WO2019107564A1 - 燃焼装置及び燃焼方法 - Google Patents

燃焼装置及び燃焼方法 Download PDF

Info

Publication number
WO2019107564A1
WO2019107564A1 PCT/JP2018/044277 JP2018044277W WO2019107564A1 WO 2019107564 A1 WO2019107564 A1 WO 2019107564A1 JP 2018044277 W JP2018044277 W JP 2018044277W WO 2019107564 A1 WO2019107564 A1 WO 2019107564A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
gas
kiln
cylindrical
combustion apparatus
Prior art date
Application number
PCT/JP2018/044277
Other languages
English (en)
French (fr)
Inventor
薫 宇野
Original Assignee
株式会社エコプラナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコプラナ filed Critical 株式会社エコプラナ
Publication of WO2019107564A1 publication Critical patent/WO2019107564A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a combustion apparatus for realizing high temperature combustion gasification of gas-liquid fuel and a combustion method thereof.
  • the combustion apparatus has utilized oxygen in air for combustion, but the generation of nitrogen oxides by oxidation combustion is inevitable. Therefore, the combustion temperature has been lowered to suppress the generation of nitrogen oxides, and the generated nitrogen oxides have been removed by a catalyst or the like, but if the reduction suppression measures are taken, the energy efficiency will deteriorate, so sufficient effects can be obtained It did not go up.
  • Patent Document 1 discloses a burner having a fuel injection nozzle at a central portion and an air nozzle around a combustion injection nozzle, and performing combustion by mixing fuel injected from the center and air injected from the periphery.
  • the upstream and downstream ends are opened on the downstream side of the installation position of the fuel injection nozzle and the air nozzle, and the downstream opening diameter is smaller than the upstream opening diameter so as to be tapered.
  • a combustion apparatus is provided, the fuel injected from the fuel injection nozzle and the air injected from the air nozzle are mixed in the combustion apparatus, and fuel-air mixed gas is injected from the downstream opening of the combustion apparatus to the combustion chamber while performing combustion.
  • this self-recirculating burner has a tapered combustion device, it is possible to increase the flow velocity of the fuel-air mixed gas injected from the downstream opening of the combustion device, and prevent the flame from shaking and stabilize the flame. it can. Since the flame is held on the downstream side of the combustion apparatus, it is possible to significantly reduce the local high-temperature region by lifting the flame and to further reduce the amount of NOx generation.
  • a floating catalyst having a bulk density smaller than that of the fluidized particles charged in the fluidized bed gasification furnace is introduced into the gasification chamber, and tar capture by the floating catalyst is improved on the upper surface of the fluidized bed in the gasification chamber.
  • An object of the present invention is to provide a combustion apparatus and a combustion method which reduce harmful exhaust gases such as nitrogen oxides with a small-sized apparatus, and realize high-efficiency high-temperature combustion gasification in multiple stages.
  • the heat exchanger comprises a cylindrical member at the root side and a taper member at the tip end, and at the tip end, a fuel input portion to which fuel mixed with gas and liquid is injected.
  • a combustion apparatus including a flame discharge unit on the root side, comprising: a plurality of heat exchangers; a plurality of combustion chambers formed before and after the plurality of heat exchangers; and an air pipe for introducing outside air into any combustion chamber And a return pipe for returning carbon dioxide generated by combustion from at least one downstream combustion chamber to the upstream combustion chamber among the plurality of combustion chambers, wherein the heat exchangers end along a common axis.
  • a plurality of cylindrical bodies of a cylindrical body or a polygonal body stacked end to end the plurality of cylindrical bodies having a porous body or a porous membrane at least the inner surface, the plurality of cylindrical bodies
  • the inner space of the tube is the flow passage for the gas flow, and the axis of the cylindrical body To face the side, characterized in that it is arranged in parallel at a desired distance.
  • the porous body or the porous membrane may be made of porous silicon nitride, sialon, silicon carbide, non-oxide ceramics such as boron nitride, etc. and porous zirconia, alumina, mullite single material, or boron nitride And a composite material of non-oxide ceramics such as silicon nitride, or a composite material of non-oxide ceramics such as boron nitride and oxide ceramics such as zirconia, alumina, mullite, etc.
  • the return pipe may be disposed near the bottom substantially at the outlet side of the flow path of the gas flow of the most downstream heat exchanger among the plurality of heat exchangers.
  • relatively heavy carbon monoxide or carbon dioxide is recycled by the return pipe.
  • the present invention is a rotary kiln furnace provided with a substantially cylindrical kiln body and a heating burner, wherein the heating burner is the above-mentioned combustion apparatus.
  • the kiln body is substantially cylindrical and includes a plurality of firing chambers, and a spiral flow path is formed on the inner wall surface from the bottom side toward the ceiling side, and the flow of the baking gas swirls the flow path of the inner wall surface It is good to make it a structure that goes ahead.
  • the channel may be provided with unevenness.
  • the heating burner may be disposed so that the flame is jetted in a tangential direction with respect to the inner peripheral surface of the inner wall surface of the kiln body, and further, the tangential direction with respect to the inner peripheral surface of the inner wall surface of the kiln body and It is even better to arrange the flame to fire along the spiral channel.
  • gasification combustion device of the present invention By using the gasification combustion device of the present invention, complete combustion significantly progresses, and combustion of incompletely burned exhaust gas such as soot becomes possible, combustion efficiency increases, fuel consumption is suppressed, and exhaust gas is greatly reduced. It can be reduced. In addition, since high temperature gasification can be expected by complete combustion, the range of use where conventional liquid fuel can not be realized is expanded.
  • the gasification and combustion apparatus of the present invention is disposed in a stoker type kiln as a heating burner, an efficient combustion furnace can be realized by supplying high temperature at low cost, and waste oil, sludge treatment, cattle manure and chicken manure It also becomes possible to treat the treatment and the molten slag treatment consistently.
  • FIG. 1 shows a heat exchanger built into a combustion device according to the present invention.
  • FIG. 3 is a front view of the combustion apparatus in a state where a heat exchanger is disposed. It is a figure which shows the attachment position of the return piping arrange
  • FIG. 7 is a view showing how fuel is gasified in a combustion apparatus according to a second embodiment.
  • FIG. 7 is a view showing how fuel is gasified in a combustion apparatus according to a second embodiment.
  • FIG. 7 is a view showing how fuel is gasified in a combustion apparatus according to a second embodiment.
  • FIG. 7 is a view showing how fuel is gasified in a combustion apparatus according to a second embodiment.
  • FIG. 7 is a view showing how fuel is gasified in a combustion apparatus according to a second embodiment.
  • FIG. It is a figure which shows the inside of the kiln which has arrange
  • FIG. It is a figure which shows arrangement
  • FIG. 1 is a schematic view showing the inside of a combustion apparatus according to the present invention.
  • Fig.2 (a) is a front view of the heat exchanger incorporated in the combustion apparatus which concerns on this invention.
  • FIG. 2B is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 3 is a front view of the combustion apparatus in a state where a heat exchanger is disposed.
  • FIG. 4 is a view showing the attachment position of the return pipe disposed in the combustion chamber on the root side of the combustion apparatus according to the present invention.
  • the combustion apparatus 1 includes a cylindrical portion on the root side and a tapered portion on the tip side, and the fuel input portion 12 to which the fuel N mixed with gas and liquid is sprayed is discharged on the root side on the tip side.
  • FIG. Fig.2 (a) is a front view of the heat exchanger incorporated in the combustion apparatus which concerns on this invention.
  • FIG. 2B is a cross-sectional view taken along the line AA shown in FIG.
  • the heat exchanger 10 according to the present invention comprises a plurality of cylindrical bodies 101 of cylindrical or polygonal cylindrical bodies stacked end to end along a common axis.
  • the plurality of cylindrical bodies 101 to 107 have porous bodies or porous membranes at least on the inner surface, and the internal spaces of the plurality of cylindrical bodies have gas flow flow passages 1010 to 1070.
  • the stacked cylindrical bodies 101 to 107 may be provided with a cylindrical case 100 covering the outer wall thereof.
  • Example 1 Although it comprises with seven cylinders of seven same diameter in Example 1, the quantity is not limited. A plurality of cylindrical bodies with different diameters may be used, or a combination of polygonal cylindrical bodies may be used. And the case which met these combinations can be armored.
  • the heat exchangers 10A and 10B are multi-tubular type, and as will be described later, the gas is allowed to pass through the inside or the outside of the large number of juxtaposed cylindrical bodies 101 to 107, and Heat receiving side gas is flowed, and heat exchange is performed through the inside and the outside of the cylindrical body.
  • the cylindrical members 101 to 107 of the heat exchangers 10A and 10B can be manufactured more continuously by using high temperature durable ceramic materials.
  • continuous ignition is important, and the usable material is a single material of porous silicon nitride, sialon, silicon oxide, non-oxide ceramics such as silicon carbide and boron nitride, and porous zirconia, alumina and mullite.
  • non-oxide ceramics such as boron nitride and silicon nitride
  • a composite material of non-oxide ceramics such as boron nitride and oxide ceramics such as zirconia, alumina, mullite, etc. It is.
  • These ceramics are particularly excellent in heat resistance under high temperature, corrosion resistance and thermal shock resistance.
