WO2019109680A1 - 特征识别结构、制作方法、驱动方法及相关装置 - Google Patents

特征识别结构、制作方法、驱动方法及相关装置 Download PDF

Info

Publication number
WO2019109680A1
WO2019109680A1 PCT/CN2018/103146 CN2018103146W WO2019109680A1 WO 2019109680 A1 WO2019109680 A1 WO 2019109680A1 CN 2018103146 W CN2018103146 W CN 2018103146W WO 2019109680 A1 WO2019109680 A1 WO 2019109680A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
sensing signal
recognition mode
functional
pressure level
Prior art date
Application number
PCT/CN2018/103146
Other languages
English (en)
French (fr)
Inventor
班圣光
曹占锋
姚琪
高延凯
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18859957.5A priority Critical patent/EP3722934A4/en
Priority to US16/339,226 priority patent/US11353982B2/en
Publication of WO2019109680A1 publication Critical patent/WO2019109680A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • Embodiments of the present disclosure relate to the field of touch recognition technologies for display devices, and in particular, to a feature recognition structure, a fabrication method, a feature recognition device, and a driving method.
  • Common touch recognition mainly includes: fingerprint recognition and pressing instruction recognition.
  • the touch recognition structure of the existing terminal cannot realize multi-level pressure recognition, so a touch recognition structure cannot be used to accurately recognize different degrees of touch actions (for example, touch and press).
  • the fingerprint recognition module and the pressing motion recognition module are separate structures.
  • the fingerprint recognition module is externally attached to the surface of the terminal (such as the Home button of the mobile phone) and can only provide fingerprint recognition.
  • the pressing motion recognition module is disposed inside the screen, and only the pressing command can be recognized.
  • an embodiment of the present disclosure provides a feature recognition structure, including:
  • each of the plurality of functional patterns being on the base substrate
  • the upper orthographic projections are all located in a corresponding overlapping area of the plurality of overlapping regions
  • the material of the functional graphic includes a piezoelectric material, and the functional graphic includes at least two types of sub-patterns, and piezoelectric coefficients of different sub-patterns are substantially different.
  • the function graphic includes: a first type of function graphic and a second type of function graphic that are spaced apart;
  • the orthographic projection of the at least one first type of functional pattern on the substrate substrate and the orthographic projection of the at least one second type of functional pattern on the substrate substrate are located in the same overlapping region.
  • the function graphic includes: a first type of function graphic and a second type of function graphic;
  • one includes only the orthographic projection of the first type of functional pattern on the base substrate, and the other includes only the orthographic projection of the second type of functional pattern on the base substrate.
  • the first electrode extends in a first direction, and the plurality of first electrodes are disposed in parallel with each other in the second direction;
  • One of the adjacent two overlapping regions in the first direction includes only the orthographic projection of the first type of functional pattern on the base substrate, and the other includes only the second type of functional graphic in the lining The orthographic projection of the base substrate.
  • the orthographic projection of the at least one first type of functional pattern on the substrate substrate and the orthographic projection of the at least one second type of functional pattern on the substrate substrate cover exactly the same intersection Within the overlap region, and the two orthographic projections do not intersect each other.
  • the material of the first type of functional pattern comprises zinc oxide (ZnO), and the material of the second type of functional pattern comprises gallium nitride (GaN).
  • the zinc oxide has a piezoelectric coefficient of 1.21 C/m 2 and the gallium nitride has a piezoelectric coefficient of 0.73 C/m 2 .
  • At least two adjacent first electrodes are connected in parallel, and at least two adjacent second electrodes are connected in parallel.
  • the corresponding display area on the base substrate is divided into a plurality of independent detection sub-areas; in each detection sub-area, the first electrodes are connected in parallel with each other, and the second electrode The two electrodes are also electrically connected in parallel; and the first electrodes between the different detection sub-areas are not electrically connected, and the second electrodes between the different detection sub-areas are not electrically connected.
  • an embodiment of the present disclosure further provides a method for fabricating a feature recognition structure, including:
  • the orthographic projections of the plurality of first electrodes and the plurality of second electrodes on the substrate substrate cross each other to form a plurality of overlapping regions; the plurality of functional patterns are disposed on the plurality of Between one or more first electrodes of the first electrode and the corresponding second electrode, and an orthographic projection on the substrate substrate is located in the overlapping region; a material of the functional pattern includes a piezoelectric material
  • the functional graphics include at least two types of sub-graphics, and the piezoelectric coefficients of the different sub-patterns are substantially different.
  • an embodiment of the present disclosure further provides a feature recognition apparatus, including the feature recognition structure provided in the first aspect of the disclosure, the feature recognition apparatus further includes:
  • a receiving circuit for receiving an inductive signal from the second electrode
  • a storage circuit for storing a relationship between a pressure level and a touch recognition mode
  • the processing circuit is configured to determine, according to the pressure level of the sensing signal, a touch recognition mode that matches the sensing signal from a comparison between a pressure level stored in the storage circuit and a touch recognition mode.
  • the storage circuit further stores a comparison relationship between the sensing signal and the pressure level
  • the determining circuit is specifically configured to determine, according to an electrical parameter of the sensing signal, a pressure level that matches the sensing signal from a comparison relationship between the sensing signal stored in the storage circuit and a pressure level.
  • the touch recognition mode includes: a texture recognition mode
  • the feature recognition device further includes:
  • the first execution circuit is configured to extract, from the sensing signal, a feature to be identified for detecting a biological texture when the touch recognition mode matched by the sensing signal determined by the processing circuit is a texture recognition mode.
  • the touch recognition mode includes: pressing an instruction recognition mode;
  • the feature recognition device further includes:
  • the second execution circuit is configured to output a pressing instruction corresponding to the pressing level of the sensing signal when the touch recognition mode matched by the sensing signal determined by the processing circuit is a pressing instruction recognition mode.
  • an embodiment of the present disclosure further provides a driving method, which is applied to the above feature recognition structure provided in the first aspect of the disclosure, including:
  • the step of determining the pressure level of the sensing signal comprises:
  • the touch recognition mode includes a texture recognition mode
  • the driving method further includes:
  • the determined touch recognition mode matched by the sensing signal is a texture recognition mode
  • the feature to be identified for detecting the biological texture is extracted from the sensing signal.
  • the touch recognition mode includes a press instruction recognition mode; the driving method further includes:
  • a pressing command corresponding to the pressing level of the sensing signal is output.
  • an embodiment of the present disclosure further provides a display device including the above-described feature recognition device provided in the first aspect of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a feature recognition structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a feature recognition structure according to an implementation manner of an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a feature recognition structure according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a logical structure of a feature recognition apparatus according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a feature recognition apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of steps of a driving method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a driving method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a driving device according to an embodiment of the present disclosure.
  • the embodiments of the present disclosure provide the following solutions to the technical problem that the fingerprint identification module of the existing individual mechanism is not highly integrated and is easily interfered by the external environment.
  • an embodiment of the present disclosure provides a feature recognition structure, as shown in FIG. 1, including:
  • each A functional pattern 14 is connected to the first electrode 12 and the second electrode 13 forming the overlap region D in which it is located.
  • the connection of each functional pattern 14 to the first electrode 12 and the second electrode 13 forming the overlapping region D thereof generally refers to each functional pattern 14 and the first electrode 12 and the second forming the overlapping region D in which it is located.
  • the electrodes 13 are electrically connected. However, embodiments of the present disclosure are not limited to electrical connections, but may be implemented in other connections known in the art.
  • the material of the functional pattern 14 of the embodiment includes a piezoelectric material, and the functional pattern 14 includes at least two types of sub-patterns, and the piezoelectric coefficients of the sub-patterns of different categories are substantially different.
  • first electrode 12 and the second electrode 13 are both elongated, and the extending direction of the first electrode 12 is at an angle with the extending direction of the second electrode 13 .
  • embodiments of the present disclosure are not limited thereto, and the shapes of the first electrode 12 and the second electrode 13 may also be set to other suitable shapes according to actual needs.
  • the solution of this embodiment is provided with functional patterns of different piezoelectric coefficients between the first electrode and the second electrode to constitute piezoelectric sensors of different piezoelectric effects (ie, piezoelectric diode structures).
  • Piezoelectric sensors with different piezoelectric effects are distributed on the substrate substrate in an array to sense different pressure levels.
  • piezoelectric sensors with large piezoelectric coefficients are sensitive to pressure recognition and have small piezoelectric coefficients.
  • Piezoelectric sensors are relatively blunt for the identification of pressing force.
  • the feature recognition structure provided by the embodiment of the present disclosure can recognize the pressing force of different pressure levels. In practical applications, the user can recognize more touch actions. If it is applied to the terminal, the touch recognition structure of the terminal can be simplified, and the terminal is more advantageous for the trend of miniaturization and light weight, and thus has high practical value.
  • the functional graphics of the present embodiment include: a first type of functional graphics and a second type of functional graphics, wherein the first type of functional graphics and the second type of functional graphics have different categories, ie, different piezoelectric coefficients.
  • the first type of function graphic and the second type of function graphic may be fabricated on the same layer.
  • the manufacturing process of the same layer can effectively reduce the step difference between the upper and lower film layers, and can further improve the process stability.
  • the orthographic projection of at least one first type functional pattern 14a on the substrate substrate 11, and the orthographic projection of the at least one second type functional pattern 14b on the substrate substrate 11 are located. Within the same overlap area. That is, one piezoelectric sensor contains two sub-graphs of different piezoelectric coefficients.
  • the orthogonal projection of the at least one first type functional graphic on the base substrate and the orthographic projection of the at least one second type functional graphic on the base substrate cover exactly the same overlapping area, and The two orthographic projections do not intersect each other.
  • one of the overlapping regions includes only the orthographic projection of the first type of functional pattern on the substrate, and the other overlapping region includes only the second The orthographic projection of the type functional graphic on the base substrate.
  • a piezoelectric sensor contains only one type of sub-pattern, which can reduce the manufacturing difficulty and reduce the crosstalk phenomenon of the piezoelectric signal in the piezoelectric sensor.
  • the plurality of first electrodes 12 of the present embodiment are disposed in parallel with each other, and extend in the first direction (FIG. 3 is illustrated in the row direction, but not limited to the row direction);
  • the electrodes 13 are disposed in parallel with each other in the first direction and extend in the second direction (FIG. 3 is illustrated in the column direction, but is not limited to the column direction);
  • the adjacent two overlapping regions include only the orthographic projection of the first type functional pattern 14a on the base substrate 11, or only the orthographic projection of the second type functional pattern 14b on the base substrate 11. ;
  • one of the two overlapping regions adjacent to each other includes only the orthographic projection of the first type functional pattern 14a on the base substrate 11, and the other overlapping region includes only the second type of function.
  • the functional graphics of the present embodiment are shown in FIG. 2 including: a first type functional graphic 14a and a second type functional graphic 14b, wherein the first type functional graphic 14a and the second type functional graphic 14b have different categories , that is, the piezoelectric coefficient is different.
  • the functional graphic may include, for example, a third type of function in addition to the first type functional graphic 14a and the second type functional graphic 14b.
  • Graphic 14c or fourth type functional graphic 14d may be any functional graphic 14d.
  • the first type of functional graphic 14a, the second type of functional graphic 14b, the third type of functional graphic 14c or the fourth type of functional graphic 14d may be connected in series or in parallel, thereby realizing three by sensing corresponding currents.
  • the signals of the above piezoelectric materials are used in combination to achieve multi-level control of the piezoelectric.
  • the material of the first type of functional pattern of the present embodiment includes zinc oxide (ZnO), and the material of the second type of functional pattern includes gallium nitride (GaN).
  • the piezoelectric coefficient of zinc oxide is 1.21 C/m 2 ; and the piezoelectric coefficient of gallium nitride is 0.73 C/m 2 .
  • the piezoelectric signal for example, gallium nitride having a relatively small piezoelectric coefficient can be further excited to generate a piezoelectric signal.
  • Two-stage control of the piezoelectric can be achieved by combining the signals of the two piezoelectric materials.
  • multi-level control of piezoelectric can also be achieved by integrating signals of three or more piezoelectric materials.
  • At least two adjacent first electrodes 12 are connected in parallel, and at least two adjacent second electrodes 13 are connected. Connected in parallel.
  • the piezoelectric signals generated by the functional pattern 14 in which the first electrode and the second electrode are connected in parallel can be superimposed, and the signal amplification effect is achieved.
  • the corresponding display area on the base substrate can be divided into a plurality of independent detection sub-areas.
  • the first electrodes 12 are connected in parallel with each other, and the second electrodes 13 are also connected in parallel with each other. Further, the first electrodes 12 between the different detection sub-areas are not electrically connected, and the second electrodes 13 between different detection sub-areas are also not electrically connected.
  • the embodiment can detect the sub-region as the identification granularity and detect the touch operation.
  • the embodiment can improve the recognition granularity, thereby further improving the recognition sensitivity.
  • the functional pattern of the present embodiment is not limited to two categories, and the material is not limited to zinc oxide and gallium nitride, and the material may also include a ceramic material having a piezoelectric effect or the like.
  • an embodiment of the present disclosure further provides a method for fabricating the above feature recognition structure, including:
  • a plurality of first touch electrodes 12, a plurality of piezoelectric patterns 14 and a plurality of second touch electrodes 13 are sequentially formed on the base substrate 11; wherein the plurality of first electrodes 12 and the plurality of second electrodes 13 are lined
  • the orthographic projections on the base substrate 11 cross each other to form a plurality of overlapping regions D; a plurality of functional patterns 14 disposed between the plurality of first electrodes 12 and the plurality of second electrodes 13 and on the substrate substrate 11
  • the orthographic projection is located in the overlapping region D;
  • the material of the functional graphic 14 includes a piezoelectric material, and the functional graphic 14 includes at least two types of sub-patterns, and the piezoelectric coefficients of the different sub-patterns are substantially different.
  • the manufacturing method of the present embodiment is used to fabricate the above-mentioned feature recognition structure provided by the present disclosure. Therefore, the feature recognition structure can achieve technical effects, and the manufacturing method of the embodiment can also be implemented.
  • the functional graphics of the feature recognition structure are: a first type functional graphic 14a and a second type functional graphic 14b, and the corresponding manufacturing process includes the following steps:
  • step S1 a second electrode material is deposited on the base substrate 11, and the first electrode material is patterned by one patterning process to obtain a second electrode 13 formed of the second electrode material.
  • the second electrode material may be a metal conductive material such as a conductive material such as copper or silver.
  • Step S2 depositing a ZnO nanorod material on the base substrate 11, and forming the ZnO nanorod material into the first type functional pattern 14a by a patterning process, including:
  • the ZnO nanorod material is patterned using a patterning process to obtain a first type of functional pattern 14a.
  • the thickness of the first type functional pattern 14a is preferably 5,000 angstroms to 15,000 angstroms.
  • step S3 GaN material is sequentially deposited on the base substrate 11, and GaN is formed into the second type functional pattern 14b by one patterning process.
  • the thickness of the second type functional pattern 14b is preferably 5,000 angstroms to 15,000 angstroms;
  • the etching liquids of both ZnO and GaN materials are acidic, that is, under the acidic etching liquid, the etching selectivity ratios of ZnO and GaN are very close. Therefore, as an alternative, the GaN material can be patterned by dry etching in this step.
  • Step S4 depositing a layer of insulating material to form an insulating layer, and then etching the insulating layer to form a via hole exposing the first type functional pattern 14a and the second type functional pattern 14b;
  • the insulating material deposited in this step is used for improving the coverage of the subsequent second electrode formation.
  • the insulating material may be SiN, and the thickness is preferably 100 angstroms to 500 angstroms.
  • Step S5 depositing a first electrode material on the base substrate, and patterning the first electrode material by one patterning process to obtain the first electrode 12 formed of the first electrode material.
  • the first electrode material may be a metal conductive material, such as a conductive material such as copper or silver.
  • the first electrode 12 is connected to the first type functional pattern 14a and the second type functional pattern 14b through via holes on the insulating layer.
  • the first type functional pattern 14a and the second type functional pattern 14b are disposed in the same layer, and the first electrode 12 passes through a plurality of via holes on the insulating layer (not shown in FIG. 2) Shown) is connected to the first type of function graphic 14a and the second type of function graphic 14b, respectively.
  • piezoelectric sensors having two piezoelectric effects each composed of zinc oxide and gallium nitride can be produced.
  • zinc oxide is a single crystal zinc oxide nanorod. Because of its one-dimensional structure, piezoelectric charges can be generated in only one direction, which is advantageous for charge accumulation.
  • the zinc oxide also adopts a single crystal structure, and the internal defects thereof are less, and the generated piezoelectric charge is not trapped by the defect state during the transfer, so that the piezoelectric charge is more transmitted to the second electrode.
  • another embodiment of the present disclosure further provides a feature recognition apparatus including the feature recognition structure provided by the above embodiment of the present disclosure.
  • the feature recognition apparatus of this embodiment further includes:
  • An input circuit 401 configured to input a detection signal to the first electrode
  • the receiving circuit 402 is configured to receive the sensing signal from the second electrode
  • the storage circuit 403 is configured to store a comparison relationship between the pressure level and the touch recognition mode
  • Determining circuit 404 for determining a pressure level of the sensing signal
  • the processing circuit 405 is configured to determine, according to the pressure level, a touch recognition mode that matches the sensing signal from a comparison between the pressure level stored in the storage circuit and the touch recognition mode.
  • the touch recognition mode of the present implementation includes: a texture recognition mode and a press command recognition mode.
  • the touch feature recognition device In combination with the user's actual use requirements, the touch feature recognition device is removed when performing texture recognition and pressing command recognition. But the difference is that in the pattern recognition mode, the user only needs to touch (small pressure touch) (the touch will deform the biological texture, but reduce the recognition accuracy). In the press command recognition mode, a re-touch (large pressure touch) can be performed.
  • the pressure level corresponding to the texture recognition mode of the present embodiment is different from the pressure level corresponding to the pressing command recognition mode.
  • the texture recognition mode is executed.
  • the pressing command recognition mode can be executed. Specifically, when it is determined according to the pressure level that the user touches the feature recognition device with a small pressure to perform the texture recognition mode, only the texture recognition is performed but the fingerprint pattern is not collected.
  • Fingerprinting is performed only when it is determined according to the pressure level that the user touches the feature recognition device with a large pressure to execute the pressing command recognition mode and receives a system demand instruction (for example, an instruction indicating that the valley and the ridge of the fingerprint need to be recognized) collect. Accordingly, according to the above setting, it is possible to effectively reduce unnecessary power consumption caused by the collection operation of the fingerprint pattern frequently performed by the system.
  • the press command recognition mode may be for a press operation when performing payment or decoding on the terminal device.
  • the feature recognition device of the present embodiment can realize the texture recognition and the press command recognition without conflict.
  • the storage circuit 403 of the present embodiment further stores a comparison relationship between the sensing signal and the pressure level.
  • the determining circuit 404 is specifically configured to compare the sensing signal stored in the storage circuit 403 from the pressure level according to the electrical parameter of the sensing signal. , determine the pressure level that matches the sensing signal.
  • the feature to be identified may be a pressure
  • the storage circuit 403 stores a relationship between the sensing signal and the pressure level and a relationship between the pressure level and the touch recognition mode.
  • the relationship between the sensed signal and the stress level can include the following three tables:
  • Table 1 a comparison table of the pressure N 1 received by the first piezoelectric material included in the first functional pattern of the plurality of functional patterns and the induced current I 1 that can be generated;
  • Table 2 a comparison table of the pressure N 2 received by the second piezoelectric material included in the second functional pattern of the plurality of functional patterns and the induced current I 2 that can be generated;
  • Table 3 A comparison table of the pressure N received by the first piezoelectric material and the second piezoelectric material and the induced current I(I 1 +I 2 ) which can be generated.
  • the pressure in a certain range may belong to the same pressure level, and different pressure levels correspond to different interval range pressures, and different pressure levels further correspond to different touch recognition modes.
  • the determining circuit 404 of the embodiment is specifically configured to:
  • the first type of functional graphic When the user's finger presses the feature recognition device, if the pressing force is small, the first type of functional graphic generates an induced current that can be detected, and the induced current generated by the second type of functional graphic is too weak, which is almost negligible.
  • both the first type of function graphic and the second type of functional graphic generate an induced current that can be detected, and the current induced current can be obtained in Table 3 at this time.
  • the current value is approached, and the corresponding pressure value is obtained, and it is determined that the current pressing force belongs to the pressure level L 2 .
  • the present embodiment can further subdivide the pressure level according to the magnitude of the pressing force.
  • the present embodiment is characterized in recognition application on the mobile terminal apparatus, when the detected pressure level L 1, the user then the smaller the intensity of the touch screen of the terminal, the normal execution of the touch slide identification, i.e. the identification of the user sliding Unlock, or slide the page and other operations.
  • the detected pressure level is L 2
  • the texture recognition mode is executed.
  • the detected pressure level is L 3
  • the pressing command recognition mode is executed.
  • the feature recognition apparatus of this embodiment further includes:
  • the first execution circuit is configured to extract, from the sensing signal, a feature to be identified for detecting the biological texture when the touch recognition mode matched by the sensing signal determined by the processing circuit 405 is a texture recognition mode.
  • the first execution circuit can be used to verify the legitimacy of the biological texture. That is, the feature recognition structure of the present embodiment can be applied to a user terminal.
  • the user terminal locally stores the identification features corresponding to the legal biological texture.
  • the pressing force between the positions of the biograin valleys is different, which may cause the piezoelectric diodes at the corresponding positions to generate the sensing signals having the meaning of the identification.
  • the first execution circuit of the embodiment obtains the feature to be identified from the sensing signal, and compares it with the legal identification feature saved locally by the user terminal, thereby verifying the legality of the user identity.
  • the feature recognition apparatus of this embodiment may further include:
  • the second execution circuit is configured to output a pressing instruction corresponding to the pressing level of the sensing signal when the touch recognition mode matched by the sensing signal determined by the processing circuit 405 is the pressing command recognition mode.
  • the second execution circuit can be used to output a pressing command of different pressure levels: that is, the feature recognition structure of the embodiment can be applied to the user terminal.
  • the user terminal locally stores the correspondence between the pressure level and the pressing command, and the different pressure levels may correspond to different pressing commands.
  • the determining circuit 404 of the embodiment determines the matched pressure level according to the generated sensing signal, and the second execution circuit can output the corresponding pressing command based on the matched pressure level.
  • the output of the different pressing commands can cause the user terminal to generate different menu commands.
  • the feature recognition structure of the embodiment can enable the user terminal to implement a more variety of pressing operations.
  • the feature recognition apparatus of this embodiment may be implemented by the following specific hardware:
  • the MCU microcontroller with calculation function, and is equipped with RAM (random access memory) and ROM (read only memory).
  • the MCU can output a detection signal to the first electrode in a row and read back the sensing signal fed back by the second electrode.
  • the RAM is used as a calculation memory, and the result of the temporary sensing signal is stored for comparison by the MCU.
  • the ROM is the storage circuit 403 described above for storing all of the comparison relationships described above.
  • the MCU reads back the sensing signal of the second electrode feedback and stores it in the RAM, and compares the data with the ROM from the RAM for comparison, thereby further determining the pressure level of the sensing signal and the touch corresponding to the pressure level.
  • the control recognition mode and the corresponding feature to be identified in the touch recognition mode are described in detail below.
  • the embodiment of the present disclosure further provides a driving method, which is applied to the above-mentioned feature recognition structure provided by the present disclosure, as shown in FIG. 6, and includes:
  • Step 601 inputting a detection signal to the first electrode
  • Step 602 Receive a sensing signal from the second electrode.
  • Step 603 determining a pressure level of the sensing signal
  • Step 604 Determine, according to the pressure level of the sensing signal, a touch recognition mode that matches the sensing signal from a comparison relationship between the pre-stored pressure level and the touch recognition mode.
  • the driving method of the embodiment corresponds to the display device provided by the above embodiments, and therefore the technical effect that the display device can achieve, the driving method of the embodiment can also be implemented.
  • the embodiment determines a pressure level that matches the sensing signal from a comparison relationship between the pre-stored electrical parameter and the pressure level according to the electrical parameter of the sensing signal.
  • the touch recognition mode includes a texture recognition mode
  • the driving method in this embodiment further includes:
  • the feature to be identified for detecting the biological texture is extracted from the sensing signal (the feature to be identified may be an electrical parameter capable of indicating the biological fingerprint, Those skilled in the art can implement according to the related art).
  • the driving method of the embodiment can be used to verify the legitimacy of the biological texture. That is, the driving method of the present embodiment is applied to the user terminal.
  • the user terminal locally stores the identification features corresponding to the legal biological texture.
  • the pressing force between the positions of the biograin valleys is different, which causes the piezoelectric diodes at the corresponding positions to generate the sensing signals having the meaning of the identification.
  • the driving method of the embodiment obtains the feature to be identified from the sensing signal, and compares it with the legal identification feature saved locally by the user terminal, thereby verifying the legality of the user identity.
  • the touch recognition mode includes a press instruction recognition mode; the driving method of the embodiment further includes:
  • a pressing command corresponding to the pressing level of the sensing signal is output.
  • the driving method of the embodiment can be used to output pressing commands of different pressure levels: that is, the driving method of the embodiment is applied to the user terminal.
  • the user terminal locally stores the correspondence between the pressure level and the pressing command, and the different pressure levels may correspond to different pressing commands.
  • the driving method of the embodiment determines a matched pressure level based on the generated sensing signal, and then outputs a corresponding pressing command based on the matched pressure level.
  • the output of different pressing commands can cause the user terminal to generate different menu commands.
  • the driving method of the embodiment can enable the user terminal to implement more types of pressing operations.
  • the flow of the driving method of this embodiment may include:
  • Step 701 Scan the first signal line, that is, load the detection signal to the first signal line row by row.
  • Step 702 Acquire a scan result from the second signal line, and the scan result is an induction signal.
  • Step 703 determining whether it is a valid scan result; for example, if the scan result is greater than a valid threshold; if not greater than the valid threshold ("NO" in step 703), then returning to step 701, otherwise (step YES in step 704; step 704 is performed; for example, the user taps the screen to indicate that it normally slides the operation screen, and the effective threshold can be used to filter the user sliding operation;
  • Step 704 Find a pressure level corresponding to the scan result from a comparison relationship between the pre-stored pressure level and the electrical parameter of the sensing signal;
  • Step 705 Determine a touch recognition mode corresponding to the pressure level. If there is no corresponding touch recognition mode (NO in step 705), go back to step 701, otherwise (YES in step 705), perform step 706 or Step 707;
  • Step 706 if the texture recognition mode is corresponding, the texture recognition is performed according to the sensing signal
  • Step 707 if the press recognition mode is corresponding, the corresponding pressure operation is performed according to the pressure of the sensing signal.
  • the pressure level of the acquired sensing signal is determined from a comparison relationship between the pre-stored pressure level and the pressing command, and a pressing command matching the sensing signal is determined and output.
  • another embodiment of the present disclosure further provides a display device including the above feature recognition device provided by an embodiment of the present disclosure.
  • the display device of the present embodiment can realize the recognition of the texture and the recognition of the pressing command based on the feature recognition device provided by the embodiment of the present disclosure.
  • the feature recognition device of the display device of the present embodiment can be regarded as a collection of the texture recognition device of the conventional terminal and the pressing command recognition device, and the structure will have a higher integration degree, so the actual product phase It is lighter and smaller than the corresponding products on the market.
  • the feature recognition device provided by the embodiment of the present disclosure may be disposed, for example, on the light exit side of the display screen (which may completely cover the entire screen area or cover a part of the screen area), and is covered by the flexible protective layer, and the user Touch operation can be performed directly on the protective layer.
  • the solution of the embodiment is to identify the fingerprint of the user by pressing, so the texture recognition is not easily interfered by the external environment. For example, when there is water remaining on the screen, the fingerprint can still be recognized by pressing, which is for the user. Speaking, it has high practical value.
  • the above-described base substrate of the present embodiment multiplexes the substrate on the light-emitting side of the display device, and the display device includes a plurality of pixel regions.
  • the orthographic projections of the first touch electrode, the second touch electrode, and the functional pattern on the substrate are all located in a gap between the orthographic projections of the plurality of pixel regions on the substrate. That is, the first touch electrode, the second touch electrode, and the functional pattern of the embodiment are all formed in a gap region between the pixel regions.
  • the gap region is provided with a black matrix for shielding. Therefore, based on the above design, the first touch electrode, the second touch electrode, and the functional pattern of the embodiment do not affect the original aperture ratio of the display device.
  • an embodiment of the present disclosure further provides a driving apparatus, including the above-mentioned feature identifying apparatus provided by an embodiment of the present disclosure.
  • the driving device 800 includes, for example, a memory 801, a processor 802, and a computer program 8011 stored on the memory 801 and operable on the processor 802. When the computer program 8011 is executed by the processor, the following steps are implemented:
  • a touch recognition mode matching the sensing signal is determined from a relationship between the pre-stored pressure level and the touch recognition mode.
  • the step of the processor 802 of the embodiment executing the computer program 8011 to determine the pressure level of the sensing signal includes:
  • a pressure level that matches the sensed signal is determined from a pre-stored electrical parameter versus pressure level.
  • the touch recognition mode includes a texture recognition mode.
  • the processor 802 of the embodiment executes the computer program 8011, the following steps may be implemented:
  • the determined touch recognition mode matched by the sensing signal is a texture recognition mode
  • the feature to be identified for detecting the biological texture is extracted from the sensing signal.
  • the touch recognition mode includes a pressing instruction recognition mode.
  • the processor 802 of the embodiment executes the computer program 8011, the following steps may be implemented:
  • the touch recognition mode in which the determined sensing signals match is the pressing command recognition mode
  • a pressing command corresponding to the pressing level of the sensing signal is output.
  • the memory 801 in this embodiment may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 801 of the method of wireless link monitoring described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program that is executed by a processor to implement the following steps:
  • a touch recognition mode matching the sensing signal is determined from a relationship between the pre-stored pressure level and the touch recognition mode.
  • the foregoing computer program of this embodiment when executed by the processor to determine the pressure level of the sensing signal, includes:
  • a pressure level that matches the sensed signal is determined from a pre-stored electrical parameter versus pressure level.
  • the touch recognition mode includes a texture recognition mode.
  • the computer program of the embodiment may be executed by the processor as follows:
  • the determined touch recognition mode matched by the sensing signal is a texture recognition mode
  • the feature to be identified for detecting the biological texture is extracted from the sensing signal.
  • the touch recognition mode includes a press command recognition mode
  • the computer program of the embodiment may further be executed by the processor as follows:
  • the touch recognition mode in which the determined sensing signals match is the pressing command recognition mode
  • a pressing command corresponding to the pressing level of the sensing signal is output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Multimedia (AREA)
  • User Interface Of Digital Computer (AREA)
  • Electronic Switches (AREA)

Abstract

本公开实施例所提供的特征识别结构包括:设置在衬底基板上的多个第一电极和多个第二电极,多个第一电极与多个第二电极在衬底基板上的正投影相互交叉以构成多个交叠区域;多个功能图形,设置在所述多个第一电极中的一个或多个第一电极与对应的第二电极之间,所述多个功能图形中的每一个功能图形在所述衬底基板上的正投影均位于所述多个交叠区域中的一个对应的交叠区域内;功能图形的材料包括压电材料,功能图形至少包括两种类别的子图形,不同类别的子图形的压电系数实质上不同。

Description

特征识别结构、制作方法、驱动方法及相关装置
相关申请的交叉引用
本申请主张在2017年12月7日在中国提交的中国专利申请号No.201711284087.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及显示器件的触控识别技术领域,特别是一种特征识别结构、制作方法、特征识别装置及驱动方法。
背景技术
随着终端的发展,需要触控识别的应用得到越来越多的普及。常见的触控识别主要包括:指纹识别和按压指令识别。
现有终端的触控识别结构不能实现多级别的压力识别,因此一种触控识别结构无法用于精确识别不同程度的触控动作(例如,触摸和按压)。比如目前的移动终端中,指纹识别模块和按压动作识别模块分别为单独的结构。例如,指纹识别模块外置在终端表面(例如手机的Home键),只能提供指纹识别。另一方面,按压动作识别模块则设置在屏幕内侧,只能对按压命令进行识别。
由此可见,不同类型的触控识别结构无法相互集成,这不利于手机等移动终端向轻量化和小型化发展。
发明内容
在第一个方面中,本公开的实施例提供一种特征识别结构,包括:
设置在衬底基板上的多个第一电极和多个第二电极,所述多个第一电极与所述多个第二电极在所述衬底基板上的正投影相互交叉以构成多个交叠区域;以及
多个功能图形,设置在所述多个第一电极中的一个或多个第一电极与对应的第二电极之间,所述多个功能图形中的每一个功能图形在所述衬底基板 上的正投影均位于所述多个交叠区域中的一个对应的交叠区域内;
所述功能图形的材料包括压电材料,所述功能图形至少包括两种类别的子图形,不同类别的子图形的压电系数实质上不同。
根据本公开的一个可行实施例,所述功能图形包括:间隔设置的第一类型功能图形和第二类型功能图形;
至少一个第一类型功能图形在所述衬底基板上的正投影以及至少一个第二类型功能图形在所述衬底基板上的正投影位于同一交叠区域内。
根据本公开的一个可行实施例,所述功能图形包括:第一类型功能图形和第二类型功能图形;
相邻的两个交叠区域中,其中一者仅包括第一类型功能图形在所述衬底基板的正投影,另一者仅包括第二类型功能图形在所述衬底基板的正投影。
根据本公开的一个可行实施例,所述第一电极沿第一方向延伸,且多个第一电极沿第二方向相互平行设置;
在第一方向上的相邻的两个交叠区域中,其中一者仅包括第一类型功能图形在所述衬底基板的正投影,另一者仅包括第二类型功能图形在所述衬底基板的正投影。
根据本公开的一个可行实施例,至少一个第一类型功能图形在所述衬底基板上的正投影以及至少一个第二类型功能图形在所述衬底基板上的正投影之和恰好覆盖同一交叠区域内,并且两个正投影彼此之间无交集。
根据本公开的一个可行实施例,所述第一类型功能图形的材料包括氧化锌(ZnO),而所述第二类型功能图形的材料包括氮化镓(GaN)。
根据本公开的一个可行实施例,所述氧化锌的压电系数为1.21C/m 2,而所述氮化镓的压电系数为0.73C/m 2
根据本公开的一个可行实施例,至少两个相邻的第一电极并联连接,并且至少两个相邻的第二电极并联连接。
根据本公开的一个可行实施例,将所述衬底基板上对应的显示区域划分为多个独立的检测子区域;在每个检测子区域中,第一电极之间相互并联,第二电极之间也相互并联;并且不同的检测子区域之间的第一电极不电连接,不同的检测子区域之间的第二电极也不电连接。
在第二个方面中,本公开的实施例还提供一种特征识别结构的制作方法,包括:
提供一衬底基板;
在所述衬底基板上依次形成多个第一触控电极、多个压电图形以及多个第二触控电极;
其中,所述多个第一电极与所述多个第二电极在所述衬底基板上的正投影相互交叉以构成多个交叠区域;所述多个功能图形,设置在所述多个第一电极中的一个或多个第一电极与对应的第二电极之间,且在所述衬底基板上的正投影位于所述交叠区域内;所述功能图形的材料包括压电材料,所述功能图形至少包括两种类别的子图形,不同类别的子图形的压电系数实质上不同。
在第三个方面中,本公开的实施例还提供一种特征识别装置,包括本公开的第一个方面中所提供的上述特征识别结构,该特征识别装置还包括:
输入电路,用于向第一电极输入检测信号;
接收电路,用于从第二电极接收感应信号;
存储电路,用于存储有压力级别与触控识别模式的对照关系;
确定电路,用于确定所述感应信号的压力级别;以及
处理电路,用于根据所述感应信号的压力级别,从所述存储电路中存储的压力级别与触控识别模式的对照关系中,确定出与所述感应信号相匹配的触控识别模式。
根据本公开的一个可行实施例,所述存储电路还存储有感应信号与压力级别的对照关系;
所述确定电路具体用于,根据所述感应信号的电参数,从所述存储电路存储的感应信号与压力级别的对照关系中,确定出与所述感应信号相匹配的压力级别。
根据本公开的一个可行实施例,所述触控识别模式包括:纹路识别模式;
所述特征识别装置还包括:
第一执行电路,用于当所述处理电路确定出的所述感应信号相匹配的触控识别模式为纹路识别模式时,从所述感应信号中提取用于检测生物纹路的 待识别特征。
根据本公开的一个可行实施例,所述触控识别模式包括:按压指令识别模式;
所述特征识别装置还包括:
第二执行电路,用于当所述处理电路确定出的所述感应信号相匹配的触控识别模式为按压指令识别模式时,输出与所述感应信号的按压级别相对应的按压指令。
在第四个方面中,本公开的实施例还提供一种驱动方法,应用于本公开第一个方面中所提供的上述特征识别结构,包括:
向第一电极输入检测信号;
从第二电极接收感应信号;
确定所述感应信号的压力级别;以及
根据所述感应信号的压力级别,从预先存储的压力级别与触控识别模式的对照关系中,确定出与所述感应信号相匹配的触控识别模式。
根据本公开的一个可行实施例,确定所述感应信号的压力级别的步骤,包括:
根据所述感应信号的电参数,从预先存储的电参数与压力级别的对照关系中,确定出与所述感应信号相匹配的压力级别。
根据本公开的一个可行实施例,所述触控识别模式包括纹路识别模式;所述驱动方法还包括:
当确定出的所述感应信号相匹配的触控识别模式为纹路识别模式时,从所述感应信号中提取用于检测生物纹路的待识别特征。
根据本公开的一个可行实施例,所述触控识别模式包括按压指令识别模式;所述驱动方法还包括:
当确定出的所述感应信号相匹配的触控识别模式为按压指令识别模式时,输出与所述感应信号的按压级别相对应的按压指令。
在第五个方面中,本公开的实施例还提供一种显示装置,包括本公开第一个方面中所提供的上述特征识别装置。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的特征识别结构的结构示意图;
图2为本公开实施例提供的特征识别结构在其中一种实现方式中的结构示意图;
图3为本公开实施例提供的特征识别结构在另一种实现方式中的结构示意图;
图4为本公开实施例提供的特征识别装置的逻辑结构示意图;
图5为本公开实施例提供的特征识别装置的实际结构示意图;
图6为本公开实施例提供的驱动方法的步骤示意图;
图7为本公开实施例提供的驱动方法在实际应用中的流程示意图;以及
图8为本公开实施例提供的驱动装置的实际结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合 在一个或多个实施例中。
本公开实施例针对现有的单独机构的指纹识别模块集成度不高且易于受外界环境干扰的技术问题,提供了如下解决方案。
一方面,本公开的实施例提供一种特征识别结构,如图1所示,包括:
设置在衬底基板11上的多个第一电极12、多个第二电极13;该多个第一电极11与该多个第二电极12在衬底基板11上的正投影相互交叉以构成多个交叠区域D;
多个功能图形14,设置在多个第一电极12与多个第二电极13之间;该多个功能图形14在衬底基板11上的正投影位于多个交叠区域D内,且每一功能图形14与形成其所在交叠区域D的第一电极12和第二电极13连接。这里,每一功能图形14与形成其所在交叠区域D的第一电极12和第二电极13连接通常是指每一功能图形14与形成其所在交叠区域D的第一电极12和第二电极13电连接。但是,本公开实施例并不限于电连接方式,还可以本领域公知的其他连接方式实现。
其中,本实施例的功能图形14的材料包括压电材料,且功能图形14至少包括两种类别的子图形,不同类别的子图形的压电系数实质上不同。
可以理解的是,如图1所示,第一电极12和第二电极13均为长条状,且第一电极12的延伸方向与第二电极13的延伸方向存在夹角。然而,本公开实施例并不限于此,根据实际需要,第一电极12和第二电极13的形状还可以被设置为其他合适的形状。
本实施例的方案在第一电极与第二电极之间设置有不同压电系数的功能图形,以构成不同压电效果的压电传感器(即压电二极管结构)。不同压电效果的压电传感器以阵列方式分布在衬底基板上能够感应不同的压力级别,例如压电系数较大的压电传感器,对于按压力的识别比较灵敏,而压电系数较小的压电传感器,对于按压力的识别比较鲁钝。基于这种感应能力的不同,本公开实施例所提供的特征识别结构可以识别不同压力级别的按压力,在实际应用中,可以识别出用户更多程度的触控动作。若应用在终端上,则可以简化终端的触控识别结构,更有利于终端向小型化以及轻型化的趋势发展,因此具有很高的实用价值。
下面对本实施例的特征识别结构进行详细介绍。
作为示例性介绍,本实施例的功能图形包括:第一类型功能图形和第二类型功能图形,其中,第一类型功能图形和第二类型功能图形的类别不同,即压电系数不同。此外,可选的,可将第一类型功能图形和第二类型功能图形在同一层上进行制作。相应的,该同层制作的制作工艺能够有效地减少上下膜层之间的段差,并且能够进一步提高工艺稳定性。
作为其中一种可行方案,如图2所示,至少一个第一类型功能图形14a在衬底基板11上的正投影,以及至少一个第二类型功能图形14b在衬底基板11上的正投影位于同一交叠区域内。即,一个压电传感器包含两种不同的压电系数的子图形。可选的,至少一个第一类型功能图形在所述衬底基板上的正投影以及至少一个第二类型功能图形在所述衬底基板上的正投影之和恰好覆盖同一交叠区域内,并且两个正投影彼此之间无交集。
