WO2020113418A1 - 毫米波天线结构、微波旋转雷达及可移动平台 - Google Patents

毫米波天线结构、微波旋转雷达及可移动平台 Download PDF

Info

Publication number
WO2020113418A1
WO2020113418A1 PCT/CN2018/119154 CN2018119154W WO2020113418A1 WO 2020113418 A1 WO2020113418 A1 WO 2020113418A1 CN 2018119154 W CN2018119154 W CN 2018119154W WO 2020113418 A1 WO2020113418 A1 WO 2020113418A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
antenna structure
microstrip patch
structure according
wave antenna
Prior art date
Application number
PCT/CN2018/119154
Other languages
English (en)
French (fr)
Inventor
唐照成
贺翔
王春明
孙维忠
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/119154 priority Critical patent/WO2020113418A1/zh
Priority to CN201880070178.XA priority patent/CN111316499A/zh
Publication of WO2020113418A1 publication Critical patent/WO2020113418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates generally to the technical field of antenna structures, and more particularly to a millimeter wave antenna structure, microwave rotating radar, and a movable platform.
  • millimeter-wave radars can be miniaturized and integrated. Under the same antenna aperture, millimeter-wave radars can obtain narrower antenna beams and higher antenna gains, which can improve the angle of radar measurement. Resolution and angle measurement accuracy, and is beneficial to resist electronic interference, clutter interference and multipath reflection interference.
  • the existing antenna schemes for realizing large-scale detection mainly include the following: 1. A lens antenna, which uses the lens to gather the energy radiated from the feed to form a sharp beam. When multiple feeds are placed near the focal point of the lens, then Correspondingly form multiple beams pointing in different directions, the general feed is a horn antenna; 2. The reflective surface antenna is similar to the principle of the lens antenna.
  • the reflective surface is used to reflect the energy of the feed to form a sharp beam. Feeders, feeders at different positions can form different beams. 3. Phased array antenna. A control unit is connected under each array element to synthesize the specified direction by controlling the amplitude and phase of each array element. Beam. 4. Mechanical rotating antenna, using mechanical rotating structure to realize beam scanning, using narrow beam to scan in a certain space, while achieving a large detection range while improving resolution. 5. In the form of mimo (Multiple-Input Multiple-Output) radar, a multi-transmission and multi-reception scheme is adopted to improve the angular resolution.
  • mimo Multiple-Input Multiple-Output
  • the antenna lens is a low loss, high dielectric constant material, which is difficult to process and has low accuracy, and the size and weight of the lens are quite large;
  • option 2 similar lens antenna The reflection profile and weight are large, and they need to occupy a lot of space;
  • scheme 3 each element of the phased array requires T/R (transmit/receive) components, which has a complex structure and high cost, and is generally used for military purposes;
  • T/R transmit/receive
  • the mechanical structure itself is complex, with high cost and low reliability.
  • the MIMO-type multi-transmit and multi-receive antenna system is complicated, and transmission needs to be switched in time-sharing, and the corresponding data processing is very complicated.
  • the present invention has been proposed to solve at least one of the above problems.
  • the invention provides a millimeter wave antenna structure, a microwave rotating radar, and a movable platform.
  • the antenna structure achieves a larger angle measurement range while obtaining a better angle measurement resolution, and enables the radar detection capability to cover a larger viewing angle.
  • the field angle (FOV) can effectively improve the safety of the aircraft, and can also achieve special functions such as obstacle bypass.
  • the first aspect of the present invention provides a millimeter wave antenna structure, including:
  • a substrate, a plurality of antenna arrays are formed on the first side of the substrate, the plurality of antenna arrays include at least one transmit antenna array and a plurality of receive antenna arrays, the at least one transmit antenna array and a plurality of the receive The antenna arrays are parallel and spaced apart from each other;
  • Each of the receiving antenna arrays includes at least one row of microstrip patch units, and each row of the microstrip patch units includes two groups of symmetrically distributed microstrip patch units;
  • the distance between two adjacent receiving antenna arrays is 6.0 mm to 15.0 mm.
  • the distance between adjacent receiving antenna arrays is 6.2 mm to 12.5 mm.
  • the spacing between adjacent receiving antenna arrays is 6.6 mm.
  • the transmit antenna array includes at least two rows of microstrip patch units electrically connected to each other, and each row of the microstrip patch units includes two groups of symmetrically distributed microstrip patch units.
  • each of the microstrip patch units in each column of the microstrip patch units has the same size as each other.
  • the area of each microstrip patch unit in each row of the microstrip patch units decreases sequentially from the center of symmetry to both sides.
  • the shape of the microstrip patch unit is rectangular, circular, semicircular, or elliptical.
  • each group of microstrip patch units includes more than 6 microstrip patch units.
  • the number of the receiving antenna array is more than 8.
  • it further includes:
  • a feeding network formed on the first side of the substrate includes a plurality of microstrip lines electrically connected to each row of the microstrip patch units, respectively.
  • the microstrip line and each row of the microstrip patch units are connected in a parallel feed manner.
  • the microstrip line and each row of the microstrip patch units are connected in a cross-feed manner.
  • the radio frequency circuit electrically connected to the feed network, the radio frequency circuit includes at least one transmitting chip and two receiving chips, and a function electrically connected to the two receiving chips Divider.
  • the radio frequency circuit is formed on the second side of the substrate.
  • a plurality of vias or feed probes electrically connected to the microstrip lines of each row of the microstrip patch units respectively are formed on the substrate, and the feed network passes through A plurality of the vias or feed probes are connected to the radio frequency circuit.
  • a plurality of microstrip lines are further formed on the second side of the substrate, and each of the vias or feed probes is connected to the radio frequency through the corresponding microstrip line Circuit.
  • each row of the microstrip patch units is electrically connected to the radio frequency circuit through a coupling and feeding method.
  • the radio frequency circuit is formed on the first side of the substrate.
  • each row of the microstrip patch units is connected to the radio frequency circuit through a microstrip line.
  • the microstrip line is connected to each row of the microstrip patch units in a vertical manner or an inclined manner.
  • the substrate is a double-layer board, a three-layer board, a four-layer board, a five-layer board or a six-layer board.
  • the substrate includes:
  • An antenna board, the antenna array is formed on the antenna board;
  • a ground plate located below the antenna plate, for electrically connecting to the ground of the antenna array
  • a plurality of wiring boards located under the ground board, are used for electrical connection with the radio frequency circuit
  • the antenna board, the ground board and a plurality of the wiring boards are stacked in order.
  • the antenna array adopts a horizontal polarization mode or a vertical polarization mode.
  • a second aspect of the present invention provides a microwave rotating radar, which includes:
  • the motor is installed on the fixed bracket;
  • a rotating bracket mounted on the rotor of the motor and rotating with the rotor of the motor;
  • the millimeter wave antenna structure of the first aspect of the present invention it is mounted on the rotating bracket.
  • a third aspect of the present invention provides a movable platform, which is characterized by comprising:
  • a power unit installed on the fuselage and providing mobile power to the fuselage
  • the microwave rotating radar according to the second aspect of the present invention is installed on the fuselage.
  • the movable platform is a drone, an autonomous vehicle, or a ground-based remote control robot.
  • the invention provides a millimeter wave antenna structure, a microwave rotating radar and a movable platform.
  • the antenna structure has a large size and a high angle measurement resolution in a simple manner in a small size, and the gain , Beam width, side lobe can meet the actual use requirements, greatly reducing the cost and complexity of system data processing.
  • FIG. 1 is a schematic diagram of an antenna array of a millimeter wave antenna structure according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a millimeter wave antenna structure according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a connection between an antenna of a millimeter wave antenna structure and a radio frequency device according to an embodiment of the present invention
  • FIG. 4 is a scanning diagram of the H-plane beam of the millimeter wave antenna structure shown in FIG. 1, the figure shows seven points respectively pointing to -45°, -30°, -15°, 0°, 15°, 30° and 45° Beam of