  • the cylindrical bodies 101 to 107 are finely or coarsely configured to the porous density of the inner surface of the cylindrical bodies. It is good to adjust properly.
  • the tubular bodies 101 to 107 are formed in a pipe shape, and the gas flow flow passages 1010 to 1070 are formed.
  • the heat exchangers 10A and 10B described above are arranged in parallel in the combustion apparatus 1 with a desired distance so that the axes of the cylindrical members 101 to 107 are directed from the tip to the root, and before and after the combustion chamber 11A, 12A, 13A are formed.
  • FIG. 3 is a front view of the combustion apparatus in a state where a heat exchanger is disposed.
  • the heat exchanger 10 is coated with a heat insulating material R such as glass wool or rock wool at substantially the center of the combustion apparatus, and formed as a partition of the combustion chamber disposed forward and backward.
  • the generated gases G1, G2 are arranged to pass only the flow passages 1010 to 1070 of the gas flow.
  • the gas is allowed to pass through the inside or the outside of the plurality of juxtaposed cylindrical bodies 101 to 107 housed in the case 100, and the heat receiving side of air or the like on the other side, the outside or the inside of the pipe.
  • a gas is allowed to flow and heat exchange is performed through the inside and outside of the cylindrical body, but a heat insulating material R such as glass wool or rock wool may be externally filled to close a gap formed by a plurality of cylindrical bodies adjacent to each other.
  • FIG. 4 is a view showing the attachment position of the return pipe disposed in the combustion chamber on the root side of the combustion apparatus according to the present invention.
  • the combustion apparatus 1 has three return pipes 13 arranged.
  • the return pipes 13A, 13B, 13C respectively connect the combustion chamber 11C and the combustion chamber 11B.
  • the openings of the return pipes 13A, 13B, and 13C in the combustion chamber 11C may be disposed near the bottom of the flow path of the gas flow of the heat exchanger 10B. It is for returning the exhaust gas containing carbon monoxide or carbon dioxide among the gas G3 which flows out via the heat exchanger 10B to the combustion chamber 11B.
  • FIG. 5 to 7 are views showing how fuel is gasified in the combustion apparatus according to the present invention.
  • the gas-liquid fuel used in the combustion apparatus according to the present invention is the one according to the inventor's invention (Japanese Patent No. 5719093), that is, the refining process of petroleum that divides petroleum molecules and the division of water molecules.
  • a method of producing a carbon-based fuel comprising a water refining process and a hetero-molecular bonding process for bonding molecules divided in these processes, wherein the first cavitation ring is generated in the petroleum refining process Is placed in a portion of a pipe through which oil flows, and oil is passed under high pressure in the first cavitation ring to cause cavitation in the first
  • a second cavitation ring is placed on a part of a pipe through which water flows, and the second cavitation ring is divided. By passing water at high pressure into the ring, cavitation is generated in the second cavitation ring to separate water molecules, and in the heteromolecular bonding step, the water is broken in the water refinement step.
  • a third cavitation ring is installed in a portion of a pipe through which a mixture of a molecule of petroleum and a molecule of petroleum separated in the refining process of petroleum flows, and the mixture is pressurized in the third cavitation ring.
  • the carbon-based fuel is produced by causing cavitation in the third cavitation generation ring by passing through, and combining the split petroleum molecules with the split water molecules.
  • the gas-liquid fuel according to the inventor's invention that is, cavitation in heavy oil to be a first fluid containing nanobubbles, cavitation in water to contain nanobubbles
  • a hydrocarbon-based fuel containing a heavy oil decomposable composition may be used which is produced by causing cavitation in a mixed fluid obtained by mixing the first and second fluids.
  • the gas-liquid fuel having a flammable width corresponding to the molecular structure of the gas-liquid fuel described above can be injected, the fuel is ignited in the combustion chamber 11A, and continuous gasification combustion described later becomes possible.
  • FIG. 5 (b) As shown in FIG. 5B, by igniting the gas-liquid fuel sprayed from the fuel inlet 12, primary combustion is started in the combustion chamber 11A, and the gas G11 is formed. In the combustion chamber 11A, the increase of the combustion temperature is suppressed to 800 to 1000 ° C. while the fuel is injected. As a result, reductive combustion occurs.
  • FIG. 5 (c) The combustion gas G1 generated in the combustion chamber 11A flows into the gas flow flow passages 1010 to 1070 of the heat exchanger 10A. Turbulent combustion of the combustion gas G11 occurs in various directions in the flow passages 1010 to 1070 of the gas flow. That is, when the heated gas passes through the cylindrical bodies 101 to 1070 of the heat exchanger 10A whose inner surface is metal porous, radiant heat is generated and the slow combustion is continued.
  • FIG. 6 (a) As shown in FIG. 6 (a), the gas that has passed through the tubular members 101 to 107 of the heat exchanger 10A flows into the combustion chamber 11B, secondary combustion is started, and a gas G12 is formed. In the combustion chamber 11B, the combustion temperature is raised while introducing air. As a result, oxidative combustion takes place.
  • the combustion gas G2 generated in the combustion chamber 11B flows into the gas flow flow passages 1010 to 1070 of the heat exchanger 10B. Turbulent combustion of the combustion gas G12 occurs in various directions in the flow passages 1010 to 1070 of the gas flow. That is, when the heated gas passes through the cylindrical bodies 101 to 107 of the heat exchanger 10B whose inner surfaces are metal porous, radiant heat is generated and the slow combustion is continued.
  • FIG. 7 (a) As shown in FIG. 7A, the gas that has passed through the cylindrical bodies 101 to 1070 of the heat exchanger 10B flows into the combustion chamber 11C, and the third combustion is started to form the gas G13.
  • the present combustion dynamics require thermal efficiency in one combustion room, but the heated gas passes through the gas flow path of a cylindrical body having a plurality of smaller combustion rooms and a metal porous inner surface.
  • radiant heat is generated to improve combustion efficiency by heat retention, and further, CH4 contained in gas-liquid fuel can be reformed into CO and H2, and CO2 can be captured to reform gas.
  • gasification of gas-liquid fuel is usually manufactured at high pressure, but by providing a compression chamber and passing a certain combustion time, the pressure of its own weight advances further gasification due to the temperature rise of the combustion chamber, and the gas Reforming can be improved.
  • the blue flame of the flame is confirmed in the flaming portion 19 at the root of the combustion device 1.
  • FIG. 8 is a graph showing the difference in thermal efficiency between the combustion apparatus according to the first embodiment and the combustion apparatus not provided with the heat exchanger according to the present invention.
  • the measurement was carried out at Ecoplana Miki Factory (Koji Besshocho, Miki City, Hyogo Prefecture, 724-361) under the following conditions.
  • Ecoplana Miki Factory Karl Besshocho, Miki City, Hyogo Prefecture, 724-361
  • a combustion device A having a structure according to Example 1 and a combustion device B not provided with the heat exchanger according to the present invention were prepared.
  • the combustion apparatus B attaches the following oil burner to the drum can marketed.
  • the temperature was measured at each of the combustion devices A and B at the flame outlet.
  • the gas-liquid fuel according to the inventor's invention (WO2016 / 059717), that is, cavitation in heavy oil to be a first fluid containing nanobubbles, cavitation in water to contain nanobubbles
  • a hydrocarbon-based fuel containing a heavy oil decomposable composition is used which is produced by causing cavitation in a mixed fluid obtained by mixing the first and second fluids. Measurement date: Monday, November 13, 2017 11 am-12 o'clock Measurement place: Eco Plana Co., Ltd.
  • Miki factory (Moji City, Hyogo Prefecture Koji Beshishocho Koji 724-361) Outside temperature: 18 degrees Celsius
  • Use device Oil burner (manufactured by Olympia Industries Co., Ltd.)
  • Measurement method Gun type frequency thermometer measurement method
  • FIG. 9 is a schematic view showing the inside of a combustion apparatus different from Embodiment 1 according to the present invention.
  • the combustion apparatus 2 comprises a cylindrical portion on the root side and a tapered portion on the tip side, and the fuel input portion 22 to which the fuel N mixed with gas and liquid is sprayed is discharged on the root side on the tip side.
  • a return pipe 23 is provided for returning carbon dioxide generated by combustion from the downstream combustion chamber 21D to the upstream combustion chamber 21B.
  • the structure of the heat exchangers 20A, 20B, and 20C, the arrangement of the heat exchangers in the combustion apparatus 2, and the arrangement of the return piping 23 are the same as in the first embodiment, and thus the description thereof is omitted.
  • FIGS. 10 to 13 show how the fuel is gasified in the combustion apparatus 2 according to the second embodiment. A method of burning fuel in the combustion apparatus 2 according to the second embodiment will be described with reference to FIGS. 10 to 13.
  • gas-liquid fuel is sprayed from the fuel inlet 22.
  • the gas-liquid fuel a mixture of the liquid flow rate and the air flow rate is used based on the setting of the flammable air width based on a predetermined standard.
  • the gas and liquid fuel is also the same as that of the first embodiment, so the description will be omitted.
  • FIG. 10B As shown in FIG. 10B, by igniting the gas-liquid fuel sprayed from the fuel inlet 22, primary combustion is started in the combustion chamber 21A, and the gas G21 is formed. In the combustion chamber 21A, the increase of the combustion temperature is suppressed to 800 to 1000 ° C. while the fuel is supplied. As a result, reductive combustion occurs.
