WO2019107303A1 - Purification device and purification electrode - Google Patents

Purification device and purification electrode Download PDF

Info

Publication number
WO2019107303A1
WO2019107303A1 PCT/JP2018/043342 JP2018043342W WO2019107303A1 WO 2019107303 A1 WO2019107303 A1 WO 2019107303A1 JP 2018043342 W JP2018043342 W JP 2018043342W WO 2019107303 A1 WO2019107303 A1 WO 2019107303A1
Authority
WO
WIPO (PCT)
Prior art keywords
purification
conductor
purification structure
oxygen reduction
water
Prior art date
Application number
PCT/JP2018/043342
Other languages
French (fr)
Japanese (ja)
Inventor
雄也 鈴木
直毅 吉川
周次 中西
恒太 木村
三島 俊一
Original Assignee
パナソニック株式会社
国立大学法人大阪大学
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 国立大学法人大阪大学, メタウォーター株式会社 filed Critical パナソニック株式会社
Priority to JP2019557213A priority Critical patent/JP7010303B2/en
Publication of WO2019107303A1 publication Critical patent/WO2019107303A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a purification device and a purification electrode.
  • water treatment methods such as an activated sludge method utilizing aerobic respiration of microorganisms and an anaerobic treatment method utilizing anaerobic respiration of microorganisms are provided.
  • the activated sludge method In the activated sludge method, mud (activated sludge) containing microorganisms and wastewater are mixed in a biological reaction tank, and air necessary for the microorganisms to oxidize and decompose organic matter in the wastewater is sent to the biological reaction tank and agitated. And the wastewater is being purified.
  • the activated sludge method requires a great deal of power for aeration of the biological reaction tank.
  • a large amount of industrial waste material (the death of the microorganism) is generated.
  • a microbial fuel cell described in Patent Document 1 As a wastewater treatment apparatus using such an anaerobic treatment method, a microbial fuel cell described in Patent Document 1 is disclosed. This microbial fuel cell is provided with a negative electrode which is immersed in an organic substrate to carry an anaerobic microorganism, and a closed type hollow cassette having an outer shell formed at least in part by an ion permeable diaphragm and an inlet / outlet. There is.
  • the microbial fuel cell comprises a positive electrode which is enclosed with the electrolyte in a hollow cassette or is attached to the inside of the diaphragm of the cassette and inserted into the organic substrate. Then, it is also disclosed that oxygen is supplied into the cassette via the inlet / outlet and electricity is taken out via a circuit that electrically connects the negative electrode and the positive electrode.
  • a microbial fuel cell can shorten the number of days required for wastewater treatment as compared with other anaerobic treatment methods, and is a technology capable of efficiently removing organic matter.
  • Patent No. 5164511 gazette
  • a wastewater treatment apparatus using a microbial fuel cell such as that disclosed in Patent Document 1 has a complicated electrode structure, which increases the manufacturing cost and the maintenance cost, so a simple treatment apparatus is required.
  • the present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a purification device which has a simple structure and can efficiently purify waste water, and a purification electrode using the purification device.
  • the purification device concerning the first mode of the present invention has a conductor, and is purified by the purification structure which makes an oxygen reduction reaction occur, and the purification structure concerned and the purification structure. And a treatment tank for holding the water to be treated inside. A part of the purification structure is in contact with the gas phase, and the other part of the purification structure is in contact with the water to be treated. And a purification
  • the purification electrode according to the second aspect of the present invention is a purification electrode used in the above-described purification device, and comprises only a conductor, an oxygen reduction catalyst supported on the conductor, and a binder.
  • a purification electrode according to a third aspect of the present invention comprises a purification structure having a conductor and causing an oxygen reduction reaction, a part of the purification structure being in contact with the gas phase, and the purification structure The other part is in contact with the water to be treated, and the purification structure is a purification electrode used in a purification device installed so that the length in the vertical direction is longer than the length in the width direction perpendicular to the vertical direction .
  • the purification electrode comprises only a conductor, an oxygen reduction catalyst supported on the conductor, and a binder.
  • FIG. 1 is a perspective view showing an example of the purification device according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 4 is a cross-sectional view for explaining the mechanism for purifying the water to be treated by the purification structure.
  • FIG. 5 is a cross-sectional view for explaining a mechanism for purifying the water to be treated by the purification structure.
  • FIG. 6 is a graph showing an average value of total organic carbon concentration in organic wastewater when using the purification structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2. is there.
  • FIG. 7 shows the results of measurement of the ratio of Geobacter to total fungi (Ratio of Geobacter) in the microorganisms attached to the purified structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2.
  • FIG. 7 shows the results of measurement of the ratio of Geobacter to total fungi (
  • the purification device 100 As shown in FIGS. 1 to 3, the purification device 100 according to the present embodiment includes the purification structure 10 that causes an oxygen reduction reaction, and the treated water 30 to be purified by the purification structure 10 and the purification structure 10. And a processing tank 20 for holding the inside. And the purification structure 10 is installed in the inside of the processing tank 20 so that the upper part 10a may contact with the gaseous phase 40, and the lower part 10b may contact with the to-be-processed water 30.
  • the purification structure 10 includes the conductor 1. As shown in FIG. 1 to FIG. 3, the conductor 1 is made of a conductive material, and is formed of a flat plate member having a substantially rectangular parallelepiped shape.
  • Purification structure 10 has a site where an oxygen reduction reaction that reduces oxygen in gas phase 40 occurs, and a site where an organic matter oxidation reaction that oxidizes organic matter in treated water 30 to generate hydrogen ions and electrons occurs. doing. Specifically, in the purification structure 10, the site at which the oxygen reduction reaction occurs is the upper portion 10a in contact with the gas phase 40, and the site at which the organic oxidation reaction occurs is the lower section in contact with the water 30 to be treated. 10b.
  • the conductor 1 constituting the purification structure 10 preferably has an internal space for hydrogen ions (H + ) to move between the upper portion 10a in which the oxygen reduction reaction occurs and the lower portion 10b in which the organic substance oxidation reaction occurs. .
  • the presence of the continuous space inside the conductor 1 enables the hydrogen ions generated in the lower portion 10b to move to the upper portion 10a through the inner space, as described later.
  • the configuration of the conductor 1 is not particularly limited as long as it has an internal space for hydrogen ions to move and is electrically connected from the lower portion 10b to the upper portion 10a.
  • the conductor 1 may extend continuously from the lower portion 10 b toward the upper portion 10 a.
  • the conductor 1 may be composed of a plurality of electrically connected conductive portions.
  • a part of the material constituting the conductor 1 may extend continuously from the lower portion 10b toward the upper portion 10a, or may extend across the inner space. That is, part of the material constituting the conductor 1 may extend continuously in the longitudinal direction of the conductor 1 (vertical direction Y in FIGS. 1 to 3), and the direction perpendicular to the longitudinal direction (FIG. 1) To 3 may extend in the X direction and / or the Z direction).
  • the material of the conductor 1 is not particularly limited as long as the conductivity can be ensured, but for example, at least one selected from the group consisting of a conductive metal, a carbon material, and a conductive polymer material can be used.
  • a conductive metal for example, at least one selected from the group consisting of aluminum, copper, stainless steel, nickel and titanium can be used.
  • the carbon material for example, at least one selected from the group consisting of carbon paper, carbon felt, carbon cloth and graphite foil can be used.
  • the conductive polymer material at least one selected from the group consisting of polyacetylene, polythiophene, polyaniline, poly (p-phenylenevinylene), polypyrrole and poly (p-phenylene sulfide) can be used.
  • the conductor 1 preferably has a continuous space from the lower portion 10b to the upper portion 10a because it is preferable to have an internal space for hydrogen ions to move between the upper portion 10a and the lower portion 10b. Is preferred.
  • the conductor 1 is preferably provided with a porous conductive sheet.
  • the conductor 1 is more preferably made of a porous conductive sheet. Such a porous conductive sheet has a large number of pores inside, so that hydrogen ions can easily move.
  • the conductor 1 preferably includes at least one of a woven conductive sheet and a non-woven conductive sheet. Since the woven conductive sheet and the non-woven conductive sheet have a large number of pores, the movement of hydrogen ions can be facilitated.
  • the conductor 1 may be a metal plate having a plurality of through holes from the lower portion 10 b to the upper portion 10 a.
  • the conductor 1 more preferably comprises a non-woven conductive sheet, and particularly preferably comprises a non-woven conductive sheet.
  • the non-woven fabric can easily change its thickness and porosity, so as described later, an anaerobic microorganism is attached to the lower portion 10b of the conductor 1, and an oxygen reduction catalyst or an aerobic microorganism is easily supported on the upper portion 10a. It becomes possible.
  • the pore diameter of the space in the conductor 1 is not particularly limited as long as hydrogen ions can move from the lower portion 10 b to the upper portion 10 a.
  • the conductive material constituting the conductor 1 is particularly preferably at least one selected from the group consisting of graphite foil, carbon paper, carbon cloth, carbon felt and stainless steel (SUS).
  • the length L1 in the vertical direction Y in the purification structure 10 be longer than the length L2 in the width direction Z perpendicular to the vertical direction Y. Further, it is particularly preferable that the purification structure 10 be plate-like. As a result, the distance between the lower portion 10 b of the purification structure 10 and the water surface 30 a of the water 30 to be treated is increased, and the periphery of the lower portion 10 b becomes anaerobic. Therefore, an anaerobic microorganism adheres to the lower part 10b of the purification structure 10, and it becomes possible to oxidize an organic matter efficiently.
  • a potential difference is generated between the site (upper part 10a) where the oxygen reduction reaction occurs and the site (lower part 10b) where the organic substance oxidation reaction occurs, and the electrons from the lower part 10b to the upper part 10a through the conductor 1 Can be conducted efficiently.
  • the length L1 in the vertical direction Y in the purification structure 10 is preferably longer than the length L2 in the width direction Z.
  • the length L1 in the vertical direction Y in the purification structure 10 is preferably twice or more, more preferably five times or more, and eight times or more the length L2 in the width direction Z. It is more preferable, and 10 times or more is particularly preferable.
  • the upper limit of the length L1 of the vertical direction Y in the purification structure 10 is not particularly limited, for example, the upper limit of the length L2 of the width direction Z is preferably 50 times or less.
  • the shape of the purification structure 10 is more preferably plate-like.
  • the shape of the purification structure 10 is not limited to such an aspect, and if it is possible to make the length L1 in the vertical direction Y longer than the length L2 in the width direction Z, it is rod-like or string-like It is also good.
  • the shape of the purification structure is plate-like, rod-like or string-like, the distance between the lower portion 10 b of the purification structure 10 and the water surface 30 a of the water 30 to be treated becomes large. Sexual microorganisms can be attached.
  • the purification structure 10 a potential difference is generated between the upper portion 10a in which the oxygen reduction reaction occurs and the lower portion 10b in which the organic substance oxidation reaction occurs, and it becomes possible to control the metabolism of the microorganism.
  • the length L2 in the width direction Z perpendicular to the vertical direction Y refers to the maximum linear distance between two points on the outer periphery of the purification structure 10.
  • the oxygen reduction catalyst 2 be supported on a portion (upper portion 10 a) where the oxygen reduction reaction occurs in the purification structure 10.
  • the oxygen reduction reaction by oxygen, hydrogen ions and electrons can be efficiently advanced in the upper portion 10a.
  • the oxygen reduction catalyst 2 may be carried on the surface of the conductor 1 or may be carried inside the conductor 1.
  • the oxygen reduction catalyst 2 that can be supported on the conductor 1 is not particularly limited, but preferably contains platinum.
  • the oxygen reduction catalyst 2 may also include carbon particles doped with at least one nonmetal atom and a metal atom. There are no particular limitations on the atoms doped into the carbon particles.
  • the nonmetal atom is preferably at least one selected from the group consisting of, for example, a nitrogen atom, a boron atom, a sulfur atom and a phosphorus atom.
  • the metal atom is preferably, for example, at least one of an iron atom and a copper atom.
  • the oxygen reduction catalyst 2 may be bound to the conductor 1 using a binder. That is, the oxygen reduction catalyst 2 may be supported on the surface of the conductor 1 and inside the pores using a binder. Thereby, the oxygen reduction catalyst 2 can be prevented from being detached from the conductor 1 and the oxygen reduction characteristics can be prevented from being degraded.
  • the binder it is preferable to use at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM), for example.
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • NAFION trademark
  • an anaerobic microorganism which decomposes
  • the anaerobic microorganism 3 does not require oxygen for growth, and does not require air for oxidatively decomposing the organic matter in the water 30 to be treated. Therefore, the power required to feed the air can be significantly reduced. In addition, since the free energy obtained by microorganisms is small, it is possible to reduce the amount of sludge generated.
  • the anaerobic microorganism attached to the lower portion 10b of the purification structure 10 is preferably, for example, an electroproducing bacterium having an extracellular electron transfer mechanism.
  • anaerobic microorganisms include, for example, bacteria belonging to the genus Geobacter, bacteria belonging to the genus Shewanella, bacteria belonging to the genus Aeromonas, bacteria belonging to the genus Geothrix, and bacteria belonging to the genus Saccharomyces.
  • Anaerobic microorganisms may be attached to the lower portion 10 b by superimposing and fixing a biofilm including an anaerobic microorganism on the lower portion 10 b of the purification structure 10.
  • Biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the anaerobic microorganism may be attached to the lower part 10b without depending on the biofilm.
  • the anaerobic microorganism may be attached not only to the surface of the lower portion 10 b but also to the inside.
  • the microorganism attached to the site (upper portion 10a) where the oxygen reduction reaction occurs in the purification structure 10 is preferably an aerobic microorganism that reacts oxygen in the gas phase 40 with hydrogen ions and electrons to generate water.
  • aerobic microorganisms 4 include Sphingobacterium bacteria, Acinetobacterium bacteria, and Acinetobacter bacteria.
  • the purification structure 10 may be made of only the conductor 1. As described later, when both the anaerobic microorganism 3 and the aerobic microorganism 4 are present in the water 30 to be treated, the anaerobic microorganism 3 adheres to the upper portion 10a and the aerobic microorganism 4 adheres to the lower portion 10b. As a result, local cell reactions occur and it becomes possible to oxidatively decompose the organic matter. Further, as described later, the purification structure 10 may constitute a purification electrode together with the oxygen reduction catalyst 2 and the binder. Also by using such a purification electrode, a local cell reaction occurs, and the organic matter can be oxidized and decomposed.
  • the purification apparatus 100 includes a substantially rectangular processing tank 20 that holds therein the water to be treated 30 containing an organic substance.
  • the front wall 23 of the processing tank 20 is provided with an inlet 21 for supplying the water 30 to the processing tank 20.
  • the rear wall 24 of the treatment tank 20 is provided with an outlet 22 for discharging the treated water 30 after treatment from the treatment tank 20.
  • the treated water 30 is continuously supplied to the inside of the treatment tank 20 through the inlet 21. Further, as shown in FIG. 1 and FIG. 2, the purification structure 10 is disposed inside the treatment tank 20 so as to be immersed in the water 30 to be treated. Therefore, the water to be treated 30 supplied from the inlet 21 of the treatment tank 20 flows while being in contact with the purification structure 10 and then discharged from the outlet 22.
  • the treated water 30 to be treated by the purification device 100 can be, for example, a liquid containing an organic substance composed of at least one of an organic substance and a nitrogen-containing compound (nitrogen-containing compound).
  • the water 30 to be treated may be an electrolyte.
  • the purification structure 10 is installed inside the treatment tank 20 holding the treated water 30. Under the present circumstances, as shown in FIG. 2, the purification structure 10 is installed in the inside of the processing tank 20 so that the main surface 1a of the conductor 1 may become substantially parallel to the perpendicular direction Y. As shown in FIG.
  • the purification structure 10 When the purification structure 10 is installed inside the treatment tank 20, as shown in FIGS. 4 and 5, a part of the upper portion 10a of the purification structure 10 contacts the gas phase 40 and the water surface 30a of the water 30 to be treated. doing. Furthermore, a portion of the upper portion 10 a of the purification structure 10 is also in contact with the water 30 to be treated. In addition, since the to-be-processed water 30 which contacts the upper part 10a is located in the vicinity of the gaseous phase 40, it is in the state which the oxygen concentration to melt
  • the lower portion 10 b of the purification structure 10 is immersed in the water 30 to be treated. Since the length L1 in the vertical direction Y in the purification structure 10 is longer than the length L2 in the width direction Z, the lower portion 10b is separated from the water surface 30a, and the dissolved oxygen concentration is low.
  • the to-be-processed water 30 which contacts the upper part 10a of the purification structure 10 has a high oxygen concentration to be dissolved
  • the to-be-processed water 30 contains the aerobic microorganisms 4
  • the aerobic microorganism 4 adheres to 10a.
  • the conductor 1 is a porous body
  • the water to be treated 30 rises by capillary action, and the water to be treated 30 can be held up to the upper end of the conductor 1. Therefore, the aerobic microorganism 4 can be attached to the entire upper portion of the purification structure 10.
  • the lower portion 10b of the purification structure 10 is separated from the water surface 30a, and the surrounding area has a low concentration of oxygen, so the anaerobic microorganism 3 adheres to the lower portion 10b.
  • the oxidation reaction of the organic substance contained in the treated water 30 proceeds by the metabolism of the anaerobic microorganism 3, and hydrogen ions (H + ) and electrons ( e -) is generated.
  • the hydrogen ions generated by the oxidation reaction move to the upper portion 10 a of the purification structure 10 through the internal space of the purification structure 10. Further, electrons generated by the oxidation reaction move to the upper portion 10 a of the purification structure 10 through the conductor 1.
  • the local cell reaction (half cell reaction) occurring in the upper portion 10a and the lower portion 10b is represented by the following equation.
  • the catalytic action of the anaerobic microorganism 3 in the lower portion 10 b can decompose the organic matter in the water to be treated 30 and purify the water to be treated 30.
  • the purification structure 10 is a portion (upper portion 10a) where an oxygen reduction reaction that reduces oxygen in the gas phase 40 occurs, and an organic matter oxidation that oxidizes the organic matter in the water 30 to generate hydrogen ions and electrons.
  • a potential difference is generated between the site where the reaction takes place (lower part 10b).
  • electrons are conducted from the site where the organic substance oxidation reaction occurs through the conductor 1 to the site where the oxygen reduction reaction occurs.
  • the upper portion 10a and the lower portion 10b are separated.
  • the conductor 1 which exists between the upper part 10a and the lower part 10b has high electrical resistivity, an electrical potential difference arises between the upper part 10a and the lower part 10b. That is, since the electrical resistivity of the conductor 1 between the upper portion 10a and the lower portion 10b is relatively high, the upper portion 10a and the lower portion 10b can be controlled to an appropriate potential. It becomes possible to secure a potential difference.
  • the length L1 in the vertical direction Y is made larger than the length L2 in the width direction Z, and between the upper portion 10a and the lower portion 10b.
  • the preferable potential difference between the upper portion 10a and the lower portion 10b can be determined by the theoretical potential of the oxygen reduction reaction generated in the upper portion 10a serving as the cathode, the theoretical potential of the organic substance oxidation reaction occurring in the lower portion 10b serving as the cathode, and overvoltage. .
  • the purification device 100 of the present embodiment includes the purification structure 10 having the conductor 1 and causing an oxygen reduction reaction, and the treated water 30 to be purified by the purification structure 10 and the purification structure 10. And a processing tank 20 for holding the inside thereof. Then, a part of the purification structure 10 contacts the gas phase 40, and the other part of the purification structure 10 contacts the water 30 to be treated.
  • the purification structure 10 is installed inside the processing tank 20 so that the length L1 in the vertical direction Y is longer than the length L2 in the width direction Z perpendicular to the vertical direction Y.
  • the anaerobic microorganism 3 adheres to a portion (lower portion 10b) where the organic substance oxidation reaction occurs in which the organic substance in the treated water 30 is oxidized to generate hydrogen ions and electrons in the purification structure 10 preferable.
  • the purification device 100 can efficiently oxidize and decompose the organic matter contained in the water to be treated 30 through the electron transfer reaction. Specifically, the organic matter contained in the water to be treated 30 is decomposed and removed by the metabolism of the anaerobic microorganism 3, that is, the growth of the anaerobic microorganism 3. And since this oxidative decomposition treatment is carried out under anaerobic conditions, the conversion efficiency from organic matter to new cells of microorganisms can be suppressed to a lower level than when carried out under aerobic conditions. For this reason, it is possible to reduce the growth of microorganisms, that is, the amount of generated sludge, as compared with the case of using the activated sludge method.
  • the odorous methane gas is produced
  • a metabolic product is carbon dioxide gas
  • production of methane gas can be suppressed.
  • the purification device 100 is configured by the purification structure 10 having the conductor 1 and the treatment tank 20, the structure is simple, and the manufacturing cost and the maintenance cost can be suppressed.
  • the purification structure 10 is installed in the treatment tank 20 so that the length L1 in the vertical direction Y becomes long, the lower portion 10b is separated from the water surface 30a, and the surrounding oxygen concentration decreases. Therefore, since many anaerobic microorganisms 3 adhere to lower part 10b, it becomes possible to oxidize and decompose the organic substance in to-be-processed water 30 efficiently.
  • an oxygen reduction reaction that reduces oxygen in the gas phase 40 (upper part 10a) and an organic matter oxidation reaction that oxidizes the organic matter in the water 30 to generate hydrogen ions and electrons occur
  • a potential difference is generated between the site (lower part 10b).
  • electrons can be efficiently conducted from the site where the organic substance oxidation reaction occurs through the conductor 1 to the site where the oxygen reduction reaction occurs.
  • the metabolism of the anaerobic microorganism 3 accompanied by electron conduction is also promoted.
  • the anaerobic microorganism 3 migrates and adheres to the lower portion 10b where the metabolism of the anaerobic microorganism 3 is promoted. Therefore, in the lower portion 10b, it is possible to further increase the decomposition efficiency of the organic matter in the water 30 to be treated.
  • the aerobic microorganism 4 adheres to the part (upper part 10a) which the oxygen reduction reaction which reduce
  • the oxygen reduction catalyst 2 be supported on a part (upper part 10 a) in the purification structure 10 where the oxygen reduction reaction for reducing the oxygen in the gas phase 40 occurs.
  • the purification structure 10 is preferably disposed inside the processing tank 20 so that the main surface 1 a of the conductor 1 is substantially parallel to the vertical direction Y.
  • one purification structure 10 is installed inside one treatment tank 20.
  • the present embodiment is not limited to such an aspect, and a plurality of purification structures 10 may be installed inside the treatment tank 20. By installing the plurality of purification structures 10 inside one treatment tank 20, it becomes possible to more efficiently purify the organic matter in the water 30 to be treated.
  • an electron transfer mediator molecule may be modified in the lower portion 10b of the purification structure 10.
  • the treated water 30 in the treatment tank 20 may contain an electron transfer mediator molecule. Thereby, electron transfer from the anaerobic microorganism 3 to the lower portion 10b can be promoted, and more efficient liquid processing can be realized.
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methyl viologen can be used.
  • AQDS anthraquinone-2,6-disulfonic acid
  • thionine thionine
  • potassium ferricyanide potassium ferricyanide
  • methyl viologen methyl viologen
  • the purification electrode of the present embodiment is used in a purification device, and comprises only the conductor 1, the oxygen reduction catalyst 2 supported on the conductor 1, and the binder. That is, the purification electrode includes the conductor 1 as the purification structure 10, the oxygen reduction catalyst 2 supported on the portion (upper portion 10a) where the oxygen reduction reaction of the conductor 1 occurs, and the oxygen reduction catalyst 2 as the conductor 1 It consists only of the binder to bind.
  • the purification electrode includes the conductor 1 as the purification structure 10, the oxygen reduction catalyst 2 supported on the portion (upper portion 10a) where the oxygen reduction reaction of the conductor 1 occurs, and the oxygen reduction catalyst 2 as the conductor 1 It consists only of the binder to bind.
  • the action of the anaerobic microorganism 3 causes an organic matter oxidation reaction that oxidizes the organic matter in the water to be treated 30 to generate hydrogen ions and electrons. Furthermore, by arranging the potential difference between the upper portion 10a and the lower portion 10b of the purification structure 10, electrons are efficiently conducted from the lower portion 10b to the upper portion 10a through the conductor 1. As a result, since the metabolism of the anaerobic microorganism 3 accompanied by electron conduction is also promoted, it is possible to further enhance the decomposition efficiency of the organic matter in the water 30 to be treated.
  • the application of the purification electrode is not limited to the purification device 100 including the treatment tank 20. That is, the purification electrode can efficiently oxidize and decompose the organic matter contained in the water to be treated 30 through the electron transfer reaction only by immersing in the water to be treated in which the anaerobic microorganism is present. Therefore, the purification electrode of the present embodiment can be applied to a purification device that does not use the treatment tank 20.
  • the purification electrode includes the conductor 1 and is provided with the purification structure 10 causing the oxygen reduction reaction, a part of the purification structure 10 is in contact with the gas phase, and the other part of the purification structure 10 is It is preferable to use for the purification apparatus which contacts the to-be-processed water 30.
  • FIG. in such a purification device the purification structure 10 is installed such that the length L1 in the vertical direction Y is longer than the length L1 in the width direction Z perpendicular to the vertical direction Y.
  • the purification electrode preferably comprises only the conductor 1, the oxygen reduction catalyst 2 supported on the conductor 1, and the binder.
  • Example 1 a purification structure having an oxygen reduction catalyst supported on a conductor was produced. Specifically, first, eight square columnar carbon felts 5 mm long, 5 mm wide, and 100 mm long were prepared as a conductor.
  • a catalyst slurry was prepared by dispersing 80 mg of a carbon-based catalyst composed of carbon black supporting iron and nitrogen in a mixed solution of 0.76 mL of a 5% by mass Nafion solution and 2.8 mL of ethanol. Then, 50 ⁇ L each of the obtained catalyst slurry was dropped on four faces of the upper 20 mm portion of each carbon felt to dry it. As a result, eight purification structures having a carbon-based catalyst supported on the top of the carbon felt were obtained. In addition, in this example, eight purification structures were made into one set, and two sets in total were produced.
  • Example 2 Eight square columnar carbon felts 5 mm long, 5 mm wide and 100 mm long used in Example 1 were prepared. And the said carbon felt was used as a purification structure as it was. In addition, also in this example, eight purification structures were regarded as one set, and two sets in total were prepared.
  • Example 1 The purification structures obtained in Example 1 and Example 2 were immersed in the organic wastewater as the water to be treated, and the purification rate of the water to be treated after operating for 28 days was measured.
  • a vial having a volume of 100 mL was prepared as a container.
  • one set of purification structures was installed in the vertical direction inside the vial, and organic wastewater was further injected.
  • the injection amount of the organic wastewater was adjusted so that 80 mm from the bottom of the purification structure was immersed in the organic wastewater.
  • 80 mm from the bottom was immersed in the organic wastewater.
  • a liquid with a total organic carbon (TOC) of 272 mg / L was used as organic wastewater.
  • the organic wastewater of the vial contained the seed for the microbial fuel cell. Then, after putting the purification structure, the organic wastewater and the inoculum into a vial and sealing the container, two sets of purification devices (batch systems) of Example 1 and Example 2 were produced. In addition, in the purification apparatus of each example, it adjusted so that oxygen could be continuously supplied inside from an apparatus exterior.
  • the resulting purifiers of Examples 1-1 and 1-2 and the purifiers of Examples 2-1 and 2-2 were each operated for 28 days. At this time, TOC of the organic wastewater was measured twice a week. In addition, the purification structure and the organic wastewater were transferred to a new vial for each TOC measurement, and 60 mL of new organic wastewater was further injected. In addition, after operating the purifier of each example for 28 days, TOC in organic wastewater was measured.
  • the average value of the TOC measurement results of a total of nine times twice a week and one time after operation for 28 days is shown in FIG.
  • the TOC is half or less compared to that before the treatment, and it can be seen that the organic wastewater is purified.
  • Examples 1-1 and 1-2 carrying an oxygen reduction catalyst and Examples 2-1 and 2-2 not carrying an oxygen reduction catalyst are compared, One can see that the TOC is falling. Therefore, it is understood that the oxygen reduction reaction can be promoted and the water to be treated can be purified more efficiently by supporting the oxygen reduction catalyst on the purification structure.
  • the purification structure of Example 1 carrying an oxygen reduction catalyst can oxidize organic matter more efficiently than the purification structure of Example 2 carrying no oxygen reduction catalyst.
  • the purification structure which does not support the oxygen reduction catalyst has a TOC of half or less compared to that before the treatment, it can be seen that the purification structure consisting only of the conductor can also exhibit high purification performance.
  • the ratio of Geobacter to total fungi was determined from the purified structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2 after 28 days of operation. Specifically, first, DNA was extracted from the microorganisms attached to the lower part of the purification structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2. Next, using extracted DNA, the DNA concentration of all fungi and Geobacter bacteria was quantified by quantitative PCR. And the ratio of Geobacter bacteria to all fungi was calculated from Formula 1.
  • the calibration curve used for measuring the DNA concentration of all fungi was obtained from quantitative PCR using DNA extracted from E. coli and the following primers. Also, the parenthesis indicates the base sequence. B1055F (5'-ATG GYT GTC GTC AGCT-3 ') B1392R (5'-ACG GGC GGT GTG TAC-3 ') Moreover, the calibration curve used for measurement of the DNA concentration of Geobacter bacteria was obtained from quantitative PCR using DNA extracted from geobacter sulfurreducens and the following primers. In parentheses, the base sequence is shown. Geo494F (5'-AGG AAG CAC CGG CTAACT CC-3 ') Geo 825 R (5'-TAC CCG CRA CAC CTA GT-3 ')
  • the ratio of Geobacter to total fungi in the purified structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2 calculated as described above is shown in FIG.
  • the purification structures of Examples 1-1 and 1-2 using the oxygen reduction catalyst are compared with the purification structures of Examples 2-1 and 2-2 not using the oxygen reduction catalyst.
  • the proportion of Geobacter bacteria is high. That is, it is understood that the purification structures of Examples 1-1 and 1-2 have a higher percentage of the current generating bacteria attached. From this, by supporting the oxygen reduction catalyst, the oxygen reduction reaction proceeds in the upper part of the purification structure, and the electrons from the lower part to the upper part are easily moved accordingly, thereby promoting the growth of the anaerobic microorganism. I understand that.
  • the purification device and the purification electrode according to the present embodiment can be widely applied to the treatment of a liquid containing an organic substance, for example, wastewater generated from factories of various industries or organic wastewater such as sewage sludge. Furthermore, the purification device and the purification electrode can be used to improve the environment of the water area.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

Provided is a purification device (100) having a purification structure (10) which includes an electric conductor (1) and induces a redox reaction, and a treatment tank (20) for holding thereinside the purification structure and water (30) to be purified by the purification structure. A part of the purification structure is in contact with a gas phase (40), and the other part of the purification structure is in contact with the water to be treated. The purification structure is installed inside the treatment tank so that the length (L1) in the vertical direction (Y) is longer than the length (L2) in the width direction (Z) perpendicular to the vertical direction (Y). The purification electrode consists only of a conductor, a redox catalyst carried on the conductor, and a binder.

Description

浄化装置及び浄化電極Purification device and purification electrode
 本発明は、浄化装置及び浄化電極に関する。 The present invention relates to a purification device and a purification electrode.
 従来、廃水中に含まれる有機物等を除去するために、種々の水処理方法が提供されている。具体的には、微生物の好気呼吸を利用する活性汚泥法や、微生物の嫌気呼吸を利用する嫌気性処理法などの水処理方法が提供されている。 Heretofore, various water treatment methods have been provided to remove organic substances and the like contained in waste water. Specifically, water treatment methods such as an activated sludge method utilizing aerobic respiration of microorganisms and an anaerobic treatment method utilizing anaerobic respiration of microorganisms are provided.
 活性汚泥法では、微生物を含んだ泥(活性汚泥)と廃水とを生物反応槽で混合し、微生物が廃水中の有機物を酸化分解するために必要な空気を生物反応槽に送り込んで攪拌することで、廃水を浄化している。しかし、活性汚泥法は、生物反応槽のエアレーションに莫大な電力を要する。また、微生物が酸素呼吸をして活発に代謝を行う結果、産業廃棄物である大量の汚泥(微生物の死骸)が発生してしまう。 In the activated sludge method, mud (activated sludge) containing microorganisms and wastewater are mixed in a biological reaction tank, and air necessary for the microorganisms to oxidize and decompose organic matter in the wastewater is sent to the biological reaction tank and agitated. And the wastewater is being purified. However, the activated sludge method requires a great deal of power for aeration of the biological reaction tank. In addition, as a result of the oxygen respiration by the microorganism and active metabolism, a large amount of industrial waste material (the death of the microorganism) is generated.
 これに対し、嫌気性処理法ではエアレーションが不要となることから、活性汚泥法に比べて必要電力量を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量が減少する。このような嫌気性処理法を利用した廃水処理装置としては、特許文献1に記載の微生物燃料電池が開示されている。この微生物燃料電池は、有機性基質に浸漬して嫌気性微生物を担持させる負極と、少なくとも一部分がイオン透過性隔膜で形成された外殻と入出孔とを有する密閉型中空カセットと、を備えている。さらに当該微生物燃料電池は、中空カセット内に電解液と共に封入し、又は、当該カセットの隔膜の内側に結合して有機性基質中に差し込む正極を備えている。そして、入出孔経由でカセット内に酸素を供給し、さらに負極及び正極を電気的に接続する回路経由で電気を取り出すことも開示されている。このような微生物燃料電池は、他の嫌気性処理法と比べて、廃水処理に要する日数を短縮することが可能であり、効率的に有機物を除去することができる技術である。 On the other hand, since the aeration is unnecessary in the anaerobic treatment method, the required power can be significantly reduced as compared with the activated sludge method. In addition, since the free energy acquired by microorganisms is small, the amount of sludge generated is reduced. As a wastewater treatment apparatus using such an anaerobic treatment method, a microbial fuel cell described in Patent Document 1 is disclosed. This microbial fuel cell is provided with a negative electrode which is immersed in an organic substrate to carry an anaerobic microorganism, and a closed type hollow cassette having an outer shell formed at least in part by an ion permeable diaphragm and an inlet / outlet. There is. Furthermore, the microbial fuel cell comprises a positive electrode which is enclosed with the electrolyte in a hollow cassette or is attached to the inside of the diaphragm of the cassette and inserted into the organic substrate. Then, it is also disclosed that oxygen is supplied into the cassette via the inlet / outlet and electricity is taken out via a circuit that electrically connects the negative electrode and the positive electrode. Such a microbial fuel cell can shorten the number of days required for wastewater treatment as compared with other anaerobic treatment methods, and is a technology capable of efficiently removing organic matter.
特許第5164511号公報Patent No. 5164511 gazette
 しかしながら、特許文献1のような微生物燃料電池を用いた廃水処理装置は、電極の構造が複雑であり、製造コストや維持管理コストが高くなることから、簡易的な処理装置が求められている。 However, a wastewater treatment apparatus using a microbial fuel cell such as that disclosed in Patent Document 1 has a complicated electrode structure, which increases the manufacturing cost and the maintenance cost, so a simple treatment apparatus is required.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、構造が簡易であり、かつ、廃水を効率的に浄化することが可能な浄化装置、及び当該浄化装置を用いられる浄化電極を提供することにある。 The present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a purification device which has a simple structure and can efficiently purify waste water, and a purification electrode using the purification device.
 上記課題を解決するために、本発明の第一の態様に係る浄化装置は、導電体を有し、酸素還元反応を生じさせる浄化構造体と、当該浄化構造体と浄化構造体により浄化される被処理水とを内部に保持するための処理槽と、を備える。浄化構造体の一部が気相と接触し、かつ、浄化構造体の他部が被処理水と接触する。そして、浄化構造体は、鉛直方向の長さが鉛直方向に垂直な幅方向の長さよりも長くなるように、処理槽の内部に設置される。 In order to solve the above-mentioned subject, the purification device concerning the first mode of the present invention has a conductor, and is purified by the purification structure which makes an oxygen reduction reaction occur, and the purification structure concerned and the purification structure. And a treatment tank for holding the water to be treated inside. A part of the purification structure is in contact with the gas phase, and the other part of the purification structure is in contact with the water to be treated. And a purification | cleaning structure is installed inside a processing tank so that the length of the perpendicular direction may become longer than the length of the width direction perpendicular | vertical to the perpendicular direction.
 本発明の第二の態様に係る浄化電極は、上述の浄化装置に用いられる浄化電極であって、導電体と、導電体に担持される酸素還元触媒と、バインダーのみからなる。 The purification electrode according to the second aspect of the present invention is a purification electrode used in the above-described purification device, and comprises only a conductor, an oxygen reduction catalyst supported on the conductor, and a binder.
 本発明の第三の態様に係る浄化電極は、導電体を有し、酸素還元反応を生じさせる浄化構造体を備え、浄化構造体の一部が気相と接触し、かつ、浄化構造体の他部が被処理水と接触し、前記浄化構造体は、鉛直方向の長さが前記鉛直方向に垂直な幅方向の長さよりも長くなるように設置される浄化装置に用いられる浄化電極である。当該浄化電極は、導電体と、導電体に担持される酸素還元触媒と、バインダーのみからなる。 A purification electrode according to a third aspect of the present invention comprises a purification structure having a conductor and causing an oxygen reduction reaction, a part of the purification structure being in contact with the gas phase, and the purification structure The other part is in contact with the water to be treated, and the purification structure is a purification electrode used in a purification device installed so that the length in the vertical direction is longer than the length in the width direction perpendicular to the vertical direction . The purification electrode comprises only a conductor, an oxygen reduction catalyst supported on the conductor, and a binder.
図1は、本実施形態に係る浄化装置の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the purification device according to the present embodiment. 図2は、図1中のA-A線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、図1中のB-B線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 図4は、浄化構造体により被処理水を浄化するメカニズムを説明するための断面図である。FIG. 4 is a cross-sectional view for explaining the mechanism for purifying the water to be treated by the purification structure. 図5は、浄化構造体により被処理水を浄化するメカニズムを説明するための断面図である。FIG. 5 is a cross-sectional view for explaining a mechanism for purifying the water to be treated by the purification structure. 図6は、実施例1-1及び1-2並びに実施例2-1及び2-2の浄化構造体を用いた場合における、有機性廃水中の全有機体炭素濃度の平均値を示すグラフである。FIG. 6 is a graph showing an average value of total organic carbon concentration in organic wastewater when using the purification structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2. is there. 図7は、実施例1-1及び1-2並びに実施例2-1及び2-2の浄化構造体に付着した微生物において、全真菌に対するGeobacter菌の比率(Ratio of Geobacter)を測定した結果を示すグラフである。FIG. 7 shows the results of measurement of the ratio of Geobacter to total fungi (Ratio of Geobacter) in the microorganisms attached to the purified structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2. FIG.
 以下、本実施形態に係る浄化装置及び浄化電極について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the purification device and the purification electrode according to the present embodiment will be described in detail. The dimensional ratios in the drawings are exaggerated for the convenience of description, and may differ from the actual ratios.
[浄化装置]
 本実施形態に係る浄化装置100は、図1乃至図3に示すように、酸素還元反応を生じさせる浄化構造体10と、浄化構造体10及び浄化構造体10により浄化される被処理水30を内部に保持するための処理槽20と、を備えている。そして、浄化構造体10は、上部10aが気相40と接触し、下部10bが被処理水30と接触するように、処理槽20の内部に設置されている。
[Purification device]
As shown in FIGS. 1 to 3, the purification device 100 according to the present embodiment includes the purification structure 10 that causes an oxygen reduction reaction, and the treated water 30 to be purified by the purification structure 10 and the purification structure 10. And a processing tank 20 for holding the inside. And the purification structure 10 is installed in the inside of the processing tank 20 so that the upper part 10a may contact with the gaseous phase 40, and the lower part 10b may contact with the to-be-processed water 30.
 (浄化構造体)
 本実施形態において、浄化構造体10は導電体1を備えている。図1乃至図3に示すように、導電体1は、導電性材料により構成され、さらに略直方体状で扁平の板部材からなる。
(Purification structure)
In the present embodiment, the purification structure 10 includes the conductor 1. As shown in FIG. 1 to FIG. 3, the conductor 1 is made of a conductive material, and is formed of a flat plate member having a substantially rectangular parallelepiped shape.
 浄化構造体10は、気相40中の酸素を還元する酸素還元反応が生じる部位と、被処理水30中の有機物を酸化して水素イオンと電子を生成する有機物酸化反応が生じる部位とを有している。具体的には、浄化構造体10において、酸素還元反応が生じる部位は、気相40と接触している上部10aであり、有機物酸化反応が生じる部位は、被処理水30と接触している下部10bである。 Purification structure 10 has a site where an oxygen reduction reaction that reduces oxygen in gas phase 40 occurs, and a site where an organic matter oxidation reaction that oxidizes organic matter in treated water 30 to generate hydrogen ions and electrons occurs. doing. Specifically, in the purification structure 10, the site at which the oxygen reduction reaction occurs is the upper portion 10a in contact with the gas phase 40, and the site at which the organic oxidation reaction occurs is the lower section in contact with the water 30 to be treated. 10b.
 浄化構造体10を構成する導電体1は、酸素還元反応が生じる上部10aと有機物酸化反応が生じる下部10bとの間に、水素イオン(H)が移動するための内部空間を有することが好ましい。導電体1の内部に連続した空間が存在していることにより、後述するように、下部10bで生成した水素イオンが内部空間を通じて上部10aへ移動することが可能となる。 The conductor 1 constituting the purification structure 10 preferably has an internal space for hydrogen ions (H + ) to move between the upper portion 10a in which the oxygen reduction reaction occurs and the lower portion 10b in which the organic substance oxidation reaction occurs. . The presence of the continuous space inside the conductor 1 enables the hydrogen ions generated in the lower portion 10b to move to the upper portion 10a through the inner space, as described later.
 導電体1の構成は、水素イオンが移動するための内部空間を有し、さらに下部10bから上部10aに向かって電気的に接続されていれば特に限定されない。また、導電体1は、下部10bから上部10aに向かって連続して延びていてもよい。あるいは、導電体1は、電気的に接続された複数の導電部分から構成されていてもよい。さらに、導電体1を構成する材料の一部は、下部10bから上部10aに向かって連続して伸びていてもよく、内部空間を横切るように伸びていてもよい。つまり、導電体1を構成する材料の一部は、導電体1の長手方向(図1乃至3では鉛直方向Y)に連続して伸びていてもよく、当該長手方向に垂直な方向(図1乃至3ではX方向及び/又はZ方向)に延びていてもよい。 The configuration of the conductor 1 is not particularly limited as long as it has an internal space for hydrogen ions to move and is electrically connected from the lower portion 10b to the upper portion 10a. The conductor 1 may extend continuously from the lower portion 10 b toward the upper portion 10 a. Alternatively, the conductor 1 may be composed of a plurality of electrically connected conductive portions. Furthermore, a part of the material constituting the conductor 1 may extend continuously from the lower portion 10b toward the upper portion 10a, or may extend across the inner space. That is, part of the material constituting the conductor 1 may extend continuously in the longitudinal direction of the conductor 1 (vertical direction Y in FIGS. 1 to 3), and the direction perpendicular to the longitudinal direction (FIG. 1) To 3 may extend in the X direction and / or the Z direction).
 導電体1の材料は、導電性を確保できるならば特に限定されないが、例えば導電性金属、炭素材料及び導電性ポリマー材料からなる群より選ばれる少なくとも一種を用いることができる。導電性金属としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンからなる群より選ばれる少なくとも一種を用いることができる。炭素材料としては、例えば、カーボンペーパー、カーボンフェルト、カーボンクロス及びグラファイトホイルからなる群より選ばれる少なくとも一種を用いることができる。導電性ポリマー材料としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンビニレン)、ポリピロール及びポリ(p-フェニレンスルフィド)からなる群より選ばれる少なくとも一種を用いることができる。 The material of the conductor 1 is not particularly limited as long as the conductivity can be ensured, but for example, at least one selected from the group consisting of a conductive metal, a carbon material, and a conductive polymer material can be used. As the conductive metal, for example, at least one selected from the group consisting of aluminum, copper, stainless steel, nickel and titanium can be used. As the carbon material, for example, at least one selected from the group consisting of carbon paper, carbon felt, carbon cloth and graphite foil can be used. As the conductive polymer material, at least one selected from the group consisting of polyacetylene, polythiophene, polyaniline, poly (p-phenylenevinylene), polypyrrole and poly (p-phenylene sulfide) can be used.
 上述のように、導電体1は、上部10aと下部10bとの間に水素イオンが移動するための内部空間を有することが好ましいことから、下部10bから上部10aに向かって連続した空間を有することが好ましい。このような内部空間を確保するために、導電体1は、多孔質の導電性シートを備えることが好ましい。また、導電体1は、多孔質の導電性シートからなることがより好ましい。このような多孔質の導電性シートは、内部に多数の細孔を有しているため、水素イオンが容易に移動することが可能となる。 As described above, the conductor 1 preferably has a continuous space from the lower portion 10b to the upper portion 10a because it is preferable to have an internal space for hydrogen ions to move between the upper portion 10a and the lower portion 10b. Is preferred. In order to secure such an internal space, the conductor 1 is preferably provided with a porous conductive sheet. The conductor 1 is more preferably made of a porous conductive sheet. Such a porous conductive sheet has a large number of pores inside, so that hydrogen ions can easily move.
 導電体1は、織布状の導電性シート及び不織布状の導電性シートの少なくとも一方を備えることが好ましい。織布状の導電性シート及び不織布状の導電性シートは、多数の細孔を有しているため、水素イオンの移動を容易にすることができる。また、導電体1は、下部10bから上部10aにかけて、複数の貫通孔を有する金属板であってもよい。 The conductor 1 preferably includes at least one of a woven conductive sheet and a non-woven conductive sheet. Since the woven conductive sheet and the non-woven conductive sheet have a large number of pores, the movement of hydrogen ions can be facilitated. The conductor 1 may be a metal plate having a plurality of through holes from the lower portion 10 b to the upper portion 10 a.
 導電体1は、不織布状の導電性シートを備えることがより好ましく、不織布状の導電性シートからなることが特に好ましい。不織布はその厚みや空隙率を変更しやすいため、後述するように、導電体1の下部10bに嫌気性微生物を付着し、上部10aに酸素還元触媒又は好気性微生物を担持した構成を容易に得ることが可能となる。なお、導電体1における空間の細孔径は、下部10bから上部10aに水素イオンが移動できれば特に限定されない。 The conductor 1 more preferably comprises a non-woven conductive sheet, and particularly preferably comprises a non-woven conductive sheet. The non-woven fabric can easily change its thickness and porosity, so as described later, an anaerobic microorganism is attached to the lower portion 10b of the conductor 1, and an oxygen reduction catalyst or an aerobic microorganism is easily supported on the upper portion 10a. It becomes possible. The pore diameter of the space in the conductor 1 is not particularly limited as long as hydrogen ions can move from the lower portion 10 b to the upper portion 10 a.
 上述の観点から、導電体1を構成する導電性材料は、グラファイトホイル、カーボンペーパー、カーボンクロス、カーボンフェルト及びステンレス鋼(SUS)からなる群より選ばれる少なくとも一つであることが特に好ましい。 From the above viewpoint, the conductive material constituting the conductor 1 is particularly preferably at least one selected from the group consisting of graphite foil, carbon paper, carbon cloth, carbon felt and stainless steel (SUS).
 図1乃至図3に示すように、浄化構造体10における鉛直方向Yの長さL1は、鉛直方向Yに垂直な幅方向Zの長さL2よりも長いことが好ましい。また、浄化構造体10は板状であることが特に好ましい。これにより、浄化構造体10における下部10bと被処理水30の水面30aとの間の距離が大きくなり、下部10bの周囲が嫌気条件となる。そのため、浄化構造体10の下部10bに嫌気性微生物が付着し、有機物の酸化を効率的に行うことが可能となる。また、浄化構造体10において、酸素還元反応が生じる部位(上部10a)と、有機物酸化反応が生じる部位(下部10b)との間に電位差を生じさせ、導電体1を通じて下部10bから上部10aへ電子を効率的に伝導することが可能となる。 As shown in FIGS. 1 to 3, it is preferable that the length L1 in the vertical direction Y in the purification structure 10 be longer than the length L2 in the width direction Z perpendicular to the vertical direction Y. Further, it is particularly preferable that the purification structure 10 be plate-like. As a result, the distance between the lower portion 10 b of the purification structure 10 and the water surface 30 a of the water 30 to be treated is increased, and the periphery of the lower portion 10 b becomes anaerobic. Therefore, an anaerobic microorganism adheres to the lower part 10b of the purification structure 10, and it becomes possible to oxidize an organic matter efficiently. Further, in the purification structure 10, a potential difference is generated between the site (upper part 10a) where the oxygen reduction reaction occurs and the site (lower part 10b) where the organic substance oxidation reaction occurs, and the electrons from the lower part 10b to the upper part 10a through the conductor 1 Can be conducted efficiently.
 なお、浄化構造体10における鉛直方向Yの長さL1は、幅方向Zの長さL2よりも長いことが好ましい。また、浄化構造体10における鉛直方向Yの長さL1は、幅方向Zの長さL2の2倍以上であることが好ましく、5倍以上であることがより好ましく、8倍以上であることがさらに好ましく、10倍以上であることが特に好ましい。なお、浄化構造体10における鉛直方向Yの長さL1の上限は特に限定されないが、例えば、幅方向Zの長さL2の50倍以下であることが好ましい。 The length L1 in the vertical direction Y in the purification structure 10 is preferably longer than the length L2 in the width direction Z. The length L1 in the vertical direction Y in the purification structure 10 is preferably twice or more, more preferably five times or more, and eight times or more the length L2 in the width direction Z. It is more preferable, and 10 times or more is particularly preferable. Although the upper limit of the length L1 of the vertical direction Y in the purification structure 10 is not particularly limited, for example, the upper limit of the length L2 of the width direction Z is preferably 50 times or less.
 上述のように、浄化構造体10の形状は板状であることがより好ましい。しかしながら、浄化構造体10の形状はこのような態様に限定されず、鉛直方向Yの長さL1を幅方向Zの長さL2よりも長くすることが可能ならば、棒状又は紐状であってもよい。浄化構造体の形状が、板状、棒状又は紐状であることにより、浄化構造体10における下部10bと被処理水30の水面30aとの間の距離が大きくなるため、下部10bに多くの嫌気性微生物を付着させることができる。また、浄化構造体10において、酸素還元反応が生じる上部10aと、有機物酸化反応が生じる下部10bとの間に電位差を生じさせ、微生物の代謝を制御することが可能となる。なお、浄化構造体10の形状が棒状又は紐状である場合、鉛直方向Yに垂直な幅方向Zの長さL2は、浄化構造体10の外周における2点間の最大直線距離をいう。 As described above, the shape of the purification structure 10 is more preferably plate-like. However, the shape of the purification structure 10 is not limited to such an aspect, and if it is possible to make the length L1 in the vertical direction Y longer than the length L2 in the width direction Z, it is rod-like or string-like It is also good. When the shape of the purification structure is plate-like, rod-like or string-like, the distance between the lower portion 10 b of the purification structure 10 and the water surface 30 a of the water 30 to be treated becomes large. Sexual microorganisms can be attached. Moreover, in the purification structure 10, a potential difference is generated between the upper portion 10a in which the oxygen reduction reaction occurs and the lower portion 10b in which the organic substance oxidation reaction occurs, and it becomes possible to control the metabolism of the microorganism. When the shape of the purification structure 10 is rod-like or string-like, the length L2 in the width direction Z perpendicular to the vertical direction Y refers to the maximum linear distance between two points on the outer periphery of the purification structure 10.
 図4に示すように、浄化構造体10における酸素還元反応が生じる部位(上部10a)には、酸素還元触媒2が担持されていることが好ましい。酸素還元触媒2が担持されていることにより、上部10aにおいて酸素、水素イオン及び電子による酸素還元反応を効率的に進行させることが可能となる。なお、酸素還元触媒2は、導電体1の表面に担持されていてもよく、導電体1の内部に担持されていてもよい。 As shown in FIG. 4, it is preferable that the oxygen reduction catalyst 2 be supported on a portion (upper portion 10 a) where the oxygen reduction reaction occurs in the purification structure 10. By supporting the oxygen reduction catalyst 2, the oxygen reduction reaction by oxygen, hydrogen ions and electrons can be efficiently advanced in the upper portion 10a. The oxygen reduction catalyst 2 may be carried on the surface of the conductor 1 or may be carried inside the conductor 1.
 導電体1に担持され得る酸素還元触媒2は特に限定されないが、白金を含有することが好ましい。また、酸素還元触媒2は、少なくとも一種の非金属原子と金属原子とがドープされた炭素粒子を含んでもよい。炭素粒子にドープされる原子は特に限定されない。非金属原子は、例えば窒素原子、ホウ素原子、硫黄原子及びリン原子からなる群より選ばれる少なくとも一つであることが好ましい。また、金属原子は、例えば鉄原子及び銅原子の少なくとも一方であることが好ましい。 The oxygen reduction catalyst 2 that can be supported on the conductor 1 is not particularly limited, but preferably contains platinum. The oxygen reduction catalyst 2 may also include carbon particles doped with at least one nonmetal atom and a metal atom. There are no particular limitations on the atoms doped into the carbon particles. The nonmetal atom is preferably at least one selected from the group consisting of, for example, a nitrogen atom, a boron atom, a sulfur atom and a phosphorus atom. The metal atom is preferably, for example, at least one of an iron atom and a copper atom.
 酸素還元触媒2はバインダーを用いて導電体1に結着していてもよい。つまり、酸素還元触媒2はバインダーを用いて導電体1の表面及び細孔内部に担持されていてもよい。これにより、酸素還元触媒2が導電体1から脱離し、酸素還元特性が低下することを抑制できる。バインダーとしては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、バインダーとしては、NAFION(登録商標)を用いることも好ましい。 The oxygen reduction catalyst 2 may be bound to the conductor 1 using a binder. That is, the oxygen reduction catalyst 2 may be supported on the surface of the conductor 1 and inside the pores using a binder. Thereby, the oxygen reduction catalyst 2 can be prevented from being detached from the conductor 1 and the oxygen reduction characteristics can be prevented from being degraded. As the binder, it is preferable to use at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM), for example. Moreover, it is also preferable to use NAFION (trademark) as a binder.
 浄化構造体10における有機物酸化反応が生じる部位(下部10b)に付着する微生物としては、被処理水30中の有機物を分解して水素イオンと電子を生成する嫌気性微生物であることが好ましい。嫌気性微生物3は、増殖に酸素を必要とせず、さらに被処理水30中の有機物を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。 It is preferable that it is an anaerobic microorganism which decomposes | disassembles the organic substance in the to-be-processed water 30, and produces | generates a hydrogen ion and an electron as microorganisms adhering to the site | part (lower part 10b) which organic substance oxidation reaction generate | occur | produces. The anaerobic microorganism 3 does not require oxygen for growth, and does not require air for oxidatively decomposing the organic matter in the water 30 to be treated. Therefore, the power required to feed the air can be significantly reduced. In addition, since the free energy obtained by microorganisms is small, it is possible to reduce the amount of sludge generated.
 浄化構造体10の下部10bに付着する嫌気性微生物は、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。 The anaerobic microorganism attached to the lower portion 10b of the purification structure 10 is preferably, for example, an electroproducing bacterium having an extracellular electron transfer mechanism. Specifically, examples of anaerobic microorganisms include, for example, bacteria belonging to the genus Geobacter, bacteria belonging to the genus Shewanella, bacteria belonging to the genus Aeromonas, bacteria belonging to the genus Geothrix, and bacteria belonging to the genus Saccharomyces.
 浄化構造体10の下部10bに、嫌気性微生物を含むバイオフィルムが重ねられて固定されることで、下部10bに嫌気性微生物が付着してもよい。なお、バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、嫌気性微生物は、バイオフィルムによらずに下部10bに付着していてもよい。また、嫌気性微生物は、下部10bの表面だけでなく、内部に付着していてもよい。 Anaerobic microorganisms may be attached to the lower portion 10 b by superimposing and fixing a biofilm including an anaerobic microorganism on the lower portion 10 b of the purification structure 10. Biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population. However, the anaerobic microorganism may be attached to the lower part 10b without depending on the biofilm. Also, the anaerobic microorganism may be attached not only to the surface of the lower portion 10 b but also to the inside.
 浄化構造体10における酸素還元反応が生じる部位(上部10a)に付着する微生物としては、気相40中の酸素と水素イオン及び電子とを反応させて水を生成する好気性微生物であることが好ましい。このような好気性微生物4としては、例えばSphingobacterium属細菌, Acinetobacterium属細菌、Acinetobacter属細菌が挙げられる。 The microorganism attached to the site (upper portion 10a) where the oxygen reduction reaction occurs in the purification structure 10 is preferably an aerobic microorganism that reacts oxygen in the gas phase 40 with hydrogen ions and electrons to generate water. . Examples of such aerobic microorganisms 4 include Sphingobacterium bacteria, Acinetobacterium bacteria, and Acinetobacter bacteria.
 浄化構造体10は、導電体1のみからなるものであってもよい。後述するように、被処理水30に嫌気性微生物3及び好気性微生物4の両方が存在している場合には、上部10aに嫌気性微生物3が付着し、下部10bに好気性微生物4が付着することで局部電池反応が生じ、有機物を酸化分解することが可能となる。また、後述するように、浄化構造体10は、酸素還元触媒2及びバインダーと共に浄化電極を構成してもよい。このような浄化電極を用いることによっても局部電池反応が生じ、有機物を酸化分解することが可能となる。 The purification structure 10 may be made of only the conductor 1. As described later, when both the anaerobic microorganism 3 and the aerobic microorganism 4 are present in the water 30 to be treated, the anaerobic microorganism 3 adheres to the upper portion 10a and the aerobic microorganism 4 adheres to the lower portion 10b. As a result, local cell reactions occur and it becomes possible to oxidatively decompose the organic matter. Further, as described later, the purification structure 10 may constitute a purification electrode together with the oxygen reduction catalyst 2 and the binder. Also by using such a purification electrode, a local cell reaction occurs, and the organic matter can be oxidized and decomposed.
 (処理槽)
 浄化装置100は、有機物を含む被処理水30を内部に保持する、略直方体状の処理槽20を備える。処理槽20の前壁23には、被処理水30を処理槽20に供給するための流入口21が設けられている。また、処理槽20の後壁24には、処理後の被処理水30を処理槽20から排出するための流出口22が設けられている。
(Treatment tank)
The purification apparatus 100 includes a substantially rectangular processing tank 20 that holds therein the water to be treated 30 containing an organic substance. The front wall 23 of the processing tank 20 is provided with an inlet 21 for supplying the water 30 to the processing tank 20. Further, the rear wall 24 of the treatment tank 20 is provided with an outlet 22 for discharging the treated water 30 after treatment from the treatment tank 20.
 被処理水30は、流入口21を通じて処理槽20の内部に連続的に供給される。また、図1及び図2に示すように、浄化構造体10は、被処理水30に浸漬するように処理槽20の内部に配置されている。そのため、処理槽20の流入口21から供給された被処理水30は、浄化構造体10に接触しながら流れ、その後、流出口22から排出される。 The treated water 30 is continuously supplied to the inside of the treatment tank 20 through the inlet 21. Further, as shown in FIG. 1 and FIG. 2, the purification structure 10 is disposed inside the treatment tank 20 so as to be immersed in the water 30 to be treated. Therefore, the water to be treated 30 supplied from the inlet 21 of the treatment tank 20 flows while being in contact with the purification structure 10 and then discharged from the outlet 22.
 浄化装置100で処理する被処理水30としては、例えば、有機性物質及び窒素を含む化合物(窒素含有化合物)の少なくとも一方からなる有機物を含有する液体とすることができる。また、被処理水30は電解液であってもよい。 The treated water 30 to be treated by the purification device 100 can be, for example, a liquid containing an organic substance composed of at least one of an organic substance and a nitrogen-containing compound (nitrogen-containing compound). The water 30 to be treated may be an electrolyte.