  • FIG. 5 is a schematic diagram of an antenna array of a millimeter wave antenna structure according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an antenna array of a millimeter wave antenna structure according to yet another embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a microwave rotating radar according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an antenna array of a millimeter wave antenna structure according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a millimeter wave antenna structure according to an embodiment of the present invention
  • FIG. 3 is a millimeter wave antenna structure according to an embodiment of the present invention The connection diagram of the antenna and the RF device.
  • the millimeter wave antenna structure 100 provided in the embodiment of the present invention includes a substrate 101, and a plurality of antenna arrays are formed on the first side (ie, front side) of the substrate 101, and the plurality of antenna arrays
  • the antenna array includes one transmit antenna array 1 and eight receive antenna arrays 2-9, and the transmit antenna array 1 and the receive antenna array 2-9 are arranged parallel to and spaced from each other.
  • the transmitting antenna array 1 includes two rows of microstrip patch units 11 electrically connected to each other, and each row of the microstrip patch units 11 includes two groups of symmetrically distributed microstrip patch units 11.
  • each column of the microstrip patch units 11 includes 12 microstrip patch units 11, and the 12 microstrip patch units 11 are divided into two groups of symmetrically distributed microstrip patches
  • Each unit includes 6 microstrip patch units 11.
  • Each receiving antenna array 1 includes a row of microstrip patch units 11, and each row of the microstrip patch units 11 includes two groups of symmetrically distributed microstrip patch units 11.
  • each column of the microstrip patch units 11 includes 12 microstrip patch units 11, and the 12 microstrip patch units 11 are divided into two groups of symmetrically distributed microstrip patches
  • Each unit includes 6 microstrip patch units 11.
  • each row of microstrip patch units 11 includes 12 microstrip patch units 11, the 12 microstrip patch units 11 are divided into two groups of symmetrically distributed microstrip patches Each micro-strip patch unit 11 is included in each group, but in other embodiments of the present invention, the number of micro-strip patch units 11 included in each column of the micro-strip patch units 11 is not limited to 12 There may be more than 12, for example 14, or less than 12, for example 10.
  • the antenna structure 100 includes one transmit antenna array 1 and eight receive antenna arrays 2-9 in this embodiment, the number of transmit antenna arrays and receive antenna arrays of the millimeter wave antenna structure 100 according to the present invention is not Restricted to this, for example, there may be more than two transmit antenna arrays, and less than eight receive antenna arrays, or may be more than eight.
  • the transmitting antenna array 1 may include one row of microstrip patch units 11 or three or more rows of microstrip patch units 11, and is not limited to the two rows of microstrip patch units 11 shown in FIG. 1.
  • the receiving antenna array 2-9 may also include two or more rows of microstrip patch units 11.
  • each patch unit 11 in each row of microstrip patch units 11 is the same, and all are rectangular.
  • the length A of the microstrip patch unit 11 is 3.1 mm
  • the width B is 4.3 mm, that is, the size of the microstrip patch unit 11 is 3.1*4.3 mm.
  • the distance C between two adjacent microstrip patch units 11 is 7.6 mm.
  • the distance C between two adjacent microstrip patch units 11 refers to the distance between the same sides of the two adjacent microstrip patch units 11, for example, shown as the left side of the two adjacent microstrip patch units 11 in FIG. 1 The distance between the sides.
  • the size of the microstrip patch unit 11 is related to the radiant energy, dielectric constant, etc. of the microstrip patch unit 11, and the dimensions disclosed in this embodiment are merely exemplary. In other embodiments, the microstrip patch unit 11 The unit 11 may take various other suitable sizes.
  • the distance D between two adjacent receiving antenna arrays 2-9 determines the angle measurement range of the antenna structure 100, and the distance between two adjacent receiving antenna arrays 2-9 D, the larger the angle measurement range, but too small a distance will cause an increase in coupling between antennas, a decrease in gain, and a deterioration in the pattern.
  • the spacing D is 6.0mm ⁇ 15.0mm.
  • the pitch D is 6.2 mm to 12.5 mm. More optionally, the pitch D is 6.6mm.
  • the corresponding angle measurement range is plus or minus 90 degrees
  • the corresponding angle measurement range is plus or minus 70 degrees
  • the spacing D is 12.5mm
  • the corresponding angle measurement range is plus or minus 30 degrees.
  • the millimeter-wave antenna structure 100 further includes a feeding network formed on the first side of the substrate 101, the feeding network includes electrical connections to each row of the microstrip patch units 11 respectively ⁇ multistrip line 12.
  • the microstrip line 12 and each row of the microstrip patch units 11 are connected by a parallel feed method.
  • the microstrip patch unit 11 is vertically connected with the microstrip line 12 of the feeding network. It should be understood that the microstrip line 12 and each row of the microstrip patch units 11 may also be connected in an inclined manner, and are not limited to being connected in a vertical manner.
  • the substrate 101 includes an antenna board 102, a ground board 103 and two wiring boards 104, and a dielectric board 105 provided between the antenna board 102, the ground board 103 and a plurality of wiring boards 104.
  • the antenna board 102, the ground board 103, and the plurality of wiring boards 104 are stacked in this order.
  • the antenna array is formed on the antenna board 102, and the antenna board 102 may be formed by etching a conductor patch formed on the first dielectric board 105A.
  • the ground plate 103 is located below the antenna plate 102 and is used for electrical connection with the ground of the antenna array.
  • the ground plate 103 and the antenna plate 102 are separated by a first dielectric plate 105A.
  • the wiring board 104 is located below the ground plate 103 and is used for electrical connection with the radio frequency circuit.
  • the wiring board 104 and the ground board 103 are separated by the second dielectric board 105B, and the wiring board 104 is separated by the third dielectric board 105C.
  • the radio frequency circuit is formed on the second side (ie, back side) of the substrate 101, that is, on the side of the third dielectric plate 105C or the lowermost wiring board in FIG. 2 104 on.
  • the length of the dielectric plate 105 is 92 mm, the width is 87 mm, and the thickness is 32 mil.
  • the dielectric constant of the dielectric plate 105 is 3.6.
  • the substrate 101 includes an antenna board 102, a ground plate 103, and two wiring boards 104
  • the present invention is not limited thereto.
  • the substrate 101 may include One wiring board 104 may also include more than three wiring boards 104, or may not include the wiring board 104.
  • the number of the wiring boards 104 is determined according to the size of the dielectric board 105 and the size of the antenna, RF circuit, and wiring If the antenna board, the radio frequency circuit and the wiring can be accommodated on the surface of one dielectric board, then the wiring board 104 need not be provided.
  • the substrate 101 may be a double-layer board (antenna board plus ground board), a three-layer board (antenna board, ground board and a wiring board ), four-layer board (antenna board, ground board and two wiring boards), five-layer board (antenna board, ground board and three wiring boards) or six-layer board (antenna board, ground board and four wiring boards) Board) and other structures.
  • the millimeter wave antenna structure 100 further includes a plurality of vias 10 electrically connected to the microstrip lines 12 of each row of the microstrip patch units 11 on the forming substrate 101, and the feed network passes A plurality of the vias 10 are connected to the radio frequency circuit. Further, a plurality of microstrip lines (not shown) are also formed on the second side of the substrate 101, and each of the vias 10 is connected to the radio frequency through the corresponding microstrip line with an impedance of 50 ohms Circuit.
  • the feeding network is coplanar with the antenna array (that is, the radiating element), and the feeding network feeds through the via 10, which passes through the 50-ohm microstrip line on the back of the substrate 101 and the back of the substrate 101 RF circuit connection.
  • the feeding method of the feeding network is not limited to the above-mentioned via feeding method, and feeding may also be performed by means of feeding probes, coupled feeding, and the like.
  • the feeding point is located at the center of the microstrip antenna array, that is, there is a group of microstrip patch units 11 on the left and right of the feeding point, so that the antenna array is bilaterally symmetrical, which can reduce its radiation effect and further enhance each microstrip patch The uniformity of the radiation direction of unit 11.
  • the millimeter wave antenna structure 100 provided in this embodiment further includes a radio frequency circuit electrically connected to the feeding network.
  • the radio frequency circuit includes a transmitting chip 20 and two receiving chips 21, and two The power divider 22 electrically connected to the receiving chip 21.