  • the combustion gas G21 generated in the combustion chamber 21A flows into the gas flow flow passages 2010 to 2070 of the heat exchanger 20A. Turbulent combustion of the combustion gas G21 occurs in various directions in the flow passages 2010 to 2070 of the gas flow. That is, when the heated gas passes through the cylindrical members 201 to 207 of the heat exchanger 20A whose inner surface is metal porous, radiant heat is generated and the slow combustion is continued.
  • FIG. 11A As shown in FIG. 11A, the gas that has passed through the tubular members 201 to 207 of the heat exchanger 20A flows into the combustion chamber 21B, secondary combustion is started, and a gas G22 is formed. In the combustion chamber 21B, the combustion temperature is raised while the air A is being introduced. As a result, oxidative combustion takes place.
  • the combustion gas G22 generated in the combustion chamber 21B flows into the gas flow flow passages 2010 to 2070 of the heat exchanger 20B. Turbulent combustion of the combustion gas G22 occurs in various directions in the flow passages 2010 to 2070 of the gas flow. That is, when the heated gas passes through the cylindrical members 201 to 207 of the heat exchanger 20B whose inner surface is metal porous, radiant heat is generated and the slow combustion is continued.
  • FIG. 12 (a) As shown in FIG. 12 (a), the gas that has passed through the tubular members 201 to 207 of the heat exchanger 20B flows into the combustion chamber 21C, the third combustion is started, and the gas G23 is formed. There is no injection of air A here.
  • the combustion gas G23 generated in the combustion chamber 21C flows into the gas flow flow passages 2010 to 2070 of the heat exchanger 20C. Turbulent combustion of the combustion gas occurs in various directions in the flow passages 2010 to 2070 of the gas flow. That is, when the heated gas passes through the cylindrical members 201 to 207 of the heat exchanger 20C whose inner surface is metal porous, radiant heat is generated and the slow combustion is continued.
  • the gas that has passed through the tubular members 201 to 207 of the heat exchanger 2C flows into the combustion chamber 21D, the fourth combustion is started, and the gas G24 is formed.
  • the exhaust gas containing carbon monoxide or carbon dioxide flows to the combustion chamber 21B via the return pipe 23. Then, in addition to carbon monoxide or carbon dioxide in the combustion chamber 21B, oxidation combustion is carried out while introducing the air A again.
  • FIG. 14 is a perspective view of a kiln main body in which a combustion apparatus according to a third embodiment is disposed, showing the inside by breaking the upper part.
  • FIG. 15 is a view showing the inside of a kiln main body in which the combustion apparatus according to the third embodiment is disposed.
  • FIG. 16 is a view showing the arrangement of the combustion device in the kiln body shown in FIG.
  • FIG. 17 is a view showing a flow path of the baking gas formed on the inner wall of the kiln main body in which the combustion apparatus according to the third embodiment is disposed, and the flow thereof.
  • the kiln 400 generally comprises a kiln body 4, a combustion device 3 as a heating burner, and a fuel supply device 5.
  • the kiln main body 4 has a fireproof structure inside a substantially cylindrical shape, and constitutes a main body of a firing space. Specifically, a cylindrical incinerator outer body whose outer appearance is an iron plate is bent, and a furnace inner wall 40 having a refractory structure is formed inside thereof.
  • a heat insulation fireproof castable, a heat insulation refractory brick, a heat insulation fireproof board etc. are mentioned.
  • the kiln body 4 may be made of a heat-resistant metal material, specifically, heat-resistant austenitic stainless steel such as SUS308, SUS309S, SUS309Cb, SUS310, SUS310S, SUS310Cb, or SUS310Mo.
  • a porous cylinder 42 is pivotally supported by a rotating shaft 41.
  • the porous cylinder 42 includes a plurality of blades 43 in a spiral shape. The plurality of spiral-shaped blades 43 can stir the waste supplied from the hopper 50 described later via the fuel supply device 5 while being rotated by the motor M around the axis of the rotating shaft 41 in the furnace.
  • the kiln body 4 is provided with a plurality of stoker lattice layers 43 (three layers; 43A, 43B, 43C) in the circumferential direction of the furnace inner wall 40.
  • the kiln main body 4 has a substantially cylindrical shape in which a baking gas flow which proceeds from one end side to the other end side is generated while swinging the inner wall 40 surface.
  • a plurality of firing chambers are configured such that the lattice eyes (meshes) become finer from the upper side to the lower side of the kiln body 4.
  • wastes supplied from the hopper 50 to be described later via the fuel supply device 5 are temporarily deposited, and the waste is burned and pulverized while being stirred by the blades 43, and the grid eyes are reduced It penetrates and falls to another lower stoker lattice layer 43 in which the waste during firing is fired and shattered while being stirred by the blade 43, and it penetrates through the lattice eye, and lower Fall into another stoker lattice layer 43, and as a result, completely calcinated into an ashed state, and fall to the bottom of the kiln body 4.
  • the stoker lattice layer 43 has a three-layer structure, but is not limited to this and can have an arbitrary plural-layer structure.
  • the fuel supply device 5 is disposed on the upper side surface of the kiln body 4.
  • the fuel supply device 5 is disposed around the shaft, and when the shaft is rotated by the rotation of the motor by a substantially spiral screw feeder having a plurality of linear notches parallel to the center line of the shaft, When air at a predetermined pressure is supplied from the air supply unit, an air flow passing through a plurality of linear notches parallel to the center line of the shaft and an air flow moving by the substantially spiral screw feeder are formed It is good to use things, but it is not limited.
  • the screw feeder is surrounded by a cylindrical housing, and a hopper 50 is provided at the top of the cylindrical housing. Waste is supplied from the hopper 50.
  • fuel targets PCB, dioxin, asbestos, sludge, biofuel and the like can be used.
  • FIG. 16 is a view showing the arrangement of the combustion device in the kiln shown in FIG.
  • the kiln body 4 is provided with a burner for injecting a flame into the interior of the kiln body 4.
  • the burner uses the combustion device 3 of the structure described in the first embodiment. That is, the combustion apparatus 3 according to the third embodiment includes the cylindrical portion on the root side and the tapered portion on the tip end, and discharges, to the root side, the fuel input portion to which the fuel mixed with the gas and liquid is sprayed.
  • a plurality of heat exchangers 30A, 30B, and 30C provided with flames, combustion chambers formed before and after these heat exchangers, and air pipes (not shown) for introducing outside air into any combustion chamber And a return pipe (not shown) for returning carbon dioxide generated by the combustion from the downstream combustion chamber to the upstream combustion chamber.
  • the combustion apparatus 3 which is a burner, has a flame injection nozzle for injecting combustion gas to the above-described flame emission part on the root side, and slightly in the center direction of the kiln body 4 from the tangential direction to the inner wall surface 40 of the kiln body 4. Be placed at an angle.
  • the combustion apparatus 3 injects the combustion flame F along the tangential direction of the cross section of the furnace inner wall surface 40 to form an initial flame swirling flow generated by the combustion flame F swirling around the circumference of the kiln body.
  • two units are disposed at positions separated by 180 degrees so that the center line of the combustion device 3 of the present invention is positioned in the circumferential tangent direction of the kiln body 4.
  • the number of the burners 3 installed may be one, but it is preferable that a pair of the burners be arranged with rotational symmetry of 180 °, because a strong turning force can be obtained.
  • FIG. 17 is a view showing a flow path of the baking gas formed on the inner wall of the kiln main body in which the combustion apparatus according to the third embodiment is disposed, and the flow thereof.
  • Fig.17 (a) it is suitable for the inner wall surface 40 of the kiln main body 4 to form the helical flow path P through which baking gas flow flows toward a ceiling from the bottom side.
  • the burner 3 may be disposed so that the flame spouts out along the spiral flow path P tangential to the inner circumferential surface of the inner wall surface of the kiln body. As shown in FIG.
  • the fired gas flow F blown out from the burner 3 passes through the spiral flow path P, swirls in the furnace, and travels to the ceiling of the kiln body 4. Then, the baking gas flow F reaching the ceiling moves to the bottom through the holes or the vanes 43 of the porous cylinder 42 and also swirls along the flow path P from the bottom to the ceiling in the furnace become.
  • the flow path P may be formed with unevenness.
  • continuous combustion is possible even in the kiln body 4 of the kiln 400, and complete combustion of the waste is realized by continuing the swirl while easily maintaining the high temperature of 1500 ° C. or more.
  • the clean gas is discharged from the gas outlet 49 and can be used as generated energy. Complete combustion can significantly reduce dioxin, PM2.5, CO2, and NOx.
  • the combustion apparatus and combustion method used for gasification of gas-liquid fuel according to the present invention can be widely used for power generation turbines, steam turbines, and the like.
  • the gasification combustion device of the present invention is disposed as a burner in a stoker type kiln, an efficient combustion furnace can be realized by low temperature supply at high temperature, and waste oil, sludge treatment, cattle manure, chicken manure treatment, It is also possible to consistently process the molten slag processing.
  • Combustion device 10 10A 10B Heat exchanger 100 200 Case 101 to 107 Tubular body 201 to 207 Tubular body 1010 to 1070 Gas flow path 2010 to 2070 Gas flow path 20 20A 20B 20C Heat exchanger 30A 30B 30C Heat exchange 11A 11B 11C Combustion chamber 21A 21B 21C 21D Combustion chamber 12 22 Fuel input section 13 23 Return piping 14 24 Air piping 18 28 Cone cover 19 29 Flame discharge unit 400 Kiln 4 Kiln main body 40 Furnace inner wall 41 Rotary shaft 42 Porous cylinder 43 Blade 44 44A 44B 44C stoker grid 49 gas exhaust 5 fuel supply equipment 50 the flow path of the hopper G11 G12 G13 gas G21 G22 G23 G24 gas F combustion flame A air M motor P fired gas

