WO2019109196A1 - 具可变匝数绕组线圈的永磁电机装置及其控制方法 - Google Patents

具可变匝数绕组线圈的永磁电机装置及其控制方法 Download PDF

Info

Publication number
WO2019109196A1
WO2019109196A1 PCT/CN2017/000719 CN2017000719W WO2019109196A1 WO 2019109196 A1 WO2019109196 A1 WO 2019109196A1 CN 2017000719 W CN2017000719 W CN 2017000719W WO 2019109196 A1 WO2019109196 A1 WO 2019109196A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
permanent magnet
magnet motor
switch
winding
Prior art date
Application number
PCT/CN2017/000719
Other languages
English (en)
French (fr)
Inventor
刘圣彦
Original Assignee
谊山精密五金电子(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谊山精密五金电子(昆山)有限公司 filed Critical 谊山精密五金电子(昆山)有限公司
Priority to PCT/CN2017/000719 priority Critical patent/WO2019109196A1/zh
Priority to KR1020207015910A priority patent/KR20200085298A/ko
Priority to BR112020011293-3A priority patent/BR112020011293A2/pt
Priority to US16/500,407 priority patent/US20200212746A1/en
Priority to EP17934292.8A priority patent/EP3719964A4/en
Priority to JP2020547261A priority patent/JP2021505122A/ja
Priority to MX2020007053A priority patent/MX2020007053A/es
Publication of WO2019109196A1 publication Critical patent/WO2019109196A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a motor device, and more particularly to a permanent magnet motor device having a variable turns winding.
  • the invention also relates to a method of controlling such a motor arrangement.
  • the electric motor in order to make the motor have high torque, the electric motor usually does not consider the power saving effect, so the motor is extremely power-consuming, thereby reducing the endurance of the electric vehicle.
  • the design of the motor usually does not consider the torque, so the above design can make the electric vehicle have higher endurance, but in the occasions requiring high torque, such as starting and climbing Slopes and loads, etc., do not provide better performance.
  • the motor can simultaneously balance the power saving effect and the torque, it is usually necessary to use a larger motor or join the gearbox, which will increase the size and weight of the electric vehicle, thereby affecting the design of the electric vehicle. Increase battery capacity.
  • the motor has different designs for its power-saving effect, torque, speed and power for its application load requirements. Therefore, how to propose a permanent magnet motor device, which can effectively improve various shortcomings of the prior art permanent magnet motor, has become an urgent problem.
  • one of the objects of the present invention is to provide a variable A permanent magnet motor device with a number of winding coils and a control method thereof to solve various problems of the prior art permanent magnet motor.
  • a permanent magnet motor apparatus having a variable number winding winding
  • the winding can comprise multiple coils.
  • a polarity switching device can be coupled to the power supply and the winding to control the pole shift.
  • the switching device can include a plurality of switches, the plurality of switches being connectable to the plurality of coils, respectively; the switching device can switch the plurality of switches to change a series-parallel state of the plurality of coils.
  • the performance of the permanent magnet motor device changes when the switching device switches the plurality of switches to change the series-parallel state of the plurality of coils.
  • the performance of the permanent magnet motor assembly includes one or more of a power saving effect, a torque, a rotational speed, and a power.
  • a control method for a permanent magnet motor device may include the steps of: connecting a polarity conversion device to a plurality of coils of a power source and a winding of the motor to control magnetic pole transformation; A plurality of switches of the device are respectively coupled to the plurality of coils; and the plurality of switches are switched to change a series-parallel state of the plurality of coils.
  • control method of the permanent magnet motor device further includes the step of changing the performance of the permanent magnet motor device by different series-parallel states of the plurality of coils.
  • the performance of the permanent magnet motor assembly includes one or more of a power saving effect, a torque, a rotational speed, and a power.
  • a permanent magnet motor device having a variable number of winding coils and a control method thereof according to the present invention may have one or more of the following advantages:
  • a winding on each armature of a permanent magnet motor device may include a plurality of coils, and the plurality of coils may be connected to each other by a switching device composed of a plurality of switches to change the plurality of coils
  • the series-parallel state of the coil adjusts the performance of the motor between high power-saving effect and high-speed speed as the case may be, so that the electric vehicle not only has high endurance, but also can have excellent performance in situations where high output is required.
  • the permanent magnet motor device can adjust the speed of the motor and the power saving effect by changing the series-parallel state of the plurality of coils of the windings on the respective armatures, so that the motor performance can be at the speed and the province.
  • the change in the demand for electrical effects has greatly improved the performance of the motor.
  • the motor can adjust the speed and power saving effect of the motor by changing the series-parallel state of the plurality of coils of the windings on the respective armatures, so that the volume and weight are not increased, so Affect the design of electric vehicles.
  • a permanent magnet motor such as a brushless DC motor and a DC brush motor.
  • the permanent magnet motor device is simple in design, so that the desired effect can be achieved without greatly increasing the cost.
  • FIG. 1 is a view showing a motor apparatus of a first embodiment of a permanent magnet motor apparatus having a variable number winding winding of the present invention.
  • FIG. 2 is a first schematic view of a winding of a first embodiment of a permanent magnet motor apparatus having a variable turns winding coil of the present invention.
  • FIG 3 is a second schematic view of a permanent magnet motor apparatus having a variable number winding winding of the present invention.
  • FIG. 4 is a third schematic view of a permanent magnet motor apparatus with variable turns windings of the present invention.
  • Figure 5 is a first schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 6 is a second schematic view of the winding of the permanent magnet motor apparatus with variable turns windings of the present invention.
  • Figure 7 is a third schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 8 is a fourth schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 9 is a first schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 10 is a second schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 11 is a third schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 12 is a fourth schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 13 is a fifth schematic view of a permanent magnet motor apparatus having a variable turns winding of the present invention.
  • Figure 14 is a schematic view of a fourth embodiment of a permanent magnet motor apparatus having a variable turns winding coil of the present invention Figure.
  • Figure 15 is a flow chart showing an embodiment of a method of controlling a permanent magnet motor apparatus of the present invention.
  • FIG. 1 is a diagram of a motor device of a first embodiment of a permanent magnet motor device having a variable number winding winding of the present invention.
  • the permanent magnet motor device 1 having a variable number of winding coils may include a magnet 11, an armature 12, a switching device 13, a polarity changing device 14, and a power supply (only the drawings are shown for clarity of the drawing) Electrode E+ and E-).
  • the magnet 11 can generate a magnetic field.
  • the armature 12 can include a plurality of armature teeth 121 and a plurality of windings 122.
  • the plurality of windings 122 can be respectively wound around the plurality of armature teeth 121, so that the magnetic field generated by the armature 12 can be generated with the magnet 11. The magnetic field interacts.
  • the polarity changing device 14 can be connected to a power source and can be connected to the plurality of windings 122 through the switching device 13 to control the magnetic pole transformation; in the preferred embodiment, if the permanent magnet motor device 1 is a brush motor, the pole The transforming device 14 can be a brush; if the permanent magnet motor device 1 is a brushless motor, the polarity changing device 14 can be an electronic switch, such as a MOS or BJT transistor.
  • the permanent magnet motor device 1 may be an inner rotor device, but for example only; in other preferred embodiments, the permanent magnet motor device 1 may also be an outer rotor device or other various different Motor unit.
  • FIG. 2 and FIG. 4 are first, second and third schematic views of a winding of a first embodiment of a permanent magnet motor device with variable turns windings according to the present invention.
  • each of the windings 122 may include a first coil L1 and a second coil L2; in the embodiment, the number of turns of the first coil L1 and the second coil L2 is 50.
  • the switching device 13 can include a plurality of switches.
  • the switching device 13 can include a first switch S1, a second switch S2, and a third switch S3.
  • the first switch S1, the second switch S2, and the third switch S3 are respectively associated with The first coil L1 and the second coil L2 are connected; wherein the switching device 13 can switch the first switch S1, the second switch S2 and the third switch S3 to change the series-parallel state of the first coil L1 and the second coil L2.
