WO2019109773A1 - 调度方法、发送信息的方法、装置及存储介质 - Google Patents

调度方法、发送信息的方法、装置及存储介质 Download PDF

Info

Publication number
WO2019109773A1
WO2019109773A1 PCT/CN2018/114440 CN2018114440W WO2019109773A1 WO 2019109773 A1 WO2019109773 A1 WO 2019109773A1 CN 2018114440 W CN2018114440 W CN 2018114440W WO 2019109773 A1 WO2019109773 A1 WO 2019109773A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
transmission
configuration information
base station
Prior art date
Application number
PCT/CN2018/114440
Other languages
English (en)
French (fr)
Inventor
李楠
李靓
侯蓉晖
韩志强
位宁
卢有雄
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2020528086A priority Critical patent/JP7025063B2/ja
Priority to US16/768,975 priority patent/US11363604B2/en
Priority to EP18885119.0A priority patent/EP3723414A4/en
Publication of WO2019109773A1 publication Critical patent/WO2019109773A1/zh
Priority to US17/750,494 priority patent/US20220279503A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a scheduling method, a method, an apparatus, and a storage medium for transmitting information.
  • the Semi-Persistence Schedule (SPS) of the Long Term Evolution (LTE) means that the base station indicates the user through the Physical Downlink Control Channel (PDCCH) during initial scheduling.
  • the current scheduling information where the user identification is semi-persistent scheduling, saves the current scheduling information, and performs transmission or reception of the service data at the same resource location every fixed period. Therefore, the semi-persistent scheduling transmission can fully utilize the characteristics of the periodicity of the data packet, and one-time authorization and periodic use can effectively save the PDCCH resources used by the LTE system for scheduling indication.
  • the traditional semi-persistent scheduling mode is mainly for services with periodic characteristics, such as Voice over Internet Protocol (VoIP).
  • VoIP Voice over Internet Protocol
  • HARQ Hybrid Automatic Repeat Request
  • the terminal side (which may be a vehicle, a ship, an airplane, an electric vehicle, a bicycle, or a person holding a terminal) needs to report real-time status information to the network side (such as a base station, a server, etc.), mainly including its own location, Speed, acceleration, etc., the size of such data packets is relatively fixed.
  • the network side such as a base station, a server, etc.
  • Speed, acceleration, etc. the size of such data packets is relatively fixed.
  • the parameter configuration in the scheduling process of the related technology is not flexible, and the terminal state in the high-speed motion state cannot be timely updated.
  • the present invention provides a scheduling method, a method, an apparatus, and a storage medium for transmitting information, which are used to solve the problem that the parameter configuration of the scheduling method of the related art is inflexible, resulting in a slow update of the terminal status.
  • the present invention provides a scheduling method, including: determining configuration information according to a driving trajectory of a terminal in a predetermined time period; and transmitting the configuration information to a base station to which the terminal currently belongs;
  • the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • the present invention further provides a scheduling method, including: receiving configuration information sent by a server, where the configuration information includes at least one of: a transmission resource, a transmission period, and an active retransmission location; Send to the terminal.
  • the present invention provides a method for transmitting information, including: receiving configuration information sent by a base station, where the configuration information includes at least one of: a transmission resource, a transmission period, and an active retransmission location; The configuration information is sent to the driving status information.
  • the present invention further provides a scheduling apparatus, including: a configuration module, configured to determine configuration information according to a driving trajectory of a terminal in a predetermined time period; and a sending module, configured to send the configuration information to a current location of the terminal a base station; wherein the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • the present invention further provides a scheduling apparatus, including: a first information receiving module, configured to receive configuration information sent by a server, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active weight a first information sending module configured to send the configuration information to the terminal.
  • a scheduling apparatus including: a first information receiving module, configured to receive configuration information sent by a server, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active weight a first information sending module configured to send the configuration information to the terminal.
  • the present invention provides an apparatus for transmitting information, including: a second information receiving module, configured to receive configuration information sent by a base station, where the configuration information includes at least one of: a transmission resource, a transmission period, Actively retransmitting the location; the second information sending module is configured to send the driving state information according to the configuration information.
  • the present invention also provides a storage medium storing a computer program, the computer program being executed by a processor to implement the scheduling method described above.
  • the present invention also provides a storage medium storing a computer program that implements the above-described method of transmitting information when executed by a processor.
  • the invention combines the prediction result of the driving trajectory in the predetermined time period of the terminal, and configures the scheduling information parameter of the terminal in accordance with the driving state of the terminal, so that the state of the acquiring terminal is more timely, and the parameter configuration of the scheduling method in the related technology is not flexible, resulting in The problem of slow terminal status updates.
  • FIG. 1 is a flowchart of a scheduling method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a coverage area and a handover execution area of a base station according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of adjustment of a transmission period in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of road area segmentation and location index identification in an embodiment of the present invention.
  • FIG. 6 is a flowchart of a scheduling method in an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for transmitting information in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of active retransmission of a terminal in an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optional apparatus in a scheduling apparatus according to an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of a scheduling apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an apparatus for transmitting information according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the structure of a vehicle networking system in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a server platform in an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of hardware components of an electronic device according to an embodiment of the present invention.
  • the present invention provides a scheduling method, a method, a device and a storage medium for transmitting information, and further, the present invention is further described in conjunction with the accompanying drawings and embodiments. Detailed description. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • An embodiment of the present invention provides a scheduling method, which is shown in FIG. 1 and specifically includes steps S101 and S102:
  • S101 Determine configuration information according to a driving trajectory of the terminal in a predetermined time period
  • S102 Send the configuration information to the base station to which the terminal belongs, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • the terminal may be an independent device installed on a vehicle such as a vehicle, a ship, an airplane, an electric vehicle, or a bicycle, or a person holding the terminal to move or drive; or integrated in other devices. Installed on the above vehicles.
  • the terminal can plan the driving route according to the driving demand, or obtain the driving route from other devices, for example, the route shared by other devices.
  • the method provided in this embodiment is applied to a network side device, for example, a device for managing and controlling a base station, such as a server or a network controller, where a plurality of base stations are connected under the network side device, or an entity that implements the function of the network side device is located in a certain Inside the base station.
  • the following takes the server as an example.
  • the server obtains the driving state information of the terminal through the base station, and sends the configuration information determined by the server scheduling to the terminal through the base station.
  • the server Before determining the configuration information, the server first needs to acquire the driving trajectory of the terminal within a predetermined time period, and the driving trajectory may be predicted by the server itself according to the driving state information of the terminal, or may receive other intermediate devices (such as a roadside unit (RSU, The road trajectory prediction result obtained by the road side unit) is obtained, wherein the driving state information may include: a current traveling speed, a current position coordinate, and route planning information, and may further include information such as acceleration, travel time, and the like of the terminal.
  • RSU roadside unit
  • the predetermined time period may be configured according to actual conditions, for example, the total time required by the terminal from the starting point to the ending point may be configured to save the signaling, and further Saving air interface resources; or performing a trajectory prediction at a fixed interval (for example, every 30 minutes) can make the prediction of the trajectory more accurate, thereby making the subsequent transmission parameter configuration more flexible.
  • the driving trajectory prediction result may include: geographic location coordinates of the terminal at a specific time, and base station identification information of the terminal at a specific time.
  • the configuration information may include a transmission resource, a transmission period, and an active retransmission position.
  • the server determines the transmission resource
  • the cell covered by each base station uses the same frequency domain resource, first determines the time required for the terminal to move to the handover execution area according to the traveling state information of the terminal, and then according to the network of the target base station on the traveling track.
  • the status information transmits the idle time domain resource of the target base station and the idle frequency domain resource allocation as configuration information to the base station.
  • the time-frequency domain resource is generally expressed as a specific occupied subframe number, a occupied frequency domain resource location, or a resource block, sub-channel information, and the like.
  • the target base station is a base station adjacent to the base station to which the terminal belongs, and the network status information of the target base station may include a radio resource configuration situation of the target base station, a service user identifier, and a current network load.
  • the terminal periodically uploads the driving state information, and according to the current location information contained therein, when it is determined that the terminal is about to move to the handover execution area of the current cell, the available resources of the current target base station are reconfirmed.
  • the specific process may be: sending a current resource configuration of the terminal to the target base station, and determining, by the target base station, whether the current resource of the terminal is available in the cell covered by the target base station, and if available, the target base station confirms that the resource is available and informs the server; If not available, the target base station reselects the resource in the current idle resource and informs the server of the resource configuration result.
  • the terminal By determining the transmission resource for the terminal before the handover, the terminal avoids the resource application again after the handover, reduces the transmission interruption probability, and avoids the terminal to perform multiple resource reselection in the frequent handover process, thereby reducing the transmission resource reconfiguration frequency. It helps to optimize the configuration of network resources and alleviate the problems of signaling overhead and resource waste caused by frequent reconfiguration.
  • the handover execution area is generally located at the cell edge, and the method for determining whether the terminal reaches the handover execution area may be: determining whether the terminal reaches the handover execution area according to the current location coordinate information of the terminal and the pre-stored cell coordinate information; Or the terminal continuously measures the downlink signal receiving strength of the current base station, and when the measured value is lower than the preset threshold, the terminal enters the handover execution area.
  • the range distribution information represented by the base station 1 and the base station 2 in a one-dimensional coordinate interval is pre-stored in the server, respectively (0, 500 m) and (500, 1000 m), and the handover execution region range is determined to be (450, 550 m). .
  • the server first obtains the predicted result of the traveling track indicated by the vehicle A in the form of coordinates, and determines that the current resource configuration information of the base stations 1 and 2 is acquired after the traveling track of the vehicle A needs to pass through the cells covered by the base stations 1 and 2;
  • the resource selection should satisfy the resource selected in the p+s/v subframe at the base station. 2 (ie, the target base station) is not occupied, where s is the distance from the current position of the vehicle A to the boundary of the switching area, and v is the current speed of the vehicle A, and the ratio of the two is in milliseconds;
  • the server reconfirms the current available resources of the base station 2, and determines whether the active resource of the vehicle A at the base station 1 is still available at the base station 2;
  • the base station 2 confirms that the resource is available; if not available, the base station 2 re-randomly selects the resource for the current idle resource, and informs the server of the resource configuration result, and the server further informs the vehicle A via the base station 1 In order to ensure that the vehicle A can switch to the available resources of the base station 2 in time when driving out of the handover execution area.
  • the server determines the transmission period according to the driving state information of the terminal and the first preset mapping relationship.
  • the first preset mapping relationship includes a correspondence between the traveling speed and the transmission period in the driving state information, and may be a first mapping table that is pre-established according to historical data or an empirical value, or a functional relationship that conforms to the mapping relationship.
  • the driving speed in the driving state information may be the current driving speed of the terminal, or the running speed of the driving speed received several times is averaged, and the average driving speed is used to determine the transmission period.
  • the first mapping table is used as the basis for determining the transmission period.
  • the first mapping table is as shown in Table 1. It should be understood that Table 1 shows only one preferred correspondence in the present embodiment.
  • the specific value in the modification can be modified according to the type of service of the terminal:
  • the terminal uses the transmission resource as the interval and transmits the transmission resource.
  • the network side (server) updates the frequency of the status information required by it.
  • the terminal travels fast, the status of the terminal position changes rapidly, and the corresponding status information update frequency should be set accordingly. Therefore, the terminal needs to generate data and report transmission with a smaller time granularity, thereby ensuring that the network side performs relevant correlation.
  • the forecasting and decision-making process has higher timeliness and reliability; when the terminal is in a state of slow driving or temporary stopping, the state of its own position, speed, etc. is updated slowly, so there is no need for high frequency repeated reporting.
  • the server re-determines the transmission period according to the average speed of the recent (eg, five times) traveling speed reported by the terminal, and determines The newly determined transmission period is the same as the transmission period currently used by the terminal. If they are the same, the transmission period does not need to be modified. If not, the new transmission period is used to replace the original transmission period in the configuration period, so that the terminal according to the new transmission period.
  • the driving status information is transmitted to meet the status information update frequency required by the terminal.
  • FIG. 3 is a schematic diagram of a process of adjusting the value of a transmission period, in which the transmission period of the terminal is changed from 100 ms to 50 ms.
  • the driving speed of the terminal may change.
  • the initial configured transmission period may not guarantee the timeliness of the current driving speed, or the current speed is slow, and it is not necessary to travel too fast.
  • the status information is reported, so the value of the transmission period can be reconfigured, which is the transmission reconfiguration period.
  • the server presets its corresponding reconfiguration interval for different transmission period values, and the reconfiguration interval value range is set according to the rule that “the shorter the transmission period is, the more the transmission times are”, the transmission reconfiguration The period is an integer in the preset reconfiguration interval corresponding to the transmission period.
  • the transmission period configured for the terminal a number is randomly selected in the corresponding preset reconfiguration interval as the transmission reconfiguration period. Since the terminal reporting driving status information is a long-term persistent service (different from VoIP), unless the terminal is disconnected from the network, the terminal user does not actively stop the uplink transmission, and the reconfiguration period is too short, which leads to frequent reconfiguration and increases the control signal. The cost is increased, but considering that the transmission reconfiguration period is too long, the flexibility of parameter configuration is reduced, and the transmission performance is improved. Therefore, the transmission reconfiguration period interval should be balanced against the above two factors. It should be understood that the configured transmission reconfiguration period can also be sent to the terminal together with the configuration information.
  • an optimization scheme is provided as follows: by setting an active retransmission location, using the predicted driving Trajectories and historical data circumvent transmission errors in advance.
  • the road position of the preset average channel gain threshold is the active retransmission position, and when the configuration information is sent, the determined M active retransmission positions are added to the configuration information and sent to the terminal, where N is greater than or equal to 1.
  • N is greater than or equal to 1.
  • M is an integer greater than or equal to 0, and M is less than or equal to N.
  • the second mapping table may be preferably used as the second preset mapping relationship.
  • the mapping table as the second mapping table, mainly includes the correspondence between the road location and the average channel gain.
  • the base station performs uplink channel detection on all mobile terminals that perform uplink communication, acquires channel gain values between each mobile terminal and the base station, and the base station repeatedly performs Z times at a fixed time interval (eg, 1 min) (eg, 20 times) the above-mentioned collection operation of the uplink channel information of the terminal in each rectangular area, and uploading the road position index together with the corresponding set of channel gain values to the network side;
  • a fixed time interval eg, 1 min
  • the base station uploading the road position index together with the corresponding set of channel gain values to the network side;
  • the network side collects the detected data samples and performs statistical analysis, calculates an average channel gain corresponding to each road location index, and constructs a second preset mapping table, as shown in Table 2;
  • the average channel gain takes the mean value as a smoothest estimate of the average channel gain of the rectangular region, and is filled in the second preset mapping table;
  • Steps S2 to S4 are repeatedly performed in a fixed interval period to update the second preset mapping table to ensure timeliness of the table content.
  • the trajectory of the travel may be changed due to road congestion or temporary events.
  • the server reacquires the travel trajectory of the terminal at this time, so it is necessary to re-determine the active retransmission position according to the new travel trajectory, and the newly determined new trajectory will be newly determined.
  • An active retransmission location is sent to the terminal. Taking the driving of the vehicle terminal as an example, a specific example of determining and updating the active retransmission position is as follows:
  • the vehicle position is represented by a Global Positioning System (GPS) coordinate
  • the server collects location speed information and route planning information of the vehicle uploaded by the base station;
  • GPS Global Positioning System
  • n*t floor (preset predicted distance / current speed), where the preset predicted distance can be selected as 100m;
  • the query table 2 is used to determine the location point of the new active retransmission, and the result is sent to the base station to which the vehicle belongs.
  • the server may receive the transmission resource allocation request uploaded by the base station, where the transmission resource allocation request may include the driving state information of the terminal, and may also include the service data amount, time offset, service period, priority, and the like of the terminal. Information, the server determines configuration information for the terminal according to the transmission resource allocation request.
  • the terminal by combining the prediction result of the driving trajectory in the predetermined time period of the terminal, the terminal performs the scheduling information parameter configuration in accordance with the driving state of the terminal, so that the state of the acquiring terminal is more timely, and the parameter configuration of the scheduling method in the related technology is not flexible. A problem that causes the terminal status to be updated slowly.
  • a second embodiment of the present invention provides a scheduling method, and the flowchart thereof is as shown in FIG. 6, and mainly includes steps S601 and S602:
  • the configuration information sent by the server is received, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • the scheduling method provided in this embodiment is applied to a base station, and the base station provides a server for providing configuration information, and is connected to multiple terminals.
  • the base station receives the driving state information sent by the terminal, and sends the driving state information to the server.
