WO2019109824A1 - 一种基于通用雷达前端芯片的毫米波成像安检雷达系统 - Google Patents

一种基于通用雷达前端芯片的毫米波成像安检雷达系统 Download PDF

Info

Publication number
WO2019109824A1
WO2019109824A1 PCT/CN2018/117359 CN2018117359W WO2019109824A1 WO 2019109824 A1 WO2019109824 A1 WO 2019109824A1 CN 2018117359 W CN2018117359 W CN 2018117359W WO 2019109824 A1 WO2019109824 A1 WO 2019109824A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
radar
array
component
processing
Prior art date
Application number
PCT/CN2018/117359
Other languages
English (en)
French (fr)
Inventor
唐琳
刘斌
黄勇
孟宏峰
Original Assignee
上海无线电设备研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海无线电设备研究所 filed Critical 上海无线电设备研究所
Publication of WO2019109824A1 publication Critical patent/WO2019109824A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers

Definitions

  • the invention relates to the technical design and signal processing technology of an active millimeter wave imaging security inspection radar, and particularly relates to a millimeter wave imaging security radar system based on a universal radar front end chip.
  • the millimeter wave imaging security radar is a new security device capable of real-time high-resolution fluoroscopy imaging and real-time detection of metal and non-metallic objects.
  • the millimeter wave imaging security radar includes passive millimeter wave imaging security radar and active millimeter wave imaging security radar. .
  • the active millimeter wave imaging security radar is achieved by receiving millimeter-wave scattering energy and utilizing the difference in scattering intensity of the object. Compared with other existing security inspection methods, the active millimeter wave imaging security inspection method has great advantages in many aspects such as detecting the applicable range of the scene and detecting the type of the target.
  • the active millimeter wave imaging security radar is a short-range imaging radar. Its system has some unique features. On the one hand, the security radar needs to achieve high imaging resolution, and the array antenna array is required to have a large imaging aperture. On the other hand, security inspection The radar needs to achieve uniform imaging at multiple angles, and the transmitting array elements in the array antenna are required to be evenly distributed on the array to achieve uniform multi-angle illumination of the target. The characteristics of these two aspects determine that the millimeter wave imaging security radar requires a large number of transmitting and receiving channels. Therefore, the active millimeter wave imaging security inspection system has high complexity and high development cost.
  • the existing switch array scheme can reduce the number of transceiver channels actually used, the huge switch array makes the system complicated, which is not conducive to integration, and it is difficult to reduce the cost.
  • the most important thing is that the scheme increases the time of system data acquisition;
  • the large MIMO array solution can greatly improve the data acquisition speed, but the solution network is complex, difficult to integrate, and costly.
  • a millimeter wave imaging device is constructed mainly for the technical problem that the millimeter wave imaging is not real-time and the imaging speed is slow, and the system scheme is similar to In the switch array scheme, it is necessary to control the transmission and reception signals of each channel through the switch time division, the system data acquisition time is long, and the existence of the switch array makes the system difficult to integrate.
  • the object of the present invention is to provide a millimeter wave imaging security radar system based on a universal radar front end chip, which is an active millimeter wave imaging security radar, which is implemented based on a general radar front end chip, and can better solve system integration and complexity.
  • the problem can be reduced by using a general-purpose radar front-end chip.
  • a millimeter wave imaging security radar system based on a universal radar front-end chip characterized in that it comprises:
  • the front-end array component includes a plurality of general-purpose radar front-end chips for generating a millimeter-wave RF signal and outputting the millimeter-wave RF signal to the antenna array component, and pre-processing the echoes transmitted from the antenna array component to obtain pre-processed data;
  • An antenna array component includes a plurality of MIMO antenna sub-arrays respectively connected to a plurality of general-purpose radar front-end chips in the front-end array component for radiating the received millimeter-wave radio frequency signals and receiving the target reflection After the echo, the echo is transmitted back to the front-end array component;
  • a processing component that connects the plurality of general-purpose radar front-end chips in the front-end array component for storing and real-time imaging the pre-processed data to generate an image
