WO2019107621A1 - 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 - Google Patents
질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 Download PDFInfo
- Publication number
- WO2019107621A1 WO2019107621A1 PCT/KR2017/013942 KR2017013942W WO2019107621A1 WO 2019107621 A1 WO2019107621 A1 WO 2019107621A1 KR 2017013942 W KR2017013942 W KR 2017013942W WO 2019107621 A1 WO2019107621 A1 WO 2019107621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- balloon
- energy
- expanding
- treatment
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M29/00—Dilators with or without means for introducing media, e.g. remedies
- A61M29/02—Dilators made of swellable material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/08—Arrangements or circuits for monitoring, protecting, controlling or indicating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
Definitions
- the present invention relates to a vascular treatment apparatus, a control method thereof, and a treatment method using the same, and more particularly, to a vascular treatment apparatus using energy to treat tissue in vagina.
- the vagina of the female genitalia decreases in the elasticity of the inner wall of the vagina due to birth or aging, and is particularly relaxed when giving birth.
- the increased inner wall of the vagina can be recovered to a certain extent after childbirth but rarely recovered by the elasticity before birth.
- a vascular treatment device including an expanding part inserted into a vaginal tube and configured to expand a vaginal tube, and an energy transfer module configured to transmit energy in an expanded state of the vaginal tube.
- the inflation section can be configured to be inflated by the user's input after being inserted into the vaginal canal.
- the expanding portion is constituted by a balloon.
- the balloon can be configured to be inflated by receiving a fluid from the outside.
- the energy transfer module may be configured such that an area of contact with the inner wall of the vascular tube is expanded as the expansion part is expanded.
- the energy transfer module may include electrodes arranged in the circumferential direction so as to treat the circumference of the inner surface of the vaginal canal when inflated.
- the energy transfer module may be configured to include a stretchable material so as to be deformed in response to the bending of the inner wall of the vascular tube when the balloon is inflated.
- the energy transfer module may include an electrode to be printed on the bulge.
- the energy transfer module may further comprise a temperature sensor configured to measure the temperature of the tissue.
- the apparatus may further include a grip portion connected to the expanding portion and configured to be gripped.
- the expanding unit, the electrode module, and the gripping unit may be further included in the handpiece, and further include a main body including a RF generator, a control unit, and a fluid supply unit.
- the handpiece further includes a shaft connected to the grip portion and extending to a predetermined length.
- the balloon may be configured such that one end thereof is fixed to the shaft and the fluid is supplied through the shaft.
- a control method of a vascular treatment apparatus including an expanding step of expanding the expanding part inserted into the vaginal tube, a step of applying energy to the energy transferring module brought into contact with the vaginal wall in accordance with the expansion of the expanding part, and a contracting step of contracting the expanding part Can be provided.
- the expanding step may expand the expanding portion so that the contact area with the inner surface of the tube can be increased.
- the expanding step may include a fluid injecting step of injecting and expanding the fluid into the expanding part.
- the step of applying the energy can be performed by feeding back the temperature measurement value of the inner wall of the tube.
- the method may further include an electrode selection step of selecting an electrode to which RF energy is to be applied depending on whether the electrode is provided in the energy transfer module or not.
- a vascular treatment method comprising the steps of expanding a vascular tube by inserting a therapeutic device into a vaginal penetration opening, delivering RF energy to the inner wall of the expanded vascular tube to treat the tissue, and removing the therapeutic device .
- the step of expanding the vaginal can be performed after inserting the treatment device into the vaginal penetration opening.
- the step of expanding the vascular tube can be performed by expanding the treatment device so that the contact area of the vascular tube and the treatment device can be widened.
- the apparatus for treating a vascular vessel according to the present invention can insert a large amount of energy into a vaginal canal, expand a vascular tube, deliver a large area in a short time,
- the treatment can be performed on the part, and the efficiency and accuracy of the treatment can be improved.
- FIG. 1 is a block diagram showing a configuration of a first embodiment according to the present invention.
- FIG. 2 is a perspective view of a first embodiment according to the present invention.
- 3 is a perspective view of the handpiece.
- FIG. 4 is an exploded perspective view of the handpiece.
- 5A to 5C are operational states of the handpiece.
- 6A to 6C are operational states of the balloon.
- 9A to 9C are use state diagrams of the first embodiment.
- Figs. 10A to 10C are views showing the expansion of an insertion portion and the expansion of a lesion site.
- 13A and 13B are use state diagrams of the second embodiment.
- FIG. 14 is a flowchart of a control method of the vascular treatment apparatus according to the embodiment of the present invention.
- 15 is a flowchart of a control method of a vascular treatment apparatus according to another embodiment of the present invention.
- 16 is a flowchart of a vascular treatment method according to an embodiment of the present invention.
- FIG. 17 is a flowchart of a vascular treatment method according to another embodiment of the present invention.
- tissue refers to a collection of cells distributed in the human vaginal tract
- vaginal tube refers to a portion connecting the uterus and the vulva in female genitalia
- the inner wall or inner wall of the vaginal tube refers to the inner Refers to the side where the treated treatment device is contacted.
- the tissue is assumed to include some or all of the tissues distributed from the mucosa of the inner wall of the vascular tube to a predetermined depth.
- treatment refers to the effect of whitening, retightening, and wrinkle improvement by performing remodeling by changing the tissue into at least one state of coagulation or ablation by transmitting RF energy to the tissue including collagen do.
- FIG. 1 is a block diagram showing a configuration of a first embodiment according to the present invention.
- the apparatus for treating a vascular defect may include a handpiece 10 and a main body 20.
- the handpiece 10 is configured to be inserted into the vaginal canal to deliver RF energy.
- the handpiece 10 may include an insertion portion 100 and a grip portion 600 inserted into the inside of the vaginal canal.
- the insertion portion 100 is configured to be inserted into the inside of the vaginal canal to deliver the RF energy in a state where the vaginal canal is expanded to treat the tissue.
- the insertion unit 100 is configured to be expanded and contracted by a user's input, and is configured to expand a vascular tube at the time of inflation. It is possible to maximize the treatment area by increasing the contact area with the inner wall of the vascular tube during swelling of the swelling portion.
- the insertion unit 100 is configured to treat the tissue by transmitting energy in an expanded state of the vascular tube. And may include a temperature sensor 330 for measuring the temperature in the course of the treatment.
- the grip portion 600 is configured to be gripped by a user and supports the insertion portion 100 so that the insertion portion 100 can be inserted into the inside of the vaginal canal while being held.
- One side of the grip portion 600 is connected to one end of the insertion portion 100 and the other side of the grip portion 600 can be received from a fluid and an energy source provided in the main body 20.
- the grip unit 600 may include an input unit to allow the user to transmit the input to the control unit 22 when the user performs an input, and may include a display unit to monitor the state of the tissue and the treatment state.
- the main body 20 is configured to supply energy and fluid necessary for the treatment, and is configured to control the overall process in the course of treatment.
- the main body 20 may include an RF generator 21, a fluid supply unit 23, and a control unit 22.
- the RF generator 21 is configured to receive energy from the outside and generate RF energy.
- the fluid supply part 23 is configured to supply the fluid to the insertion part 100 to inflate the insertion part 100.
- the fluid supply part 23 can be configured to adjust the flow rate and pressure of the fluid to be supplied.
- the fluid supply unit 23 may include a pump, a valve, or the like for supplying the fluid and maintaining the pressure, but since such a configuration is widely used, its description is omitted.
- the control unit 22 is configured to perform overall control of the treatment device including the RF generating unit 21 and the fluid supply unit 23.
- the controller 22 may be configured to treat the application time, power, voltage, current, energy amount, and frequency of the RF energy generated by the RF generator 21. And the fluid supply amount and the supply pressure of the fluid supply unit 23 can be adjusted.
- the control unit 22 may perform feedback control using the temperature of tissue measured from the temperature sensor 330 during the control of the RF generator 21 and may use a pressure sensor and a flow meter provided in the fluid supply unit 23 Thereby performing fluid control.
- FIG. 2 is a perspective view of a first embodiment according to the present invention.
- the first embodiment according to the present invention can be configured to include the main body 20 and the handpiece 10.
- the body 20 and the handpiece 10 are connected by a cable 30 and the cable 30 may comprise an RF cable, a fluid channel, and a feedback path.
- the handpiece 10 may include a connector such that the cable 30 can be detachably connected to one side of the handpiece 10.
- control unit 22 can control the RF generating unit 21 and the fluid supplying unit 23 according to a predetermined treatment mode. If there is an input for manually changing a variable value of a treatment mode from a user, And controls the RF generating unit 21 and the fluid supply unit 23.
- FIG. 1 the construction and operation of the handpiece 10 according to the present invention will be described in detail with reference to FIGS. 3 to 13.
- FIG. 1 the construction and operation of the handpiece 10 according to the present invention will be described in detail with reference to FIGS. 3 to 13.
- Fig. 3 is a perspective view of the handpiece 10
- Fig. 4 is an exploded perspective view of the handpiece 10.
- the handpiece 10 includes an insertion portion 100 and a grip portion 600.
- the insertion portion 100 is configured to be inserted from the outside through the vaginal opening into the inside of the vaginal canal as described above.
- the insertion portion 100 is configured to expand in a state where the insertion portion 100 is inserted into the tube, thereby increasing the diameter.
- the insertion portion 100 is configured to expand the tube while supporting the tube inner wall t as the diameter of the insertion portion 100 increases.
- the insertion portion 100 may include a shaft 110, a guide 500, a balloon 200, and an energy transfer module 300.
- the shaft 110 is firmly connected to the grip portion 600 so that the shaft 110 can be firmly supported when the insertion portion 100 is inserted into the inside of the tube.
- the shaft 110 is configured to include a fluid channel to allow fluid to move inwardly.
- One side of the fluid channel is in fluid communication with the gripper 600 and the other side is formed with an outlet 111 so as to be in fluid communication with the balloon 200 outside the shaft 110.
- the length of the shaft 110 is configured to correspond to the length of the tube, and the length of the tube may vary depending on individual differences, so that the length of the shaft 110 may be 2 cm to 15 cm. Also, the diameter of the shaft 110 may be less than 3 cm so as to minimize the foreign body sensation, pain, or discomfort when inserted into the shrunken vaginal canal.
- the guide 500 is provided on the grip portion 600 side of the shaft 110 and supports the end of the balloon 200 so as to prevent the balloon 200 from expanding in the outward direction of the vaginal tube at the time of inflation, It is possible to transmit the supporting force in the longitudinal direction and to prevent it from expanding to the outside.
- the balloon 200 is configured to expand and expand the vascular tube and functions as an expanding portion.
- the balloon 200 is contracted so that it can be inserted into a narrow inside of the narrow tube when the insertion portion 100 is inserted inward and the contact between the inside wall t (t) of the tube and the electrode 320
- the area can be expanded and expanded to treat larger areas. It is composed of a diameter of about 2 cm at the time of contraction considering the average size of the vagina of a woman, and it is constituted to be about 5-10 cm in diameter when expanded, but is not limited thereto.