  • the server After the server generates the configuration information, the server sends the configuration information to the base station, and the base station sends the configuration information to the corresponding terminal, where the terminal uploads the driving.
  • the status information may include current driving speed, current position coordinates, and route planning information, and may further include information such as acceleration and travel time of the terminal; the configuration information may include transmission resources, transmission periods, active retransmission positions, and the like.
  • the server updates the transmission period according to the current traveling speed of the terminal, and sends configuration information including the new transmission period to the base station, and the base station sends the configuration information after receiving the configuration information.
  • the terminal is caused to transmit driving state information according to the new transmission cycle.
  • the base station before receiving the configuration information sent by the server, may further receive a transmission resource allocation request that is sent by the terminal, and send the transmission resource allocation request to the server, where the transmission resource allocation request may include the terminal.
  • the driving status information may further include information such as the service data amount, the time offset, the service period, and the priority of the terminal, so that the server determines the configuration information for the terminal according to the transmission resource allocation request.
  • the configuration information sent by the server may include an active retransmission location, and the configuration information received by the terminal includes the active retransmission location.
  • the terminal When the terminal retransmits the location according to the active retransmission location, the terminal obtains a retransmission time slot that needs to be actively retransmitted, and sends the retransmission time slot to the base station, and the base station determines after receiving the retransmission time slot.
  • the base station performs a normal reception, and in the case of reaching the retransmission time slot, the continuous T time slots receive the traveling state information sent by the terminal, and for the continuous T
  • the time slot receiving terminal sends the driving state information to be combined and decoded, and then sends it to the server. If the combined decoding fails, the traveling state information received this time is directly discarded, and the retransmission is not performed.
  • T is an integer greater than or equal to 2.
  • the base station reserves the part of the resource for retransmission for the terminal; if the time-frequency resource of the T-1 time slot corresponding to the retransmission slot is occupied, the base station re-allocates the retransmission resource for the terminal, and Sending retransmission resource indication information to the terminal.
  • the driving speed of the terminal may change.
  • the initial configured transmission period may not guarantee the timeliness of the current driving speed, or the current speed is slow, and it is not necessary to travel too fast.
  • the status information is reported, so the value of the transmission period can be reconfigured, which is the transmission reconfiguration period (denoted as Q).
  • the configuration information sent by the server includes the transmission reconfiguration period
  • the base station counts the number of times the terminal sends the driving status information, that is, the number of transmissions, before the transmission number reaches the transmission reconfiguration period determined by the server (usually the Q-th)
  • the base station determines whether resource reconfiguration is required.
  • the server requests reconfiguration of the transmission resource, and the server delivers the new transmission resource.
  • the configuration information is sent to the terminal, and after the number of transmissions reaches Q, it is re-counted according to the transmission reconfiguration period in the configuration information; if the resource reconfiguration is not required, the original configuration of the notification terminal is included
  • the configuration information of the identifier is sent to the terminal, and after the number of transmissions reaches Q, it is re-counted according to the existing transmission reconfiguration period.
  • the identifier of the original configuration may be a one-bit information bit, which is used to indicate whether the configuration is changed.
  • the configuration information carries new configuration parameter information (such as a new transmission resource, etc.). , only indicates that the configuration has not changed, and no configuration parameter information is carried.
  • the method for determining whether the resource reconfiguration needs to be performed by the base station is mainly for determining the current frequency and the channel resource channel quality, for example, the signal strength of the received signal of the base station, the average signal to interference and noise ratio, and the like.
  • the average signal to interference and noise ratio of the received signal of the base station as an example, if the average signal to interference and noise ratio is greater than the preset average signal to interference and noise ratio, it indicates that the current frequency domain resource channel quality is good, and the original transmission parameter configuration can be maintained. If the average received signal to interference and noise ratio is less than the preset average signal to interference and noise ratio, it indicates that the current frequency domain resource channel quality has been difficult to meet the transmission requirements, and then the server is requested to reconfigure the transmission resource.
  • the configuration information sent by the base station further includes stopping the sending of the identifier, and after receiving the configuration information with the stop sending identifier, the terminal actively stops sending the driving state information to the base station. And release the transmission resources.
  • the scheduling method provided in this embodiment sends the configuration information sent by the server to the terminal in time, and timely informs the terminal according to the new transmission through configuration information when the parameters such as the transmission period, the transmission resource, and the active retransmission location change.
  • the parameter reports the driving status information, so that the scheduling is more in line with the moving state of the terminal, and the reported information is more real-time.
  • An embodiment of the present invention provides a method for transmitting information.
  • the flowchart of FIG. 7 mainly includes steps S701 and S702:
  • the configuration information sent by the base station is received, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • S702. Send driving state information according to the configuration information.
  • the terminal may be an independent device, and is installed on a vehicle such as a vehicle, a ship, an airplane, an electric vehicle, or a bicycle, or is held by a person. Move or drive; it can also be integrated into other vehicles to be installed on the above vehicles.
  • the terminal can plan the driving route according to the driving demand, or obtain the driving route from other devices, for example, the route shared by other devices.
  • the terminal Before the terminal is scheduled, the terminal may send a transmission resource allocation request to the base station, where the transmission resource allocation request may include driving state information, and may further include information such as service data volume, time offset, service period, and priority of the terminal.
  • the server can be configured to determine configuration information for the terminal according to the transmission resource allocation request.
  • the terminal may passively wait for the server to determine the configuration information, and then upload its own driving state information according to the configuration information.
  • the terminal may directly send the driving state information to the current base station, and the base station sends the driving state information to the server, and may also send the driving state information to the intermediate device, and after the intermediate device performs the driving trajectory prediction, directly The prediction result and the driving state information are transmitted to the base station, and the base station transmits the prediction result and the driving state information to the server. Further, the terminal may only send its own line planning information to the intermediate device, and the intermediate device acquires the current traveling speed and position coordinate information of the terminal through the sensor, the speedometer, the roadside unit, the GPS device, and the like.
  • the terminal After receiving the configuration information, the terminal sends the driving state information according to the configuration information, such as sending the driving state information on the corresponding time domain resource and the frequency domain resource according to the transmission resource in the configuration information; or according to the transmission cycle in the configuration information, Each driving period uploads its own driving status information; or when the configuration information includes the active retransmission position, when the active retransmission position is reached, an active retransmission is initiated.
  • the terminal includes the active retransmission position in the judgment configuration information, first calculate the time when the terminal travels from the current location to the active retransmission location, and then according to the moment, combined with the current driving speed and the transmission period, it is determined that execution is required.
  • the terminal improves the transmission quality of the information through the active retransmission mechanism, increases the reliability in the transmission process, and avoids the data collision problem that may be caused by the continuous retransmission of the uplink data in the related art.
  • the server re-predicts the driving trajectory according to the driving state information continuously uploaded by the terminal, and re-determines the active retransmission position according to the re-predicted driving trajectory, and notifies the terminal through the base station.
  • the terminal After receiving the new active retransmission location, the terminal re-determines the retransmission time slot, and sends the re-determined retransmission time slot to the base station, and initiates active retransmission when the re-determined retransmission time slot is reached.
  • the server After determining the transmission period, the server also determines the transmission reconfiguration period according to the transmission period, and sends the transmission reconfiguration period to the terminal through the base station.
  • the terminal When receiving the configuration information including the transmission reconfiguration period, the terminal counts the number of times the transmission status information is transmitted, and determines whether the configuration information sent by the base station is received before the number of transmissions reaches the transmission reconfiguration period.
  • the terminal stops transmitting the driving status information to the base station, and releases the transmission resource currently used by the terminal; when the configuration information is received and the number of transmissions reaches the transmission reconfiguration period In the case, the driving state information is transmitted to the base station according to the configuration information, and the number of transmissions is re-stated.
  • the terminal sends the driving state information to the base station according to the specific content in the configuration information.
  • the configuration information includes the new transmission resource
  • the terminal sends the driving state information to the base station according to the new transmission resource;
  • the terminal transmits the driving state information to the base station according to the original configuration information.
  • the terminal side performs statistics on the number of transmissions, so that the terminal can stop transmitting autonomously after the number of transmissions is reached. For example, when the vehicle cannot successfully receive the configuration information sent by the base station, the transmission can be terminated autonomously.
  • the statistics of the number of transmissions on the terminal side can enable the terminal user to obtain the transmission parameters of the next stage before the end of the current phase of the transmission, thereby preventing the user from actively requesting the reconfiguration after completing the current transmission, thereby ensuring continuous scheduling.
  • Sexuality enables seamless transmission of adjacent two-stage transmissions and enhances the reliability of scheduling.
  • the method for transmitting information provided by the embodiment enables the terminal to send the driving state information according to the configuration information sent by the server, so that the information sending process is more consistent with the mobile characteristics of the terminal, and the scheduling process is more complete and flexible.
  • An embodiment of the present invention provides a scheduling apparatus, which is shown in FIG. 9 and includes a configuration module 901 and a sending module 902.
  • the configuration module 901 is configured to determine a configuration according to a driving trajectory of the terminal within a predetermined time period.
  • the sending module 902 is configured to send the configuration information to the base station to which the terminal belongs, and the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • the terminal may be an independent device installed on a vehicle such as a vehicle, a ship, an airplane, an electric vehicle, or a bicycle, or a person holding the terminal to move or drive; or integrated in other devices. Installed on the above vehicles.
  • the terminal can plan the driving route according to the driving demand, or obtain the driving route from other devices, for example, the route shared by other devices.
  • the scheduling device provided in this embodiment is installed on a network side device, for example, a device for managing and controlling a base station, such as a server or a network controller, where a plurality of base stations are connected under the network side device, or an entity that implements the function of the network side device is located.
  • a base station such as a server or a network controller, where a plurality of base stations are connected under the network side device, or an entity that implements the function of the network side device is located.
  • the server obtains the driving state information of the terminal through the base station, and sends the configuration information determined by the server scheduling to the terminal through the base
  • the configuration module 901 Before determining the configuration information, the configuration module 901 first needs to acquire the driving trajectory of the terminal in the predetermined time period by using the acquiring module, and the driving trajectory may be predicted by the acquiring module according to the driving state information of the terminal, or may be sent by receiving other intermediate devices or the like.
  • the trajectory prediction result of the base station is obtained, wherein the driving state information may include: a current traveling speed, a current position coordinate, and route planning information, and may further include information such as acceleration, driving time, and the like of the terminal.
  • the acquisition module performs the prediction of the driving trajectory in the predetermined time period
  • the predetermined time period may be configured according to actual conditions, for example, may be configured as the total time required by the terminal from the starting point to the ending point to save the signaling.
  • the driving trajectory prediction result may include: geographic location coordinates of the terminal at a specific time, and base station identification information of the terminal at a specific time.
  • the configuration module 901 determines the configuration information according to the driving trajectory, where the configuration information may include a transmission resource, a transmission period, and an active retransmission position. Specifically, when determining the transmission resource, the configuration module 901 uses the same frequency domain resource for the cell covered by each base station, first determines the time required for the terminal to move to the handover execution area according to the traveling state information of the terminal, and then according to the target base station on the traveling track. The network status information transmits the idle time domain resource of the target base station and the idle frequency domain resource allocation as configuration information to the base station.
  • the time-frequency domain resource is generally expressed as a specific occupied subframe number, a occupied frequency domain resource location, or a resource block, sub-channel information, and the like.
  • the target base station is a base station adjacent to the base station to which the terminal belongs, and the network status information of the target base station may include a radio resource configuration situation of the target base station, a service user identifier, and a current network load.
  • the configuration module 901 determines that the terminal is about to move to the handover execution area of the current cell according to the current location information contained therein, and then confirms the current target base station again.
  • the specific process may be: sending the current resource configuration of the terminal to the target base station, and determining, by the target base station, whether the current resource of the terminal is available in the cell covered by the target base station, and if available, the target base station confirms that the resource is available and informs The configuration module 901; if not available, the target base station reselects the resource in the current idle resource, and notifies the configuration module 901 of the resource configuration result.
  • the terminal By determining the transmission resource for the terminal before the handover, the terminal avoids the resource application again after the handover, reduces the transmission interruption probability, and avoids the terminal to perform multiple resource reselection in the frequent handover process, thereby reducing the transmission resource reconfiguration frequency. It helps to optimize the configuration of network resources and alleviate the problems of signaling overhead and resource waste caused by frequent reconfiguration.
  • the handover execution area is generally located at a cell edge
  • the method for determining whether the terminal reaches the handover execution area may be: determining, according to the current location coordinate information of the terminal and the pre-stored cell coordinate information, whether the terminal reaches the handover execution area; Or the terminal continuously measures the downlink signal receiving strength of the current base station, and when the measured value is lower than the preset threshold, the terminal enters the handover execution area.
  • the resource allocation process when the vehicle terminal moves to the handover execution area is the same as the steps S11 to S14 in the first embodiment of the present invention, and details are not described herein again.
  • the configuration module 901 determines the transmission period according to the driving state information of the terminal and the first preset mapping relationship when determining the transmission period.
  • the first preset mapping relationship includes a correspondence between the traveling speed and the transmission period in the driving state information, and may be a first mapping table that is pre-established according to historical data or an empirical value, or a functional relationship that conforms to the mapping relationship. .
  • the driving speed in the driving state information may be the current driving speed of the terminal, or the running speed of the driving speed received several times is averaged, and the average driving speed is used to determine the transmission period.
  • the first mapping table is used as the basis for determining the transmission period.
  • the first mapping table is as shown in Table 1. It should be understood that Table 1 shows only one preferred correspondence in the present embodiment. The specific value in the modification can be modified according to the type of service of the terminal.
  • the terminal uses the transmission resource as the interval and transmits the transmission resource.
  • the network side updates the frequency of the required status information differently.
  • the terminal travels fast the status of the terminal position changes rapidly, and the corresponding status information update frequency should be set accordingly. Therefore, the terminal needs to generate data and report transmission with a smaller time granularity, thereby ensuring that the network side performs relevant correlation.
  • the forecasting and decision-making process has higher timeliness and reliability; when the terminal is in a state of slow driving or temporary stopping, the state of its own position, speed, etc. is updated slowly, so there is no need for high frequency repeated reporting.
  • the configuration module 901 re-determines the transmission period according to the average speed of the recent (eg, five times) traveling speed reported by the terminal. And determining whether the newly determined transmission period is the same as the transmission period currently used by the terminal. If the same, the transmission period is not required to be modified. If not, the new transmission period is used to replace the original transmission period in the configuration period, so that the terminal is based on the new one.
  • the transmission period transmits the driving status information to meet the status information update frequency required by the terminal.
  • the driving speed of the terminal may change.
  • the initial configured transmission period may not guarantee the timeliness of the current driving speed, or the current speed is slow, and it is not necessary to travel too fast.
  • the status information is reported, so the value of the transmission period can be reconfigured, which is the transmission reconfiguration period.
  • the configuration module 901 presets its corresponding reconfiguration interval for different transmission period values, and the setting of the reconfiguration interval value range is based on the rule that “the shorter the transmission period is, the more the transmission times are”
  • the reconfiguration period is an integer in the preset reconfiguration interval corresponding to the transmission period.
  • the transmission period configured for the terminal a number is randomly selected in the corresponding preset reconfiguration interval as the transmission reconfiguration period. Since the terminal reporting driving status information is a long-term persistent service (different from VoIP), unless the terminal is disconnected from the network, the terminal user does not actively stop the uplink transmission, and the reconfiguration period is too short, which leads to frequent reconfiguration and increases the control signal. The cost is increased, but considering that the transmission reconfiguration period is too long, the flexibility of parameter configuration is reduced, and the transmission performance is improved. Therefore, the transmission reconfiguration period interval should be balanced against the above two factors. It should be understood that the configured transmission reconfiguration period can also be sent to the terminal together with the configuration information.
  • an optimization scheme is provided as follows: by setting an active retransmission location, using the predicted driving Trajectories and historical data circumvent transmission errors in advance.
  • the configuration module 901 acquires N road positions through which the driving track passes according to the driving track, and obtains N average channel gains corresponding to the N road positions in the second preset mapping relationship, and determines an average.
  • the path position of the channel gain is less than the preset average channel gain threshold, and the path is the active retransmission position.
  • the sending module 902 sends the configuration information
  • the determined M active retransmission positions are added to the configuration information and sent to the terminal.
  • N is an integer greater than or equal to 1
  • M is an integer greater than or equal to 0
  • M is less than or equal to N.
  • the second mapping table may be preferably used as the second preset mapping relationship. Since the signal occlusion body position of the roadside building is relatively fixed, and the distance between the base station and the road is fixed, the sample may be observed based on a large number of channel qualities.