  • a display control component that connects the processing components to control the processing components and further processes the generated images.
  • a plurality of receiving antennas, and a plurality of receiving antennas corresponding to one transmitting antenna are provided.
  • the above-described millimeter wave imaging security radar system based on a universal radar front end chip wherein the universal radar front end chip comprises:
  • An RF and analog front end module consisting of a transmit channel and a receive channel
  • An acquisition module that implements analog signal acquisition
  • FPGA main processor DSP slave processor, and memory.
  • the FPGA main processor calls the DSP slave processor and the processing module in the front-end array component as a co-processor to jointly perform real-time imaging tasks.
  • Display module for image processing and display
  • Control module for timing and waveform control
  • the motion module is configured to implement motion of the antenna array component, and feed back the motion information to the processing component for real-time imaging compensation.
  • the invention has the following advantages: based on the general radar front-end chip, the system integration and complexity problems can be better solved, and the general radar front-end chip can be utilized to reduce the system cost.
  • Figure 1 is a block diagram showing the structure of the present invention
  • FIG. 2 is a schematic structural diagram of a MIMO antenna sub-array according to the present invention.
  • FIG. 3 is a schematic diagram of a connection structure between an antenna array component and a front end array component according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a connection structure between a processing component and a front end array component according to an embodiment of the present invention.
  • the present invention provides a millimeter wave imaging security radar system based on a universal radar front-end chip, comprising: a front-end array component 2 comprising a plurality of general-purpose radar front-end chips 6 for generating millimeter-wave RF signals and The millimeter wave radio frequency signal is output to the antenna array component 1, and the echoes transmitted from the antenna array component 1 are preprocessed by phase compensation and sampling to obtain preprocessed data; the antenna array component 1 includes a plurality of MIMO antenna subarrays 5 The plurality of antenna array components 1 are respectively connected to the plurality of general-purpose radar front-end chips 6 in the front-end array component 2, for radiating the received millimeter-wave radio frequency signals, and receiving echoes of the target reflection, and returning the echoes.
  • the processing component 3 connected to the plurality of general-purpose radar front-end chips 6 in the front-end array component 2 for storing and real-time imaging the pre-processed data to generate an image; the display control component 4, connecting the processing component 3 The processing component 3 is controlled and the generated image is further processed.
  • the transmitting antenna 13 and the receiving antenna 14 corresponding to the transmitting channel and the receiving channel of the single universal radar front-end chip 6 form a MIMO antenna sub-array 5, and the equivalent phase center thereof is a uniform linear array.
  • the equivalent uniform linear array formed by multiple general-purpose radar front-end chips can be expanded into a larger uniform linear array.
  • the MIMO antenna sub-array 5 includes: a plurality of transmitting antennas 13; a plurality of receiving antennas 14, and a plurality of receiving antennas 14 corresponding to one transmitting antenna 13.
  • the universal radar front end chip 6 comprises: a radio frequency and analog front end module 15 composed of a transmitting channel and a receiving channel; an acquisition module 16 for realizing analog signal acquisition; and a processing module 17 for performing data preprocessing.
  • the processing component 3 includes an FPGA main processor 7, a DSP slave processor 8, and a memory 9.
  • the FPGA main processor 7 calls the DSP slave processor 8 and the processing module 17 in the front-end array component 2 as coprocessors to jointly perform real-time imaging tasks.
  • the display control component 4 includes: a display module 10 for image processing and display; a control module 11 for timing and waveform control; and a motion module 12 for controlling movement of the antenna array component 1 to achieve antenna array component equivalent
  • the uniform linear array is further expanded to form a uniform area array satisfying imaging requirements, and the returned motion information is fed back to the processing component 3 for real-time imaging compensation.
  • the MIMO antenna sub-array 5 includes two transmitting antennas 13, four receiving antennas 14, and the transmitting antennas 13 and the receiving antennas 14 are arranged in a staggered manner.
  • the transmitting antennas 13 transmit radio frequency signals
