WO2019109720A1 - 一种复杂型面工件切向渐变热喷涂涂层设计方法 - Google Patents

一种复杂型面工件切向渐变热喷涂涂层设计方法 Download PDF

Info

Publication number
WO2019109720A1
WO2019109720A1 PCT/CN2018/109138 CN2018109138W WO2019109720A1 WO 2019109720 A1 WO2019109720 A1 WO 2019109720A1 CN 2018109138 W CN2018109138 W CN 2018109138W WO 2019109720 A1 WO2019109720 A1 WO 2019109720A1
Authority
WO
WIPO (PCT)
Prior art keywords
erosion
coating
plastic
brittle
workpiece
Prior art date
Application number
PCT/CN2018/109138
Other languages
English (en)
French (fr)
Inventor
李方义
鹿海洋
李振
杜际雨
商建通
李剑峰
王黎明
李燕乐
刘子武
张兴艺
冉学举
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US16/338,689 priority Critical patent/US10982311B2/en
Publication of WO2019109720A1 publication Critical patent/WO2019109720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids

Definitions

  • the invention belongs to the technical field of thermal spraying, and in particular relates to a design method of a tangentially graded thermal spray coating for a complex profile workpiece.
  • Erosion rate is an important indicator to measure erosion wear. It is greatly affected by the impact angle between the incident particles and the complex surface and the brittle plasticity of the coating material. As shown in Figure 1, 2, the brittle coating material is at a small angle. The lower erosion resistance is good, and the plastic material has good erosion resistance at large angles, and the erosion resistance is different in the range of impact angle [0°, 90°].
  • the present invention provides a tangentially graded thermal spray coating design method for a complex profile workpiece, which exhibits a large difference in erosion resistance performance according to different impact angles of the plastic material and the brittle material.
  • Theoretical calculation, software simulation and experiment are combined to obtain the plastic-brittle ratio of the coating (the plastic material accounts for the mass fraction of the mixed powder), the corresponding relationship between the erosion rate and the impact angle, and the coating structure of the spray material along the surface of the complex surface is constructed.
  • the coating's erosion resistance is matched to the requirements of various parts of the complex profile.
  • a tangentially graded thermal spray coating design method for a complex profile workpiece comprising the following steps:
  • Step 1 According to the complex profile workpiece structure and working condition, determine the variation law of the impact angle between the surface of the complex profile workpiece and the erosion particle;
  • Step 2 Select anti-erosion coating materials, including brittle materials and plastic materials, according to the requirements of working conditions;
  • Step 3 spraying the workpiece with the anti-erosion coating material of step 2, and performing an erosion test, and obtaining the relationship between the impact angle of the anti-erosion coating-plastic embrittlement ratio and the erosion rate;
  • Step 4 According to steps 1 and 3, combining the erosion threshold threshold conditions of the complex profile workpiece, the correspondence between the plastic-brittle ratio of the erosion resistant coating and the impact angle is determined;
  • Step 5 Determine the correspondence between the coating plastic-brittle ratio and the surface position of the complex profile workpiece by the corresponding relationship of the step 4, and thermally spray the surface of the complex profile workpiece.
  • the working conditions include erosion particle properties (type, particle size, shape) and environmental conditions (gas-solid two-phase flow velocity, pressure, and temperature).
  • step 1 analyzing the service condition of the complex profile workpiece, theoretically calculating and extracting the gas phase boundary condition and the particle boundary condition, and using the fluid simulation software simulation analysis to obtain the impact angle between the surface of the complex profile workpiece and the erosion particle.
  • the law of change is a condition in which the service condition of the complex profile workpiece is analyzed.
  • the types of the brittle material and the plastic material in the erosion resistant coating material are specifically determined.
  • the erosion resistant coating material is mechanically mixed from the plastic material and the brittle material.
  • the plastic-brittle ratio of the erosion-resistant coating material ranges from [0, 1].
  • step 3 is:
  • the anti-erosion coating material obtained by mixing the brittle material and the plastic material selected in step 2 with different mixing ratios is sprayed on the workpiece, and the multi-factor erosion test is designed by orthogonal test method to obtain the impact angle and the plastic-brittle ratio. And experimental data of erosion rate, and fitting to obtain the three relational surfaces.
  • the erosion threshold threshold condition of the complex profile workpiece is calculated according to the working condition requirement and the rated life of the complex profile workpiece.
  • the average value of the erosion rate at each impact angle is the minimum optimization target, and the three relationships determined in step 3 are used as the constraint conditions, and the impact angle corresponding to each point on the surface of the complex profile workpiece is taken as the impact angle.
  • the two-way powder feeding thermal spraying device with real-time adjustable powder feeding amount is used to control the powder feeding amount by the controller to realize the plastic-brittle ratio control, and the surface of the complex profile workpiece is thermally sprayed.
  • the invention can design a coating with anti-erosion performance matching impact angle change on the surface of the complex surface, and solves the problem of erosion resistance of the complex surface which the homogeneous material coating cannot meet the wide range of impact angle.
  • the tangentially graded coating obtained by the invention has more uniform erosion and lower overall average erosion rate, and can be used for new product reinforcement and damage repairing of damaged parts, and can effectively improve service life. .