  • the first end of the first coil L1 can be connected to the first end and the second end of the second coil L2 through the first switch S1 and the second switch S2, respectively, and the second end of the first coil L1 can be connected to the power source (not drawn on The first electrode E+ of the figure is connected and can be connected to the second end of the second coil L2 through the third switch S3; the first end of the second coil L2 can be connected to the second electrode E- of the power source.
  • the first coil L1 and the second coil L2 are in a series state, and the total impedance of the winding 122 is equivalent to a coil having a number of turns of 100, and the total passing through the winding 122.
  • the current is I; when the first coil L1 and the second coil L2 are connected in series, it corresponds to the winding 122 having a coil having a number of turns of 100; at this time, the permanent magnet motor device 1 has a higher power saving effect but a lower rotational speed. status.
  • the total impedance of the winding 122 is equivalent to a coil having a number of turns of 50.
  • the total current through the winding 122 is 2I; when the first coil L1 and the second coil L2 are connected in parallel, it corresponds to the winding 122 having two turns of 50 turns but the coil is wound; at this time, the permanent magnet motor device 1 is at a higher speed High but low power saving effect.
  • the windings 122 on the respective armature teeth 121 of the permanent magnet motor apparatus 1 may include a plurality of coils L1 and L2, and the plurality of coils L1 and L2 may be connected to each other through a plurality of switches to change the The series-parallel state of the plurality of coils is used to adjust the performance of the motor between high power saving effects and high speeds as appropriate.
  • the electric vehicle not only has high endurance, but also has excellent performance when high speed is required.
  • the above-mentioned structural design enables the permanent magnet motor device 1 to simultaneously save power without increasing the volume and weight. The effect and speed, so it can indeed improve the shortcomings of the prior art.
  • the permanent magnet motor device 1 of the present embodiment can be connected to the coil through the switching device, so that the coils can achieve the purpose of improving the power saving effect, the torque, the rotation speed and the power through various combinations of series or parallel.
  • the permanent magnet motor device of the embodiment is only an example, and the permanent magnet motor device can be applied to various types of permanent magnet motors, such as a DC brushless motor and a DC brush motor, and the structure thereof can be changed according to actual needs, and the present invention Not limited to this.
  • each winding of the permanent magnet motor device may include a plurality of coils, and the plurality of coils may be connected to each other by a switching device to change a series-parallel state of the plurality of coils to Depending on the situation, the motor performance can be adjusted between high power-saving effects and high speeds, so that the electric vehicle not only has high endurance, but also has excellent performance in situations where high speed is required.
  • the prior art permanent magnet motor in order to simultaneously balance the power saving effect and the rotational speed, usually needs to adopt a larger motor or join the gearbox, which increases the volume and weight of the electric vehicle, thereby affecting the electric vehicle. Design, you also need to increase battery capacity.
  • the permanent magnet motor device can adjust the speed of the motor and the power saving effect by changing the series-parallel state of the coils of the respective windings, so that the volume and weight are not increased, so that the electric vehicle is not affected. the design of.
  • the structural design of the permanent magnet motor device is simple, so that the desired effect can be achieved without greatly increasing the cost. From the above, it can be seen that the present invention has progressive patent requirements.
  • FIG. 5 , FIG. 6 , FIG. 7 and FIG. 8 are a first schematic diagram, a second schematic diagram and a third schematic diagram of a winding of a second embodiment of a permanent magnet motor device with variable turns winding coils according to the present invention.
  • the fourth schematic and please refer to Figure 1.
  • the permanent magnet motor device 1 of the present embodiment is similar to that of FIG. 1 of the foregoing embodiment, and therefore will not be described in detail; unlike the foregoing embodiment, in the present embodiment, each of the windings 122 has a different embodiment from the foregoing embodiment. structure.
  • each winding 122 may include a first coil L1, a second coil L2, a third coil L3, and a fourth coil L4; in this embodiment, the first coil L1, the second coil L2, and the third coil The number of turns of L3 and the fourth coil L4 is 25.
  • the switching device 13 can include the first switch S1 ... the ninth switch S9, the first switch S1 ... the ninth switch S9 can be respectively associated with the first coil L1.... The fourth coil L4 is connected; wherein the switching device 13 can switch the first switch S1 ... the ninth switch S9 to change the series-parallel state of the first coil L1 ... the fourth coil L4.
  • the first end of the first coil L1 can be connected to the first end and the second end of the second coil L2 through the first switch S1 and the second switch S2 respectively; the second end of the first coil L1 can be connected to the power source (not shown in the figure)
  • the first electrode E+ of the middle is connected and can be connected to the second end of the second coil L2 through the third switch S3.
  • the first end of the second coil L2 can be connected to the first end and the second end of the third coil L3 through the fourth switch S4 and the fifth switch S5, respectively; the second end of the second coil L2 can pass through the sixth switch S6 The second end of the third coil L3 is connected.
  • the first end of the third coil L3 can be connected to the first end and the second end of the fourth coil L4 through the seventh switch S7 and the eighth switch S8, respectively; the second end of the third coil L3 can pass through the ninth switch S9 and The second end of the fourth coil L4 is connected; the first end of the fourth coil L4 is further connected to the second electrode E- of the power source.
  • the total impedance of the winding 122 corresponds to a coil having a number of turns of 100, and the total current through the winding 122 is I; when the first coil L1, the second coil L2, the third coil L3, and the fourth coil L4 are connected in series, it is equivalent
  • the winding 122 has a coil having a number of turns of 100; at this time, the permanent magnet motor structure 1 is in a state in which the power saving effect is high but the rotation speed is low.
  • the first switch S1, the third switch S3, the fifth switch S5, the seventh switch S7, and the ninth switch S9 are turned on
  • the first coil L1 and the second coil L2 are connected in parallel
  • the third coil L3 is connected.
  • the fourth coil L4 is connected in parallel
  • the parallel structure of the first coil L1 and the second coil L2 is connected in series with the parallel structure of the third coil L3 and the fourth coil L4.
  • the total impedance of the winding 122 is equivalent to a coil having a number of turns of 50.
  • the total current through the winding 122 is 2I; at this time, the power saving effect of the permanent magnet motor device 1 is lowered by one step but the rotation speed is increased by one step.
  • the first switch S1 and the second coil L2 are The three coils L3 and the fourth coil L4 are in a parallel state.
  • the total impedance of the coils 122 corresponds to a coil having a number of turns of 25, and the total current through the coils 122 is 4I; when the first coil L1 and the second coil L2 are When the three coils L3 and the fourth coil L4 are connected in parallel, it corresponds to the coil 122 having four turns of 25 turns but the coil is wound; at this time, the power saving effect of the permanent magnet motor device 1 is further reduced by one step but the speed is further increased by one step. .
  • FIG. 9 is a first schematic diagram and a second schematic diagram of a winding of a third embodiment of a permanent magnet motor device with a variable turns winding coil according to the present invention.
  • the permanent magnet motor device 1 of the present embodiment is similar to that of Fig. 1 of the foregoing embodiment, and therefore will not be described in detail; unlike the foregoing embodiment, in the present embodiment, each of the windings 122 has a structure different from that of the foregoing embodiment.
  • each winding 122 may include a first coil L1, a second coil L2, a third coil L3, a fourth coil L4, a fifth coil L5, and a sixth coil L6; in this embodiment, the first coil The number of turns of L1, second coil L2, third coil L3, fourth coil L4, fifth coil L5, and sixth coil L6 is 10.
  • the switching device 13 may include a first switch S1 ... the fifteenth switch S15, the first switch S1 ... the ninth switch S9 may be respectively associated with the first coil L1 ... ...the sixth coil L6 is connected; wherein the switching device 13 can switch the first switch S1 ... the fifteenth switch S15 to change the series-parallel connection of the first coil L1 ... the sixth coil L6 status.
