the extrusion of the screw discharger 51. The filtered solid material is continuously passed into the slag tank 53 for further processing.
  • the filtered acid-containing pentose solution is collected by the collection tank 52, the filtered aldehyde-containing vapor recovered from the top of the stripping reaction column 60 is exchanged in the heat exchange unit 90, and the acid-containing pentose solution is pre-treated.
  • the stripping reaction column 60 After heating to 150 ° C, it enters the stripping reaction column 60 from the first raw material inlet 62, and the stripping steam having a temperature of 180 ° C is fed from the stripping steam inlet 63 into the stripping reaction column 60, and the rising stripping steam and the pentose solution In the countercurrent contact, the acid-containing pentose solution is further heated to 170 ° C in the stripping reaction column 60, and then subjected to a dehydration cyclization reaction in the reaction column.
  • the produced furfural was introduced into the stripping steam, and was taken out from the steam outlet 61 at the top of the stripping reaction column 60 at 170 ° C (the top pressure was 0.74 MPa), and the produced furfural-containing vapor contained 8 wt% of furfural.
  • the produced furfural-containing vapor is output to the separation unit 70, neutralized in the vapor phase with a 12 wt% sodium carbonate solution, and the obtained salt is separated from the furfural-containing vapor by a cyclone 72 to obtain a furfural-containing vapor having a reduced acid content. Then, the furfural-containing vapor enters the ceramic filter 71 and is filtered to enter the heat exchange unit 90.
  • the filtered furfural-containing vapor is subjected to heat exchange with the acid-containing pentose solution to obtain a furfural solution having a temperature of 170 °C.
  • the furfural solution enters purification unit 80.
  • the furfural solution is further cooled to 85 ° C by the furfural solution heat exchanger 95, and then enters the preliminary distillation column 82 from the preliminary distillation column feed port 83.
  • the crude furfural vapor is recovered from the preliminary distillation column vapor outlet 84.
  • the condenser 8 of the first distillation column is condensed to 80 ° C, it is introduced into the liquid separation tank 87 of the preliminary distillation column, and the liquid phase liquid and the oil phase liquid are obtained by liquid separation, wherein the aqueous phase liquid contains aldehyde concentration of 6 wt%, and the oil phase liquid contains water of 8 wt%.
  • the aqueous phase liquid is returned from the top of the first distillation column separation tank 87 and from the aqueous phase liquid inlet 85 to the preliminary distillation column 82.
  • the oil phase liquid is output as a crude furfural product and is passed to the crude furfural storage tank.
  • the crude furfural product can be used as a product furfural after subsequent dehydration and de-light purification.
  • the furfural yield was 88% (relative to the theoretical yield of a 5 g/l pentose solution).
  • the acid solution outlet 64 at the bottom of the stripping reaction column 60 has an acid liquid temperature of 175 ° C, a part of which is exchanged by the acid heat exchanger 110 for heat recovery, and then sent to the spiral mixer 21 as the first acid liquid.
  • the remaining portion is directly fed to the acid addition device 43 as a second acid solution for replenishing the acid solution and providing thermal energy.
  • the preliminary distillation column reboiler 80 is heated by steam, and a part of the bottom liquid recovered from the liquid outlet 89 of the preliminary distillation column bottom is exchanged by the primary distillation column reboiler 31 to become reboiled steam, and the reboiled steam inlet is returned to the initial stage.
  • the distillation column 32, the remaining part of the bottom liquid is produced as waste water, and the produced waste water can enter the waste water evaporator 120 and be recycled after secondary evaporation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Furan Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

本发明公开了一种利用木质纤维素类原料连续制备糠醛的系统及方法,该系统包括酸液输出单元、原料混合单元、进料单元、主体反应单元、出料单元、汽提反应塔、分离单元和纯化单元。该方法包括酸液输出步骤、原料混合步骤、进料步骤、水解反应步骤、出料步骤、汽提反应步骤、分离步骤和纯化步骤。本发明是真正意义上的连续生产系统,在时间上实现了产品的连续获取,降低了劳动强度、提高了生产效率。整个工艺设计合理,糠醛收率高,单位能耗低。