- the main expansion direction of the balloon 200 can be expanded in a direction in which the diameter of the balloon 200 increases and the area of the side surface increases.
- the female vagina is connected to the cervix, and the other side is connected to the outside, so that the length of the vaginal canal does not change largely, and the main extension direction is in the direction of increasing the circumference.
- the wrinkles gradually expand and the circumference increases and the diameter increases.
- the wrinkles of the inner wall t of the tube are gradually expanded and the area of the balloon 200 in close contact with the outer surface of the balloon 200 increases.
- the balloon 200 is inserted into the shaft 110 and the balloon 200 at a portion where the shaft 110 is inserted and a portion where the shaft 110 is inserted so that the inside and the outside of the balloon 200 can be sealed, Can be attached.
- the operation of the balloon 200 will be further described with reference to FIG.
- the energy transfer module 300 is configured to transmit RF energy in contact with the inner surface of the tube at the outer surface of the balloon 200.
- the energy transfer module 300 may include a base 310, an electrode 320, and a temperature sensor 330.
- the energy transfer module 300 may be configured to have elasticity, be supported by the balloon 200 when inflated, change its shape, and be configured to provide a restoring force upon contraction.
- the balloon 200 may be configured to be deformed in response to the wrinkles or curvature C of the inner wall of the vascular tube t when the balloon 200 expands to expand the vascular tube. However, this will be described in detail with reference to FIGS. 7 and 8. FIG.
- the insertion portion 100 may further include a sheath 400 surrounding the shaft 110 and the balloon 200 so that insertion into the inside of the vaginal can be facilitated .
- the sheath 400 may have a C-shaped cross-section so that the sheath 400 may be detached from the insertion portion 100 while being inserted into the inside of the vaginal canal, and may be pulled out by the user from the outside.
- 5A to 5C are operational states of the handpiece 10
- the insertion portion 100 of the handpiece 10 may be configured differently from the contracted first type and the expanded second type.
- the first embodiment is a state in which compression is maximized by being in close contact with the shaft 110.
- the insertion portion 100 enters in a compressed or contracted state so that insertion can be easily performed inside the vaginal canal.
- 5B when the balloon 200 is inflated, the diameter of the insertion portion 100 increases, and the balloon 200 is inflated. As the balloon 200 is inflated, the curled energy transfer module gradually expands, so that the outer surface of the insertion portion 100 is continuously wrapped by the energy transfer module.
- a center portion of the insertion portion 100 is formed into a first expanding portion 210 in a cylindrical shape, and a hemispherical second expanding portion 220 is formed at the end of the insertion direction to enlarge the main expansion direction in diameter, Expanding in an increasing direction.
- 6A to 6C are operational states of the balloon 200. Fig.
- FIG. 6A shows a state in which the balloon 200 is contracted
- FIG. 6B shows a state in which the balloon 200 is inflated in the middle
- FIG. 6C shows a state in which the balloon 200 is fully inflated.
- the balloon 200 is configured to be contracted and inflated, and can be configured to maintain the length L during inflation and to be inflated while maintaining its overall shape.
- the length is maintained, which means that there is a certain length change but the change is insignificant when compared with the width change.
- the balloon 200 may be a semi-compliant balloon 200 that is somewhat corrugated when in a contracted state and may be expanded while maintaining its overall shape after being deformed to a certain shape.
- the energy transfer module 300 provided on the outer surface at the time of inflation, can do.
- the balloon 200 may be constructed to include latex, and may be configured to include various elastic materials suitable for medical use.
- FIG. 7 is an exploded view of the energy transfer module 300
- FIG. 8 is a cross-sectional view taken along line I-I 'of FIG.
- the energy transfer module 300 may include a base 310, an electrode 320, a temperature sensor 330, and a connection portion 340.
- the base 310 is provided with a space in which the electrode 320 is provided and the contact area of the electrode 320 can be changed according to the expansion of the balloon 200.
- the base 310 is made of a stretchable material or an elastic material so as to be capable of responding to the expansion of the balloon 200.
- the base 310 is configured to be wound in the circumferential direction of the balloon 200, for example, and the curled portion may be gradually expanded as the balloon 200 is expanded to enlarge the area of the outer surface.
- an electrode 320 may be provided on the outer surface of the base 310.
- the base 310 is generally rectangular in shape when it is unfolded, and a plurality of electrodes 320 may be provided to allow the electrode 320 to contact the inner wall of the vascular tube at a plurality of points.
- the electrode 320 formed on the outer surface of the ball 310 is also curled so that the area of contact with the inner wall of the canal is changed.
- the base 310 may be configured to surround the side surface of the balloon 200 except for the end side of the balloon 200 to prevent energy transmission to a portion of the genital organs such as the cervix, Lt; / RTI >
- connection portion 340 is provided at one side of the base 310 so as to be electrically connected to the grip portion 600.
- the connection portion 340 may be relatively thin compared to the width of the base 310 and may include an electrical path for individually controlling each of the plurality of electrodes 320 when the array is provided.
- the connection part 340 is connected to the base 310 in a flexible manner when the shape of the base 310 changes according to the expansion of the balloon 200 and may be made of an elastic or stretchable material similar or similar to the base 310 to prevent breakage.
- the connection portion between the connection portion 340 and the base 310 is connected to the rounded portion so as to prevent the stress from concentrating when the shape of the base 310 changes or the insertion portion 100 is pulled out from the tube .
- the connection unit 340 may be connected to the grip unit 600 through the shaft 110.
- the grip unit 600 may be connected to the grip unit 600 through the connection unit 340.
- the base 310 may be provided with an attachment unit fixed to the balloon 200.
- the attachment portion may be formed as a long region in the longitudinal direction to minimize a portion of the balloon 200 which is restricted by the attachment portion when the balloon 200 is inflated in the circumferential direction and to restrict the inflation in the longitudinal direction.
- the attachment portion may be formed at the center portion of the electrode 320 so as to minimize the resistance caused by the frictional force at the overlapping portion of the base 310 when the balloon 200 is inflated. That is, the balloon 200 is audited in a half clockwise direction around the attachment portion, and the other half of the balloon 200 is wrapped around the balloon 200 in a counterclockwise direction. Therefore, since the amount of the pulleys corresponding to the expansion of the balloon 200 becomes equal, the frictional force can be remarkably reduced as compared with the case where the balloon 200 is unlatched in either direction, and the expansion can be smoothly performed.
- the base 310 can be determined to be at least partially overlapped when the balloon 200 is inflated to its maximum extent inside the vaginal canal. It is possible to prevent the damage of the inner wall of the vascular wall (t) and the suffering and inconvenience of the patient even when the vascular wall is removed from the inside of the vascular wall after the treatment is finished. Therefore, when a part of the base 310 is overlapped at the time of maximum expansion, it can be supported mutually in the overlapped portion and returned to the dried state of the balloon 200 again. At this time, a restoring force (not shown) such as a leaf spring may be additionally provided for smooth return to the original state of being dried. However, the base 310 can be deformed into a spiral-wound configuration of the balloon 200, and can be applied to various configurations that surround the balloon 200.
- the electrode 320 is configured to transmit energy through the inner surface of the vaginal canal as described above.
- the electrodes 320 may be provided on a large surface facing the outside when the base 310 is wrapped around the balloon 200.
- the electrodes 320 are of bipolar type and can be arranged repeatedly.
- the electrodes 320 may be arranged in parallel in the circumferential direction so as to be in close contact with the vaginal wall while maintaining a uniform distribution density of the electrodes 320 even when inflated.
- the electrode 320 may be divided into a plurality of control areas divided in a plane on the base 310, and may be connected to independent electric paths so as to be independently controlled for each area.
- the electrode 320 is disposed around the balloon 200 along the base 310 and is treated by applying energy to the inner wall of the tube at a predetermined depth so that the tissue treatment region is formed in the rotation direction along the arrangement of the electrodes 320 And can also be treated to a predetermined depth to create an annular treatment area.
- the electrode 320 is described as a bipolar type electrode, the electrode 320 may be a monopolar type electrode. In this case, the electrode 320 may be separately provided.
- the electrode 320 may be divided into a plurality of regions along the circumference so as to prevent the RF energy from being transmitted to the overlapping portion between the energy transfer modules 300, that is, the portion not contacting the tissue.
- the temperature sensor 330 may be configured to measure the temperature of the tissue. As the RF energy is transmitted, the temperature of the tissue changes, and the measured value is transmitted to the controller 22.
- the temperature sensor 330 may be configured to measure the temperature of the tissue at a plurality of points. However, since the position of the temperature sensor 330 can be variously modified, a description thereof will be omitted, and a configuration thereof may be variously applied, so that a description thereof will be omitted.
- the energy transfer module 300 may be provided with insulation portions in a plurality of regions as needed.
- FIGS. 9A to 9C are explanatory diagrams showing the state of use of the first embodiment
- FIGS. 10A to 10B are views showing the expansion of the insertion section 100 and the expansion of a lesion site.
- the insertion is inserted through the inlet of the vascular tube with the insertion portion 100 being retracted.
- the lubricant can be applied to the outer surface of the energy transfer module 300 for smooth insertion.
- the user inserts the insertion portion 100 in the longitudinal direction while entering the grip portion 600 of the handpiece 10 from the entrance of the graft tube.
- the insertion depth of the insertion portion 100 may vary depending on the individual.
- the insertion portion 100 can be inserted up to a depth where the end of the insertion portion 100 is adjacent to or close to the uterine (neck) portion.
- the insertion portion 100 is inflated after insertion.
- the control unit 22 operates the fluid supply unit 23 to supply the fluid to the balloon 200.
- the balloon 200 is inflated so that the electrode 320 module is released, and the inner wall of the vascular tube is expanded.
- the control unit 22 can supply the fluid with a pressure higher than the body pressure.
- the elasticity of the balloon 200 and the restoring force of the energy transfer module 300 are generated when the insertion portion 100 is inflated and the inner wall t of the tube is expanded,
- the balloon 200 can be inflated only when the pressure inside the balloon 200 is higher than the body pressure. After inflating the balloon 200, the pressure acting on the balloon 200 may be maintained to maintain the inflation amount.
- the control unit 22 in a state in which the balloon 200 is inflated, the control unit 22 is configured to be able to transmit RF energy.
- the energy transfer module 300 is in a loosened state and contacts with the inner surface of the tube in a large area, and RF energy is transmitted.
- the balloon 200 is contracted and the insertion portion 100 is taken out of the vascular tube.
- FIG. 10A changes in the cross-sectional shape of the insert 100 and the vascular tube are shown corresponding to Figs. 9A to 9C.
- the inner wall of the vascular tube has considerable wrinkles, and a portion not in contact with the outer surface of the electrode 320 is scattered.
- the energy transfer module 300 is released, and the vascular tube is also expanded. As the energy transfer module 300 is unwound, the contact area between the inner wall of the inner tube (t) and the electrode 320 gradually increases.
- the vascular tube is expanded and most of the vascular internal wall t is brought into contact with the electrode 320 module. And then transmits the RF energy while maintaining the expanded state.