  • the first end of the first coil L1 can be connected to the first end and the second end of the second coil L2 through the first switch S1 and the second switch S2 respectively; the second end of the first coil L1 can be connected to the power source (not shown in the figure)
  • the first electrode E+ of the middle is connected and can be connected to the second end of the second coil L2 through the third switch S3.
  • the first end of the second coil L2 can be connected to the first end and the second end of the third coil L3 through the fourth switch S4 and the fifth switch S5, respectively; the second end of the second coil L2 can pass through the sixth switch S6 The second end of the third coil L3 is connected.
  • the first end of the third coil L3 can be connected to the first end and the second end of the fourth coil L4 through the seventh switch S7 and the eighth switch S8, respectively; the second end of the third coil L3 can pass through the ninth switch S9 and The second end of the fourth coil L4 is connected.
  • the first end of the fourth coil L4 can be connected to the first end and the second end of the fifth coil L5 through the tenth switch S10 and the eleventh switch S11, respectively; the second end of the fourth coil L4 can pass the twelfth switch S12 is connected to the second end of the fifth coil L5.
  • the first end of the fifth coil L5 can be connected to the first end and the second end of the sixth coil L6 through the thirteenth switch S13 and the fourteenth switch S14, respectively; the second end of the fifth coil L5 can pass the fifteenth
  • the switch S15 is connected to the second end of the sixth coil L6; the first end of the sixth coil L6 is further connected to the second electrode E- of the power source.
  • the total impedance of the winding 122 corresponds to a coil having a number of turns of 60, and the total current passing through the coil 122 is I; when the first coil When L1, the second coil L2, the third coil L3, the fourth coil L4, the fifth coil L5, and the sixth coil L6 are connected in series, it corresponds to the winding 122 having a coil having a number of turns 60; at this time, the permanent magnet motor device 1 is in a state where the power saving effect is high but the rotation speed is low.
  • the total impedance of the winding 122 corresponds to a coil having a number of turns of 30, and the total current passing through the coil 122 is 2I; At this time, the power saving effect of the permanent magnet motor device 1 is lowered by one step but the rotation speed is increased by one step.
  • the five switches S15 are turned on, the first coil L1, the second coil L2, and the third coil L3 are connected in parallel, and the fourth coil L4, the fifth coil L5, and the sixth coil L6 are connected in parallel, and the first coil L1, the second coil L2, and the first coil
  • the parallel structure of the three coils L3 is connected in series with the parallel structure of the fourth coil L4, the fifth coil L5, and the sixth coil L6.
  • the total impedance of the coil 122 corresponds to a coil having a number of turns of 20, and the total current passing through the coil 122 is 3I; At this time, the power saving effect of the permanent magnet motor device 1 is further reduced by one step but the rotation speed is further increased by one step.
  • the first switch S1, the third switch S3, the fourth switch S4, and the sixth switch S6 When the seven switch S7, the ninth switch S9, the eighth switch S8, the tenth switch S10, the twelfth switch S12, the thirteenth switch S13 and the fifteenth switch S15 are turned on, the first coil L1 and the second coil L2 The third coil L3, the fourth coil L4, the fifth coil L5, and the sixth coil L6 are in a parallel state.
  • the total impedance of the winding 122 is equivalent to a coil having a number of turns of 10, and the total current passing through the coil 122 is 6I;
  • the first coil L1, the second coil L2, the third coil L3, the fourth coil L4, the fifth coil L5, and the sixth coil L6 are connected in parallel, it corresponds to the coil 122 having six turns of 10 but wound together;
  • the power saving effect of the permanent magnet motor device 1 is further reduced by one step but the rotation speed is further increased by one step.
  • the permanent magnet motor device of the embodiment is only an example, and the permanent magnet motor device can be applied to various types of permanent magnet motors, such as a DC brushless motor and a DC brush motor, and the structure thereof can be changed according to actual needs, and the present invention Not limited to this.
  • the respective windings 122 of the permanent magnet motor device 1 of the foregoing two embodiments have more coils, so that more variations can be provided, so that the permanent magnet motor device 1 can provide three different levels of torque, three Different levels of speed and three different levels of power saving effect are adjusted, so that the permanent magnet motor device 1 can simultaneously take into account the torque and power saving effect, and greatly improve the performance and application of the permanent magnet motor device 1.
  • FIG. 14 is a schematic diagram of a fourth embodiment of a permanent magnet motor device with variable turns windings of the present invention.
  • a permanent magnet motor device 1 having a variable number of winding coils may include a magnet, an armature 12, a polarity changing device 14, and a power source (in order to clearly show the drawings, components such as a magnet and a power source are omitted in the drawing. ).
  • the magnet generates a magnetic field.
  • the armature 12 can include a plurality of armature teeth 121, and each of the armature teeth 121 can include a plurality of windings 122, and the plurality of windings 122 of the plurality of armature teeth 121 can be connected to a power source (not shown) Connection; unlike the previous embodiment, in the present embodiment, each of the armature teeth 121 may include a plurality of windings 122.
  • the magnetic field generated by the armature 12 can interact with the magnetic field generated by the magnet 11.
  • the polarity switching device 14 can be coupled to a power source and can be coupled to the plurality of windings 122 via a switching device 13 to control pole switching.
  • the permanent magnet motor device 1 having a variable number of winding coils may further include a switching device 13 which may include a plurality of switches, respectively, which may be associated with the plurality of armature teeth 121 The plurality of windings 122 are connected; therefore, the switching device 13 can switch the plurality of switches to change the series-parallel state of the plurality of windings 122 of the plurality of armature teeth 121.
  • the characteristics of the permanent magnet motor device include power saving effect, torque, speed or power Also changed at the same time, as described in the previous embodiment.
  • the permanent magnet motor device 1 having the variable number winding coil of the embodiment the characteristics of the permanent magnet motor device 1 can be adjusted between the power saving effect, the torque and the rotational speed, and the permanent magnet motor device is greatly improved.
  • the performance of 1 is also more widely used.
  • FIG. 15 is a flow chart of an embodiment of a method for controlling a permanent magnet motor device of the present invention.
  • the control method of the permanent magnet motor device of the present invention may include the following steps in a preferred embodiment:
  • Step S151 connecting the polarity changing device to the plurality of coils of the power source and the winding of the motor to control the magnetic pole transformation.
  • Step S152 connecting a plurality of switches of the switching device to the plurality of coils respectively.
  • Step S153 Switching the plurality of switches to change a series-parallel state of the plurality of coils.
  • Step S154 changing the performance of the permanent magnet motor device by different series-parallel states of the plurality of coils.
  • a winding on each armature of a permanent magnet motor device may include a plurality of coils, and the plurality of coils may be changed by a plurality of switches to change the plurality of coils
  • the series-parallel state adjusts the performance of the motor between the power-saving effect and the torque and the rotational speed as the case may be, so that the electric vehicle not only has high endurance, but also has excellent performance in situations where high output is required.
  • the permanent magnet motor device can change the series-parallel state of the plurality of coils of the winding by the switching device to adjust the rotation speed and the power saving effect of the motor, so that the performance of the motor can be between the speed and the power saving effect requirement.
  • the transformation greatly improved the performance of the motor.
  • the permanent magnet motor device can change the series-parallel state of the plurality of coils of the respective windings through the switching device to adjust the rotation speed and the power saving effect of the permanent magnet motor device, thereby not increasing the volume and the weight. Will not affect the design of electric vehicles.
  • the permanent magnet motor device can be applied to various types of permanent magnet motors, such as a brushless DC motor and a DC brush motor, so that the application is extremely wide.
  • the structure design of the permanent magnet motor device is simple, so that it can be Achieve the desired effect with a substantial increase in cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Control Of Ac Motors In General (AREA)
  • Windings For Motors And Generators (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种具可变匝数绕组线圈的永磁电机装置,其可包含绕组及电源。绕组可包含多个线圈。电源可经过切换装置与线圈连接,使这些线圈通过串联或并联的各种组合,达成电机提升省电效果,扭力,转速,功率的目的。