Description

利用木质纤维素类原料连续制备糠醛的系统及方法 技术领域
本发明属于糠醛生产技术领域,特别是涉及到两步法连续制备糠醛的技术。
背景技术
糠醛(又称呋喃甲醛)是一种重要的化工产品,广泛应用于合成塑料、医药、农药等工业领域,每年全球糠醛的需求量极大。糠醛可以有选择性地从石油、植物油中萃取其中的不饱和组分,也可以从润滑油和柴油中萃取其中的芳香组分。随着能源危机的加剧及环保要求,利用可再生的农林废弃物生产高附加值的糠醛,受到人们越来越多的重视。
目前在工业规模上,唯一能获得糠醛的方法仍然是以玉米芯为原料,通过水解的方法得到。根据玉米芯半纤维素中戊聚糖水解和戊糖单体脱水环化是否在同一个反应器内进行,糠醛生产技术又可分为一步法和两步法。
一步法是把含半纤维素的原料装入水解锅中,在酸催化和一定温度下,使半纤维素水解成戊糖,同时戊糖又被脱水形成糠醛。一步法因其设备投资少,操作简单,在糠醛工业应用广泛。但一步法由于原料加热不均匀,糠醛收率低,蒸汽消耗大,环境污染严重。
两步法是将半纤维素的水解反应和戊糖的脱水反应分成两步,分别在不同的设备中完成,其反应式如下:
Figure PCTCN2018117649-appb-000001
目前在国内或国际上,两步法中的第一步——利用木质纤维素类原料制糖的工艺——通常采用稀酸水解的方法,现有酸水解装置均是间歇式反应器,其劳动强度大、生产效率低、占地面积大、污染严重。另外,由于现有反应器存在的酸液仅附在物料表面、物料和酸液的混合不均匀、水蒸气加热不均匀等问题,导致水解糖分解严重、副产物多、糖收率小、糖浓度低。
在两步法中的第二步——戊糖脱水环化过程,由于糠醛自身的分解反 应以及和反应中间体的缩聚反应,使得糠醛收率较低。由于欧美等发达国家早已停止糠醛生产,因此对糠醛技术的研究报道很少。
因此,研究利用木质纤维素类原料连续制备糠醛的系统及方法对于解决现有技术中的上述技术问题具有积极的意义。
发明内容
考虑到上述现有技术中的问题而提出了本发明。本发明提供了一种利用木质纤维素类原料连续制备糠醛的系统,还提供了利用木质纤维素类原料连续制备糠醛的方法,其至少解决了现有技术中无法连续反应,糠醛收率低,反应副产物多,劳动强度大,生产成本高,生产效率低,环境污染严重等问题,能够有效地提高劳动生产率,降低劳动强度,提高糠醛收率,尽可能避免副反应发生,单位能耗低,环境污染小,合理利用能量。
根据本发明的一方面,提供了一种利用木质纤维素类原料连续制备糠醛的系统,该系统包括:酸液输出单元,用于分别输出第一酸液和第二酸液;原料混合单元,与所述酸液输出单元相连,用于将所述原料与第一酸液混合以形成混合物并连续输送所述混合物;进料单元,与所述原料混合单元相连,用于接收所述混合物、对所述混合物进行压缩并向外输送所述混合物;主体反应单元,与所述进料单元和所述酸液输出单元相连,用于分别接收所述混合物和第二酸液,并在高于常压的压力下充分搅拌和混合所述混合物和第二酸液以使其反应;出料单元,与所述主体反应单元相连,用于对反应得到的生成物进行固液分离,并输出含酸的戊糖溶液;汽提反应塔,其包括位于顶部的蒸汽出口和第一原料入口,以及位于底部的汽提蒸汽入口和酸液出口,其中,所述第一原料入口用于接收来自出料单元的第一温度的含酸的戊糖溶液作为原料以进行脱水环化反应,所述汽提蒸汽入口用于接收第二温度的汽提蒸汽,所述蒸汽出口用于提供由该反应得到的含糠醛蒸汽,所述酸液出口用于从塔底采出酸液;分离单元,其与所述蒸汽出口相连,用于中和含糠醛蒸汽中的酸,并将所得的盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽;以及纯化单元,其用于纯化所得的糠醛。
根据本发明的另一方面,提供了一种利用木质纤维素类原料连续制备糠醛的方法,该方法包括:酸液输出步骤,分别输出第一酸液和第二酸液;原料混合步骤,使所述原料与所述第一酸液混合形成混合物;进料步骤,将所述混合物压缩并向外输送所述混合物;水解反应步骤,将所述混合物 和所述第二酸液混合均匀,并使其在高于常压的压力下发生水解反应;出料步骤,使水解反应得到的生成物固液分离,得到的液体为含酸的戊糖溶液;汽提反应步骤,使用汽提反应塔进行汽提反应步骤,使第一温度的来自出料步骤的含酸的戊糖溶液自顶部进入汽提反应塔,使第二温度的汽提蒸汽自底部进入汽提反应塔,汽提蒸汽与戊糖溶液逆流接触,戊糖溶液发生脱水环化反应,从而获得含糠醛蒸汽和酸液;分离步骤,对所述含糠醛蒸汽进行中和,并将所得的盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽;以及纯化步骤,纯化所得的糠醛。
本发明是真正意义上的连续生产系统,在时间上实现了产品的连续获取,降低了劳动强度、提高了生产效率,且木质纤维素类原料的水解反应仅在主体反应单元中发生,减少了副产物的生成,反应得到的糖能够及时排出,提高了糖收率及糖浓度。在戊糖制备糠醛的过程中,汽提反应塔中可使用液体无机酸为催化剂,催化能力强,反应温度低;汽提反应塔还能够处理低浓度糖液,无需对糖液进行浓缩,简化了生产工艺。本发明采用蒸汽逆流汽提反应的工艺流程,反应过程不加入任何萃取剂,含酸的戊糖溶液自上而下与蒸汽接触,在发生脱水环化反应生成糠醛的同时,生成的糠醛被蒸汽带出,这样避免了糠醛长时间处于液体酸性环境而发生副反应。本发明汽提反应塔塔底可以不设再沸器,汽提反应塔塔顶可以不设冷凝回流装置;由于含戊糖的溶液中通常含有盐和其他糖类杂质,在酸性环境下在再沸器中换热容易使再沸器表面结焦而使反应不能连续进行,使用蒸汽直接汽提加热避免了这个问题并节省设备投资。同时,直接蒸汽汽提加热还可以通过调整蒸汽量控制液体的停留时间,避免反应过度。本发明简化了糠醛生产过程,后续的糠醛分离以及纯化简便易行,整个工艺设计合理,与传统一步法工艺相比,糠醛收率高10-30%,单位能耗低10-20%。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
图1是根据本发明的一个实施方案所述的一种利用木质纤维素类原料连续制备糠醛的系统的示意图。
图2是根据本发明的另一个实施方案所述的一种利用木质纤维素类原料连续制备糠醛的系统的示意图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
图1示意性示出了根据本发明的一个实施方案。
如图1所示,其为一种利用木质纤维素类原料连续制备糠醛的系统,包括酸液输出单元10,原料混合单元20,进料单元30,主体反应单元40,出料单元50,汽提反应塔60,蒸汽出口61,第一原料入口62,汽提蒸汽入口63,酸液出口64,分离单元70,纯化单元80。
该系统可以以下述工艺利用木质纤维素类原料连续制备糠醛。
木质纤维素类原料在原料混合单元20中与酸液输出单元10输出的第一酸液以一定比例混合均匀形成混合物。混合物被连续送入进料单元30,进料单元30对混合物进行压缩并向外输送混合物。混合物连续稳定地进入主体反应单元40,并且在高于常压的压力下与酸液输出单元10输出的第二酸液混合达到设定的固液比以使其反应。反应完成后的生成物被连续稳定地输送至出料单元50,生成物在出料单元50中进行固液分离,输出的液体为含酸的戊糖溶液。被加热器加热到第一温度的含酸的戊糖溶液从汽提反应塔60顶部的第一原料入口62进入塔内,第二温度的汽提蒸汽从汽提反应塔60底部的汽提蒸汽入口63进入塔内,含酸的戊糖溶液在汽提反应塔60内发生脱水环化反应生成糠醛,酸为催化剂,随后,生成的糠醛随蒸汽从汽提反应塔60顶部的蒸汽出口61采出,酸液从汽提反应塔60底部的酸液出口64采出;采出的含糠醛蒸汽进入与汽提反应塔60相连的分离单元70,在分离单元70中含糠醛蒸汽中的酸被中和,得到含酸量降低的含糠醛蒸汽;含酸量降低的含糠醛蒸汽进入与分离单元70相连的纯化单元80,并在纯化单元80中被纯化。
在一个优选的实施方案中,原料混合单元20可以包括螺旋混合器,其用于将原料和第一酸液在螺旋搅拌作用下混合均匀而形成混合物,并向进料单元30提供连续进料。采用螺旋混合器能够使原料和酸液混合得更加均匀,确保后续水解反应顺利进行。
在一个优选的实施方案中,进料单元30可以包括带压缩功能的螺旋进料器,优选螺旋进料器包括压缩段,压缩段内径和螺距沿进料方向逐渐变小,更优选螺旋进料器包括料塞段,料塞段位于压缩段之后且内径和螺距 保持不变。螺旋进料器,用于对所述混合物进行压缩并将所述混合物输送到所述主体反应单元40。主体反应单元40中的水解反应在高于常压的条件下进行,进料单元30的螺旋进料器能够确保主体反应单元40中的物料不会反蹿回进料单元30,并且维持主体反应单元40内压力稳定,保证主体反应单元40中的水解反应在稳定的压力下进行;此外,通过使用螺旋进料器,还能提供连续稳定地进料,不会出现堵塞现象。
在一个优选的实施方案中,进料单元30还可以包括分别与原料混合单元20和螺旋进料器连接的第一锥形下料管,用于接收来自原料混合单元20的混合物,并输送给螺旋进料器。在进料单元30使用第一锥形下料管来接收并输送混合物,能够确保混合物顺利地进入螺旋进料器,从而可避免因为从原料混合单元20输出的混合均匀的混合物流动性较差而导致的堵塞或输送不畅。
在一个优选的实施方案中,主体反应单元40可以包括螺旋反应器,该螺旋反应器为平推流式并且无压缩功能。混合物在主体反应单元40的螺旋反应器中发生水解反应,螺旋反应器设置为平推流时,可以使反应完全以及提高反应效率,使得反应器中的混合物在任意反应阶段固液混合比一致,提高了水解反应的效率。
在一个优选的实施方案中,主体反应单元40还可以包括与进料单元30连接、用于接收混合物的第二锥形下料管,该第二锥形下料管的顶部还设置有与酸液输出单元10连接的酸液添加装置,用于添加第二酸液。在主体反应单元40使用第二锥形下料管来接收并输送混合物能够确保混合物顺利地进入螺旋反应器,避免从进料单元30输出的固液混合物流动性较差导致的堵塞或输送不畅;在第二锥形下料管的顶部设置的酸液添加装置进一步补充反应所需的酸液以达到设定的固液比,使得水解反应能够高效进行。
在一个优选的实施方案中,酸液添加装置可以通过喷淋添加第二酸液。采用喷淋的方式能够更均匀地将第二酸液喷洒至来自进料单元30的混合物,还有助于第二酸液和混合物的均匀混合。
在一个优选的实施方案中,主体反应单元40还可以包括蒸汽输入口,其用于接收高温蒸汽。该蒸汽输入能够维持主体反应单元40的反应温度在合适的范围,避免温度下降而引起的反应速率降低。
在一个优选的实施方案中,主体反应单元40还可以包括放空阀,以排出反应过程中产生的不凝气。这样,能够保证主体反应单元40内的压力在 合适的范围内,从而使得水解反应稳定进行。
在一个优选的实施方案中,主体反应单元40的温度和压力可通过例如调整进料的温度和压力、控制放空阀等方式来进行调节和设置。主体反应单元40能够被设置成温度为100-200℃,压力为0.1-1.8MPa;优选地,温度为100-160℃,压力为0.1-0.8MPa;更优选地,温度为115-125℃,压力为0.15-0.25MPa;最优选地,温度为120℃,压力为0.2MPa。
在一个优选的实施方案中,出料单元50可以包括带压缩功能的螺旋出料器,螺旋出料器用于对生成物进行挤压过滤和固液分离。优选螺旋出料器包括压缩段,压缩段内径和螺距沿出料方向逐渐变小;更优选螺旋出料器还包括料塞段,料塞段位于压缩段之后且内径和螺距保持不变;更优选螺旋出料器器壁处有筛网,螺旋出料器通过筛网排出液体;螺旋出料器末端有固体排料口用于排出固体。出料单元50的螺旋出料器能够确保输出生成物的过程中不会发生喷料,能够维持主体反应单元40内压力稳定;此外还能够提供连续稳定地出料,不会出现堵塞现象。
在一个优选的实施方案中,第一酸液的温度优选为40-95℃,更优选为55-65℃,最优选为60℃;第二酸液的温度优选为110-200℃,更优选为125-135℃,最优选为130℃。任何能够实现木质纤维素水解的酸浓度均在本发明的考虑范围内,在一个优选实施方案中,第一酸液和/或第二酸液的酸浓度可以为0.1wt%-10wt%。
在一个优选的实施方案中,加入到主体反应单元40的第二酸液还能够使固液混合物达到设定的固液质量比,优选固液质量比为1:3-1:8。
在一个优选的实施方案中,原料混合单元20内和进料单元30内的温度和压力均可通过例如调整进料的温度和压力等方式来进行调节和设置。原料混合单元20可以设置成温度为40-90℃,压力为常压;进料单元30可以设置成温度为40-90℃。
在一个优选的实施方案中,第一酸液可以为从所述酸液出口采出的酸液,以及第二酸液也可以为从所述酸液出口采出的酸液。酸液循环利用能够降低酸液的处理成本,并且能够减少环境污染。
在一个优选的实施方案中,分离单元70还可以包括过滤装置,优选陶瓷过滤器,该过滤装置用于对含酸量降低的含糠醛蒸汽进行过滤,以进一步去除含糠醛蒸汽中的杂质。过滤装置的使用能有效降低后续糠醛精制过程中的醛泥的产生量,延长初馏塔再沸器及换热单元的使用寿命。
在一个优选的实施方案中,该制备糠醛的系统还可以包括换热单元, 该换热单元包括:原料通道和糠醛通道。原料通道接收含酸的戊糖溶液作为原料,糠醛通道接收来自分离单元70的含糠醛蒸汽。含酸的戊糖溶液和含糠醛蒸汽分别通过原料通道和糠醛通道,通道之间互相隔离但能够使含酸的戊糖溶液和含糠醛蒸汽进行热交换,热交换后分别将所得的含酸的戊糖溶液和糠醛溶液送入汽提反应塔60和纯化单元80。采用换热单元能够有效地利用含糠醛蒸汽的热量来提高含酸的戊糖溶液的温度,使其能够更快达到反应温度,避免了能量的浪费。
在一个优选的实施方案中,纯化单元80可以包括:初馏塔,其具有位于中部的初馏塔进料口、位于顶部的初馏塔蒸汽出口和水相液体入口、位于底部的再沸蒸汽入口和初馏塔塔底液体出口;糠醛溶液换热器,糠醛溶液经糠醛溶液换热器降温至第三温度经初馏塔进料口进入初馏塔;所述初馏塔塔底配有初馏塔再沸器、塔顶配有冷凝回流装置;所述冷凝回流装置包括初馏塔冷凝器和初馏塔分液罐;一部分塔底液体经初馏塔再沸器换热后成为再沸蒸汽经再沸蒸汽入口返回初馏塔;初馏塔冷凝器,其与初馏塔蒸汽出口相连,用于将纯化后的含糠醛蒸汽冷凝至第四温度的冷凝液;初馏塔分液罐,其与初馏塔冷凝器相连,用于接收所述冷凝液,进行分液以得到水相液体和油相液体,并将所述水相液体经所述水相液体入口送回初馏塔,将所述油相液体输出作为粗糠醛产物。
在一个优选的实施方案中,分离单元70可以包括碱液输入口以输入用于中和的碱液,以中和含糠醛蒸汽中的酸,避免酸在后续处理中使糠醛分解或缩聚。
在一个优选的实施方案中,分离单元70的分离方法可以为惯性分离、过滤分离、离心分离中的一种或几种,本发明优选采用属于离心分离方法的旋风分离器,其用于将盐及固体杂质与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽。旋风分离器具有结构简单、操作方便、耐高温、寿命长等优点。
在一个优选的实施方案中,该制备糠醛系统还可以包括酸液换热器,用于接收从汽提反应塔60底部的酸液出口64采出的酸液并进行热能回收。
在一个优选的实施方案中,纯化单元80还可以包括精制装置,用于对粗糠醛产物进行脱水和脱轻精制以得到产品糠醛。
在一个优选的实施方案中,纯化单元80还包括废水蒸发器,用于对排出初馏塔的塔底液体的一部分进行蒸发再利用。
在一个优选的实施方案中,所述第一温度可以被设置为80-155℃,所 述第二温度可以被设置为150-220℃,汽提反应塔60塔顶温度可以被设置为140-210℃,汽提反应塔60塔底温度可以被设置为150-220℃,汽提反应塔60塔顶压力可以被设置为0.26-2.2MPa(表压),塔底压力可以被设置为0.37-2.2MPa(表压)。汽提反应塔60的温度和压力可通过调整进料的温度和压力等来进行调节和设置。
在一个优选的实施方案中,所述第三温度可以被设置为20-100℃,第四温度可以被设置为30-90℃,初馏塔塔顶温度可以被设置为100-115℃,初馏塔塔底温度可以被设置为120-160℃;初馏塔塔顶压力可以被设置为0-0.03MPa(表压),塔底压力可以被设置为0-0.35MPa(表压)。初馏塔的温度和压力可通过调整进料的温度和压力、再沸比、回流比等来进行调节和设置。
在一个优选的实施方案中,汽提反应塔60塔底无再沸器,汽提反应塔60塔顶无冷凝回流装置。
图2示意性示出了根据本发明的一个优选的实施方案。其中,提供了一种利用木质纤维素类原料连续制备糠醛的系统,包括酸液输出单元10,原料混合单元20,螺旋混合器21,进料单元30,螺旋进料器31,第一锥形下料管32,主体反应单元40,螺旋反应器41,第二锥形下料管42,酸液添加装置43,蒸汽输入口44,放空阀45,出料单元50,螺旋出料器51,糖液收集罐52,渣罐53,汽提反应塔60,蒸汽出口61,第一原料入口62,汽提蒸汽入口63,酸液出口64,分离单元70,陶瓷过滤器71,旋风分离器72,碱液输入口73,纯化单元80,初馏塔再沸器81,初馏塔82,初馏塔进料口83,初馏塔蒸汽出口84,水相液体入口85,初馏塔冷凝器86,初馏塔分液罐87,精制装置88,初馏塔塔底液体出口89,换热单元90,第二原料入口91,原料出口92,糠醛入口93,糠醛出口94,糠醛溶液换热器95,酸液换热器110,废水蒸发器120。
该装置可以以下述工艺连续制备糠醛。
木质纤维素类原料被连续送入原料混合单元20,其中该原料混合单元20包括螺旋混合器21,原料在螺旋混合器21中与来自酸液输出单元10的第一酸液(如箭头F所示)以一定比例混合均匀,以形成混合物并连续输出混合物。
混合均匀的固液混合物进入进料单元30,其包括螺旋进料器31和第一锥形下料管32;该混合物经过第一锥形下料管32连续进入螺旋进料器31,螺旋进料器31带压缩功能,其包括压缩段和料塞段,压缩段内径和螺 距沿进料方向逐渐变小,料塞段位于压缩段之后且内径和螺距保持不变。螺旋进料器可对固液混合物进行压缩并向外输出至主体反应单元40。
主体反应单元40包括螺旋反应器41、第二锥形下料管42、酸液添加装置43、蒸汽输入口44和放空阀45。来自螺旋进料器31的混合物被送入第二锥形下料管42。混合物在第二锥形下料管42中与来自酸液输出单元10、并由设置在第二锥形下料管42的顶部的酸液添加装置43进行添加(优选通过喷淋添加)的第二酸液(如箭头S所示)继续混合达到设定的固液比,然后进入螺旋反应器41,在高于常压的压力下充分搅拌和混合,以进行反应。螺旋反应器41优选为平推流式并且无压缩功能。第二酸液的高温能够提供反应所需的热量。
蒸汽输入口44可以向螺旋反应器41输入蒸汽来弥补热量损失。反应过程中,可根据螺旋反应器41内的压力变化适时开启放空阀45,释放不凝气,确保系统压力稳定。
反应完成后的生成物进入出料单元50。该出料单元50包括带压缩功能的螺旋出料器51、糖液收集罐52、渣罐53,螺旋出料器51包括压缩段和料塞段,压缩段沿出料方向内径和螺距逐渐变小,料塞段位于压缩段之后且内径和螺距保持不变。其中,生成物在螺旋出料器51的挤压作用下进行固液分离。螺旋出料器器壁处有筛网,螺旋出料器通过筛网排出液体,液体为含酸的戊糖溶液,该液体进入糖液收集罐52;螺旋出料器末端有固体排料口用于排出固体,该固体进入渣罐53。
第二温度的汽提蒸汽从汽提反应塔60底部的汽提蒸汽入口63进入塔内,第一温度的含酸的戊糖溶液从汽提反应塔60顶部的第一原料入口62进入塔内,含酸的戊糖溶液在汽提反应塔60内发生脱水环化反应生成糠醛,酸为催化剂,随后,生成的糠醛随蒸汽从汽提反应塔60顶部的蒸汽出口61采出,酸液从汽提反应塔60底部的酸液出口64采出,采出的酸液的一部分经酸液换热器110换热,进行热能回收,之后作为第一酸液被送入螺旋混合器21,其余的部分作为第二酸液直接被送入酸液添加装置43,用于补充酸液并提供热能。
采出的含糠醛蒸汽进入与汽提反应塔60相连的分离单元70,碱液从碱液输入口73进入分离单元70,中和含糠醛蒸汽中的酸,然后蒸汽进入旋风分离器72将中和得到的盐与含糠醛蒸汽分离得到含酸量降低的含糠醛蒸汽,含酸量降低的含糠醛蒸汽继续通过陶瓷过滤器71,进一步去除蒸汽中的杂质,防止蒸汽在后续换热过程中结焦并降低醛泥的产生。
含糠醛蒸汽通过糠醛入口93进入换热单元90,含酸的戊糖溶液通过第二原料入口91进入换热单元90,含酸的戊糖溶液和含糠醛蒸汽分别通过原料通道和糠醛通道,通道之间互相隔离但能够使含酸的戊糖溶液和含糠醛蒸汽进行热交换,换热后的含酸的戊糖溶液从原料出口92输出后通过第一原料入口62进入汽提反应塔60,换热后所得的糠醛溶液从糠醛出口94输出。
然后,糠醛溶液进入与分离单元70相连的纯化单元80,首先糠醛溶液经糠醛溶液换热器95降温至第三温度,然后从初馏塔进料口83进入初馏塔82,在初馏塔82中纯化后从塔顶的初馏塔蒸汽出口84采出纯化后的含糠醛蒸汽,随后,纯化后的含糠醛蒸汽进入初馏塔冷凝器86进行降温至第四温度,然后被送入初馏塔分液罐87,在初馏塔分液罐87中分液得到水相液体和油相液体,水相液体通过水相液体入口85回流至初馏塔82内,油相液体输出作为粗糠醛产物;初馏塔塔底液体出口89采出的一部分塔底液体经初馏塔再沸器81换热后成为再沸蒸汽,经再沸蒸汽入口返回初馏塔82,其余部分塔底液体作为废水采出。
在一个优选的实施方案中,纯化单元80还可以包括精制装置88,用于对所述粗糠醛产物进行脱水和脱轻精制以得到产品糠醛。
在一个优选的实施方案中,该系统还可以包括废水蒸发器120,用于对一部分初馏塔82塔底液体进行蒸发再利用。
在一个优选的实施方案中,所述第一温度可以被设置为80-155℃,所述第二温度可以被设置为150-220℃,汽提反应塔60塔顶温度可以被设置为140-210℃,汽提反应塔60塔底温度可以被设置为150-220℃,塔顶压力可以被设置为0.26-2.2MPa(表压),塔底压力可以被设置为0.37-2.2MPa(表压)。汽提反应塔60的温度和压力可通过调整进料的温度和压力等来进行调节和设置。
在一个优选的实施方案中,所述第三温度可以被设置为20-100℃,第四温度可以被设置为30-90℃,初馏塔82塔顶温度可以被设置为100-115℃,塔底温度可以被设置为120-160℃;初馏塔82塔顶压力可以被设置为0-0.03MPa(表压),塔底压力可以被设置为0-0.35MPa(表压)。初馏塔82的温度和压力可通过调整进料的温度和压力、再沸比和回流比等来进行调节和设置。
本发明还涉及一种利用木质纤维素类原料连续制备糠醛的方法,该方法包括:酸液输出步骤,分别输出第一酸液和第二酸液;原料混合步骤, 使所述原料与所述第一酸液混合形成混合物;进料步骤,将所述混合物压缩并向外输送所述混合物;水解反应步骤,将所述混合物和所述第二酸液混合均匀,并使其在高于常压的压力下发生水解反应;出料步骤,使水解反应得到的生成物固液分离,得到的液体为含酸的戊糖溶液;汽提反应步骤,使用汽提反应塔进行汽提反应步骤,使第一温度的来自出料步骤的含酸的戊糖溶液自顶部进入汽提反应塔,使第二温度的汽提蒸汽自底部进入汽提反应塔,汽提蒸汽与戊糖溶液逆流接触,戊糖溶液发生脱水环化反应,从而获得含糠醛蒸汽和酸液;分离步骤,对所述含糠醛蒸汽进行中和,并将所得的盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽;以及纯化步骤,纯化所得的糠醛。
在一个优选的实施方案中,在原料混合步骤中,原料和第一酸液可以通过螺旋混合器混合均匀。
在一个优选的实施方案中,在进料步骤中,可以采用带压缩功能的螺旋进料器压缩并输送混合物。
在一个优选的实施方案中,混合物可以通过第一锥形下料管进入螺旋进料器。
在一个优选的实施方案中,在水解反应步骤中可以采用平推流式且无压缩功能的螺旋反应器。
在一个优选的实施方案中,混合物可以通过第二锥形下料管进入螺旋反应器,该第二锥形下料管的顶部还可以设置有酸液添加装置,用于添加第二酸液。
在一个优选的实施方案中,酸液添加装置可以通过喷淋添加第二酸液。
在一个优选的实施方案中,在水解反应步骤中,能够通过蒸汽输入口输入高温蒸汽。
在一个优选的实施方案中,在水解反应步骤中,能够通过放空阀排出水解反应过程中产生的不凝气。
在一个优选的实施方案中,水解反应步骤中的温度可以为100-200℃,压力可以为0.1-1.8MPa。
在一个优选的实施方案中,在出料步骤中,可以采用带压缩功能的螺旋出料器对生成物进行挤压过滤和固液分离。
在一个优选的实施方案中,第一酸液的温度可以为40-95℃;第二酸液的温度可以为110-200℃;第一酸液和第二酸液的酸浓度可以为0.1-10wt%。
在一个优选的实施方案中,主体反应单元反应温度可以为100-200℃, 反应压力可以为0.1-1.8MPa,例如,可通过调整进料的温度和压力、控制放空阀等方式进行设置。
在一个优选的实施方案中,原料混合步骤的温度可以为40-90℃,压力可以为常压;进料步骤的温度可以为40-90℃,例如,可通过调整进料的温度和压力等方式来进行设置。
在一个优选的实施方案中,第一酸液和/或第二酸液可以为汽提反应步骤得到的酸液。
在一个优选的实施方案中,螺旋进料器可以包括压缩段,压缩段内径和螺距沿进料方向逐渐变小。
在一个优选的实施方案中,螺旋进料器还可以包括料塞段,料塞段位于压缩段之后且内径和螺距保持不变。
在一个优选的实施方案中,螺旋出料器可以包括压缩段,压缩段内径和螺距沿出料方向逐渐变小。
在一个优选的实施方案中,螺旋出料器还可以包括料塞段,料塞段位于压缩段之后且内径和螺距保持不变。
在一个优选的实施方案中,螺旋出料器器壁处可以有筛网,螺旋出料器通过筛网排出液体;螺旋出料器末端还可以有固体排料口用于排出固体。
在一个优选的实施方案中,分离步骤还可以包括对含酸量降低的含糠醛蒸汽进行过滤以提供经过滤的含糠醛蒸汽。
在一个优选的实施方案中,该方法还可以包括换热步骤,其中,使用来自分离步骤的含糠醛蒸汽与温度低于第一温度的含酸的戊糖溶液进行互相隔离的热交换,从而使含酸的戊糖溶液达到第一温度而作为汽提反应步骤的原料,并提供糠醛溶液。
在一个优选的实施方案中,所述纯化步骤包括使用初馏塔进行精馏;糠醛溶液降温至第三温度进入初馏塔进行精馏,精馏得到的纯化后的含糠醛蒸汽经冷凝至第四温度并进行分液,所得的水相液体回到初馏塔,油相液体输出即为粗糠醛产物;精馏得到的一部分塔底液体离开初馏塔,一部分塔底液体经初馏塔再沸器换热后作为再沸蒸汽重新进入初馏塔。
在一个优选的实施方案中,在分离步骤中可以使用碱液对含糠醛蒸汽进行中和。
在一个优选的实施方案中,在分离步骤中可以使用旋风分离器将所述盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽。
在一个优选的实施方案中,可以对汽提反应步骤得到的酸液进行热能 回收。
在一个优选的实施方案中,该方法还可以包括精制步骤,其中,对粗糠醛产物进行脱水和脱轻精制以得到产品糠醛。
在一个优选的实施方案中,该方法还可以包括对离开初馏塔的一部分塔底液体进行蒸发再利用。
在一个优选的实施方案中,第一温度可以为80-155℃,第二温度可以为150-220℃,汽提反应塔塔顶温度可以为140-210℃,塔底温度可以为150-220℃,汽提反应塔塔顶压力可以为0.26-2.2MPa(表压),塔底压力可以为0.37-2.2MPa(表压)。汽提反应塔的温度和压力可通过调整进料的温度和压力等来进行调节和设置。
在一个优选的实施方案中,第三温度可以为20-100℃,第四温度可以为30-90℃,初馏塔塔顶温度可以为100-115℃,塔底温度可以为120-160℃;初馏塔塔顶压力可以为0-0.03MPa(表压),塔底压力可以为0-0.35MPa(表压)。初馏塔的温度和压力可通过调整进料的温度和压力、再沸比和回流比等来进行调节和设置。
在一个优选的实施方案中,汽提反应塔塔底无再沸器,汽提反应塔塔顶无冷凝回流装置。
在一个优选的实施方案中,酸可以选自硫酸、盐酸、磷酸或硝酸中的至少一种,酸的浓度可以为0.1wt%~10wt%,优选1wt%~5wt%,最优选2wt%~4wt%。
在一个优选的实施方案中,戊糖溶液的糖浓度可以为1~100g/l,优选1g/l~50g/l,最优选5~30g/l。
本发明的上述方法既可以使用本发明的系统来执行,也可以使用具有其他构成的系统,只要能实现发明效果即可。
实施例
使用如图2所示的系统,利用木质纤维素类原料连续制备糠醛。
木质纤维素类原料被连续送入原料混合单元20,其中该原料混合单元20包括螺旋混合器21,原料在螺旋混合器21中与第一酸液(如箭头F所示)以一定比例混合均匀,以形成混合物并连续输出混合物,第一酸液为汽提反应塔60塔底的酸液的一部分,并且经酸液换热器110换热降温到60℃。
混合均匀的固液混合物进入进料单元30,其包括螺旋进料器31和第 一锥形下料管32;该混合物经过第一锥形下料管32连续进入螺旋进料器31,螺旋进料器31带压缩功能,其包括压缩段和料塞段,压缩段内径和螺距沿进料方向逐渐变小,料塞段位于压缩段之后且内径和螺距保持不变,螺旋进料器31可对固液混合物进行压缩并向外输出至主体反应单元40。
主体反应单元40包括螺旋反应器41、第二锥形下料管42、酸液添加装置43、蒸汽输入口44和放空阀45。来自螺旋进料器31的混合物被送入第二锥形下料管42。混合物在第二锥形下料管42中与第二酸液(如箭头S所示)继续混合达到设定的固液比,第二酸液为汽提反应塔60塔底的酸液的一部分,其由设置在第二锥形下料管42的顶部的酸液添加装置43进行添加(优选通过喷淋添加),固液混合之后进入螺旋反应器41,在高于常压的压力下充分搅拌和混合,以进行反应。螺旋反应器41优选为平推流式并且无压缩功能。第二酸液不进行换热降温,其本身具有的高温能够提供反应所需的温度。
蒸汽输入口44可以向螺旋反应器41输入蒸汽来弥补热量损失。反应过程中,可根据螺旋反应器41内的压力变化适时开启放空阀45,释放不凝气,确保系统压力稳定。
反应完成后的生成物进入出料单元50。该出料单元50包括带压缩功能的螺旋出料器51、糖液收集罐52、渣罐53,螺旋出料器51包括压缩段和料塞段,压缩段内径和螺距沿出料方向逐渐变小,料塞段位于压缩段之后且内径和螺距保持不变。其中,生成物在螺旋出料器51的挤压作用下进行固液分离。经过滤的固体物料连续进入渣罐53后进一步处理。经过滤的含酸的戊糖溶液由收集罐52收集后,与汽提反应塔60塔顶采出的经过滤的含糠醛蒸汽在换热单元90内换热,含酸的戊糖溶液被预热到150℃后从第一原料入口62进入汽提反应塔60,温度为180℃的汽提蒸汽从汽提蒸汽入口63输入至汽提反应塔60内,上升的汽提蒸汽与戊糖溶液逆流接触,含酸的戊糖溶液在汽提反应塔60内被进一步加热到170℃后,在反应塔内进行脱水环化反应。产生的糠醛进入汽提蒸汽,以170℃从汽提反应塔60顶部的蒸汽出口61采出(塔顶压力为0.74MPa),采出的含糠醛蒸汽中含糠醛8wt%。
将采出的含糠醛蒸汽输出至分离单元70,以12wt%碳酸钠溶液进行气相中和,由旋风分离器72将所得的盐与含糠醛蒸汽分离,从而得到含酸量降低的含糠醛蒸汽。然后,该含糠醛蒸汽进入陶瓷过滤器71,经过滤后进入换热单元90。
在换热单元90内,经过滤的含糠醛蒸汽与含酸的戊糖溶液进行换热得到温度为170℃的糠醛溶液。
糠醛溶液进入纯化单元80。糠醛溶液经糠醛溶液换热器95进一步降温到85℃后从初馏塔进料口83进入初馏塔82,纯化后从初馏塔蒸汽出口84采出粗糠醛蒸汽。经初馏塔冷凝器86冷凝到80℃后进入初馏塔分液罐87,分液得到水相液体和油相液体,其中水相液体含醛浓度为6wt%,油相液体含水8wt%。
水相液体从初馏塔分液罐87顶部返回,并从水相液体入口85进入初馏塔82,油相液体输出作为粗糠醛产物,进入粗糠醛储罐。
该粗糠醛产物经后续的脱水、脱轻精制后即可作为产品糠醛。糠醛收率为88%(相对于5g/l的戊糖溶液的理论收率)。
汽提反应塔60底部的酸液出口64采出的酸液温度为175℃,其中一部分经酸液换热器110换热,进行热能回收,之后作为第一酸液被送入螺旋混合器21,其余的部分作为第二酸液直接被送入酸液添加装置43,用于补充酸液并提供热能。初馏塔再沸器80由蒸汽供热,初馏塔塔底液体出口89采出的一部分塔底液体经初馏塔再沸器31换热后成为再沸蒸汽,经再沸蒸汽入口返回初馏塔32,其余部分塔底液体作为废水采出,采出的废水可进入废水蒸发器120,经二次蒸发后回收利用。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (70)

  1. 一种利用木质纤维素类原料连续制备糠醛的系统,其中,该系统包括:
    酸液输出单元,用于分别输出第一酸液和第二酸液;
    原料混合单元,与所述酸液输出单元相连,用于将所述原料与第一酸液混合以形成混合物并连续输送所述混合物;
    进料单元,与所述原料混合单元相连,用于接收所述混合物、对所述混合物进行压缩并向外输送所述混合物;
    主体反应单元,与所述进料单元和所述酸液输出单元相连,用于分别接收所述混合物和第二酸液,并在高于常压的压力下充分搅拌和混合所述混合物和第二酸液以使其反应;
    出料单元,与所述主体反应单元相连,用于对反应得到的生成物进行固液分离,并输出含酸的戊糖溶液;
    汽提反应塔,其包括位于顶部的蒸汽出口和第一原料入口,以及位于底部的汽提蒸汽入口和酸液出口,其中,所述第一原料入口用于接收来自出料单元的第一温度的含酸的戊糖溶液作为原料以进行脱水环化反应,所述汽提蒸汽入口用于接收第二温度的汽提蒸汽,所述蒸汽出口用于提供由该反应得到的含糠醛蒸汽,所述酸液出口用于从塔底采出酸液;
    分离单元,其与所述蒸汽出口相连,用于中和含糠醛蒸汽中的酸,并将所得的盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽;以及
    纯化单元,其用于纯化所得的糠醛。
  2. 根据权利要求1所述的系统,其特征在于,所述原料混合单元包括螺旋混合器,所述螺旋混合器用于将原料和第一酸液在螺旋搅拌作用下混合均匀而形成所述混合物,并向所述进料单元提供连续进料。
  3. 根据权利要求1或2所述的系统,其特征在于,所述进料单元包括带压缩功能的螺旋进料器,用于对所述混合物进行压缩并将所述混合物输送到所述主体反应单元。
  4. 根据权利要求3所述的系统,其特征在于,所述进料单元包括分别 与所述原料混合单元和所述螺旋进料器连接的第一锥形下料管,用于接收来自所述原料混合单元的所述混合物,并输送给所述螺旋进料器。
  5. 根据权利要求1所述的系统,其特征在于,所述主体反应单元包括螺旋反应器,所述螺旋反应器为平推流式并且无压缩功能。
  6. 根据权利要求1或5所述的系统,其特征在于,所述主体反应单元包括与所述进料单元连接、用于接收所述混合物的第二锥形下料管,该第二锥形下料管的顶部还设置有与所述酸液输出单元连接的酸液添加装置,用于添加所述第二酸液。
  7. 根据权利要求6所述的系统,其特征在于,所述酸液添加装置通过喷淋添加所述第二酸液。
  8. 根据权利要求1所述的系统,其特征在于,所述主体反应单元还包括蒸汽输入口,其用于接收高温蒸汽。
  9. 根据权利要求1或8所述的系统,其特征在于,所述主体反应单元还包括放空阀,以排出反应过程中产生的不凝气。
  10. 根据权利要求9所述的系统,其特征在于,所述主体反应单元能够被设置成温度为100-200℃,压力为0.1-1.8MPa。
  11. 根据权利要求1所述的系统,其特征在于,所述出料单元包括带压缩功能的螺旋出料器,所述螺旋出料器用于对所述生成物进行挤压过滤和固液分离。
  12. 根据权利要求1所述的系统,其特征在于,第一酸液的温度为40-95℃;第二酸液的温度为110-200℃;第一酸液和第二酸液的酸浓度为0.1-10wt%。
  13. 根据权利要求1所述的系统,其特征在于,所述主体反应单元能够被设置成温度为100-200℃,压力为0.1-1.8MPa。
  14. 根据权利要求1所述的系统,其特征在于,所述原料混合单元能够被设置成温度为40-90℃,压力为常压;所述进料单元能够被设置成温度为40-90℃。
  15. 根据权利要求1所述的系统,其特征在于,所述第一酸液为从所述酸液出口采出的酸液。
  16. 根据权利要求1所述的系统,其特征在于,所述第二酸液为从所述酸液出口采出的酸液。
  17. 根据权利要求3所述的系统,其特征在于,所述螺旋进料器包括压缩段,所述压缩段内径和螺距沿进料方向逐渐变小。
  18. 根据权利要求17所述的系统,其特征在于,所述螺旋进料器还包括料塞段,所述料塞段位于所述压缩段之后且内径和螺距保持不变。
  19. 根据权利要求11所述的系统,其特征在于,所述螺旋出料器包括压缩段,所述压缩段内径和螺距沿出料方向逐渐变小。
  20. 根据权利要求19所述的系统,其特征在于,所述螺旋出料器还包括料塞段,所述料塞段位于所述压缩段之后且内径和螺距保持不变。
  21. 根据权利要求11所述的系统,其特征在于,所述螺旋出料器器壁处有筛网,所述螺旋出料器通过所述筛网排出液体;所述螺旋出料器末端有固体排料口用于排出固体。
  22. 根据权利要求1所述的系统,其中,所述分离单元还包括过滤装置,该过滤装置用于对所述含酸量降低的含糠醛蒸汽进行过滤,以提供经 过滤的含糠醛蒸汽。
  23. 根据权利要求1或22所述的系统,其中,该系统还包括换热单元,其包括:
    原料通道,包括第二原料入口,第二原料入口用于接收温度低于第一温度的含酸的戊糖溶液;以及原料出口,所述原料出口与所述第一原料入口相连,用于向所述汽提反应塔提供第一温度的含酸的戊糖溶液,以及
    糠醛通道,其与原料通道互相隔离但能够进行热交换,并包括糠醛入口,糠醛入口与所述分离单元相连,用于接收来自分离单元的含糠醛蒸汽;和糠醛出口,糠醛出口与所述纯化单元相连,用于提供糠醛溶液。
  24. 根据权利要求23所述的系统,其中,所述纯化单元包括:
    初馏塔,其具有位于中部的初馏塔进料口、位于顶部的初馏塔蒸汽出口和水相液体入口、位于底部的再沸蒸汽入口和初馏塔塔底液体出口;
    糠醛溶液换热器,糠醛溶液经糠醛溶液换热器降温至第三温度经初馏塔进料口进入初馏塔;
    所述初馏塔塔底配有初馏塔再沸器、塔顶配有冷凝回流装置;所述冷凝回流装置包括初馏塔冷凝器和初馏塔分液罐;
    所述初馏塔再沸器用于将一部分塔底液体换热后成为再沸蒸汽,经再沸蒸汽入口返回初馏塔;
    初馏塔冷凝器,其与初馏塔蒸汽出口相连,用于将纯化后的含糠醛蒸汽冷凝至第四温度的冷凝液;
    初馏塔分液罐,其与初馏塔冷凝器相连,用于接收所述冷凝液,进行分液以得到水相液体和油相液体,并将所述水相液体经所述水相液体入口送回初馏塔,将所述油相液体输出作为粗糠醛产物。
  25. 根据权利要求1所述的系统,其中,所述分离单元包括碱液输入口以输入碱液用于中和含糠醛蒸汽中的酸。
  26. 根据权利要求1所述的系统,其中,所述分离单元包括旋风分离器,用于将所述盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽。
  27. 根据权利要求1所述的系统,其中,所述系统还包括酸液换热器,用于接收从所述酸液出口流出的酸液并进行热能回收。
  28. 根据权利要求24所述的系统,其中,所述纯化单元还包括精制装置,用于对所述粗糠醛产物进行脱水和脱轻精制以得到产品糠醛。
  29. 根据权利要求24所述的系统,其中,所述系统还包括废水蒸发器,所述废水蒸发器与初馏塔塔底液体出口相连,用于对来自初馏塔塔底液体出口的另一部分塔底液体进行蒸发再利用。
  30. 根据权利要求1所述的系统,其中,所述第一温度能够被设置为80-155℃,所述第二温度能够被设置为150-220℃,汽提反应塔塔顶温度能够被设置为140-210℃,汽提反应塔塔底温度能够被设置为150-220℃。
  31. 根据权利要求1所述的系统,其中,以表压计,所述汽提反应塔塔顶压力能够被设置为0.26-2.2MPa,汽提反应塔塔底压力能够被设置为0.37-2.2MPa。
  32. 根据权利要求24所述的系统,其中,所述第三温度能够被设置为20-100℃,第四温度能够被设置为30-90℃,初馏塔塔顶温度能够被设置为100-115℃,初馏塔塔底温度能够被设置为120-160℃。
  33. 根据权利要求24所述的系统,其中,以表压计,所述初馏塔塔顶压力能够被设置为0-0.03MPa,塔底压力能够被设置为0-0.35MPa。
  34. 根据权利要求1所述的系统,其中,所述汽提反应塔塔底无再沸器,汽提反应塔塔顶无冷凝回流装置。
  35. 利用木质纤维素类原料连续制备糠醛的方法,该方法包括:
    酸液输出步骤,分别输出第一酸液和第二酸液;
    原料混合步骤,使所述原料与所述第一酸液混合形成混合物;
    进料步骤,压缩所述混合物并向外输送所述混合物;
    水解反应步骤,将所述混合物和所述第二酸液混合均匀,并使其在高于常压的压力下发生水解反应;
    出料步骤,使水解反应得到的生成物固液分离,得到的液体为含酸的戊糖溶液;
    汽提反应步骤,使用汽提反应塔进行汽提反应步骤,使第一温度的来自出料步骤的含酸的戊糖溶液自顶部进入汽提反应塔,使第二温度的汽提蒸汽自底部进入汽提反应塔,汽提蒸汽与戊糖溶液逆流接触,戊糖溶液发生脱水环化反应,从而获得含糠醛蒸汽和酸液;
    分离步骤,对所述含糠醛蒸汽进行中和,并将所得的盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽;以及
    纯化步骤,纯化所得的糠醛。
  36. 根据权利要求35所述的方法,在原料混合步骤中,原料和第一酸液通过螺旋混合器混合均匀。
  37. 根据权利要求35所述的方法,在进料步骤中,采用带压缩功能的螺旋进料器压缩并输送所述混合物。
  38. 根据权利要求37所述的方法,其中,所述混合物通过第一锥形下料管进入所述螺旋进料器。
  39. 根据权利要求35所述的方法,在水解反应步骤中采用平推流式且无压缩功能的螺旋反应器。
  40. 根据权利要求39所述的方法,其中,所述混合物通过第二锥形下料管进入所述螺旋反应器,该第二锥形下料管的顶部还设置有酸液添加装置,用于添加所述第二酸液。
  41. 根据权利要求40所述的方法,其中,所述酸液添加装置通过喷淋 添加所述第二酸液。
  42. 根据权利要求35所述的方法,在水解反应步骤中,通过蒸汽输入口输入高温蒸汽。
  43. 根据权利要求35或42所述的方法,在水解反应步骤中,通过放空阀排出水解反应过程中产生的不凝气。
  44. 根据权利要求35所述的方法,其中,水解反应步骤在温度为100-200℃,压力为0.1-1.8MPa的条件下进行。
  45. 根据权利要求35所述的方法,在出料步骤中,采用带压缩功能的螺旋出料器对所述生成物进行挤压过滤和固液分离。
  46. 根据权利要求35所述的方法,其中,第一酸液的温度为40-95℃;第二酸液的温度为110-200℃;第一酸液和第二酸液的酸浓度为0.1-10wt%。
  47. 根据权利要求35所述的方法,其中,所述主体反应单元反应温度为100-200℃,反应压力为0.1-1.8MPa。
  48. 根据权利要求35所述的方法,其中,原料混合步骤在温度为40-90℃,压力为常压的条件下进行;进料步骤在温度为40-90℃的条件下进行。
  49. 根据权利要求35所述的方法,其中,所述第一酸液为汽提反应步骤得到的酸液。
  50. 根据权利要求35所述的方法,其中,所述第二酸液为汽提反应步骤得到的酸液。
  51. 根据权利要求37所述的方法,其中,所述螺旋进料器包括压缩段,所述压缩段内径和螺距沿进料方向逐渐变小。
  52. 根据权利要求51所述的方法,其中,所述螺旋进料器还包括料塞段,所述料塞段位于所述压缩段之后且内径和螺距保持不变。
  53. 根据权利要求45所述的方法,其中,所述螺旋出料器包括压缩段,所述压缩段内径和螺距沿出料方向逐渐变小。
  54. 根据权利要求53所述的方法,其中,所述螺旋出料器还包括料塞段,所述料塞段位于所述压缩段之后且内径和螺距保持不变。
  55. 根据权利要求45所述的方法,其中,所述螺旋出料器器壁处有筛网,所述螺旋出料器通过所述筛网排出液体;所述螺旋出料器末端有固体排料口用于排出固体。
  56. 根据权利要求35所述的方法,其中,所述分离步骤还包括对所述含酸量降低的含糠醛蒸汽进行过滤,以提供经过滤的含糠醛蒸汽。
  57. 根据权利要求35或56所述的方法,其中,所述方法还包括换热步骤,其中,使来自分离步骤的含糠醛蒸汽与温度低于第一温度的含酸的戊糖溶液进行互相隔离的热交换,从而使含酸的戊糖溶液达到第一温度而作为所述汽提反应步骤的原料,并提供糠醛溶液。
  58. 根据权利要求57所述的方法,其中,所述纯化步骤包括使用初馏塔进行精馏;糠醛溶液经换热降温至第三温度进入初馏塔进行精馏,精馏得到的纯化后的含糠醛蒸汽经冷凝至第四温度并进行分液,所得的水相液体回到初馏塔,油相液体输出即为粗糠醛产物;精馏得到的一部分塔底液体离开初馏塔,经初馏塔再沸器换热后作为再沸蒸汽重新进入初馏塔。
  59. 根据权利要求35所述的方法,其中在分离步骤中使用碱液对含糠醛蒸汽进行中和。
  60. 根据权利要求35所述的方法,其中在分离步骤中使用旋风分离器将所述盐与含糠醛蒸汽分离,以提供含酸量降低的含糠醛蒸汽。
  61. 根据权利要求35所述的方法,其中对汽提反应步骤得到的酸液进行热能回收。
  62. 根据权利要求58所述的方法,其中,所述纯化步骤还包括精制步骤,其中,对所述粗糠醛产物进行脱水和脱轻精制以得到产品糠醛。
  63. 根据权利要求58所述的方法,其中,所述纯化步骤还包括对离开初馏塔的其余部分塔底液体进行蒸发再利用。
  64. 根据权利要求35所述的方法,其中,所述第一温度为80-155℃,所述第二温度为150-220℃,汽提反应塔塔顶温度为140-210℃,汽提反应塔塔底温度为150-220℃。
  65. 根据权利要求35所述的方法,其中,以表压计,所述汽提反应塔塔顶压力为0.26-2.2MPa,汽提反应塔塔底压力为0.37-2.2MPa。
  66. 根据权利要求58所述的方法,其中,所述第三温度为20-100℃,第四温度为30-90℃,初馏塔塔顶温度为100-115℃,初馏塔塔底温度为120-160℃。
  67. 根据权利要求58所述的方法,其中,以表压计,所述初馏塔塔顶压力为0-0.03MPa,塔底压力为0-0.35MPa。
  68. 根据权利要求35所述的方法,其中汽提反应塔塔底无再沸器,汽提反应塔塔顶无冷凝回流装置。
  69. 根据权利要求35所述的方法,其中,所述酸选自硫酸、盐酸、磷酸或硝酸中的至少一种,所述酸的浓度为0.1wt%~10wt%,优选 1wt%~5wt%,最优选2wt%~4wt%。
  70. 根据权利要求35所述的方法,其中,所述戊糖溶液的糖浓度为1~100g/l,优选1~50g/l,最优选5~30g/l。
PCT/CN2018/117649 2017-12-06 2018-11-27 利用木质纤维素类原料连续制备糠醛的系统及方法 WO2019109835A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FIEP18885815.3T FI3733655T3 (fi) 2017-12-06 2018-11-27 Järjestelmä ja menetelmä furfuraalin jatkuvaan valmistukseen lignoselluloosaraaka-ainetta käyttämällä
CA3083387A CA3083387A1 (en) 2017-12-06 2018-11-27 System and method for continuously preparing furfural using lignocellulosic raw material
EP18885815.3A EP3733655B1 (en) 2017-12-06 2018-11-27 System and method for continuously preparing furfural using lignocellulosic raw material
ES18885815T ES2936518T3 (es) 2017-12-06 2018-11-27 Sistema y método para la preparación continua de furfural usando materia prima lignocelulósica
DK18885815.3T DK3733655T3 (da) 2017-12-06 2018-11-27 System og fremgangsmåde til kontinuerlig fremstilling af furfural under anvendelse af lignocelluloseråmateriale
PL18885815.3T PL3733655T3 (pl) 2017-12-06 2018-11-27 Układ i sposób ciągłego wytwarzania furfuralu z zastosowaniem surowca lignocelulozowego
US16/894,672 US11767304B2 (en) 2017-12-06 2020-06-05 System and method for continuously preparing furfural using lignocellulosic raw material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711277935.4A CN107827847B (zh) 2017-12-06 2017-12-06 利用木质纤维素类原料连续制备糠醛的系统及方法
CN201721685502.8 2017-12-06
CN201721685502.8U CN207877625U (zh) 2017-12-06 2017-12-06 利用木质纤维素类原料连续制备糠醛的系统
CN201711277935.4 2017-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/894,672 Continuation US11767304B2 (en) 2017-12-06 2020-06-05 System and method for continuously preparing furfural using lignocellulosic raw material

Publications (1)

Publication Number Publication Date
WO2019109835A1 true WO2019109835A1 (zh) 2019-06-13

Family

ID=66750367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117649 WO2019109835A1 (zh) 2017-12-06 2018-11-27 利用木质纤维素类原料连续制备糠醛的系统及方法

Country Status (8)

Country Link
US (1) US11767304B2 (zh)
EP (1) EP3733655B1 (zh)
CA (1) CA3083387A1 (zh)
DK (1) DK3733655T3 (zh)
ES (1) ES2936518T3 (zh)
FI (1) FI3733655T3 (zh)
PL (1) PL3733655T3 (zh)
WO (1) WO2019109835A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409306A (zh) * 2020-12-10 2021-02-26 汉中市鹏远生物科技有限公司 一种麦杆制取糠醛的水解方法
CN114653306B (zh) * 2022-03-14 2023-07-21 北京奥科瑞丰新能源股份有限公司 一种用于糠醛生产的具有自动加碱机构的中和反应釜
CN117482871B (zh) * 2024-01-03 2024-04-26 宁津禾洁生物科技有限公司 一种低排放的糠醛渣再利用的糠醛提取系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1824379A (zh) * 1999-06-23 2006-08-30 Rm防火材料有限公司 生物质预水解的方法
CN101108838A (zh) * 2007-08-28 2008-01-23 济南圣泉集团股份有限公司 戊糖溶液制备糠醛的系统及方法
CN102596384A (zh) * 2009-08-27 2012-07-18 因比肯公司 颗粒泵送方法和装置
CN103130756A (zh) * 2011-11-22 2013-06-05 济南圣泉集团股份有限公司 一种由木质纤维素生物质生产糠醛的工艺
CN107235939A (zh) * 2017-06-19 2017-10-10 吉林大学 一种醛汽气相中和提高糠醛收率的方法
CN107827847A (zh) * 2017-12-06 2018-03-23 易高环保能源研究院有限公司 利用木质纤维素类原料连续制备糠醛的系统及方法
CN207877625U (zh) * 2017-12-06 2018-09-18 易高环保能源研究院有限公司 利用木质纤维素类原料连续制备糠醛的系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1109830A (fr) * 1953-07-29 1956-02-02 Oronzio De Nora Impianti Procédé continu pour la production de furfurol et d'acide acétique à partir de matières contenant des pentosanes
CN101130532B (zh) * 2007-09-24 2010-11-24 济南圣泉集团股份有限公司 利用农林废弃物生产糠醛的系统及方法
NL2005588C2 (en) * 2010-10-27 2012-05-01 Univ Delft Tech Process for the production of furfural from pentoses.
CA2848752A1 (en) * 2011-09-23 2013-03-28 Archer Daniels Midland Company C1-c2 organic acid treatment of lignocellulosic biomass to produce acylated cellulose pulp, hemicellulose, lignin and sugars and fermentation of the sugars
CN109748895B (zh) * 2019-03-27 2023-01-13 广州楹鼎生物科技有限公司 一种糠醛的制备方法
US11319499B1 (en) * 2019-08-13 2022-05-03 Michael Gurin Biomass pretreatment with integral fossil fuel blending

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1824379A (zh) * 1999-06-23 2006-08-30 Rm防火材料有限公司 生物质预水解的方法
CN101108838A (zh) * 2007-08-28 2008-01-23 济南圣泉集团股份有限公司 戊糖溶液制备糠醛的系统及方法
CN102596384A (zh) * 2009-08-27 2012-07-18 因比肯公司 颗粒泵送方法和装置
CN103130756A (zh) * 2011-11-22 2013-06-05 济南圣泉集团股份有限公司 一种由木质纤维素生物质生产糠醛的工艺
CN107235939A (zh) * 2017-06-19 2017-10-10 吉林大学 一种醛汽气相中和提高糠醛收率的方法
CN107827847A (zh) * 2017-12-06 2018-03-23 易高环保能源研究院有限公司 利用木质纤维素类原料连续制备糠醛的系统及方法
CN207877625U (zh) * 2017-12-06 2018-09-18 易高环保能源研究院有限公司 利用木质纤维素类原料连续制备糠醛的系统

Also Published As

Publication number Publication date
US20200369637A1 (en) 2020-11-26
CA3083387A1 (en) 2019-06-13
ES2936518T3 (es) 2023-03-17
DK3733655T3 (da) 2023-01-30
EP3733655A1 (en) 2020-11-04
FI3733655T3 (fi) 2023-02-28
EP3733655B1 (en) 2022-11-16
EP3733655A4 (en) 2021-06-09
US11767304B2 (en) 2023-09-26
PL3733655T3 (pl) 2023-03-06

Similar Documents

Publication Publication Date Title
CN100562519C (zh) 生物质清洁水解生产糠醛的方法
CN107827847B (zh) 利用木质纤维素类原料连续制备糠醛的系统及方法
WO2019109835A1 (zh) 利用木质纤维素类原料连续制备糠醛的系统及方法
CN101130530B (zh) 利用农林废弃物生产糠醛的系统及方法
CN101130531B (zh) 农林废弃物制备糠醛的系统和方法
CN102219766A (zh) 糠醛无酸连续自动化水解系统
CN110590718A (zh) 一种玉米芯提取糠醛的生产方法
CN103265967A (zh) 一种生物质高效水热液化制备生物油的方法
CN105693467B (zh) 一种季戊四醇节能生产方法
CN103274913A (zh) 一种甲基异丁基酮生产工艺及其设备
CN101130532B (zh) 利用农林废弃物生产糠醛的系统及方法
CN101130533B (zh) 利用农林废弃物生产糠醛的系统及方法
CZ32095A3 (en) Process of treating ligno-cellulose materials by continuous pressure hydrolysis and apparatus for making the same
CN115536620B (zh) 一种纤维素类生物质连续生产糠醛和5-羟甲基糠醛的系统和方法
CN207877625U (zh) 利用木质纤维素类原料连续制备糠醛的系统
CN101108839B (zh) 戊糖溶液制备糠醛的系统和方法
CN115650938A (zh) 一种从生物质中同时提取糠醛和5-羟甲基糠醛的连续化方法和设备
CN201952384U (zh) 糠醛无酸连续自动化水解系统
US11142510B2 (en) System and method for continuously preparing furfural using acid-containing pentose solution
CN210356589U (zh) 顺酐装置溶剂回收系统
CN110776398A (zh) 一种苯甲醇梯级加压水解反应工艺及系统
CN221014530U (zh) 一种醋酸甲酯生产系统
CN115536621B (zh) 以生物质为载体耦合生物质糖生产糠醛的工艺和设备
CN219092054U (zh) 一种2-氯丙酸甲酯酯化废水甲醇回收利用系统
CN109092212B (zh) 单床两段连续操作糠醛及纸浆与木质素多联产系统与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3083387

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885815

Country of ref document: EP

Effective date: 20200706