  • Figure 1 is a schematic view showing the impact angle of incident particles and complex surface
  • Figure 2 shows the variation of the erosion rate of the brittle material, the plastic material and the modified material with the impact angle
  • Figure 3 is a schematic diagram of coating modification
  • Figure 4 shows the impact angle-plastic embrittlement ratio-erosion rate relational surface.
  • the use of a homogeneous brittle coating to strengthen or repair complex profile parts does not meet the erosion resistance requirements of the coating at various impact angles.
  • the present application proposes a tangentially graded thermal spray coating design method for a complex profile workpiece, which is directed to the anti-erosion performance requirements of different regions of the complex profile, and is resistant to impact at different impact angles according to the brittleness and plasticity of the material.
  • the difference in etch performance (as shown in Figure 2), the performance-driven tangentially graded coating system is built, that is, the plastic material is mixed during the spraying process of the brittle coating material, and the coating performance is matched to each part by changing the plastic-brittle ratio.
  • the erosion resistance which in turn increases the service life of complex profile parts.
  • a brittle material is used to make a single homogeneous brittle coating.
  • the coating is more flexible than the surface impact angle.
  • a method for designing a tangentially graded thermal spray coating of a complex profile workpiece including the following steps:
  • Step 1 According to the complex profile workpiece structure and working condition, determine the variation law of the impact angle between the surface of the complex profile workpiece and the erosion particle;
  • Step 2 Select anti-erosion coating materials, including brittle materials and plastic materials, according to the requirements of working conditions;
  • Step 3 spraying the workpiece with the anti-erosion coating material of step 2, and performing an erosion test, and obtaining the relationship between the impact angle of the anti-erosion coating-plastic embrittlement ratio and the erosion rate;
  • Step 4 According to steps 1 and 3, combining the erosion threshold threshold conditions of the complex profile workpiece, the correspondence between the plastic-brittle ratio of the erosion resistant coating and the impact angle is determined;
  • Step 5 Determine the correspondence between the coating plastic-brittle ratio and the surface position of the complex profile workpiece by the corresponding relationship of the step 4, and thermally spray the surface of the complex profile workpiece.
  • operating conditions include erosion particle properties (type, particle size, shape) and environmental conditions (gas-solid two-phase flow rate, pressure, and temperature).
  • step 1 the service conditions of complex profile workpieces are analyzed, and the gas phase boundary conditions and particle boundary conditions are theoretically calculated and extracted.
  • the variation of the impact angle between the surface of the complex profile workpiece and the erosion particles is obtained by simulation of fluid simulation software.
  • the types of the brittle material and the plastic material in the erosion resistant coating material are specifically determined.
  • the erosion resistant coating material is mechanically mixed from a plastic material and a brittle material.
  • the plastic-brittle ratio of the erosion-resistant coating material ranges from [0, 1].
  • step 3 The specific steps of step 3 are as follows:
  • the anti-erosion coating material obtained by mixing the brittle material and the plastic material selected in step 2 with different mixing ratios is sprayed on the workpiece, and the multi-factor (impact angle, plastic-brittle ratio) erosion test is designed by orthogonal test method.
  • the test data of impact angle, plastic-brittle ratio and erosion rate were obtained, and the three-relational surface was obtained by Matlab fitting.
  • step 4 the erosion rate threshold constraint condition of the complex profile workpiece is calculated according to the working condition requirements and the rated life of the complex profile workpiece.
  • step 5 the average value of the erosion rate at each impact angle is the minimum optimization target, and the three relationships determined in step 3 are used as the constraint conditions, and the impact angle corresponding to each point on the surface of the complex surface workpiece is used as the position constraint and setting.
  • the equation of the plastic-brittle ratio is the polynomial function as the continuity constraint of the coating plastic-brittle ratio.
  • step 5 the two-way powder feeding thermal spraying equipment with real-time adjustable powder feeding amount is used to control the powder feeding amount by the controller to realize the plastic-brittle ratio control, and the surface of the complex surface workpiece is thermally sprayed.
  • the average value of the erosion rate at each impact angle is the smallest
  • the formula of the plastic-brittle ratio is about a polynomial function.
  • the coefficients m i are solved. The plastic-brittle ratio of the coating at different positions of the blade surface and different impact angles is obtained, and the tangentially graded coating design of the blade surface is realized.
  • Spray coating Based on the matching relationship between the tangentially graded coating and the surface impact angle of the blade, the two-way powder feeding thermal spraying equipment with real-time adjustable powder feeding amount is used for spraying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种复杂型面工件切向渐变热喷涂涂层设计方法,它解决了均质材料涂层不能满足冲击角度大范围变化的复杂型面的抗冲蚀问题,其得出热喷涂涂层塑脆比和冲击角度变化的对应关系,使得复杂型面零部件表面的热喷涂涂层性能匹配各部位需求的抗冲蚀性能,其技术方案为:根据零部件运行环境条件,确定复杂型面零部件表面的冲击角度的变化规律;根据使用工况要求,选择抗冲蚀涂层材料;通过冲蚀试验获取涂层的冲击角度-塑脆比-冲蚀率关系;确定涂层的塑脆比与冲击角度的对应关系曲线;基于切向渐变涂层与表面冲击角度匹配关系,利用送粉量实时可调的双路送粉热喷涂设备,进行喷涂。