- the treatment area can be annularly formed in one treatment.
- FIG. 11 Modifications of the electrode 320 module and the electrode 320 will now be described with reference to FIGS. 11 and 12.
- FIG. 11 Modifications of the electrode 320 module and the electrode 320 will now be described with reference to FIGS. 11 and 12.
- the energy transfer module 300 may be configured as an array of a plurality of rows and columns in the longitudinal direction and the circumferential direction.
- the plurality of electrodes 320 are configured to independently control whether or not to transmit RF energy for each unit region (dashed line).
- the arrangement of the plurality of electrodes 320 can perform energy interception for the non-inserted portion 100 when the insertion depth is different according to individual differences in each region, The energy transfer to the electrode 320 that is not in contact with the electrode 320 can be blocked.
- Fig. 12 shows another modification of the electrode 320.
- the electrode 320 may be printed on the outer surface of the balloon 200.
- the electrode 320 may be formed by printing the electrode 320 on the outer surface of the balloon 200 while the balloon 200 is inflated and each pair of electrodes 320 may be individually controlled. And may be printed in a contracted state so that the electrode 320 can be stretched in accordance with the expansion of the balloon 200.
- the electrode 320 may be formed by directly printing a conductive material on the outer surface of the balloon 200 or by printing on a buffer provided on the outer surface of the balloon 200.
- the electrode 320 is formed in the balloon 200 in the longitudinal direction and is printed, this is merely an example, and may be printed in the circumferential direction or formed as a spot type at a plurality of points.
- the energy transfer module 300 may be composed of a plurality of individual modules and attached to the outer surface of the balloon 200 at a predetermined angle.
- the shape can be smoothly changed corresponding to the curvature C of the inner surface of the tube, and the distribution density of the electrodes 320 per unit area can be changed according to the expansion.
- the second embodiment may be configured to include the same components as those of the first embodiment, and a description thereof will be omitted in order to avoid redundant description, and only differences will be described.
- FIG. 13A and 13B are use state diagrams of the second embodiment.
- the thickness of the insertion portion 100 is made thicker than that of the first embodiment in a contracted state.
- the thickness of the shaft 110 is configured to be large, and the tube can be greatly expanded when inserted into the inside of the tube.
- the maximum expansion of the insertion portion 100 may be the same as that of the first embodiment (Fig. 13B)
- FIG. 14 is a flowchart of a control method of the vascular treatment apparatus according to the embodiment of the present invention.
- control method of the vascular treatment apparatus may include an expansion step (S100), a step of applying energy (S200), and a contraction step (S300).
- the expansion step (SlOO) corresponds to the step of expanding the therapeutic device inserted into the vaginal canal into a predetermined range. Expansion of the treatment device inserted in the vascular tube increases the area of contact between the inner wall (t) of the wrinkled vascular tube and the treatment device. At this time, the expansion of the treatment device can expand the expansion part provided in the treatment device. When the user performs the start input, the treatment device gradually inflates the inflation part and inflates it to a predetermined range. At this time, the expansion amount can be expanded to a predetermined range and can be configured to be adjustable according to a user's input.
- the step of applying energy (S200) is a step of supplying energy to the energy transfer element provided in the expansion part.
- the energy transmitted by sensing the contact area and insertion depth between the bulging portion and the inner wall of the inner tube (t) can be controlled.
- Feedback control can be performed by measuring the temperature of the tissue to which the energy is transferred during the transfer of energy.
- the energy transferred tissues can be heated to cause degeneration of the tissues and treatment can be performed.
- the energy can be various types of energy, such as, for example, RF energy, laser, light, ultrasound, and the like.
- the contracting step (S300) corresponds to a step of contracting the expanding portion as a preliminary step before the expanding portion is taken out of the vascular tube after the energy is applied to the tissue. Shrinkage of the bulge can be minimized to facilitate ease of removal from the vaginal canal.
- 15 is a flowchart of a control method of a vascular treatment apparatus according to another embodiment of the present invention.
- the expansion step S100 may be configured to include a fluid injection step S110 and a pressure maintaining step S200.
- the step of applying energy (S200) may include a contact portion determination step (S210), an electrode selection step (S220), and a step of applying RF energy (S230).
- the contracting step S300 may include a fluid recovering step S310 and a pressure maintaining step S320.
- the fluid injection step (S110) corresponds to the step of injecting fluid into the balloon inserted into the vaginal canal so as to inflate the balloon provided in the inflated portion.
- the flow rate control and the hydraulic pressure control can be selectively performed according to the expansion amount when the fluid is injected.
- the fluid injection can be performed by adjusting the flow rate supplied from the fluid supply portion.
- the pressure holding step (S120) corresponds to a step of maintaining the amount of expansion so that the inner wall (t) of the contacted tissue tube can be fixed constantly when the balloon is inflated to an appropriate range. At this time, it is configured to maintain the pressure, and the fluid line connected to the balloon can be sealed to maintain the pressure. It can also be configured to provide a uniform pressure through servo control.
- the contacting portion determination step (S210) corresponds to the step of determining the quality of the electrodes provided in the bulging portion and the electrodes in contact with the inner wall. Due to individual differences in the structure and size of the inside of the vaginal canal, when the swelling part is inflated, the contact area may be changed. The contact part and the non-contact part which are individually different depending on individual differences are judged.
- the electrode selection step S220 corresponds to the step of excluding the non-contact electrode from the electrode to be energized so as to prevent energy application to the electrode when energy is applied.
- the step of applying RF energy (S230) corresponds to the step of applying energy to the tissue by applying RF energy through the selected contact electrode. As the RF energy is transmitted, the inside of the vagina can be treated.
- the step of applying the RF energy (S230) may be controlled by reflecting the electrical characteristics of the tissues that are generated individually according to the preset program.
- the fluid recovery step S310 corresponds to a step of recovering the fluid so as to shrink the balloon after the application of the RF energy is terminated.
- a negative pressure is generated in the fluid supply unit 23 so that the fluid can be recovered, and the fluid present inside the balloon can be discharged to the outside.
- the pressure of the vaginal tube itself can cause the balloon to contract.
- the pressure holding step S320 corresponds to a step of generating and holding a negative pressure on the balloon so as to prevent the balloon which has been contracted due to the elasticity of the balloon itself from being inflated to some extent. The user can maintain the negative pressure and remove the bulge from the vaginal canal when the balloon is contracted.
- the vascular treatment method may include a step of expanding a vascular tube by inserting a treatment device (S1000), a tissue treatment step (S2000), and a step of removing the treatment device (S3000).
- Step S1000 of inserting the treatment device into the vascular tube corresponds to a step of expanding the vascular tube into a predetermined range by inserting the treatment device formed at a predetermined thickness from the inlet at the vulvar side of the vascular tube. It is possible to insure the expansion of the vascular tube by inserting a certain thickness at the time of insertion.
- the tissue treatment step (S2000) corresponds to the step of treating the tissue by transmitting energy to the inner wall (t) of the vaginal canal while the vaginal tube is expanded.
- Tissue therapy transfers energy to heat the tissue and cause denaturation, and the tissue can be remodeled through a certain period of recovery.
- the step of removing the treatment device corresponds to the step of removing the treatment device from the vascular tube. Shrink the treatment device to remove it smoothly and prevent damage to the inner wall of the vascular tube. However, although not shown, the treatment device may be wrapped around the sheath 400 and removed together.
- FIG. 17 is a flowchart of a vascular treatment method according to another embodiment of the present invention.
- the same configuration as the above-described treatment method can be applied, and a description will be omitted and only a difference configuration will be described.
- the treatment device is inserted into the inside of the vaginal canal, and then the vaginal canal is expanded to perform the treatment.
- the step of inserting the therapeutic device into the vascular tube corresponds to inserting the therapeutic device through the vaginal opening at the vulva side of the female genitalia.
- the treatment apparatus can be inserted in a contracted state with a minimized diameter.
- the position of the energy transfer module 300 can be adjusted for treatment of the inner wall of the vascular tube at the time of insertion of the treatment device.
- only the sheath 400 may be removed to complete the insertion.
- the step of expanding the vascular tube corresponds to expanding the vascular tube by expanding the expanded portion of the inserted therapeutic device.
- the expansion of the vaginal canal is mainly expanded in the circumferential direction and the area of contact between the energy transfer module of the treatment device and the inner wall of the vaginal can be widened as the vaginal canal is expanded.
- the overall expanded shape can be expanded into a cylindrical shape.
- the treatment region can be a side portion of the cylindrical expanded tube.
- the apparatus for treating a vascular disease according to the present invention is capable of treating a large area in a short period of time, allowing one-shot treatment, The treatment efficiency can be improved and the accuracy of the treatment can be improved. In addition, it is possible to minimize the pain and discomfort of the patient because the treatment of the tissue in the vascular can be performed without a surgical procedure.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Neurology (AREA)
- Child & Adolescent Psychology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Surgical Instruments (AREA)
Abstract
본 발명은, 질관에 삽입되어 질관을 확장시킬 수 있도록 구성되는 팽창부 및 질관이 확장된 상태에서 에너지를 전달할 수 있도록 구성되는 에너지 전달 모듈을 포함하는 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법에 관한 것이다. 본 발명에 따른 질관 치료장치는 질관 내에 삽입시키고 질관을 확장하여 RF에너지를 전달할 수 있으므로 빠른시간 내에 넓은 면적을 치료할 수 있으며, one shot 치료가 가능하고, 주름이 있는 부분가지 강제적으로 펼쳐 치료를 수행할 수 있으므로 치료의 효율성 및 정확성을 향상시킬 수 있다. 또한 외과적인 시술 없이도 질관 내 조직의 치료가 가능하므로 환자의 고통, 불편감을 최소화 할 수 있는 효과가 있다.
Description
본 발명은 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법에 관한 것이며, 보다 상세하게는 질관내 조직을 치료하기 위해 에너지를 이용하는 질관 치료장치에 관한 것이다.
여성의 생식기중 질관(vagina)은 출산이나 노화로 인하여 질관 내벽의 탄력이 감소하게 되며, 특히 출산시 급격하게 이완된다. 늘어난 질관 내벽은 출산이후 어느 정도 회복이 이루어지나 출산 전의 탄력으로 회복되는 경우는 드물게 일어난다.
종래에는 늘어난 질관을 치료하여 여성의 만족감 및 자신감을 회복시켜주는 방법으로서 늘어난 부위를 절개하거나 보형물을 삽입하는 등의 외과적인 수술이 이용되었다. 이와같은 종래의 기술과 관련하여 미국 공개특허 US20050187429 가 개시되어 있다.
그러나 이러한 종래기술은 외과적 수술로서 과정이 복잡하며, 환자의 고통과 부작용이 심각한 문제점이 있었다.
본 발명은 전술한 문제점을 해결하는 질관의 조직 치료시 질관내에 삽입하여 에너지를 인가하고 조직을 치료하는 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법을 제공하는 것에 그 목적이 있다.