Description

具可变匝数绕组线圈的永磁电机装置及其控制方法 技术领域
本发明涉及一种电机装置,特别是一种具可变匝数绕组线圈的永磁电机装置。本发明还涉及此电机装置的控制方法。
现有技术
由于全球暖化及空气污染的问题日益严重,维持地球生命的系统正产生大规模的改变;因此,如何降低温室气体排放已成为了一个重要的议题;温室气体排放的其中一个主要的来源为车辆,故在环保意识抬头的现今,电动车已经成为了一个未来的主流;然而,目前电动车常采用的永磁电机仍有着许多缺点有待改进。
例如,电动车为了使电机能具有高扭力,电机的设计上通常不会考虑省电效果,因此使电机极为耗电,进而降低了电动车的续航力。
另外,若为了使电机能具有高省电效果,电机的设计上通常则不会考虑扭力,因此上述设计虽可使电动车具有较高的续航力,但在需要高扭力的场合,如起步、爬坡及载重等,则无法提供较佳的效能。
此外,若为了使电机能同时兼顾省电效果及扭力,通常需要采用更大的电机或加入变速箱,如此则会使电动车的体积及重量增大,进而影响到电动车的设计,还需增加电池容量。
电机针对其应用负载需求,在省电效果、扭力、转速及功率间有不同的设计。因此,如何提出一种永磁电机装置,能够有效改善现有技术的永磁电机的各种缺点已成为一个刻不容缓的问题。
发明内容
有鉴于上述现有技术的问题,本发明的其中一个目的就是在提供一种具可变 匝数绕组线圈的永磁电机装置及其控制方法,以解决现有技术的永磁电机的各种问题。
根据本发明的其中一个目的,提出一种具可变匝数绕组线圈的永磁电机装置,其可包含绕组、电源、极性变换装置及切换装置。绕组可包含多个线圈。极性变换装置可与电源与绕组连接,以控制磁极变换。切换装置可包含多个开关,所述多个开关可分别与所述多个线圈连接;切换装置能切换所述多个开关以改变所述多个线圈的串并联状态。
在一较佳的实施例中,当切换装置切换所述多个开关以改变所述多个线圈的串并联状态时,永磁电机装置的性能改变。
在一较佳的实施例中,永磁电机装置的性能包含省电效果、扭力、转速及功率中的一个或二个以上。
根据本发明的其中一个目的,再提出一种永磁电机装置的控制方法,其可包含下列步骤:将极性变换装置与电源及电机的绕组的多个线圈连接,以控制磁极变换;将切换装置的多个开关分别与所述多个线圈连接;以及切换所述多个开关以改变所述多个线圈的串并联状态。
在一较佳的实施例中,永磁电机装置的控制方法更可包含下列步骤:通过所述多个线圈的不同的串并联状态改变永磁电机装置的性能。
在一较佳的实施例中,永磁电机装置的性能包含省电效果、扭力、转速及功率中的一个或二个以上。
承上所述,依本发明的具可变匝数绕组线圈的永磁电机装置及其控制方法,其可具有一或多个下述优点:
(1)本发明的一个实施例中,永磁电机装置各个电枢上的绕组可包含多个线圈,且所述多个线圈可通过多个开关组成的切换装置互相连接以改变所述多个线圈的串并联状态以视情况在高省电效果及高转速之间调整电机性能,使电动车不但具有高续航力,且可在需要高出力的场合也能有极佳的效能。
(2)本发明的一个实施例中,永磁电机装置可通过改变各个电枢上的绕组的多个线圈的串并联状态以调整电机的转速及省电效果,使电机性能可在转速及省电效果需求之间变换,大幅提升了电机的效能。
(3)本发明的一个实施例中,电机可通过改变各个电枢上的绕组的多个线圈的串并联状态以调整电机的转速及省电效果,因此不会增加体积及重量,故不会影响到电动车的设计。
(4)本发明的一个实施例中,可应用于永磁电机,例如直流无刷电机及直流有刷电机。
(5)本发明的一个实施例中,永磁电机装置设计简单,因此可以在不大幅增加成本的情况下达到所欲达到的功效。
附图说明
图1为本发明的具可变匝数绕组线圈的永磁电机装置的第一实施例的电机装置图。
图2为本发明的具可变匝数绕组线圈的永磁电机装置的第一实施例的绕组的第一示意图。
图3为本发明的具可变匝数绕组线圈的永磁电机装置的第二示意图。
图4为本发明的具可变匝数绕组线圈的永磁电机装置的第三示意图。
图5为本发明的具可变匝数绕组线圈的永磁电机装置的第一示意图。
图6为本发明的具可变匝数绕组线圈的永磁电机装置的绕组的第二示意图。
图7为本发明的具可变匝数绕组线圈的永磁电机装置的第三示意图。
图8为本发明的具可变匝数绕组线圈的永磁电机装置的第四示意图。
图9为本发明的具可变匝数绕组线圈的永磁电机装置的第一示意图。
图10为本发明的具可变匝数绕组线圈的永磁电机装置的第二示意图。
图11为本发明的具可变匝数绕组线圈的永磁电机装置的第三示意图。
图12为本发明的具可变匝数绕组线圈的永磁电机装置的第四示意图。
图13为本发明的具可变匝数绕组线圈的永磁电机装置的第五示意图。
图14为本发明的具可变匝数绕组线圈的永磁电机装置的第四实施例的示意 图。
图15为本发明的永磁电机装置的控制方法的一实施例的流程图。
附图标记列表-1-永磁电机装置;11-磁铁;12-电枢;121-电枢齿;122-绕组;13-切换装置;L1-第一线圈;L2-第二线圈;L3-第三线圈;L4-第四线圈;L5-第五线圈;L6-第六线圈;S1-第一开关;S2-第二开关;S3-第三开关;S4-第四开关;S5-第五开关;S6-第六开关;S7-第七开关;S8-第八开关;S9-第九开关;S10-第十开关;S11-第十一开关;S12-第十二开关;S13第十三开关;S14-第十四开关;S15-第十五开关;14-极性变换装置;E+-第一电极;E--第二电极;N、S-磁极;I-电流;S151......S154-步骤流程。
具体实施方式
以下将参照相关附图,说明依本发明的具可变匝数绕组线圈的永磁电机装置及其控制方法实施例,为了清楚与方便附图说明之故,附图中的各部件在尺寸与比例上可能会被夸大或缩小地呈现。在以下描述及/或申请专利范围中,当提及组件「连接」或「耦合」至另一组件时,其可直接连接或耦合至该另一组件或可存在介入组件;而当提及组件「直接连接」或「直接耦合」至另一组件时,不存在介入组件,用于描述组件或层之间的关系的其他字词应以相同方式解释。为使便于理解,下述实施例中的相同组件以相同的符号标示来说明。
请参阅图1,其为本发明的具可变匝数绕组线圈的永磁电机装置第一实施例的电机装置图。如图所示,具可变匝数绕组线圈的永磁电机装置1可包含磁铁11、电枢12、切换装置13、极性变换装置14及电源(为了清楚表示附图,图中仅绘示电源的电极E+及E-)。
磁铁11可产生磁场。
电枢12可包含多个电枢齿121及多个绕组122;所述多个绕组122可分别绕设于所述多个电枢齿121上,使电枢12产生的磁场可以与磁铁11产生的磁场相互作用。
极性变换装置14可与电源连接,并可通过切换装置13与所述多个绕组122连接,以控制磁极变换;在较佳的实施例中,若永磁电机装置1为有刷电机,极 性变换装置14则可为电刷;若永磁电机装置1为无刷电机,极性变换装置14则可为电子开关,如MOS、BJT等晶体管。
在本实施例中,永磁电机装置1可为内转子装置,但仅为举例说明而已;在其它较佳的实施例中,永磁电机装置1也可为外转子装置或其它各种不同的电机装置。
请参阅图2、图3及图4,其为本发明的具可变匝数绕组线圈的永磁电机装置的第一实施例的绕组的第一示意图、第二示意图及第三示意图。如图2所示,各个绕组122可包含第一线圈L1及第二线圈L2;在本实施例中,第一线圈L1及第二线圈L2的匝数为50。