Description

一种复杂型面工件切向渐变热喷涂涂层设计方法 技术领域
本发明属于热喷涂技术领域,特别是涉及一种复杂型面工件切向渐变热喷涂涂层设计方法。
背景技术
冲蚀工况下的复杂型面零部件广泛应用于石油、化工、冶金、天然气输送等行业,在国民经济发展及国防领域占有重要地位。大型离心式压缩机叶轮是典型复杂型面零部件,其一般采用超高强度材料制造,且空间几何结构复杂,材料成本及加工成本高昂。在西气东输服役环境中,受气固两相流冲蚀磨损,叶片减薄是其重要损伤形式,热喷涂技术是强化其表面抗冲蚀性能的重要技术之一。
冲蚀率作为衡量冲蚀磨损的重要指标,受入射粒子与复杂型面表面间的冲击角度和涂层材料的脆塑性影响较大,如图1、2所示,脆性涂层材料在中小角度下抗冲蚀性能良好,塑性材料在大角度下抗冲蚀性能良好,二者在冲击角度[0°,90°]变化范围内抗冲蚀性能迥异。
如图3所示,复杂型面表面受冲击时,因整体型面上冲击角度变化范围大,均质涂层无法满足其在各冲击角度下的抗冲蚀性能要求,因此,亟待开发脆塑性沿复杂型面表面变化的非均质切向渐变涂层,以匹配服役时表面的冲击角度变化,提高抗冲蚀能力。
发明内容
为了克服上述现有技术的不足,本发明提供了一种复杂型面工件切向渐变热喷涂涂层设计方法,根据塑性材料和脆性材料在不同冲击角度下表现出的抗冲蚀性能巨大差异,理论计算、软件仿真和试验相结合获取涂层的塑脆比(塑性材料占混合粉末的质量分数)、冲蚀率和冲击角度的对应关系,构建喷涂材料沿复杂型面表面渐变的涂层结构,使得涂层抗冲蚀性能匹配复杂型面各部位需求。
进一步的,本发明采用下述技术方案:
一种复杂型面工件切向渐变热喷涂涂层设计方法,包括以下步骤:
步骤1:根据复杂型面工件结构、工况条件,确定复杂型面工件表面与冲蚀粒子间冲击角度的变化规律;
步骤2:根据使用工况需求选择抗冲蚀涂层材料,包括脆性材料与塑性材料;
步骤3:采用步骤2的抗冲蚀涂层材料对工件进行喷涂,并进行冲蚀试验,测试得到抗冲蚀涂层的冲击角度-塑脆比-冲蚀率三者关系;
步骤4:根据步骤1和步骤3,结合复杂型面工件的冲蚀率阈值约束条件,确定抗冲蚀涂层的塑脆比与冲击角度的对应关系;
步骤5:由步骤4的对应关系,确定涂层塑脆比与复杂型面工件表面位置的对应关系,对复杂型面工件表面进行热喷涂。
进一步的,所述步骤1中,工况条件包括冲蚀粒子性能(种类、粒度、形状)和环境条件(气固两相流流速、压力和温度)。
进一步的,所述步骤1中,分析复杂型面工件服役工况,理论计算并提取气相边界条件与颗粒边界条件,采用流体仿真软件仿真分析得出复杂型面工件表面与冲蚀粒子间冲击角度的变化规律。
所述步骤2中,根据脆性材料和塑性材料的抗冲蚀性能,结合工件使用工况要求,具体确定抗冲蚀涂层材料中脆性材料和塑性材料的种类。
进一步的,所述步骤2中,抗冲蚀涂层材料由塑性材料和脆性材料机械混合而成。
进一步的,抗冲蚀涂层材料的塑脆比变化范围为[0,1]。
进一步的,所述步骤3的具体步骤为:
采用步骤2选择的脆性材料和塑性材料以不同混合比例配比得到的抗冲蚀涂层材料,对工件进行喷涂,采用正交试验法,设计多因素冲蚀试验,得到冲击角度、塑脆比和冲蚀率的试验数据,并拟合得到三者关系曲面。
进一步的,所述步骤4中,复杂型面工件的冲蚀率阈值约束条件根据复杂型面工件使用工况要求及额定寿命计算得出。