상기 과제의 해결 수단으로서, 질관에 삽입되어 질관을 확장시킬 수 있도록 구성되는 팽창부 및 질관이 확장된 상태에서 에너지를 전달할 수 있도록 구성되는 에너지 전달 모듈을 포함하는 질관 치료장치가 제공될 수 있다.
여기서, 팽창부는 질관에 삽입된 이후 사용자의 입력에 의해 팽창될 수 있도록 구성될 수 있다.
또한 팽창부는 벌룬으로 구성되는 것을 특징으로 하는 질관 치료장치.
한편, 벌룬은 외부로부터 유체를 공급받아 팽창할 수 있도록 구성될 수 있다.
한편, 에너지 전달 모듈은 팽창부가 팽창됨에 따라 질관 내벽과 접촉하는 면적이 넓어지도록 구성될 수 있다.
그리고, 에너지 전달 모듈은 팽창부의 팽창시 질관 내면의 둘레를 치료할 수 있도록 둘레방향으로 배열되는 전극을 포함하여 구성될 수 있다.
한편, 에너지 전달 모듈은 벌룬의 팽창시 질관 내벽의 굴곡에 대응하여 변형될 수 있도록 신축성 소재를 포함하여 구성도리 수 있다.
또한, 에너지 전달 모듈은 팽창부에 프린팅되는 전극을 포함할 수 있다.
한편, 에너지 전달 모듈은 조직의 온도를 측정할 수 있도록 구성된 온도센서를 더 포함하여 구성될 수있다.
또한, 팽창부와 연결되며 파지할 수 있도록 구성되는 파지부를 더 포함할 수 있다.
그리고, 팽창부, 전극모듈 및 파지부는 핸드피스에 구비되며, RF제너레이터, 제어부 및 유체공급부를 포함하는 본체를 더 포함하여 구성될 수 있다.
또한, 핸드피스는 파지부와 연결되며, 소정길이로 연장되어 형성되는 샤프트를 더 포함하며, 벌룬은 샤프트에 일단이 고정되어 밀폐되며, 샤프트를 통해 유체를 공급받도록 구성될 수 있다.
추가로, 질관에 삽입된 팽창부를 팽창시키는 팽창단계, 팽창부의 팽창에 따라 질관내벽에 접촉된 에너지 전달 모듈에 에너지를 인가하는 단계 및 팽창부를 수축시키는 수축단계를 포함하는 질관 치료장치의 제어방법이 제공될 수 있다.
여기서, 팽창단계는 질관 내면과의 접촉면적이 증가될 수 있도록 팽창부를 팽창시킬 수 있다.
또한, 팽창단계는 팽창부에 유체를 주입시켜 팽창시키는 유체주입단계를 포함할 수 있다.
그리고, 에너지를 인가하는 단계는 질관 내벽의 온도 측정값을 피드백하여 수행될 수 있다.
또한, 에너지 전달 모듈에 구비된 전극 중 질관 내벽과의 접촉여부에 따라 RF에너지를 인가할 전극을 선택하는 전극 선택단계를 더 포함할 수 있다.
추가로, 치료장치를 질관입구로 삽입하여 질관을 확장시키는 단계, 확장된 질관의 내벽으로 RF에너지를 전달하여 조직을 치료하는 조직치료단계 및 치료장치를 제거하는 단계를 포함하는 질관 치료방법이 제공될 수 있다.
여기서, 질관을 확장시키는 단계는 치료장치를 질관입구로 삽입시키는 단계 이후 수행될 수 있다.
또한, 질관을 확장시키는 단계는 질관과 치료장치의 접촉면적이 넓어질 수 있도록 치료장치를 팽창시켜 수행될 수 있다.
본 발명에 따른 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법은 질관 내에 삽입시키고 질관을 확장하여 에너지를 전달할 수 있으므로 빠른시간 내에 넓은 면적을 치료할 수 있으며, one shot 치료가 가능하고, 주름이 있는 부분에 치료를 수행할 수 있으므로 치료의 효율성 및 정확성을 향상시킬 수 있다. 또한 외과적인 시술 없이도 질관 내 조직의 치료가 가능하므로 환자의 고통, 불편감을 최소화 할 수 있는 효과가 있다.
도 1은 본 발명에 따른 제1 실시예의 구성을 나타낸 블록도이다.
도 2는 본 발명에 따른 제1 실시예의 사시도이다.
도 3은 핸드피스의 사시도이다.
도 4는 핸드피스의 분해사시도이다.
도 5a 내지 도 5c는 핸드피스의 작동상태도이다.
도 6a 내지 도 6c는 벌룬의 작동상태도이다.
도 7은 에너지 전달 모듈의 전개도이다.
도 8은 도 7 의 I-I’의 단면도이다.
도 9a 내지 도 9c는 제1 실시예의 사용상태도이다.
도 10a 내지 도 10c는 삽입부의 팽창과 병변부위의 확장을 나타낸 도면이다.
도 11은 전극의 변형예이다.
도 12는 전극의 다른 변형예이다.
도 13a 및 도 13b는 제2 실시예의 사용상태도이다.
도 14는 본 발명에 따른 실시예인 질관 치료장치의 제어방법의 순서도이다.
도 15는 본 발명에 따른 다른 실시예인 질관 치료장치의 제어방법의 순서도이다.
도 16은 본 발명에 따른 실시예인 질관 치료방법의 순서도이다.
도 17은 본 발명에 따른 다른 실시예인 질관 치료방법의 순서도이다.
이하, 본 발명의 실시 예에 따른 질관 치료장치에 대하여, 첨부된 도면을 참조하여 상세히 설명한다. 그리고 이하의 실시예의 설명에서 각각의 구성요소의 명칭은 당업계에서 다른 명칭으로 호칭될 수 있다. 그러나 이들의 기능적 유사성 및 동일성이 있다면 변형된 실시예를 채용하더라도 균등한 구성으로 볼 수 있다. 또한 각각의 구성요소에 부가된 부호는 설명의 편의를 위하여 기재된다. 그러나 이들 부호가 기재된 도면상의 도시 내용이 각각의 구성요소를 도면내의 범위로 한정하지 않는다. 마찬가지로 도면상의 구성을 일부 변형한 실시예가 채용되더라도 기능적 유사성 및 동일성이 있다면 균등한 구성으로 볼 수 있다. 또한 당해 기술분야의 일반적인 기술자 수준에 비추어 보아, 당연히 포함되어야 할 구성요소로 인정되는 경우, 이에 대하여는 설명을 생략한다.
이하에서 조직이라 함은 인간의 질관에 분포하고 있는 세포의 집합을 이야기하며, 질관이라 함은 여성 생식기 중 자궁과 외음부를 연결하는 부분을 말하며, 질관의 내벽 도는 내면이라 함은 질관의 내부로 삽입된 치료장치가 접촉되는 면을 말한다.
조직이라 함은 질관 내벽의 점막으로부터 소정깊이 까지 분포하고 있는 조직 중 일부 또는 전부를 포함하는 것을 뜻함을 전제로 설명한다. 또한 이하에서 치료라 함은 콜라겐을 포함하는 조직에 RF에너지를 전달하여 조직을 coagulation 또는 ablation 중 적어도 하나의 상태로 변화시켜 리모델링을 수행하여 미백, 리타이트닝, 주름개선 등의 효과를 발휘함을 뜻한다.
도 1은 본 발명에 따른 제1 실시예의 구성을 나타낸 블록도이다.
도시된 바와 같이, 본 발명에 따른 질관 치료장치는 핸드피스(10)와 본체(20)를 포함하여 구성될 수 있다.
핸드피스(10)는 질관 내부로 삽입되어 RF에너지를 전달할 수 있도록 구성된다. 핸드피스(10)는 질관 내측으로 삽입되는 삽입부(100)와 파지부(600)를 포함하여 구성될 수 있다.
삽입부(100)는 질관 내측으로 삽입되어 질관을 확장한 상태에서 RF에너지를 전달하여 조직을 치료할 수 있도록 구성된다. 삽입부(100)는 사용자의 입력에 의해 팽창과 수축이 이루어질 수 있도록 구성되며, 팽창시 질관을 확장시킬 수 있도록 구성된다. 팽창부의 팽창시 질관의 내벽과 접촉면적이 증가하여 치료면적을 극대화시킬 수 있게 된다. 삽입부(100)는 질관이 확장된 상태에서 에너지를 전달하여 조직을 치료할 수 있도록 구성된다. 또한 치료 진행시 온도를 측정할 수 있도록 온도센서(330)를 포함하여 구성될 수 있다.
파지부(600)는 사용자가 파지하여 사용할 수 있도록 구성되며, 파지한 상태로 삽입부(100)를 질관 내측으로 삽입시킬 수 있도록 삽입부(100)를 지지한다. 파지부(600)는 일측이 삽입부(100)의 일단과 연결되며, 타측이 본체(20)에 구비된 유체 및 에너지 소스로부터 전달받을 수 있도록 구성될 수 있다.
파지부(600)는 사용자가 입력을 수행하는 경우 제어부(22)로 전달할 수 있도록 입력부를 포함하여 구성될 수 있으며, 조직의 상태 및 치료상태를 모니터링 할 수 있도록 표시부를 포함하여 구성될 수 있다.
본체(20)는 치료에 필요한 에너지 및 유체를 공급할 수 있도록 구성되며, 치료과정에서 전반적인 과정을 제어할 수 있도록 구성된다.
본체(20)는 RF발생부(21), 유체공급부(23) 및 제어부(22)를 포함하여 구성될 수 있다. RF발생부(21)는 외부로부터 에너지를 공급받고 RF에너지를 발생시킬 수 있도록 구성된다. RF발생부(21)는 치료에 사용되는 RF에너지를 발생시키며, 환자의 체질, 조직의 구성, 조직의 크기 등에 따라 다른 주파수의 RF에너지를 발생시킬 수 있도록 구성될 수 있다. 예를 들어 질관 내벽(t)을 치료할 때 사용되는 에너지는 0.1 내지 0.8 MHz 의 범위에서 조절될 수 있다.
유체공급부(23)는 유체를 삽입부(100)에 공급하여 삽입부(100)를 팽창시킬 수 있도록 구성된다. 유체공급부(23)는 공급하는 유체의 유량 및 압력을 조절할 수 있도록 구성될 수 있다. 유체공급부(23)는 유체를 공급하며 압력을 유지하기 위한 펌프, 밸브 등을 포함할 수 있으나, 이와같은 구성은 널리 사용되고 있으므로 그 구성에 대하여는 설명을 생략하도록 한다.
제어부(22)는 RF발생부(21)와 유체공급부(23)를 포함한 치료장치의 전반적인 제어를 수행할 수 있도록 구성된다. 제어부(22)는 RF발생부(21)에서 발생되는 RF에너지의 인가시간, 파워, 전압, 전류, 에너지량, 주파수를 치료할 수 있도록 구성될 수 있다. 또한 유체공급부(23)의 유체공급량 및 공급압력을 조절할 수 있도록 구성될 수 있다. 제어부(22)는 RF발생부(21)의 제어시 온도센서(330)로부터 측정된 조직의 온도를 이용하여 피드백 제어를 수행할 수 있으며, 유체공급부(23)에 구비된 압력센서 및 유량계를 사용하여 유체제어를 수행할 수 있다.