切换装置13可包含多个开关;在本实施例,切换装置13可包含第一开关S1、第二开关S2及第三开关S3,第一开关S1、第二开关S2及第三开关S3分别与第一线圈L1及第二线圈L2连接;其中,切换装置13能切换第一开关S1、第二开关S2及第三开关S3以改变第一线圈L1及第二线圈L2的串并联状态。
第一线圈L1的第一端可分别过第一开关S1及第二开关S2与第二线圈L2第一端及第二端连接,而第一线圈L1的第二端可与电源(未绘于图中)的第一电极E+连接,并可通过第三开关S3与第二线圈L2的第二端连接;第二线圈L2的第一端更可与电源的第二电极E-连接。
如图3所示,当第二开关S2导通时,第一线圈L1及第二线圈L2为串联状态,此时绕组122的总阻抗相当于匝数为100的线圈,而通过绕组122的总电流为I;当第一线圈L1及第二线圈L2串联时,其相当于绕组122具有一个匝数为100的线圈;此时,永磁电机装置1处于省电效果较高但转速较低的状态。
如图4所示,当第一开关S1及第三开关S3导通时,第一线圈L1及第二线圈L2为并联状态,此时绕组122的总阻抗相当于匝数为50的线圈,而通过绕组122的总电流为2I;当第一线圈L1及第二线圈L2并联时,其相当于绕组122具有二个匝数50但并绕的线圈;此时,永磁电机装置1处于转速较高但省电效果较低的状态。
根据本发明的实施例,永磁电机装置1的各个电枢齿121上的绕组122可包含多个线圈L1及L2,且所述多个线圈L1及L2可通过多个开关互相连接以改变所述多个线圈的串并联状态以视情况在高省电效果及高转速之间调整电机性能, 使电动车不但具有高续航力,且可在需要高转速的场合也能有极佳的效能;另外,上述的结构设计使永磁电机装置1可在不增加体积及重量的情况下同时兼顾省电效果及转速,故确实可以改善现有技术的缺点。
由上述可知,本实施例的永磁电机装置1可经过切换装置与线圈连接,使这些线圈通过串联或并联的各种组合,达成电机提升省电效果,扭力,转速,功率的目的。
本实施例的永磁电机装置仅为举例,永磁电机装置可应用于各种不同类型的永磁电机,例如直流无刷电机及直流有刷电机,其结构可依实际需求改变,本发明并不以此为限。
值得一提的是,根据本发明的实施例,永磁电机装置的各个绕组可包含多个线圈,且所述多个线圈可通过切换装置互相连接以改变所述多个线圈的串并联状态以视情况在高省电效果及高转速之间调整电机性能,使电动车不但具有高续航力,且可在需要高转速的场合也能有极佳的效能。
此外,现有技术的永磁电机为了能同时兼顾省电效果及转速,通常需要采用更大的电机或加入变速箱,如此则会使电动车的体积及重量增大,进而影响到电动车的设计,还需增加电池容量。相反的,根据本发明的实施例,永磁电机装置可通过改变各个绕组的线圈的串并联状态以调整电机的转速及省电效果,因此不会增加体积及重量,故不会影响到电动车的设计。
另外,根据本发明的实施例,可应用于各种不同类型的永磁电机,例如直流无刷电机及直流有刷电机等等,故应用上极为广泛。
再者,根据本发明的实施例,永磁电机装置的结构设计简单,因此可以在不大幅增加成本的情况下达到所欲达到的功效。由上述可知,本发明实具进步性的专利要件。
请参阅图5、图6、图7及图8,其为本发明的具可变匝数绕组线圈的永磁电机装置的第二实施例的绕组的第一示意图、第二示意图、第三示意图及第四示意图,并请同时参阅图1。
本实施例的永磁电机装置1与前述实施例的图1相似,故不在此多加赘述;与前述实施例不同的是,在本实施例中,各个绕组122具有与前述实施例不同的 结构。
如图5所示,各个绕组122可包含第一线圈L1、第二线圈L2、第三线圈L3及第四线圈L4;在本实施例中,第一线圈L1、第二线圈L2、第三线圈L3及第四线圈L4的匝数为25。
在本实施例,切换装置13可包含第一开关S1......第九开关S9,第一开关S1......第九开关S9可分别与第一线圈L1......第四线圈L4连接;其中,切换装置13能切换第一开关S1......第九开关S9以改变第一线圈L1......第四线圈L4的串并联状态。
第一线圈L1的第一端可分别过第一开关S1及第二开关S2与第二线圈L2第一端及第二端连接;第一线圈L1的第二端可与电源(未绘于图中)的第一电极E+连接,并可通过第三开关S3与第二线圈L2的第二端连接。
第二线圈L2的第一端可分别通过第四开关S4及第五开关S5与第三线圈L3的第一端及第二端连接;第二线圈L2的第二端可通过第六开关S6与第三线圈L3的第二端连接。
第三线圈L3的第一端可分别通过第七开关S7及第八开关S8与第四线圈L4的第一端及第二端连接;第三线圈L3的第二端可通过第九开关S9与第四线圈L4的第二端连接;第四线圈L4的第一端更可与电源的第二电极E-连接。
如图6所示,当第二开关S2、第五开关S5及第八开关S8导通时,第一线圈L1、第二线圈L2、第三线圈L3及第四线圈L4为串联状态,此时绕组122的总阻抗相当于匝数为100的线圈,而通过绕组122的总电流为I;当第一线圈L1、第二线圈L2、第三线圈L3及第四线圈L4串联时,其相当于绕组122具有一个匝数为100的线圈;此时,永磁电机结构1处于省电效果较高但转速较低的状态。
如图7所示,当第一开关S1、第三开关S3、第五开关S5、第七开关S7及第九开关S9导通时,第一线圈L1及第二线圈L2并联,第三线圈L3及第四线圈L4并联,第一线圈L1及第二线圈L2的并联结构与第三线圈L3及第四线圈L4的并联结构串联,此时绕组122的总阻抗相当于匝数为50的线圈,而通过绕组122的总电流为2I;此时,永磁电机装置1的省电效果降低一级但转速提升一级。
如图8所示,第一开关S1、第三开关S3、第四开关S4、第六开关S6、第七开关S7及第九开关S9导通时,第一线圈L1、第二线圈L2、第三线圈L3及第四线圈L4为并联状态,此时绕组122的总阻抗相当于匝数为25的线圈,而通过绕组122的总电流为4I;当第一线圈L1、第二线圈L2、第三线圈L3及第四线圈L4并联时,其相当于绕组122具有四个匝数25但并绕的线圈;此时,永磁电机装置1的省电效果再降低一级但转速再提升一级。
请参阅图9、图10、图11、图12及图13,其为本发明的具可变匝数绕组线圈的永磁电机装置的第三实施例的绕组的第一示意图、第二示意图、第三示意图、第四示意图及第五示意图,并请同时参阅图1。
本实施例的永磁电机装置1与前述实施例的图1相似,故不在此多加赘述;与前述实施例不同的是,在本实施例中,各个绕组122具有与前述实施例不同的结构。
如图9所示,各个绕组122可包含第一线圈L1、第二线圈L2、第三线圈L3、第四线圈L4、第五线圈L5及第六线圈L6;在本实施例中,第一线圈L1、第二线圈L2、第三线圈L3、第四线圈L4、第五线圈L5及第六线圈L6的匝数为10。
在本实施例,切换装置13可包含第一开关S1......第十五开关S15,第一开关S1......第九开关S9可分别与第一线圈L1......第六线圈L6连接;其中,切换装置13能切换第一开关S1......第十五开关S15以改变第一线圈L1......第六线圈L6的串并联状态。
第一线圈L1的第一端可分别过第一开关S1及第二开关S2与第二线圈L2第一端及第二端连接;第一线圈L1的第二端可与电源(未绘于图中)的第一电极E+连接,并可通过第三开关S3与第二线圈L2的第二端连接。
第二线圈L2的第一端可分别通过第四开关S4及第五开关S5与第三线圈L3的第一端及第二端连接;第二线圈L2的第二端可通过第六开关S6与第三线圈L3的第二端连接。
第三线圈L3的第一端可分别通过第七开关S7及第八开关S8与第四线圈L4的第一端及第二端连接;第三线圈L3的第二端可通过第九开关S9与第四线圈L4的第二端连接。
第四线圈L4的第一端可分别通过第十开关S10及第十一开关S11与第五线圈L5的第一端及第二端连接;第四线圈L4的第二端可通过第十二开关S12与第五线圈L5的第二端连接。
第五线圈L5的第一端可分别通过第十三开关S13及第十四开关S14与第六线圈L6的第一端及第二端连接;第五线圈L5的第二端可通过第十五开关S15与第六线圈L6的第二端连接;第六线圈L6的第一端更可与电源的第二电极E-连接。
如图10所示,当第二开关S2、第五开关S5、第八开关S8、第十一开关S11及第十四开关S14导通时,第一线圈L1、第二线圈L2、第三线圈L3、第四线圈L4、第五线圈L5及第六线圈L6为串联状态,此时绕组122的总阻抗相当于匝数为60的线圈,而通过绕组122的总电流为I;当第一线圈L1、第二线圈L2、第三线圈L3、第四线圈L4、第五线圈L5及第六线圈L6串联时,其相当于绕组122具有一个匝数为60的线圈;此时,永磁电机装置1处于省电效果较高但转速较低的状态。
如图11所示,当第一开关S1、第三开关S3、第五开关S5、第七开关S7、第九开关S9、第十一开关S11、第十三开关S13及第十五开关S15导通时,第一线圈L1及第二线圈L2并联,第三线圈L3及第四线圈L4并联,第五线圈L5及第六线圈L6,第一线圈L1及第二线圈L2的并联结构、第三线圈L3及第四线圈L4的并联结构及第五线圈L5及第六线圈L6的并联结构彼此串联,此时绕组122的总阻抗相当于匝数为30的线圈,而通过绕组122的总电流为2I;此时,永磁电机装置1的省电效果降低一级但转速提升一级。
如图12所示,第一开关S1、第三开关S3、第四开关S4、第六开关S6、第八开关S8、第十开关S10、第十二开关S12、第十三开关S13及第十五开关S15导通时,第一线圈L1、第二线圈L2及第三线圈L3并联,第四线圈L4、第五线圈L5及第六线圈L6并联,第一线圈L1、第二线圈L2及第三线圈L3的并联结构与第四线圈L4、第五线圈L5及第六线圈L6的并联结构串联,此时绕组122的总阻抗相当于匝数为20的线圈,而通过绕组122的总电流为3I;此时,永磁电机装置1的省电效果再降低一级但转速再提升一级。
如图13所示,第一开关S1、第三开关S3、第四开关S4、第六开关S6、第 七开关S7、第九开关S9、第八开关S8、第十开关S10、第十二开关S12、第十三开关S13及第十五开关S15导通时,第一线圈L1、第二线圈L2、第三线圈L3、第四线圈L4、第五线圈L5及第六线圈L6为并联状态,此时绕组122的总阻抗相当于匝数为10的线圈,而通过绕组122的总电流为6I;当第一线圈L1、第二线圈L2、第三线圈L3、第四线圈L4、第五线圈L5及第六线圈L6并联时,其相当于绕组122具有六个匝数10但并绕的线圈;此时,永磁电机装置1的省电效果再降低一级但转速再提升一级。
本实施例的永磁电机装置仅为举例,永磁电机装置可应用于各种不同类型的永磁电机,例如直流无刷电机及直流有刷电机,其结构可依实际需求改变,本发明并不以此为限。
由上述可知,前述二个实施例的永磁电机装置1的各个绕组122具有更多的线圈,因此可提供更多的变化,使永磁电机装置1能提供三个不同等级的扭力、三个不同等级的转速及三个不同等级的省电效果以供调整,故可使永磁电机装置1可同时兼顾扭力及省电效果,大幅提升了永磁电机装置1的效能及应用。
请参阅图14,其为本发明的具可变匝数绕组线圈的永磁电机装置的第四实施例的示意图。如图所示,具可变匝数绕组线圈的永磁电机装置1可包含磁铁、电枢12、极性变换装置14及电源(为了能够清楚表示附图,图中省略了磁铁及电源等组件)。
磁铁可产生磁场。
电枢12可包含多个电枢齿121,而各个电枢齿121可包含多个绕组122,所述多个电枢齿121的所述多个绕组122可与电源(未绘于图中)连接;与前述实施例不同的是,在本实施例中,各个电枢齿121可包含多个绕组122。电枢12产生的磁场可以与磁铁11产生的磁场相互作用。
极性变换装置14可与电源连接,并可通过切换装置13与所述多个绕组122连接,以控制磁极变换。
除此之外,具可变匝数绕组线圈的永磁电机装置1更可包含切换装置13,其可包含多个开关,所述多个开关可分别与所述多个电枢齿121的所述多个绕组122连接;因此,切换装置13可切换所述多个开关以改变所述多个电枢齿121的所述多个绕组122的串并联状态。
当切换装置13切换所述多个开关以改变所述多个电枢齿121的所述多个绕组122的串并联状态时,永磁电机装置的特性,包含省电效果、扭力、转速或功率,也同时改变,如同前述实施例所述。
因此,通过本实施例的具可变匝数绕组线圈的永磁电机装置1,同样可达到在省电效果及扭力及转速之间调整永磁电机装置1的特性,大幅提升了永磁电机装置1的效能,应用上也更为广泛。
请参阅图15,其为本发明的永磁电机装置的控制方法的一实施例的流程图。本发明的永磁电机装置的控制方法在一较佳的实施例中可包含下列步骤:
步骤S151:将极性变换装置与电源及电机的绕组的多个线圈连接,以控制磁极变换。
步骤S152:将切换装置的多个开关分别与所述多个线圈连接。
步骤S153:切换所述多个开关以改变所述多个线圈的串并联状态。
步骤S154:通过所述多个线圈的不同的串并联状态改变永磁电机装置的性能。
综上所述,根据本发明的实施例,永磁电机装置各个电枢上的绕组可包含多个线圈,且所述多个线圈可通过多个开关组成的切换装置以改变所述多个线圈的串并联状态以视情况在省电效果及扭力及转速之间调整电机性能,使电动车不但具有高续航力,且可在需要高出力的场合也能有极佳的效能。
又,根据本发明的实施例,永磁电机装置可通过切换装置改变绕组的多个线圈的串并联状态以调整电机的转速及省电效果,使电机性能可在转速及省电效果需求之间变换,大幅提升了电机的效能。
此外,根据本发明的实施例,永磁电机装置可通过切换装置改变各个绕组的多个线圈的串并联状态以调整永磁电机装置的转速及省电效果,因此不会增加体积及重量,故不会影响到电动车的设计。
另外,根据本发明的实施例,永磁电机装置可应用于各种不同类型的永磁电机,例如直流无刷电机及直流有刷电机,故应用上极为广泛。
再者,根据本发明的实施例,永磁电机装置的结构设计简单,因此可以在不 大幅增加成本的情况下达到所欲达到的功效。
可见本发明在突破现有技术下,确实已达到所欲增进之功效,且本领域技术人员也不容易想到,其所具之进步性、实用性,显已符合专利之申请要件,依法提出专利申请,恳请贵局核准本件发明专利申请案,以励发明创造,至感德便。
以上所述仅为举例性,而非为限制性。其它任何未脱离本发明之精神与范畴,而对其进行之等效修改或变更,均应该包含于后附的权利要求书中。