  • mapping table mainly includes the correspondence between the road location and the average channel gain. It should be understood that the steps of constructing and updating the second mapping table are the same as steps S21 to S25 of the first embodiment of the present invention, and details are not described herein again.
  • the configuration module 901 needs to re-determine the active retransmission position according to the new travel trajectory.
  • the newly determined plurality of active retransmission locations are transmitted to the terminal through the transmitting module 902.
  • the specific steps of determining and updating the active retransmission position during the running of the vehicle terminal are the same as the steps S31 to S33 in the first embodiment of the present invention, and details are not described herein again.
  • the scheduling apparatus further includes: receiving, by the base station, a transmission resource allocation request, where the transmission resource allocation request may include the driving status information of the terminal, and may further include the service data quantity, the time offset, and the service of the terminal.
  • the information such as the period and the priority, the configuration module 901 determines the configuration information for the terminal according to the transmission resource allocation request.
  • the terminal by combining the prediction result of the driving trajectory in the predetermined time period of the terminal, the terminal performs the scheduling information parameter configuration in accordance with the driving state of the terminal, so that the state of the acquiring terminal is more timely, and the parameter configuration of the scheduling method in the related technology is not flexible. A problem that causes the terminal status to be updated slowly.
  • An embodiment of the present invention provides another scheduling apparatus, which is installed on a base station, and is mainly used for performing transmission scheduling information and configuration information transmission scheduling.
  • the schematic diagram of the structure is as shown in FIG. 10, and mainly includes first information receiving.
  • Module 1002 is configured to send configuration information to the terminal.
  • the first information receiving module 1001 receives the driving state information sent by the terminal, and sends the driving state information to the server through the first information sending module 1002. After the server generates the configuration information, the first information receiving module 1001 sends the configuration information to the first information receiving module 1001 of the base station.
  • the first information sending module 1002 sends the configuration information to the corresponding terminal, where the driving state information uploaded by the terminal may include the current traveling speed, the current position coordinate, the line planning information, and the like, and may further include the acceleration of the terminal, Information such as travel time; the configuration information may include transmission resources, transmission periods, active retransmission locations, and the like.
  • the server updates the transmission period according to the current traveling speed of the terminal, and transmits configuration information including the new transmission period to the scheduling device, and the scheduling device receives the new information. After the configuration information of the transmission period, the configuration information is transmitted to the terminal through the first information transmitting module 1002, so that the terminal transmits the driving state information according to the new transmission period.
  • the first information receiving module 1001 may further receive a transmission resource allocation request that is sent by the terminal, and send the transmission resource allocation request to the server by using the first information sending module 1002, where
  • the transmission resource allocation request may include the driving state information of the terminal, and may further include information such as the service data amount, the time offset, the service period, and the priority of the terminal, so that the server determines the configuration information for the terminal according to the transmission resource allocation request.
  • the configuration information sent by the server may include an active retransmission location.
  • the terminal When the configuration information received by the terminal includes the active retransmission location, the terminal may be active. Retransmitting the location, in combination with the self-driving state, obtaining a retransmission slot that needs to be actively retransmitted, and transmitting the retransmission slot to the first information receiving module 1001, when the first information receiving module 1001 receives the retransmission After the slot, it is determined whether the retransmission slot is reached. If the retransmission slot is not reached, the first information receiving module 1001 performs a normal reception.
  • the first information receiving module 1001 When the retransmission slot is reached, the first information receiving module 1001 continues T.
  • the time slot receives the driving state information sent by the terminal, and combines and decodes the driving state information sent by the consecutive T time slot receiving terminals, and then sends the driving state information to the server through the first information sending module 1002. If the combined decoding fails, the device directly discards the present.
  • the driving status information received once is not retransmitted.
  • T is an integer greater than or equal to 2.
  • the first information receiving module 1001 After receiving the retransmission slot, the first information receiving module 1001 performs idle determination on the time-frequency resource of the own base station, if the retransmission time slot is corresponding.
  • the terminal reserves the part of the resources for retransmission; if the time-frequency resources of the T-1 time slots corresponding to the retransmission time slots are occupied, the terminal is re-allocated. The resource is transmitted, and the retransmission resource indication information is sent to the terminal.
  • the initial configured transmission period may not guarantee the timeliness of the current driving speed, or the current speed is slow, and it is not necessary to travel too fast.
  • the status information is reported, so the value of the transmission period can be reconfigured, which is the transmission reconfiguration period (denoted as Q).
  • the first statistic module counts the number of times the terminal sends the driving status information, that is, the number of transmissions, before the transmission times reach the transmission reconfiguration period determined by the server (usually After the Q-1th transmission, before the Qth transmission, the first statistic module determines whether resource reconfiguration is required, and if the resource reconfiguration is required, requests the server to reconfigure the transmission resource and passes the first information.
  • the sending module 1002 sends the configuration information that is sent by the server and includes the new transmission resource to the terminal, and after the number of transmissions reaches Q, re-counts according to the transmission reconfiguration period in the configuration information;
  • the configuration information including the identifier indicating that the original configuration of the terminal is unchanged is transmitted to the terminal, and after the number of transmissions reaches Q, it is re-counted according to the existing transmission reconfiguration period.
  • the identifier of the original configuration may be a one-bit information bit, which is used to indicate whether the configuration is changed.
  • the configuration information carries the new configuration parameter information. If the configuration is unchanged, only the configuration is not changed. , no longer carry configuration parameter information.
  • the method for determining whether the resource reconfiguration needs to be performed by the first statistic module is mainly for determining the current frequency and the channel resource channel quality, for example, the signal strength of the received signal of the base station, the average signal to interference and noise ratio, and the like. Taking the average signal to interference and noise ratio of the received signal of the base station as an example, if the average signal to interference and noise ratio is greater than the preset average signal to interference and noise ratio, it indicates that the current frequency domain resource channel quality is good, and the original transmission parameter configuration can be maintained.
  • the configuration information sent by the first information sending module 1002 further includes stopping the sending of the identifier, and after receiving the configuration information with the stop sending identifier, the terminal actively stops the sending to the base station. Send driving status information and release transmission resources.
  • the scheduling method provided in this embodiment sends the configuration information sent by the server to the terminal in time, and timely informs the terminal according to the new transmission through configuration information when the parameters such as the transmission period, the transmission resource, and the active retransmission location change.
  • the parameter reports the driving status information, so that the scheduling is more in line with the moving state of the terminal, and the reported information is more real-time.
  • An optional embodiment of the present invention provides an apparatus for transmitting information, which is shown in FIG. 11 and includes a second information receiving module 1101 and a second information sending module 1102.
  • the second information receiving module 1101 The configuration information is configured to receive configuration information sent by the base station, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location; and the second information sending module 1102 is configured to send the driving state information according to the configuration information.
  • the device for transmitting information provided by this embodiment may be installed in a terminal or directly mounted on a vehicle.
  • the terminal may be an independent device installed on a vehicle, a ship, an airplane, an electric vehicle or a bicycle. On the vehicle, or by the person holding the terminal to move or drive; it can also be integrated in other equipment installed on the above vehicle.
  • the terminal can plan the driving route according to the driving demand, or obtain the driving route from other devices, for example, the route shared by other devices.
  • the second information sending module 1102 may send a transmission resource allocation request to the base station, where the transmission resource allocation request may include driving state information, and may further include the service data amount, time offset, and service of the terminal.
  • Information such as period and priority allows the server to determine configuration information for the terminal based on the transmission resource allocation request.
  • the terminal may passively wait for the server to determine the configuration information, and then upload its own driving state information according to the configuration information.
  • the driving state information may be directly sent to the current base station, sent by the base station to the server, and the driving state information may be sent to the intermediate device, and the driving track is performed by the intermediate device.
  • the prediction, the prediction result and the driving state information are directly transmitted to the base station, and then the base station transmits the prediction result and the driving state information to the server.
  • the second information sending module 1102 can only send its own line planning information to the intermediate device, and the intermediate device acquires the current traveling speed and position coordinate information of the terminal through the sensor, the speedometer, the roadside unit, the GPS device, and the like.
  • the second information receiving module 1101 After receiving the configuration information, the second information receiving module 1101 sends the driving state information through the second information sending module 1102 according to the configuration information, such as sending the driving on the corresponding time domain resource and the frequency domain resource according to the transmission resource in the configuration information. Status information; or uploading its own driving status information for each transmission period according to the transmission period in the configuration information; or when the configuration information includes the active retransmission position, when the active retransmission position is reached, the active retransmission is initiated. . It should be understood that, when the second information sending module 1102 determines that the configuration information includes the active retransmission position, first calculates the time when the terminal travels from the current position to the active retransmission position, and then combines the current traveling speed and transmission according to the time.
  • the same driving state information is transmitted to the base station for consecutive T time slots, where T is an integer greater than or equal to 2.
  • the terminal improves the transmission quality of the information through the active retransmission mechanism, increases the reliability in the transmission process, and avoids the data collision problem that may be caused by the continuous retransmission of the uplink data in the related art.
  • the server re-predicts the driving trajectory according to the driving state information continuously uploaded by the terminal, and re-determines the active retransmission position according to the re-predicted driving trajectory, and notifies the terminal through the base station.
  • the second information sending module 1102 re-determines the retransmission time slot, and sends the re-determined retransmission time slot to the base station, where the re-determined weight is reached.
  • an active retransmission is initiated.
  • the server After determining the transmission period, the server also determines the transmission reconfiguration period according to the transmission period, and sends the transmission reconfiguration period to the terminal through the base station.
  • the terminal collects the number of times the transmission status information is sent by the second statistic module, and determines whether the configuration information sent by the base station is received before the number of transmissions reaches the transmission reconfiguration period. .
  • the terminal stops transmitting the driving status information to the base station, and releases the transmission resource currently used by the terminal; when the configuration information is received and the number of transmissions reaches the transmission reconfiguration period
  • the driving state information is transmitted to the base station according to the configuration information, and the number of transmissions is re-stated, and the driving state information is transmitted to the base station by the second information transmitting module 1102 according to the configuration information.
  • the second information sending module 1102 sends the driving state information to the base station according to the specific content in the configuration information, and when the configuration information includes the new transmission resource, sends the driving state information to the base station according to the new transmission resource;
  • the configuration information includes an identifier that notifies the original configuration of the terminal, the driving status information is sent to the base station according to the original configuration information.
  • the terminal side performs statistics on the number of transmissions by using the second statistic module, so that the terminal can stop transmitting autonomously after the number of transmissions is reached. For example, when the vehicle is unable to successfully receive the configuration information sent by the base station after the vehicle is out of the cell coverage, the terminal can terminate the transmission autonomously.
  • the statistics of the number of transmissions on the terminal side can enable the terminal user to obtain the transmission parameters of the next stage before the end of the current phase of the transmission, thereby preventing the user from actively requesting the reconfiguration after completing the current transmission, thereby ensuring continuous scheduling.
  • Sexuality enables seamless transmission of adjacent two-stage transmissions and enhances the reliability of scheduling.
  • the device for transmitting information provided by the embodiment enables the terminal to transmit the driving state information according to the configuration information sent by the server, so that the information transmission process is more consistent with the mobile characteristics of the terminal, and the scheduling process is more complete and flexible.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods of various embodiments of the present invention.
  • Embodiments of the present invention provide a storage medium that is installed in a server.
  • a computer program is stored in the storage medium.
  • the following steps are implemented:
  • S71 Determine configuration information according to a driving trajectory of the terminal in the predetermined time period
  • the configuration information is sent to the base station to which the terminal belongs.
  • the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • the computer program is further executed by the processor to acquire a travel trajectory of the terminal within the predetermined time period before the step of determining, by the processor, the configuration information according to the travel trajectory of the terminal within the predetermined time period.
  • the computer program may specifically predict the driving trajectory of the terminal within the predetermined time period according to the driving state information of the terminal, and the driving state information may include: the current driving speed and the current position. Coordinates and route planning information may also include current acceleration information, travel time, and the like.
  • the computer program receives the transmission resource allocation request sent by the base station before the step of the processor predicting the driving trajectory of the terminal within the predetermined time period according to the driving state information of the terminal, wherein the transmission resource allocation request includes at least: driving state information.
  • the computer program in the storage medium when the processor performs the step of determining the configuration information according to the driving trajectory of the terminal within the predetermined time period, specifically implements the following steps: determining, according to the traveling state information of the terminal, the time required for the terminal to move to the switching execution region, The idle time domain resource and the idle frequency domain resource of the target base station are allocated to the terminal according to the network state information of the target base station on the trajectory; wherein the handover execution area is the area where the terminal initiates the handover, and the target base station is the base station to which the terminal belongs. Neighboring base station.
  • the computer program in the storage medium may further implement the following steps: determining the transmission of the terminal according to the driving state information of the terminal and the first preset mapping relationship. a period, wherein the first preset mapping relationship includes a correspondence between the traveling speed and the transmission period in the driving state information. And further, the computer program is further executed by the processor, according to the driving status information updated by the terminal and the first preset mapping relationship, determining a new transmission period of the terminal; determining whether the new transmission period is the same as the transmission period of the terminal; In the case where the new transmission period is different from the transmission period, the transmission period in the configuration information is replaced with a new transmission period.
  • the configuration information may further include a transmission reconfiguration period, and after the step of determining, by the processor, the transmission period of the terminal according to the driving state information of the terminal and the first preset mapping relationship, the computer program is further executed by the processor. Step: Determine a transmission reconfiguration period of the terminal according to the transmission period, where the transmission reconfiguration period is an integer in a preset reconfiguration interval corresponding to the transmission period.
  • the computer program when the computer program performs the step of determining the configuration information according to the driving trajectory of the terminal within the predetermined time period, the computer program specifically implements the following steps: acquiring N road positions corresponding to the driving track according to the driving trajectory; and in the second preset mapping relationship Obtaining N average channel gains corresponding to the N road positions, wherein the second preset mapping relationship includes a correspondence between the road position and the average channel gain; and determining a road position where the average channel gain value is less than a preset average channel gain threshold is Active retransmission position; where N is an integer greater than or equal to 1, M is an integer greater than or equal to 0, and M is less than or equal to N.
  • the terminal by combining the prediction result of the driving trajectory in the predetermined time period of the terminal, the terminal performs the scheduling information parameter configuration in accordance with the driving state of the terminal, so that the state of the acquiring terminal is more timely, and the parameter configuration of the scheduling method in the related technology is not flexible. A problem that causes the terminal status to be updated slowly.
  • Embodiments of the present invention provide a second type of storage medium that is installed at a base station.
  • a computer program is stored in the storage medium.
  • the following steps are implemented:
  • S81 Receive configuration information sent by the server, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location;
  • the processor before the step of executing, by the processor, the configuration information sent by the server, the processor is further configured to: receive, by the processor, a transmission resource allocation request sent by the terminal, where the transmission resource allocation request at least includes: driving status information ; Send a transport resource allocation request to the server.
  • the driving status information transmitted by the terminal may also be received before the step of receiving the configuration information sent by the server; the driving status information is transmitted to the server.
  • the computer program when configured to receive the driving state information sent by the terminal, the computer program specifically implements the following steps: receiving the retransmission time slot determined by the terminal according to the active retransmission position; and when the retransmission time slot is reached, The driving state information sent by the terminal is received by two consecutive time slots; the driving state information sent by the receiving terminal of the two consecutive time slots is combined and decoded.
  • the computer program saved in the storage medium provided by the embodiment is further executed by the processor: counting the number of transmissions, wherein the number of transmissions is the number of times the terminal sends the driving status information; Before the transmission retransmission period reaches the transmission reconfiguration period, it is determined whether resource reconfiguration is required.
  • resource reconfiguration is required, the server is requested to reconfigure the transmission resource, send the configuration information to the terminal, and restart counting, where configuration The information includes a new transmission resource; if the resource reconfiguration is not required, the number of transmissions is reset to zero, the configuration information is sent to the terminal, and the counting is restarted, wherein the configuration information includes notifying the original configuration of the terminal.
  • the storage medium provided in this embodiment sends the configuration information sent by the server to the terminal in time, and timely informs the terminal according to the new transmission through configuration information when the parameters such as the transmission period, the transmission resource, and the active retransmission location change.
  • the parameter reports the driving status information, so that the scheduling is more in line with the moving state of the terminal, and the reported information is more real-time.
  • Embodiments of the present invention provide a third storage medium that is installed in a terminal.
  • a computer program is stored in the storage medium.
  • the following steps are implemented:
  • the configuration information sent by the base station is received, where the configuration information includes at least one of the following: a transmission resource, a transmission period, and an active retransmission location.
  • S92 Send driving state information according to the configuration information.
  • the computer program is further executed by the processor to send a transmission resource allocation request to the base station before the step of receiving the configuration information sent by the base station by the processor, where the transmission resource allocation request includes at least: driving state information.