다만 본 실시예에서는 RF에너지를 이용하는 치료장치에 대하여 예를 들어 설명하였으나 조직을 가열하고 치료할 수 있는 다양한 형태의 에너지가 사용될 수 있다.
도 2는 본 발명에 따른 제1 실시예의 사시도이다.
전술한 바와 같이 본 발명에 따른 제1 실시예는 본체(20)부와 핸드피스(10)를 포함하여 구성될 수 있다. 본체(20)부와 핸드피스(10)는 케이블(30)로 연결되며, 케이블(30)은 RF케이블, 유체채널, 피드백 경로를 포함하여 구성될 수 있다. 핸드피스(10)의 일측에는 케이블(30)이 탈착식으로 연결될 수 있도록 커넥터를 포함하여 구성될 수 있다.
한편, 본체(20)의 외면에는 전원의 온/오프 스위치와, RF 발생부에서 발생되는 RF 에너지의 주파수를 조절할 수 있는 주파수 조절레버와, 치료장치의 동작 내용을 비롯한 각종 정보를 디스플레이하며 사용자가 명령어를 입력할수 있고, 치료 정보를 표시하기 위한 터치스크린이 설치될 수 있다. 제어부(22)는 기 설정된 치료모드에 따라 RF발생부(21) 및 유체공급부(23)를 제어할 수 있으며, 사용자로부터 매뉴얼로 치료모드 중 일부의 변수값을 변경하는 입력이 있는 경우 이를 근거로 RF발생부(21) 및 유체공급부(23)를 제어하도록 구성된다.
이하에서는 도3 내지 도13을 참조하여 본 발명에 따른 핸드피스(10)의 구성 및 동작에 대하여 상세히 설명하도록 한다.
도 3은 핸드피스(10)의 사시도이며, 도 4는 핸드피스(10)의 분해사시도이다. 도시된 바와 같이, 핸드피스(10)는 삽입부(100) 및 파지부(600)를 포함하여 구성된다.
삽입부(100)는 전술한 바와 같이 외부로부터 질입구를 통하여 질관 내측으로 삽입될 수 있도록 구성된다. 삽입부(100)는 질관에 삽입된 상태에서 팽창하여 직경이 증가하도록 구성되며, 삽입부(100)의 직경이 증가함에 따라 질관 내벽(t)을 지지하면서 질관을 확장시키도록 구성된다. 삽입부(100)는 샤프트(110), 가이드(500), 벌룬(200) 및 에너지 전달 모듈(300)을 포함하여 구성될 수 있다.
샤프트(110)는 일측이 파지부(600)와 견고하게 연결되어 삽입부(100)가 질관 내측으로 삽입시 견고하게 지지될 수 있도록 구성될 수 있다. 샤프트(110)는 내측으로 유체가 이동할 수 있도록 유체채널을 포함하여 구성된다. 유체채널의 일측은 파지부(600)와 유체소통되어 연결되며, 타측은 샤프트(110) 외측의 벌룬(200)과 유체소통 될 수 있도록 유출구(111)가 형성된다. 샤프트(110)의 길이는 질관의 길이에 대응하여 구성되며, 개인차에 따라 질관의 길이가 달라질 수 있으므로 2cm 내지 15cm로 구성될 수 있다. 또한 샤프트(110)의 직경은 수축되어 있는 질관 내측으로 삽입될 때 이물감이나 고통 또는 불편감을 최소화 할 수 있도록 3cm 이하로 구성될 수 있다.
가이드(500)는 샤프트(110) 중 파지부(600) 측에 구비되며 벌룬(200)이 팽창시에 질관 외측방향으로 팽창되는 것을 방지할 수 있도록 벌룬(200)의 끝단을 지지하며, 이때 주로 길이방향으로 지지력을 전달하여 외부로 팽창되는 것을 방지할 수 있다.
벌룬(200)은 팽창하여 질관을 확장할 수 있도록 구성되며 팽창부로서 기능한다. 벌룬(200)은 삽입부(100)가 내측으로 삽입될 때 좁은 질관 내측으로 삽입될 수 있도록 수축되어 있으며, RF에너지 전달시에는 질관 내벽(t)(t)과 후술할 전극(320)의 접촉면적이 증가시켜 대면적을 치료할 수 있도록 팽창될 수 있다. 여성의 질관의 평균적인 크기를 고려하여 수축시 직경 2cm 내외로 구성되며, 팽창시 직경이 약 5-10cm 가 될 수 있도록 구성되나, 이에 한정하는 것은 아니다.
벌룬(200)의 주된 팽창방향은 벌룬(200)의 직경이 증가하여 측면의 면적이 증가하는 방향으로 팽창될 수 있다. 여성의 질관은 일측이 자궁 경부와 연결되어 있으며, 타측은 외부와 연결되어 있어 질관의 길이변화는 크게 일어나지 않으며 주된 확장 방향은 둘레가 커지는 방향으로 이루어진다. 질관은 수축되어 있는 상태에서 많은 주름이 진 형태이며 질관이 확장되면 주름이 점차 펴지면서 둘레가 증가하고 직경도 증가하게 된다. 이에 대응하여 벌룬(200)은 질관에 삽입된 상태에서 직경이 증가함에 따라 질관 내벽(t)의 주름이 점차 펼쳐지게 되며 벌룬(200)의 외면과 밀착되는 면적이 증가하게 된다.
벌룬(200)의 수축시에는 벌룬(200)에 작용하는 내부유체압력을 해제하면 팽창시와 반대 양상으로 형태의 변화가 이루어지며, 질관 자체의 탄성 및 체압으로 인해 일정량이 수축되며 수축량을 최대로 하기 위해 벌룬(200) 내부에 음압이 적용될 수 있다.
벌룬(200)은 파지부(600) 측의 일 부분으로 샤프트(110)가 삽입되며 벌룬(200) 내외부가 밀폐될 수 있도록 샤프트(110)가 삽입된 부분에서 샤프트(110)와 벌룬(200)이 부착될 수 있다. 한편 벌룬(200)의 동작에 대하여는 차후 도 6을 참조하여 추가로 설명하도록 한다.
에너지 전달 모듈(300)은 벌룬(200)의 외면에서 질관의 내면과 접촉하여 RF에너지를 전달할 수 있도록 구성된다. 에너지 전달 모듈(300)은 베이스(310), 전극(320) 및 온도센서(330)를 포함하여 구성될 수 있다. 에너지 전달 모듈(300)은 탄성을 가질 수 있도록 구성될 수 있으며, 팽창시 벌룬(200)에 지지되어 형상이 변화되며, 수축시 복원력이 제공될 수 있도록 구성될 수 있다. 또한 신축성을 가져 벌룬(200)이 팽창하여 질관을 확장시에 질관 내벽(t)의 주름이나 굴곡(C)에 어느정도 대응하여 변형이 이루어질 수 있도록 구성될 수 있다. 다만, 이에 대하여는 차후 도 7 및 도 8을 참조하여 상세히 설명하도록 한다.
다만, 도시되지는 않았으나, 삽입부(100)는 질관 내부로 삽입이 용이하게 이루어 질 수 있도록 샤프트(110) 및 벌룬(200)을 감싸는 시스(400)(sheath)를 더 포함하여 구성될 수 있다. 시스(400)는 질관 내부로 삽입된 상태에서 삽입부(100)로부터 분리하여 외부로 배출될 수 있도록 단면의 형상이 C 형상으로 구성되어 외측에서 사용자가 잡아당겨 제거하도록 구성될 수 있다.
도 5a 내지 도 5c는 핸드피스(10)의 작동상태도이다.
도 5a에 도시된 바와 같이 핸드피스(10)의 삽입부(100)는 수축된 제1 형태와 팽창된 제2 형태가 다르게 구성될 수 있다. 여기서 제1 형태는 샤프트(110)에 밀착되어 압축이 최대로 이루어진 상태이다. 삽입부(100)는 질관 내측으로 삽입이 용이하게 이루어질 수 있도록 압축 또는 수축된 상태에서 진입한다. 이후 도 5b와 같이 벌룬(200)을 팽창시키면 삽입부(100)의 직경이 커지면서 벌룬(200)이 팽창된다. 삽입부(100)의 팽창은 벌룬(200)의 팽창에 따라 말려있던 에너지 전달모듈이 점차 펼쳐지게 되어 삽입부(100)의 외면은 지속적으로 에너지 전달모듈에 의해 감싸지게 된다. 이후 도 5c와 같이 벌룬(200)을 더욱 팽창시키면 삽입부(100)의 직경이 최대가 되며 둘레방향의 외면에 형성되는 접촉면적이 최대가 된다. 이때 삽입부(100)의 중심부분에는 원통형으로 제1 팽창부(210)가 되며, 삽입방향의 끝단에는 반구 형상의 제2 팽창부(220)가 형성되어 주된 팽창 방향이 직경이 넓어지며 둘레가 증가하는 방향으로 팽창하게 된다.
도 6a 내지 도 6c는 벌룬(200)의 작동상태도이다.
도 6a에는 벌룬(200)이 수축된 모습이 나타나 있으며, 도 6b는 벌룬(200)이 중간으로 팽창된 모습이 나타나 있으며, 도 6c는 벌룬(200)이 최대로 팽창된 모습이 도시되어 있다.
도시된 바와 같이 벌룬(200)은 수축과 팽창이 이루어지도록 구성되며, 팽창시 길이(L)가 유지되며 또한 전체적인 형상을 유지하면서 팽창이 이루어질 수 있도록 구성될 수 있다. 여기서 길이가 유지됨은 어느정도의 길이변화는 존재하나 폭의 변화에 대비하여 볼 때 그 변화가 미미함을 뜻한다. 벌룬(200)은 수축된 상태에서는 다소 주름진 형태로 존재하며, 일정한 형태로 변형된 이후 전체적인 형상이 유지되면서 팽창될 수 있도록 구성되는 Semi-compliance 벌룬(200)이 될 수 있다. 다만, 풍선과 같이 초기부터 지속적으로 팽창하며 외력에 따라 형상이 변화(adjustable)하는 compliance 벌룬(200)으로 구성되는 경우 팽창시 외면에 구비된 에너지 전달 모듈(300)로 인해 적절한 형상을 유지하며 팽창할 수 있다. 벌룬(200)은 라텍스를 포함하여 구성될 수 있으며, 의학용을 적합한 다양한 신축성 재질을 포함하여 구성될 수 있다.
도 7은 에너지 전달 모듈(300)의 전개도이며, 도 8은 도 7 의 I-I’의 단면도이다.
전술한 바와 같이 에너지 전달 모듈(300)은 베이스(310), 전극(320), 온도센서(330) 및 연결부(340)를 포함하여 구성될 수 있다.
베이스(310)는 전극(320)이 구비되는 공간이 마련되며, 벌룬(200)의 팽창에 따라 전극(320)의 접촉면적이 달라질 수 있도록 구성된다. 베이스(310)는 신축성 재질 또는 탄성재질로 구성되어 벌룬(200)의 팽창에 대응할 수 있도록 구성된다. 베이스(310)는 일 예로 벌룬(200)의 둘레방향에 말려 있도록 구성되며, 벌룬(200)이 팽창함에 따라 말려있던 부분이 점차 펼쳐지면서 외면의 면적이 넓어지도록 구성될 수 있다.
베이스(310)의 외면에는 전극(320)이 구비될 수 있도록 구성된다. 베이스(310)는 펼쳤을 때 전체적으로 사각 형상으로 구성되며, 복수의 지점에서 전극(320)이 질관 내벽과 접촉될 수 있도록 복수의 전극(320)이 구비될 수 있다. 베이스(310)가 벌룬(200)의 주변에 말리는 경우 외면에 형성되어 있는 전극(320)도 함께 말리게 되어 질관 내벽과 접촉되는 면적이 달라지게 된다.
이때, 베이스(310)는 길이방향으로 접촉되는 생식기의 부분, 예를 들어 자궁경부와 같은 부분에는 에너지 전달을 방지하기 위하여 벌룬(200)의 끝단측을 제외하고 벌룬(200)의 측면을 감싸도록 구성될 수 있다.
베이스(310)의 일측에는 파지부(600)와 전기적으로 연결될 수 있도록 연결부(340)가 구비된다. 연결부(340)는 베이스(310)의 폭에 비하여 비교적 얇게 구성되며 복수의 전극(320)어레이가 구비된 경우 각각을 개별적으로 제어하기 위한 전기적 경로가 구비될 수 있다. 연결부(340)는 벌룬(200)의 팽창에 따라 베이스(310)의 형상이 변할 때 유연하게 연결되며 파손을 방지할 수 있도록 베이스(310)와 동일하거나 유사한 탄성 또는 신축성 재질로 구성될 수 있다. 연결부(340)와 베이스(310)가 연결되는 부분은 베이스(310)의 형상이 변화하거나, 삽입부(100)를 질관에서 외부로 빼낼 때 응력이 집중되는 것을 방지할 수 있도록 라운드진 부분으로 연결될 수 있다. 다만, 연결부(340)가 파지부(600)에 직접 연결되는 예를 들어 설명하였으나, 연결부(340)는 샤프트(110)를 통하여 파지부(600)와 연결될 수 있다.
한편, 베이스(310)는 벌룬(200)과 고정되는 부착부가 구비될 수 있다. 부착부는 길이방향으로 긴 영역으로 구성되어 벌룬(200)이 둘레방향으로 팽창시 부착부에 의해 팽창이 제한되는 부분을 최소화 하며, 길이방향으로 팽창되는 것을 제한하는 기능을 추가로 수행할 수 있다. 부착부는 벌룬(200)의 팽창시 베이스(310)의 겹쳐진 부분에서 마찰력에 의해 발생하는 저항을 최소화 할 수 있도록 전극(320)의 중심부분에 형성될 수 있다. 즉 부착부를 중심으로 절반은 시계방향으로 벌룬(200)을 감사게 되며, 나머지 절반은 반시계방향으로 벌룬(200)을 감싸게 된다. 따라서 벌룬(200) 팽창에 대응하여 풀리는 양이 동등하게 되므로 어느 일측방향으로 모두 풀려야 하는 경우보다 마찰력을 현저하게 줄일 수 있으며, 결국 팽창이 원활하게 이루어질 수 있다.
베이스(310)는 벌룬(200)이 질관 내부에서 최대크기로 팽창되었을 때 적어도 일부는 겹쳐진 상태로 존재하도록 길이가 결정될 수 있다. 치료가 종료된 이후 질관 내부에서 제거할 때에도 삽입될 때와 마찬가지로 직경을 줄인상태에서 제거해야 질관 내벽(t)의 손상방지 및 환자의 고통, 불편감을 방지할 수 있게 된다. 따라서 최대 팽창시에도 베이스(310)의 일부가 겹쳐진 경우에는 겹쳐진 부분에서 상호간에 지지하게 되며 다시 벌룬(200)의 말린상태로 복귀될 수 있다. 이때 말려있는 원상태로 원활한 복귀를 위하여 판 스프링과 같은 복원력 제공부(미도시)가 추가로 구비될 수 있다. 다만, 베이스(310)는 벌룬(200)을 나선형으로 감는 구성으로 변형될 수 있으며 벌룬(200)을 감싸는 다양한 구성으로 적용될 수 있다.
전극(320)은 전술한 바와 같이 질관 내면을 통하여 에너지를 전달할 수 있도록 구성된다. 전극(320)은 베이스(310)가 벌룬(200)을 감쌌을 때 외부를 향하는 넓은 면에 복수로 구비될 수 있다. 전극(320)은 Bipolar 타입으로 구성되며 반복적으로 배열될 수 있다. 전극(320)은 팽창시에도 균일한 전극(320)분포밀도를 유지하면서 질관내벽과 밀착될 수 있도록 둘레방향으로 평행하게 배열될 수 있다. 전극(320)은 베이스(310) 상에서 평면상으로 구획된 다수의 제어 영역으로 구분되어 영역별로 독립적으로 제어될 수 있도록 독립적인 전기적 경로와 연결될 수 있다. 전극(320)은 베이스(310)를 따라 벌룬(200)의 둘레에 구비되어 질관 내벽에 소정깊이로 에너지를 인가하여 치료하게 되므로, 조직 치료영역은 전극(320)의 배열을 따라 회전방향으로 형성되며, 또한 소정 깊이로 치료되어 환형의 치료영역이 발생될 수 있다. 다만, 전극(320)을 Bipolar타입으로 설명하였으나, Monopolar 타입으로 구성될 수 있으며, 이 경우 외부와 접촉되는 전극(320)패드가 별도로 구비될 수 있다.
전극(320)은 에너지 전달 모듈(300)간 겹쳐진 부분, 즉 조직에 접촉하지 않는 부분에는 RF에너지 전달을 방지할 수 있도록 둘레를 따라 복수의 영역으로 분할되어 배열될 수 있다.
온도센서(330)는 조직의 온도를 측정하도록 구성될 수 있다. RF에너지가 전달됨에 따라 조직의 온도가 변화하게 되며 이를 측정하여 측정값을 제어부(22)로 전달하도록 구성된다. 온도센서(330)는 복수로 구성되어 복수의 지점에서 조직의 온도를 측정하도록 구성될 수 있다. 다만, 온도센서(330)의 위치는 다양하게 변형될 수 있으므로 이에 대한 설명은 생략하며, 구성 또한 다양하게 적용될 수 있으므로 이에 대한 설명은 생략하도록 한다.
한편 도시되지는 않았으나, 에너지 전달 모듈(300)에는 필요에 따라 복수의 영역에 절연부가 구비될 수 있다.
이하에서는 도 9 및 도 10을 참조하여 본 발명에 따른 제1 실시예의 사용에 대하여 상세히 설명하도록 한다. 도 9a 내지 도 9c는 제1 실시예의 사용상태도이며, 도 10a 내지 도 10b는 삽입부(100)의 팽창과 병변부위의 확장을 나타낸 도면이다. 한편, 설명을 위하여 다소 과장되어 표현될 수 있음을 밝혀둔다.
도 9a에 도시된 바와 같이, 삽입은 삽입부(100)가 수축된 상태에서 질관 입구를 통하여 삽입한다. 삽입시에는 원활한 삽입을 위하여 윤활액이 에너지 전달 모듈(300)의 외면에 도포될 수 있다. 사용자는 핸드피스(10)의 파지부(600)를 파지한 상태로 삽입부(100)를 길이방향으로 질관 입구로부터 진입시켜 삽입한다. 이때 질관의 깊이는 개인차가 있으므로 삽입부(100)의 삽입 깊이는 개인별로 다를 수 있다. 삽입부(100)는 삽입부(100)의 끝단이 자궁(u)경부에 인접하거나 밀착되는 깊이까지 삽입될 수 있다.
도 9b에 도시된 바와 같이, 삽입이 된 이후 삽입부(100)를 팽창시키게 된다. 이때 제어부(22)는 유체공급부(23)를 작동시켜 벌룬(200)에 유체를 공급하게 된다. 이때 유체가 벌룬(200)안에 채워짐에 따라 벌룬(200)이 팽창하게 되고 이에 따라 전극(320)모듈은 풀리게 되며, 질관 내벽은 확장된다. 이때 팽창은 벌룬(200)이 둘레방향으로 팽창이 이루어짐에 따라 질관 내벽(t)도 둘레방향으로 팽창이 주로 이루어지게 된다. 이때 제어부(22)는 체압보다 높은 압력으로 유체를 공급할 수 있다. 삽입부(100)가 팽창하여 질관 내벽(t)이 확장되는 경우 체압과 질관 내벽(t) 자체의 탄성, 벌룬(200)의 탄성, 에너지 전달 모듈(300)의 복원력이 발생하여 이에 따라 벌룬(200) 내측의 압력이 체압보다 높아져야 벌룬(200)을 팽창시킬 수 있게 된다. 벌룬(200)을 팽창시킨 이후에는 벌룬(200)에 작용하는 압력을 유지하여 팽창량을 유지시킬 수 있다.
도 9c에 도시된 바와 같이, 벌룬(200)을 팽창시킨 상태에서 제어부(22)는 RF에너지를 전달할 수 있도록 구성된다. 이때 에너지 전달 모듈(300)은 풀린 상태로 질관 내면과 넓은 면적으로 접촉되어 RF에너지가 전달된다. 미리 설정된 치료과정을 따라 적절한 RF에너지가 전달된 이후 벌룬(200)을 수축시키고 삽입부(100)를 질관으로부터 빼내게 된다.
도 10을 살펴보면, 도 9a 내지 도 9c에 대응하여 삽입부(100)와 질관의 단면 형상의 변화가 도시되어 있다. 도 10a에 도시된 바와 같이, 삽입단계에서는 질관 내벽에는 상당한 주름이 있으며, 전극(320)외면과 접촉하지 않은 부분이 산개하여 존재한다.
도 10b를 살펴보면, 벌룬(200)이 팽창됨에 따라 에너지 전달 모듈(300)이 풀리게 되며, 질관 또한 확장이 이루어진다. 에너지 전달 모듈(300)이 풀려감에 따라 질관 내벽(t)과 전극(320)의 접촉면적이 점차적으로 늘어나게 된다.
도 10c를 살펴보면, 벌룬(200)이 팽창하고 에너지 전달 모듈(300)이 풀림과 동시에 질관이 확장되고 질관 내벽(t)의 대부분은 전극(320)모듈과 접촉하게 된다. 이후 팽창된 상태를 유지하면서 RF에너지를 전달하게 된다. 이때 에너지 전달 모듈(300)의 각 쌍이 국부적으로 에너지를 전달하여 조직을 가열하며, 전체적으로 에너지 전달 모듈(300)의 둘레를 따라 복수로 배치되므로 치료 영역은 1회 치료에 환형으로 형성될 수 있다.
이하에서는 도 11 및 도 12를 참조하여 전극(320)모듈 및 전극(320)의 변형예를 설명한다.
도 11은 에너지 전달 모듈(300)의 변형예이다. 도시된 바와 같이 에너지 전달 모듈(300)은 길이방향 및 둘레방향으로 복수의 행과 열로 구성된 배열로 구성될 수 있다. 복수의 전극(320)은 단위영역(파선)별로 RF에너지 전달여부가 독립적으로 제어될 수 있도록 구성된다. 복수의 전극(320) 배열은 영역별로 개인 차이에 따라 삽입깊이가 다를 때 미 삽입부(100)분에 대한 에너지 차단을 수행할 수 있으며, 에너지 전달 모듈(300)이 포개어져 있는 부분, 즉 조직과 접촉하지 않은 전극(320)에 에너지 전달을 차단할 수 있게 된다.
도 12는 전극(320)의 다른 변형예이다. 도시된 바와 같이, 전극(320)은 벌룬(200)의 외면에 프린팅되어 구성될 수 있다. 벌룬(200)을 팽창시킨 상태에서 벌룬(200)의 외면에 전극(320)을 프린팅하여 형성될 수 있으며, 각각의 전극(320)쌍은 개별적으로 제어될 수 있도록 구성될 수 있다. 또한 수축된 상태에서 프린팅되며 벌룬(200)의 팽창에 따라 전극(320)이 신장될 수 있도록 구성될 수 있다. 전극(320)은 도전성 재료를 벌룬(200)의 외면에 직접 프린팅하거나, 벌룬(200) 외면에 구비된 버퍼상에 프린팅되어 형성될 수 있다. 전극(320)은 벌룬(200)에 길이방향으로 형성되어 프린팅 되어있는 모습이 도시되어 있으나, 이는 일 예일 뿐 둘레방향으로 프린팅 되거나 복수의 지점에 spot 타입으로 형성될 수 있다.
한편, 도시되지는 않았으나, 에너지 전달 모듈(300)은 복수의 개별모듈로 구성되어 벌룬(200)의 외면에 각각 소정각도를 두어 부착될 수 있다. 이와 같이 구성된 경우 질관 내면의 굴곡(C)에 대응하여 원활하게 형상이 변화될 수 있으며, 팽창에 따라 단위면적당 전극(320)분포밀도가 변화될 수 있어 이에 따라 치료영역을 조절할 수 있게 된다.
이하에서는 도 13을 참조하여 본 발명에 따른 제2 실시예에 대하여 상세히 설명하도록 한다. 제2 실시예는 제1 실시예와 동일한 구성요소를 포함하여 구성될 수 있으며, 이에 대하여는 중복기재를 피하기 위하여 설명을 생략하도록 하고 차이가 있는 구성에 대하여만 설명하기로 한다.
도 13a 및 도13b는 제2 실시예의 사용상태도이다. 도시된 바와 같이, 본 실시예에서는 수축된 상태에서 삽입부(100)의 두께가 제1 실시예보다 두껍게 구성이 되어 있다. 이 경우 샤프트(110)의 두께가 두껍게 구성되며, 질관 내측으로 삽입시 질관을 크게 확장시킬 수 있도록 구성된다. 이후 삽입부(100)의 팽창의 최대치는 제1 실시예와 동일하게 구성될 수 있다(도 13b)
본 실시예에서와 같이 수축시의 두께가 다소 두꺼운 경우, 삽입과 동시에 질관의 팽창이 이루어질 수 있으며(도 13a), 이후 벌룬(200)의 팽창이 이루어지므로 질관 내벽(t)의 최소 팽챵량이 보장될 수 있으며, 최소 팽창 형상 또한 삽입부(100)의 형상에 대응되어 팽창되므로 이를 보장할 수 있게 된다.
이하에서는 도 14 및 도 15를 참조하여 본 발명에 따른 질관 치료장치의 제어방법에 대하여 설명하도록 한다.
도 14는 본 발명에 따른 실시예인 질관 치료장치의 제어방법의 순서도이다.
도시된 바와 같이, 본 발명에 따른 질관 치료장치의 제어방법은 팽창단계(S100), 에너지를 인가하는 단계(S200) 및 수축단계(S300)를 포함하여 구성될 수 있다.
팽창단계(S100)는 질관내로 삽입된 치료장치를 소정범위내로 팽창시키는 단계에 해당한다. 질관 내에 삽입된 치료장치를 팽창시키면 주름이 있는 질관 내벽(t)과 치료장치가 접촉되는 면적이 증가된다. 이때 치료장치의 팽창은 치료장치에 구비된 팽창부를 팽창시킬 수 있다. 사용자가 시작입력을 수행하면 치료장치는 팽창부를 점차 팽창시키고 소정범위까지 팽창시키게 된다. 이때 팽창량은 기설정된 범위로 팽창될 수 있으며, 또한 사용자의 입력에 따라 조절가능하도록 구성될 수 있다.
에너지를 인가하는 단계(S200)는 팽창부에 구비된 에너지 전달소자로 에너지를 공급하는 단계이다. 이때 팽창부와 질관 내벽(t)의 접촉면적, 삽입깊이를 센싱하여 전달되는 에너지를 조절될 수 있다. 에너지의 전달시 에너지가 전달되는 조직의 온도를 측정하여 피드백 제어가 수행될 수 있다. 에너지가 전달된 조직은 가열되어 조직의 변성이 발생하여 치료가 수행될 수 있다. 여기서 에너지는 예를들어 RF에너지, 레이저, 광, 초음파 등의 다양한 타입의 에너지가 될 수 있다.
수축단계(S300)는 조직에 에너지를 인가한 이후 팽창부를 질관 외부로 빼내기 전 사전단계로서 팽창부를 수축시키는 단계에 해당한다. 팽창부의 수축은 질관에서 제거할 때 용이할 수 있도록 최소로 수축시킬 수 있다.
도 15는 본 발명에 따른 다른 실시예인 질관 치료장치의 제어방법의 순서도이다.
본 실시예에서 팽창단계(S100)는 유체주입단계(S110) 및 압력유지단계(S200)를 포함하여 구성될 수 있다. 에너지를 인가하는 단계(S200)는 접촉부분 판단단계(S210), 전극 선택단계(S220) 및 RF에너지를 인가하는 단계(S230)를 포함하여 구성될 수 있다. 그리고 수축단계(S300)는 유체회수단계(S310) 및 압력유지단계(S320)를 포함하여 구성될 수 있다.
유체주입단계(S110)는 팽창부에 구비된 벌룬을 팽창시킬 수 있도록 질관 내에 삽입된 벌룬에 유체를 주입하는 단계에 해당한다. 유체의 주입시 팽창량에 따라 유량 조절 및 유압 조절이 선택적으로 이루어질 수 있다. 유체주입은 유체공급부에서 공급되는 유량을 조절하여 수행될 수 있다.
압력유지단계(S120)는 벌룬이 적정범위로 팽창된 경우 접촉되어 있는 질관 내벽(t)을 일정하게 고정할 수 있도록 팽창량을 유지하는 단계에 해당한다. 이때 압력을 유지할 수 있도록 구성되며 벌룬과 연결되어 있는 유체라인을 밀폐하여 압력을 유지할 수 있다. 또한 서보제어를 통하여 균일한 압력이 제공되도록 구성될 수 있다.
접촉부분 판단단계(S210)는 팽창부에 구비된 전극 중 질과 내벽과 접촉되어 있는 전극을 판단하는 단계에 해당한다. 질관 내부의 구조 및 크기는 개인차가 있어 팽창부를 팽창하면 각각 접촉부분이 달라질 수 있다. 개인 차이에 따라 개별적으로 달라지는 접촉부분과 비접촉 부분을 판단하게 된다.
전극 선택단계(S220)는 에너지 인가시 해당 전극에 에너지 인가를 방지할 수 있도록 에너지 인가 대상 전극에서 비접촉 전극을 제외하는 단계에 해당한다.
RF에너지를 인가하는 단계(S230)는 선택된 접촉전극을 통해 RF에너지를 인가하여 조직에 에너지를 전달하는 단계에 해당한다. RF에너지를 전달함에 따라 질관 내부의 치료가 이루어질 수 있다. RF에너지를 인가하는 단계(S230)는 기설정된 프로그램에 따라 개인적으로 발생하는 조직의 전기적 특성이 반영되어 제어가 이루어질 수 있다.
유체회수단계(S310)는 RF에너지의 인가가 종료된 이후 벌룬을 수축시킬 수 있도록 유체를 회수하는 단계에 해당한다. 여기서 유체를 회수하할 수 있도록 유체공급부(23)에서 음압을 발생시켜 벌룬 내측에 존재하는 유체를 외부로 배출시킬 수 있다. 이 경우, 질관 자체의 압력으로 인하여 벌룬이 수축될 수 있다.
압력유지단계(S320)는 벌룬 자체의 탄성에 의해 수축되었던 벌룬이 다소 팽창되는 것을 방지할 수 있도록 벌룬에 음압을 발생시키고 유지하는 단계에 해당한다. 사용자는 음압이 유지되어 벌룬이 수축된 상태에서 팽창부를 질관 외부로 제거할 수 있게 된다.
다만 유체회수단계(S310) 및 압력유지단계(S320)에서는 음압을 예를 들었으나, 질관 내측에서 벌룬이 수축될 수 있는 다양한 범위의 압력을 제공하여 수축시킬 수 있다.
도 16은 본 발명에 따른 실시예인 질관 치료방법의 순서도이다. 도시된 바와 같이, 질관 치료방법은 치료장치를 삽입하여 질관을 확장시키는 단계(S1000), 조직 치료단계(S2000), 치료장치를 제거하는 단계(S3000)를 포함하여 구성될 수 있다.
치료장치를 삽입하여 질관을 확장시키는 단계(S1000)는 소정 두께로 형성된 치료장치를 질관의 외음부측의 입구로부터 삽입하여 질관을 소정범위로 확장하는 단계에 해당한다. 삽입시 일정한 두께로 삽입하여 질관의 확장을 확보할 수 있게 된다.
조직 치료단계(S2000)는 질관을 확장시킨 상태에서 질관 내벽(t)측으로 에너지를 전달하여 조직을 치료하는 단계에 해당한다. 조직의 치료는 에너지를 전달하여 조직을 가열하고 변성을 야기하며, 향후 일정 회복기간을 거쳐 조직이 리모델링 될 수 있게 된다.
치료장치를 제거하는 단계(S3000)는 치료장치를 질관에서 제거하는 단계에 해당한다. 원활한 제거와 질관 내벽 손상방지를 위하여 치료장치를 수축시켜 제거한다. 다만, 도시되지는 않았으나 시스(400)를 이용하여 치료장치를 감싼 뒤 함께 제거할 수 있다.
도 17은 본 발명에 따른 다른 실시예인 질관 치료방법의 순서도이다.
본 실시예에서도 전술한 치료방법과 동일한 구성이 적용될 수 있으며, 이에 대하여는 설명을 생략하고 차이가 있는 구성에 대하여만 설명하기로 한다. 본 실시예에서는 치료장치가 질관 내측으로 삽입된 이후 질관을 확장하여 치료를 수행하게 된다.