作为另一种可行方案,本实施例相邻的两个交叠区域内,其中一个交叠区域仅包括第一类型功能图形在衬底基板上的正投影,另一个交叠区域仅包括第二类型功能图形在衬底基板上的正投影。即,一个压电传感器仅包含一种类别的子图形,该设计可以降低制作难度,并减小压电传感器中的压电信号的串扰现象。举例来说,如图3所示,本实施例的多个第一电极12相互平行设置,且沿第一方向(图3以行方向示例,但并不限于行方向)延伸;多个第二电极13沿第一方向相互平行设置,且沿第二方向延伸(图3以列方向示例,但并不限于列方向);
在第一方向上,相邻的两个交叠区域仅包括第一类型功能图形14a在衬底基板11上的正投影,或者仅包括第二类型功能图形14b在衬底基板11上的正投影;
在第二方向上,相邻的两个交叠区域中,其中一个交叠区域仅包括第一类型功能图形14a在衬底基板11上的正投影,另一个交叠区域仅包括第二类型功能图形14b在衬底基板11上的正投影。
这里,在图2中仅仅示出了本实施例的功能图形包括:第一类型功能图形14a和第二类型功能图形14b,其中,第一类型功能图形14a和第二类型功能图形14b的类别不同,即压电系数不同。当然,根据实际需要,例如当需 要对触摸或者按压动作做出进一步的细分时,除了第一类型功能图形14a和第二类型功能图形14b之外,功能图形还可以例如包括:第三类型功能图形14c或第四类型功能图形14d。这里,第一类型功能图形14a、第二类型功能图形14b、第三类型功能图形14c或第四类型功能图形14d之间可以采用串联或者并联等连接方式,由此通过感应相应的电流来实现三种以上压电材料的信号综合使用以便达到压电的多级控制。
在实际应用中,本实施例的第一类型功能图形的材料包括氧化锌(ZnO),第二类型功能图形的材料包括氮化镓(GaN)。其中,氧化锌的压电系数为1.21C/m 2;而氮化镓的压电系数为0.73C/m 2。在施加的压力比较小时,可以认为只有压电系数比较大的材料(例如,氧化锌)能够迅速感应出电荷,产生信号。而当继续施加压力时,可以进一步激发出压电系数比较小的压电材料(例如,氮化镓)出现压电信号。通过将两种压电材料的信号综合使用可以实现压电的两级控制。当然,基于本公开实施例的如上内容,本领域技术人员能够清楚的是,还可以通过将三种以上压电材料的信号综合使用以便实现压电的多级控制。
此外,在上述基础之上,为了进一步提供压电感应的准确性,本实施例的特征识别结构中,至少两个相邻的第一电极12并联连接,至少两个相邻的第二电极13并联连接。
基于该结构设计,可以使得通过第一电极和第二电极相互并联的功能图形14产生的压电信号能够叠加,实现了信号放大的效果。
作为示例性介绍,在实际应用中,若本实施例的特征识别结构应用在如手机、平板电脑等移动终端,则可以将衬底基板上对应的显示区域进行划分多个独立的检测子区域。其中,每个检测子区域中,第一电极12之间相互并联,第二电极13之间也相互并联。进一步地,不同的检测子区域之间的第一电极12不电连接,同理不同的检测子区域之间的第二电极13也不电连接。
显然基于该结构设计,本实施例可以检测子区域作为识别粒度,检测触控操作。相应的,本实施例可以提高识别粒度,从而进一步提高识别灵敏度。
以上是对本实施例的特征识别结构的示例性介绍,并不限于本公开实施例的保护方案。应当理解的是,本实施例的功能图形并不限于两种类别,且 材料也并不限于氧化锌和氮化镓,比如材料还可以包括具有压电效应的陶瓷材料等。
另一方面,如图1至图3所示,本公开的实施例还提供一种上述特征识别结构的制作方法,包括:
提供一衬底基板11;以及
在衬底基板11上依次形成多个第一触控电极12、多个压电图形14以及多个第二触控电极13;其中,多个第一电极12与多个第二电极13在衬底基板11上的正投影相互交叉以构成多个交叠区域D;多个功能图形14,设置在多个第一电极12与多个第二电极13之间,且在衬底基板11上的正投影位于交叠区域D内;功能图形14的材料包括压电材料,且功能图形14至少包括两种类别的子图形,不同类别的子图形的压电系数实质上不同。
显然,本实施例的制作方法用于制作本公开提供的上述特征识别结构,因此该特征识别结构所能实现技术效果,本实施例的制作方法同样也能够实现。
下面结合在实际应用中,对本实施例的特征识别结构的制作工艺进行详细介绍。
在本实施应用中,如图2所示,制作的特征识别结构的功能图形包括:第一类型功能图形14a和第二类型功能图形14b,对应的制作工艺包括如下步骤:
步骤S1,在衬底基板11上沉积第二电极材料,并通过一次构图工艺,对第一电极材料进行构图,获得由第二电极材料形成的第二电极13。
在实际应用中,上述第二电极材料可以是金属导电材料,例如铜、银等等导电材料。
步骤S2,在衬底基板11上沉积ZnO纳米棒材料,并通过一次构图工艺使所述ZnO纳米棒材料形成第一类型功能图形14a,包括:
在衬底基板11上设置ZnO种子层;
称取一定量HMT与Zn(NO 3) 2·6H 2O分别溶于去离子水中,使得HMT与Zn(NO 3) 2·6H 2O这两种试剂的浓度均为0.01M/L,之后将这两种溶液混合,获得Zn(NO 3) 2·6H 2O的混合溶液;
使用HMT与Zn(NO 3) 2·6H 2O的混合溶液浸泡ZnO种子层,并将所述衬底基板在真空环境下进行加热(加热温度为140℃-160℃,以150℃为宜),直至种子层形成单晶的ZnO纳米棒材料。
使用一次构图工艺对所述ZnO纳米棒材料进行构图,获得第一类型功能图形14a。其中,为保证稳定的压电特性,该第一类型功能图形14a的厚度以5000埃-15000埃为宜。
步骤S3,在衬底基板11上依次沉积GaN材料,并通过一次构图工艺使GaN形成第二类型功能图形14b。其中,为保证稳定的压电特性,该第二类型功能图形14b的厚度以5000埃-15000埃为宜;
这里需要说明的,ZnO和GaN这两种材料的刻蚀液都是呈酸性的,即,在酸性刻蚀液下,ZnO和GaN的刻蚀选择比十分接近。因此作为可选方案,本步骤可采用干式刻蚀法对GaN材料进行构图。
步骤S4,沉积一层绝缘材料,形成绝缘层,之后对绝缘层进行刻蚀,形成露出第一类型功能图形14a和第二类型功能图形14b的过孔;
其中,本步骤所沉积的绝缘材料是用于提高后续第二电极形成的覆盖性,在实际应用中,该绝缘材料可以是SiN,厚度以100埃-500埃为宜。
步骤S5,在衬底基板上沉积第一电极材料,并通过一次构图工艺,对第一电极材料进行构图,获得由第一电极材料形成的第一电极12。在实际应用中,上述第一电极材料可以是金属导电材料,例如铜、银等等导电材料。此外,第一电极12通过绝缘层上的过孔与第一类型功能图形14a和第二类型功能图形14b连接。
作为一个非限定性示例,如图2所示,第一类型功能图形14a和第二类型功能图形14b设置在同一层,并且第一电极12通过绝缘层上的多个过孔(图2中未示出)与第一类型功能图形14a和第二类型功能图形14b分别连接。
基于上述步骤S1-步骤S5,可制作出分别由氧化锌和氮化镓构成的具有两种压电效应的压电传感器。其中,氧化锌具体为单晶的氧化锌纳米棒,因其一维结构,可只在一个方向上产生出压电电荷,所以有利于电荷的积累。此外,氧化锌还采用单晶结构,也可以使得其内部的缺陷较少,产生的压电电荷不会在传输过程中被缺陷态捕获,因此更有利于压电电荷传输至第二电 极。
另一方面,本公开的另一实施例还提供一种特征识别装置,包括本公开上述实施例提供的特征识别结构。此外,如图4所示,本实施例的特征识别装置还包括:
输入电路401,用于向第一电极输入检测信号;
接收电路402,用于从第二电极接收感应信号;
存储电路403,用于存储有压力级别与触控识别模式的对照关系;
确定电路404,用于确定感应信号的压力级别;
处理电路405,用于根据压力级别,从存储电路中存储的压力级别与触控识别模式的对照关系中,确定出与感应信号相匹配的触控识别模式。
举例来说,本实施上述触控识别模式包括:纹路识别模式和按压指令识别模式。
结合用户实际使用需求,在进行纹路识别以及按压指令识别时,都会去触控特征识别装置。但区别是,在纹路识别模式下,用户只需要轻触(较小压力触碰)即可(重触会使生物纹路变形,反而减低识别准确性)。在按压指令识别模式下,则可以进行重触(较大压力触碰)。
因此,本实施例的纹路识别模式对应的压力级别与按压指令识别模式对应的压力级别不同。根据压力级别,确定用户以较小压力触控特征识别装置时,则执行纹路识别模式。根据压力级别,确定用户以较大压力触控特征识别装置时,则可以执行按压指令识别模式。具体的,在根据压力级别确定用户以较小压力触控特征识别装置以执行纹路识别模式时,只进行纹路识别但不进行指纹纹路的收集。只有在根据压力级别确定用户以较大压力触控特征识别装置以执行按压指令识别模式,并且收到系统需求指令(例如,指示需要识别指纹的谷和脊的指令)时,才进行指纹纹路的收集。相应的,根据如上设置,能够有效地减少系统由于频繁执行指纹纹路的收集动作所造成的不必要功耗。例如,该按压指令识别模式可以针对在终端设备上执行支付或者解码时的按压操作。
可以看出,本实施例的特征识别装置能够无冲突地实现纹路识别和按压指令识别。
其中,本实施例的存储电路403还存储有感应信号与压力级别的对照关系;确定电路404具体用于,根据感应信号的电参数,从存储电路403存储的感应信号与压力级别的对照关系中,确定出与感应信号相匹配的压力级别。
本实施例上述待识别特征可以为压力大小,存储电路403保存有感应信号与压力级别的对照关系以及压力级别与触控识别模式的对照关系。
作为一个非限定示例,感应信号与压力级别的对照关系可以包括以下三个表格:
表1:所述多个功能图形中的第一功能图形所包含的第一压电材料接收到的压力N 1与其所能产生的感应电流I 1的对照表;
表2:所述多个功能图形中的第二功能图形所包含的第二压电材料接收到的压力N 2与其所能产生的感应电流I 2的对照表;
表3:所述第一压电材料和所述第二压电材料同时接收到的压力N与其所能产生的感应电流I(I 1+I 2)的对照表。
其中,在某一区间范围的压力可以属于同一个压力级别,不同压力级别对应有不同的区间范围压力,不同压力级别进一步还对应不同的触控识别模式。
作为一个非限定示例,本实施例的确定电路404具体用于:
当用户手指按压特征识别装置时,如果按压力度小,第一类型功能图形产生可被检测到的感应电流,而第二类型功能图形产生的感应电流过于微弱,几乎可以忽略不计,此时通过依次查找表1、表2、表3,并从表1中获得与当前感应电流最接近的电流值,并获得对应的压力值,并判定当前按压力度属于压力级别L 1
另外,当用户手指按压特征识别装置的按压力度较大时,第一类型功能图形和第二类型功能图形均产生可以被检测到的感应电流,此时可以在表3中获得与当前感应电流最接近的电流值,并获得对应的压力值,并判定当前按压力度属于压力级别L 2
基于上述原理能够理解的是,本实施例可以根据按压力度的大小,将压力级别进行进一步的细分。
假设本实施例的特征识别装置应用在移动终端上,当检测压力级别为L 1 时,则说明用户以较小的力度触控终端屏幕,则正常执行触控滑动识别,即识别用户进行的滑动解锁,或者滑动页面等操作。当检测压力级别为L 2时,则执行纹路识别模式。另外,当检测压力级别为L 3时,则执行按压指令识别模式。
在上述基础之上,本实施例的特征识别装置还包括:
第一执行电路,用于当所述处理电路405确定出的感应信号相匹配的触控识别模式为纹路识别模式时,从感应信号中提取出用于检测生物纹路的待识别特征。
在实际应用中,第一执行电路可用于验证生物纹路的合法性。即,本实施例的特征识别结构可应用在用户终端上。用户终端本地保存有合法的生物纹路所对应的识别特征。当用户进行按压操作时,生物纹路谷脊位置之间的按压力度不同,会导致对应位置的压电二极管所产生出具有标识意义的感应信号。本实施例的第一执行电路从该感应信号中获取待识别特征,并与该用户终端本地保存的合法的识别特征进行比对,从而验证用户身份的合法性。
此外,在上述基础之上,本实施例的特征识别装置还可以包括:
第二执行电路,用于当处理电路405确定出的所述感应信号相匹配的触控识别模式为按压指令识别模式时,输出与该感应信号的按压级别相对应的按压指令。
在实际应用中,第二执行电路可用于输出不同压力级别的按压指令:即,本实施例的特征识别结构可应用在用户终端上。用户终端本地保存有压力级别与按压指令的对应关系,不同压力级别可以对应不同的按压指令。当用户进行按压操作时,本实施例的确定电路404根据产生出的感应信号确定出相匹配的压力级别,第二执行电路可以基于匹配出的压力级别,输出相对应的按压指令。以触控屏的用户终端为例,不同按压指令的输出可以使用户终端生成不同的菜单指令,本实施例的特征识别结构可以使用户终端实现出更多种类的按压操作。
进一步地,如图5所示,本实施例的特征识别装置可以由以下具体硬件实现:
带有计算功能的MCU(微控制器),并配有RAM(随机存储器)和ROM (只读存储器)。其中MCU可按行向第一电极输出检测信号,并读回第二电极反馈的感应信号。RAM作为计算存储器,存储有临时感应信号的结果,供MCU进行比对。ROM即本文上述的存储电路403,用于存储上文所介绍的所有对照关系。
在工作时,MCU读回第二电极反馈的感应信号可以存储在RAM中,并从RAM调取数据与ROM的对照关系进行比对,从而进一步确定出感应信号的压力级别、压力级别对应的触控识别模式以及触控识别模式下对应的待识别特征。
此外,本公开的实施例还提供了一种驱动方法,应用于本公开提供的上述特征识别结构,如图6所示,包括:
步骤601,向第一电极输入检测信号;
步骤602,从第二电极接收感应信号;
步骤603,确定感应信号的压力级别;
步骤604,根据感应信号的压力级别,从预先存储的压力级别与触控识别模式的对照关系中,确定出与感应信号相匹配的触控识别模式。
显然,本实施例的驱动方法与上文实施例提供的显示装置相对应,因此该显示装置所能实现的技术效果,本实施例的驱动方法同样能够实现。
其中,本实施例在执行上述步骤603时,具体根据所述感应信号的电参数,从预先存储的电参数与压力级别的对照关系中,确定出与所述感应信号相匹配的压力级别。
可选地,在上述基础之上,触控识别模式包括纹路识别模式;本实施例驱动方法还包括:
当确定出的感应信号相匹配的触控识别模式为纹路识别模式时,从感应信号中提取用于检测生物纹路的待识别特征(该待识别特征可以是能够表示出生物指纹的电参数,本领域技术人员能够根据相关技术而实现)。
在实际应用中,本实施例的驱动方法可用于验证生物纹路的合法性。即,本实施例的驱动方法应用在用户终端上。用户终端本地保存有合法的生物纹路所对应的识别特征。当用户进行按压操作时,生物纹路谷脊位置之间的按压力度不同,会导致对应位置的压电二极管所产生出具有标识意义的感应信 号。本实施例的驱动方法从该感应信号中获取待识别特征,并与该用户终端本地保存的合法的识别特征进行比对,从而验证用户身份的合法性。
可选地,在上述基础之上,触控识别模式包括按压指令识别模式;本实施例驱动方法还包括:
当确定出的所述感应信号相匹配的触控识别模式为按压指令识别模式时,输出与所述感应信号的按压级别相对应的按压指令。
在实际应用中,本实施例的驱动方法可用于输出不同压力级别的按压指令:即,本实施例的驱动方法应用在用户终端上。用户终端本地保存有压力级别与按压指令的对应关系,不同压力级别可以对应不同的按压指令。当用户进行按压操作时,本实施例的驱动方法根据产生出的感应信号确定出相匹配的压力级别,之后基于匹配出的压力级别,输出相对应的按压指令。以触控屏的用户终端为例,不同按压指令的输出可以使用户终端生成不同的菜单指令,本实施例的驱动方法可以使用户终端实现出更多种类的按压操作。
下面结合实际应用中,对本实施例驱动方法的流程进行详细介绍。
作为一个非限定性示例,如图7所示,本实施例的驱动方法的流程可以包括:
步骤701,扫描第一信号线,即逐行向第一信号线加载检测信号。
步骤702,从第二信号线上获取扫描结果,该扫描结果即感应信号。
步骤703,判断是否为有效扫描结果;以上文为例,如果该扫描结果是否大于一个有效门限;若未大于有效门限(步骤703中的“否”),则重新回到步骤701,否则(步骤703中的“是”)执行步骤704;例如用户轻触屏幕,则表示其正常滑动操作屏幕,该有效门限可用于过滤用户滑动操作;
步骤704,从预先存储的压力级别与感应信号的电参数之间的对照关系中,查找扫描结果对应的压力级别;
步骤705,判断压力级别对应的触控识别模式,若没有对应有触控识别模式(步骤705中的“否”)则回到步骤701,否则(步骤705中的“是”)执行步骤706或步骤707;
步骤706,若对应出纹路识别模式,则根据感应信号来进行纹路识别;
例如将获取到的感应信号与预先保存的已被录入的合法生物纹路所对应 的感应信号进行比对,根据比对结果确定纹路验证是否成功;
步骤707,若对应出按压识别模式,则根据感应信号的压力,执行对应的压力操作。
例如将获取到的感应信号的压力级别,从预先保存的压力级别与按压指令的对照关系中,确定并输出与该感应信号相匹配的按压指令。
此外,本公开的另一实施例还提供一种显示装置,包括本公开实施例提供的上述特征识别装置。
可以看出,本实施例的显示装置基于本公开实施例提供的特征识别装置,可以实现纹路识别以及按压命令的识别。这表示在实际应用中,本实施例的显示装置的特征识别装置可以看成是传统终端的纹路识别器件以及按压命令识别器件的集合,在结构上将具有更高的集成度,因此实际产品相比于当前市场上的对应产品会更加轻型化、小型化。
此外,在实际应用中,本公开实施例提供的特征识别装置可以例如设置在显示屏的出光侧(可以完全覆盖整个屏幕区域,也可以覆盖一部分屏幕区域),并通过柔性保护层进行覆盖,用户可以直接在保护层上进行触控操作。
相比于相关技术,本实施例的方案是通过按压方式识别用户的指纹,因此纹路识别不易受到外界环境干扰,例如屏幕上有水残留时,依然可以通过按压方式正常识别指纹,这对于用户来讲,具有很高的实用价值。
此外,为了不影响显示装置的开口率,本实施例的上述衬底基板复用显示装置出光侧的衬底基板,该显示装置包括多个像素区域。其中,特征识别结构的第一触控电极、第二触控电极以及功能图形在衬底基板上的正投影均位于多个像素区域在衬底基板上的正投影之间的间隙内。即本实施例的第一触控电极、第二触控电极以及功能图形均形成在像素区域之间的间隙区域。在现有的显示装置中,上述间隙区域都会设置有黑矩阵进行遮挡。因此,基于上述设计,本实施例的第一触控电极、第二触控电极以及功能图形并不会影响显示装置原有的开口率。
此外,本公开的实施例还提供一种驱动装置,包括本公开实施例提供的上述特征识别装置。如图8所示,该驱动装置800例如包括存储器801、处理器802以及存储在存储器801上并可在处理器802上运行的计算机程序 8011,该计算机程序8011被处理器执行时实现如下步骤:
向第一电极输入检测信号;
从第二电极接收感应信号;
确定感应信号的压力级别;
根据感应信号的压力级别,从预先存储的压力级别与触控识别模式的对照关系中,确定出与感应信号相匹配的触控识别模式。
可选地,本实施例的处理器802执行上述计算机程序8011以确定感应信号的压力级别的步骤包括:
根据感应信号的电参数,从预先存储的电参数与压力级别的对照关系中,确定出与感应信号相匹配的压力级别。
可选地,上述触控识别模式包括纹路识别模式;本实施例的处理器802执行上述计算机程序8011时还可以实现如下步骤:
当确定出的所述感应信号相匹配的触控识别模式为纹路识别模式时,从所述感应信号中提取用于检测生物纹路的待识别特征。
可选地,上述触控识别模式包括按压指令识别模式;本实施例的处理器802执行上述计算机程序8011时还可以实现如下步骤:
当确定出的感应信号相匹配的触控识别模式为按压指令识别模式时,输出与感应信号的按压级别相对应的按压指令。
可以理解的是,本施例中的存储器801可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM, ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的无线链路监测的方法的存储器801旨在包括但不限于这些和任意其它适合类型的存储器。
此外,本公开的实施例还提供一种计算机可读存储介质,其上存储有计算机程序该程序被处理器执行时实现如下步骤:
向第一电极输入检测信号;
从第二电极接收感应信号;
确定感应信号的压力级别;
根据感应信号的压力级别,从预先存储的压力级别与触控识别模式的对照关系中,确定出与感应信号相匹配的触控识别模式。
可选地,本实施例的上述计算机程序在被处理器执行确定感应信号的压力级别时包括:
根据感应信号的电参数,从预先存储的电参数与压力级别的对照关系中,确定出与感应信号相匹配的压力级别。
可选地,上述触控识别模式包括纹路识别模式;本实施例的上述计算机程序还可以被处理器执行如下步骤:
当确定出的所述感应信号相匹配的触控识别模式为纹路识别模式时,从所述感应信号中提取用于检测生物纹路的待识别特征。
可选地,上述触控识别模式包括按压指令识别模式;本实施例的上述计算机程序还可以被处理器执行如下步骤:
当确定出的感应信号相匹配的触控识别模式为按压指令识别模式时,输出与感应信号的按压级别相对应的按压指令。
在本公开各方法实施例中,所述各步骤的序号并不能用于限定各步骤的先后顺序,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各步骤的先后变化也在本公开的保护范围之内。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分 不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (20)

  1. 一种特征识别结构,包括:
    设置在衬底基板上的多个第一电极和多个第二电极,所述多个第一电极与所述多个第二电极在所述衬底基板上的正投影相互交叉以构成多个交叠区域;以及
    多个功能图形,设置在所述多个第一电极中的一个或多个第一电极与对应的第二电极之间,所述多个功能图形中的每一个功能图形在所述衬底基板上的正投影均位于所述多个交叠区域中的一个对应的交叠区域内,
    其中,所述功能图形的材料包括压电材料,所述功能图形至少包括两种类别的子图形,不同类别的子图形的压电系数实质上不同。
  2. 根据权利要求1所述的特征识别结构,其中,
    所述功能图形包括:间隔设置的第一类型功能图形和第二类型功能图形;
    至少一个第一类型功能图形在所述衬底基板上的正投影以及至少一个第二类型功能图形在所述衬底基板上的正投影位于同一交叠区域内。
  3. 根据权利要求1所述的特征识别结构,其中,
    所述功能图形包括:第一类型功能图形和第二类型功能图形;
    相邻的两个交叠区域中,其中一者仅包括第一类型功能图形在所述衬底基板的正投影,另一者仅包括第二类型功能图形在所述衬底基板的正投影。
  4. 根据权利要求3所述的特征识别结构,其中,
    所述第一电极沿第一方向延伸,且多个第一电极沿第二方向相互平行设置;
    在第一方向上的相邻的两个交叠区域中,其中一者仅包括第一类型功能图形在所述衬底基板的正投影,另一者仅包括第二类型功能图形在所述衬底基板的正投影。
  5. 根据权利要求2所述的特征识别结构,其中,
    至少一个第一类型功能图形在所述衬底基板上的正投影以及至少一个第二类型功能图形在所述衬底基板上的正投影之和恰好覆盖同一交叠区域内,并且两个正投影彼此之间无交集。
  6. 根据权利要求2至5中任一项所述的特征识别结构,其中,
    所述第一类型功能图形的材料包括氧化锌(ZnO),而所述第二类型功能图形的材料包括氮化镓(GaN)。
  7. 根据权利要求6所述的特征识别结构,其中,
    所述氧化锌的压电系数为1.21C/m 2,而所述氮化镓的压电系数为0.73C/m 2
  8. 根据权利要求1至7中任一项所述的特征识别结构,其中,
    至少两个相邻的第一电极并联连接,并且至少两个相邻的第二电极并联连接。
  9. 根据权利要求1至8中任一项所述的特征识别结构,其中,
    将所述衬底基板上对应的显示区域划分为多个独立的检测子区域;
    在每个检测子区域中,第一电极之间相互并联,第二电极之间也相互并联;并且
    不同的检测子区域之间的第一电极不电连接,不同的检测子区域之间的第二电极也不电连接。
  10. 一种特征识别结构的制作方法,包括:
    提供一衬底基板;以及
    在所述衬底基板上依次形成多个第一触控电极、多个压电图形以及多个第二触控电极,
    其中,所述多个第一电极与所述多个第二电极在所述衬底基板上的正投影相互交叉以构成多个交叠区域;所述多个功能图形,设置在所述多个第一电极中的一个或多个第一电极与对应的第二电极之间,且在所述衬底基板上的正投影位于所述交叠区域内;所述功能图形的材料包括压电材料,所述功能图形至少包括两种类别的子图形,不同类别的子图形的压电系数实质上不同。
  11. 一种特征识别装置,包括:
    如权利要求1至9中任一项所述的特征识别结构;
    输入电路,用于向第一电极输入检测信号;
    接收电路,用于从第二电极接收感应信号;
    存储电路,用于存储有压力级别与触控识别模式的对照关系;
    确定电路,用于确定所述感应信号的压力级别;以及
    处理电路,用于根据所述感应信号的压力级别,从所述存储电路中存储的压力级别与触控识别模式的对照关系中,确定出与所述感应信号相匹配的触控识别模式。
  12. 根据权利要求11所述的特征识别装置,其中,
    所述存储电路还存储有感应信号与压力级别的对照关系;
    所述确定电路具体用于,根据所述感应信号的电参数,从所述存储电路存储的感应信号与压力级别的对照关系中,确定出与所述感应信号相匹配的压力级别。
  13. 根据权利要求11或12所述的特征识别装置,其中,
    所述触控识别模式包括纹路识别模式;
    所述特征识别装置还包括:
    第一执行电路,用于当所述处理电路确定出的所述感应信号相匹配的触控识别模式为纹路识别模式时,从所述感应信号中提取出用于检测生物纹路的待识别特征。
  14. 根据权利要求11或12所述的特征识别装置,其中,
    所述触控识别模式包括:按压指令识别模式;
    所述特征识别装置还包括:
    第二执行电路,用于当所述处理电路确定出的所述感应信号相匹配的触控识别模式为按压指令识别模式时,输出与所述感应信号的按压级别相对应的按压指令。
  15. 根据权利要求12所述的特征识别装置,其中,
    所述存储电路所存储的感应信号与压力级别的对照关系包括:
    所述多个功能图形中的第一功能图形所包含的第一压电材料接收到的压力N 1与其所能产生的感应电流I 1的对照表;
    所述多个功能图形中的第二功能图形所包含的第二压电材料接收到的压力N 2与其所能产生的感应电流I 2的对照表;以及
    所述第一压电材料和所述第二压电材料同时接收到的压力N与其所能产 生的感应电流I(I 1+I 2)的对照表。
  16. 一种驱动方法,应用于如权利要求1至9中任一项所述的特征识别结构,包括:
    向第一电极输入检测信号;
    从第二电极接收感应信号;
    确定所述感应信号的压力级别;以及
    根据所述感应信号的压力级别,从预先存储的压力级别与触控识别模式的对照关系中,确定出与所述感应信号相匹配的触控识别模式。
  17. 根据权利要求16所述的驱动方法,其中,
    所述确定所述感应信号的压力级别的步骤,包括:
    根据所述感应信号的电参数,从预先存储的电参数与压力级别的对照关系中,确定出与所述感应信号相匹配的压力级别。
  18. 根据权利要求16或17所述的驱动方法,其中,
    所述触控识别模式包括纹路识别模式;所述驱动方法还包括:
    当确定出的所述感应信号相匹配的触控识别模式为纹路识别模式时,从所述感应信号中提取用于检测生物纹路的待识别特征。
  19. 根据权利要求16或17所述的驱动方法,其中,
    所述触控识别模式包括按压指令识别模式;所述驱动方法还包括:
    当确定出的所述感应信号相匹配的触控识别模式为按压指令识别模式时,输出与所述感应信号的按压级别相对应的按压指令。
  20. 一种显示装置,包括如权利要求11至15中任一项所述的特征识别装置。
PCT/CN2018/103146 2017-12-07 2018-08-30 特征识别结构、制作方法、驱动方法及相关装置 WO2019109680A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18859957.5A EP3722934A4 (en) 2017-12-07 2018-08-30 DEVICE FOR DETECTION OF PROPERTIES, MANUFACTURING METHODS, CONTROL METHOD AND ASSOCIATED DEVICE
US16/339,226 US11353982B2 (en) 2017-12-07 2018-08-30 Feature recognition structure, fabricating method, driving method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711284087.X 2017-12-07
CN201711284087.XA CN109901769B (zh) 2017-12-07 2017-12-07 特征识别结构、制作方法、驱动方法及相关装置

Publications (1)

Publication Number Publication Date
WO2019109680A1 true WO2019109680A1 (zh) 2019-06-13

Family

ID=66750734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103146 WO2019109680A1 (zh) 2017-12-07 2018-08-30 特征识别结构、制作方法、驱动方法及相关装置

Country Status (4)

Country Link
US (1) US11353982B2 (zh)
EP (1) EP3722934A4 (zh)
CN (1) CN109901769B (zh)
WO (1) WO2019109680A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574588A (en) * 2018-06-06 2019-12-18 Cambridge Touch Tech Ltd Pressure sensing apparatus and method
GB2574589B (en) 2018-06-06 2020-12-23 Cambridge Touch Tech Ltd Pressure sensing apparatus and method
US11294492B2 (en) 2018-06-06 2022-04-05 Cambridge Touch Technologies Ltd. Pressure signal processing
GB2580700B (en) 2019-01-25 2021-06-09 Cambridge Touch Tech Ltd Touch panel for combined capacitive touch and force sensing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203480471U (zh) * 2013-09-23 2014-03-12 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN107316873A (zh) * 2017-07-19 2017-11-03 武汉天马微电子有限公司 一种阵列基板及显示装置
CN206627934U (zh) * 2017-04-06 2017-11-10 厦门天马微电子有限公司 显示面板及显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063407B2 (en) * 2002-08-21 2006-06-20 Matsushita Electric Industrial Co., Ltd. Piezoelectric actuator, method for manufacturing the same, ink jet head, and ink jet recording apparatus
JP4362045B2 (ja) * 2003-06-24 2009-11-11 京セラ株式会社 圧電変換装置
WO2015066086A1 (en) * 2013-10-28 2015-05-07 Changello Enterprise Llc Piezo based force sensing
WO2015077200A1 (en) * 2013-11-21 2015-05-28 3M Innovative Properties Company Multi-layer piezoelectric polymer film devices and methods
KR102350084B1 (ko) * 2015-01-15 2022-01-11 삼성디스플레이 주식회사 터치 패널 및 이를 이용한 표시장치
CN106557246B (zh) * 2015-09-30 2023-07-21 宸鸿科技(厦门)有限公司 一种三维输入模块
KR101790614B1 (ko) * 2016-05-11 2017-10-26 서울대학교산학협력단 촉각정보 제공 장치
US10727809B2 (en) * 2016-12-15 2020-07-28 Qorvo Us, Inc. Bulk acoustic wave resonator with multilayer piezoelectric structure
CN106993094B (zh) * 2017-03-30 2020-03-31 努比亚技术有限公司 一种移动终端及扫描方法
CN107422911B (zh) * 2017-07-19 2020-12-18 北京小米移动软件有限公司 压力值的检测方法、装置及计算机可读存储介质
JP6854905B2 (ja) * 2017-09-14 2021-04-07 京セラ株式会社 弾性波デバイスおよび通信装置
CN108920006B (zh) * 2018-07-13 2021-07-09 京东方科技集团股份有限公司 彩膜基板、显示装置及其制备方法
CN110413335A (zh) * 2019-06-18 2019-11-05 深圳中电长城信息安全系统有限公司 一种基于指纹的开机方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203480471U (zh) * 2013-09-23 2014-03-12 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN206627934U (zh) * 2017-04-06 2017-11-10 厦门天马微电子有限公司 显示面板及显示装置
CN107316873A (zh) * 2017-07-19 2017-11-03 武汉天马微电子有限公司 一种阵列基板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722934A4 *

Also Published As

Publication number Publication date
EP3722934A4 (en) 2021-08-11
EP3722934A1 (en) 2020-10-14
US20200159381A1 (en) 2020-05-21
CN109901769A (zh) 2019-06-18
CN109901769B (zh) 2021-03-02
US11353982B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2019109680A1 (zh) 特征识别结构、制作方法、驱动方法及相关装置
US10366268B2 (en) Method and system for optical imaging using patterned illumination
US10127427B2 (en) On-screen fingerprint sensor and electronic device including the same
CN106354351B (zh) 触控基板及制作方法、显示装置、指纹识别装置和方法
CN106971173B (zh) 触控基板及显示面板
US10613689B2 (en) Touch screen, method of manufacturing touch screen, and display device including touch screen
US10048795B2 (en) Display device with fingerprint identification and touch detection
WO2017036079A1 (zh) 指纹识别元件、指纹识别方法、显示器件及显示装置
WO2017071441A1 (zh) 指纹识别模组及其制备方法、显示装置
US20130135247A1 (en) Touch sensing apparatus
WO2017035998A1 (zh) 触控电极结构、触控面板以及显示装置
US20170364727A1 (en) Display device
US8203538B2 (en) Sensor structure of touch panel and method for determining touch signal generating by sensor structure of touch panel
US20230251747A1 (en) Fingerprint sensor and display device including the same
CN103792711A (zh) 一种触控显示面板及其制备方法
US11301663B2 (en) Fingerprint sensor and method of manufacturing the same
US20160364057A1 (en) Three-dimensional touch panel
US20160034739A1 (en) Biometric identification device having sensor electrodes with masking function
CN107330411A (zh) 一种指纹识别装置及其制作方法、触控显示装置
CN111506886A (zh) 全屏触控指纹解锁的感应组件、移动终端以及方法
US10997393B2 (en) Method and apparatus for identifying fingerprint logo and electronic device
WO2020146984A1 (zh) 基于多安全环境的指纹识别方法、指纹识别系统和电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859957

Country of ref document: EP

Effective date: 20200707