Abstract

【課題】本発明は、小型の装置で窒素酸化物等の有害排ガスを低減し、かつ、多段階で高効率の高温燃焼ガス化を実現する燃焼装置と、燃焼方法を提供することにある。 【解決手段】本発明に係る燃焼装置は、根元側の円筒部材と先端側のテーパ部材からなり、先端側に、気液を混合した燃料が噴霧投入される燃料投入部を、根元側に吐炎部を備える燃焼装置であって、筒状体の軸が先端側から根元側に向かうように、所望の距離をおいて並列配置した上述した複数の熱交換器と、複数の熱交換器の前後に形成される複数の燃焼室と、外気を任意の燃焼室に導入する空気配管と、複数の燃焼室のうち、燃焼によって生じた二酸化炭素を少なくとも一の下流の燃焼室から上流の燃焼室に戻す戻り配管と、を備えることを特徴とする。

Description

燃焼装置及び燃焼方法
 本発明は、気液燃料の高温燃焼ガス化を実現する燃焼装置と、その燃焼方法に関する。
 従来、燃焼装置は、空気中の酸素を燃焼に利用してきたが、酸化燃焼による窒素酸化物の発生は不可避である。そこで、燃焼温度を下げて窒素酸化物の発生を抑えたり、生成された窒素酸化物を触媒等で除去したりしてきたが、低減抑制措置をとればエネルギ効率が悪くなるため、十分な効果は上がらなかった。
 窒素酸化物を低減しながら、エネルギ効率を高める発明は、種々提案されている。
 特許文献1には、中央部に燃料噴射ノズル、燃焼噴射ノズルの周囲に空気ノズルを配置し、中央から噴射する燃料と周囲から噴射する空気を混合させて燃焼を行う構成のバーナであって、燃料噴射ノズル及び空気ノズルの設置位置より下流側には、上流側及び下流側の両端を開口しており、上流側開口径よりも下流側開口径の方が小さくなるように先細りの構造とした燃焼装置を設け、燃料噴射ノズルから噴射した燃料と空気ノズルから噴射した空気を燃焼装置内で混合し、燃料空気混合ガスを燃焼装置下流側開口部から燃焼室へ噴射しながら燃焼を行う自己再循環バーナを提案している。この自己再循環バーナは、燃焼装置を先細りとしているため、燃焼装置下流側開口部から噴射する燃料空気混合ガスの流速を高めることができ、火炎の揺れを防いで火炎の安定化を図ることができる。そして火炎は燃焼装置下流側で保炎されるため、火炎のリフト化により局部高温領域を大幅に削減でき、NOx発生量はより一層低減できる。
 特許文献2には、流動層ガス化炉に装入される流動粒子よりも嵩密度が小さい浮遊触媒体をガス化室に投入しガス化室の流動層の上面に浮遊触媒体によるタール捕捉改質層を形成したガス化装置を提案し、ガス化室で生成する生成ガス中のタールが、流動層の上面に形成されたタール捕捉改質層の浮遊触媒体の外部を流動する間に浮遊触媒体に捕捉され、捕捉されたタールは浮遊触媒体の触媒の作用により効果的に改質されるとする。
特開2004-125184号公報 特開2013-103987号公報
 しかしながら、特許文献1の自己再循環バーナでは、燃焼装置先細り部の外側に他の部分より圧力の低い負圧域が発生する。そして、全ての燃焼装置に共通することであるが、燃料に対して空気量が不足した部分があると、燃焼は緩慢となり未燃成分が発生する。未燃分は、後からでも空気が供給されれば完全燃焼することができるが、その前にバーナ表面等に付着すると、未燃分が煤として固形化することになる。燃焼装置外側の負圧域は、燃焼ガス流内に含まれている未燃分を取り込み、未燃分は負圧域内で滞留することになるため、燃焼装置外側表面は煤の付着が多くなりやすい。時間の経過による累積によって煤が堆積していった場合、着火時あるいは燃焼移行時の衝撃によって煤の一部が剥離すると、煤が燃焼排ガスとともに煙突から外気中へ飛散する問題が発生する。また、特許文献2のガス化装置では、ガス化室で生成する生成ガス中のタールが、流動層の上面に形成されたタール捕捉改質層の浮遊触媒体の外部を流動する間に浮遊触媒体に捕捉され、捕捉されたタールは浮遊触媒体の触媒の作用により効果的に改質されるものの、大がかりな設備が必要で小型の装置では実現が難しいうえ、捕捉されたタールの除去等メンテナンスを頻繁に行う必要がある。
 本発明は、小型の装置で窒素酸化物等の有害排ガスを低減し、かつ、多段階で高効率の高温燃焼ガス化を実現する燃焼装置と燃焼方法を提供することにある。
 上記問題を解決するために、本発明に係る熱交換器は、根元側の円筒部材と先端側のテーパ部材からなり、先端側に、気液を混合した燃料が噴霧投入される燃料投入部を、根元側に吐炎部を備える燃焼装置であって、複数の熱交換器と、複数の熱交換器の前後に形成される複数の燃焼室と、外気を任意の燃焼室に導入する空気配管と、複数の燃焼室のうち、燃焼によって生じた二酸化炭素を少なくとも一の下流の燃焼室から上流の燃焼室に戻す戻り配管と、を備え、熱交換器は、互いに共通の軸に沿って端と端を接して積み重ねられた円筒体又は多角形体の複数の筒状体を備え、該複数の筒状体は、少なくとも内面が多孔質体又は多孔質膜を有し、該複数の筒状体の内部空間がガス流の流れ用通路となり、かつ、筒状体の軸が先端側から根元側に向かうように、所望の距離をおいて並列配置されていることを特徴とする。
 なお、積み重ねられた複数の筒状体は、それらの外壁を覆う筒状のケースを備えるとよい。また、多孔質体又は多孔質膜は、多孔質からなる窒化ケイ素、サイアロン、炭化ケイ素、窒化ホウ素等の非酸化物セラミックス及び多孔質からなるジルコニア、アルミナ、ムライトの単一材料、又は、窒化ホウ素と窒化ケイ素等の非酸化物セラミックス同士の複合材料、或いは、窒化ホウ素等の非酸化物セラミックスとジルコニア、アルミナ、ムライト等の酸化物セラミックスとの複合材料から構成されると好適である。
 戻り配管は、複数の熱交換器のうち、最下流の熱交換器のガス流の流路出口側で略底部近傍に配置されるとよい。形成されたガスのうち、比較的重量の重い一酸化炭素又は二酸化炭素を戻り配管により、再利用するためである。
 また、本発明は、上述した燃焼装置において、燃焼ガスを還元燃焼と酸化燃焼を多段階で繰り返しながら再循環させることを特徴とする燃焼方法である。
 さらに、本発明は、内部が略円筒状のキルン本体と、加熱用バーナとを備えるロータリーキルン炉であって、該加熱用バーナが上記燃焼装置であることを特徴とする。
 なお、キルン本体は略円筒形で複数の焼成室を備え、内壁面には、底面側から天井側に向かって螺旋状の流路が形成され、焼成ガス流が該内壁面の流路を旋回して進行するような構造にするとよい。また、流路は凹凸を備えるとよい。加熱用バーナは、キルン本体の内壁面の内周面に対して接線方向に対して炎が噴出するように配置されるとよく、さらにキルン本体の内壁面の内周面に対して接線方向かつ螺旋状の流路に沿って炎が噴出するように配置するとなおよい。
 本発明のガス化燃焼装置を利用すれば、完全燃焼が大幅に進むため、煤などの不完全燃焼排気分の燃焼が可能となり、燃焼効率が上昇して、燃費の抑制と排気ガスが大幅に削減できる。また、完全燃焼による高温ガス化が期待できるので、従来の液体燃料が実現できなかった利用範囲が広がる。
 また、本発明のガス化燃焼装置を加熱用バーナとしてストーカ式キルンに配置すれば、低コストで高温供給することにより効率的な燃焼炉を実現することができ、廃油・汚泥処理ならびに牛糞・鶏糞処理、溶融スラグ処理を一貫処理することも可能となる。
本発明に係る燃焼装置の内部を示す概略図である。 本発明に係る燃焼装置に内蔵された熱交換器を示す。 図3は、熱交換器が配置された状態の燃焼装置の正面図である。 本発明に係る燃焼装置の根元側の燃焼室に配置される戻り配管の取り付け位置を示す図である。 本発明に係る燃焼装置内において、燃料がガス化される様子を示す図である。 本発明に係る燃焼装置内において、燃料がガス化される様子を示す図である。 本発明に係る燃焼装置内において、燃料がガス化される様子を示す図である。 本発明に係る燃焼装置における熱効率を示すグラフである。 本発明の変形形態である実施例2に係る燃焼装置の内部を示す概略図である。 実施例2に係る燃焼装置内において、燃料がガス化される様子を示す図である。 実施例2に係る燃焼装置内において、燃料がガス化される様子を示す図である。 実施例2に係る燃焼装置内において、燃料がガス化される様子を示す図である。 実施例2に係る燃焼装置内において、燃料がガス化される様子を示す図である。 実施例3に係る燃焼装置を配置したキルンの斜視図で上部を破断して内部を示す図である。 実施例3に係る燃焼装置を配置したキルンの内部を示す図である。 図14に示したキルン内における燃焼装置の配置を示す図である。 実施例3に係る燃焼装置を配置したキルン本体の内壁に形成された焼成ガスの流路とその流れを示す図である。
 以下、本発明の実施例を図面に基づき詳細に説明する。各図において、同一部分には同一番号を付し、重複する説明は省略する。また、図面は、本発明を理解するために誇張して表現している場合もあり、必ずしも縮尺どおり精緻に表したものではないことに留意されたい。なお、本発明は下記に示される実施例に限られるものではない。
 実施例1を図面を参照して詳細に説明する。図1は、本発明に係る燃焼装置の内部を示す概略図である。図2(a)は、本発明に係る燃焼装置に内蔵された熱交換器の正面図である。図2(b)は、図2に示すA-A線断面図である。図3は、熱交換器が配置された状態の燃焼装置の正面図である。図4は、本発明に係る燃焼装置の根元側の燃焼室に配置される戻り配管の取り付け位置を示す図である。
 図1を参照する。本発明に係る燃焼装置1は、根元側の円筒部と先端側のテーパ部からなり、先端側に、気液を混合した燃料Nが噴霧投入される燃料投入部12を、根元側に吐炎部19を備え熱交換器10A、10Bと、複数の熱交換器の前後に形成される燃焼室11A、11B、11Cと、外気Aを任意の燃焼室に導入する空気配管14と、複数の燃焼室11A、11B、11Cのうち、燃焼によって生じた二酸化炭素を下流の燃焼室11Cから上流の燃焼室11Bに戻す戻り配管13と、を備える。
