WO2019109810A1 - 一种开关控制电路及其控制方法 - Google Patents

一种开关控制电路及其控制方法 Download PDF

Info

Publication number
WO2019109810A1
WO2019109810A1 PCT/CN2018/116949 CN2018116949W WO2019109810A1 WO 2019109810 A1 WO2019109810 A1 WO 2019109810A1 CN 2018116949 W CN2018116949 W CN 2018116949W WO 2019109810 A1 WO2019109810 A1 WO 2019109810A1
Authority
WO
WIPO (PCT)
Prior art keywords
input voltage
resistor
circuit
voltage
output
Prior art date
Application number
PCT/CN2018/116949
Other languages
English (en)
French (fr)
Inventor
金若愚
申志鹏
宋建峰
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2019109810A1 publication Critical patent/WO2019109810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the invention relates to a switch control circuit and a control method thereof, in particular to a switch control circuit suitable for a Boost circuit and a control method thereof.
  • the high-voltage power supply is a switching converter for providing stable and reliable DC voltage for control systems and heating systems such as photovoltaic solar power, wind power generation, reactive power compensation device SVG, central air conditioning.
  • control systems and heating systems such as photovoltaic solar power, wind power generation, reactive power compensation device SVG, central air conditioning.
  • SVG reactive power compensation device
  • central air conditioning At present, the demand for power supplies with higher input voltages and wider input voltage ranges has increased dramatically, and the industry has developed rapidly. For example, the market demand for 15W power supply of 200V-1500VDC with input voltage change of 7.5:1 or 120V-1200VDC with input voltage ratio of 10:1 is increasing year by year, showing good prospects.
  • a two-stage power circuit can be used.
  • the specific idea is that the first-stage boost circuit increases the input high-voltage of the input range to a high voltage with a narrow variation range.
  • the second stage adopts the soft-switching technology DC/DC circuit, which not only overcomes the shortcomings of the resonant soft-switching circuit which is not suitable for the wide input voltage range, but also realizes the switching tube ZVS and improves the efficiency of the whole machine.
  • the boosted Boost converter is one of three basic power topologies.
  • the converter can realize the rectification and transformation of the output voltage higher than the input voltage.
  • the circuit schematic is shown in Figure 1, including the inductor L1, the MOS transistor Q1, and the diode D1.
  • the BOOST circuit 1 composed of a capacitor C1, a resistor R4 and a PWM controller, and an output voltage detecting circuit 4 composed of a resistor R7 and a resistor R8, the basic working principle of which is referred to the second edition of "Proficient Switching Power Supply Design" published by People's Posts and Telecommunications Press.
  • the ISBN number of the book is 9787115367952, which is not described in detail herein because it is common knowledge of those skilled in the art.
  • An on-board control system requires an input voltage range of 150 to 1000 VDC, and an output DC voltage of 24 V, 220 V, etc., with a total power of several hundred watts.
  • the main idea of the pre-stage control circuit is to use the first-stage Boost circuit to adjust the input voltage to 600V to 1000V. When the input voltage is between 150V and 600V, the input voltage is increased to 600V through the first-stage Boost circuit. When the input voltage is 600V ⁇ 1000V, the switching tube of the BOOST circuit is normally open, and the input voltage is directly input to the circuit of the second stage soft switching technology DC/DC through the boosting inductor.
  • the duty ratio can be directly calculated according to the relationship between the input and output voltages and the duty ratio.
  • the input voltage is 580V ⁇ 600V, that is, the input voltage is lower than the output voltage but close to the output voltage, the closer the input voltage value is to the output voltage, the smaller the duty cycle.
  • the BOOST circuit switch tube is turned on and the turn-off loss is multiplied. Temperature rise is difficult to handle.
  • the present invention provides a switch control circuit and a control method thereof suitable for a BOOST circuit, which realizes a simple and reliable control scheme, and the actual circuit is flexible and practical.
  • a switch control circuit is applicable to a BOOST circuit including a BOOST main power circuit and a PWM controller, including: an input voltage detection circuit, an input voltage comparison and control circuit, and an output voltage detection circuit;
  • An input voltage detecting circuit for detecting an input voltage of the BOOST circuit and outputting the input voltage signal to the input voltage comparison and control circuit;
  • An input voltage comparison and control circuit for comparing the input voltage signal with the reference voltage signal; when the comparison result is higher than the first preset value, controlling the BOOST circuit to operate and boosting the input voltage to the first rated voltage; When the result is higher than the second preset value, the BOOST circuit is controlled to operate and the input voltage is boosted to the second rated voltage;
  • the output voltage detecting circuit is configured to detect the output voltage of the BOOST circuit, and output an output voltage signal to a feedback pin of the PWM controller of the BOOST circuit, and the PWM controller controls whether the BOOST circuit works according to the output voltage signal.
  • the input voltage comparison and the control circuit further have an Nth preset value, and N is an integer greater than 2; when the comparison result of the input voltage signal and the reference voltage signal is higher than the N-1 preset value, the BOOST circuit is controlled to work. And the input voltage is boosted to the N-1 rated voltage; when the comparison result of the input voltage signal and the reference voltage signal is higher than the Nth preset value, the control BOOST circuit does not work, and the input voltage signal is output through the BOOST circuit.
  • the first rated voltage and the second rated voltage are sequentially increased.
  • a specific implementation of the input voltage detecting circuit is composed of a resistor R1, a resistor R2 and a resistor R3 connected in series. One end of the series is used for connecting the input voltage Vin, and the other end of the series is used for connecting the input voltage Vin-.
  • the comparator U1A, the reference voltage signal Vref, the resistor R5 and the NPN transistor Q3 are formed; the non-inverting input terminal of the comparator U1A is connected to the resistor R1 and the resistor R2.
  • the inverting input terminal of the comparator U1A is connected to the reference voltage signal Vref, and the output end of the comparator U1A is connected to the output voltage detecting circuit via the resistor R5, and the resistor R5 is sequentially passed through the collector of the transistor Q3 and the emitter of the transistor Q3.
  • the base of the transistor Q3 is connected to the series node of the resistor R2 and the resistor R3.
  • the comparator U1A As a second specific implementation of the input voltage comparison and control circuit, the comparator U1A, the reference voltage signal Vref, the comparator U2A, the reference voltage signal Vref2, the resistor R5 and the diode D2; the same direction input of the comparator U1A A series connection node of the resistor R1 and the resistor R2 is connected, and the opposite input end of the comparator U1A is connected to the reference voltage signal Vref.
  • the output end of the comparator U1A is connected to the output voltage detecting circuit as an output terminal via the resistor R5, and the resistor R5 is sequentially passed through the diode.
  • the anode of D2, the cathode of diode D2 is connected to the output of comparator U2A, the inverting input of comparator U2A is connected to the series node of resistor R2 and resistor R3, and the non-inverting input of comparator U2A is connected to reference voltage signal Vref2.