치료장치를 질관에 삽입하는 단계(S1100)는 여성 생식기의 외음부 측에서 질입구를 통하여 치료장치를 삽입하는 단계에 해당한다. 이때 치료장치는 수축된 상태에서 직경이 최소화 된 상태로 삽입될 수 있다. 치료장치의 삽입시 질관 내벽의 치료를 위해 에너지 전달 모듈(300)의 위치를 조절할 수 있다. 또한, 도시되지는 않았으나 치료장치를 감싸는 시스(400)를 이용하여 위치설정(positioning)이후 시스(400)만을 제거하여 삽입을 완료할 수 있다.
질관을 확장시키는 단계(S1200)는 삽입된 치료장치의 팽창부를 팽창시켜 질관을 확장시키는 단계에 해당한다. 질관의 확장은 둘레방향으로 주된 확장이 이루어지며 질관을 확장시킴에 따라 치료장치의 에너지 전달모듈과 질관 내벽이 접촉하는 면적이 넓어질 수 있게 된다. 이때 전체적으로 팽창되는 형상은 원통형으로 팽창될 수 있다. 이때 치료영역은 원통형으로 팽창된 질관의 측면부가 될 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 질관 치료장치는 질관 내에 삽입시키고 질관을 확장하여 RF에너지를 전달할 수 있으므로 빠른시간 내에 넓은 면적을 치료할 수 있으며, one-shot 치료가 가능하고, 주름이 있는 부분에 치료를 수행할 수 있으므로 치료의 효율성 및 정확성을 향상시킬 수 있다. 또한 외과적인 시술 없이도 질관 내 조직의 치료가 가능하므로 환자의 고통, 불편감을 최소화 할 수 있는 효과가 있다.
Claims (20)
- 질관에 삽입되어 상기 질관을 확장시킬 수 있도록 구성되는 팽창부; 및상기 질관이 확장된 상태에서 에너지를 전달할 수 있도록 구성되는 에너지 전달 모듈을 포함하는 질관 치료장치.
- 제1 항에 있어서,상기 팽창부는 상기 질관에 삽입된 이후 팽창될 수 있도록 구성되는 것을 특징으로 하는 질관 치료장치.
- 제2 항에 있어서,상기 팽창부는 벌룬으로 구성되는 것을 특징으로 하는 질관 치료장치.
- 제3 항에 있어서,상기 벌룬은 외부로부터 유체를 공급받아 팽창할 수 있도록 구성되는 것을 특징으로 하는 질관 치료장치.
- 제3 항에 있어서,상기 에너지 전달 모듈은 상기 팽창부가 팽창됨에 따라 상기 질관 내벽과 접촉하는 면적이 넓어지도록 구성되는 것을 특징으로 하는 질관 치료장치.
- 제3 항에 있어서,상기 에너지 전달 모듈은 상기 팽창부의 팽창시 상기 질관 내면의 둘레를 치료할 수 있도록 둘레방향으로 배열되는 전극을 포함하여 구성되는 것을 특징으로 하는 질관 치료장치.
- 제6 항에 있어서,상기 에너지 전달 모듈은 상기 벌룬의 팽창시 상기 질관 내벽의 굴곡에 대응하여 변형될 수 있도록 신축성 소재를 포함하여 구성되는 것을 특징으로 하는 질관 치료장치.
- 제3 항에 있어서,상기 에너지 전달 모듈은 상기 팽창부에 프린팅되는 전극을 포함하는 것을 특징으로 하는 질관 치료장치.
- 제5 항에 있어서,상기 에너지 전달 모듈은 치료조직의 온도를 측정할 수 있도록 구성된 온도센서를 더 포함하여 구성되는 것을 특징으로 하는 질관 치료장치.
- 제5 항에 있어서,상기 팽창부와 연결되며 파지할 수 있도록 구성되는 파지부를 더 포함하는 질관 치료장치.
- 제10 항에 있어서,상기 팽창부, 전극모듈 및 파지부는 핸드피스에 구비되며,RF제너레이터, 제어부 및 유체공급부를 포함하는 본체를 더 포함하여 구성되는 질관 치료장치.
- 제11 항에 있어서,상기 핸드피스는,상기 파지부와 연결되며, 소정길이로 연장되어 형성되는 샤프트를 더 포함하며,상기 벌룬은 상기 샤프트에 일단이 고정되어 밀폐되며, 상기 샤프트를 통해 유체를 공급받는 것을 특징으로 하는 질관 치료장치.
- 질관에 삽입된 팽창부를 팽창시키는 팽창단계;상기 팽창부의 팽창에 따라 질관내벽에 접촉된 에너지 전달 모듈에 에너지를 인가하는 단계; 및상기 팽창부를 수축시키는 수축단계를 포함하는 질관 치료장치의 제어방법.
- 제13 항에 있어서,상기 팽창단계는 상기 질관 내면과의 접촉면적이 증가될 수 있도록 상기 팽창부를 팽창시키는 것을 특징으로 하는 질관 치료장치의 제어방법.
- 제14 항에 있어서,상기 팽창단계는 상기 팽창부에 유체를 주입시켜 팽창시키는 유체주입단계를 포함하는 질관 치료장치의 제어방법.
- 제15 항에 있어서,상기 에너지를 인가하는 단계는 상기 질관 내벽의 온도 측정값을 피드백하여 수행되는 것을 특징으로 하는 질관 치료장치의 제어방법.
- 제 16 항에 있어서,상기 에너지 전달 모듈에 구비된 전극 중 상기 질관 내벽과의 접촉여부에 따라 RF에너지를 인가할 전극을 선택하는 전극 선택단계를 더 포함하는 질관 치료장치의 제어방법.
- 치료장치를 질관입구로 삽입하여 상기 질관을 확장시키는 단계;확장된 질관의 내벽으로 RF에너지를 전달하여 조직을 치료하는 조직치료단계; 및상기 치료장치를 제거하는 단계를 포함하는 질관 치료방법.
- 제18 항에 있어서,상기 질관을 확장시키는 단계는 상기 치료장치를 상기 질관입구로 삽입시키는 단계 이후 수행되는 것을 특징으로 하는 질관 치료방법.
- 제19 항에 있어서,상기 질관을 확장시키는 단계는 상기 질관과 상기 치료장치의 접촉면적이 넓어질 수 있도록 상기 치료장치를 팽창시켜 수행되는 것을 특징으로 하는 질관 치료방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2017/013942 WO2019107621A1 (ko) | 2017-11-30 | 2017-11-30 | 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2017/013942 WO2019107621A1 (ko) | 2017-11-30 | 2017-11-30 | 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019107621A1 true WO2019107621A1 (ko) | 2019-06-06 |
Family
ID=66664012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/013942 WO2019107621A1 (ko) | 2017-11-30 | 2017-11-30 | 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019107621A1 (ko) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010895A (en) * | 1989-08-03 | 1991-04-30 | Empi, Inc. | Expandable vaginal electrode |
US6185465B1 (en) * | 1998-02-25 | 2001-02-06 | Seung Kee Mo | Vaginal electrode for urinary incontinence treatment |
US20120004656A1 (en) * | 1999-11-16 | 2012-01-05 | Jerome Jackson | Methods and systems for treatment of tissue in a body lumen |
US20130245728A1 (en) * | 2012-03-16 | 2013-09-19 | Viveve, Inc. | Vaginal remodeling device and method |
US20150119880A1 (en) * | 2013-10-25 | 2015-04-30 | Covidien Lp | Unfurling electrode devices with spring |
US20150297908A1 (en) * | 2014-04-22 | 2015-10-22 | ThermiGen, LLC | Methods and radiofrequency treatment probe for treating vaginal laxity |
-
2017
- 2017-11-30 WO PCT/KR2017/013942 patent/WO2019107621A1/ko active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010895A (en) * | 1989-08-03 | 1991-04-30 | Empi, Inc. | Expandable vaginal electrode |
US6185465B1 (en) * | 1998-02-25 | 2001-02-06 | Seung Kee Mo | Vaginal electrode for urinary incontinence treatment |
US20120004656A1 (en) * | 1999-11-16 | 2012-01-05 | Jerome Jackson | Methods and systems for treatment of tissue in a body lumen |
US20130245728A1 (en) * | 2012-03-16 | 2013-09-19 | Viveve, Inc. | Vaginal remodeling device and method |
US20150119880A1 (en) * | 2013-10-25 | 2015-04-30 | Covidien Lp | Unfurling electrode devices with spring |
US20150297908A1 (en) * | 2014-04-22 | 2015-10-22 | ThermiGen, LLC | Methods and radiofrequency treatment probe for treating vaginal laxity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019107618A1 (ko) | 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 | |
US20240156507A1 (en) | Endometrial ablation devices and systems | |
US5084044A (en) | Apparatus for endometrial ablation and method of using same | |
AU679271B2 (en) | Bipolar/monopolar endometrial ablation device and method | |
US5569241A (en) | Thin layer ablation apparatus | |
WO2020050493A1 (ko) | 치료용 핸드 피스, 이를 포함하는 치료 장치 및 이를 이용한 치료 방법 | |
US9125665B2 (en) | Method for treating fecal incontinence | |
WO2013147335A1 (ko) | 고주파 수술용 전극, 고주파 수술장치 및 이의 제어방법 | |
JPH08508912A (ja) | 子宮内膜を剥離するための方法および装置 | |
WO2010104720A1 (en) | Ablation device with suction capability | |
KR102233949B1 (ko) | 질관 치료장치용 에너지 전달 모듈, 이를 포함하는 질관 치료장치의 제어방법 | |
WO2018030561A1 (ko) | 치료 장치 및 이를 이용한 치료 방법 | |
KR20190064291A (ko) | 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 | |
WO2019107621A1 (ko) | 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 | |
KR20190064294A (ko) | 질관 치료장치, 그 제어방법 및 이를 이용한 치료방법 | |
WO2024136407A1 (ko) | 미용 시술 기기 및 미용 시술 방법 | |
WO2021125892A1 (ko) | 고주파 소작용 의료기기 | |
WO2020130438A2 (ko) | 핸드 피스, rf 치료 장치 및 rf 치료 장치의 제어 방법 | |
CN105769304A (zh) | 一种面向子宫内膜修复的内窥镜手术系统及其应用 | |
CN107096128A (zh) | 产妇用可变形阴道探头 | |
CN116687532A (zh) | 一种适用于臭氧技术治疗输卵管梗阻的介入导管 | |
WO2023022253A1 (ko) | 체내의 신경을 차단 또는 조절하기 위한 전극 장치 | |
WO2019177211A1 (ko) | 자궁경부암 치료용 플라즈마 치료장치 | |
WO2022145554A1 (ko) | 바이폴러 전극을 이용한 전극 스텐트 국소 열 치료장치 | |
WO2019124971A1 (ko) | 신경 손상 방지가 가능한 저온 치료 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17933680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17933680 Country of ref document: EP Kind code of ref document: A1 |