  • the four receiving antennas 14 simultaneously receive echoes. signal.
  • the eight equivalent phase centers formed by the pair of transmitting and receiving antennas are a uniform line array.
  • the eight sets of echo signals collected by the MIMO antenna sub-array 5 are equivalent to the echo signals collected by the antenna at the eight equivalent phase centers.
  • the antenna array assembly 1 of the present invention is composed of 64 MIMO antenna sub-arrays 5, which are equivalently arranged as a line array having 512 spontaneous self-receiving antenna elements.
  • the front-end array component 2 is composed of 64 AWR1642 general-purpose radar front-end chips 6, and the single chip includes 2 transmitting channels and 4 receiving channels, and a single MIMO antenna sub-array 5 A correspondence.
  • the AWR1642 transmit channel generates a millimeter-wave RF signal, which is transmitted to the corresponding transmit antenna 13 and radiated by the transmit antenna 13 in the MIMO antenna sub-array 5.
  • the echo reflected by the target is received by the receive antenna 14 in the MIMO antenna sub-array 5.
  • AD acquisitions in the acquisition module 16 of the AWR1642 general-purpose radar front-end chip 6 are converted into digital signals, and finally pre-processed by the DSP processor 8 in the AWR1642 general-purpose radar front-end chip 6. .
  • a single MIMO antenna sub-array 5 is composed of two transmitting antennas Tx11 and Tx12, four receiving antennas Rx11, Rx12, Rx13, and Rx14, and the equivalent phase centers thereof correspond to TRx1, TRx2, and TRx3.
  • TRx4, TRx5, TRx6, TRx7, TRx8, the equivalent phase center is a uniform linear array, and the equivalent uniform linear array formed by multiple general-purpose radar front-end chips can be expanded into a larger uniform linear array.
  • the processing component 3 is composed of a DSP Kintex7 410T of Xilinx Corporation, a DSP slave processor 8 of the TI TMS320C6455, and a RAM memory 9, wherein the FPGA functions as a main processor 7, a DSP in the AWR1642.
  • the coprocessor 17 performs the real-time imaging processing together.
  • the data preprocessed by the DSP in the AWR1642 is transferred to the FPGA, and then transferred from the FPGA to the RAM memory 9.
  • the FPGA calls the DSP from the processor and the DSP processor in the AWR1642 general radar front end chip 6 cooperates with the 8 to implement the data in the RAM memory 9. Real-time imaging.
  • the image processed by the processing component 3 in real time is transmitted by the FPGA main processor 7 to the display control component 4, and the display module 10 further processes the image, and the final result is displayed in the display module 10.
  • the control module 11 in the display control component 4 generates timing and waveform control commands that are delivered to the DSP for control by the processor 8 to control the radar front end chip 6.
  • the motion commands generated by the motion module 12 are delivered to the motion mechanism that internally controls the motion of the antenna.
  • the motion information returned by the motion module 12 will be fed back to the processing component 3 for compensation for real-time imaging.
  • the MIMO sub-array is constructed by using the general radar front-end chip transmitting and receiving channel and the corresponding antenna component, and all the MIMO sub-arrays formed by the front-end array component construct a virtual line array and a virtual line.
  • the array cooperates with the mechanical motion to form an area array; according to the time sampling requirement of the system for the intermediate frequency signal, the acquisition module of the front-end array component is used to realize the digitization of the echo signal, and the processing module of the front-end array component is used to complete the data pre-processing of the virtual line array;
  • the processing requirements of the echo digital signal, the processing module and the processing module of the front-end array component are used to complete the real-time imaging of the security radar; according to the requirements of the system for the timing control and the image display, the display module of the display control component is used to complete the image processing and display, and the motion
  • the module completes the mechanical motion and control, and the control module completes the timing and waveform control.
  • the invention can better accelerate the acquisition process of the imaging data, improve the system data collection speed, improve the system integration degree, reduce the system cost, and has better economic benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于通用雷达前端芯片(6)的毫米波成像安检雷达系统,其包含:前端阵列组件(2),包含多个通用雷达前端芯片(6),用于产生毫米波射频信号并将毫米波射频信号输出给天线阵列组件(1),并对天线阵列组件(1)传来的回波进行预处理得到预处理数据;天线阵列组件(1),包含多个MIMO天线子阵(5),该多个天线阵列组件(1)分别连接前端阵列组件(2)中的多个通用雷达前端芯片(6),用于将接收到的毫米波射频信号辐射出去,并接收目标反射的回波后将回波回传给前端阵列组件(2);处理组件(3),连接前端阵列组件(2)中的多个通用雷达前端芯片(6),用于对预处理数据进行存储和实时成像以生成图像;显控组件(4),连接处理组件(3)以控制处理组件(3),并对生成的图像进行进一步处理。

Description

一种基于通用雷达前端芯片的毫米波成像安检雷达系统 技术领域
本发明涉及主动毫米波成像安检雷达总体方案设计技术与信号处理技术领域,具体涉及一种基于通用雷达前端芯片的毫米波成像安检雷达系统。
背景技术
毫米波成像安检雷达是一种能够实现近距离实时高分辨透视成像、并实现金属和非金属物体探测的新安检设备,毫米波成像安检雷达包括被动毫米波成像安检雷达和主动毫米波成像安检雷达。
主动毫米波成像安检雷达,是通过接收毫米波散射能量,并利用物体的散射强度差异来实现成像。与现有的其他安检方法相比,主动毫米波成像安检方法在检测场景的适用范围,检测目标的种类等多个方面具有很大的优势。
在主动毫米波成像安检雷达系统的设计中,降低系统复杂度和系统成本是主动毫米波成像安检雷达的主要难点。主动毫米波成像安检雷达属于近程成像雷达,其系统具有一些独特的特点,一方面,安检雷达需要实现高的成像分辨率,要求阵列天线阵面具有较大的成像孔径;另一方面,安检雷达需要实现多角度的均匀成像,要求阵列天线中的发射阵元在阵面均匀分布,以实现目标多角度均匀照射。这两方面的特点决定了毫米波成像安检雷达需要海量的发射接收通道。因此,主动毫米波成像安检系统复杂度高、研制成本高。
现有开关阵列方案虽然能够降低实际中使用的收发通道数量,然而庞大的开关阵列使得系统变得复杂不利于集成,难于降低成本,最主要的是该方案增加了系统数据采集的时间;现有的大型MIMO阵列方案能够极大的提高数据采集速度,但是该方案本阵网络复杂,同样难于集成,而且成本高昂。
在名称为“一种面式毫米波扫描的三维全息成像系统”申请号为201510409580.4的发明中,主要针对单次扫描时间长,容易造成设备磨损的问题,构建了一种面式毫米波 扫描的三维全息成像安检系统,该系统方案类似于大型MIMO阵列方案,所需通道多,难于集成,很难降低成本。
在名称为“一种毫米波成像装置”,申请号201420659685.6的发明中,主要针对毫米波成像实时性不高,成像速度慢的技术问题,构建了一种毫米波成像装置,该系统方案类似于开关阵列方案,需要通过开关分时控制各个通道发射接收信号,系统数据采集时间长,开关阵列的存在使得系统难于集成。
发明的公开
本发明的目的在于提供一种基于通用雷达前端芯片的毫米波成像安检雷达系统,为一种主动毫米波成像安检雷达,其是基于通用雷达前端芯片实现的,能较好地解决系统集成与复杂度问题,同时能够利用通用雷达前端芯片降低系统成本。
为了达到上述目的,本发明通过以下技术方案实现:
一种基于通用雷达前端芯片的毫米波成像安检雷达系统,其特征是,包含:
前端阵列组件,包含多个通用雷达前端芯片,用于产生毫米波射频信号并将毫米波射频信号输出给天线阵列组件,并对天线阵列组件传来的回波进行预处理得到预处理数据;
天线阵列组件,包含多个MIMO天线子阵,该多个天线阵列组件分别连接前端阵列组件中的多个通用雷达前端芯片,用于将接收到的毫米波射频信号辐射出去,并接收目标反射的回波后将回波回传给前端阵列组件;
处理组件,连接前端阵列组件中的多个通用雷达前端芯片,用于对预处理数据进行存储和实时成像以生成图像;
显控组件,连接处理组件以控制处理组件,并对生成的图像进行进一步处理。
上述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其中,所述的MIMO天线子阵包含:
若干发射天线;
若干接收天线,且多个接收天线对应一个发射天线。
上述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其中,所述的通用雷达前端芯片包含:
由发射通道和接收通道组成的射频与模拟前端模块;
实现模拟信号采集的采集模块;
完成数据预处理的处理模块。
上述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其中,所述的处理组件包含:
FPGA主处理器、DSP从处理器以及存储器。
上述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其中:
所述的FPGA主处理器调用DSP从处理器以及前端阵列组件中的处理模块作为协处理器,共同完成实时成像任务。
上述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其中,所述的显控组件包含:
显示模块,用于图像处理与显示;
控制模块,用于时序与波形控制;
运动模块,用于实现天线阵列组件运动,并将返回的运动信息反馈给处理组件进行实时成像的补偿。
本发明与现有技术相比具有以下优点:基于通用雷达前端芯片实现的,能较好地解决系统集成与复杂度问题,同时能够利用通用雷达前端芯片降低系统成本。
附图的简要说明
图1为本发明的结构框图;
图2为本发明中MIMO天线子阵的结构示意图;
图3为本发明实施例中天线阵列组件与前端阵列组件的连接结构示意图;
图4为本发明实施例中处理组件与前端阵列组件的连接结构示意图。
实现本发明的最佳方式
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。
如图1所示,本发明提出了一种基于通用雷达前端芯片的毫米波成像安检雷达系统,其包含:前端阵列组件2,包含多个通用雷达前端芯片6,用于产生毫米波射频信号并将毫米波射频信号输出给天线阵列组件1,并对天线阵列组件1传来的回波进行相位补偿和抽样等预处理,得到预处理数据;天线阵列组件1,包含多个MIMO天线子阵5,该多个天线阵列组件1分别连接前端阵列组件2中的多个通用雷达前端芯片6,用于将接收到的毫米波射频信号辐射出去,并接收目标反射的回波后将回波回传给前端阵列组件2;处理组 件3,连接前端阵列组件2中的多个通用雷达前端芯片6,用于对预处理数据进行存储和实时成像以生成图像;显控组件4,连接处理组件3以控制处理组件3,并对生成的图像进行进一步处理。
单个通用雷达前端芯片6中发射通道和接收通道对应的发射天线13和接收天线14、共同形成了MIMO天线子阵5,其等效相位中心为一个均匀线阵。多个通用雷达前端芯片形成的等效均匀线阵,能够扩展成为一个更大的均匀线阵。
所述的MIMO天线子阵5包含:若干发射天线13;若干接收天线14,且多个接收天线14对应一个发射天线13。
所述的通用雷达前端芯片6包含:由发射通道和接收通道组成的射频与模拟前端模块15;实现模拟信号采集的采集模块16;完成数据预处理的处理模块17。
所述的处理组件3包含:FPGA主处理器7、DSP从处理器8以及存储器9。本实施例中,所述的FPGA主处理器7调用DSP从处理器8以及前端阵列组件2中的处理模块17作为协处理器,共同完成实时成像任务。
所述的显控组件4包含:显示模块10,用于图像处理与显示;控制模块11,用于时序与波形控制;运动模块12,用于控制天线阵列组件1运动,实现天线阵列组件等效均匀线阵的进一步扩展,形成满足成像需求的均匀面阵,并将返回的运动信息反馈给处理组件3进行实时成像的补偿。
本实施例中,MIMO天线子阵5包括2个发射天线13,4个接收天线14,发射天线13与接收天线14错开布置,发射天线13发射射频信号时,4个接收天线14同时接收回波信号。收发天线对形成的8个等效相位中心为一个均匀线阵,该MIMO天线子阵5采集的8组回波信号等效为8个等效相位中心处天线自发自收采集到的回波信号。如图3所示,本发明中天线阵列组件1由64个MIMO天线子阵5依次排列组成,其等效为一个具有512个自发自收天线单元的线阵。
如图1、图3所示,本发明中,前端阵列组件2由64片AWR1642通用雷达前端芯片6组成,单块芯片包含2个发射通道、4个接收通道,与单个MIMO天线子阵5一一对应。成像时,AWR1642发射通道产生毫米波射频信号,传输到对应的发射天线13,由MIMO天线子阵5中的发射天线13辐射出去,目标反射的回波被MIMO天线子阵5中的接收天线14接收,经混频、放大和滤波后由AWR1642通用雷达前端芯片6中的采集模块16中的4个AD采集转化为数字信号,最后由AWR1642通用雷达前端芯片6中的DSP处理器8实现预处理。
如图2所示,本发明中,单个MIMO天线子阵5由两个发射天线Tx11和Tx12,四个接收天线Rx11、Rx12、Rx13、Rx14组成,其等效相位中心对应TRx1、TRx2、TRx3、TRx4、TRx5、TRx6、TRx7、TRx8,该等效相位中心为一个均匀线阵,多个通用雷达前端芯片形成的等效均匀线阵,能够扩展成为一个更大的均匀线阵。
如图4所示,本发明中,处理组件3由Xilinx公司的FPGA Kintex7 410T,TI公司TMS320C6455的DSP从处理器8的以及RAM存储器9组成,其中FPGA作为主处理器7,AWR1642中的DSP作为协处理器17,共同完成实时成像处理。由AWR1642中DSP预处理后的数据传输到FPGA,再由FPGA转存到RAM存储器9,FPGA调用DSP从处理器和AWR1642通用雷达前端芯片6中的DSP处理器协同8实现RAM存储器9中数据的实时成像。
经处理组件3实时成像后的图像由FPGA主处理器7传输到显控组件4中,显示模块10对图像进行进一步的处理,最终结果显示在显示模块10中。显控组件4中的控制模块11生成时序与波形控制指令,交付给DSP从处理器8控制雷达前端芯片6执行。运动模块12产生的运动指令交付给本身内部控制天线运动的运动机构执行。运动模块12返回的运动信息将反馈给处理组件3进行实时成像的补偿。
综上所述,本发明根据系统对射频信号的空间采样要求,利用通用雷达前端芯片发射接收通道以及对应天线组件构建MIMO子阵,前端阵列组件形成的所有MIMO子阵构建虚拟线阵,虚拟线阵配合机械运动形成面阵;根据系统对中频信号的时间采样要求,利用前端阵列组件的采集模块实现回波信号数字化,使用前端阵列组件的处理模块完成虚拟线阵的数据预处理;根据系统对回波数字信号的处理要求,利用处理组件和前端阵列组件的处理模块完成安检雷达的实时成像;根据系统对时序控制与图像显示的要求,利用显控组件的显示模块完成图像处理与显示,运动模块完成机械运动与控制,控制模块完成时序与波形控制。本发明能较好地加速成像数据的采集过程、提高系统数据采集速度、提高系统的集成度,降低系统成本,具有较好的经济效益。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (6)

  1. 一种基于通用雷达前端芯片的毫米波成像安检雷达系统,其特征在于,包含:
    前端阵列组件,包含多个通用雷达前端芯片,用于产生毫米波射频信号并将毫米波射频信号输出给天线阵列组件,并对天线阵列组件传来的回波进行预处理得到预处理数据;
    天线阵列组件,包含多个MIMO天线子阵,该多个天线阵列组件分别连接前端阵列组件中的多个通用雷达前端芯片,用于将接收到的毫米波射频信号辐射出去,并接收目标反射的回波后将回波回传给前端阵列组件;
    处理组件,连接前端阵列组件中的多个通用雷达前端芯片,用于对预处理数据进行存储和实时成像以生成图像;
    显控组件,连接处理组件以控制处理组件,并对生成的图像进行进一步处理。
  2. 如权利要求1所述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其特征在于,所述的MIMO天线子阵包含:
    若干发射天线;
    若干接收天线,且多个接收天线对应一个发射天线。
  3. 如权利要求1所述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其特征在于,所述的通用雷达前端芯片包含:
    由发射通道和接收通道组成的射频与模拟前端模块;
    实现模拟信号采集的采集模块;
    完成数据预处理的处理模块。
  4. 如权利要求3所述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其特征在于,所述的处理组件包含:
    FPGA主处理器、DSP从处理器以及存储器。
  5. 如权利要求1所述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其特征在于:
    所述的FPGA主处理器调用DSP从处理器以及前端阵列组件中的处理模块作为协处理器,共同完成实时成像任务。
  6. 如权利要求1所述的基于通用雷达前端芯片的毫米波成像安检雷达系统,其特征在于,所述的显控组件包含:
    显示模块,用于图像处理与显示;
    控制模块,用于时序与波形控制;
    运动模块,用于实现天线阵列组件运动,并将返回的运动信息反馈给处理组件进行实时成像的补偿。
PCT/CN2018/117359 2017-12-04 2018-11-26 一种基于通用雷达前端芯片的毫米波成像安检雷达系统 WO2019109824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711261498.7 2017-12-04
CN201711261498.7A CN108051806A (zh) 2017-12-04 2017-12-04 一种基于通用雷达前端芯片的毫米波成像安检雷达系统