  • the transmitting chip 20 is electrically connected to the transmitting antenna TX
  • the receiving chip 21 is electrically connected to the receiving antenna RX.
  • each receiving chip 21 is connected to four receiving antennas, that is, the first receiving chip 21 is connected to receiving antennas RX1, RX2, RX3, and RX4, and the second receiving chip 21 is connected to receiving antennas RX5, RX6, RX7 Connect with RX8.
  • the power divider 22 is used to receive the radiant energy received by the receiving chip 21 to synthesize one output. It should be understood that the number of the transmitting chip 20, the receiving chip 21, and the power divider 22 is related to the number of transmitting antennas and receiving antennas, and is not limited to the number shown in FIG. Various suitable chips may be used for the transmitting chip 20, the receiving chip 21 and the power splitter 22, for example, the power splitter 22 may use a Wilkinson power splitter.
  • the millimeter wave antenna structure 100 provided in this embodiment includes a transmitting antenna array and eight receiving antenna arrays, which adopts a DBF algorithm with multiple transmissions and multiple receptions to implement beam scanning, and forms a narrow beam through multiple receiving antennas for continuous spatial scanning.
  • the test data of the scanning pattern is shown in Figure 4.
  • the beams in different directions are used to detect objects in different directions.
  • the figure shows 7 points pointing at -45°, -30°, -15°, 0°, 15°, 30° And 45° beams, where the maximum beam width is 15° and the minimum beam width is 12.
  • the millimeter wave antenna structure 100 provided in this embodiment adopts the horizontal polarization mode, and other scenarios that focus more on vertical targets.
  • the millimeter wave antenna structure 100 provided in this embodiment uses the vertical polarization mode.
  • the millimeter wave antenna structure 100 provided in this embodiment uses a microstrip array antenna, which occupies less space, and has a relatively simple structure, reduced cost, and can have a larger angle measurement range, higher angle measurement resolution, gain, and beam The width and side lobe can meet the actual use requirements.
  • the millimeter wave antenna structure 100 provided in this embodiment adopts a microstrip array antenna with one transmission and eight receptions, compared with a multi-transmission and multi-reception antenna in the form of MIMO, since transmission does not require time-sharing switching, the corresponding data processing complexity is reduced. That is, the millimeter wave antenna structure 100 provided by this embodiment greatly reduces the cost and complexity of system data processing.
  • each microstrip patch unit 11 and the microstrip line 12 in the millimeter wave antenna structure are connected by a cross-feed method.
  • each microstrip patch unit 11 in each group of microstrip patch units 11 The size is different. Specifically, the area of each microstrip patch unit 11 in each row of the microstrip patch units 11 decreases in order from the center of symmetry to both sides, that is, in each group of microstrip patch units 11 The area of each microstrip patch unit 11 decreases sequentially from the via 10 outward.
  • the millimeter wave antenna structure shown in Fig. 5 is different from the millimeter wave antenna structure shown in FIG. 1 in that the millimeter wave antenna structure shown in FIG. 5 further includes a phase shifter 13 on the side of the via 10, The phase shifter 13 is connected to the microstrip patch units 11 adjacent to the microstrip patch units in one group, thereby ensuring the consistency of the feeding current direction of the entire row of microstrip patch units 11.
  • the millimeter wave antenna structure shown in Fig. 5 uses an array antenna in the form of a series feed.
  • the antenna unit has a simple feeding method, a small feeder loss, and high antenna efficiency. At this time, the antenna polarization is opposite to the parallel feed form. Connected to the RF device.
  • each microstrip patch unit 11 and the microstrip line 12 in the millimeter wave antenna structure are connected by a cross-feed method.
  • the microstrip patch units in each group of microstrip patch units 11 The size is different. Specifically, the area of each microstrip patch unit 11 in each row of the microstrip patch units 11 decreases in order from the center of symmetry to both sides, that is, in each group of microstrip patch units 11 The area of each microstrip patch unit 11 decreases sequentially from the via 10 outward.
  • the millimeter wave antenna structure shown in FIG. 1 is that in the millimeter wave antenna structure shown in FIG. 6, the RF device and the antenna array are coplanar, that is, the RF device is also provided On the first side (ie, front side) of the substrate 101, the antenna array is directly connected to the radio frequency device through the microstrip line 12, instead of connecting to the radio frequency device through the via hole and the microstrip line on the back of the substrate 101.
  • the millimeter wave antenna structure antenna shown in FIG. 6 is coplanar with the radio frequency device, and the antenna is directly connected to the radio frequency device port through the microstrip line to reduce the loss caused by the feed via.
  • the microwave rotating radar 200 includes a cover 201, and a fixed bracket 202 is provided in the cover 201, and a motor is installed on the fixed bracket 202.
  • the motor includes a stator 203 and a rotor 204.
  • a rotating bracket 205 is installed on the rotor 204, and the rotating bracket 205 rotates with the rotor 204 of the motor; a specific structure of the millimeter wave antenna structure 206 and the antenna controller 207, and the millimeter wave antenna structure 206 are installed on the rotating bracket 205 As mentioned above, the antenna controller 207 is used to control the millimeter wave antenna structure 206 to transmit and receive microwave signals.
  • the microwave rotation radar 200 further includes an angle sensor 208, which is used to detect the rotation angle of the rotor 204.
  • the angle sensor 208 may be one or more of Hall sensors, potentiometers, and encoders. It can be understood that the angle sensor 208 detects the rotation angle of the rotor 204, that is, the rotation angle of the microwave rotation radar 200.
  • the device using the microwave rotating radar 200 can assist in determining the direction of the transmission of the microwave signal and the direction of the received microwave signal according to the rotation angle of the microwave rotating radar 200, and further determine the relative direction of the obstacle and the device using the microwave rotating radar 200 .
  • FIG. 8 is a schematic block diagram of a movable platform according to an embodiment of the present invention.
  • the movable platform 300 is depicted as an unmanned aerial vehicle, this depiction is not intended to be limiting, it can use any suitable type of movable object, for example, the movable platform 300 may be a drone, an autonomous vehicle Or ground remote control robot.
  • the movable platform 300 includes a fuselage 301 and a microwave rotating radar 200.
  • the microwave rotating radar 200 is mounted on the fuselage 301.
  • the fuselage 301 includes a rack 302 and a tripod 303 mounted on the rack 302.
  • the rack 302 can serve as a mounting carrier for the flight control system, processor, camera, camera, etc. of the movable platform 300.
  • the stand 303 is installed below the stand 302, and the microwave rotating radar 200 is installed on the stand 303.
  • the tripod 303 can be used to provide support for the movable platform 300 to land.
  • the tripod 303 can also carry a water tank and be used to spray pesticides and fertilizers on plants through the spray head.
  • the structure of the microwave rotating radar 200 is as described above and will not be repeated here.
  • the movable platform 300 further includes an arm 304 extending from the fuselage 301.
  • the arm 304 can be used to carry a power device 305 to provide power for the movable platform 300 to fly.
  • the onboard power unit 305 may include one or more of a rotor, propeller, blade, engine, motor, wheel, axle, magnet, or nozzle.
  • the movable platform 300 may have one or more, two or more, three or more, or four or more powered devices 305.
  • the power devices 305 may all be of the same type. Alternatively, one or more power devices 305 may be different types of power devices 305.
  • the power device 305 may be installed on the movable platform 300 using any suitable device.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another device, or some features can be ignored, or not implemented.
  • the various component embodiments of the present invention may be implemented in hardware, or implemented in software modules running on one or more processors, or implemented in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some modules according to embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for performing a part or all of the method described herein.
  • a program implementing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Astronomy & Astrophysics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供了用于提供一种毫米波天线结构(100)、微波旋转雷达(200)及可移动平台(300),该毫米波天线结构(100)包括:基板(101),在所述基板(101)的第一侧面上形成有多个天线阵列,所述多个天线阵列包括至少一个发射天线阵列(1)和多个接收天线阵列(2、3、4、5、6、7、8、9),所述至少一个发射天线阵列(1)和多个所述接收天线阵列(2、3、4、5、6、7、8、9)彼此平行且间隔布置;每个所述接收天线阵列(2、3、4、5、6、7、8、9)均包括至少一列微带贴片单元(11),每列所述微带贴片单元(11)包括两组呈对称分布的微带贴片单元(11);相邻两个所述接收天线阵列之间的间距为6.0mm~15.0mm。根据本发明的毫米波天线结构(100)、微波旋转雷达(200)及可移动平台(300)能够在较小的尺寸下实现较大的测角范围和较大的测角分辨率,满足实际使用需求。

Description

毫米波天线结构、微波旋转雷达及可移动平台
说明书
技术领域
本发明总地涉及天线结构技术领域,更具体地涉及一种毫米波天线结构、微波旋转雷达及可移动平台。
背景技术
随着毫米波器件的发展,毫米波雷达可实现小型化、集成化,在天线口径相同的情况下,毫米波雷达可获得更窄的天线波束,更高的天线增益,可提高雷达的测角分辨率和测角精度,并且有利于抗电子干扰、杂波干扰和多径反射干扰。现有的实现较大范围探测的天线方案主要有以下几种:1、透镜天线,利用透镜把馈源所辐射的能量汇聚起来形成一个锐波束,当透镜焦点附近设置多个馈源时,便相应形成指向不同方向的多个波束,一般馈源为喇叭天线;2、反射面天线,和透镜天线原理类似,利用反射面把馈源的能量经反射形成一个锐波束,反射面焦点附近有多个馈源,不同位置的馈源即可形成指向不同的波束3、相控阵天线,每个阵元下面都连接一个控制单元,通过控制每个阵元的幅度、相位,来合成指定方向的波束。4、机械旋转天线,利用机械旋转结构实现波束扫描,利用发射窄波束在一定空间内扫描,在实现大探测范围的同时提高分辨率。5、mimo(Multiple-Input Multiple-Output)雷达形式,采用多发多收方案提高测角分辨率。
然而,上述方案均有一些不如意之处,例如对于方案1,天线透镜为低损耗、高介电常数材料,加工困难,精度低,且透镜的尺寸和重量都相当大;方案2,类似透镜天线,反射面剖面、重量均较大,需要占据很大空间;方案3,相控阵的每个阵元均需要T/R(发射/接收)组件,结构复杂,造价高,一般作为军事用途;对于方案4,机械结构本身复杂,成本高,可靠性低,对于方案5,MIMO形式的多发多收天线系统复杂,发射需分时切换,相应的数据处理非常复杂。
发明内容
为了解决上述问题中的至少一个而提出了本发明。本发明提供一种毫米波天线结构、微波旋转雷达及可移动平台,该天线结构在获得较好的测角分辨率的同时实现较大的测角范围,可使雷达探测能力覆盖较大的视场角(FOV),有效提高飞行器的安全性,同时可实现绕障等特殊功能。
具体地,本发明第一方面提供一种毫米波天线结构,包括:
基板,在所述基板的第一侧面上形成有多个天线阵列,所述多个天线阵列包括至少一个发射天线阵列和多个接收天线阵列,所述至少一个发射天线阵列和多个所述接收天线阵列彼此平行且间隔布置;
每个所述接收天线阵列均包括至少一列微带贴片单元,每列所述微带贴片单元包括两组呈对称分布的微带贴片单元;
相邻两个所述接收天线阵列之间的间距为6.0mm~15.0mm。
在本发明一个实施例中,相邻所述接收天线阵列之间的间距为6.2mm~12.5mm。
在本发明一个实施例中,相邻所述接收天线阵列之间的间距为6.6mm。
在本发明一个实施例中,所述发射天线阵列包括至少两列彼此电连接的微带贴片单元,每列所述微带贴片单元包括两组呈对称分布的微带贴片单元。
在本发明一个实施例中,每列所述微带贴片单元中的各个所述微带贴片单元大小彼此相同。
在本发明一个实施例中,每列所述微带贴片单元中的各个所述微带贴片单元的面积自对称中心向两侧依次减小。
在本发明一个实施例中,所述微带贴片单元的形状为矩形、圆形、半圆形或椭圆。
在本发明一个实施例中,每组微带贴片单元包括6个以上的微带贴片单元。
在本发明一个实施例中,所述接收天线阵列的数量为8个以上。
在本发明一个实施例中,还包括:
馈电网络,其形成在所述基板的第一侧面上,所述馈电网络包括分别 与每列所述微带贴片单元电连接的多个微带线。
在本发明一个实施例中,所述微带线与每列所述微带贴片单元通过并馈方式连接。
在本发明一个实施例中,所述微带线与每列所述微带贴片单元通过串馈方式连接。
在本发明一个实施例中,还包括:与所述馈电网络电连接的射频电路,所述射频电路包括至少一个发射芯片和两个接收芯片,以及与两个所述接收芯片电连接的功分器。
在本发明一个实施例中,所述射频电路形成在所述基板的第二侧面上。
在本发明一个实施例中,在所述基板上还形成有分别与每列所述微带贴片单元的微带线电连接的多个过孔或馈电探针,所述馈电网络通过多个所述过孔或馈电探针与所述射频电路连接。
在本发明一个实施例中,在所述基板的第二侧面上还形成有多个微带线,每个所述过孔或馈电探针通过对应的所述微带线连接至所述射频电路。
在本发明一个实施例中,每列所述微带贴片单元通过耦合馈电方式与所述射频电路电连接。
在本发明一个实施例中,所述射频电路形成在所述基板的第一侧面上。
在本发明一个实施例中,每列所述微带贴片单元通过微带线连接至所述射频电路。
在本发明一个实施例中,所述微带线与每列所述微带贴片单元以垂直方式或倾斜方式连接。
在本发明一个实施例中,所述基板为双层板、三层板、四层板、五层板或六层板。
在本发明一个实施例中,所述基板包括:
天线板,所述天线阵列形成在所述天线板上;
接地板,位于所述天线板的下方,用于与所述天线阵列的地电连接;以及
多个走线板,位于所述接地板的下方,用于与射频电路电连接,
其中,所述天线板、所述接地板以及多个所述走线板依次层叠设置。
在本发明一个实施例中,所述天线阵列采用水平极化方式或垂直极化方式。
本发明第二方面提供一种微波旋转雷达,其特征在于,包括:
固定支架;
电机,安装在所述固定支架上;
旋转支架,安装在所述电机的转子上,并且随着所述电机的转子一起转动;以及
根据本发明第一方面的所述的毫米波天线结构,安装在所述旋转支架上。
本发明第三方面提供一种可移动平台,其特征在于,包括:
机身;
动力装置,安装在所述机身上,并且为所述机身提供移动动力;以及
根据本发明第二方面所述的微波旋转雷达,安装在所述机身上。
在本发明一个实施例中所述可移动平台为无人机、自动驾驶汽车或地面遥控机器人。
本发明提供了一种毫米波天线结构、微波旋转雷达及可移动平台,该天线结构在较小的尺寸下,采用简便的方式实现了大的测角范围、较高测角分辨率,并且增益、波束宽度、副瓣均能满足实际使用需求,大大降低了成本和系统数据处理复杂度。
附图说明
图1是根据本发明一实施例的毫米波天线结构的天线阵列示意图;
图2是根据本发明一实施例的毫米波天线结构的剖视图;
图3是根据本发明一实施例的毫米波天线结构的天线与射频器件连接示意图;
图4是图1所示毫米波天线结构的H面波束扫描方向图,图中示出7个分别指向-45°、-30°、-15°、0°、15°、30°和45°的波束;
图5是根据本发明另一实施例的毫米波天线结构的天线阵列示意图;
图6是根据本发明又一实施例的毫米波天线结构的天线阵列示意图;
图7是根据本发明一实施例的微波旋转雷达的示意性剖面图;
图8是根据本发明一实施例的可移动平台的示意性结构图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
图1是根据本发明一实施例的毫米波天线结构的天线阵列示意图;图2是根据本发明一实施例的毫米波天线结构的剖视图;图3是根据本发明一实施例的毫米波天线结构的天线与射频器件连接示意图。
请参阅图1至图3,在本发明实施例中提供的毫米波天线结构100包括基板101,在所述基板101的第一侧面(即正面)上形成有多个天线阵列,所述多个天线阵列包括一个发射天线阵列1和八个接收天线阵列2-9,所述发射天线阵列1和所述接收天线阵列2-9彼此平行且间隔布置。
所述发射天线阵列1包括两列彼此电连接的微带贴片单元11,每列所述微带贴片单元11包括两组呈对称分布的微带贴片单元11。示例性地,在本实施例中,每列所述微带贴片单元11包括12个微带贴片单元11,该12个微带贴片单元11分为两组呈对称分布的微带贴片单元,每组包括6个微带贴片单元11。
每个所述接收天线阵列1均包括一列微带贴片单元11,每列所述微带贴片单元11包括两组呈对称分布的微带贴片单元11。示例性地,在本实施例中,每列所述微带贴片单元11包括12个微带贴片单元11,该12个微带贴片单元11分为两组呈对称分布的微带贴片单元,每组包括6个微带贴片单元11。
应当理解,虽然在本实施例中,每列所述微带贴片单元11包括12个微带贴片单元11,该12个微带贴片单元11分为两组呈对称分布的微带贴片单元,每组包括6个微带贴片单元11,但是在本发明的其它实施例中,每列所述微带贴片单元11中包含的微带贴片单元11的数量不限于12个,可以多余12个,例如为14个,也可以少于12个,例如为10个。
还应当理解,虽然在本实施例中天线结构100包括一个发射天线阵列1和八个接收天线阵列2-9,但是根据本发明的毫米波天线结构100的发射天线阵列和接收天线阵列的数量不限于此,例如发射天线阵列可以为2个以上,接收天线阵列可以少于8个,也可以多余8个。并且,发射天线阵列1可以包括一列微带贴片单元11,也可以包括三列以上的微带贴片单元11,而不限于图1所示的两列微带贴片单元11。接收天线阵列2-9也可以包括两列以上的微带贴片单元11。
如图1所示,在本实施例中,每列微带贴片单元11中各个贴片单元11的大小相同,且均为矩形。示例性地,微带贴片单元11的长度A为3.1mm,宽度B为4.3mm,即微带贴片单元11的尺寸为3.1*4.3mm。相邻两个微带贴片单元11的间距C为7.6mm。相邻两个微带贴片单元11的间 距C指的相邻两个微带贴片单元11同一边之间的距离,例如图1中表示为相邻两个微带贴片单元11左侧边之间的距离。
应当理解,微带贴片单元11的大小于微带贴片单元11的辐射能量、介电常数等相关,本实施例公开的尺寸仅是示例性的,在其它实施例中,微带贴片单元11可以采用各种其它合适的尺寸。
进一步地,根据阵列天线理论相邻两个所述接收天线阵列2-9之间的间距D决定了天线结构100的测角范围,相邻两个所述接收天线阵列2-9之间的间距D,测角范围越大,但间距过小会造成天线间耦合增大、增益降低、方向图恶化,考虑实际应用在本实施例中,相邻两个所述接收天线阵列2-9之间的间距D为6.0mm~15.0mm。优选地,间距D为6.2mm~12.5mm。更有选地,间距D为6.6mm。其中,当间距D为6.2mm时对应测角范围为正负90度,间距D为6.6mm时对应测角范围为正负70度,间距D为12.5mm时对应测角范围正负30度。其中,测角范围的角度θ=arcsin(λ/2D),λ=C/f,其中C为光速,f=24.15×10 9HZ。
请再次参考图1,毫米波天线结构100还包括馈电网络,其形成在所述基板101的第一侧面上,所述馈电网络包括分别与每列所述微带贴片单元11电连接的多个微带线12。并且,在本实施例中,如图1所示,所述微带线12与每列所述微带贴片单元11通过并馈方式连接。并且示例性地,微带贴片单元11与馈电网络的微带线12垂直连接。应当理解,所述微带线12与每列所述微带贴片单元11也可以倾斜方式连接,而不限于以垂直方式连接。
如图2所示,基板101包括天线板102、接地板103和两个走线板104,以及设置在天线板102、接地板103和多个走线板104彼此之间的介质板105。所述天线板102、所述接地板103以及多个所述走线板104依次层叠设置。天线阵列形成在天线板102上,天线板102可以通过蚀刻形成在第一介质板105A上的导体贴片形成。接地板103位于所述天线板102的下方,用于与所述天线阵列的地电连接。接地板103与天线板102之间通过第一介质板105A隔离。走线板104位于所述接地板103的下方,用于与射频电路电连接。走线板104与接地板103之间通过第二介质板105B隔离,走线板104之间通过第三介质板105C隔离。示例性地,在本实施例 中,射频电路形成在所述基板101的第二侧面(即背面)上,也即形成在第三介质板105C的一侧或图2中最下方的走线板104上。
示例性地,在本实施例中,介质板105的长度为92mm,宽度为87mm,厚度为32mil。介质板105的介电常数为3.6。
应当理解,虽然在本实施例中,基板101包括天线板102、接地板103和两个走线板104,但是本发明不限于此,根据本发明的毫米波天线结构100,其基板101可以包括一个走线板104,也可以包括三个以上的走线板104,或者还可以不包括走线板104,走线板104数量根据介质板105的大小以及天线和射频电路以及连线的大小确定,如果在一个介质板的表面上即可容纳天线板、射频电路和走线,此时便可不需要设置走线板104。即,在本发明一个实施例中,根据本发明的毫米波天线结构100,其基板101可以为双层板(天线板加接地板)、三层板(天线板、接地板和一个走线板)、四层板(天线板、接地板和两个走线板)、五层板(天线板、接地板和三个走线板)或六层板(天线板、接地板和四个走线板)等各种结构。
请再次参考图1,毫米波天线结构100还包括在形成基板101上分别与每列所述微带贴片单元11的微带线12电连接的多个过孔10,所述馈电网络通过多个所述过孔10与所述射频电路连接。进一步地,在基板101的第二侧面上还形成有多个微带线(未示出),每个所述过孔10通过对应的阻抗为50欧姆的所述微带线连接至所述射频电路。即,在本实施例中,馈电网络与天线阵列(也即辐射单元)共面,馈电网络通过过孔10馈电,过孔10通过基板101背面的50欧姆微带线与基板101背面的射频电路连接。
应当理解,所述馈电网络的馈电方式不限于上述过孔馈电方式,也可以采用馈电探针、耦合馈电等方式进行馈电。馈电点位于并馈微带天线阵列的中心位置,即馈电点左右各有一组微带贴片单元11,这样天线阵列左右对称,可以减小它的辐射影响,进一步提升各微带贴片单元11的辐射方向的一致性。
如图3所示,本实施例提供的毫米波天线结构100还包括与所述馈电网络电连接的射频电路,所述射频电路包括一个发射芯片20和两个接收芯片21,以及与两个所述接收芯片21电连接的功分器22。发射芯片20与发 射天线TX电连接,接收芯片21与接收天线RX电连接。在本实施例中,每个接收芯片21分别连接至4个接收天线,即第一接收芯片21与接收天线RX1、RX2、RX3和RX4连接,第二接收芯片21与接收天线RX5、RX6、RX7和RX8连接。功分器22用于接收芯片21接收辐射能量合成一路输出。应当理解,发射芯片20、接收芯片21和功分器22的数量与发射天线和接收天线的数量相关,而不限于图3所示的数量。发射芯片20、接收芯片21和功分器22可以采用各种合适的芯片,例如功分器22可以采用威尔金森功分器。
本实施例提供的毫米波天线结构100包括一个发射天线阵列和八个接收天线阵列,其采取一发多收的DBF算法实现波束扫描,通过多个接收天线形成窄波束进行空间连续扫描。扫描方向图测试数据如图4所示,通过不同指向的波束探测不同方向的物体,图中示出7个分别指向-45°、-30°、-15°、0°、15°、30°和45°的波束,其中最大波束宽度为15°,最小波束宽度为12。
进一步地,由于目标对雷达电磁波反射强弱与天线极化相关,考虑不同应用环境采取不同的天线极化方式,例如在农田作业环境里很细的横拉电线对农业无人机的威胁更大,此时本实施例提供的毫米波天线结构100采用水平极化方式,而其他更关注垂直目标的情景本实施例提供的毫米波天线结构100使用垂直极化方式。
本实施例提供的毫米波天线结构100由于采用微带阵列天线,其占用空间较小,并且结构相对简单,成本降低,并且可以较大的测角范围、较高测角分辨率,增益、波束宽度、副瓣均能满足实际使用需求。此外,本实施例提供的毫米波天线结构100由于采用一发八收的微带阵列天线,与MIMO形式的多发多收天线相比,由于发射无需分时切换,相应的数据处理复杂度降低。即,本实施例提供的毫米波天线结构100大大降低了成本和系统数据处理复杂度。
应当理解,上述仅仅对本发明的毫米波天线结构进行示例性说明,根据本发明的毫米波天线结构还可以采用各种类似上述原理的结构。
图5是根据本发明另一实施例的毫米波天线结构的天线阵列示意图。如图5所示,毫米波天线结构中的各微带贴片单元11与微带线12之间通 过串馈方式连接,此时每组微带贴片单元11中各个微带贴片单元的大小不同,具体地,每列所述微带贴片单元11中的各个所述微带贴片单元11的面积自对称中心向两侧依次减小,也即每组微带贴片单元11中各个微带贴片单元11面积自过孔10向外依次减小。此外,图5所示的毫米波天线结构与图1所示的毫米波天线结构的不同之处还在于,图5所示毫米波天线结构还包括位于过孔10一侧的移相器13,移相器13连接其中一组的微带贴片单元中与其相邻的微带贴片单元11,从而确保整列微带贴片单元11馈电电流方向的一致性。图5所示的毫米波天线结构采用串馈形式的阵列天线,天线单元馈电方式简单,馈线损耗小,天线效率高,此时天线极化与并馈形式相反,同样通过过孔与异面的射频器件相连。
图6是根据本发明又一实施例的毫米波天线结构的天线阵列示意图。如图6所示,毫米波天线结构中的各微带贴片单元11与微带线12之间通过串馈方式连接,此时每组微带贴片单元11中各个微带贴片单元的大小不同,具体地,每列所述微带贴片单元11中的各个所述微带贴片单元11的面积自对称中心向两侧依次减小,也即每组微带贴片单元11中各个微带贴片单元11面积自过孔10向外依次减小。此外,图6所示的毫米波天线结构与图1所示的毫米波天线结构的不同之处在于,图6所示毫米波天线结构中,射频器件与天线阵列共面,即射频器件也设置在基板101的第一侧面(即正面)上,天线阵列通过微带线12直接与射频器件相连,而不再通过过孔以及基板101背面的微带线与射频器件相连。图6所示的毫米波天线结构天线与射频器件共面,天线通过微带线直接与射频器件端口连接,减小由馈电过孔引起的损耗。
图7是根据本发明一实施例的微波旋转雷达的示意性剖面图。如图7所示,在本发明实施例中,微波旋转雷达200包括罩体201,在罩体201中设置有固定支架202,在固定支架202上安装有电机,电机包括定子203和转子204,在转子204上安装有旋转支架205,旋转支架205随着所述电机的转子204一起转动;在旋转支架205上安装有毫米波天线结构206和天线控制器207,毫米波天线结构206的具体结构如前所述,天线控制器207用于控制毫米波天线结构206发射和接收微波信号。
进一步地,在某些实施方式中,微波旋转雷达200还包括角度传感器 208,角度传感器208用于检测转子204的转动角度。角度传感器208可以是霍尔传感器、电位器和编码器中的一种或几种。可以理解,角度传感器208检测转子204的转动角度,也就是检测微波旋转雷达200的转动角度。使用微波旋转雷达200的装置可根据微波旋转雷达200的转动角度来辅助判断微波信号的发射方向和接收到的微波信号的方向,并进一步地判断障碍物与使用微波旋转雷达200的装置的相对方向。
图8是根据本发明一实施例的可移动平台的示意性框图。虽然可移动平台300被描绘为无人飞行器,但这种描绘并不旨在是限制性的,其可以使用任何合适类型的可移动物体,例如可移动平台300可以为无人机、自动驾驶汽车或地面遥控机器人。
如图8所示,可移动平台300包括机身301和微波旋转雷达200,微波旋转雷达200安装在机身301上。具体地,机身301包括机架302和安装在机架302上的脚架303。机架302可作为可移动平台300的飞行控制系统、处理器、摄像机、照相机等的安装载体。脚架303安装在机架302的下方,微波旋转雷达200安装在脚架303上。脚架303可用于为可移动平台300降落时提供支撑,在一个实施例中,脚架303还可以搭载水箱,并用于通过喷头对植物喷洒农药和肥料等。微波旋转雷达200的结构如前所述,在此不再赘述。
进一步地,可移动平台300还包括自机身301延伸的机臂304,机臂304可用于搭载动力装置305以为可移动平台300提供飞行的动力。搭载动力装置305可以包括旋翼、螺旋桨、桨叶、引擎、电机、轮子、轮轴、磁体或喷嘴中的一种或多种。可移动平台300可以具有一个或多个、两个或更多个、三个或更多个或者四个或更多个搭载动力装置305。动力装置305可以全都是同一类型。备选地,一个或多个动力装置305可以是不同类型的动力装置305。动力装置305可以使用任何合适的装置来安装在可移动平台300上。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征 的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种毫米波天线结构,其特征在于,包括:
    基板,在所述基板的第一侧面上形成有多个天线阵列,所述多个天线阵列包括至少一个发射天线阵列和多个接收天线阵列,所述至少一个发射天线阵列和多个所述接收天线阵列彼此平行且间隔布置;
    每个所述接收天线阵列均包括至少一列微带贴片单元,每列所述微带贴片单元包括两组呈对称分布的微带贴片单元;
    相邻两个所述接收天线阵列之间的间距为6.0mm~15.0mm。
  2. 根据权利要求1所述的毫米波天线结构,其特征在于,相邻所述接收天线阵列之间的间距为6.2mm~12.5mm。
  3. 根据权利要求1所述的毫米波天线结构,其特征在于,相邻所述接收天线阵列之间的间距为6.6mm。
  4. 根据权利要求1-3任意一项所述的毫米波天线结构,其特征在于,所述发射天线阵列包括至少两列彼此电连接的微带贴片单元,每列所述微带贴片单元包括两组呈对称分布的微带贴片单元。
  5. 根据权利要求4所述的毫米波天线结构,其特征在于,每列所述微带贴片单元中的各个所述微带贴片单元大小彼此相同。
  6. 根据权利要求4所述的毫米波天线结构,其特征在于,每列所述微带贴片单元中的各个所述微带贴片单元的面积自对称中心向两侧依次减小。
  7. 根据权利要求4所述的毫米波天线结构,其特征在于,所述微带贴片单元的形状为矩形、圆形、半圆形或椭圆。
  8. 根据权利要求4所述的毫米波天线结构,其特征在于,每组微带贴片单元包括6个以上的微带贴片单元。
  9. 根据权利要求1所述的毫米波天线结构,其特征在于,所述接收天线阵列的数量为8个以上。
  10. 根据权利要求4所述的毫米波天线结构,其特征在于,还包括:
    馈电网络,其形成在所述基板的第一侧面上,所述馈电网络包括分别 与每列所述微带贴片单元电连接的多个微带线。
  11. 根据权利要求10所述的毫米波天线结构,其特征在于,所述微带线与每列所述微带贴片单元通过并馈方式连接。
  12. 根据权利要求10所述的毫米波天线结构,其特征在于,所述微带线与每列所述微带贴片单元通过串馈方式连接。
  13. 根据权利要求10所述的毫米波天线结构,其特征在于,还包括:与所述馈电网络电连接的射频电路,所述射频电路包括至少一个发射芯片和两个接收芯片,以及与两个所述接收芯片电连接的功分器。
  14. 根据权利要求13所述的毫米波天线结构,其特征在于,所述射频电路形成在所述基板的第二侧面上。
  15. 根据权利要求14所述的毫米波天线结构,其特征在于,在所述基板上还形成有分别与每列所述微带贴片单元的微带线电连接的多个过孔或馈电探针,所述馈电网络通过多个所述过孔或馈电探针与所述射频电路连接。
  16. 根据权利要求15所述的毫米波天线结构,其特征在于,在所述基板的第二侧面上还形成有多个微带线,每个所述过孔或馈电探针通过对应的所述微带线连接至所述射频电路。
  17. 根据权利要求14所述的毫米波天线结构,其特征在于,每列所述微带贴片单元通过耦合馈电方式与所述射频电路电连接。
  18. 根据权利要求13所述的毫米波天线结构,其特征在于,所述射频电路形成在所述基板的第一侧面上。
  19. 根据权利要求17所述的毫米波天线结构,其特征在于,每列所述微带贴片单元通过微带线连接至所述射频电路。
  20. 根据权利要求11所述的毫米波天线结构,其特征在于,所述微带线与每列所述微带贴片单元以垂直方式或倾斜方式连接。
  21. 根据权利要求1所述的毫米波天线结构,其特征在于,所述基板为双层板、三层板、四层板、五层板或六层板。
  22. 根据权利要求1所述的毫米波天线结构,其特征在于,所述基板包括:
    天线板,所述天线阵列形成在所述天线板上;
    接地板,位于所述天线板的下方,用于与所述天线阵列的地电连接;以及
    多个走线板,位于所述接地板的下方,用于与射频电路电连接,
    其中,所述天线板、所述接地板以及多个所述走线板依次层叠设置。
  23. 根据权利要求1所述的毫米波天线结构,其特征在于,所述天线阵列采用水平极化方式或垂直极化方式。
  24. 一种微波旋转雷达,其特征在于,包括:
    固定支架;
    电机,安装在所述固定支架上;
    旋转支架,安装在所述电机的转子上,并且随着所述电机的转子一起转动;以及
    权利要求1至23之一所述的毫米波天线结构,安装在所述旋转支架上。
  25. 一种可移动平台,其特征在于,包括:
    机身;
    动力装置,安装在所述机身上,并且为所述机身提供移动动力;以及
    权利要求24所述的微波旋转雷达,安装在所述机身上。
  26. 根据权利要求25所述的可移动平台,其特征在于,所述可移动平台为无人机、自动驾驶汽车或地面遥控机器人。
PCT/CN2018/119154 2018-12-04 2018-12-04 毫米波天线结构、微波旋转雷达及可移动平台 WO2020113418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/119154 WO2020113418A1 (zh) 2018-12-04 2018-12-04 毫米波天线结构、微波旋转雷达及可移动平台
CN201880070178.XA CN111316499A (zh) 2018-12-04 2018-12-04 毫米波天线结构、微波旋转雷达及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119154 WO2020113418A1 (zh) 2018-12-04 2018-12-04 毫米波天线结构、微波旋转雷达及可移动平台