 図2を参照する。図2(a)は、本発明に係る燃焼装置に内蔵された熱交換器の正面図である。図2(b)は、図2に示すA-A線断面図である。図2(b)に示すとおり、本発明に係る熱交換器10は、互いに共通の軸に沿って端と端を接して積み重ねられた円筒体又は多角形筒体の複数の筒状体101~107を備え、複数の筒状体101~107は、少なくとも内面が多孔質体又は多孔質膜を有し、複数の筒状体の内部空間がガス流の流れ用通路1010~1070を備える。なお、積み重ねられた複数の筒状体101~107は、それらの外壁を覆う筒状のケース100を備えるとよい。また、実施例1において7個の同一径の7本の円筒体で構成しているが、数量は限定されない。それぞれ異なる径の円筒体を複数本で構成してもよいし、多角形筒体の組み合わせで構成してもよい。そして、これらの組み合わせに会わせたケースを外装することができる。
 熱交換器10A、10Bは多管式であり、後述するとおり、多数並置された筒状体101~107の内部または外部にガスを通過させ、管の逆側、外部または内部に、空気等の受熱側ガスを流し、筒状体の内外部を通して、熱交換を行う。
 熱交換器10A、10Bの筒状体101~107は、高温耐久のセラミック材によって、より継続的なガス化燃料の製造が可能となる。本発明においては、連続着火が重要であり、利用材料は、多孔質からなる窒化ケイ素、サイアロン、炭化ケイ素、窒化ホウ素等の非酸化物セラミックス及び多孔質からなるジルコニア、アルミナ、ムライトの単一材料、又は、窒化ホウ素と窒化ケイ素等の非酸化物セラミックス同士の複合材料、或いは、窒化ホウ素等の非酸化物セラミックスとジルコニア、アルミナ、ムライト等の酸化物セラミックスとの複合材料から構成されると好適である。これらのセラミックスは、特に高温下における耐熱性、耐食性、耐熱衝撃性に優れている。
 筒状体101~107について、ガス流の流れ用通路1010~1070を通過するガスとの接触面積を大きくするため、筒状体の内面の多孔質の密度に細かくしたり、又は粗く構成したりして適正に調節するとよい。図2に示す実施例1については、熱交換器10では、筒状体101~107をパイプ状に形成し、ガス流の流れ用通路1010~1070を形成している。このように、内面が金属多孔質である筒状体のガス流路を、加熱されたガスが通過することにより、輻射熱が発生し、気液燃料に含まれるCH4をCOとH2に改質し、さらにCO2を捕捉してガスの改質を行うことができる。なお、気体が金属多孔質に接触する面積が大きいほど、熱交換率を大幅に増加させる。
 図1を再度参照する。上述した熱交換器10A、10Bは、燃焼装置1内に、筒状体101~107の軸が先端側から根元側に向かうように、所望の距離をおいて並列配置され、その前後に燃焼室11A、12A、13Aが形成されている。
 図3を参照する。図3は、熱交換器が配置された状態の燃焼装置の正面図である。図3に示すとおり、熱交換器10は、燃焼装置内の略中央にグラスウール又はロックウール等断熱材Rを被覆して、前後に配置する燃焼室の隔壁として形成し、燃焼室11A、11Bにおいて発生するガスG1、G2が、ガス流の流れ用通路1010~1070のみを通過するように配置される。なお、熱交換器10において、ケース100に収納された複数の並置された筒状体101~107の内部または外部にガスを通過させ、管の逆側、外部または内部に、空気等の受熱側ガスを流し、筒状体の内外部を通して、熱交換を行うが、外部にグラスウール又はロックウール等断熱材Rを詰めて、複数の筒状体が隣接してできる隙間を閉鎖してもよい。
 図4を参照する。図4は、本発明に係る燃焼装置の根元側の燃焼室に配置される戻り配管の取り付け位置を示す図である。図4に示すとおり、燃焼装置1は、戻り配管13を3本配置している。戻り配管13A、13B、13Cは、それぞれ燃焼室11Cと燃焼室11Bをつないでいる。なお、燃焼室11C内の戻り配管13A、13B、13Cの開口部は、熱交換器10Bのガス流の流路出口側で略底部近傍に配置されるとよい。熱交換器10Bを介して、流出されるガスG3のうち、一酸化炭素又は二酸化炭素を含む排ガスを燃焼室11Bに戻すためである。
 図5~7は、本発明に係る燃焼装置内において、燃料がガス化される様子を示す図である。なお、本発明に係る燃焼装置において使用する気液燃料は、本願発明者の発明(特許第5719093号)によるもの、すなわち、石油の分子を分断する石油の微細化工程と、水の分子を分断する水の微細化工程と、これら工程において分断された分子同士を結合させる異分子結合工程と、を備えた炭素系燃料の製造方法であって、石油の微細化工程では、第1のキャビテーション発生リングを、石油が流通するパイプの一部に設置し、該第1のキャビテーション発生リング内に、石油を高圧で通過させることで、該第1のキャビテーション発生リング内にキャビテーションを生じさせて、石油の分子を分断し、水の微細化工程では、第2のキャビテーション発生リングを、水が流通するパイプの一部に設置し、該第2のキャビテーション発生リング内に、水を高圧で通過させることで、該第2のキャビテーション発生リング内にキャビテーションを生じさせて、水の分子を分断し、異分子結合工程では、水の微細化工程において分断された水の分子と石油の微細化工程において分断された石油の分子との混合物が流通するパイプの一部に、第3のキャビテーション発生リングを設置し、該第3のキャビテーション発生リング内に、混合物を高圧で通過させることで、該第3のキャビテーション発生リング内にキャビテーションを生じさせて、分断された石油の分子と分断された水の分子とを結合して製造される炭素系燃料をいう。
 また、気液燃料は、本願発明者の発明(WO2016/059717)によるもの、すなわち、重油にキャビテーションを生じさてナノバブルを含んだ第1の流体とし、水にキャビテーションを生じさせてナノバブルを含んだ第2の流体とし、これらの第1、第2の流体を混合させた混合流体にキャビテーションを生じさせることによって生成された、重油分解性組成物を含んだ炭化水素系燃料を使用してもよい。
 このように、上述の気液燃料の分子構造に応じた可燃幅の気液燃料が注入できれば、燃焼室11A内で該燃料が引火し、後述する連続ガス化燃焼が可能となる。
 図5(b)を参照する。図5(b)に示すとおり、燃料投入口12から噴霧された気液燃料を着火させることにより、燃焼室11A内において、第一次燃焼が開始され、ガスG11が形成される。なお、燃焼室11Aにおいて、燃料を投入しながら燃焼温度の上昇を800~1000℃に抑制する。結果として、還元燃焼が起こる。
 図5(c)を参照する。燃焼室11Aにおいて生成された燃焼ガスG1は、熱交換器10Aのガス流の流れ用通路1010~1070に流入する。ガス流の流れ用通路1010~1070内で燃焼ガスG11の乱流燃焼が多面的に起こる。すなわち、熱交換器10Aの、内面が金属多孔質である筒状体101~1070内を加熱されたガスが通過することにより、輻射熱が発生しながら緩慢燃焼を続ける。
 図6(a)を参照する。図6(a)に示すとおり、熱交換器10Aの筒状体101~107内を通過したガスが燃焼室11Bに流入し、第二次燃焼が開始され、ガスG12が形成される。なお、燃焼室11Bにおいて、空気を投入しながら燃焼温度を上昇する。結果として、酸化燃焼が起こる。
 図6(b)を参照する。燃焼室11Bにおいて生成された燃焼ガスG2は、熱交換器10Bのガス流の流れ用通路1010~1070に流入する。ガス流の流れ用通路1010~1070内で燃焼ガスG12の乱流燃焼が多面的に起こる。すなわち、熱交換器10Bの、内面が金属多孔質である筒状体101~107内を加熱されたガスが通過することにより、輻射熱が発生しながら緩慢燃焼を続ける。
 図7(a)を参照する。図7(a)に示すとおり、熱交換器10Bの筒状体101~1070内を通過したガスが燃焼室11Cに流入し、第三次燃焼が開始され、ガスG13が形成される。
 図7(b)を参照する。図7(b)に示すとおり、燃焼室11C内で形成されたガスG13のうち、一酸化炭素又は二酸化炭素は戻り配管13を介して、燃焼室11Bに再投入する。そして、燃焼室11B内において、一酸化炭素又は二酸化炭素に加えて、再度、空気を投入しながら酸化燃焼させる。
 このように、気液燃料の継続供給と、熱交換器内のガスの緩慢燃焼を介することにより、継続的な燃焼が可能となり容易に1500℃以上の高温燃焼ガスを生成することができる。
 現在の燃焼力学は、一つの燃焼ルームで熱効率を求めているが、より小さな燃焼ルームが複数あり、内面が金属多孔質である筒状体のガス流路を、加熱されたガスが通過することにより、輻射熱が発生し保温による燃焼効率を改善し、さらには気液燃料に含まれるCH4をCOとH2に改質し、CO2を捕捉してガスの改質を行うことができる。
 なお、気液燃料のガス化は通常高圧力で製造するが、圧縮室を設けて一定の燃焼時間を経過することにより、燃焼室の温度上昇によって自重の圧力がさらなるガス化を進め、ガスの改質を向上できる。
 実施例1においては、燃焼装置1の根元の吐炎部19において、炎のブルーフレームを確認している。
 図8を参照する。図8は、実施例1に係る燃焼装置と、本発明に係る熱交換器を備えない燃焼装置との熱効率の違いを示すグラフである。以下、比較試験の測定結果を説明する。測定は下記条件の下、株式会社エコプラナ 三木工場(兵庫県三木市別所町興治724-361)において実施された。ここで、試験には、実施例1に係る構造の燃焼装置Aと、本発明に係る熱交換器を備えない燃焼装置Bを用意した。なお、燃焼装置Bは、市販されているドラム缶に下記オイルバーナを取り付けたものである。温度測定は、燃焼装置A及びBともに、炎の噴出口で測定した。また、気液燃料は、本願発明者の発明(WO2016/059717)によるもの、すなわち、重油にキャビテーションを生じさてナノバブルを含んだ第1の流体とし、水にキャビテーションを生じさせてナノバブルを含んだ第2の流体とし、これらの第1、第2の流体を混合させた混合流体にキャビテーションを生じさせることによって生成された、重油分解性組成物を含んだ炭化水素系燃料を使用している。