Publications (1)

Publication Number Publication Date
WO2019109824A1 true WO2019109824A1 (zh) 2019-06-13

Family

ID=62122231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117359 WO2019109824A1 (zh) 2017-12-04 2018-11-26 一种基于通用雷达前端芯片的毫米波成像安检雷达系统

Country Status (2)

Country Link
CN (1) CN108051806A (zh)
WO (1) WO2019109824A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051806A (zh) * 2017-12-04 2018-05-18 上海无线电设备研究所 一种基于通用雷达前端芯片的毫米波成像安检雷达系统
CN108761450A (zh) * 2018-08-07 2018-11-06 湖南华诺星空电子技术有限公司 一种三维定位的生命探测雷达
CN109633630A (zh) * 2018-10-31 2019-04-16 上海无线电设备研究所 一种e波段毫米波成像安检雷达系统
CN109856632B (zh) * 2018-11-16 2021-06-04 上海无线电设备研究所 一种主动毫米波成像雷达的数据采集系统及其采集方法
WO2020113418A1 (zh) * 2018-12-04 2020-06-11 深圳市大疆创新科技有限公司 毫米波天线结构、微波旋转雷达及可移动平台
CN109799538A (zh) 2018-12-29 2019-05-24 清华大学 安检设备及其控制方法
CN109946748A (zh) * 2019-03-18 2019-06-28 北京环境特性研究所 应用于柱面扫描安检成像体制的稀疏阵列天线设计方法
CN210775830U (zh) * 2019-09-04 2020-06-16 南京慧尔视智能科技有限公司 一种mimo雷达系统
CN111856446A (zh) * 2020-05-22 2020-10-30 青岛若愚科技有限公司 基于毫米波雷达的网络监控系统及毫米波天线阵列结构
CN113204013A (zh) * 2021-04-19 2021-08-03 珠海上富电技股份有限公司 一种基于fpga的高分辨率毫米波雷达及信号处理方法
CN113050044B (zh) * 2021-04-27 2023-09-01 广州极飞科技股份有限公司 雷达系统及电子设备
CN113328265A (zh) * 2021-04-27 2021-08-31 中国电子科技集团公司第十四研究所 一种可扩展e波段数字有源阵列
CN113219456A (zh) * 2021-05-25 2021-08-06 北京京东方技术开发有限公司 毫米波雷达系统
CN114966645B (zh) * 2022-08-01 2022-11-01 珠海深圳清华大学研究院创新中心 毫米波雷达系统及其芯片数据传输方法
CN116047509A (zh) * 2022-12-05 2023-05-02 重庆邮电大学 等效半波长均匀采样的毫米波mimo阵列扫描及成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095318A (zh) * 2013-01-17 2013-05-08 陕西北斗恒通信息科技有限公司 抗干扰射频接收系统
CN104702308A (zh) * 2014-12-12 2015-06-10 庄昆杰 一种微型化结构MiMo射频前端组件
CN104954306A (zh) * 2014-03-27 2015-09-30 华为技术有限公司 多通道阵列失真补偿装置及方法
CN106209121A (zh) * 2016-07-15 2016-12-07 中国科学院微电子研究所 一种多模多核的通信基带SoC芯片
US20170195912A1 (en) * 2015-12-31 2017-07-06 Facebook, Inc. Switched diversity in data link layers of directional networks
CN108051806A (zh) * 2017-12-04 2018-05-18 上海无线电设备研究所 一种基于通用雷达前端芯片的毫米波成像安检雷达系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316732B1 (en) * 2012-04-05 2016-04-19 Farrokh Mohamadi Standoff screening apparatus for detection of concealed weapons
WO2014120289A1 (en) * 2012-10-10 2014-08-07 Raytheon Company Detection of concealed object on a body using radio frequency signatures on frequencies and polarizations
US10627480B2 (en) * 2014-07-17 2020-04-21 Texas Instruments Incorporated Distributed radar signal processing in a radar system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095318A (zh) * 2013-01-17 2013-05-08 陕西北斗恒通信息科技有限公司 抗干扰射频接收系统
CN104954306A (zh) * 2014-03-27 2015-09-30 华为技术有限公司 多通道阵列失真补偿装置及方法
CN104702308A (zh) * 2014-12-12 2015-06-10 庄昆杰 一种微型化结构MiMo射频前端组件
US20170195912A1 (en) * 2015-12-31 2017-07-06 Facebook, Inc. Switched diversity in data link layers of directional networks
CN106209121A (zh) * 2016-07-15 2016-12-07 中国科学院微电子研究所 一种多模多核的通信基带SoC芯片
CN108051806A (zh) * 2017-12-04 2018-05-18 上海无线电设备研究所 一种基于通用雷达前端芯片的毫米波成像安检雷达系统