  • the processor further performs the following steps: determining whether the active retransmission location is included in the configuration information; and when the configuration information includes the active retransmission location, calculating the driving to The time at which the location is actively retransmitted; the retransmission slot is determined according to the time; the retransmission slot is transmitted to the base station.
  • the processor further performs the following steps: determining whether the retransmission time slot is reached; and when the retransmission time slot is reached, The base station transmits the same driving status information for two consecutive time slots.
  • the computer program saved in the storage medium provided by the embodiment is further executed by the processor: counting the number of transmissions, where the number of transmissions is the number of times the terminal sends the driving status information; Before the transmission number reaches the transmission reconfiguration period, it is determined whether configuration information is received; if the configuration information is not received, the transmission of the driving status information to the base station is stopped, and the transmission resource currently used by the terminal is released; and the configuration information is received. Next, the number of transmissions is reset to zero, and the driving state information is transmitted to the base station according to the configuration information, and the counting is restarted.
  • the computer program when the computer program performs the step of transmitting the driving state information to the base station according to the configuration information, the computer program specifically implements the following steps: when the configuration information includes a new transmission resource, the terminal follows the new transmission resource direction.
  • the base station transmits the driving state information; when the configuration information includes the identifier that notifies the original configuration of the terminal, the terminal transmits the driving state information to the base station according to the original configuration information.
  • the storage medium provided by the embodiment enables the terminal to send the driving state information according to the configuration information sent by the server, so that the information sending process is more consistent with the mobile characteristics of the terminal, and the scheduling process is more complete and flexible.
  • the storage medium in the foregoing embodiment may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or A variety of media such as optical discs that can store program code.
  • the processor executes the method steps described in the foregoing embodiments according to the stored program code in the storage medium. It will be apparent to those skilled in the art that the various modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • An alternative embodiment of the present invention provides a vehicle networking system in the vehicle networking environment, which is mainly composed of a server, a base station, and a vehicle terminal.
  • the system structure diagram is shown in FIG. 12, wherein the server is independently deployed in the wireless connection.
  • Network access, and establish a wired or wireless connection with multiple base stations on the road side, responsible for the collection, processing and prediction of user information and wireless network information, and related configuration functions of scheduling parameters, including at least the following four modules: vehicle trajectory prediction The module (corresponding to the function of acquiring the module part in the above embodiment of the present invention), the channel data processing module (corresponding to the function of configuring the module part in the above embodiment of the present invention), the network information management module, and the configuration execution module (corresponding to the embodiment of the present invention) Configuration module).
  • Each base station and the server exchange real-time information through a logical interface.
  • the configuration execution module of the upper layer of the server interacts with the underlying vehicle trajectory prediction module, the channel data processing module, and the network information management module through a
  • this embodiment may be based on Mobile Edge Computing (MEC), created by using a lower-cost MEC server deployed in a wireless access network with a subordinate base station.
  • MEC Mobile Edge Computing
  • a carrier-class service environment with high efficiency and low latency can reduce the bandwidth consumption of the transmission network, share the load pressure of the network center, and shorten the response time of the content delivery system, so that the end user enjoys an uninterrupted high-quality network experience.
  • an MEC-based network deployment mode may be adopted: a small-scale MEC server cluster is connected to a plurality of neighboring base stations through a high-rate optical fiber, and the MEC server cluster is simultaneously connected to the upper-layer core network.
  • 13 is a schematic diagram of an MEC server platform, wherein functions of an application platform service are provided to an upper layer through an open application programming interface (API), and the application layer includes a plurality of virtual machines (VMs, Virtual Machines). Each VM runs an application (APP, Application) and can implement a virtual network function (VNF) to implement data acquisition and configuration from the application platform service.
  • the application management platform layer also includes virtualization management and Infrastructure as a Service (IaaS, Infrastructure as a Service) to interact with the hardware infrastructure layer.
  • IaaS Infrastructure as a Service
  • the scheduling method may be implemented in the virtual machine as the MEC APP in the application layer of the MEC server in a software programming manner, and the corresponding vehicle trajectory predicts and constructs the first mapping table (ie, the first mapping in the first embodiment of the present invention).
  • Table 2 the second mapping table (ie, the second mapping table in the first embodiment of the present invention)
  • the base station network information management function is carried on the application platform layer of the MEC server as a platform function component, and the functional components are further combined and packaged to
  • the form of the platform service is provided to the upper layer through an open API, and supports the implementation of operations such as parameter configuration of the upper layer transmission cycle (and other types of car networking functions and applications carried by the application layer).
  • the process of scheduling the server in this embodiment is the same as the process in the first embodiment of the present invention.
  • the scheduling process of the base station in this embodiment is the same as the process in the second embodiment of the present invention.
  • the processes of the above embodiments are the same, and will not be described in detail herein.
  • the electronic device 700 includes at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in electronic device 700 are coupled together by a bus system 705. It will be appreciated that the bus system 705 is used to implement connection communication between these components.
  • the bus system 705 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 705 in FIG.
  • the memory 702 in the embodiment of the present invention is used to store various types of data to support the operation of the electronic device 700.
  • Examples of such data include any computer program, such as application 7022, for operating on electronic device 700.
  • a program implementing the method of the embodiment of the present invention may be included in the application 7022.
  • Processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in a form of software.
  • the processor 701 described above may be a general purpose processor, a digital signal processor (DSP), or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • DSP digital signal processor
  • the processor 701 can implement or perform the various methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can reside in a storage medium located in memory 702, which reads the information in memory 702 and, in conjunction with its hardware, performs the steps of the foregoing method.
  • the electronic device 700 may be configured by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), and Complex Programmable Logic Devices (CPLDs). , Complex Programmable Logic Device), FPGA, general purpose processor, controller, MCU, MPU, or other electronic component implementation for performing the aforementioned methods.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal processors
  • PLDs Programmable Logic Devices
  • CPLDs Complex Programmable Logic Devices
  • FPGA field-programmable Logic Device
  • controller MCU
  • MPU or other electronic component implementation for performing the aforementioned methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种调度方法该方法包括:根据预定时间段内终端的行驶轨迹确定配置信息;将配置信息发送至终端当前所属基站;其中,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。本发明还公开了一种发送信息的方法、装置及存储介质。本发明通过结合对终端预定时间段内行驶轨迹的预测结果,为终端进行符合终端自身行驶状态的调度信息参数配置,使获取终端状态更及时,解决了相关技术中调度方法参数配置不灵活,造成终端状态更新缓慢的问题。

Description

调度方法、发送信息的方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201711267636.2、申请日为2017年12月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通讯领域,特别是涉及一种调度方法、发送信息的方法、装置及存储介质。
背景技术
长期演进技术(LTE,Long Term Evolution)的半静态调度(SPS,Semi-Persistence Schedule)是指在调度传输过程中,基站在初始调度时通过物理下行控制信道(PDCCH,Physical Downlink Control Channel)指示用户当前的调度信息,用户识别是半静态调度,则保存当前的调度信息,每隔固定的周期在相同的资源位置上进行该业务数据的发送或接收。因此,使用半静态调度传输可以充分利用数据包周期性的特点,一次授权,周期使用,可以有效的节省LTE系统用于调度指示的PDCCH资源。传统半静态调度方式主要针对具有周期性特点的业务,例如网络语音业务(VoIP,Voice over Internet Protocol),在一个SPS阶段内采用固定的由基站随机选择分配的传输周期和资源,同时通过混合自动重传(HARQ,Hybrid Automatic Repeat Request)机制提供传输可靠性保障。
在交通运输通信领域中,终端侧(可以为车辆、轮船、飞机、电动车、自行车或持有终端的人)需要向网络侧(如基站、服务器等)上报实时状 态信息,主要包括自身位置、速度、加速度等,此类数据包大小相对固定,但是,由于终端移动速度快,状态更新迅速,相关技术的调度过程中参数配置不灵活,无法满足终端在高速运动状态下终端状态的及时更新。
发明内容
本发明提供一种调度方法、发送信息的方法、装置及存储介质,用以解决相关技术的调度方法参数配置不灵活,造成终端状态更新缓慢的问题。
为解决上述技术问题,第一方面,本发明提供一种调度方法,包括:根据预定时间段内终端的行驶轨迹确定配置信息;将所述配置信息发送至所述终端当前所属基站;其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。
第二方面,本发明还提供一种调度方法,包括:接收服务器发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;将所述配置信息发送至终端。
第三方面,本发明还提供一种发送信息的方法,包括:接收基站发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;根据所述配置信息发送行驶状态信息。
第四方面,本发明还提供一种调度装置,包括:配置模块,用于根据预定时间段内终端的行驶轨迹确定配置信息;发送模块,用于将所述配置信息发送至所述终端当前所属基站;其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。
第五方面,本发明还提供一种调度装置,包括:第一信息接收模块,配置为接收服务器发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;第一信息发送模块,配置为将所述配置信息发送至终端。
第六方面,本发明还提供一种发送信息的装置,包括:第二信息接收 模块,配置为接收基站发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;第二信息发送模块,配置为根据所述配置信息发送行驶状态信息。
第七方面,本发明还提供一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的调度方法。
第八方面,本发明还提供一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的发送信息的方法。
本发明通过结合对终端预定时间段内行驶轨迹的预测结果,为终端进行符合终端自身行驶状态的调度信息参数配置,使获取终端状态更及时,解决了相关技术中调度方法参数配置不灵活,造成终端状态更新缓慢的问题。
附图说明
图1是本发明实施例调度方法的流程图;
图2是本发明实施例中基站覆盖范围和切换执行区域示意图;
图3是本发明实施例中传输周期调整示意图;
图4是相关技术中数据碰撞示意图;
图5是本发明实施例中道路区域分割与位置索引标识示意图;
图6是本发明实施例中调度方法的流程图;
图7是本发明实施例中发送信息的方法流程图;
图8是本发明实施例中终端主动重传示意图;
图9是本发明实施例中调度装置的一个可选结构示意图;
图10是本发明实施例中调度装置的另一个可选结构示意图;
图11是本发明实施例中发送信息的装置结构示意图;
图12是本发明实施例中车联网系统构成示意图;
图13是本发明实施例中服务器平台示意图;
图14是本发明实施例提供的电子设备的硬件组成结构示意图。
具体实施方式
为了解决相关技术调度方法参数配置不灵活,造成终端状态更新缓慢的问题,本发明提供了一种调度方法、发送信息的方法、装置及存储介质,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
本发明的实施例提供了一种调度方法,其流程图如图1所示,具体包括步骤S101和S102:
S101,根据预定时间段内终端的行驶轨迹确定配置信息;
S102,将配置信息发送至终端当前所属基站,其中,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。
在本实施例中,终端可以是独立的装置,被安装在车辆、轮船、飞机、电动车或自行车等交通工具上,或由人来持有终端进行移动或行驶;也可以集成在其他设备中安装在上述交通工具上。终端可以根据行驶需求规划行驶路线,或者从其他设备获取行驶路线,例如获取其他设备共享的路线。本实施例所提供的方法应用于网络侧设备,例如是服务器或网络控制器等管理和控制基站的设备,该网络侧设备下连接有多个基站,或者实现该网络侧设备功能的实体位于某基站内部。以下以服务器为例,服务器通过基站获取终端的行驶状态信息,并通过基站将服务器调度确定的配置信息发送给终端。
服务器在确定配置信息之前,首先需要获取预定时间段内终端的行驶轨迹,该行驶轨迹可以由服务器自身根据终端的行驶状态信息进行预测,也可以通过接收其他中间设备(如路边单元(RSU,Road Side Unit))等发送给基站的行驶轨迹预测结果获得,其中,行驶状态信息可以包括:当前行驶速度、当前位置坐标以及线路规划信息等,还可以进一步包括终端的 加速度、行驶时间等信息。在进行预定时间段内的行驶轨迹的预测时,该预定时间段可以根据实际情况进行配置,例如,可以配置为终端从起始点至终点所需的总时间,以节省信令的下发,进而节省空口资源;或者,以固定间隔(例如每30分钟)执行一次行驶轨迹预测,则可以使行驶轨迹的预测更加准确,进而使后续的传输参数配置更加灵活。行驶轨迹预测结果可以包括:终端在特定时刻的地理位置坐标,终端在特定时刻所处的基站标识信息。
在确定终端的行驶轨迹后,根据该行驶轨迹进行配置信息的确定,其中,配置信息可以包括传输资源、传输周期、主动重传位置。具体的,服务器在确定传输资源时,各基站覆盖的小区使用相同的频域资源,首先根据终端的行驶状态信息确定终端移动至切换执行区域所需的时间,然后根据行驶轨迹上目标基站的网络状态信息将目标基站的空闲的时域资源和空闲的频域资源分配作为配置信息发送至基站。时频域资源一般表达为具体占用的子帧编号,占用的频域资源位置,或者是资源块、子信道信息等。应当了解的是,目标基站是与终端当前所属基站相邻的基站,目标基站的网络状态信息可以包括目标基站的无线资源配置情况、服务用户标识和当前网络负载等。
在实际的终端移动过程中,由于终端周期性的上传行驶状态信息,根据其中包含的当前位置信息,判断终端即将移动至当前所属小区的切换执行区域时,则再次确认当前目标基站的可用资源,具体过程可以是:向目标基站发送该终端的当前资源配置情况,由目标基站判断该终端的当前资源在目标基站覆盖的小区内是否可用,若可用,则目标基站确认资源可用并告知服务器;若不可用,则目标基站在当前空闲资源中重新选择资源,并将资源配置结果告知服务器。通过为终端在切换之前确定传输资源,避免终端在切换后再次进行资源申请,降低传输中断概率,尽量避免终端在 频繁的越区切换过程中进行多次资源重选,进而减少传输资源重配次数,有助于优化网络资源配置,并缓解频繁重配引起的信令开销和资源浪费等问题。
在一可选实施例中,切换执行区域一般位于小区边缘,判断终端是否到达切换执行区域的方法可以为:根据终端当前位置坐标信息和预先存储的小区坐标信息,判断终端是否到达切换执行区域;或者由终端对当前基站的下行信号接收强度进行持续的测量,当测量值低于预设的门限值时即表示终端进入切换执行区域。
下面以车辆终端的行驶为例,结合图2对车辆终端移动至切换执行区域时的资源分配过程进行描述。其中,服务器中预先存储有基站1和基站2以一维坐标区间形式表示的范围分布信息,分别为(0,500m)和(500,1000m),并确定切换执行区域范围为(450,550m)。
S11,服务器首先获取车辆A以坐标形式表示的行驶轨迹预测结果,判断车辆A的行驶轨迹需要通过基站1和2覆盖的小区后,获取基站1和2的当前的资源配置信息;
S12,在基站1的空闲资源中为车辆A选择分配传输资源,记第一次传输使用的子帧号为p,则资源选择应满足在p+s/v子帧上所选的资源在基站2(即目标基站)中不被占用,其中,s为车辆A当前位置到切换区域边界的距离,v为车辆A当前速度,两者比值以毫秒为单位;
S13,当车辆A驶入切换执行区域时,服务器再次确认基站2当前的可用资源,判断车辆A在基站1的现用资源在基站2是否仍然可用;
S14,若可用,则基站2确认资源可用;若不可用,则基站2在当前空闲资源中为其重新随机选择资源,并将资源配置结果告知服务器,由再由服务器经基站1进一步通知车辆A,以保证车辆A在行驶出切换执行区域时可以及时切换到基站2的可用资源上。
服务器在确定传输周期时,根据终端的行驶状态信息和第一预设映射关系确定传输周期。其中,第一预设映射关系包括行驶状态信息中的行驶速度与传输周期的对应关系,具体可以为根据历史数据或者经验值预先建立的第一映射表,也可以为符合映射关系的函数关系式。其中,行驶状态信息中的行驶速度可以为终端当前的行驶速度,或将连续几次接收到的行驶速度进行均值计算,使用平均行驶速度确定传输周期。本实施例中使用第一映射表作为确定传输周期的依据,该第一映射表如表1所示,应当了解的,表1示出的仅仅为本实施例中的一种优选对应关系,表格中的具体数值可以根据终端的业务类型不同而进行修改:
表1
Figure PCTCN2018114440-appb-000001
在为终端分配了传输资源和传输周期后,终端以传输周期为间隔,占用该传输资源进行传输。对于不同行驶状态的终端,网络侧(服务器)对其所要求的状态信息更新频率不同。当终端行驶速度快时,终端位置等状态改变迅速,相应的应当设置更快的状态信息更新频率,因此需要该终端以更小的时间粒度进行数据产生和上报传输,从而保证网络侧在执行相关预测和决策过程时具有更高的时效性和可靠性;而当终端处于缓慢行驶或临时停止的状态时,自身位置、速度等状态更新缓慢,因此无需高频率重复上报。
为了使传输更符合终端的行驶状态,本实施例中提供对传输周期的优化的方案如下:服务器根据终端上报的近几次(如五次)行驶速度的平均速度,重新确定传输周期,并判断新确定的传输周期与终端当前使用的传输周期是否相同,若相同则不需要修改传输周期,若不相同,则使用新的传输周期替换配置周期中原有的传输周期,使终端根据新的传输周期进行行驶状态信息的发送,以满足终端所要求的状态信息更新频率。图3为对传输周期的取值进行调整的过程示意图,图中终端的传输周期由100ms变更为50ms。
终端在按照传输周期进行传输,并达到一定次数后,终端的行驶速度可能会发生变化,最初配置的传输周期可能无法保证当前行驶速度的时效性,或者当前速度较慢,无需过快的进行行驶状态信息的上报,因此可以对传输周期的取值进行重新配置,该次数即传输重配周期。在本发明的实施例中,服务器针对不同的传输周期值预先设置其对应的重配区间,重配区间取值范围的设置依据“传输周期越短,传输次数越多”的规则,传输重配周期为传输周期对应的预设重配区间内的整数。根据实际为终端配置的传输周期,在其相对应的预设重配区间内随机选择一个数作为传输重配周期。由于终端上报行驶状态信息是长期持续性业务(与VoIP有所不同),除非终端与网络断开连接,终端用户不会主动停止上行传输,重配周期过短会导致频繁重配,增加控制信令开销,但考虑到传输重配周期过长会降低参数配置的灵活性,影响传输性能的提升,因此传输重配周期区间应权衡上述两点因素折中设置。应当了解的是,配置好的传输重配周期也可以作为配置信息中一同发送至终端。
进一步地,针对相关技术中使用HARQ技术过程繁琐,容易造成如图4所示的上行数据碰撞问题,本实施例中提供了一种优化方案如下:通过设置主动重传位置进行解决,利用预测行驶轨迹和历史数据提前规避传输差 错。在获取终端的行驶轨迹后,根据行驶轨迹获取该行驶轨迹经过的N个道路位置,在第二预设映射关系中获取N个道路位置对应的N个平均信道增益,确定平均信道增益的值小于预设平均信道增益门限的道路位置为主动重传位置,并在发送配置信息时,将确定好的M个主动重传位置添加至配置信息一同发送给终端,其中,N为大于或等于1的整数,M为大于或等于0的整数,M小于或等于N。应当了解的是,可以优选地使用第二映射表作为第二预设映射关系,由于路侧建筑等信号遮挡体位置相对固定,且基站与道路间距离固定,因此可以基于对大量信道质量观测样本的统计分析,预测终端处于道路上每个位置点到基站间信道的大尺度衰落信息,计算潜在通信链路的平均信道增益,从而进一步构建每个小区覆盖路段的“道路位置-平均信道增益”映射表,作为第二映射表,主要包括道路位置与平均信道增益的对应关系。
对第二映射表的构建和更新步骤如下:
S21,将每个基站的覆盖路段分割为多个X×Y(如4m×2m)矩形区域,并依次编号作为位置索引标识,如图5所示;
S22,在每个矩形区域内,基站对所有进行上行通信的移动终端进行上行信道检测,获取各移动终端到基站间的信道增益值,基站以固定时间间隔(如1min)重复执行Z次(如20次)上述对每个矩形区域内终端的上行信道信息的收集操作,并将道路位置索引连同对应的一组信道增益值上传网络侧;
S23,网络侧汇总检测数据样本并进行统计分析,计算各道路位置索引对应的平均信道增益,构建第二预设映射表,如表2所示;
S24,由于移动终端在路段内随机分布,因此可能存在某些矩形区域在统计时刻的移动终端数为零的情况,对于此类样本数据缺失的矩形区域,网络侧将对其所有毗邻的矩形区域的平均信道增益取均值,作为该矩形区 域的平均信道增益的平滑估计值,填入第二预设映射表中;
S25,间隔固定周期重复执行步骤S2至S4,以更新第二预设映射表,以保证表内容的时效性。
表2
Figure PCTCN2018114440-appb-000002
在终端的实际移动过程中,可能会由于道路拥堵或临时事件改变行进的轨迹,服务器此时重新获取终端的行驶轨迹,因此需要根据新的行驶轨迹重新确定主动重传位置,将新确定的多个主动重传位置发送给终端。以车辆终端的行驶为例,一个主动重传位置确定及更新的具体的实例如下:
S31,车辆位置以全球定位系统(GPS,Global Positioning System)坐标表示,服务器收集基站上传的车辆的位置速度信息和线路规划信息;
S32,以当前位置为起始点,以t为时间粒度,计算在导航路径上时刻为t、2t、3t、…、n*t时车辆的位置坐标,其中n满足关系式:n*t=floor(预设预测距离/当前车速),此处预设预测距离可选为100m;
S33,在车辆行驶的时间内,持续接收车辆以位置坐标串表示的实际行驶轨迹以及位置和速度信息,并获得更新的行驶轨迹预测结果:若检测到车辆的实际位置偏离预测轨迹,则重复S32进行轨迹预测结果的修正;若车辆未偏离预测轨迹行驶,当检测到车辆位于第n个预测位置时,则重复S32步骤进行轨迹预测结果的新增。
根据车辆更新后的轨迹预测结果,查询表2,确定新的主动重传的位置点,将结果下发车辆所属的基站。
在本实施例中,服务器可接收基站上传的传输资源分配请求,其中,传输资源分配请求可以包括终端的行驶状态信息,还可以包括终端的业务数据量、时间偏移、业务周期和优先级等信息,服务器根据传输资源分配请求为终端确定配置信息。
本实施例通过结合对终端预定时间段内行驶轨迹的预测结果,为终端进行符合终端自身行驶状态的调度信息参数配置,使获取终端状态更及时,解决了相关技术中调度方法参数配置不灵活,造成终端状态更新缓慢的问题。
本发明的第二实施例提供了一种调度方法,其流程图如图6所示,主要包括步骤S601和S602:
S601,接收服务器发送的配置信息,其中,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;
S602,将配置信息发送至终端。
本实施例提供的调度方法应用于基站,基站上连提供配置信息的服务器,下连多个终端。基站接收终端发送的行驶状态信息,并将行驶状态信息发送给服务器,服务器生成配置信息后,将配置信息下发至基站,由基站将配置信息下发至对应的终端,其中,终端上传的行驶状态信息中可以包括当前行驶速度、当前位置坐标以及线路规划信息等,还可以进一步包括终端的加速度、行驶时间等信息;配置信息中可以包括传输资源、传输周期、主动重传位置等。为了使终端发送行驶状态信息的周期更符合终端的移动状态,服务器会根据终端的当前行驶速度更新传输周期,并将包含新的传输周期的配置信息发送至基站,基站接收到之后将配置信息发送给终端,使终端根据新的传输周期发送行驶状态信息。
在一些可选实施例中,接收服务器发送的配置信息之前,基站还可以接收终端主动发送的传输资源分配请求,并将该传输资源分配请求发送至服务器,其中,该传输资源分配请求可以包括终端的行驶状态信息,还可以包括终端的业务数据量、时间偏移、业务周期和优先级等信息,使服务器根据传输资源分配请求为终端确定配置信息。
针对相关技术中使用HARQ技术过程繁琐,容易造成如图4所示的上行数据碰撞问题,服务器下发的配置信息中可包括主动重传位置,当终端接收到的配置信息中包含主动重传位置时,终端会根据主动重传位置,结合自身行驶状态,得到需要进行主动重传的重传时隙,并将该重传时隙发送至基站,基站在接收到该重传时隙后,判断是否到达重传时隙,若未到达重传时隙,则基站进行常规的一次接收,在到达重传时隙的情况下,连续T个时隙接收终端发送的行驶状态信息,并且对连续T个时隙接收终端发送的行驶状态信息进行合并解码后,发送至服务器,若合并解码失败,则直接抛弃本次接收的行驶状态信息,不再进行重传。在一些可选实施例中,T为大于等于2的整数,基站在接收到重传时隙后,对自身的时频资源进行空闲判断,若对应重传时隙的后T-1个时隙的时频资源空闲,则基站为终端保留这部分资源用作重传;若对应重传时隙的后T-1个时隙时频资源被占用,则基站为终端重新分配重传资源,并向终端发送重传资源指示信息。
终端在按照传输周期进行传输,并达到一定次数后,终端的行驶速度可能会发生变化,最初配置的传输周期可能无法保证当前行驶速度的时效性,或者当前速度较慢,无需过快的进行行驶状态信息的上报,因此可以对传输周期的取值进行重新配置,该次数即传输重配周期(记为Q)。当服务器下发的配置信息中包含传输重配周期时,基站对终端发送行驶状态信息的次数进行统计,即为传输次数,在传输次数到达服务器确定的传输重配周期之前(通常为第Q-1次传输之后,第Q次传输之前),基站判断是否 需要进行资源重配,在需要进行资源重配的情况下,向服务器请求重新配置传输资源,将服务器下发的包含有新的传输资源的配置信息发送给终端,并在传输次数到达Q之后,根据配置信息中的传输重配周期重新进行计数;在不需要进行资源重配的的情况下,将包含有通知终端原有配置不变的标识的配置信息发送给终端,在传输次数到达Q之后,根据现有的传输重配周期重新计数。原有配置不变的标识可以是一比特信息位,用于指示配置是否发生改变,当配置改变,则在配置信息中携带新的配置参数信息(如新的传输资源等),若配置不变,则仅指示配置未发生改变,不再携带配置参数信息。
在本实施例中,基站判断是否需要进行资源重配的方法主要为判断当前频、域资源信道质量,例如基站接收信号的信号强度、平均信干噪比等。以判断基站接收信号的平均信干噪比为例,若平均信干噪比大于预设平均信干噪比,则表明当前频域资源信道质量较好,可以继续维持原有的传输参数配置不做更改;若平均接受信干噪比小于预设平均信干噪比,则表明当前频域资源信道质量已经难以满足传输要求,则向服务器请求重新配置传输资源。另外,在服务器或基站不需要终端发送行驶状态信息时,基站发送的配置信息中还包括停止发送标识,终端在接收到带有停止发送标识的配置信息后,主动停止向基站发送行驶状态信息,并释放传输资源。
本实施例提供的调度方法,将服务器下发的配置信息及时的发送至终端,并且在传输周期、传输资源、主动重传位置等参数有变化的时候,通过配置信息及时通知终端根据新的传输参数进行行驶状态信息的上报,使调度更符合终端的移动状态,上报的信息更具有实时性。
本发明的实施例提供了一种发送信息的方法,其流程图如图7所示,主要包括步骤S701和S702:
S701,接收基站发送的配置信息,其中,配置信息至少包括以下之一: 传输资源、传输周期、主动重传位置;
S702,根据配置信息发送行驶状态信息。
本实施例所提供的方法应用于终端,在本实施例中,终端可以是独立的装置,被安装在车辆、轮船、飞机、电动车或自行车等交通工具上,或由人来持有终端进行移动或行驶;也可以集成在其他设备中安装在上述交通工具上。终端可以根据行驶需求规划行驶路线,或者从其他设备获取行驶路线,例如获取其他设备共享的路线等。
终端在被调度之前,可以主动向基站发送传输资源分配请求,该传输资源分配请求中可以包括行驶状态信息,也可以进一步包括终端的业务数据量、时间偏移、业务周期和优先级等信息,使服务器可以根据传输资源分配请求为终端确定配置信息。终端在没有主动发送传输资源分配请求时,可以被动地等待服务器确定配置信息后,再根据配置信息按规律上传自身的行驶状态信息。
终端在发送自身的行驶状态信息时,可直接将行驶状态信息发送至当前的基站,由基站发送至服务器,还可以将行驶状态信息发送至中间设备,由中间设备进行行驶轨迹预测后,直接将预测结果和行驶状态信息发送至基站,再由基站将预测结果和行驶状态信息发送至服务器。进一步地,终端可只将自身的线路规划信息发送至中间设备,由中间设备通过传感器、测速仪、路边单元、GPS设备等获取终端当前的行驶速度和位置坐标信息。
终端在接收到配置信息之后,根据配置信息发送行驶状态信息,如根据配置信息中的传输资源,在对应的时域资源和频域资源上发送行驶状态信息;或根据配置信息中的传输周期,每个传输周期上传一次自身的行驶状态信息;或在配置信息中包含主动重传位置时,在到达该主动重传位置的时候,发起主动重传。应当了解的是,终端在判断配置信息中包括主动重传位置时,首先计算终端从当前位置行驶至主动重传位置的时刻,随后 根据该时刻,结合当前的行驶速度和传输周期,确定需要执行主动重传的重传时隙,并将该重传时隙发送至基站,在未达到重传时隙的情况下,进行普通的一次传输;在达到重传时隙的情况下,向基站连续T个时隙发送相同的行驶状态信息,,其中,T为大于等于2的整数,图8即为T=2时的终端主动重传示意图。终端通过主动重传机制,提升了信息的传输质量,增加了传输过程中的可靠性,并且避免了相关技术中上行数据不断重传可能造成的数据碰撞问题。
当终端的行驶轨迹与预测的行驶轨迹发生偏移时,服务器会根据终端不断上传的行驶状态信息重新预测行驶轨迹,并根据重新预测后的行驶轨迹重新确定主动重传位置,并通过基站通知终端,终端接收到新的主动重传位置之后,重新确定重传时隙,并将重新确定的重传时隙发送至基站,在达到重新确定的重传时隙时,发起主动重传。
服务器在确定传输周期后,还会根据传输周期确定传输重配周期,并将传输重配周期通过基站一同发送至终端。终端在接收到包括传输重配周期的配置信息时,统计自身发送行驶状态信息的发送次数,并在发送次数到达传输重配周期之前,判断是否接收到基站下发的配置信息。在未接收到配置信息且发送次数到达传输重配周期的情况下,终端会停止向基站发送行驶状态信息,并释放终端当前使用的传输资源;在接收到配置信息且发送次数到达传输重配周期的情况下,根据配置信息向基站发送行驶状态信息,并重新统计发送次数。具体地,终端根据配置信息中的具体内容,向基站发送行驶状态信息,在配置信息中包括新的传输资源的情况下,终端按照新的传输资源向基站发送行驶状态信息;在配置信息中包括通知终端原有配置不变的标识的情况下,终端按照原有配置信息向基站发送行驶状态信息。
终端侧进行发送次数的统计,使终端在达到发送次数后可以自主停止 发送,例如当车辆驶离小区覆盖范围无法成功接收基站下发的配置信息时,可以及时自主终止传输。此外,终端侧进行发送次数的统计能够使得终端用户再当前阶段的传输结束之前就能获取下一阶段的传输参数,避免了用户在完成当前传输后再主动请求授权重配置,从而保证调度的连续性,使得相邻两阶段的传输能够无缝衔接,增强调度的可靠性。
本实施例提供的发送信息的方法,使终端根据服务器下发的配置信息进行行驶状态信息的发送,使信息的发送过程更符合终端的移动特点,调度过程更完整、更灵活。
本发明的实施例提供了一种调度装置,其结构示意图如图9所示,主要包括:配置模块901以及发送模块902,其中,配置模块901配置为根据预定时间段内终端的行驶轨迹确定配置信息;发送模块902配置为将配置信息发送至终端当前所属基站,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。
在本实施例中,终端可以是独立的装置,被安装在车辆、轮船、飞机、电动车或自行车等交通工具上,或由人来持有终端进行移动或行驶;也可以集成在其他设备中安装在上述交通工具上。终端可以根据行驶需求规划行驶路线,或者从其他设备获取行驶路线,例如获取其他设备共享的路线。本实施例所提供的调度装置安装于网络侧设备,例如是服务器或网络控制器等管理和控制基站的设备,该网络侧设备下连接有多个基站,或者实现该网络侧设备功能的实体位于某基站内部。以下以服务器为例,服务器通过基站获取终端的行驶状态信息,并通过基站将服务器调度确定的配置信息发送给终端。
配置模块901在确定配置信息之前,首先需要通过获取模块获取预定时间段内终端的行驶轨迹,该行驶轨迹可以由获取模块自身根据终端的行驶状态信息进行预测,也可以通过接收其他中间设备等发送给基站的行驶 轨迹预测结果获得,其中,行驶状态信息可以包括:当前行驶速度、当前位置坐标以及线路规划信息等,还可以进一步包括终端的加速度、行驶时间等信息。在获取模块进行预定时间段内的行驶轨迹的预测时,该预定时间段可以根据实际情况进行配置,例如,可以配置为终端从起始点至终点所需的总时间,以节省信令的下发,进而节省空口资源;或者,以固定间隔(例如每30分钟)执行一次行驶轨迹预测,则可以使行驶轨迹的预测更加准确,进而使后续的传输参数配置更加灵活。行驶轨迹预测结果可以包括:终端在特定时刻的地理位置坐标,终端在特定时刻所处的基站标识信息。
在获取模块确定终端的行驶轨迹后,配置模块901根据该行驶轨迹进行配置信息的确定,其中,配置信息可以包括传输资源、传输周期、主动重传位置。具体的,配置模块901在确定传输资源时,各基站覆盖的小区使用相同的频域资源,首先根据终端的行驶状态信息确定终端移动至切换执行区域所需的时间,然后根据行驶轨迹上目标基站的网络状态信息将目标基站的空闲的时域资源和空闲的频域资源分配作为配置信息发送至基站。时频域资源一般表达为具体占用的子帧编号,占用的频域资源位置,或者是资源块、子信道信息等。应当了解的是,目标基站是与终端当前所属基站相邻的基站,目标基站的网络状态信息可以包括目标基站的无线资源配置情况、服务用户标识和当前网络负载等。
在实际的终端移动过程中,由于终端周期性的上传行驶状态信息,配置模块901根据其中包含的当前位置信息,判断终端即将移动至当前所属小区的切换执行区域时,则再次确认当前目标基站的可用资源,具体过程可以是:向目标基站发送该终端的当前资源配置情况,由目标基站判断该终端的当前资源在目标基站覆盖的小区内是否可用,若可用,则目标基站确认资源可用并告知配置模块901;若不可用,则目标基站在当前空闲资源 中重新选择资源,并将资源配置结果告知配置模块901。通过为终端在切换之前确定传输资源,避免终端在切换后再次进行资源申请,降低传输中断概率,尽量避免终端在频繁的越区切换过程中进行多次资源重选,进而减少传输资源重配次数,有助于优化网络资源配置,并缓解频繁重配引起的信令开销和资源浪费等问题。
在一些可选实施例中,切换执行区域一般位于小区边缘,判断终端是否到达切换执行区域的方法可以为:根据终端当前位置坐标信息和预先存储的小区坐标信息,判断终端是否到达切换执行区域;或者由终端对当前基站的下行信号接收强度进行持续的测量,当测量值低于预设的门限值时即表示终端进入切换执行区域。以车辆终端的行驶为例,对车辆终端移动至切换执行区域时的资源分配过程与本发明第一实施例中步骤S11至S14相同,在此不再赘述。
配置模块901在确定传输周期时,根据终端的行驶状态信息和第一预设映射关系确定传输周期。其中,第一预设映射关系包括行驶状态信息中的行驶速度与传输周期的对应关系,具体可以为根据历史数据或者经验值预先建立的第一映射表,也可以为符合映射关系的函数关系式。其中,行驶状态信息中的行驶速度可以为终端当前的行驶速度,或将连续几次接收到的行驶速度进行均值计算,使用平均行驶速度确定传输周期。本实施例中使用第一映射表作为确定传输周期的依据,该第一映射表如表1所示,应当了解的,表1示出的仅仅为本实施例中的一种优选对应关系,表格中的具体数值可以根据终端的业务类型不同而进行修改。
在为终端分配了传输资源和传输周期后,终端以传输周期为间隔,占用该传输资源进行传输。对于不同行驶状态的终端,网络侧对其所要求的状态信息更新频率不同。当终端行驶速度快时,终端位置等状态改变迅速,相应的应当设置更快的状态信息更新频率,因此需要该终端以更小的时间 粒度进行数据产生和上报传输,从而保证网络侧在执行相关预测和决策过程时具有更高的时效性和可靠性;而当终端处于缓慢行驶或临时停止的状态时,自身位置、速度等状态更新缓慢,因此无需高频率重复上报。
为了使传输更符合终端的行驶状态,本实施例中提供对传输周期的优化的方案如下:配置模块901根据终端上报的近几次(如五次)行驶速度的平均速度,重新确定传输周期,并判断新确定的传输周期与终端当前使用的传输周期是否相同,若相同则不需要修改传输周期,若不相同,则使用新的传输周期替换配置周期中原有的传输周期,使终端根据新的传输周期进行行驶状态信息的发送,以满足终端所要求的状态信息更新频率。
终端在按照传输周期进行传输,并达到一定次数后,终端的行驶速度可能会发生变化,最初配置的传输周期可能无法保证当前行驶速度的时效性,或者当前速度较慢,无需过快的进行行驶状态信息的上报,因此可以对传输周期的取值进行重新配置,该次数即传输重配周期。在本发明的实施例中,配置模块901针对不同的传输周期值预先设置其对应的重配区间,重配区间取值范围的设置依据“传输周期越短,传输次数越多”的规则,传输重配周期为传输周期对应的预设重配区间内的整数。根据实际为终端配置的传输周期,在其相对应的预设重配区间内随机选择一个数作为传输重配周期。由于终端上报行驶状态信息是长期持续性业务(与VoIP有所不同),除非终端与网络断开连接,终端用户不会主动停止上行传输,重配周期过短会导致频繁重配,增加控制信令开销,但考虑到传输重配周期过长会降低参数配置的灵活性,影响传输性能的提升,因此传输重配周期区间应权衡上述两点因素折中设置。应当了解的是,配置好的传输重配周期也可以作为配置信息中一同发送至终端。
进一步地,针对相关技术中使用HARQ技术过程繁琐,容易造成如图4所示的上行数据碰撞问题,本实施例中提供了一种优化方案如下:通过设 置主动重传位置进行解决,利用预测行驶轨迹和历史数据提前规避传输差错。在获取模块获取终端的行驶轨迹后,配置模块901根据行驶轨迹获取该行驶轨迹经过的N个道路位置,在第二预设映射关系中获取N个道路位置对应的N个平均信道增益,确定平均信道增益的值小于预设平均信道增益门限的道路位置为主动重传位置,并在发送模块902发送配置信息时,将确定好的M个主动重传位置添加至配置信息一同发送给终端,其中,N为大于或等于1的整数,M为大于或等于0的整数,M小于或等于N。应当了解的是,可以优选地使用第二映射表作为第二预设映射关系,由于路侧建筑等信号遮挡体位置相对固定,且基站与道路间距离固定,因此可以基于对大量信道质量观测样本的统计分析,预测终端处于道路上每个位置点到基站间信道的大尺度衰落信息,计算潜在通信链路的平均信道增益,从而进一步构建每个小区覆盖路段的“道路位置-平均信道增益”映射表,作为第二映射表,主要包括道路位置与平均信道增益的对应关系。应当了解的是,第二映射表的构建与更新步骤与本发明第一实施例的步骤S21至S25相同,在此不再赘述。
在终端的实际移动过程中,可能会由于道路拥堵或临时事件改变行进的轨迹,获取模块此时重新获取终端的行驶轨迹,因此需要配置模块901根据新的行驶轨迹重新确定主动重传位置,将新确定的多个主动重传位置通过发送模块902发送给终端。以车辆终端的行驶过程中,主动重传位置确定及更新的具体的步骤如本发明第一实施例中步骤S31至S33相同,在此不再赘述。
在本实施例中,调度装置还包括,配置为接收基站上传的传输资源分配请求,其中,传输资源分配请求可以包括终端的行驶状态信息,还可以包括终端的业务数据量、时间偏移、业务周期和优先级等信息,配置模块901根据传输资源分配请求为终端确定配置信息。
本实施例通过结合对终端预定时间段内行驶轨迹的预测结果,为终端进行符合终端自身行驶状态的调度信息参数配置,使获取终端状态更及时,解决了相关技术中调度方法参数配置不灵活,造成终端状态更新缓慢的问题。
本发明的实施例提供了另一种调度装置,该调度装置安装在基站上,主要用于进行行驶状态信息和配置信息的传输调度,其结构示意图如图10所示,主要包括第一信息接收模块1001和第一信息发送模块1002,其中,第一信息接收模块1001配置为接收服务器发送的配置信息,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;第一信息发送模块1002配置为将配置信息发送至终端。
第一信息接收模块1001接收终端发送的行驶状态信息,并通过第一信息发送模块1002将行驶状态信息发送给服务器,服务器生成配置信息后,将配置信息下发至基站的第一信息接收模块1001,由第一信息发送模块1002将配置信息下发至对应的终端,其中,终端上传的行驶状态信息中可以包括当前行驶速度、当前位置坐标以及线路规划信息等,还可以进一步包括终端的加速度、行驶时间等信息;配置信息中可以包括传输资源、传输周期、主动重传位置等。为了使终端发送行驶状态信息的周期更符合终端的移动状态,服务器会根据终端的当前行驶速度更新传输周期,并将包含新的传输周期的配置信息发送至调度装置,调度装置接收到包含新的传输周期的配置信息之后将配置信息通过第一信息发送模块1002发送给终端,使终端根据新的传输周期发送行驶状态信息。
进一步地,第一信息接收模块1001接收服务器发送的配置信息之前,还可以接收终端主动发送的传输资源分配请求,并将该传输资源分配请求通过第一信息发送模块1002发送至服务器,其中,该传输资源分配请求可以包括终端的行驶状态信息,还可以包括终端的业务数据量、时间偏移、 业务周期和优先级等信息,使服务器根据传输资源分配请求为终端确定配置信息。
针对相关技术中使用HARQ技术过程繁琐,容易造成上行数据碰撞问题,服务器下发的配置信息中可包括主动重传位置,当终端接收到的配置信息中包含主动重传位置时,终端会根据主动重传位置,结合自身行驶状态,得到需要进行主动重传的重传时隙,并将该重传时隙发送至第一信息接收模块1001,第一信息接收模块1001在接收到该重传时隙后,判断是否到达重传时隙,若未到达重传时隙,则第一信息接收模块1001进行常规的一次接收,在到达重传时隙的情况下,第一信息接收模块1001连续T个时隙接收终端发送的行驶状态信息,并且对连续T个时隙接收终端发送的行驶状态信息进行合并解码后,通过第一信息发送模块1002发送至服务器,若合并解码失败,则直接抛弃本次接收的行驶状态信息,不再进行重传。在一些可选实施例中,T为大于等于2的整数,第一信息接收模块1001在接收到重传时隙后,对自身基站的时频资源进行空闲判断,若对应重传时隙的后T-1个时隙的时频资源空闲,则为终端保留这部分资源用作重传;若对应重传时隙的后T-1个时隙时频资源被占用,则为终端重新分配重传资源,并向终端发送重传资源指示信息。
终端在按照传输周期进行传输,并达到一定次数后,终端的行驶速度可能会发生变化,最初配置的传输周期可能无法保证当前行驶速度的时效性,或者当前速度较慢,无需过快的进行行驶状态信息的上报,因此可以对传输周期的取值进行重新配置,该次数即传输重配周期(记为Q)。当服务器下发的配置信息中包含传输重配周期时,第一统计模块对终端发送行驶状态信息的次数进行统计,即为传输次数,在传输次数到达服务器确定的传输重配周期之前(通常为第Q-1次传输之后,第Q次传输之前),第一统计模块判断是否需要进行资源重配,在需要进行资源重配的情况下,向 服务器请求重新配置传输资源,并通过第一信息发送模块1002将服务器下发的包含有新的传输资源的配置信息发送给终端,并在传输次数到达Q之后,根据配置信息中的传输重配周期重新进行计数;在不需要进行资源重配的的情况下,通过第一信息发送模块1002将包含有通知终端原有配置不变的标识的配置信息发送给终端,在传输次数到达Q之后,根据现有的传输重配周期重新计数。原有配置不变的标识可以是一比特信息位,用于指示配置是否发生改变,当配置改变,则在配置信息中携带新的配置参数信息,若配置不变,则仅指示配置未发生改变,不再携带配置参数信息。
在本实施例中,第一统计模块判断是否需要进行资源重配的方法主要为判断当前频、域资源信道质量,例如基站接收信号的信号强度、平均信干噪比等。以判断基站接收信号的平均信干噪比为例,若平均信干噪比大于预设平均信干噪比,则表明当前频域资源信道质量较好,可以继续维持原有的传输参数配置不做更改;若平均接受信干噪比小于预设平均信干噪比,则表明当前频域资源信道质量已经难以满足传输要求,则向服务器请求重新配置传输资源。另外,在服务器或基站不需要终端发送行驶状态信息时,第一信息发送模块1002发送的配置信息中还包括停止发送标识,终端在接收到带有停止发送标识的配置信息后,主动停止向基站发送行驶状态信息,并释放传输资源。
本实施例提供的调度方法,将服务器下发的配置信息及时的发送至终端,并且在传输周期、传输资源、主动重传位置等参数有变化的时候,通过配置信息及时通知终端根据新的传输参数进行行驶状态信息的上报,使调度更符合终端的移动状态,上报的信息更具有实时性。
本发明的一个可选实施例提供了一种发送信息的装置,其结构示意图如图11所示,主要包括第二信息接收模块1101和第二信息发送模块1102,其中,第二信息接收模块1101配置为接收基站发送的配置信息,配置信息 至少包括以下之一:传输资源、传输周期、主动重传位置;第二信息发送模块1102配置为根据配置信息发送行驶状态信息。
本实施例所提供的发送信息的装置可被安装于终端,或直接安装在交通工具上,在本实施例中,终端可以是独立的装置,被安装在车辆、轮船、飞机、电动车或自行车等交通工具上,或由人来持有终端进行移动或行驶;也可以集成在其他设备中安装在上述交通工具上。终端可以根据行驶需求规划行驶路线,或者从其他设备获取行驶路线,例如获取其他设备共享的路线等。
终端在被调度之前,可通过第二信息发送模块1102主动向基站发送传输资源分配请求,该传输资源分配请求中可以包括行驶状态信息,也可以进一步包括终端的业务数据量、时间偏移、业务周期和优先级等信息,使服务器可以根据传输资源分配请求为终端确定配置信息。终端在没有主动发送传输资源分配请求时,可以被动地等待服务器确定配置信息后,再根据配置信息按规律上传自身的行驶状态信息。
第二信息发送模块1102在发送自身的行驶状态信息时,可直接将行驶状态信息发送至当前的基站,由基站发送至服务器,还可以将行驶状态信息发送至中间设备,由中间设备进行行驶轨迹预测后,直接将预测结果和行驶状态信息发送至基站,再由基站将预测结果和行驶状态信息发送至服务器。进一步地,第二信息发送模块1102可只将自身的线路规划信息发送至中间设备,由中间设备通过传感器、测速仪、路边单元、GPS设备等获取终端当前的行驶速度和位置坐标信息。
第二信息接收模块1101在接收到配置信息之后,根据配置信息通过第二信息发送模块1102发送行驶状态信息,如根据配置信息中的传输资源,在对应的时域资源和频域资源上发送行驶状态信息;或根据配置信息中的传输周期,每个传输周期上传一次自身的行驶状态信息;或在配置信息中 包含主动重传位置时,在到达该主动重传位置的时候,发起主动重传。应当了解的是,在第二信息发送模块1102判断配置信息中包括主动重传位置时,首先计算终端从当前位置行驶至主动重传位置的时刻,随后根据该时刻,结合当前的行驶速度和传输周期,确定需要执行主动重传的重传时隙,并将该重传时隙发送至基站,在未达到重传时隙的情况下,进行普通的一次传输;在达到重传时隙的情况下,向基站连续T个时隙发送相同的行驶状态信息,其中,T为大于等于2的整数。终端通过主动重传机制,提升了信息的传输质量,增加了传输过程中的可靠性,并且避免了相关技术中上行数据不断重传可能造成的数据碰撞问题。
当终端的行驶轨迹与预测的行驶轨迹发生偏移时,服务器会根据终端不断上传的行驶状态信息重新预测行驶轨迹,并根据重新预测后的行驶轨迹重新确定主动重传位置,并通过基站通知终端,第二信息接收模块1101接收到新的主动重传位置之后,由第二信息发送模块1102重新确定重传时隙,并将重新确定的重传时隙发送至基站,在达到重新确定的重传时隙时,发起主动重传。
服务器在确定传输周期后,还会根据传输周期确定传输重配周期,并将传输重配周期通过基站一同发送至终端。终端在接收到包括传输重配周期的配置信息时,通过第二统计模块统计自身发送行驶状态信息的发送次数,并在发送次数到达传输重配周期之前,判断是否接收到基站下发的配置信息。在未接收到配置信息且发送次数到达传输重配周期的情况下,终端会停止向基站发送行驶状态信息,并释放终端当前使用的传输资源;在接收到配置信息且发送次数到达传输重配周期的情况下,根据配置信息向基站发送行驶状态信息,并重新统计发送次数,并通过第二信息发送模块1102根据配置信息向基站发送行驶状态信息。具体地,第二信息发送模块1102根据配置信息中的具体内容,向基站发送行驶状态信息,在配置信息 中包括新的传输资源的情况下,按照新的传输资源向基站发送行驶状态信息;在配置信息中包括通知终端原有配置不变的标识的情况下,按照原有配置信息向基站发送行驶状态信息。
终端侧通过第二统计模块进行发送次数的统计,使终端在达到发送次数后可以自主停止发送,例如当车辆驶离小区覆盖范围无法成功接收基站下发的配置信息时,可以及时自主终止传输。此外,终端侧进行发送次数的统计能够使得终端用户再当前阶段的传输结束之前就能获取下一阶段的传输参数,避免了用户在完成当前传输后再主动请求授权重配置,从而保证调度的连续性,使得相邻两阶段的传输能够无缝衔接,增强调度的可靠性。
本实施例提供的发送信息的装置,使终端根据服务器下发的配置信息进行行驶状态信息的发送,使信息的发送过程更符合终端的移动特点,调度过程更完整、更灵活。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
本发明的实施例提供了一种存储介质,安装于服务器。存储介质中存储有计算机程序,在本实施例中,计算机程序被处理器执行时实现如下步骤:
S71,根据预定时间段内终端的行驶轨迹确定配置信息;
S72,将配置信息发送至终端当前所属基站;其中,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。
可选地,计算机程序在被处理器执行根据预定时间段内终端的行驶轨迹确定配置信息的步骤之前,还被处理器执行以下步骤:获取预定时间段内终端的行驶轨迹。计算机程序在被处理器执行获取预定时间段内终端的行驶轨迹的步骤时,具体可根据终端的行驶状态信息预测预定时间段内终端的行驶轨迹,行驶状态信息可以包括:当前行驶速度、当前位置坐标以及线路规划信息,还可以包括当前的加速度信息、行驶时间等。并且计算机程序在被处理器执行根据终端的行驶状态信息预测预定时间段内终端的行驶轨迹的步骤之前,接收基站发送的传输资源分配请求,其中,传输资源分配请求至少包括:行驶状态信息。
存储介质中的计算机程序在被处理器执行根据预定时间段内终端的行驶轨迹确定配置信息的步骤时,具体实现如下步骤:根据终端的行驶状态信息确定终端移动至切换执行区域所需的时间,根据行驶轨迹上目标基站的网络状态信息将目标基站的空闲的时域资源和空闲的频域资源分配至终端;其中,切换执行区域为终端发起切换的区域,目标基站为与终端当前所属基站相邻的基站。
存储介质中的计算机程序在被处理器执行根据预定时间段内终端的行驶轨迹确定配置信息的步骤时,还可以实现如下步骤:根据终端的行驶状态信息和第一预设映射关系确定终端的传输周期,其中,第一预设映射关系包括行驶状态信息中的行驶速度与传输周期的对应关系。并且更进一步地,计算机程序还被处理器执行以下步骤:根据终端更新的行驶状态信息和第一预设映射关系,确定终端新的传输周期;判断新的传输周期与终端的传输周期是否相同;在新的传输周期与传输周期不相同的情况下,将配置信息中的传输周期替换为新的传输周期。可选地,配置信息中还可以包 括传输重配周期,计算机程序在被处理器执行根据终端的行驶状态信息和第一预设映射关系确定终端的传输周期的步骤之后,还被处理器执行以下步骤:根据传输周期确定终端的传输重配周期,其中,传输重配周期为传输周期对应的预设重配区间内的整数。
进一步,计算机程序在被处理器执行根据预定时间段内终端的行驶轨迹确定配置信息的步骤时,具体实现如下步骤:根据行驶轨迹获取行驶轨迹对应的N个道路位置;在第二预设映射关系中获取N个道路位置对应的N个平均信道增益,其中,第二预设映射关系包括道路位置与平均信道增益的对应关系;确定平均信道增益的值小于预设平均信道增益门限的道路位置为主动重传位置;其中,N为大于或等于1的整数,M为大于或等于0的整数,M小于或等于N。
本实施例通过结合对终端预定时间段内行驶轨迹的预测结果,为终端进行符合终端自身行驶状态的调度信息参数配置,使获取终端状态更及时,解决了相关技术中调度方法参数配置不灵活,造成终端状态更新缓慢的问题。
本发明的实施例提供了第二种存储介质,安装于基站。存储介质中存储有计算机程序,在本实施例中,计算机程序被处理器执行时实现如下步骤:
S81,接收服务器发送的配置信息,其中,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;
S82,将配置信息发送至终端。
可选地,计算机程序在被处理器执行接收服务器发送的配置信息的步骤之前,还被处理器执行以下步骤:接收终端发送的传输资源分配请求,其中,传输资源分配请求至少包括:行驶状态信息;将传输资源分配请求发送至服务器。在执行接收服务器发送的配置信息的步骤之前,还可接收 终端发送的行驶状态信息;将行驶状态信息发送至服务器。进一步地,计算机程序在被处理器执行接收终端发送的行驶状态信息的步骤时,具体实现如下步骤:接收终端根据主动重传位置确定的重传时隙;在到达重传时隙的情况下,连续两个时隙接收终端发送的行驶状态信息;对连续两个时隙接收终端发送的行驶状态信息进行合并解码。
在配置信息中包括传出重配周期时,本实施例提供的存储介质中保存的计算机程序还被处理器执行以下步骤:统计传输次数,其中,传输次数为终端发送行驶状态信息的次数;在传输次数到达传输重配周期之前,判断是否需要进行资源重配;在需要进行资源重配的情况下,向服务器请求重新配置传输资源,将配置信息发送至终端,并重新开始计数,其中,配置信息包括新的传输资源;在不需要进行资源重配的的情况下,将传输次数归零,将配置信息发送至终端,并重新开始计数,其中,配置信息包括通知终端原有配置不变的标识。
本实施例提供的存储介质,将服务器下发的配置信息及时的发送至终端,并且在传输周期、传输资源、主动重传位置等参数有变化的时候,通过配置信息及时通知终端根据新的传输参数进行行驶状态信息的上报,使调度更符合终端的移动状态,上报的信息更具有实时性。
本发明的实施例提供了第三种存储介质,安装于终端。存储介质中存储有计算机程序,在本实施例中,计算机程序被处理器执行时实现如下步骤:
S91,接收基站发送的配置信息,其中,配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;
S92,根据配置信息发送行驶状态信息。
可选地,计算机程序在被处理器执行接收基站发送的配置信息的步骤之前,还被处理器执行以下步骤:向基站发送传输资源分配请求,其中, 传输资源分配请求至少包括:行驶状态信息。在被处理器执行接收基站发送的配置信息的步骤之后,还被处理器执行以下步骤:判断配置信息中是否包括主动重传位置;在配置信息中包括主动重传位置的情况下,计算行驶至主动重传位置的时刻;根据时刻确定重传时隙;将重传时隙发送至基站。并且更进一步地,计算机程序在被处理器执行根据时刻确定重传时隙的步骤之后,还被处理器执行以下步骤:判断是否达到重传时隙;在达到重传时隙的情况下,向基站连续两个时隙发送相同的行驶状态信息。
在配置信息中包括传出重配周期时,本实施例提供的存储介质中保存的计算机程序还被处理器执行以下步骤:统计发送次数,其中,发送次数为终端发送行驶状态信息的次数;在发送次数到达传输重配周期之前,判断是否接收到配置信息;在未接收到配置信息的情况下,停止向基站发送行驶状态信息,并释放终端当前使用的传输资源;在接收到配置信息的情况下,将发送次数归零,根据配置信息向基站发送行驶状态信息,重新开始计数。并且更进一步地,计算机程序在被处理器执行根据配置信息向基站发送行驶状态信息的步骤时,具体实现如下步骤:在配置信息中包括新的传输资源的情况下,终端按照新的传输资源向基站发送行驶状态信息;在配置信息中包括通知终端原有配置不变的标识的情况下,终端按照原有配置信息向基站发送行驶状态信息。
本实施例提供的存储介质,使终端根据服务器下发的配置信息进行行驶状态信息的发送,使信息的发送过程更符合终端的移动特点,调度过程更完整、更灵活。
可选地,上述实施例中的存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述 实施例记载的方法步骤。显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
本发明的一个可选实施例以车联网为环境,提供了一种车联网系统,主要由服务器、基站以及车辆终端构成,其系统结构图如图12所示,其中,服务器独立部署于无线接入网,并与路侧多个基站建立有线或无线连接,负责实现对用户信息和无线网络信息的收集、处理与预测,以及调度参数的相关配置功能,至少包括以下四个模块:车辆轨迹预测模块(相当于本发明上述实施例中获取模块部分功能)、信道数据处理模块(相当于本发明上述实施例中配置模块部分功能)、网络信息管理模块以及配置执行模块(相当于本发明实施例中的配置模块)。每个基站与服务器之间通过一个逻辑接口进行实时的信息交互。服务器内部上层的配置执行模块通过逻辑接口与下层的车辆轨迹预测模块、信道数据处理模块、网络信息管理模块进行交互。
在一些可选实施例中,本实施例中可以基于移动边缘计算(MEC,Mobile Edge Computing),通过使用成本更低的部署在无线接入网的小型MEC服务器,与其下属的基站一起,创造出一个具备高效率、低时延的电信级服务环境,能够降低传输网络带宽消耗,分担网络中心负载压力,并缩短内容交付系统的反应时间,使终端用户享有不间断的高质量网络体验。
本实施例可以采取基于MEC的网络部署方式:一个小规模MEC服务 器集群与邻近的多个基站通过高速率光纤连接,MEC服务器集群同时接入上层核心网。图13为MEC服务器平台的示意图,其中,应用平台服务的功能通过开放的应用程序编程接口(API,Application Programming Interface)提供给上层,应用层包括多个虚拟机(VM,Virtual Machine),在每个VM中都运行有应用程序(APP,Application)并可以实现虚拟网络功能(VNF,Virtual Network Function),以实现从应用平台服务获取数据并进行配置的功能。应用管理平台层还包括虚拟化管理以及基础设施即服务(IaaS,Infrastructure as a Service),与硬件设施层进行交互。所述调度方法可以通过软件编程的方式作为MEC APP以虚拟机的方式运行于MEC服务器的应用层,相应的车辆轨迹预测、构建第一映射表(即本发明第一实施例中的第一映射表)、第二映射表(即本发明第一实施例中的第二映射表),基站网络信息管理功能则搭载在MEC服务器的应用平台层作为平台功能组件,功能组件经过进一步组合封装,以平台服务的形式通过开放的API提供给上层,共同支持上层传输周期等参数配置(以及应用层搭载的其他类型的车联网功能和应用)等涉及操作的实现。
本实施例中服务器进行调度的过程与本发明第一实施例的过程相同,本实施例中基站的调度过程与本发明第二实施例的过程相同,本实施例汇总终端的信息发送过程与本发明上述实施例的过程相同,在此不再详细赘述。
图14是本发明实施例的电子设备(调度装置或发送信息的装置)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图14中将各种总线都标为总线系统705。
本发明实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本发明实施例方法的程序可以包含在应用程序7022中。
上述本发明实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (47)

  1. 一种调度方法,包括:
    根据预定时间段内终端的行驶轨迹确定配置信息;
    将所述配置信息发送至所述终端当前所属基站;
    其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。
  2. 如权利要求1所述的调度方法,其中,根据预定时间段内终端的行驶轨迹确定配置信息之前,还包括:
    获取预定时间段内终端的行驶轨迹。
  3. 如权利要求2所述的调度方法,其中,获取预定时间段内终端的行驶轨迹,包括:
    根据所述终端的行驶状态信息预测预定时间段内所述终端的行驶轨迹。
  4. 如权利要求3所述的调度方法,其中,根据所述终端的行驶状态信息预测预定时间段内所述终端的行驶轨迹之前,还包括:
    接收所述基站发送的传输资源分配请求,其中,所述传输资源分配请求至少包括:行驶状态信息。
  5. 如权利要求1所述的调度方法,其中,根据预定时间段内终端的行驶轨迹确定配置信息,包括:
    根据终端的行驶状态信息确定所述终端移动至切换执行区域所需的时间,根据所述行驶轨迹上目标基站的网络状态信息将所述目标基站的空闲的时域资源和空闲的频域资源分配至所述终端;
    其中,所述切换执行区域为所述终端发起切换的区域,所述目标基站为与所述终端当前所属基站相邻的基站。
  6. 如权利要求1所述的调度方法,其中,根据预定时间段内终端的 行驶轨迹确定配置信息,包括:
    根据终端的行驶状态信息和第一预设映射关系确定所述终端的传输周期,其中,所述第一预设映射关系包括行驶状态信息中的行驶速度与传输周期的对应关系。
  7. 如权利要求6所述的调度方法,其中,还包括:
    根据所述终端更新的行驶状态信息和所述第一预设映射关系,确定所述终端新的传输周期;
    判断所述新的传输周期与所述终端的所述传输周期是否相同;
    在所述新的传输周期与所述传输周期不相同的情况下,将所述配置信息中的所述传输周期替换为所述新的传输周期。
  8. 如权利要求3至7中任一项所述的调度方法,其中,所述行驶状态信息至少包括:当前行驶速度、当前位置坐标以及线路规划信息。
  9. 如权利要求1所述的调度方法,其中,所述配置信息还包括:传输重配周期。
  10. 如权利要求9所述的调度方法,其中,根据终端的行驶状态信息和第一预设映射关系确定所述终端的传输周期之后,还包括:
    根据所述传输周期确定所述终端的传输重配周期,其中,所述传输重配周期为所述传输周期对应的预设重配区间内的整数。
  11. 如权利要求1所述的调度方法,其中,根据预定时间段内终端的行驶轨迹确定配置信息,包括:
    根据所述行驶轨迹获取所述行驶轨迹对应的N个道路位置;
    在第二预设映射关系中获取N个所述道路位置对应的N个平均信道增益,其中,所述第二预设映射关系包括道路位置与平均信道增益的对应关系;
    确定所述平均信道增益的值小于预设平均信道增益门限的道路位置 为主动重传位置;
    其中,N为大于或等于1的整数,M为大于或等于0的整数,M小于或等于N。
  12. 一种调度方法,包括:
    接收服务器发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;
    将所述配置信息发送至终端。
  13. 如权利要求12所述的调度方法,其中,接收服务器发送的配置信息之前,还包括:
    接收所述终端发送的传输资源分配请求,其中,所述传输资源分配请求至少包括:行驶状态信息;
    将所述传输资源分配请求发送至所述服务器。
  14. 如权利要求12所述的调度方法,其中,接收服务器发送的配置信息之前,还包括:
    接收所述终端发送的行驶状态信息;
    将所述行驶状态信息发送至所述服务器。
  15. 如权利要求14所述的调度方法,其中,接收所述终端发送的行驶状态信息,包括:
    接收所述终端根据主动重传位置确定的重传时隙;
    在到达所述重传时隙的情况下,连续T个时隙接收终端发送的行驶状态信息,其中,T为大于等于2的整数;
    对所述连续T个时隙接收终端发送的行驶状态信息进行合并解码。
  16. 如权利要求12所述的调度方法,其中,所述配置信息还包括:传输重配周期。
  17. 如权利要求16所述的调度方法,其中,还包括:
    统计传输次数,其中,所述传输次数为所述终端发送行驶状态信息的次数;
    在所述传输次数到达所述传输重配周期之前,判断是否需要进行资源重配;
    在需要进行资源重配的情况下,向所述服务器请求重新配置传输资源,将配置信息发送至所述终端,在传输次数到达所述传输重配周期时重新开始计数,其中,所述配置信息包括新的传输资源;
    在不需要进行资源重配的的情况下,将配置信息发送至所述终端,在传输次数到达所述传输重配周期时重新开始计数,其中,所述配置信息包括通知所述终端原有配置不变的标识。
  18. 一种发送信息的方法,包括:
    接收基站发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;
    根据所述配置信息发送行驶状态信息。
  19. 如权利要求18所述的发送信息的方法,其中,接收基站发送的配置信息之前,还包括:
    向基站发送传输资源分配请求,其中,所述传输资源分配请求至少包括:行驶状态信息。
  20. 如权利要求18所述的发送信息的方法,其中,接收基站发送的配置信息之后,还包括:
    判断所述配置信息中是否包括所述主动重传位置;
    在所述配置信息中包括所述主动重传位置的情况下,计算行驶至所述主动重传位置的时刻;
    根据所述时刻确定重传时隙;
    将所述重传时隙发送至所述基站。
  21. 如权利要求20所述的发送信息的方法,其中,根据所述时刻确定重传时隙之后,还包括:
    判断是否达到所述重传时隙;
    在达到所述重传时隙的情况下,向所述基站连续T个时隙发送相同的行驶状态信息,其中,T为大于等于2的整数。
  22. 如权利要求18所述的发送信息的方法,其中,所述配置信息还包括:传输重配周期。
  23. 如权利要求22所述的发送信息的方法,其中,还包括:
    统计发送次数,其中,所述发送次数为所述终端发送行驶状态信息的次数;
    在所述发送次数到达所述传输重配周期之前,判断是否接收到配置信息;
    在未接收到配置信息且发送次数到达所述传输重配周期的情况下,停止向所述基站发送行驶状态信息,并释放所述终端当前使用的传输资源;
    在接收到配置信息且发送次数到达所述传输重配周期的情况下,根据所述配置信息向所述基站发送行驶状态信息,重新开始计数。
  24. 如权利要求23所述的发送信息的方法,其中,根据所述配置信息向所述基站发送行驶状态信息,包括:
    在所述配置信息中包括新的传输资源的情况下,所述终端按照新的传输资源向所述基站发送行驶状态信息;
    在所述配置信息中包括通知所述终端原有配置不变的标识的情况下,所述终端按照原有配置信息向所述基站发送行驶状态信息。
  25. 一种调度装置,包括:
    配置模块,配置为根据预定时间段内终端的行驶轨迹确定配置信息;
    发送模块,配置为将所述配置信息发送至所述终端当前所属基站;
    其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置。
  26. 如权利要求25所述的调度装置,其中,还包括:
    获取模块,配置为获取预定时间段内终端的行驶轨迹。
  27. 如权利要求26所述的调度装置,其中,所述获取模块配置为:
    根据所述终端的行驶状态信息预测预定时间段内所述终端的行驶轨迹。
  28. 如权利要求27所述的调度装置,其中,还包括:
    接收模块,配置为接收所述基站发送的传输资源分配请求,其中,所述传输资源分配请求至少包括:行驶状态信息。
  29. 如权利要求25所述的调度装置,其中,所述配置模块配置为:
    根据终端的行驶状态信息确定所述终端移动至切换执行区域所需的时间,根据所述行驶轨迹上目标基站的网络状态信息将所述目标基站的空闲的时域资源和空闲的频域资源分配至所述终端;
    其中,所述切换执行区域为所述终端发起切换的区域,所述目标基站为与所述终端当前所属基站相邻的基站。
  30. 如权利要求25所述的调度装置,其中,所述配置模块配置为:
    根据终端的行驶状态信息和第一预设映射关系确定所述终端的传输周期,其中,所述第一预设映射关系包括行驶状态信息中的行驶速度与传输周期的对应关系。