測定年月日:平成29年11月13日月曜日 午前11時~12時
測定場所:株式会社エコプラナ 三木工場(兵庫県三木市別所町興治724-361)
外気温:摂氏18度
利用機器:オイルバーナ(オリンピア工業株式会社製)
測定方法:ガンタイプ周波数温度計測定方式
Figure JPOXMLDOC01-appb-T000001
 以上の結果、着火後18分程度までは、燃焼装置Aよりも燃焼装置Bの方が燃焼温度は上がるものの、その後は逆転し、燃焼装置Aの炎噴出口の温度は着火後30分を過ぎる頃から1000℃を超え、25分後には1280℃に到達した。他方、燃焼装置Bの炎噴出口の温度は着火後50分を経過しても、1000℃を超えることはなかった。
 実施例2を図面を参照して詳細に説明する。図9は、本発明に係る実施例1とは別の燃焼装置の内部を示す概略図である。
 図9を参照する。本発明に係る燃焼装置2は、根元側の円筒部と先端側のテーパ部からなり、先端側に、気液を混合した燃料Nが噴霧投入される燃料投入部22を、根元側に吐炎部29を備え熱交換器20A、20B、20Cと、複数の熱交換器の前後に形成される燃焼室21A、21B、21C、21Dと、外気Aを任意の燃焼室に導入する空気配管24と、複数の燃焼室21A、21B、21C、21Dのうち、燃焼によって生じた二酸化炭素を下流の燃焼室21Dから上流の燃焼室21Bに戻す戻り配管23と、を備える。
 なお、熱交換器20A、20B、20Cの構造、熱交換器の燃焼装置2内の配置、戻り配管23の配置は、実施例1と同様であるので、説明は省略する。
 図10~13は、実施例2に係る燃焼装置2内において、燃料がガス化される様子を示す図である。図10~13を参照しながら、実施例2に係る燃焼装置2内において燃料の燃焼方法を説明する。
 まず、図10(a)に示すとおり、燃料投入口22から、気液燃料を噴霧する。なお、気液燃料は、可燃空気幅の設定を所定の基準に基づいて、液体流量と空気流量の予混合したものを使用する。気液燃料についても、実施例1と同様であるので、説明は省略する。
 図10(b)を参照する。図10(b)に示すとおり、燃料投入口22から噴霧された気液燃料を着火させることにより、燃焼室21A内において、第一次燃焼が開始され、ガスG21が形成される。なお、燃焼室21Aにおいて、燃料を投入しながら燃焼温度の上昇を800~1000℃に抑制する。結果として、還元燃焼が起こる。
 図10(c)を参照する。燃焼室21Aにおいて生成された燃焼ガスG21は、熱交換器20Aのガス流の流れ用通路2010~2070に流入する。ガス流の流れ用通路2010~2070内で燃焼ガスG21の乱流燃焼が多面的に起こる。すなわち、熱交換器20Aの、内面が金属多孔質である筒状体201~207内を加熱されたガスが通過することにより、輻射熱が発生しながら緩慢燃焼を続ける。
 図11(a)を参照する。図11(a)に示すとおり、熱交換器20Aの筒状体201~207内を通過したガスが燃焼室21Bに流入し、第二次燃焼が開始され、ガスG22が形成される。なお、燃焼室21Bにおいて、空気Aを投入しながら燃焼温度を上昇する。結果として、酸化燃焼が起こる。
 図11(b)を参照する。燃焼室21Bにおいて生成された燃焼ガスG22は、熱交換器20Bのガス流の流れ用通路2010~2070に流入する。ガス流の流れ用通路2010~2070内で燃焼ガスG22の乱流燃焼が多面的に起こる。すなわち、熱交換器20Bの、内面が金属多孔質である筒状体201~207内を加熱されたガスが通過することにより、輻射熱が発生しながら緩慢燃焼を続ける。
 図12(a)を参照する。図12(a)に示すとおり、熱交換器20Bの筒状体201~207内を通過したガスが燃焼室21Cに流入し、第三次燃焼が開始され、ガスG23が形成される。ここでは空気Aの投入はない。
 図12(b)を参照する。燃焼室21Cにおいて生成された燃焼ガスG23は、熱交換器20Cのガス流の流れ用通路2010~2070に流入する。ガス流の流れ用通路2010~2070内で燃焼ガスの乱流燃焼が多面的に起こる。すなわち、熱交換器20Cの、内面が金属多孔質である筒状体201~207内を加熱されたガスが通過することにより、輻射熱が発生しながら緩慢燃焼を続ける。
 図13(a)を参照する。図13(a)に示すとおり、熱交換器2Cの筒状体201~207内を通過したガスが燃焼室21Dに流入し、第四次燃焼が開始され、ガスG24が形成される。
 図13(b)を参照する。図13(b)に示すとおり、燃焼室21D内で形成されたガスG24のうち、一酸化炭素又は二酸化炭素を含む排ガスは戻り配管23を介して、燃焼室21Bに流れる。そして、燃焼室21B内において、一酸化炭素又は二酸化炭素に加えて、再度、空気Aを投入しながら酸化燃焼させる。
 このように、気液燃料の継続供給と、熱交換器内のガスの緩慢燃焼を介することにより、継続的な燃焼が可能となり容易に1500℃以上の高温燃焼ガスを生成することができる。
 実施例3を図面を参照して詳細に説明する。図14は、実施例3に係る燃焼装置を配置したキルン本体の斜視図で上部を破断して内部を示す図である。図15は、実施例3に係る燃焼装置を配置したキルン本体の内部を示す図である。図16は、図14に示したキルン本体における燃焼装置の配置を示す図である。図17は、実施例3に係る燃焼装置を配置したキルン本体の内壁に形成された焼成ガスの流路とその流れを示す図である。
 図14及び15を参照する。実施例3において、概して、キルン400は、キルン本体4と、加熱用バーナとしての燃焼装置3と、燃料供給装置5とからなる。
 キルン本体4は、略円筒状の内部に耐火構造を有し、焼成スペースの本体部を構成している。具体的には、外観が鉄板を曲げた筒状の焼却炉外体と、その内側に耐火構造の炉内壁40が形成されている。耐火構造の炉内壁40としては、断熱耐火キャスタブル、断熱耐火煉瓦、断熱耐火ボードなどが挙げられる。なお、キルン本体4を耐熱性の金属材料、具体的には、SUS308、SUS309S、SUS309Cb、SUS310、SUS310S、SUS310Cb、SUS310Mo等の耐熱性オーステナイト系ステンレス鋼を材料として構成してもよい。
 キルン本体4の中心には、多孔筒42が回転軸41に軸支されている。また、多孔筒42は、螺旋形状の複数の羽根43を備える。螺旋形状の複数の羽根43は炉内で回転軸41の軸周りにモータMにより回転しながら、後述するホッパ50から燃料供給装置5を介して供給される廃棄物をかき混ぜることができる。