Also Published As

Publication number Publication date
CN108051806A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019109824A1 (zh) 一种基于通用雷达前端芯片的毫米波成像安检雷达系统
CN105932427B (zh) 一种毫米波成像雷达一维阵列天线及时序控制方法
CN110794471B (zh) 一种毫米波稀疏阵列远程监视成像方法及系统
WO2020087656A1 (zh) 一种e波段毫米波成像安检雷达系统
WO2020098018A1 (zh) 一种主动毫米波成像雷达的数据采集系统及其采集方法
CN107329134A (zh) 一种基于阵元馈电波形控制的波控阵超宽带雷达天线阵列
DE102020107804A1 (de) Radarvorrichtung und Verfahren zum Detektieren von Radarzielen
CN110058218B (zh) 一种基于四维天线阵的射频隐身发射波束形成方法及系统
AU2023201360B2 (en) Sensor array imaging device
CN102520408B (zh) 一种圆柱阵面三维成像系统的三维成像方法
CN105334540A (zh) 一种主动式微波全息安检仪系统
CN102469982A (zh) 用于超声波成像的方法及装置
CN106154345A (zh) 椭球面被动毫米波成像系统
CN114624656A (zh) 星载多基线双波段雷达系统及其空间目标探测方法
CN108152816A (zh) 基于多核dsp的实时sar成像系统及成像方法
JPH0688869A (ja) デジタルレーダシステム及び方法
CN103728620B (zh) 一种基于收发交替脉冲组的合成孔径雷达系统
CN108181624B (zh) 一种差分计算成像装置及方法
CN108761457B (zh) 基于mimo阵列合成孔径的高精度三维快速成像方法及装置
CN102565796A (zh) 一种圆柱阵面三维成像系统的成像方法
CN116224328A (zh) 用于目标多角度扫描的毫米波边缘成像系统及其成像方法
CN112068129B (zh) 一种同心圆环阵列电磁涡旋雷达成像方法
CN108802695B (zh) 毫米波3d雷达系统及信号处理流程
CN113359196A (zh) 基于子空间法和dbf的多目标生命体征探测方法
CN113534121A (zh) 用于定量遥感的一维馈源相控阵雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18885899

Country of ref document: EP

Kind code of ref document: A1