  31. 如权利要求30所述的调度装置,其中,所述配置模块还配置为:
    根据所述终端更新的行驶状态信息和所述第一预设映射关系,确定所述终端新的传输周期;
    判断所述新的传输周期与所述终端的所述传输周期是否相同;
    在所述新的传输周期与所述传输周期不相同的情况下,将所述配置信息中的所述传输周期替换为所述新的传输周期。
  32. 如权利要求25所述的调度装置,其中,所述配置模块还配置为:
    在所述配置信息还包括传输重配周期的情况下,根据所述传输周期确定所述终端的传输重配周期,其中,所述传输重配周期为所述传输周期对应的预设重配区间内的整数。
  33. 如权利要求25所述的调度装置,其中,所述配置模块配置为:
    根据所述行驶轨迹获取所述行驶轨迹对应的N个道路位置;
    在第二预设映射关系中获取N个所述道路位置对应的N个平均信道增益,其中,所述第二预设映射关系包括道路位置与平均信道增益的对应关系;
    确定所述平均信道增益的值小于预设平均信道增益门限的道路位置为主动重传位置;
    其中,N为大于或等于1的整数,M为大于或等于0的整数,M小于或等于N。
  34. 一种调度装置,包括:
    第一信息接收模块,配置为接收服务器发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;
    第一信息发送模块,配置为将所述配置信息发送至终端。
  35. 如权利要求34所述的调度装置,其中,
    所述第一信息接收模块还配置为:接收所述终端发送的传输资源分配请求,其中,所述传输资源分配请求至少包括:行驶状态信息;
    所述第一信息发送模块还配置为:将所述传输资源分配请求发送至所述服务器。
  36. 如权利要求34所述的调度装置,其中,
    所述第一信息接收模块还配置为:接收所述终端发送的行驶状态信息;
    所述第一信息发送模块还配置为:将所述行驶状态信息发送至所述服务器。
  37. 如权利要求36所述的调度装置,其中,所述第一信息接收模块配置为:
    接收所述终端根据主动重传位置确定的重传时隙;
    在到达所述重传时隙的情况下,连续T个时隙接收终端发送的行驶状态信息,其中,T为大于等于2的整数;
    对所述连续T个时隙接收终端发送的行驶状态信息进行合并解码。
  38. 如权利要求34所述的调度装置,其中,还包括:
    第一统计模块,配置为统计传输次数,其中,所述传输次数为所述终端发送行驶状态信息的次数;在所述传输次数到达所述传输重配周期之前,判断是否需要进行资源重配;在需要进行资源重配的情况下,向所述服务器请求重新配置传输资源,在传输次数到达所述传输重配周期时重新开始计数;在不需要进行资源重配的的情况下,在传输次数到达所述传输重配周期时重新开始计数;
    所述第一信息发送模块,配置为在需要进行资源重配的情况下,将配置信息发送至所述终端,其中,所述配置信息包括新的传输资源;在不需要进行资源重配的的情况下,将配置信息发送至所述终端,其中,所述配置信息包括通知所述终端原有配置不变的标识。
  39. 一种发送信息的装置,包括:
    第二信息接收模块,配置为接收基站发送的配置信息,其中,所述配置信息至少包括以下之一:传输资源、传输周期、主动重传位置;
    第二信息发送模块,配置为根据所述配置信息发送行驶状态信息。
  40. 如权利要求39所述的发送信息的装置,其中,所述第二信息发送模块还配置为:向基站发送传输资源分配请求,其中,所述传输资源分配请求至少包括:行驶状态信息。
  41. 如权利要求39所述的发送信息的装置,其中,所述第二信息发送模块还配置为:
    判断所述配置信息中是否包括所述主动重传位置;
    在所述配置信息中包括所述主动重传位置的情况下,计算行驶至所述主动重传位置的时刻;
    根据所述时刻确定重传时隙;
    将所述重传时隙发送至所述基站。
  42. 如权利要求41所述的发送信息的装置,其中,所述第二信息发送模块还配置为:
    判断是否达到所述重传时隙;
    在达到所述重传时隙的情况下,向所述基站连续T个时隙发送相同的行驶状态信息,其中,T为大于等于2的整数。
  43. 如权利要求39所述的发送信息的装置,其中,还包括:
    第二统计模块,配置为统计发送次数,其中,所述发送次数为所述终端发送行驶状态信息的次数;在所述发送次数到达所述传输重配周期之前,判断是否接收到配置信息;在未接收到配置信息且发送次数到达所述传输重配周期的情况下,停止向所述基站发送行驶状态信息,并释放所述终端当前使用的传输资源;在接收到配置信息且发送次数到达所述传输重配周期的情况下,重新开始计数;
    所述第二信息发送模块还配置为,在接收到配置信息的情况下,根据所述配置信息向所述基站发送行驶状态信息。
  44. 如权利要求43所述的发送信息的装置,其中,所述第二信息发 送模块,配置为:
    在所述配置信息中包括新的传输资源的情况下,所述终端按照新的传输资源向所述基站发送行驶状态信息;
    在所述配置信息中包括通知所述终端原有配置不变的标识的情况下,所述终端按照原有配置信息向所述基站发送行驶状态信息。
  45. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述方法的步骤。
  46. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求12至17中任一项所述方法的步骤。
  47. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求18至24中任一项所述方法的步骤。
PCT/CN2018/114440 2017-12-05 2018-11-07 调度方法、发送信息的方法、装置及存储介质 WO2019109773A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020528086A JP7025063B2 (ja) 2017-12-05 2018-11-07 スケジューリング方法、情報の送信方法、装置、および記憶媒体
US16/768,975 US11363604B2 (en) 2017-12-05 2018-11-07 Scheduling method, information sending method and apparatus, and storage medium
EP18885119.0A EP3723414A4 (en) 2017-12-05 2018-11-07 PLANNING PROCEDURE, PROCESS AND DEVICE FOR SENDING INFORMATION AND STORAGE MEDIUM
US17/750,494 US20220279503A1 (en) 2017-12-05 2022-05-23 Scheduling method, information sending method and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711267636.2 2017-12-05
CN201711267636.2A CN109874111B (zh) 2017-12-05 2017-12-05 调度方法、发送信息的方法、装置及存储介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/768,975 A-371-Of-International US11363604B2 (en) 2017-12-05 2018-11-07 Scheduling method, information sending method and apparatus, and storage medium
US17/750,494 Continuation US20220279503A1 (en) 2017-12-05 2022-05-23 Scheduling method, information sending method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2019109773A1 true WO2019109773A1 (zh) 2019-06-13

Family

ID=66751228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114440 WO2019109773A1 (zh) 2017-12-05 2018-11-07 调度方法、发送信息的方法、装置及存储介质

Country Status (5)

Country Link
US (2) US11363604B2 (zh)
EP (1) EP3723414A4 (zh)
JP (1) JP7025063B2 (zh)
CN (1) CN109874111B (zh)
WO (1) WO2019109773A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858154B2 (ja) * 2018-03-30 2021-04-14 Kddi株式会社 ノード装置及びその制御方法、並びにプログラム
CN112566151B (zh) * 2019-09-26 2022-04-29 大唐移动通信设备有限公司 一种消息发送方法及基站
CN110856100B (zh) * 2019-10-21 2021-04-23 深圳数位传媒科技有限公司 基于5g信号的终端定位及定位模型构建的方法和装置
CN112752276B (zh) * 2019-10-31 2022-11-25 成都华为技术有限公司 接入网络设备的方法和装置
CN111178755B (zh) * 2019-12-27 2023-06-13 海南太美航空股份有限公司 闲置航班时刻的优化方法及系统
CN113127186B (zh) * 2019-12-31 2024-04-26 华为云计算技术有限公司 配置集群节点资源的方法、装置、服务器和存储介质
CN111225336B (zh) * 2020-01-18 2021-01-08 杭州后博科技有限公司 一种基于智慧灯杆的基站选择与切换方法及系统
CN111246485B (zh) * 2020-02-27 2022-09-20 华南理工大学 一种高密度车载通信环境下的车联网资源分配方法
CN113645704A (zh) * 2021-08-16 2021-11-12 北京遥感设备研究所 一种多小区联合资源分配方法及系统
CN114125936B (zh) * 2021-11-29 2023-09-05 中国联合网络通信集团有限公司 一种资源调度方法、装置和存储介质
EP4250815A1 (en) * 2022-03-24 2023-09-27 Mitsubishi Electric R&D Centre Europe B.V. Method for resource reservation and device configured to implement the method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625378A (zh) * 2012-02-29 2012-08-01 西安电子科技大学 一种异构无线网络快速切换协议流程
WO2015059494A1 (en) * 2013-10-24 2015-04-30 Vodafone Ip Licensing Limited High speed communication for vehicles
CN105813086A (zh) * 2016-05-31 2016-07-27 宇龙计算机通信科技(深圳)有限公司 目标网络覆盖检测方法及系统
CN107046700A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 一种预测移动终端切换基站的方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040198386A1 (en) * 2002-01-16 2004-10-07 Dupray Dennis J. Applications for a wireless location gateway
JP2002217821A (ja) * 2001-01-18 2002-08-02 Hitachi Ltd 移動体監視装置
JP2003188802A (ja) 2001-12-20 2003-07-04 Hitachi Ltd 無線通信方法
JP5104531B2 (ja) * 2008-05-09 2012-12-19 住友電気工業株式会社 路側通信装置及び送信方法
JP5205363B2 (ja) * 2009-12-10 2013-06-05 株式会社日立製作所 無線アクセスネットワークおよび無線アクセスネットワークにおけるサービス品質情報の通知方法
CN103313407B (zh) * 2012-03-08 2016-03-02 中国移动通信集团公司 一种高速铁路专网的时频资源分配方法及装置
JP5880302B2 (ja) * 2012-06-15 2016-03-09 トヨタ自動車株式会社 路車間通信システム、管理サーバ、および車両
CN105900500A (zh) * 2014-01-10 2016-08-24 夏普株式会社 通信控制方法、位置管理装置、基站装置、终端装置以及通信系统
CN104836646B (zh) * 2014-02-12 2018-03-23 普天信息技术研究院有限公司 一种rlc am模式传输可靠性增强方法
US9263088B2 (en) * 2014-03-21 2016-02-16 Western Digital Technologies, Inc. Data management for a data storage device using a last resort zone
JP6662304B2 (ja) * 2015-01-26 2020-03-11 日本電気株式会社 無線基地局、無線通信システム、無線通信制御方法、および、プログラム
CN105991243A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 一种数据重复传输方法及装置
CN107040557B (zh) * 2016-02-03 2020-10-09 中兴通讯股份有限公司 资源申请、分配方法,ue及网络控制单元
CN107295657B (zh) * 2016-03-31 2023-07-18 中兴通讯股份有限公司 资源分配方法及装置
CN105933910B (zh) * 2016-06-21 2019-11-15 厦门大学 一种资源分配方法及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625378A (zh) * 2012-02-29 2012-08-01 西安电子科技大学 一种异构无线网络快速切换协议流程
WO2015059494A1 (en) * 2013-10-24 2015-04-30 Vodafone Ip Licensing Limited High speed communication for vehicles
CN107046700A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 一种预测移动终端切换基站的方法和装置
CN105813086A (zh) * 2016-05-31 2016-07-27 宇龙计算机通信科技(深圳)有限公司 目标网络覆盖检测方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3723414A4 *

Also Published As

Publication number Publication date
EP3723414A1 (en) 2020-10-14
US11363604B2 (en) 2022-06-14
CN109874111B (zh) 2022-04-12
US20210227535A1 (en) 2021-07-22
JP2021505008A (ja) 2021-02-15
US20220279503A1 (en) 2022-09-01
EP3723414A4 (en) 2021-09-15
CN109874111A (zh) 2019-06-11
JP7025063B2 (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
WO2019109773A1 (zh) 调度方法、发送信息的方法、装置及存储介质
US20210409990A1 (en) Drive testing method and device, drive testing control method and device, apparatus, and storage medium
JP6543355B2 (ja) 接続性管理のためのシステム及び方法
US9693200B2 (en) Method and system of providing data service according to a user's future location
CN112586048B (zh) 管理前传网络的方法、设备、计算机程序产品和数据集
CN105009475B (zh) 考虑到用户设备(ue)移动性的用于准入控制和资源可用性预测的方法和系统
JP5417214B2 (ja) 移動通信システム
US20210029674A1 (en) Communication device
US20210314830A1 (en) Wireless network communications method, base station, terminal, and communications apparatus
WO2016192466A1 (zh) 一种进行调度的方法和设备
US10951361B2 (en) IoV low latency communication method, terminal and system
CN105657837B (zh) 虚拟小区资源分配方法、装置和系统
KR102121526B1 (ko) 클라우드 셀 통신 시스템에서 데이터 스케쥴링 장치 및 방법
US20220070972A1 (en) Method and Apparatus for Platoon-Based Communications
WO2017024944A1 (zh) 一种资源信息发送、广播方法及装置
US20230388817A1 (en) Activating intelligent wireless communciation device reporting in a wireless network
US20210234648A1 (en) Method and apparatus for distribution and synchronization of radio resource assignments in a wireless communication system
US11855786B2 (en) Systems and methods for intelligent differentiated retransmissions
Xiao et al. AdaptiveFog: A modelling and optimization framework for fog computing in intelligent transportation systems
CN111316755B (zh) 使能同时使用多种蜂窝网络技术
CN113841436A (zh) 用于在无线网络中的多个链路上适配并发带宽部分切换的方法和系统
US20220346108A1 (en) Controlling Traffic and Interference in a Communications Network
KR102143559B1 (ko) 패킷 중복 전송을 위한 주파수 대역 선택 방법 및 상기 방법이 적용된 이동통신 장치
WO2020001769A1 (en) Quality of service control and mobility management for advanced vehicular users of wireless network
US20240073770A1 (en) Lmf assisted mro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885119

Country of ref document: EP

Effective date: 20200706