 さらに、キルン本体4は、炉内壁40の周方向に複数のストーカ格子層43(三層;43A、43B、43C)を備えている。このように、複数のストーカ格子層43を形成することにより、キルン本体4は、該内壁40面を旋回しながら一端側から他端側に向って進行する焼成ガス流が発生する略円筒形で、複数の焼成室を備えることになる。複数のストーカ格子層43は、キルン本体4の上方から下方に向けて格子の目(メッシュ)が細かくなるように構成されている。ストーカ格子層43において、後述するホッパ50から燃料供給装置5を介して供給される廃棄物を一時的に戴置し、廃棄物が焼成して羽根43でかき混ぜられながら細かくなり、格子の目を貫通して、下方の別のストーカ格子層43に落下し、該ストーカ格子層43において、焼成途上の廃棄物は焼成して羽根43でかき混ぜられながら細かくなり、格子の目を貫通して、下方の別のストーカ格子層43に落下し、結果として完全に焼成して灰状態になり、キルン本体4の底部に落下する。なお、実施例3において、ストーカ格子層43は3層構造としているが、限定されるものではなく、任意の複数層構造とすることができる。
 キルン本体4は、上部側面に燃料供給装置5が配置される。燃料供給装置5は、シャフトの周囲に配設し、そのシャフトの中心線に並行する直線状の複数条の切り欠きを形成した略螺旋状のスクリューフィーダによって、電動機の回転によりシャフトが回転すると、空気供給部から所定圧の空気を供給したとき、シャフトの中心線に並行する直線状の複数条の切り欠きを通過する空気流と、略螺旋状のスクリューフィーダによって移動する空気流が形成されるものを使用するとよいが限定されるものではない。また、スクリューフィーダは円筒状のハウジングによって囲まれ、円筒状のハウジングの上部にはホッパ50を備える。このホッパ50から廃棄物が供給される。燃料対象物としては、PCB、ダイオキシン、アスベスト、汚泥物、バイオ燃料等を使用することができる。
 図16を参照する。図16は、図14に示したキルン内における燃焼装置の配置を示す図である。図16に示すとおり、キルン本体4には、キルン本体4の内部に火炎を噴射するバーナが配設されている。
 なお、バーナは、実施例1において説明した構造の燃焼装置3を使用する。すなわち、実施例3に係る燃焼装置3は、根元側の円筒部と先端側のテーパ部からなり、先端側に、気液を混合した燃料が噴霧投入される燃料投入部を、根元側に吐炎部を備え熱交換器30A、30B、30Cと、これらの熱交換器の前後に形成される燃焼室と、外気を任意の燃焼室に導入する空気配管(図に示していない)と、複数の燃焼室のうち、燃焼によって生じた二酸化炭素を下流の燃焼室から上流の燃焼室に戻す戻り配管(図示していない)と、を備える。
 バーナである燃焼装置3は、前述の根元側の吐炎部に燃焼ガスを噴射する火炎噴射ノズルを有し、キルン本体4の内壁面40に対して接線方向からキルン本体4の中心方向にやや傾斜して配置される。燃焼装置3が、炉内壁面40の横断面の接線方向に沿って燃焼炎Fを噴射することで、燃焼炎Fがキルン本体の周周りを旋回して発生する初期火炎旋回流が形成される。また、図16で示すとおり、キルン本体4の円周接線方向に本発明の燃焼装置3の中心線が位置するように2台、180度離れた位置に配設している。なお、バーナ3の設置数は1基でもよいが、180°の回転対称で一対配置されると、強い旋回力を得ることができ好ましい。
 図17を参照する。図17は、実施例3に係る燃焼装置を配置したキルン本体の内壁に形成された焼成ガスの流路とその流れを示す図である。図17(a)に示すように、キルン本体4の内壁面40は底側から天井に向かって焼成ガス流が流れる螺旋状の流路Pが形成されると好適である。また、バーナ3は、キルン本体の内壁面の内周面に対して接線方向かつ螺旋状の流路Pに沿って炎が噴出するように配置するとなおよい。図17(b)に示すとおり、このような構造により、バーナ3から吹き出た焼成ガス流Fは螺旋状の流路Pを通って、炉内を旋回し、キルン本体4の天井部に向かう。そして、天井部まで達した焼成ガス流Fは、多孔筒42の孔又は羽根43間を介して底部へ移動し、また流路Pに沿って炉内を底部から天井部に向かって旋回することになる。なお、流路Pは凹凸が形成されてもよい。
 このように、キルン400のキルン本体4内でも継続的な燃焼が可能となり容易に1500℃以上の高温を維持しながら旋回し続けることにより、廃棄物の完全燃焼を実現する。廃棄物の完全燃焼の結果、ガス排出口49からクリーンガス排出され、発電エネルギとして用いることが可能になる。完全燃焼により、ダイオキシン、PM2.5、CO2、NOXの大幅削減を図ることができる。
 以上、本発明に係る気液燃料のガス化に用いる燃焼装置と燃焼方法における好ましい実施形態を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。
 本発明に係る気液燃料のガス化に用いる燃焼装置及び燃焼方法は、発電タービンや蒸気タービン等に広く利用することができる。また、ストーカ式キルンに本発明のガス化燃焼装置をバーナとして配置すれば、低コストで高温供給することにより効率的な燃焼炉を実現することができ、廃油・汚泥処理ならびに牛糞・鶏糞処理、溶融スラグ処理を一貫処理することも可能となる。
            1 2 3 燃焼装置
       10 10A 10B 熱交換器
          100 200 ケース
          101~107 筒状体
          201~207 筒状体
        1010~1070 ガス流路
        2010~2070 ガス流路
   20 20A 20B 20C 熱交換器
      30A 30B 30C 熱交換器
      11A 11B 11C 燃焼室
  21A 21B 21C 21D 燃焼室
            12 22 燃料投入部
            13 23 戻り配管
            14 24 空気配管
            18 28 コーンカバー
            19 29 吐炎部
              400 キルン
                4 キルン本体
               40 炉内壁
               41 回転軸
               42 多孔筒
               43 羽根
   44 44A 44B 44C ストーカ格子
               49 ガス排出口
                5 燃料供給装置
               50 ホッパ
      G11 G12 G13 ガス
  G21 G22 G23 G24 ガス
                F 燃焼炎
                A 空気
                M モータ
                P 焼成ガスの流路