Claims (6)

  1. 一种具可变匝数绕组线圈的永磁电机装置,包含:
    一绕组,包含多个线圈;
    一电源;
    一极性变换装置,与该电源与该绕组连接,以控制磁极变换;以及
    一切换装置,包含多个开关,所述多个开关分别与所述多个线圈连接;该切换装置能切换所述多个开关以改变所述多个线圈的串并联状态。
  2. 如权利要求1所述的具可变匝数绕组线圈的永磁电机装置,其中当该切换装置切换所述多个开关以改变所述多个线圈的串并联状态时,该永磁电机装置的性能改变。
  3. 如权利要求2所述的具可变匝数绕组线圈的永磁电机装置,其中该永磁电机装置的性能包含省电效果、扭力、转速及功率中的一个或二个以上。
  4. 一种永磁电机装置的控制方法,包含下列步骤:
    将一极性变换装置与一电源及一电机的一绕组的多个线圈连接,以控制磁极变换;
    将一切换装置的多个开关分别与所述多个线圈连接;以及
    切换所述多个开关以改变所述多个线圈的串并联状态。
  5. 如权利要求4所述的永磁电机装置的控制方法,更包含下列步骤:
    通过所述多个线圈的不同的串并联状态改变该永磁电机装置的性能。
  6. 如权利要求5所述的永磁电机装置的控制方法,其中该永磁电机装置的性能包含省电效果、扭力、转速及功率中的一个或二个以上。
PCT/CN2017/000719 2017-12-07 2017-12-07 具可变匝数绕组线圈的永磁电机装置及其控制方法 WO2019109196A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2017/000719 WO2019109196A1 (zh) 2017-12-07 2017-12-07 具可变匝数绕组线圈的永磁电机装置及其控制方法
KR1020207015910A KR20200085298A (ko) 2017-12-07 2017-12-07 가변 권수를 갖는 코일 권선을 포함하는 영구 자석 모터 장치 및 그 제어 방법
BR112020011293-3A BR112020011293A2 (pt) 2017-12-07 2017-12-07 dispositivo de motor de imã permanente, e, método de controle para um dispositivo de motor de imã permanente
US16/500,407 US20200212746A1 (en) 2017-12-07 2017-12-07 Permanent magnet motor device with coil windings that have variable numbers of turns and its control method
EP17934292.8A EP3719964A4 (en) 2017-12-07 2017-12-07 PERMANENT MAGNET MOTOR DEVICE HAVING A VARIABLE WINDING COIL AND ITS CONTROL PROCEDURE
JP2020547261A JP2021505122A (ja) 2017-12-07 2017-12-07 巻数を変更可能な巻線コイルを備える永久磁石モータ装置及びその制御方法
MX2020007053A MX2020007053A (es) 2017-12-07 2017-12-07 Un dispositivo de motor de iman permanente con devanados de bobina que tienen numeros variables de vueltas y su metodo de control.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/000719 WO2019109196A1 (zh) 2017-12-07 2017-12-07 具可变匝数绕组线圈的永磁电机装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2019109196A1 true WO2019109196A1 (zh) 2019-06-13

Family

ID=66750680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000719 WO2019109196A1 (zh) 2017-12-07 2017-12-07 具可变匝数绕组线圈的永磁电机装置及其控制方法

Country Status (7)

Country Link
US (1) US20200212746A1 (zh)
EP (1) EP3719964A4 (zh)
JP (1) JP2021505122A (zh)
KR (1) KR20200085298A (zh)
BR (1) BR112020011293A2 (zh)
MX (1) MX2020007053A (zh)
WO (1) WO2019109196A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2680793B1 (es) * 2017-01-24 2019-06-19 Ramos Angel Gabriel Ramos Motor eléctrico de bobina configurable
KR20220020972A (ko) * 2019-07-18 2022-02-21 각코호진 호세이다이가쿠 회전기 시스템
KR102345320B1 (ko) * 2020-08-28 2021-12-31 엘지전자 주식회사 리니어 압축기
WO2022195554A1 (en) * 2021-03-18 2022-09-22 Caleb Innovations Inc. Reducible parallel conversion
WO2022230942A1 (ja) * 2021-04-28 2022-11-03 コアレスモータ株式会社 電動移動体用回転電気機械の電源の節電方法並びに電動移動体用回転電気機械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178757A1 (en) * 2003-03-14 2004-09-16 Petersen Christian C. Multiphase motors with single point sensing based commutation
CN1921262A (zh) * 2005-08-28 2007-02-28 万德鸿 电动车多挡宽调速轮毂电机
CN202085025U (zh) * 2011-03-07 2011-12-21 廊坊市永泰电动车电机有限公司 三相无刷永磁多挡内转子变速差速一体电机
CN202142929U (zh) * 2011-01-28 2012-02-08 廊坊市永泰电动车电机有限公司 三相永磁无刷多挡轮毂电机
CN102790478A (zh) * 2012-07-18 2012-11-21 王新友 一种将线圈绕在磁轭上的开关磁阻电动机制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837954B2 (ja) * 1999-03-26 2006-10-25 日本精工株式会社 結線パターン切換装置
US6853107B2 (en) * 2003-03-26 2005-02-08 Wavecrest Laboratories, Llc Multiphase motor having different winding configurations for respective speed ranges
US20050113216A1 (en) * 2003-10-07 2005-05-26 Wei Cheng Belt drive system with outer rotor motor
NZ530370A (en) * 2003-12-22 2005-06-24 Fisher & Paykel Appliances Ltd Single winding BEMF sensing brushless DC motor
JP2005354807A (ja) * 2004-06-10 2005-12-22 Yaskawa Electric Corp 永久磁石同期電動機
JP6307168B2 (ja) * 2014-09-29 2018-04-04 日立ジョンソンコントロールズ空調株式会社 巻線切替モータ駆動装置、巻線切替モータの駆動制御方法、及びそれらを用いた冷凍空調機器
JP6530174B2 (ja) * 2014-10-28 2019-06-12 シャープ株式会社 冷凍サイクル装置
JP6360442B2 (ja) * 2015-01-14 2018-07-18 株式会社日立製作所 永久磁石同期モータ、巻線切替モータ駆動装置、及び、それらを用いた冷凍空調機器、電動車両
CN106655968A (zh) * 2016-10-27 2017-05-10 李洪广 一种基于交流电动机的自动换挡系统及交流电动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178757A1 (en) * 2003-03-14 2004-09-16 Petersen Christian C. Multiphase motors with single point sensing based commutation
CN1921262A (zh) * 2005-08-28 2007-02-28 万德鸿 电动车多挡宽调速轮毂电机
CN202142929U (zh) * 2011-01-28 2012-02-08 廊坊市永泰电动车电机有限公司 三相永磁无刷多挡轮毂电机
CN202085025U (zh) * 2011-03-07 2011-12-21 廊坊市永泰电动车电机有限公司 三相无刷永磁多挡内转子变速差速一体电机
CN102790478A (zh) * 2012-07-18 2012-11-21 王新友 一种将线圈绕在磁轭上的开关磁阻电动机制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719964A4 *

Also Published As

Publication number Publication date
MX2020007053A (es) 2020-09-09
JP2021505122A (ja) 2021-02-15
EP3719964A4 (en) 2021-06-30
KR20200085298A (ko) 2020-07-14
BR112020011293A2 (pt) 2020-11-17
EP3719964A1 (en) 2020-10-07
US20200212746A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2019109196A1 (zh) 具可变匝数绕组线圈的永磁电机装置及其控制方法
TWI551006B (zh) 混合式雙轉子馬達結構
CN103795159A (zh) 定转子双永磁型游标电机
CN104779760B (zh) 一种低转矩脉动电励磁双凸极无刷直流电机及其控制系统
TWI678056B (zh) 具可變匝數繞組線圈之永磁馬達裝置及其控制方法
TWM563113U (zh) 具可變匝數繞組線圈之永磁馬達裝置
CN105605166A (zh) 一种机电复合无级变速装置
CN108390487A (zh) 一种提升驱动电机机械特性的设计方法
CN108390614B (zh) 定子线圈、电机定子、电机
CN202094756U (zh) 轴带发电机与逆变器构成的恒频恒压正弦波电源机
CN103762802A (zh) 一种同轴双永磁式磁通切换电机
CN102738992A (zh) 一种装配式混合励磁发电机
CN206932086U (zh) 多抽头绕组宽调速永磁同步电机
CN106026814A (zh) 无轴承开关磁阻电机直接瞬时转矩与直接悬浮力控制方法
CN103904796B (zh) 盘式电机
CN112332713B (zh) 一种用于双段式电励磁双凸极电机的转矩分配控制方法
CN204290801U (zh) 复合励磁的快速响应磁控电抗器
Ahn Characteristics Analysis of Short Flux-path 4/3 SRM
CN201418018Y (zh) 高效开关磁阻调速电机
CN206402002U (zh) 永磁电机定子及永磁电机
CN109286255A (zh) 一种基于t型永磁体的交替极永磁游标电机
CN109167444A (zh) 一种中大功率装置用三相交流电机以及中大功率装置
CN221058071U (zh) 一种转矩稳定的两相无刷直流电机
CN2682727Y (zh) 四极转角力矩电机
CN203589975U (zh) 一种包含配速装置并受装配约束的双永磁转子发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547261

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015910

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017934292

Country of ref document: EP

Effective date: 20200703

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020011293

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020011293

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200604