  • the resistor R6, the resistor R7, the resistor R8 and the N-channel MOS transistor Q2 are formed; the resistor R7 and the resistor R8 are connected in series, one end is used for connecting the output voltage Vo+, and the other end is used for connecting the output voltage Vo+ Connect the output voltage Vo-, the connection point of the resistor R7 and the resistor R8 is used to connect the feedback pin of the PWM controller of the BOOST circuit, the connection point of the resistor R7 and the resistor R8 is also connected to one end of the resistor R6, and the other end of the resistor R6 is sequentially passed through the MOS
  • the drain of the transistor Q2 and the source of the MOS transistor Q2 are connected to the common ground signal, and the gate of the MOS transistor Q2 is connected to the input voltage comparison and control circuit.
  • a switch control method is applicable to a BOOST circuit including a BOOST main power circuit and a PWM controller, including the following steps:
  • the input voltage detecting circuit detects the input voltage of the BOOST circuit, and outputs the input voltage signal to the input voltage comparison and control circuit;
  • the input voltage comparison and control circuit compares the input voltage signal with the reference voltage signal, and controls whether the output voltage detection circuit operates according to the comparison result
  • the output voltage detection circuit performs the input voltage comparison and the indication of the control circuit.
  • the output voltage detection circuit detects the output voltage of the BOOST circuit, and outputs the output voltage signal to the BOOST circuit PWM control.
  • the feedback pin of the device controls the BOOST circuit according to the output voltage signal.
  • the input voltage of the BOOST circuit is divided into N intervals from small to large, and N is an integer greater than 2; the N-1 target boost value is set to the BOOST circuit for the N input voltage intervals, respectively defined as the first Rated voltage, second rated voltage, and Nth rated voltage; when the input voltage is in the first interval, the BOOST circuit operates to boost the input voltage to the first rated voltage; when the input voltage is in the second interval, the BOOST circuit operates, The input voltage is boosted to a second rated voltage; when the input voltage is in the N interval, the BOOST circuit does not operate.
  • the first rated voltage value is equal to the maximum voltage value of the second interval
  • the second rated voltage value is located between the third intervals
  • the N-1 rated voltage value is located within the Nth interval.
  • the general idea of the present invention is: for the application requirements of a wide input voltage range, the method of segmentation control is used to preprocess a wide input voltage, and the problem of high input voltage ratio and temperature rise is difficult to solve, and the working process will be specific.
  • the implementation section is analyzed in detail. Compared with the prior art, the present invention has the following beneficial effects:
  • the invention solves the problem that the BOOST circuit works in the boosting state.
  • the switching tube is turned on and the turn-off loss is multiplied, and the temperature rise is difficult to handle.
  • the present invention improves the reliability of a BOOST circuit with a high input voltage ratio.
  • the circuit component of the invention has a small number of components, a simple structure and a cost advantage.
  • Figure 1 is a schematic diagram of the background art
  • Figure 2 is a schematic diagram of a first embodiment of the present invention
  • Figure 3 is a schematic diagram of a second embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a switch control circuit according to a first embodiment of the present invention, in which the input voltage of the BOOST circuit is divided into three sections from small to large, three preset values are set, and two rated voltages are defined as an example. .
  • the BOOST circuit 1 is also drawn.
  • the switch control circuit of this embodiment includes an input voltage detecting circuit 2, an input voltage comparison and control circuit 3, and an output voltage detecting circuit 4.
  • An input voltage detecting circuit for detecting an input voltage of the BOOST circuit and outputting the input voltage signal to the input voltage comparison and control circuit;
  • the input voltage comparison and control circuit is configured to compare the input voltage signal with the reference voltage signal, and when the comparison result is higher than the first preset value, control the BOOST circuit to operate and boost the input voltage to the first rated voltage; When the result is higher than the second preset value, the BOOST circuit is controlled to operate and the input voltage is boosted to the second rated voltage;
  • the output voltage detecting circuit is configured to detect the output voltage of the BOOST circuit, and output an output voltage signal to a feedback pin of the PWM controller of the BOOST circuit, and the PWM controller controls whether the BOOST circuit works according to the output voltage signal.
  • the input voltage comparison and the control circuit further have a third preset value.
  • the control BOOST circuit does not work, and the input voltage signal is output through the BOOST circuit;
  • the first rated voltage and the second rated voltage are sequentially increased.
  • the BOOST circuit 1 is the same as the background art of FIG. 1 and is composed of a power inductor L1, a diode D1, an N-channel MOS transistor Q1, a filter capacitor C1, a PWM controller and a driving resistor R4; the input voltage Vin+ is connected to the diode through the inductor L1.
  • the anode of D1 is connected, the cathode of diode D1 is connected to the anode of capacitor C1, the cathode of capacitor C1 is connected to the source of MOS transistor Q1 and connected to the common ground signal; PWM controller (for common control ICs such as UC3842, only here) Draw a schematic diagram to explain the principle)
  • the internal error amplifier op amp reverse input terminal FB pin is connected to the output voltage detection circuit.
  • the error amplifier op amp is the internal reference level.
  • the driving output pin drv of the PWM controller is connected to the gate of the MOS transistor Q1 via the resistor R4, and the drain of the MOS transistor Q1 is connected to the common node of the inductor L1 and the diode D1;
  • the input voltage Vin- and the BOOST output Vo-, the common ground signal are equipotential points.
  • the input voltage detecting circuit 2 is composed of resistors R1, R2 and R3, wherein one end of the resistor R1 is connected to the input voltage Vin+, the other end is connected in series with the resistor R3 via the resistor R2, and the other end of the resistor R3 is connected to the input voltage Vin-.
  • the input voltage comparison and control circuit 3 is composed of a comparator U1A, a reference voltage signal Vref, a resistor R5, and an NPN transistor Q3.
  • the reference voltage signal Vref is connected to the inverting input terminal of the comparator U1A
  • the non-inverting input terminal of the comparator U1A is connected to the common node of the resistor R1 and the resistor R2
  • the output pin of the comparator U1A is connected to the output of the resistor R5 and the transistor Q3.
  • the collector of the collector and transistor Q3 is connected to the output voltage Vo-
  • the base of the transistor Q3 is connected to the common node of the resistor R1 and the resistor R2.
  • the output voltage detecting circuit 4 is composed of resistors R6, R7, R8 and an N-channel MOS transistor Q2.
  • the output voltage Vo+ of the BOOST circuit 1 is connected to one end of the resistor R8 via the resistor R7, and the other end of the resistor R8 is connected to the BOOST circuit.
  • the output voltage of 1 is Vo-;
  • the FB pin of the PWM controller of BOOST circuit 1 is connected to one end of the resistor R6 and is also connected to the common node of the resistor R7 and the resistor R8, and the other end of the resistor R6 is connected to the drain of the MOS transistor Q2.
  • the source of the MOS transistor Q2 is connected to the output voltage Vo-.
  • the input voltage range of the BOOST circuit 1 is selected from four small voltage values A, B, C, and D.
  • the four voltage values divide the input voltage range into three working ranges, that is, A to B, B to C and C to D;
  • two target boost values are set for the BOOST circuit 1 for the input voltage range, respectively defined as the first rated voltage and the second rated voltage, in particular, the first rated voltage value is equal to the voltage value of C, and the second rated The voltage value is between C and D;
  • the BOOST circuit 1 When the input voltage is in the interval A to B, the BOOST circuit 1 operates to boost the input voltage to the first rated voltage; when the input voltage is in the interval B to C, the BOOST circuit 1 operates to boost the input voltage to the second rated Voltage; when the input voltage is in the C ⁇ D interval, the BOOST circuit 1 does not work, the MOS transistor Q1 is in the off state, and the input voltage is filtered by the filter circuit composed of the inductor L1 of the BOOST circuit 1 and the output capacitor C1.
  • the BOOST circuit 1 operates in a boost state, and the boosted output voltage Vo+ is determined by the output sampling circuit 4, specifically:
  • the comparator U1A compares the sampled input voltage signal with the reference voltage signal Vref. When the sampled input voltage signal is lower than the reference voltage signal Vref, the comparator U1A outputs a low level signal, and the gate of the MOS transistor Q2 is at a low level.
  • the signal, MOS tube Q2 is turned off, the resistor R6 is disconnected from the branch composed of the drain and source of the MOS transistor Q2, and the output voltage Vo+ of the BOOST circuit 1 is serially divided by the resistor R7 and the resistor R8, and the output sampling signal is transmitted to the PWM control.
  • the FB pin of the device is compared with the reference level of the error input terminal of the error amplifier inside the PWM controller, thereby adjusting the duty ratio of the PWM pin, and further indirectly controlling the output voltage amplitude of the BOOST circuit 1;
  • the output voltage Vboost1 of the BOOST circuit 1 can be calculated by the following formula
  • the value of C represents a voltage equal to the voltage represented by Vboost1.
  • the BOOST circuit 1 operates in a boost state, and the boosted output voltage Vo+ is determined by the output sampling circuit 4, specifically:
  • the comparator U1A compares the sampled input voltage signal with the reference voltage signal Vref. When the sampled voltage signal is higher than the reference voltage signal Vref, the comparator U1A outputs a high level signal, and the gate of the MOS transistor Q2 is a high level signal, MOS The tube Q2 is saturated and turned on, and the branch composed of the resistor R6 and the drain and source of the MOS transistor Q2 is connected in parallel with the resistor R8;
  • MOS transistor Q2 is saturated and turned on, and the conduction voltage across the MOS transistor Q2 is negligible.
  • the branch composed of the resistor R6 and the drain and source of the MOS transistor Q2 can be equivalently connected in parallel with R6 and R8;
  • the output voltage Vo+ of the BOOST circuit 1 is serially connected in parallel with the resistor R7, the resistor R6 and the resistor R8, and is compared with the reference level of the error input terminal of the error amplifier inside the PWM controller, and the output voltage Vboost2 of the BOOST circuit 1 can pass. Calculated as follows;
  • the voltage value represented by Vboost2 is between the value of C and the voltage represented by the value of D.
  • Comparator U1A When the input voltage is in the C ⁇ D interval, the sampling voltage across the resistor R3 is higher than the base turn-on voltage of the transistor Q3, and the emitter junction and the collector junction of the transistor Q3 are positively biased, and the collector and emitter of the transistor Q3 are The turn-on voltage between them is ignored.
  • Comparator U1A outputs a high level signal to the common ground via resistor R5, the gate of MOS transistor Q2 is a low level signal, MOS transistor Q2 is turned off, and the branch of resistor R6 and the drain and source of MOS transistor Q2 is broken.
  • the output voltage of the BOOST circuit 1 and the output sampling signal after the series connection of the resistor R7 and the resistor R8 are always higher than the reference level of the error input terminal of the error amplifier inside the PWM controller, and the duty ratio of the PWM pin output is 0, MOS tube Q1 maintains the off state; at this time, BOOST circuit 1 does not work, the input voltage Vin+ is filtered by the filter circuit composed of the inductor L1 and the capacitor, and the output is Vo+, and Vin+ is approximately equal to Vo+.
  • FIG. 3 is a block diagram showing a second embodiment of the present invention. Compared with the first embodiment shown in FIG. 2, the difference is only in the input voltage comparison and control circuit 2, and the transistor Q3 in the first embodiment is reference voltage.
  • the signal Vref2, the comparator U2A and the diode D2 are replaced by the second embodiment.
  • the circuit function composed of the reference voltage signal Vref2, the comparator U2A and the diode D2 is identical to the function of the transistor Q3 in the circuit.
  • the input voltage range will also be split into three operating ranges: A to B, B to C, and C to D.
  • the comparator U1A When the input voltage is in the interval A to B, the comparator U1A outputs a low-level signal, and the operating state of the MOS transistor Q2 is the same as that in the first embodiment; the sampling voltage across the resistor R3 is lower than the reference voltage signal Vref2, and the comparator U2A outputs a high voltage. Flat signal, diode D2 reverse bias off.
  • the BOOST circuit 1 operates in a boost state, and the operating state is the same as the input voltage range corresponding to the first embodiment.
  • the comparator U1A When the input voltage is in the C ⁇ D interval, the comparator U1A outputs a high level signal, the sampling voltage across the resistor R3 is higher than the reference voltage signal Vref2, the comparator U2A outputs a low level signal, and the diode D2 is forward biased; the comparator The U1A output high-level signal is pulled down to the ground through the resistor R5 and the diode D2, and the gate-source voltage of the MOS transistor Q2 is low. At this time, the BOOST circuit 1 does not work, and the working state is the same as the input voltage range corresponding to the first embodiment.
  • control method is adjusted to divide the input voltage range of the BOOST circuit into multiple working sections, and A to B as the first interval and B to C as the second interval. And C ⁇ D as the third interval, there is the Nth interval, N is greater than or equal to 3.
  • the working principle is the same as that of the first embodiment and the second embodiment.
  • the BOOST circuit operates to boost the input voltage to the first rated voltage; when the input voltage is in the second interval, the BOOST circuit Work, boost the input voltage to the second rated voltage; when the input voltage is in the N interval, the BOOST circuit does not work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种开关控制电路以及对应的控制方法,适用于BOOST电路(1),开关控制电路包括:输入电压检测电路(2)、输入电压比较与控制电路(3),以及输出电压检测电路(4);输入电压检测电路(2)检测BOOST电路(1)的输入电压,输出输入电压信号;输入电压比较与控制电路(3)比较输入电压信号与参考电压信号的大小,控制输出电压检测电路(4)是否工作;输出电压检测电路(4)执行相关指示,当其工作时,检测BOOST电路(1)的输出电压,并输出输出电压信号至BOOST电路(1)的PWM控制器的反馈引脚,控制BOOST电路(1)是否工作。通过分段控制的方法对宽输入电压进行预处理,从而化解了高输入电压变比和温升难以兼顾的问题。

Description

一种开关控制电路及其控制方法 技术领域
本发明涉及开关控制电路及其控制方法,特别涉及一种适用于Boost电路的开关控制电路及其控制方法。
背景技术
高压供电电源为一种开关变换器,用于为光伏太阳能、风力发电、无功补偿装置SVG、中央空调等控制系统、加热系统提供稳定、可靠的直流电压。目前,更高输入电压,更宽输入电压范围的电源需求剧增,行业发展迅速。例如输入电压变化为7.5:1的200V-1500VDC的45W或者输入电压变比为10:1的120V-1200VDC的15W电源市场需求逐年递增,显示了良好的前景。
针对上述市场需求,工程技术人员常采用单级正激或反激拓扑作为主电路拓扑,随着输入电压变比越来越宽,采用单级电路的缺点也越来越明显。主功率开关管占空比变化范围同步增加,导致如下两个问题:
1)高压输入时满载条件下占空比较小,但变换器一般工作于断续模式,主功率变压器温升难以处理;
2)低压输入时,样机满载工作,需要较大占空比,容易导致开关管损耗大,温升较高。
为应对宽输入电压范围带来的挑战,可采用两级式功率电路,具体思路为第一级Boost电路将输入宽范围的高电压升高为变化范围较窄的高电压。第二级采用软开关技术DC/DC的电路,既克服了谐振软开关电路不适用于宽输入电压范围的缺点,同时实现了开关管ZVS,又提升了整机效率。
升压Boost变换器为三种基本功率拓扑之一,该变换器可实现输出电压高于输入电压的整流与变换,电路原理图如附图1所示,包括电感L1、MOS管Q1、二极管D1电容C1、电阻R4和PWM控制器组成的BOOST电路1,以及电阻R7和电阻R8组成的输出电压检测电路4,其基本工作原理参考人民邮电出版社出版的第二版《精通开关电源设计》第37页,该书ISBN号为9787115367952,由于为本领域技术人员的公知常识,此处不详述。
现有Boost电路的控制技术在实际应用时面临较大挑战,下面结合具体应用、技术参数说明。
某车载控制系统要求输入电压范围150~1000VDC,输出直流电压包括24V、220V等,总功率为数百瓦。前级控制电路主要思路为:采用第一级Boost电路将输入电压调整为600V~1000V,当输入电压为150V~600V之间时通过第一级Boost电路将输入电压升高为600V。当输入电压为600V~1000V时,BOOST电路的开关管常开,输入电压经升压电感直接输入至第二级软开关技术DC/DC的电路。
上述控制方式存在的问题:对于BOOST电路,根据输入、输出电压与占空比关系可直接计算出占空比大小。当输入电压为580V~600V即输入电压低于输出电压但较为接近输出电压时,输入电压值越接近输出电压,占空比越小,此时BOOST电路开关管开通、关断损耗成倍骤增,温升难以处理。
发明内容
有鉴如此,为了应对上述挑战,本发明提供一种适用于BOOST电路的开关控制电路及其控制方法,实现控制方案简单、可靠,且实际电路灵活、实用。
本发明的开关控制电路技术方案如下:
一种开关控制电路,适用于包括有BOOST主功率电路及PWM控制器的BOOST电路,包括:输入电压检测电路、输入电压比较与控制电路,以及输出电压检测电路;
输入电压检测电路,用于检测BOOST电路的输入电压,并输出输入电压信号至输入电压比较与控制电路;
输入电压比较与控制电路,用于将输入电压信号与参考电压信号进行比较;当比较结果高于第一预设值时,控制BOOST电路工作并将输入电压升压至第一额定电压;当比较结果高于第二预设值时,控制BOOST电路工作并将输入电压升压至第二额定电压;
输出电压检测电路,用于检测BOOST电路的输出电压,并输出输出电压信号至BOOST电路PWM控制器的反馈引脚,PWM控制器根据输出电压信号控制BOOST电路是否工作。
优选的,输入电压比较与控制电路还有第N预设值,N为大于2的整数;当输入电压信号与参考电压信号的比较结果高于第N-1预设值时,控制BOOST电路工作并将 输入电压升压至第N-1额定电压;当输入电压信号与参考电压信号的比较结果高于第N预设值时,控制BOOST电路不工作,输入电压信号经BOOST电路后输出。
优选的,第一额定电压、第二额定电压依次增加。
输入电压检测电路的一种具体的实施方式,由电阻R1、电阻R2和电阻R3串联组成,串联后的一端用于连接输入电压Vin,串联后的另一端用于连接输入电压Vin-。
作为输入电压比较与控制电路的第一种具体的实施方式,由比较器U1A、参考电压信号Vref、电阻R5和NPN型三极管Q3组成;比较器U1A的同向输入端连接电阻R1与电阻R2的串联节点,比较器U1A的反向输入端连接参考电压信号Vref,比较器U1A的输出端经电阻R5后与输出电压检测电路连接,电阻R5还依次经三极管Q3的集电极、三极管Q3的发射极后与公共地信号连接,三极管Q3的基极连接电阻R2与电阻R3的串联节点。
作为输入电压比较与控制电路的第二种具体的实施方式,由比较器U1A、参考电压信号Vref、比较器U2A、参考电压信号Vref2、电阻R5和二极管D2组成;比较器U1A的同向输入端连接电阻R1与电阻R2的串联节点,比较器U1A的反向输入端连接参考电压信号Vref,比较器U1A的输出端经电阻R5后作为输出端与输出电压检测电路连接,电阻R5还依次经二极管D2的阳极、二极管D2的阴极后与比较器U2A的输出端连接,比较器U2A的反向输入端连接电阻R2与电阻R3的串联节点,比较器U2A的同向输入端连接参考电压信号Vref2。
作为输出电压检测电路的一种具体的实施方式,由电阻R6、电阻R7、电阻R8及N沟道MOS管Q2组成;电阻R7和电阻R8串联后一端用于连接输出电压Vo+、另一端用于连接输出电压Vo-,电阻R7和电阻R8的连接点用于连接BOOST电路PWM控制器的反馈引脚,电阻R7和电阻R8的连接点还连接电阻R6的一端,电阻R6的另一端依次经MOS管Q2的漏极、MOS管Q2的源极后用于与公共地信号连接,MOS管Q2的栅极连接输入电压比较与控制电路。
本发明的开关控制电路对应的控制方法技术方案如下:
一种开关控制方法,适用于包括有BOOST主功率电路及PWM控制器的BOOST电路,包括如下步骤:
(1)输入电压检测电路检测BOOST电路的输入电压,并输出输入电压信号至输入电压比较与控制电路;
(2)输入电压比较与控制电路将输入电压信号与参考电压信号进行比较,并根据比较结果控制输出电压检测电路是否工作;
(3)输出电压检测电路执行输入电压比较与控制电路的指示,当输入电压比较与控制电路指示其工作时,输出电压检测电路检测BOOST电路的输出电压,并输出输出电压信号至BOOST电路PWM控制器的反馈引脚,PWM控制器根据输出电压信号控制BOOST电路是否工作。
优选地,将BOOST电路的输入电压由小至大划分为N个区间,N为大于2的整数;针对N个输入电压区间给BOOST电路设定N-1目标升压值,分别定义为第一额定电压、第二额定电压、第N额定电压;当输入电压位于第一区间时,BOOST电路工作,将输入电压升压至第一额定电压;当输入电压位于第二区间时,BOOST电路工作,将输入电压升压至第二额定电压;当输入电压位于N区间时,BOOST电路不工作。
优选地,第一额定电压值等于第二区间的最大电压值,第二额定电压值位于第三区间之间,第N-1额定电压值位于第N区间之内。
本发明总的构思为:对于宽输入电压范围的应用需求,通过分段控制的方法对宽输入电压进行预处理,化解高输入电压变比和温升难以兼顾的问题,其工作过程将在具体实施方式部分进行详细分析。本发明与现有技术相比,本发明具有如下有益效果:
1)本发明解决了BOOST电路工作于升压状态,当输入电压低于输出电压但较为接近输出电压时,其开关管开通、关断损耗成倍骤增,温升难以处理的问题。
2)本发明提高了高输入电压变比的BOOST电路可靠性。
3)本发明电路元器件数目少,结构简单,有成本优势。
附图说明
图1为背景技术引用原理图;
图2为本发明第一实施例原理图;
图3为本发明第二实施例原理图。
具体实施方式
为了更清楚地说明本发明的技术方案,下面将结合附图作详细地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
第一实施例
图2示出了本发明第一实施例开关控制电路的原理框图,以将BOOST电路的输入电压由小到大分为3个区间,设置3个预设值、定义2个额定电压为例进行说明。为了体现其应用,将BOOST电路1也进行了绘制,本实施例的开关控制电路包括:输入电压检测电路2、输入电压比较与控制电路3,以及输出电压检测电路4。
输入电压检测电路,用于检测BOOST电路的输入电压,并输出输入电压信号至输入电压比较与控制电路;
输入电压比较与控制电路,用于将输入电压信号与参考电压信号进行比较,当比较结果高于第一预设值时,控制BOOST电路工作并将输入电压升压至第一额定电压;当比较结果高于第二预设值时,控制BOOST电路工作并将输入电压升压至第二额定电压;
输出电压检测电路,用于检测BOOST电路的输出电压,并输出输出电压信号至BOOST电路PWM控制器的反馈引脚,PWM控制器根据输出电压信号控制BOOST电路是否工作。
输入电压比较与控制电路还有第三预设值,当输入电压信号与参考电压信号的比较结果高于第三预设值时,控制BOOST电路不工作,输入电压信号经BOOST电路后输出;其中第一额定电压、第二额定电压依次增加。
其中,BOOST电路1与背景技术的图1相同,由功率电感L1、二极管D1、N沟道MOS管Q1、滤波电容C1、PWM控制器和驱动电阻R4构成;输入电压Vin+经电感L1后与二极管D1的阳极相连,二极管D1的阴极与电容C1的正极相连,电容C1的阴极与MOS管Q1的源极相连后连接至公共地信号;PWM控制器(为常见的控制IC如UC3842,此处仅画出简图说明原理即可)内部的误差运放反向输入端FB引脚连接至输出电压检测电路,特别的,误差运放同向输入端为内部参考电平;
PWM控制器的驱动输出引脚drv经电阻R4与MOS管Q1的栅极相连,MOS管Q1的漏极连接至电感L1和二极管D1的公共节点;
特别的,输入电压Vin-与BOOST输出Vo-、公共地信号为等电位点。
其中,输入电压检测电路2由电阻R1、R2、R3组成,其中电阻R1的一端与输入电压Vin+相连,另一端经电阻R2与电阻R3串联,电阻R3的另一端连接输入电压Vin-。
其中,输入电压比较与控制电路3由比较器U1A、参考电压信号Vref,电阻R5、NPN型三极管Q3组成。其中,参考电压信号Vref连接至比较器U1A的反向输入端,比较器U1A的同向输入端与电阻R1和电阻R2的公共节点相连,比较器U1A的输出引 脚经电阻R5、三极管Q3的集电极和三极管Q3的发射极后连接至输出电压Vo-,三极管Q3的基极连接至电阻R1和电阻R2的公共节点。
其中,输出电压检测电路4由电阻R6、R7、R8及N沟道MOS管Q2组成,BOOST电路1的输出电压Vo+经电阻R7后与电阻R8的一端相连,电阻R8的另一端连接至BOOST电路1的输出电压Vo-;BOOST电路1的PWM控制器的FB引脚与电阻R6的一端相连后还连接至电阻R7和电阻R8的公共节点,电阻R6的另一端与MOS管Q2的漏极相连,MOS管Q2的源级连接至输出电压Vo-。
本实施例的控制控制方法如下:
根据客户需求的输入规格,对BOOST电路1的输入电压范围选取由小至大的A、B、C、D四个电压值,这四个电压值将输入电压范围分割为三个工作区间,即A~B、B~C和C~D;