进一步的,所述步骤5中,以各冲击角度下冲蚀率平均值最小为优化目标,以步骤3确定的三者关系作为约束条件、以复杂型面工件表面各点所对应的冲击角度作为位置约束、设定塑脆比关于冲击角度的方程作为涂层塑脆比的连续性约束,最终获得工件表面不同位置、不同冲击角度下涂层的塑脆比,实现工件表面切向渐变涂层设计。
进一步的,所述步骤5中,利用送粉量实时可调的双路送粉热喷涂设备,通 过控制器控制送粉量来实现塑脆比控制,对复杂型面工件表面进行热喷涂。
与现有技术相比,本发明的有益效果是:
本发明能够在复杂型面表面设计出抗冲蚀性能匹配冲击角度变化的涂层,解决了均质材料涂层不能满足冲击角度大范围变化的复杂型面的抗冲蚀问题。
对于冲击角度变化范围大的复杂型面零部件,本发明得到的切向渐变涂层冲蚀更均匀,整体平均冲蚀率更低,可用于新品强化及损伤件尺寸修复,能有效提升使用寿命。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为入射粒子与复杂型面表面冲击角度示意图;
图2为脆性材料、塑性材料和改性材料的冲蚀率随冲击角度变化规律;
图3为涂层改性示意图;
图4为冲击角度-塑脆比-冲蚀率关系曲面。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,采用均质脆性涂层强化或修复复杂型面零部件,无法满足涂层在各冲击角度下的抗冲蚀性能要求。为了解决如上技术问题,本申请提出了一种复杂型面工件切向渐变热喷涂涂层设计方法,面向复杂型面不同区域抗冲蚀性能需求,依据脆性、塑性材料在不同冲击角度下抗冲蚀性能的差异(如图2所示),构建基于性能驱动的切向渐变涂层体系,即在脆性涂层材料喷涂过程中混入塑性材料,通过改变塑脆比,使涂层性能匹配各部位的抗冲蚀性能,进 而提高复杂型面零部件的使用寿命。现有技术中多是采用脆性材料制成单一均质脆性涂层,本发明方案中涂层塑脆比沿表面冲击角度的变化而变化。
本申请的一种典型的实施方式中,提供了一种复杂型面工件切向渐变热喷涂涂层设计方法,包括以下步骤:
步骤1:根据复杂型面工件结构、工况条件,确定复杂型面工件表面与冲蚀粒子间冲击角度的变化规律;
步骤2:根据使用工况需求选择抗冲蚀涂层材料,包括脆性材料与塑性材料;
步骤3:采用步骤2的抗冲蚀涂层材料对工件进行喷涂,并进行冲蚀试验,测试得到抗冲蚀涂层的冲击角度-塑脆比-冲蚀率三者关系;
步骤4:根据步骤1和步骤3,结合复杂型面工件的冲蚀率阈值约束条件,确定抗冲蚀涂层的塑脆比与冲击角度的对应关系;
步骤5:由步骤4的对应关系,确定涂层塑脆比与复杂型面工件表面位置的对应关系,对复杂型面工件表面进行热喷涂。
步骤1中,工况条件包括冲蚀粒子性能(种类、粒度、形状)和环境条件(气固两相流流速、压力和温度)。
步骤1中,分析复杂型面工件服役工况,理论计算并提取气相边界条件与颗粒边界条件,采用流体仿真软件仿真分析得出复杂型面工件表面与冲蚀粒子间冲击角度的变化规律。
所述步骤2中,根据脆性材料和塑性材料的抗冲蚀性能,结合工件使用工况要求,具体确定抗冲蚀涂层材料中脆性材料和塑性材料的种类。
步骤2中,抗冲蚀涂层材料由塑性材料和脆性材料机械混合而成。抗冲蚀涂层材料的塑脆比变化范围为[0,1]。
步骤3的具体步骤为:
采用步骤2选择的脆性材料和塑性材料以不同混合比例配比得到的抗冲蚀涂层材料,对工件进行喷涂,采用正交试验法,设计多因素(冲击角度、塑脆比)冲蚀试验,得到冲击角度、塑脆比和冲蚀率的试验数据,并利用Matlab拟合得到三者关系曲面。
步骤4中,复杂型面工件的冲蚀率阈值约束条件根据复杂型面工件使用工况要求及额定寿命计算得出。
步骤5中,以各冲击角度下冲蚀率平均值最小为优化目标,以步骤3确定的三者关系作为约束条件、以复杂型面工件表面各点所对应的冲击角度作为位置约束、设定塑脆比关于冲击角度的方程为多项式函数作为涂层塑脆比的连续性约束,最终获得工件表面不同位置、不同冲击角度下涂层的塑脆比,实现零部件表面切向渐变涂层设计。
步骤5中,利用送粉量实时可调的双路送粉热喷涂设备,通过控制器控制送粉量来实现塑脆比控制,对复杂型面工件表面进行热喷涂。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
以西气东输工程中常用的压缩机叶片(基体材料为FV520B)为例,表面喷涂TiB 2-M涂层(其中“TiB 2”为脆性陶瓷材料、“M(Metal)”为塑性金属材料,以“M”与“TiB 2”的质量比为塑脆比)的设计方法,具体包括下列步骤:
(1)明确压缩机叶片型号、工况、额定寿命;
(2)确定压缩机叶片表面冲击角度变化规律:根据叶片的运行环境条件(气固两相流流速、压力和温度等)和冲蚀粒子特征(种类、粒度、形状),理论计算并提取气相边界条件与颗粒边界条件,利用Fluent等流体仿真软件模拟分析叶片表面冲击角度变化规律,获取冲击角度与叶片极坐标的关系α=g(θ);
(3)确定抗冲蚀涂层材料:分析压缩机叶片使用工况(如温度、湿度、风速、颗粒物大小等)、涂层性能要求(对涂层的耐腐蚀性、耐高温、耐冲蚀性的要求等)、涂层与基体材料的结合特性(对结合强度的要求等)等,选择TiB 2-M涂层体系。根据M与TiB 2润湿性能,选取金属Ni、Co、Fe或Cr为塑性材料;
(4)确定涂层“冲击角度-塑脆比-冲蚀率”关系:采用上一步骤确定的TiB 2-M涂层体系,利用正交试验法获取冲击角α(0°-90°)、塑脆比k(0%-100%)、冲蚀率ε三者试验数据,利用Matlab软件拟合三者关系方程ε=f(k,α)及响应曲面,如图4所示。
(5)切向渐变涂层与叶片表面冲击角度的匹配:以各冲击角度下冲蚀率平均值最小
Figure PCTCN2018109138-appb-000001
为优化目标,以冲蚀率关于塑脆比和冲击角度的方程ε=f(k,α)作为约束条件、以叶片表面上各点的冲击角度方程α=g(θ)作为位置约束、设定 塑脆比关于冲击角度的方程为多项式函数
Figure PCTCN2018109138-appb-000002
作为涂层塑脆比的连续性约束,求解各项系数m i。从而获得叶片表面不同位置、不同冲击角度下涂层的塑脆比,实现叶片表面切向渐变涂层设计。
(6)喷涂涂层:基于切向渐变涂层与叶片表面冲击角度匹配关系,利用送粉量实时可调的双路送粉热喷涂设备,进行喷涂。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种复杂型面工件切向渐变热喷涂涂层设计方法,其特征是,包括以下步骤:
    步骤1:根据复杂型面工件结构、工况条件,确定复杂型面工件表面与冲蚀粒子间冲击角度的变化规律;
    所述步骤1中,分析复杂型面工件服役工况,理论计算并提取气相边界条件与颗粒边界条件,采用流体仿真软件仿真分析得出复杂型面工件表面与冲蚀粒子间冲击角度的变化规律;
    步骤2:根据使用工况需求选择抗冲蚀涂层材料,包括脆性材料与塑性材料;
    步骤3:采用步骤2的抗冲蚀涂层材料对工件进行喷涂,并进行冲蚀试验,测试得到抗冲蚀涂层的冲击角度-塑脆比-冲蚀率三者关系;
    步骤4:根据步骤1和步骤3,结合复杂型面工件的冲蚀率阈值约束条件,确定抗冲蚀涂层的塑脆比与冲击角度的对应关系;
    步骤5:由步骤4的对应关系,确定涂层塑脆比与复杂型面工件表面位置的对应关系,对复杂型面工件表面进行热喷涂。
  2. 如权利要求1所述的设计方法,其特征是,所述步骤1中,工况条件包括冲蚀粒子性能和环境条件。
  3. 如权利要求1所述的设计方法,其特征是,所述步骤2中,根据脆性材料和塑性材料的抗冲蚀性能,结合工件使用工况要求,具体确定抗冲蚀涂层材料中脆性材料和塑性材料的种类。
  4. 如权利要求1所述的设计方法,其特征是,所述步骤2中,抗冲蚀涂层材料由塑性材料和脆性材料机械混合而成。
  5. 如权利要求4所述的设计方法,其特征是,抗冲蚀涂层材料的塑脆比变化范围为[0,1]。
  6. 如权利要求1所述的设计方法,其特征是,所述步骤3的具体步骤为:
    采用步骤2选择的脆性材料和塑性材料以不同混合比例配比得到的抗冲蚀涂层材料,对工件进行喷涂,采用正交试验法,设计多因素冲蚀试验,得到冲击角度、塑脆比和冲蚀率的试验数据,并拟合得到三者关系曲面。
  7. 如权利要求1所述的设计方法,其特征是,所述步骤4中,复杂型面工件的冲蚀率阈值约束条件根据复杂型面工件使用工况要求及额定寿命计算得出。
  8. 如权利要求1所述的设计方法,其特征是,所述步骤5中,以各冲击角度下冲蚀率平均值最小为优化目标,以步骤3确定的三者关系作为约束条件、以复杂型面工件表面各点所对应的冲击角度作为位置约束、设定塑脆比关于冲击角度的方程作为涂层塑脆比的连续性约束,最终获得工件表面不同位置、不同冲击角度下涂层的塑脆比。
  9. 如权利要求1所述的设计方法,其特征是,所述步骤5中,利用送粉量实时可调的双路送粉热喷涂设备,通过控制器控制送粉量来实现塑脆比控制,对复杂型面工件表面进行热喷涂。
PCT/CN2018/109138 2017-12-08 2018-09-30 一种复杂型面工件切向渐变热喷涂涂层设计方法 WO2019109720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/338,689 US10982311B2 (en) 2017-12-08 2018-09-30 Method of tangential gradient thermal spraying coating for complex profile workpieces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711298231.5A CN107798204B (zh) 2017-12-08 2017-12-08 一种复杂型面工件切向渐变热喷涂涂层设计方法
CN201711298231.5 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019109720A1 true WO2019109720A1 (zh) 2019-06-13