Claims (10)

  1.  根元側の円筒部材と先端側のテーパ部材からなり、先端側に、気液を混合した燃料が噴霧投入される燃料投入部を、根元側に吐炎部を備える燃焼装置であって、
     複数の熱交換器と、
     前記複数の熱交換器の前後に形成される複数の燃焼室と、
     外気を任意の前記燃焼室に導入する空気配管と、
     前記複数の燃焼室のうち、燃焼によって生じた二酸化炭素を少なくとも一の下流の燃焼室から上流の燃焼室に戻す戻り配管と、を備え、
     前記熱交換器は、互いに共通の軸に沿って端と端を接して積み重ねられた円筒体又は多角形体の複数の筒状体を備え、該複数の筒状体は、少なくとも内面が多孔質体又は多孔質膜を有し、該複数の筒状体の内部空間がガス流の流れ用通路となり、かつ、前記筒状体の前記軸が前記先端側から前記根元側に向かうように、所望の距離をおいて並列配置されていることを特徴とする燃焼装置。
  2.  前記熱交換器は、積み重ねられた前記複数の筒状体の外壁を覆う筒状のケースを備えることを特徴とする請求項1に記載の燃焼装置。
  3.  前記多孔質体又は前記多孔質膜は、多孔質からなる窒化ケイ素、サイアロン、炭化ケイ素、窒化ホウ素等の非酸化物セラミックス及び多孔質からなるジルコニア、アルミナ、ムライトの単一材料、又は、窒化ホウ素と窒化ケイ素等の非酸化物セラミックス同士の複合材料、或いは、窒化ホウ素等の非酸化物セラミックスとジルコニア、アルミナ、ムライト等の酸化物セラミックスとの複合材料から構成されていることを特徴とする請求項1又は2に記載の燃焼装置。
  4.  前記戻り配管は、前記複数の熱交換器のうち、最下流の前記熱交換器の前記ガス流の流路出口側で略底部近傍に配置されることを特徴とする請求項1ないし3のいずれかに記載の燃焼装置。
  5.  請求項1ないし4のいずれかに記載の燃焼装置において、燃焼ガスを還元燃焼と酸化燃焼を多段階で繰り返しながら再循環させることを特徴とする燃焼方法。
  6.  内部が略円筒状のキルン本体と、加熱用バーナとを備えるロータリーキルン炉であって、前記加熱用バーナが請求項1ないし4のいずれかに記載の燃焼装置であることを特徴とするキルン。
  7.  前記キルン本体は略円筒形で複数の焼成室を備え、該内壁面は底面側から天井側に向かって焼成ガス流が流れる螺旋状の流路が形成されていることを特徴とする請求項6に記載のキルン。
  8.  前記流路は凹凸を備えることを特徴とする請求項7に記載のキルン。
  9.  前記加熱用バーナは、前記キルン本体の前記内壁面の内周面に対して接線方向に対して炎が噴出するように配置されたことを特徴とする請求項7又は8に記載のキルン。
  10.  前記加熱用バーナは、前記キルン本体の前記内壁面の内周面に対して接線方向かつ前記螺旋状の流路に沿って炎が噴出するように配置されたことを特徴とする請求項7又は8に記載のキルン。
PCT/JP2018/044277 2017-12-01 2018-11-30 燃焼装置及び燃焼方法 WO2019107564A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017231487A JP2021028544A (ja) 2017-12-01 2017-12-01 気液燃料の燃焼装置及び燃焼方法
JP2017-231487 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019107564A1 true WO2019107564A1 (ja) 2019-06-06

Family

ID=66664629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044277 WO2019107564A1 (ja) 2017-12-01 2018-11-30 燃焼装置及び燃焼方法

Country Status (2)

Country Link
JP (1) JP2021028544A (ja)
WO (1) WO2019107564A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173613U (ja) * 1987-05-01 1988-11-10
JPH05240409A (ja) * 1991-12-05 1993-09-17 Asea Brown Boveri Ag プロセス熱を発生する方法
JP2012502254A (ja) * 2008-09-10 2012-01-26 フイブ・スタン レイディアントチューブバーナ用熱回収装置
JP2012193946A (ja) * 2011-02-28 2012-10-11 Jfe Steel Corp 空気予熱装置および排気再循環装置
WO2015015563A1 (ja) * 2013-07-30 2015-02-05 株式会社正英製作所 加熱炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173613U (ja) * 1987-05-01 1988-11-10
JPH05240409A (ja) * 1991-12-05 1993-09-17 Asea Brown Boveri Ag プロセス熱を発生する方法
JP2012502254A (ja) * 2008-09-10 2012-01-26 フイブ・スタン レイディアントチューブバーナ用熱回収装置
JP2012193946A (ja) * 2011-02-28 2012-10-11 Jfe Steel Corp 空気予熱装置および排気再循環装置
WO2015015563A1 (ja) * 2013-07-30 2015-02-05 株式会社正英製作所 加熱炉

Also Published As

Publication number Publication date
JP2021028544A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
CN102305415B (zh) 一种富氧环境下的等离子无油点火系统
CN101297157A (zh) 低氮氧化物燃烧工艺和装置
US20060180459A1 (en) Gasifier
CN107474860A (zh) 一种多孔介质外热式油页岩干馏炉
KR200445277Y1 (ko) 열회수율 및 내구성이 향상된 연소장치
CN202501472U (zh) 一种扁平火焰低NOx燃气燃烧器
RU136875U1 (ru) Горелочное устройство инфракрасного излучения
CN206266508U (zh) 辐射管煤气发生炉
WO2019107564A1 (ja) 燃焼装置及び燃焼方法
CN101963352B (zh) 双旋流煤粉燃烧器
JP3142680U (ja) 横置き燃焼炉
RU2309332C1 (ru) Многофункциональная горелка
RU129599U1 (ru) Горелочное устройство инфракрасного излучения
CN102563635A (zh) 煤粉火焰预热燃烧装置
CN102012023A (zh) 用于工业窑炉的燃烧器
CN104974796B (zh) 一种二段式气流床气化炉
CN201875706U (zh) 粉煤喷烧机构
CN107543146B (zh) 燃烧装置以及锅炉
RU2378573C1 (ru) Рекуперативная горелка для газообразного топлива
CN102012022B (zh) 粉煤喷烧机构
RU39685U1 (ru) Горелка для промышленного применения
CN109737395A (zh) 一种醇基燃料蓄热式燃烧器
KR101895379B1 (ko) 연소가스의 오염물질을 저감시키는 고압 증기 발생 장치
KR101187384B1 (ko) 와류를 발생시켜 완전연소시키는 버너
CN220061735U (zh) 一种包含一个以上烟气涡流燃烧室的烟气后燃烧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP