WO2019109833A1 - 利用木质纤维素类原料连续水解制糖的装置 - Google Patents

利用木质纤维素类原料连续水解制糖的装置 Download PDF

Info

Publication number
WO2019109833A1
WO2019109833A1 PCT/CN2018/117647 CN2018117647W WO2019109833A1 WO 2019109833 A1 WO2019109833 A1 WO 2019109833A1 CN 2018117647 W CN2018117647 W CN 2018117647W WO 2019109833 A1 WO2019109833 A1 WO 2019109833A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
mixture
acid
raw material
acid liquid
Prior art date
Application number
PCT/CN2018/117647
Other languages
English (en)
French (fr)
Inventor
徐彬
萧锦诚
吕俊德
周晓莹
Original Assignee
易高环保能源研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 易高环保能源研究院有限公司 filed Critical 易高环保能源研究院有限公司
Priority to CA3083389A priority Critical patent/CA3083389A1/en
Priority to EP18884892.3A priority patent/EP3722303A4/en
Publication of WO2019109833A1 publication Critical patent/WO2019109833A1/zh
Priority to US16/894,353 priority patent/US11851721B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/007Feed or outlet devices as such, e.g. feeding tubes provided with moving parts
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/04Pretreatment of the finely-divided materials before digesting with acid reacting compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the utility model relates to a device for continuously hydrolyzing sugar by using lignocellulosic raw materials, belonging to the technical field of hemicellulose and/or cellulose hydrolysis and sugar production.
  • Plant straw, cottonseed hulls, bagasse and other plants are composed of hemicellulose, cellulose and lignin, and the semi-fibres and cellulose, which contain a large amount of polysaccharides, are hydrolyzed from the above raw materials.
  • An oligosaccharide or a monosaccharide is obtained, and the reaction formula is as follows:
  • Hemicellulose hydrolysis polycondensation pentose ⁇ low condensed pentose or pentose
  • the process of making sugar from lignocellulosic materials is usually carried out by dilute acid hydrolysis.
  • the corn cob is usually used as a raw material for sugar production.
  • the first generation acid hydrolysis reactor is a fixed bed reactor, the corn cob is mixed with the acid liquid in a certain ratio, and then sent to the reactor for cooking and hydrolysis.
  • the reactor has a simple structure.
  • the disadvantage is that the produced product cannot be separated in time, which leads to further degradation;
  • the second generation is a percolation reactor, which continuously sprays the acid into the corncob layer in the reactor, and the acid passes through the corn core layer.
  • the corn cob is fully contacted for the hydrolysis reaction, and the reactor has high hydrolysis efficiency and can effectively shorten the residence time of the sugar liquid in the reactor.
  • the first-generation and second-generation acid hydrolysis devices are batch reactors, which have high labor intensity, low production efficiency, large floor space and serious pollution.
  • the acid solution existing in the existing reactor is only attached to the surface of the material, the mixing of the material and the acid solution is uneven, and the water vapor is not heated uniformly, the decomposition of the hydrolyzed sugar is serious, the by-products are large, the sugar yield is small, and the sugar is The low concentration affects the application of lignocellulosic materials in the energy and chemical industries.
  • the present invention has been made in consideration of the above problems.
  • the utility model provides a device for continuously hydrolyzing sugar by using lignocellulosic raw materials, which at least solves the labor intensity, low production efficiency, low sugar yield, low sugar concentration, etc. caused by the continuous reaction of the existing reactor.
  • the problem can effectively improve labor productivity, reduce labor intensity, reduce equipment size, increase sugar yield and sugar concentration, and reduce pollution; and can effectively utilize the heat of circulating acid.
  • an apparatus for continuously hydrolyzing sugar from a lignocellulosic material comprising: an acid liquid output unit for respectively outputting a first acid liquid and a second acid liquid; a unit connected to the acid liquid output unit for mixing the raw material with the first acid liquid to form a mixture and continuously conveying the mixture; and a feeding unit connected to the raw material mixing unit for receiving the Mixing, compressing the mixture and conveying the mixture outward; a main reaction unit connected to the feed unit and the acid output unit for receiving the mixture and the second acid, respectively, and The mixture and the second acid solution are sufficiently stirred and mixed under a pressure of a normal pressure to cause a reaction; and a discharge unit is connected to the main reaction unit for solid-liquid separation of the product obtained by the reaction, And output the product.
  • the continuous hydrolysis sugar-making device is a continuous hydrolysis reaction device in real sense, and realizes continuous feeding, continuous reaction, continuous discharging in time, reduces labor intensity and improves production efficiency; the device of the present invention can not only Hydrolysis of hemicellulose, it is also possible to hydrolyze cellulose by adjusting the reaction conditions, for example, by increasing the reaction temperature, etc.; the hydrolysis reaction occurs only in the main reaction unit, which reduces the formation of by-products, and the sugar obtained by the reaction can be discharged in time, thereby improving Sugar yield and sugar concentration.
  • the raw material mixing unit may include a spiral mixer for mixing the raw material and the first acid liquid under agitation to form a mixture, and providing continuous feeding to the feeding unit. .
  • the lignocellulosic material needs to be hydrolyzed in an acidic environment.
  • the ratio of the acid liquid to the solid raw material is not too large, the liquid cannot completely immerse the solid raw material, and the solid-liquid mixture needs to be uniformly mixed to avoid affecting the hydrolysis effect.
  • the use of a spiral mixer allows the raw material to be more evenly mixed with the acid to ensure a smooth subsequent hydrolysis reaction.
  • the feed unit may comprise a screw feeder with a compression function for compressing the mixture and delivering the mixture to the bulk reaction unit.
  • the screw feeder can include a compression section and the inner diameter and pitch of the compression section taper in the feed direction.
  • the screw feeder may further comprise a plug section, the plug section being located after the compression section and the inner diameter and pitch remaining unchanged.
  • the hydrolysis reaction in the main reaction unit is carried out under conditions higher than normal pressure, and the screw feeder of the feed unit can ensure that the material in the main reaction unit does not back into the feed unit, and can maintain the pressure stability in the main reaction unit. It is ensured that the hydrolysis reaction in the main reaction unit is carried out under a stable pressure; in addition, by using the screw feeder, continuous and stable feeding can be provided without clogging.
  • the feeding unit may further include a first tapered lowering pipe connected to the raw material mixing unit and the screw feeder, respectively, for receiving the mixture from the raw material mixing unit and feeding it to Screw feeder.
  • the use of the first conical feed tube in the feed unit to receive and transport the mixture ensures that the mixture enters the screw feeder smoothly, thereby avoiding the poor fluidity of the mixed mixture output from the raw material mixing unit. Blockage or poor delivery.
  • the body reaction unit may comprise a screw reactor that is of a flat flow type and has no compression function.
  • the mixture undergoes a hydrolysis reaction in the spiral reactor of the main reaction unit.
  • the reaction can be completed and the reaction efficiency can be improved, so that the mixture in the reactor is consistent in the solid-liquid mixture ratio in any reaction stage, and the reaction is improved.
  • the efficiency of the hydrolysis reaction is improved.
  • the main body reaction unit may further include a second conical discharge pipe connected to the feeding unit for receiving the mixture, and the top of the second conical discharge pipe is further provided with An acid addition device connected to the acid output unit for adding the second acid solution.
  • the use of a second conical feed tube in the main reaction unit to receive and transport the mixture ensures that the mixture enters the spiral reactor smoothly, avoiding clogging or poor transport due to poor fluidity of the solid-liquid mixture output from the feed unit;
  • the acid addition device provided at the top of the second tapered lowering tube further supplements the acid solution required for the reaction to achieve a set solid-liquid ratio, so that the hydrolysis reaction can be efficiently performed.
  • the acid addition device can add a second acid solution by spraying.
  • Spraying is used to more evenly spray the second acid to the mixture from the feed unit and also to facilitate uniform mixing of the second acid and mixture.
  • the body reaction unit may further comprise a steam inlet for receiving high temperature steam.
  • the steam input can maintain the reaction temperature of the main reaction unit in a suitable range, and avoid a decrease in the reaction rate caused by the temperature drop.
  • the main body reaction unit may further include a vent valve to discharge non-condensable gas generated during the reaction. In this way, it is possible to ensure that the pressure in the main reaction unit is within a suitable range, thereby allowing the hydrolysis reaction to proceed stably.
  • the discharge unit may comprise a screw discharger with a compression function for squeezing and solid-liquid separation of the product.
  • the screw discharger comprises a compression section, the inner diameter and the pitch of the compression section being gradually reduced in the discharge direction.
  • the screw discharger further includes a plug section, the plug section being located after the compression section and the inner diameter and pitch remain unchanged.
  • a screen is placed at the wall of the screw discharger, the screw discharger discharges liquid through the screen; and a solid discharge opening is provided at the end of the screw discharger for discharging solids.
  • the screw discharger of the discharge unit can ensure that the spray is not generated during the process of outputting the product, and can maintain the pressure stability in the main reaction unit; in addition, it can provide continuous and stable discharge without clogging.
  • the temperature of the first acid liquid may be 40-95 ° C; the temperature of the second acid liquid may be 110-200 ° C.
  • the first acid solution and/or the second acid solution may have an acid concentration of from 0.1% by weight to 10% by weight.
  • the temperature and pressure of the main reaction unit 40 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed, controlling the vent valve, etc., and the main reaction unit can be set to a temperature of 100-200 ° C, the pressure is 0.1-1.8 MPa; preferably, the temperature is 100-160 ° C, and the pressure is 0.1-0.8 MPa.
  • the temperature and pressure within the feed mixing unit 20 and within the feed unit 30 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed, and the feed mixing unit can be Set to a temperature of 40-90 ° C, the pressure is atmospheric; the feed unit can be set to a temperature of 40-90 ° C.
  • the first acid liquid and/or the second acid liquid may be a circulating acid liquid.
  • the above scheme of the utility model realizes continuous feeding, continuous reaction and continuous discharging in time, can effectively improve labor productivity, reduce labor intensity, reduce equipment size, increase sugar yield and sugar concentration, and reduce pollution.
  • FIG. 1 is a schematic view of an apparatus for continuously hydrolyzing sugars using lignocellulosic materials according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an apparatus for continuously hydrolyzing sugar from a lignocellulosic material according to another embodiment of the present invention.
  • FIG. 1 schematically illustrates an embodiment in accordance with the present invention.
  • Fig. 1 it is a device for continuously hydrolyzing sugar from a lignocellulosic material, comprising an acid liquid output unit 1, a raw material mixing unit 2, a feed unit 3, a main reaction unit 4, and a discharge unit 5.
  • the apparatus can be continuously hydrolyzed to sugar by the following process.
  • the lignocellulosic raw material is mixed with the first acid liquid output from the acid liquid output unit 1 in the raw material mixing unit 2 in a certain ratio to form a mixture.
  • the mixture is continuously fed to a feed unit 3 which compresses the mixture and delivers the mixture outward.
  • the mixture continuously and stably enters the main reaction unit 4, and is mixed with the second acid liquid output from the acid liquid output unit 1 at a pressure higher than normal pressure to reach a set solid-liquid ratio to cause it to react.
  • the product after completion of the reaction is continuously and stably conveyed to the discharge unit 5, and the product is subjected to solid-liquid separation in the discharge unit 5 to output a product.
  • the continuous feed, the continuous reaction and the continuous discharge which are realized in time in the embodiment are the true continuous hydrolysis and sugar production, which reduces the labor intensity and the production efficiency; the hydrolysis reaction only occurs in the main reaction unit 4 The production of by-products is reduced, and the sugar obtained by the reaction can be discharged in time, thereby improving the sugar yield and the sugar concentration.
  • the feed mixing unit 2 may comprise a spiral mixer for mixing the feedstock and the first acid liquor under agitation to form a mixture and providing a continuous feed to the feed unit 3.
  • a spiral mixer allows the raw material to be more evenly mixed with the acid to ensure a smooth subsequent hydrolysis reaction.
  • the feed unit 3 may comprise a screw feeder with a compression function, preferably the screw feeder comprises a compression section, the inner diameter and the pitch of the compression section being gradually reduced in the feed direction, more preferably the spiral feed
  • the device includes a plug section, the plug section is located after the compression section and the inner diameter and pitch remain unchanged.
  • the hydrolysis reaction in the main reaction unit 4 is carried out under conditions higher than normal pressure, and the screw feeder of the feed unit 3 can ensure that the material in the main reaction unit 4 does not back into the feed unit 3, and maintains the main reaction
  • the pressure in the unit 4 is stabilized, and the hydrolysis reaction in the main reaction unit 4 is ensured under a stable pressure; in addition, by using the screw feeder, continuous and stable feeding can be provided without clogging.
  • the feed unit 3 may further comprise a first conical feed tube connected to the raw material mixing unit 2 and the screw feeder, respectively, for receiving the mixture from the raw material mixing unit 2 and feeding it to Screw feeder.
  • the use of the first conical blanking tube in the feeding unit 3 to receive and convey the mixture ensures that the mixture smoothly enters the screw feeder, thereby avoiding the poor fluidity of the mixed mixture output from the raw material mixing unit 2 The resulting blockage or poor delivery.
  • the main body reaction unit 4 may comprise a spiral reactor which is of a flat flow type and has no compression function.
  • the mixture undergoes a hydrolysis reaction in the spiral reactor of the main reaction unit 4, and when the spiral reactor is set to a flat flow, the reaction can be completed and the reaction efficiency can be improved, so that the mixture in the reactor has the same solid-liquid mixing ratio in any reaction stage. The efficiency of the hydrolysis reaction is increased.
  • the main reaction unit 4 may further comprise a second conical lowering tube connected to the feeding unit 3 for receiving the mixture, the top of the second conical lowering tube being further provided with an acid An acid addition device connected to the liquid output unit 1 for adding a second acid solution.
  • the use of the second conical blanking tube in the main reaction unit 4 to receive and transport the mixture ensures that the mixture smoothly enters the spiral reactor, avoiding clogging or poor transportation caused by poor fluidity of the solid-liquid mixture output from the feeding unit 3.
  • the acid addition device disposed at the top of the second tapered lowering tube further supplements the acid solution required for the reaction to achieve a set solid-liquid ratio, so that the hydrolysis reaction can be efficiently performed.
  • the acid addition device can add a second acid solution by spraying.
  • the spraying is used to more uniformly spray the second acid to the mixture from the feed unit 3, and also to facilitate uniform mixing of the second acid and the mixture.
  • the body reaction unit 4 may also include a steam input port for receiving high temperature steam. This steam input can maintain the reaction temperature of the main reaction unit 4 in an appropriate range, and avoid a decrease in the reaction rate caused by the temperature drop.
  • the body reaction unit 4 may further include a vent valve to vent non-condensable gases generated during the reaction.
  • a vent valve to vent non-condensable gases generated during the reaction.
  • the temperature and pressure of the main reaction unit 4 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed, controlling the vent valve, etc., and the main reaction unit 4 can be set to a temperature of 100- 200 ° C, pressure is 0.1-1.8 MPa; preferably, the temperature is 100-160 ° C, the pressure is 0.1-0.8 MPa; more preferably, the temperature is 115-125 ° C, the pressure is 0.15-0.25 MPa; most preferably, the temperature It is 120 ° C and the pressure is 0.2 MPa.
  • the discharge unit 5 may comprise a screw discharger with a compression function for squeezing filtration and solid-liquid separation of the product.
  • the screw discharger comprises a compression section, and the inner diameter and the pitch of the compression section gradually become smaller along the discharge direction; more preferably, the screw discharger further comprises a plug section, the plug section is located after the compression section and the inner diameter and the pitch remain unchanged;
  • the spiral discharger has a screen at the wall, the screw discharger discharges the liquid through the screen; the spiral discharger has a solid discharge opening at the end for discharging solids.
  • the screw discharger of the discharge unit 5 can ensure that the discharge does not occur during the process of outputting the product, can maintain the pressure in the main reaction unit 4, and can provide continuous and stable discharge without clogging.
  • the temperature of the first acid liquid is preferably 40-95 ° C, more preferably 55-65 ° C, most preferably 60 ° C; the temperature of the second acid liquid is preferably 110-200 ° C, more preferably It is 125-135 ° C, most preferably 130 ° C.
  • Any acid concentration capable of effecting hydrolysis of lignocellulose is within the scope of the present invention.
  • the acid concentration of the first acid liquid and/or the second acid liquid may be from 0.1% by weight to 10% by weight.
  • the second acid liquid added to the main reaction unit 4 is also capable of bringing the solid-liquid mixture to a set solid-liquid mass ratio, preferably a solid-liquid mass ratio of 1:3-1:8.
  • the temperature and pressure in the feed mixing unit 2 and in the feed unit 3 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed, and the raw material mixing unit 2 can be set to a temperature.
  • the temperature is 40-90 ° C and the pressure is normal pressure; the feed unit 3 can be set to a temperature of 40-90 ° C.
  • the first acid liquid and/or the second acid liquid may be a circulating acid liquid.
  • the acid can be recycled for recycling.
  • FIG. 2 shows a preferred embodiment of the present invention, wherein an apparatus for continuously hydrolyzing sugar from a lignocellulosic material is provided, comprising an acid liquid output unit 10, a raw material mixing unit 20, and a spiral mixer 21.
  • the vent valve 45, the discharge unit 50, the screw discharger 51, the sugar liquid collection tank 52, and the slag tank 53 are provided.
  • the apparatus can be continuously hydrolyzed to sugar by the following process.
  • the lignocellulosic material is continuously fed to the raw material mixing unit 20, wherein the raw material mixing unit 20 includes a spiral mixer 21, and the raw material is in the spiral mixer 21 and the first acid liquid from the acid liquid output unit 10 (e.g., arrow F)
  • the mixture is uniformly mixed in a certain ratio to form a mixture and continuously output the mixture.
  • the uniformly mixed solid-liquid mixture enters the feed unit 30, which includes a screw feeder 31 and a first tapered lowering tube 32; the mixture continuously enters the screw feeder 31 through the first tapered lowering tube 32, spiraling into
  • the hopper 31 has a compression function including a compression section and a plug section. The inner diameter and the pitch of the compression section gradually become smaller along the feed direction, and the plug section is located after the compression section and the inner diameter and the pitch remain unchanged.
  • the screw feeder compresses the solid-liquid mixture and outputs it to the main reaction unit 40.
  • the main body reaction unit 40 includes a screw reactor 41, a second conical dropping pipe 42, an acid liquid adding device 43, a steam input port 44, and a vent valve 45.
  • the mixture from the screw feeder 31 is fed into the second tapered lowering tube 42.
  • the mixture is added to the second conical feed pipe 42 with the acid addition unit 10 from the acid output unit 10 and by the acid addition device 43 disposed at the top of the second conical feed tube 42 (preferably by spray addition)
  • the diacid solution (as indicated by the arrow S) is continuously mixed to reach the set solid-liquid ratio, and then enters the screw reactor 41, and is thoroughly stirred and mixed under a pressure higher than normal pressure to carry out the reaction.
  • the spiral reactor 41 is preferably of a flat flow type and has no compression function. The high temperature of the second acid can provide the heat required for the reaction.
  • the steam input port 44 can input steam to the screw reactor 41 to compensate for heat loss.
  • the vent valve 45 can be opened according to the pressure change in the screw reactor 41 to release the non-condensable gas to ensure the system pressure is stable.
  • the discharge unit 50 includes a screw discharger 51 with a compression function, a sugar liquid collection tank 52, and a slag tank 53.
  • the screw discharger 51 includes a compression section and a plug section, and the compression section gradually changes along the inner diameter and the pitch of the discharge direction. Small, the plug section is located after the compression section and the inner diameter and pitch remain unchanged. Among them, the product is subjected to solid-liquid separation under the action of the extrusion of the screw discharger 51.
  • the screw discharger discharges the liquid through the screen, and the liquid enters the sugar liquid collection tank 52; the solid discharge port at the end of the screw discharger is used for discharging solids, and the solid enters the slag tank 53.
  • the temperature and pressure of the main reaction unit 40 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed, controlling the vent valve, etc., preferably, the main reaction unit 40 can be set to a temperature. It is 100-180 ° C, the pressure is 0.1-1.8 MPa; more preferably, the temperature is 115-125 ° C, the pressure is 0.15-0.25 MPa; most preferably, the temperature is 120 ° C, and the pressure is 0.2 MPa.
  • the temperature and pressure within the feed mixing unit 20 and within the feed unit 30 can be adjusted and set by, for example, adjusting the temperature and pressure of the feed, and the feed mixing unit 20 can be configured to
  • the temperature is 40-90 ° C and the pressure is atmospheric; the feed unit 30 can be set to a temperature of 40-90 ° C.
  • the temperature of the first acid liquid is preferably 50-70 ° C, more preferably 55-65 ° C, most preferably 60 ° C; the temperature of the second acid liquid is preferably 120-140 ° C, more preferably It is 125-135 ° C, most preferably 130 ° C.
  • the first acid liquid and/or the second acid liquid may be a circulating acid liquid.
  • the acid can be recycled for recycling.
  • the above scheme of the utility model realizes continuous feeding, continuous reaction and continuous discharging in time, can effectively improve labor productivity, reduce labor intensity, reduce equipment size, increase sugar yield and sugar concentration, and reduce pollution. Its production efficiency is 3-8 times that of existing devices. Taking corn cob as an example, the traditional process sugar yield is 33%, and the sugar concentration is 5%. The device of the utility model can increase the sugar yield by 10%-15% and the sugar concentration by more than 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Saccharide Compounds (AREA)

Abstract

本实用新型提供了一种利用木质纤维素类原料连续水解制糖的装置,该装置包括:酸液输出单元,原料混合单元,进料单元,主体反应单元和出料单元。该装置是真正意义上的连续水解制糖装置,能够在时间上实现连续进料、连续反应、连续出料,并且能够有效地降低劳动强度、提高生产效率以及提高糖收率和糖浓度。

Description

利用木质纤维素类原料连续水解制糖的装置 技术领域
本实用新型涉及一种利用木质纤维素类原料连续水解制糖的装置,属于半纤维素和/或纤维素水解制糖技术领域。
背景技术
植物秸秆、棉籽壳、甘蔗渣及其他植物的禾杆和皮壳中由半纤维素、纤维素和木质素构成,其中的半纤维和纤维素,含有大量的多缩聚糖,由上述原料水解即得低聚糖或单糖,其反应式如下:
半纤维素水解:多缩聚戊糖→低缩聚戊糖或戊糖
纤维素水解:多缩聚己糖→己糖
目前在国内或国际上,利用木质纤维素类原料制糖的工艺通常采用稀酸水解的方法。通常以玉米芯作为原料进行制糖,第一代酸水解反应器为固定床反应器,将玉米芯与酸液以一定比例混合,然后送入反应器进行蒸煮水解,这种反应器结构简单,缺点是生成的产物不能被及时分离,因而会导致其进一步降解;第二代为渗滤式反应器,生产时不断将酸液喷洒到反应器中的玉米芯层,酸液穿过玉米芯层与玉米芯充分接触进行水解反应,这种反应器水解效率高,并且能有效的缩短糖液在反应器内的停留时间。
第一代和第二代酸水解装置均是间歇式反应器,其劳动强度大、生产效率低、占地面积大、污染严重。另外,由于现有反应器存在的酸液仅附在物料表面、物料和酸液的混合不均匀、水蒸气加热不均匀等问题,导致水解糖分解严重、副产物多、糖收率小、糖浓度低,从而影响了木质纤维素类原料在能源及化工行业的应用。
因此,研究利用木质纤维素类原料连续水解制糖的装置,对于解决现有技术中的上述技术问题具有积极的意义。
实用新型内容
考虑到上述问题而提出了本实用新型。本实用新型提供了一种利用木质纤维素类原料连续水解制糖的装置,其至少解决了现有反应器无法连续 反应导致的劳动强度大、生产效率低、糖收率低、糖浓度低等问题,能够有效地提高劳动生产率,降低劳动强度,减小设备尺寸,提高糖收率及糖浓度,并减少污染;还能有效地利用循环酸液的热量。
根据本实用新型的一方面,提供了一种利用木质纤维素类原料连续水解制糖的装置,该装置包括:酸液输出单元,用于分别输出第一酸液和第二酸液;原料混合单元,与所述酸液输出单元相连,用于将所述原料与第一酸液混合以形成混合物并连续输送所述混合物;进料单元,与所述原料混合单元相连,用于接收所述混合物、对所述混合物进行压缩并向外输送所述混合物;主体反应单元,与所述进料单元和所述酸液输出单元相连,用于分别接收所述混合物和第二酸液,并在高于常压的压力下充分搅拌和混合所述混合物和第二酸液以使其反应;和出料单元,与所述主体反应单元相连,用于对反应得到的生成物进行固液分离,并输出产物。
该连续水解制糖的装置是真正意义上的连续水解反应装置,在时间上实现了连续进料、连续反应、连续出料,降低了劳动强度、提高了生产效率;本实用新型的装置不仅能够水解半纤维素,还能够通过调整反应条件来水解纤维素,例如通过提高反应温度等;水解反应仅在主体反应单元中发生,减少了副产物的生成,反应得到的糖能够及时排出,提高了糖收率及糖浓度。
在本实用新型的一个优选实施方案中,原料混合单元可以包括螺旋混合器,其用于将原料和第一酸液在螺旋搅拌作用下混合均匀而形成混合物,并向进料单元提供连续进料。
木质纤维素类原料需在酸性环境下水解,当酸液与固体原料的比例不太大时,液体不能完全浸没固体原料,需将固液混合均匀以避免影响水解效果。采用螺旋混合器能够使原料和酸液混合得更加均匀,确保后续水解反应顺利进行。
在本实用新型的一个优选实施方案中,进料单元可以包括带压缩功能的螺旋进料器,其用于对所述混合物进行压缩并将所述混合物输送到所述主体反应单元。
在本实用新型的一个优选实施方案中,螺旋进料器可以包括压缩段,且压缩段内径和螺距沿进料方向逐渐变小。
在本实用新型的一个优选实施方案中,螺旋进料器还可以包括料塞段,料塞段位于压缩段之后且内径和螺距保持不变。
主体反应单元中的水解反应在高于常压的条件下进行,进料单元的螺 旋进料器能够确保主体反应单元中的物料不会反蹿回进料单元,能够维持主体反应单元内压力稳定,保证主体反应单元中的水解反应在稳定的压力下进行;此外,通过使用螺旋进料器,还能提供连续稳定地进料,不会出现堵塞现象。
在本实用新型的一个优选实施方案中,进料单元还可以包括分别与原料混合单元和螺旋进料器连接的第一锥形下料管,用于接收来自原料混合单元的混合物,并输送给螺旋进料器。
在进料单元使用第一锥形下料管来接收并输送混合物,能够确保混合物顺利地进入螺旋进料器,从而可避免因为从原料混合单元输出的混合均匀的混合物流动性较差而导致的堵塞或输送不畅。
在本实用新型的一个优选实施方案中,主体反应单元可以包括螺旋反应器,该螺旋反应器为平推流式并且无压缩功能。
混合物在主体反应单元的螺旋反应器中发生水解反应,螺旋反应器设置为平推流时,可以使反应完全以及提高反应效率,使得反应器中的混合物在任意反应阶段固液混合比一致,提高了水解反应的效率。
在本实用新型的一个优选实施方案中,主体反应单元还可以包括与进料单元连接、用于接收混合物的第二锥形下料管,该第二锥形下料管的顶部还设置有与酸液输出单元连接的酸液添加装置,用于添加第二酸液。
在主体反应单元使用第二锥形下料管来接收并输送混合物能够确保混合物顺利地进入螺旋反应器,避免从进料单元输出的固液混合物流动性较差导致的堵塞或输送不畅;在第二锥形下料管的顶部设置的酸液添加装置进一步补充反应所需的酸液以达到设定的固液比,使得水解反应能够高效进行。
在本实用新型的一个优选实施方案中,酸液添加装置可以通过喷淋添加第二酸液。采用喷淋的方式能够更均匀地将第二酸液喷洒至来自进料单元的混合物,还有助于第二酸液和混合物的均匀混合。
在本实用新型的一个优选实施方案中,主体反应单元还可以包括蒸汽输入口,其用于接收高温蒸汽。该蒸汽输入能够维持主体反应单元的反应温度在合适的范围,避免温度下降而引起的反应速率降低。
在本实用新型的一个优选实施方案中,主体反应单元还可以包括放空阀,以排出反应过程中产生的不凝气。这样,能够保证主体反应单元内的压力在合适的范围内,从而使得水解反应稳定进行。
在本实用新型的一个优选实施方案中,出料单元可以包括带压缩功能 的螺旋出料器,螺旋出料器用于对生成物进行挤压过滤和固液分离。
在本实用新型的一个优选实施方案中,螺旋出料器包括压缩段,压缩段内径和螺距沿出料方向逐渐变小。
在本实用新型的一个优选实施方案中,螺旋出料器还包括料塞段,料塞段位于压缩段之后且内径和螺距保持不变。
在本实用新型的一个优选实施方案中,螺旋出料器器壁处有筛网,螺旋出料器通过筛网排出液体;螺旋出料器末端有固体排料口用于排出固体。
出料单元的螺旋出料器能够确保输出生成物的过程中不会发生喷料,能够维持主体反应单元内压力稳定;此外还能够提供连续稳定地出料,不会出现堵塞现象。
在本实用新型的一个优选实施方案中,第一酸液的温度可以为40-95℃;第二酸液的温度可以为110-200℃。
任何能够实现木质纤维素水解的酸浓度均适用于本实用新型。在一个优选实施方案中,第一酸液和/或第二酸液的酸浓度可以为0.1wt%-10wt%。
在本实用新型的一个优选实施方案中,主体反应单元40的温度和压力可通过例如调整进料的温度和压力、控制放空阀等方式来进行调节和设置,主体反应单元可以被设置成温度为100-200℃,压力为0.1-1.8MPa;优选地,温度为100-160℃,压力为0.1-0.8MPa。
在本实用新型的一个优选实施方案中,原料混合单元20内和进料单元30内的温度和压力均可通过例如调整进料的温度和压力等方式来进行调节和设置,原料混合单元可以被设置成温度为40-90℃,压力为常压;进料单元可以被设置成温度为40-90℃。
在本实用新型的一个优选实施方案中,第一酸液和/或第二酸液可以为循环酸液。
本实用新型的上述方案在时间上实现了连续进料、连续反应、连续出料,能够有效地提高劳动生产率,降低劳动强度,减小设备尺寸,提高糖收率及糖浓度,并减少污染。
附图说明
本实用新型的下列附图在此作为本实用新型的一部分用于理解本实用新型。附图中示出了本实用新型的实施例及其描述,用来解释本实用新型的原理。
图1是根据本实用新型的一个实施方案所述的一种利用木质纤维素类 原料连续水解制糖的装置的示意图。
图2是根据本实用新型的另一个实施方案所述的一种利用木质纤维素类原料连续水解制糖的装置的示意图。
具体实施方式
以下将对本实用新型的具体实施方式进行描述。
图1示意性示出了根据本实用新型的一个实施方案。
如图1所示,其为一种利用木质纤维素类原料连续水解制糖的装置,包括酸液输出单元1,原料混合单元2,进料单元3,主体反应单元4,出料单元5。
该装置可以以下述工艺进行连续水解制糖。
木质纤维素类原料在原料混合单元2中与酸液输出单元1输出的第一酸液以一定比例混合均匀形成混合物。混合物被连续送入进料单元3,进料单元3对混合物进行压缩并向外输送混合物。混合物连续稳定地进入主体反应单元4,并且在高于常压的压力下与酸液输出单元1输出的第二酸液混合达到设定的固液比以使其反应。反应完成后的生成物被连续稳定地输送至出料单元5,生成物在出料单元5中进行固液分离,输出产物。该实施方案在时间上实现了的连续进料、连续反应、连续出料,是真正意义上的连续水解制糖,降低了劳动强度、提高了生产效率;水解反应仅在主体反应单元4中发生,减少了副产物的生成,反应得到的糖能够及时排出,提高了糖收率和糖浓度。
在一个优选的实施方案中,原料混合单元2可以包括螺旋混合器,其用于将原料和第一酸液在螺旋搅拌作用下混合均匀而形成混合物,并向进料单元3提供连续进料。采用螺旋混合器能够使原料和酸液混合得更加均匀,确保后续水解反应顺利进行。
在一个优选的实施方案中,进料单元3可以包括带压缩功能的螺旋进料器,优选螺旋进料器包括压缩段,压缩段内径和螺距沿进料方向逐渐变小,更优选螺旋进料器包括料塞段,料塞段位于压缩段之后且内径和螺距保持不变。螺旋进料器,用于对所述混合物进行压缩并将所述混合物输送到所述主体反应单元4。主体反应单元4中的水解反应在高于常压的条件下进行,进料单元3的螺旋进料器能够确保主体反应单元4中的物料不会反蹿回进料单元3,并且维持主体反应单元4内压力稳定,保证主体反应单元4中的水解反应在稳定的压力下进行;此外,通过使用螺旋进料器, 还能提供连续稳定地进料,不会出现堵塞现象。
在一个优选的实施方案中,进料单元3还可以包括分别与原料混合单元2和螺旋进料器连接的第一锥形下料管,用于接收来自原料混合单元2的混合物,并输送给螺旋进料器。在进料单元3使用第一锥形下料管来接收并输送混合物,能够确保混合物顺利地进入螺旋进料器,从而可避免因为从原料混合单元2输出的混合均匀的混合物流动性较差而导致的堵塞或输送不畅。
在一个优选的实施方案中,主体反应单元4可以包括螺旋反应器,该螺旋反应器为平推流式并且无压缩功能。混合物在主体反应单元4的螺旋反应器中发生水解反应,螺旋反应器设置为平推流时,可以使反应完全以及提高反应效率,使得反应器中的混合物在任意反应阶段固液混合比一致,提高了水解反应的效率。
在一个优选的实施方案中,主体反应单元4还可以包括与进料单元3连接、用于接收混合物的第二锥形下料管,该第二锥形下料管的顶部还设置有与酸液输出单元1连接的酸液添加装置,用于添加第二酸液。在主体反应单元4使用第二锥形下料管来接收并输送混合物能够确保混合物顺利地进入螺旋反应器,避免从进料单元3输出的固液混合物流动性较差导致的堵塞或输送不畅;在第二锥形下料管的顶部设置的酸液添加装置进一步补充反应所需的酸液以达到设定的固液比,使得水解反应能够高效进行。
在一个优选的实施方案中,酸液添加装置可以通过喷淋添加第二酸液。采用喷淋的方式能够更均匀地将第二酸液喷洒至来自进料单元3的混合物,还有助于第二酸液和混合物的均匀混合。
在一个优选的实施方案中,主体反应单元4还可以包括蒸汽输入口,其用于接收高温蒸汽。该蒸汽输入能够维持主体反应单元4的反应温度在合适的范围,避免温度下降而引起的反应速率降低。
在一个优选的实施方案中,主体反应单元4还可以包括放空阀,以排出反应过程中产生的不凝气。这样,能够保证主体反应单元4内的压力在合适的范围内,从而使得水解反应稳定进行。
在一个优选的实施方案中,主体反应单元4的温度和压力可通过例如调整进料的温度和压力、控制放空阀等方式来进行调节和设置,主体反应单元4能够被设置成温度为100-200℃,压力为0.1-1.8MPa;优选地,温度为100-160℃,压力为0.1-0.8MPa;更优选地,温度为115-125℃,压力为0.15-0.25MPa;最优选地,温度为120℃,压力为0.2MPa。
在一个优选的实施方案中,出料单元5可以包括带压缩功能的螺旋出料器,螺旋出料器用于对生成物进行挤压过滤和固液分离。优选螺旋出料器包括压缩段,压缩段内径和螺距沿出料方向逐渐变小;更优选螺旋出料器还包括料塞段,料塞段位于压缩段之后且内径和螺距保持不变;更优选螺旋出料器器壁处有筛网,螺旋出料器通过筛网排出液体;螺旋出料器末端有固体排料口用于排出固体。出料单元5的螺旋出料器能够确保输出生成物的过程中不会发生喷料,能够维持主体反应单元4内压力稳定;此外还能够提供连续稳定地出料,不会出现堵塞现象。
在一个优选的实施方案中,第一酸液的温度优选为40-95℃,更优选为55-65℃,最优选为60℃;第二酸液的温度优选为110-200℃,更优选为125-135℃,最优选为130℃。任何能够实现木质纤维素水解的酸浓度均在本实用新型的考虑范围内,在一个优选实施方案中,第一酸液和/或第二酸液的酸浓度可以为0.1wt%-10wt%。
在一个优选的实施方案中,加入到主体反应单元4的第二酸液还能够使固液混合物达到设定的固液质量比,优选固液质量比为1:3-1:8。
在一个优选的实施方案中,原料混合单元2内和进料单元3内的温度和压力均可通过例如调整进料的温度和压力等方式来进行调节和设置,原料混合单元2可以设置成温度为40-90℃,压力为常压;进料单元3可以设置成温度为40-90℃。
在一个优选的实施方案中,第一酸液和/或第二酸液可以为循环酸液。例如,如果后续的糖处理工艺中不中和酸,则能够回收酸液循环使用。
图2示出了本实用新型的一个优选的实施方案,其中,提供了一种利用木质纤维素类原料连续水解制糖的装置,包括酸液输出单元10、原料混合单元20、螺旋混合器21、进料单元30、螺旋进料器31、第一锥形下料管32、主体反应单元40、螺旋反应器41、第二锥形下料管42、酸液添加装置43、蒸汽输入口44、放空阀45、出料单元50、螺旋出料器51、糖液收集罐52、渣罐53。
该装置可以以下述工艺进行连续水解制糖。
木质纤维素类原料被连续送入原料混合单元20,其中该原料混合单元20包括螺旋混合器21,原料在螺旋混合器21中与来自酸液输出单元10的第一酸液(如箭头F所示)以一定比例混合均匀,以形成混合物并连续输出混合物。
混合均匀的固液混合物进入进料单元30,其包括螺旋进料器31和第 一锥形下料管32;该混合物经过第一锥形下料管32连续进入螺旋进料器31,螺旋进料器31带压缩功能,其包括压缩段和料塞段,压缩段内径和螺距沿进料方向逐渐变小,料塞段位于压缩段之后且内径和螺距保持不变。螺旋进料器可对固液混合物进行压缩并向外输出至主体反应单元40。
主体反应单元40包括螺旋反应器41、第二锥形下料管42、酸液添加装置43、蒸汽输入口44和放空阀45。来自螺旋进料器31的混合物被送入第二锥形下料管42。混合物在第二锥形下料管42中与来自酸液输出单元10、并由设置在第二锥形下料管42的顶部的酸液添加装置43进行添加(优选通过喷淋添加)的第二酸液(如箭头S所示)继续混合达到设定的固液比,然后进入螺旋反应器41,在高于常压的压力下充分搅拌和混合,以进行反应。螺旋反应器41优选为平推流式并且无压缩功能。第二酸液的高温能够提供反应所需的热量。
蒸汽输入口44可以向螺旋反应器41输入蒸汽来弥补热量损失。反应过程中,可根据螺旋反应器41内的压力变化适时开启放空阀45,释放不凝气,确保系统压力稳定。
反应完成后的生成物进入出料单元50。该出料单元50包括带压缩功能的螺旋出料器51、糖液收集罐52、渣罐53,螺旋出料器51包括压缩段和料塞段,压缩段沿出料方向内径和螺距逐渐变小,料塞段位于压缩段之后且内径和螺距保持不变。其中,生成物在螺旋出料器51的挤压作用下进行固液分离。螺旋出料器器壁处有筛网,螺旋出料器通过筛网排出液体,该液体进入糖液收集罐52;螺旋出料器末端有固体排料口用于排出固体,该固体进入渣罐53。
在一个优选的实施方案中,主体反应单元40的温度和压力可通过例如调整进料的温度和压力、控制放空阀等方式来进行调节和设置,优选地,主体反应单元40能够被设置成温度为100-180℃,压力为0.1-1.8MPa;更优选地,温度为115-125℃,压力为0.15-0.25MPa;最优选地,温度为120℃,压力为0.2MPa。
在一个优选的实施方案中,原料混合单元20内和进料单元30内的温度和压力均可通过例如调整进料的温度和压力等方式来进行调节和设置,原料混合单元20能够被设置成温度为40-90℃,压力为常压;进料单元30能够被设置成温度为40-90℃。
在一个优选的实施方案中,第一酸液的温度优选为50-70℃,更优选为55-65℃,最优选为60℃;第二酸液的温度优选为120-140℃,更优选为 125-135℃,最优选为130℃。
在一个优选的实施方案中,第一酸液和/或第二酸液可以为循环酸液。例如,如果后续的糖处理工艺中不中和酸,则能够回收酸液循环使用。
本实用新型的上述方案在时间上实现了连续进料、连续反应、连续出料,能够有效地提高劳动生产率,降低劳动强度,减小设备尺寸,提高糖收率及糖浓度,并减少污染。其生产效率为现有装置的3-8倍。以玉米芯为例,传统工艺糖收率为33%,糖浓度为5%,本实用新型的装置能够将糖收率提高10%-15%,糖浓度提高10%以上。
本实用新型已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本实用新型限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本实用新型并不局限于上述实施例,根据本实用新型的教导还可以做出更多种的变型和修改,这些变型和修改均落在本实用新型所要求保护的范围以内。本实用新型的保护范围由附属的权利要求书及其等效范围所界定。

Claims (21)

  1. 一种利用木质纤维素类原料连续水解制糖的装置,包括:
    酸液输出单元,用于分别输出第一酸液和第二酸液;
    原料混合单元,与所述酸液输出单元相连,用于将所述原料与第一酸液混合以形成混合物并连续输送所述混合物;
    进料单元,与所述原料混合单元相连,用于接收所述混合物、对所述混合物进行压缩并向外输送所述混合物;
    主体反应单元,与所述进料单元和所述酸液输出单元相连,用于分别接收所述混合物和第二酸液,并在高于常压的压力下充分搅拌和混合所述混合物和第二酸液以使其反应;和
    出料单元,与所述主体反应单元相连,用于对反应得到的生成物进行固液分离,并输出产物。
  2. 根据权利要求1所述的装置,其特征在于,所述原料混合单元包括螺旋混合器,所述螺旋混合器用于将原料和第一酸液在螺旋搅拌作用下混合均匀而形成所述混合物,并向所述进料单元提供连续进料。
  3. 根据权利要求1或2所述的装置,其特征在于,所述进料单元包括带压缩功能的螺旋进料器,用于对所述混合物进行压缩并将所述混合物输送到所述主体反应单元。
  4. 根据权利要求3所述的装置,其特征在于,所述进料单元包括分别与所述原料混合单元和所述螺旋进料器连接的第一锥形下料管,用于接收来自所述原料混合单元的所述混合物,并输送给所述螺旋进料器。
  5. 根据权利要求1所述的装置,其特征在于,所述主体反应单元包括螺旋反应器,所述螺旋反应器为平推流式并且无压缩功能。
  6. 根据权利要求1或5所述的装置,其特征在于,所述主体反应单元包括与所述进料单元连接、用于接收所述混合物的第二锥形下料管,该第二锥形下料管的顶部还设置有与所述酸液输出单元连接的酸液添加装置, 用于添加所述第二酸液。
  7. 根据权利要求6所述的装置,其特征在于,所述酸液添加装置通过喷淋添加所述第二酸液。
  8. 根据权利要求1所述的装置,其特征在于,所述主体反应单元还包括蒸汽输入口,其用于接收高温蒸汽。
  9. 根据权利要求1或8所述的装置,其特征在于,所述主体反应单元还包括放空阀,以排出反应过程中产生的不凝气。
  10. 根据权利要求9所述的装置,其特征在于,所述主体反应单元能够被设置成温度为100-200℃,压力为0.1-1.8MPa。
  11. 根据权利要求1所述的装置,其特征在于,所述出料单元包括带压缩功能的螺旋出料器,所述螺旋出料器用于对所述生成物进行挤压过滤和固液分离。
  12. 根据权利要求1所述的装置,其特征在于,第一酸液的温度为40-95℃;第二酸液的温度为110-200℃;第一酸液和第二酸液的酸浓度为0.1-10wt%。
  13. 根据权利要求1所述的装置,其特征在于,所述主体反应单元能够被设置成温度为100-200℃,压力为0.1-1.8MPa。
  14. 根据权利要求1所述的装置,其特征在于,所述原料混合单元能够被设置成温度为40-90℃,压力为常压;所述进料单元能够被设置成温度为40-90℃。
  15. 根据权利要求1所述的装置,其特征在于,所述第一酸液为循环酸液。
  16. 根据权利要求1所述的装置,其特征在于,所述第二酸液为循环酸液。
  17. 根据权利要求3所述的装置,其特征在于,所述螺旋进料器包括压缩段,所述压缩段内径和螺距沿进料方向逐渐变小。
  18. 根据权利要求17所述的装置,其特征在于,所述螺旋进料器还包括料塞段,所述料塞段位于所述压缩段之后且内径和螺距保持不变。
  19. 根据权利要求11所述的装置,其特征在于,所述螺旋出料器包括压缩段,所述压缩段内径和螺距沿出料方向逐渐变小。
  20. 根据权利要求19所述的装置,其特征在于,所述螺旋出料器还包括料塞段,所述料塞段位于所述压缩段之后且内径和螺距保持不变。
  21. 根据权利要求11所述的装置,其特征在于,所述螺旋出料器器壁处有筛网,所述螺旋出料器通过所述筛网排出液体;所述螺旋出料器末端有固体排料口用于排出固体。
PCT/CN2018/117647 2017-12-06 2018-11-27 利用木质纤维素类原料连续水解制糖的装置 WO2019109833A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3083389A CA3083389A1 (en) 2017-12-06 2018-11-27 Device for continuously producing sugar by hydrolyzation using lignocellulosic raw material
EP18884892.3A EP3722303A4 (en) 2017-12-06 2018-11-27 DEVICE FOR CONTINUOUS SUGAR PRODUCTION BY HYDROLYSIS USING A LIGNOCELLULOSIC RAW MATERIAL
US16/894,353 US11851721B2 (en) 2017-12-06 2020-06-05 Device for continuously producing sugar by hydrolyzation using lignocellulosic raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721686929.X 2017-12-06
CN201721686929.XU CN207828156U (zh) 2017-12-06 2017-12-06 利用木质纤维素类原料连续水解制糖的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/894,353 Continuation US11851721B2 (en) 2017-12-06 2020-06-05 Device for continuously producing sugar by hydrolyzation using lignocellulosic raw material

Publications (1)

Publication Number Publication Date
WO2019109833A1 true WO2019109833A1 (zh) 2019-06-13

Family

ID=63385782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117647 WO2019109833A1 (zh) 2017-12-06 2018-11-27 利用木质纤维素类原料连续水解制糖的装置

Country Status (5)

Country Link
US (1) US11851721B2 (zh)
EP (1) EP3722303A4 (zh)
CN (1) CN207828156U (zh)
CA (1) CA3083389A1 (zh)
WO (1) WO2019109833A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207828156U (zh) * 2017-12-06 2018-09-07 易高环保能源研究院有限公司 利用木质纤维素类原料连续水解制糖的装置
CN111848836B (zh) * 2020-08-17 2024-02-20 山东美佳集团有限公司 甲壳质连续高效脱钙装置
SE2051477A1 (en) * 2020-12-17 2021-10-19 Valmet Oy Method and system for producing solid combustible material from biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120102A (zh) * 2005-02-15 2008-02-06 奥克西特诺工业与贸易公司 纤维素和木质纤维素材料的酸水解方法、消化罐和水解反应器
CN101130533A (zh) * 2007-09-24 2008-02-27 济南圣泉集团股份有限公司 利用农林废弃物生产糠醛的系统及方法
CN207828156U (zh) * 2017-12-06 2018-09-07 易高环保能源研究院有限公司 利用木质纤维素类原料连续水解制糖的装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI810523L (fi) * 1980-02-23 1981-08-24 Franz Johann Reitter Foerfarande och anlaeggning foer kontinuerlig hydrolys av cellulosahaltig vaext-biosubstans foer utvinning av socker
CA1190923A (en) * 1980-03-18 1985-07-23 Barry Rugg Process and apparatus for chemical conversion of materials and particularly the conversion of cellulose waste to glucose
CN101130531B (zh) * 2007-09-17 2012-05-09 济南圣泉集团股份有限公司 农林废弃物制备糠醛的系统和方法
CN204174468U (zh) * 2011-09-20 2015-02-25 沃依特专利有限责任公司 加热给料的设备
EP2758589A4 (en) * 2011-09-20 2015-08-26 Iogen Energy Corp METHOD FOR HEATING A FEEDING LOAD
SE538262C2 (sv) * 2014-06-26 2016-04-19 Valmet Oy Arrangemang för matning och tvättning av lignocellulosahaltigt material och system för tvåstegsanalys innefattandearrangemanget

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120102A (zh) * 2005-02-15 2008-02-06 奥克西特诺工业与贸易公司 纤维素和木质纤维素材料的酸水解方法、消化罐和水解反应器
CN101130533A (zh) * 2007-09-24 2008-02-27 济南圣泉集团股份有限公司 利用农林废弃物生产糠醛的系统及方法
CN207828156U (zh) * 2017-12-06 2018-09-07 易高环保能源研究院有限公司 利用木质纤维素类原料连续水解制糖的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722303A4 *

Also Published As

Publication number Publication date
EP3722303A1 (en) 2020-10-14
EP3722303A4 (en) 2021-08-18
CA3083389A1 (en) 2019-06-13
US20200377962A1 (en) 2020-12-03
US11851721B2 (en) 2023-12-26
CN207828156U (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
US11851721B2 (en) Device for continuously producing sugar by hydrolyzation using lignocellulosic raw material
US8193395B2 (en) Biomass treatment process and system
JP7113002B2 (ja) 含浸および水蒸気爆発によりリグノセルロース系バイオマスを処理するための方法
CN102405318B (zh) 用于制备纤维素原料的装置和方法
JP5378306B2 (ja) バイオマスの処理装置及び処理方法
TWI558814B (zh) 連續處理纖維原料之裝置
US11492752B2 (en) Method and device for treating biomass
CN101768538B (zh) 卧式多螺旋生物质连续水解糖化装置及方法
WO2010049815A2 (en) A biomass treatment process and system
CN205603586U (zh) 农作物秸秆酶解罐
CN204174468U (zh) 加热给料的设备
CN107447057A (zh) 一种生物质连续水解及压缩成型的装置
US11186949B2 (en) Method for impregnating biomass and device for impregnating biomass
CZ301471B6 (cs) Zpusob a zarízení pro zpracování lignocelulózového materiálu tlakovou hydrolýzou
CN207651590U (zh) 一种复合离子电极材料连续循环造粒装置
JP2011144336A (ja) バイオマス処理方法
RU2382082C1 (ru) Способ получения гидролизата из крахмалсодержащего сырья
EP2748342B1 (en) Process for the conversion of a xylan-containing feed
CN115536621B (zh) 以生物质为载体耦合生物质糖生产糠醛的工艺和设备
CN201217658Y (zh) 以生物质为原料的乙醇制备系统
CN108745200A (zh) 一种带有尾气处理的化工料破碎造粒机
CN106191327B (zh) 一种利用碳基固体酸催化剂两步水解生物质的反应系统
TW201615664A (zh) 連續式高效能纖維生質原料混酸裝置
TW201714801A (zh) 纖維生質物料連續定量分配方法與裝置
CN106399413A (zh) 用于l‑赖氨酸发酵的葡萄糖原料的配置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3083389

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884892

Country of ref document: EP

Effective date: 20200706