Family

ID=61537113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109138 WO2019109720A1 (zh) 2017-12-08 2018-09-30 一种复杂型面工件切向渐变热喷涂涂层设计方法

Country Status (3)

Country Link
US (1) US10982311B2 (zh)
CN (1) CN107798204B (zh)
WO (1) WO2019109720A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386836A (zh) * 2019-07-23 2019-10-29 福建农林大学 一种基于自供电设计的电堆肥系统及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798204B (zh) 2017-12-08 2018-10-26 山东大学 一种复杂型面工件切向渐变热喷涂涂层设计方法
CN109261466B (zh) * 2018-11-16 2020-04-24 山东大学 一种考虑沉积率修正的功能梯度涂层设计方法
CN110032798B (zh) * 2019-04-15 2020-11-06 山东大学 一种双向功能梯度涂层设计方法
CN111759488B (zh) * 2020-07-09 2021-08-24 山东大学 一种应用于根管预备的变截面镍钛根管锉的设计方法及系统与制备
CN112270082B (zh) * 2020-10-23 2022-12-23 山东大学 一种基于等冲击角线的切向功能梯度涂层制备方法
CN112307621B (zh) * 2020-10-30 2022-11-01 山东大学 一种基于道宽与道距约束的切向功能梯度涂层过渡区设计及性能预测方法
CN112765741B (zh) * 2021-01-04 2022-04-22 山东大学 一种小型复杂型面零部件涂层配伍优化设计方法
CN114491832B (zh) * 2021-12-27 2023-12-01 徐州圣邦机械有限公司 一种高压内啮合齿轮泵的可靠性提升方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683226A (en) * 1996-05-17 1997-11-04 Clark; Eugene V. Steam turbine components with differentially coated surfaces
CN1799054A (zh) * 2003-09-30 2006-07-05 东京毅力科创株式会社 用基本原理仿真辅助半导体制造过程的系统和方法
CN101713059A (zh) * 2008-10-07 2010-05-26 中国人民解放军装甲兵工程学院 提高喷涂层接触疲劳寿命的方法
CN102597296A (zh) * 2009-10-27 2012-07-18 西门子公司 涂层厚度的模拟方法
CN102909148A (zh) * 2012-08-13 2013-02-06 东南大学 一种多喷枪自适应建模的喷涂路径自动生成方法
CN104516998A (zh) * 2013-10-08 2015-04-15 天津大学 基于双面壁面边界条件的超音速火焰喷涂的仿真方法
CN104530945A (zh) * 2014-11-19 2015-04-22 中国科学院力学研究所 一种用于动车车头的涂层组合
CN107798204A (zh) * 2017-12-08 2018-03-13 山东大学 一种复杂型面工件切向渐变热喷涂涂层设计方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011075810A1 (de) * 2011-05-13 2012-11-15 Voith Patent Gmbh Korrosionsbeständige walzenbeschichtung
US20130064490A1 (en) * 2011-09-13 2013-03-14 II Ronald G. Brock Thermal spray coating of sliding bearing lining layer
US8893580B2 (en) * 2011-10-17 2014-11-25 Mahle International Gmbh Thermal spray coating for connecting rod small end
EP2781616A1 (en) * 2013-03-19 2014-09-24 ALSTOM Technology Ltd Method for coating a component of a turbomachine and coated component for a turbomachine
EP3071727B1 (en) * 2013-11-18 2019-05-01 United Technologies Corporation Airfoil having a variable coating
CN104715110B (zh) * 2015-03-13 2017-08-25 大连理工大学 一种精密复杂曲面零件型面磨料流等余量精准抛光模具设计方法
CN106001924A (zh) * 2016-05-30 2016-10-12 远利(天津)海业机械工程有限公司 定向井钻井工具中冲蚀磨损精密件的激光增材再造与抗冲蚀表面强化
CN107345291A (zh) * 2016-12-20 2017-11-14 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种喷涂预处理方法
CN107032831B (zh) * 2017-03-29 2018-02-23 北京航空航天大学 一种稀土系t/ebc陶瓷基复合环境障涂层及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683226A (en) * 1996-05-17 1997-11-04 Clark; Eugene V. Steam turbine components with differentially coated surfaces
CN1799054A (zh) * 2003-09-30 2006-07-05 东京毅力科创株式会社 用基本原理仿真辅助半导体制造过程的系统和方法
CN101713059A (zh) * 2008-10-07 2010-05-26 中国人民解放军装甲兵工程学院 提高喷涂层接触疲劳寿命的方法
CN102597296A (zh) * 2009-10-27 2012-07-18 西门子公司 涂层厚度的模拟方法
CN102909148A (zh) * 2012-08-13 2013-02-06 东南大学 一种多喷枪自适应建模的喷涂路径自动生成方法
CN104516998A (zh) * 2013-10-08 2015-04-15 天津大学 基于双面壁面边界条件的超音速火焰喷涂的仿真方法
CN104530945A (zh) * 2014-11-19 2015-04-22 中国科学院力学研究所 一种用于动车车头的涂层组合
CN107798204A (zh) * 2017-12-08 2018-03-13 山东大学 一种复杂型面工件切向渐变热喷涂涂层设计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386836A (zh) * 2019-07-23 2019-10-29 福建农林大学 一种基于自供电设计的电堆肥系统及方法