进一步的,针对输入电压范围给BOOST电路1设定两个目标升压值,分别定义为第一额定电压和第二额定电压,特别的,第一额定电压值等于C的电压值,第二额定电压值位于C、D之间;
当输入电压位于A~B区间时,BOOST电路1工作,将输入电压升压至第一额定电压;当输入电压位于B~C区间时,BOOST电路1工作,将输入电压升压至第二额定电压;当输入电压位于C~D区间时,BOOST电路1不工作,MOS管Q1处于断开状态,输入电压经BOOST电路1的电感L1和输出电容C1组成的滤波电路滤波后输出。
以下结合上述具体电路及控制方法进一步阐述其具体工作过程:
当输入电压位于A~B区间时,电阻R3两端的采样电压低于三极管Q3的基极开启电压,三极管Q3的发射极反偏截止,三极管Q3的集电极和发射极之间断开;此时,BOOST电路1工作于升压状态,其升压后的输出电压Vo+由输出采样电路4决定,具体为:
比较器U1A将采样的输入电压信号与参考电压信号Vref相比较,当采样的输入电压信号低于参考电压信号Vref时,则比较器U1A输出低电平信号,MOS管Q2的栅极为低电平信号,MOS管Q2关断,电阻R6与MOS管Q2的漏源极组成的支路断开,BOOST电路1的输出电压Vo+经电阻R7和电阻R8串联分压后将输出采样信号传输至PWM控制器的FB脚,与PWM控制器内部的误差运放反向输入端参考电平相比较,进而调整PWM引脚占空比大小,进一步间接控制BOOST电路1的输出电压幅值;
记PWM控制器内部的误差运放反向输入端内部参考电平为Vref1,则BOOST电路1的输出电压Vboost1可通过如下公式计算;
Figure PCTCN2018116949-appb-000001
特别的,C值代表的电压值与Vboost1代表的电压值相等。
当输入电压位于B~C区间时,电阻R3两端的采样电压低于三极管Q3的基极开启电压,三极管Q3的发射结反偏截止,三极管Q3的集电极和发射极之间断开;此时,BOOST电路1工作于升压状态,其升压后的输出电压Vo+由输出采样电路4决定,具体为:
比较器U1A将采样的输入电压信号与参考电压信号Vref相比较,当采样电压信号高于参考电压信号Vref,则比较器U1A输出高电平信号,MOS管Q2的栅极为高电平信号,MOS管Q2饱和导通,电阻R6与MOS管Q2的漏源极组成的支路与电阻R8相并联;
需要说明的是,MOS管Q2饱和导通,MOS管Q2两端的导通电压可忽略不计,电阻R6与MOS管Q2漏源极组成的支路可等效为R6与R8相并联;
BOOST电路1的输出电压Vo+经电阻R7、电阻R6和电阻R8串并联分压后与PWM控制器内部的误差运放反向输入端参考电平相比较,则BOOST电路1的输出电压Vboost2可通过如下公式计算;
Figure PCTCN2018116949-appb-000002
特别的,Vboost2代表的电压值位于C值与D值代表的电压值之间。
当输入电压位于C~D区间时,电阻R3两端的采样电压高于三极管Q3的基极开启电压,三极管Q3的发射结和集电结均正偏导通,三极管Q3的集电极和发射极之间的导通电压忽略不计。比较器U1A输出高电平信号经电阻R5等效输出到公共地,MOS管Q2的栅极为低电平信号,MOS管Q2关断,电阻R6与MOS管Q2的漏源极组成的支路断开,BOOST电路1的输出电压Vo+经电阻R7和电阻R8串联分压后的输出采样信号始终高于PWM控制器内部的误差运放反向输入端参考电平,PWM引脚输出占空比为0,MOS管Q1保持关断状态;此时,BOOST电路1不工作,输入电压Vin+经电感L1、电容组成的滤波电路滤波后输出为Vo+,此时Vin+与Vo+近似相等。
第二实施例
图3示出了本发明第二实施例原理框图,与图2所示的第一实施例相比,差别仅在于输入电压比较与控制电路2,将第一实施例中的三极管Q3由参考电压信号Vref2、比较器U2A和二极管D2代替即为第二实施例,参考电压信号Vref2、比较器U2A和二极管D2组成的电路功能与三极管Q3在电路中的功效一致。
同样将将输入电压范围分割为三个工作区间:A~B、B~C和C~D。
当输入电压位于A~B区间时,比较器U1A输出低电平信号,MOS管Q2的工作状态与实施例一相同;电阻R3两端的采样电压低于参考电压信号Vref2,比较器U2A输出高电平信号,二极管D2反偏截止。BOOST电路1工作于升压状态,工作状态与实施例一对应输入电压区间相同。
当输入电压位于B~C区间时,U1A输出高电平信号,MOS管Q2的工作状态与实施例一相同;电阻R3两端的采样电压低于参考电压信号Vref2,比较器U2A输出高电平信号,二极管D2同样反偏截止。BOOST电路1工作于升压状态,工作状态与实施例一对应输入电压区间相同。
当输入电压位于C~D区间时,比较器U1A输出高电平信号,电阻R3两端的采样电压高于参考电压信号Vref2,比较器U2A输出低电平信号,二极管D2正偏导通;比较器U1A输出高电平信号经电阻R5、二极管D2后下拉到地,MOS管Q2栅源级电压为低电平,此时,BOOST电路1不工作,工作状态与实施例一对应输入电压区间相同。
第三实施例
与第一实施例和第二实施例不同的是,控制方法上做了调整,将BOOST电路的输入电压范围分割为多个工作区间,A~B作为第一区间、B~C作为第二区间和C~D作为第三区间,还有第N区间,N大于等于3。
其工作原理与第一实施例和第二实施例相同,当输入电压位于第一区间时,BOOST电路工作,将输入电压升压至第一额定电压;当输入电压位于第二区间时,BOOST电路工作,将输入电压升压至第二额定电压;当输入电压位于N区间时,BOOST电路不工作。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围,这里不再用实施例赘述,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种开关控制电路,适用于包括有BOOST主功率电路及PWM控制器的BOOST电路,其特征在于:包括:输入电压检测电路、输入电压比较与控制电路,以及输出电压检测电路;
    输入电压检测电路,用于检测BOOST电路的输入电压,并输出输入电压信号至输入电压比较与控制电路;
    输入电压比较与控制电路,用于将输入电压信号与参考电压信号进行比较;当比较结果高于第一预设值时,控制BOOST电路工作并将输入电压升压至第一额定电压;当比较结果高于第二预设值时,控制BOOST电路工作并将输入电压升压至第二额定电压;
    输出电压检测电路,用于检测BOOST电路的输出电压,并输出输出电压信号至BOOST电路PWM控制器的反馈引脚,PWM控制器根据输出电压信号控制BOOST电路是否工作。
  2. 根据权利要求1所述的开关控制电路,其特征在于:所述的输入电压比较与控制电路还有第N预设值,N为大于2的整数;当输入电压信号与参考电压信号的比较结果高于第N-1预设值时,控制BOOST电路工作并将输入电压升压至第N-1额定电压;当输入电压信号与参考电压信号的比较结果高于第N预设值时,控制BOOST电路不工作,输入电压信号经BOOST电路后输出。
  3. 根据权利要求2所述的开关控制电路,其特征在于:所述的第一额定电压、所述的第二额定电压依次增加。
  4. 根据权利要求1所述的开关控制电路,其特征在于:输入电压检测电路由电阻R1、电阻R2、和电阻R3串联组成,其中电阻R1串联后的一端与输入电压Vin+相连,另一端经电阻R2与电阻R3串联,电阻R3串联后的另一端连接输入电压Vin-。
  5. 根据权利要求4所述的开关控制电路,其特征在于:输入电压比较与控制电路由比较器U1A、参考电压信号Vref、电阻R5和NPN型三极管Q3组成;比较器U1A的同向输入端连接电阻R1与电阻R2的串联节点,比较器U1A的反向输入端连接参考电压信号Vref,比较器U1A的输出端经电阻R5后作为输出端与输出电压检测电路连接,电阻R5还依次经三极管Q3的集电极、三极管Q3的发射极后与公共地信号连接,三极管Q3的基极连接电阻R2与电阻R3的串联节点。
  6. 根据权利要求4所述的开关控制电路,其特征在于:输入电压比较与控制电路由比较器U1A、参考电压信号Vref、比较器U2A、参考电压信号Vref2、电阻R5和二极管D2组成;比较器U1A的同向输入端连接电阻R1与电阻R2的串联节点,比较器U1A的反向输入端连接参考电压信号Vref,比较器U1A的输出端经电阻R5后作为输出端与输出电压检测电路连接,电阻R5还依次经二极管D2的阳极、二极管D2的阴极后与比较器U2A的输出端连接,比较器U2A的反向输入端连接电阻R2与电阻R3的串联节点,比较器U2A的同向输入端连接参考电压信号Vref2。
  7. 根据权利要求1所述的开关控制电路,其特征在于:输出电压检测电路由电阻R6、电阻R7、电阻R8及N沟道MOS管Q2组成;BOOST电路输出电压Vo+经电阻R7后与电阻R8的一端相连,电阻R8的另一端连接至BOOST电路输出Vo-;PWM控制器的FB引脚与电阻R6的一端相连后进一步的连接至R7、R8的公共节点,电阻R6的另一端与N沟道MOS管Q2的漏极相连,N沟道MOS管Q2的源级连接至BOOST电路输出Vo-;、N沟道MOS管Q2的源极后用于与公共地信号连接,N沟道MOS管Q2的栅极连接输入电压比较与控制电路的输出端。
  8. 一种开关控制方法,适用于包括有BOOST主功率电路及PWM控制器的BOOST电路,包括如下步骤:
    (1)输入电压检测电路检测BOOST电路的输入电压,并输出输入电压信号至输入电压比较与控制电路;
    (2)输入电压比较与控制电路将输入电压信号与参考电压信号进行比较,并根据比较结果控制输出电压检测电路是否工作;
    (3)输出电压检测电路执行输入电压比较与控制电路的指示,当输入电压比较与控制电路指示其工作时,输出电压检测电路检测BOOST电路的输出电压,并输出输出电压信号至BOOST电路PWM控制器的反馈引脚,PWM控制器根据输出电压信号控制BOOST电路是否工作。
  9. 根据权利要求8所述的开关控制方法,其特征在于:将BOOST电路的输入电压由小至大划分为N个区间,N为大于2的整数;针对N个区间给BOOST电路设定N-1个目标升压值,分别定义为第一额定电压、第二额定电压、第N-1额定电压;当输入电压位于第一区间时,BOOST电路工作,将输入电压升压至第一额定电压;当输入电压位于第二区间时,BOOST电路工作,将输入电压升压至第二额定电压;当输入电压位于N区间时,BOOST电路不工作。
  10. 根据权利要求9所述的开关控制方法,其特征在于:第一额定电压值等于第二区间的最大电压值,第二额定电压值位于第三区间之间,第N-1额定电压值位于第N区间之内。
PCT/CN2018/116949 2017-12-07 2018-11-22 一种开关控制电路及其控制方法 WO2019109810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711283721.8 2017-12-07
CN201711283721.8A CN107968565A (zh) 2017-12-07 2017-12-07 一种开关控制电路及其控制方法

Publications (1)

Publication Number Publication Date
WO2019109810A1 true WO2019109810A1 (zh) 2019-06-13

Family

ID=61998893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116949 WO2019109810A1 (zh) 2017-12-07 2018-11-22 一种开关控制电路及其控制方法

Country Status (2)

Country Link
CN (1) CN107968565A (zh)
WO (1) WO2019109810A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968565A (zh) * 2017-12-07 2018-04-27 广州金升阳科技有限公司 一种开关控制电路及其控制方法
HUP1900275A1 (hu) * 2019-08-05 2021-03-01 Juellich Tech Innovacios Kft Készülék napelem panel inverterhez történõ csatlakoztatására
CN110525244B (zh) * 2019-09-09 2021-03-02 中兴新能源汽车有限责任公司 防振荡电压调节电路和无线充电系统
CN111432523B (zh) * 2020-03-19 2021-09-28 深圳市崧盛电子股份有限公司 输入电压随输出电压变化的buck恒流控制电路及电源
CN112927662B (zh) * 2021-03-09 2022-08-05 重庆惠科金渝光电科技有限公司 一种显示面板的驱动方法和驱动电路
CN113965076A (zh) * 2021-10-28 2022-01-21 西安微电子技术研究所 一种低压自适应切换dc/dc多路变换器及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518201A (zh) * 2003-01-22 2004-08-04 �ձ�������ʽ���� 用于给放电灯供电的电源设备
JP2016152686A (ja) * 2015-02-17 2016-08-22 三菱電機株式会社 点灯装置
CN107046365A (zh) * 2016-02-05 2017-08-15 光宝科技股份有限公司 电源供应装置
CN107968565A (zh) * 2017-12-07 2018-04-27 广州金升阳科技有限公司 一种开关控制电路及其控制方法
CN207559856U (zh) * 2017-12-07 2018-06-29 广州金升阳科技有限公司 一种开关控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518201A (zh) * 2003-01-22 2004-08-04 �ձ�������ʽ���� 用于给放电灯供电的电源设备
JP2016152686A (ja) * 2015-02-17 2016-08-22 三菱電機株式会社 点灯装置
CN107046365A (zh) * 2016-02-05 2017-08-15 光宝科技股份有限公司 电源供应装置
CN107968565A (zh) * 2017-12-07 2018-04-27 广州金升阳科技有限公司 一种开关控制电路及其控制方法
CN207559856U (zh) * 2017-12-07 2018-06-29 广州金升阳科技有限公司 一种开关控制电路

Also Published As

Publication number Publication date
CN107968565A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2019109810A1 (zh) 一种开关控制电路及其控制方法
CN202268807U (zh) 用于控制初级侧调节器中的开关的集成电路、初级侧调节的集成控制电路及开关电源
US9231472B2 (en) System and method for a switched-mode power supply
CN103648202B (zh) 有源功率因数校正控制电路、芯片及led驱动电路
US8878499B2 (en) Power factor correction boost converter and frequency switching modulation method thereof
CN103716965B (zh) Led驱动装置及其控制电路和输出电流检测电路
WO2019029250A1 (zh) 一种电源系统
CN104682745A (zh) 一种隔离式电压变换电路、控制电路及其控制方法
CN102946196B (zh) 高功率因数恒流驱动电路及恒流装置
CN104184348A (zh) 对不同负载均能维持高转换效率的电源供应系统
CN106961768B (zh) 一种主动式填谷电路模式的led线性恒流驱动电路
CN104702095A (zh) 开关电源控制器及包含该开关电源控制器的开关电源
CN102480221A (zh) 一种PFC控制器在Buck电路中的应用方法
CN103052240A (zh) 高功率因数发光二极管驱动电路结构
EP3503371A1 (en) Voltage regulator and method for operating a voltage regulator
CN204442169U (zh) 开关电源控制器及包含该开关电源控制器的开关电源
CN109742964A (zh) 具有输入功率限制的ac/dc变换器的控制电路和方法
CN109088536B (zh) 改善谐波的有源功率因数校正电路、方法及驱动系统
WO2020098463A1 (zh) 一种升降压电路
CN103220859B (zh) 恒流控制电路及使用该电路的装置
CN107370352B (zh) 具有功率因子校正功能的电源供应器及其控制电路与方法
CN103516218B (zh) 电源供应装置
CN108762158A (zh) 基于msp430单片机设计的高效数控直流电源及其测试方法
CN112039316A (zh) 一种原边反馈式开关电源电路及控制方法和开关电源
CN108494255B (zh) 一种程控llc串联谐振变换器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885018

Country of ref document: EP

Kind code of ref document: A1