Publications (1)

Publication Number Publication Date
WO2020113418A1 true WO2020113418A1 (zh) 2020-06-11

Family

ID=70974811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119154 WO2020113418A1 (zh) 2018-12-04 2018-12-04 毫米波天线结构、微波旋转雷达及可移动平台

Country Status (2)

Country Link
CN (1) CN111316499A (zh)
WO (1) WO2020113418A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652884A (zh) * 2020-09-08 2021-04-13 上海鲸目科技有限公司 一种新型毫米波抗干扰微带阵列天线
TWI773010B (zh) * 2020-12-10 2022-08-01 大陸商江陰康瑞成型技術科技有限公司 毫米波天線之輻射能量均佈結構
TWI773011B (zh) * 2020-12-10 2022-08-01 大陸商江陰康瑞成型技術科技有限公司 毫米波天線之抗干擾結構
CN113009474B (zh) * 2021-02-09 2023-11-10 北京算丰征途科技有限公司 一种大范围高分辨率人体姿态检测毫米波雷达天线及系统
CN114628905B (zh) * 2022-05-16 2022-07-29 深圳市国天电子股份有限公司 基于毫米波雷达的角度可调节的监测装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070237A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp マイクロストリップアレーアンテナ
CN105161861A (zh) * 2015-09-28 2015-12-16 湖南华诺星空电子技术有限公司 一种调频连续波雷达的天线装置
CN107611577A (zh) * 2017-09-06 2018-01-19 上海通趣科技有限公司 一种基于77GHz毫米波雷达的微带阵列天线
CN207426169U (zh) * 2017-10-20 2018-05-29 中国工程物理研究院电子工程研究所 一种用于太赫兹和毫米波人体安检仪的双极化天线阵列

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055272A1 (en) * 2011-10-14 2013-04-18 Saab Ab Short range radar system
CN202453498U (zh) * 2011-12-30 2012-09-26 北京华航无线电测量研究所 一种阵列天线弧形扫描的毫米波成像装置
DE102015222884A1 (de) * 2015-11-19 2017-05-24 Conti Temic Microelectronic Gmbh Radarsystem mit verschachtelt seriellem Senden und parallelem Empfangen
WO2017135371A1 (en) * 2016-02-05 2017-08-10 Nidec Elesys Corporation Multicopter with radar system
CN105811113A (zh) * 2016-05-05 2016-07-27 桂林电子科技大学 一种k波段微带贴片天线阵
CN106505312A (zh) * 2016-12-09 2017-03-15 安徽四创电子股份有限公司 一种毫米波微带阵列天线
CN106972244B (zh) * 2017-02-28 2020-03-27 惠州硕贝德无线科技股份有限公司 一种车载雷达阵列天线
JP6499217B2 (ja) * 2017-03-29 2019-04-10 セコム株式会社 アンテナ装置及びレーダ装置
CN108051806A (zh) * 2017-12-04 2018-05-18 上海无线电设备研究所 一种基于通用雷达前端芯片的毫米波成像安检雷达系统
CN209624763U (zh) * 2018-12-04 2019-11-12 深圳市大疆创新科技有限公司 毫米波天线结构、微波旋转雷达及可移动平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070237A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp マイクロストリップアレーアンテナ
CN105161861A (zh) * 2015-09-28 2015-12-16 湖南华诺星空电子技术有限公司 一种调频连续波雷达的天线装置
CN107611577A (zh) * 2017-09-06 2018-01-19 上海通趣科技有限公司 一种基于77GHz毫米波雷达的微带阵列天线
CN207426169U (zh) * 2017-10-20 2018-05-29 中国工程物理研究院电子工程研究所 一种用于太赫兹和毫米波人体安检仪的双极化天线阵列

Also Published As

Publication number Publication date
CN111316499A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2020113418A1 (zh) 毫米波天线结构、微波旋转雷达及可移动平台
CN209624763U (zh) 毫米波天线结构、微波旋转雷达及可移动平台
JP2851338B2 (ja) リニア・フェイズドアレイ・アンテナのための角度位置決め用レーダシステム
JP5743586B2 (ja) 低電力空間結合フェーズドアレイレーダー
US10749270B2 (en) Polarization rotating phased array element
WO2018094660A1 (zh) 天线组件及无人飞行器
CN111755819B (zh) 倒置的微带行波贴片阵列天线系统
US3701158A (en) Dual mode wave energy transducer device
CN106953157B (zh) 一种用于雷达传感器的天线装置
US10862210B2 (en) Multiple band polarization rotating phased array element
US20200313288A1 (en) Integrated cavity backed slot array antenna system
US4012742A (en) Multimode loop antenna
CN207852911U (zh) 一种基于连续波相控阵的带状线天线阵
WO2021081904A1 (zh) 微波天线结构、微波旋转雷达及可移动平台
EP3804029A1 (en) Radar antenna for use in a miniature unmanned aerial vehicle
Knott Design of a printed dipole antenna array for a passive radar system
Kueppers et al. Imaging Characteristics of a Highly Integrated MillimeterWave MIMO Radar
US11397284B2 (en) Flexible hybrid electronic sensing system for UAV applications
CN114325716A (zh) 一种雷达装置及无人机
O’Donnell Radar Systems Engineering Lecture 9 Antennas
CN113471717A (zh) 天线模组及雷达
Toshev Analysis, design and measurement of a low sidelobe level lightweight array antenna for surveillance radar applications
CN211698168U (zh) 微波天线结构、微波旋转雷达及可移动平台
CN206180095U (zh) 天线组件及无人飞行器
RU2805682C1 (ru) Двухполяризационная L и X диапазона широкополосная комбинированная планарная антенна с общим фазовым центром

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942292

Country of ref document: EP

Kind code of ref document: A1