Also Published As

Publication number Publication date
CN107798204B (zh) 2018-10-26
CN107798204A (zh) 2018-03-13
US20190360085A1 (en) 2019-11-28
US10982311B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2019109720A1 (zh) 一种复杂型面工件切向渐变热喷涂涂层设计方法
CN108304601B (zh) 一种高超声速飞行器边界层转捩的判断方法
CN109261466B (zh) 一种考虑沉积率修正的功能梯度涂层设计方法
CN105868501A (zh) 热障涂层冲蚀率模型及含涂层涡轮叶片冲蚀工况模拟方法
CN104516998A (zh) 基于双面壁面边界条件的超音速火焰喷涂的仿真方法
Ding et al. Control of flow separations in compressor cascade by boundary layer suction holes in suction surface
Li et al. Effects of the particle Stokes number on wind turbine airfoil erosion
MacDonald et al. Effect of nozzle material on downstream lateral injection cold spray performance
CN105568200A (zh) 一种团聚型复合粉等离子喷涂制备封严涂层的工艺方法
CN111523201A (zh) 一种发动机反推状态下的内外流场耦合迭代计算方法
Hu et al. An improved streamline curvature approach for transonic axial compressor performance prediction
CN115879216A (zh) 一种内流道强波系干扰控制下的流场重构设计方法
Fei et al. Application of new empirical models based on mathematical statistics in the through-flow analysis
Chen et al. Performance evaluation and analysis of a new flow conditioner based on CFD
Qun et al. Numerical simulation of flow around airfoil with non-linear RANS model
Liu et al. Study on the influence of surface roughness on the erosion characteristics of compressor blades
Liu et al. Experimental and numerical simulation study on the erosion behavior of the elbow of gathering pipeline in shale gas field
CN111539063A (zh) 一种过渡流区飞行器缝隙热流及防热材料的确定方法
CN112765741B (zh) 一种小型复杂型面零部件涂层配伍优化设计方法
CN104615580B (zh) 一种返回器流场峰值电子密度快速预测方法
CN206710194U (zh) 一种能同时实现喷砂和冲蚀磨损的两用设备
WO2022082979A1 (zh) 一种基于等冲击角线的切向功能梯度涂层制备方法
Gao et al. Molecular dynamics simulation of au cluster depositing on au surface in cold gas spray
CN113515899A (zh) 基于edm-dpm的ac-hvaf热喷涂燃烧焰流特性数值模拟方法
CN114117665B (zh) 一种s2流面框架下轴流压气机经验模型标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886496

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18886496

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.12.2020)