 次に、本実施形態の浄化装置100の作用について説明する。浄化装置100では、被処理水30を保持した処理槽20の内部に浄化構造体10を設置する。この際、図2に示すように、浄化構造体10は、導電体1の主面1aが鉛直方向Yと略平行になるように処理槽20の内部に設置される。 Next, the operation of the purification device 100 of the present embodiment will be described. In the purification device 100, the purification structure 10 is installed inside the treatment tank 20 holding the treated water 30. Under the present circumstances, as shown in FIG. 2, the purification structure 10 is installed in the inside of the processing tank 20 so that the main surface 1a of the conductor 1 may become substantially parallel to the perpendicular direction Y. As shown in FIG.
 処理槽20の内部に浄化構造体10を設置した場合、図4及び図5に示すように、浄化構造体10の上部10aの一部は、気相40及び被処理水30の水面30aに接触している。さらに、浄化構造体10の上部10aの一部は、被処理水30にも接触している。なお、上部10aと接触する被処理水30は気相40の近傍に位置するため、溶存する酸素濃度が高い状態となっている。 When the purification structure 10 is installed inside the treatment tank 20, as shown in FIGS. 4 and 5, a part of the upper portion 10a of the purification structure 10 contacts the gas phase 40 and the water surface 30a of the water 30 to be treated. doing. Furthermore, a portion of the upper portion 10 a of the purification structure 10 is also in contact with the water 30 to be treated. In addition, since the to-be-processed water 30 which contacts the upper part 10a is located in the vicinity of the gaseous phase 40, it is in the state which the oxygen concentration to melt | dissolve is high.
 浄化構造体10の下部10bは、被処理水30の内部に浸漬している。なお、浄化構造体10における鉛直方向Yの長さL1は幅方向Zの長さL2よりも長いことから、下部10bは水面30aから離れており、溶存する酸素濃度が低い状態となっている。 The lower portion 10 b of the purification structure 10 is immersed in the water 30 to be treated. Since the length L1 in the vertical direction Y in the purification structure 10 is longer than the length L2 in the width direction Z, the lower portion 10b is separated from the water surface 30a, and the dissolved oxygen concentration is low.
 そして、上述のように、浄化構造体10の上部10aと接触する被処理水30は溶存する酸素濃度が高いことから、被処理水30に好気性微生物4が含まれている場合には、上部10aに好気性微生物4が付着する。ここで、例えば導電体1が多孔質体である場合には、毛管現象により被処理水30が上昇し、導電体1の上端まで被処理水30を保持することができる。そのため、浄化構造体10の上部全体に好気性微生物4を付着させることができる。 And as above-mentioned, since the to-be-processed water 30 which contacts the upper part 10a of the purification structure 10 has a high oxygen concentration to be dissolved, when the to-be-processed water 30 contains the aerobic microorganisms 4, The aerobic microorganism 4 adheres to 10a. Here, for example, when the conductor 1 is a porous body, the water to be treated 30 rises by capillary action, and the water to be treated 30 can be held up to the upper end of the conductor 1. Therefore, the aerobic microorganism 4 can be attached to the entire upper portion of the purification structure 10.
 また、浄化構造体10の下部10bは水面30aから離れており、周囲の酸素濃度が低いことから、下部10bには嫌気性微生物3が付着する。 Further, the lower portion 10b of the purification structure 10 is separated from the water surface 30a, and the surrounding area has a low concentration of oxygen, so the anaerobic microorganism 3 adheres to the lower portion 10b.
 このような構成の浄化装置100では、浄化構造体10の下部10bにおいて、嫌気性微生物3の代謝により被処理水30に含まれる有機物の酸化反応が進行し、水素イオン(H)と電子(e)が生成する。酸化反応により生成した水素イオンは、浄化構造体10の内部空間を通って浄化構造体10の上部10aに移動する。さらに酸化反応により生成した電子は、導電体1を介して浄化構造体10の上部10aに移動する。 In the purification device 100 having such a configuration, in the lower portion 10b of the purification structure 10, the oxidation reaction of the organic substance contained in the treated water 30 proceeds by the metabolism of the anaerobic microorganism 3, and hydrogen ions (H + ) and electrons ( e -) is generated. The hydrogen ions generated by the oxidation reaction move to the upper portion 10 a of the purification structure 10 through the internal space of the purification structure 10. Further, electrons generated by the oxidation reaction move to the upper portion 10 a of the purification structure 10 through the conductor 1.
 そして、浄化構造体10の上部10aにおいて、下部10bから移動した電子及び水素イオンが、酸素還元触媒及び/又は好気性微生物の作用により酸素分子と反応して水が生成する。このように、浄化構造体10の下部10bで有機物の酸化反応が進行し、上部10aで酸素の還元反応が進行することから、浄化装置全体として局部電池回路が形成される。 Then, in the upper portion 10a of the purification structure 10, electrons and hydrogen ions transferred from the lower portion 10b react with oxygen molecules by the action of the oxygen reduction catalyst and / or the aerobic microorganism to generate water. Thus, the oxidation reaction of the organic matter proceeds in the lower portion 10b of the purification structure 10, and the reduction reaction of oxygen proceeds in the upper portion 10a, so that a local battery circuit is formed as the entire purification device.
 具体的には、例えば、被処理水30が有機性物質としてグルコースを含有する場合、上部10a及び下部10bで生じる局部電池反応(半セル反応)は、以下の式で表される。
・下部10b(アノード):C12+6HO→6CO+24H+24e
・上部10a(カソード):6O+24H+24e→12H
Specifically, for example, when the water 30 to be treated contains glucose as an organic substance, the local cell reaction (half cell reaction) occurring in the upper portion 10a and the lower portion 10b is represented by the following equation.
Lower part 10 b (anode): C 6 H 12 O 6 +6 H 2 O → 6 CO 2 + 24 H + + 24 e
Upper 10a (cathode): 6O 2 + 24H + + 24e - → 12H 2 O
 このように、下部10bにおける嫌気性微生物3の触媒作用により、被処理水30中の有機物を分解し、被処理水30を浄化することが可能となる。 As described above, the catalytic action of the anaerobic microorganism 3 in the lower portion 10 b can decompose the organic matter in the water to be treated 30 and purify the water to be treated 30.
 ここで、浄化構造体10は、気相40中の酸素を還元する酸素還元反応が生じる部位(上部10a)と、被処理水30中の有機物を酸化して水素イオンと電子を生成する有機物酸化反応が生じる部位(下部10b)との間に電位差が生じることが好ましい。その結果、導電体1を通じて有機物酸化反応が生じる部位から酸素還元反応が生じる部位へ電子が伝導することが好ましい。 Here, the purification structure 10 is a portion (upper portion 10a) where an oxygen reduction reaction that reduces oxygen in the gas phase 40 occurs, and an organic matter oxidation that oxidizes the organic matter in the water 30 to generate hydrogen ions and electrons. Preferably, a potential difference is generated between the site where the reaction takes place (lower part 10b). As a result, it is preferable that electrons are conducted from the site where the organic substance oxidation reaction occurs through the conductor 1 to the site where the oxygen reduction reaction occurs.
 具体的には、浄化構造体10における鉛直方向Yの長さL1は、幅方向Zの長さL2よりも長いことから、上部10aと下部10bは離間する。そして、上部10aと下部10bとの間に存在する導電体1が高い電気抵抗率を有することにより、上部10aと下部10bとの間に電位差が生じる。つまり、上部10aと下部10bとの間における導電体1の電気抵抗率が比較的高くなることにより、上部10aと下部10bとを適切な電位に制御できることから、上部10aと下部10bとの間の電位差を確保することが可能となる。そして、電位差が確保されることにより、微生物の代謝が制御されることから、導電体1を通じて下部10bから上部10aへ効率的に電子が伝導し、被処理水30中の有機物の分解効率をより高めることが可能となる。さらに浄化構造体10では、電位差を確保するための外部回路などの配線及び昇圧システムなどを設ける必要がなく、上部10aと下部10bが短絡していることから、簡易な構成とすることができる。 Specifically, since the length L1 in the vertical direction Y in the purification structure 10 is longer than the length L2 in the width direction Z, the upper portion 10a and the lower portion 10b are separated. And since the conductor 1 which exists between the upper part 10a and the lower part 10b has high electrical resistivity, an electrical potential difference arises between the upper part 10a and the lower part 10b. That is, since the electrical resistivity of the conductor 1 between the upper portion 10a and the lower portion 10b is relatively high, the upper portion 10a and the lower portion 10b can be controlled to an appropriate potential. It becomes possible to secure a potential difference. Then, since the potential difference is maintained, and the metabolism of the microorganism is controlled, electrons are efficiently conducted from the lower portion 10b to the upper portion 10a through the conductor 1, and the decomposition efficiency of the organic matter in the water 30 to be treated is further enhanced. It is possible to enhance. Furthermore, in the purification structure 10, there is no need to provide wiring such as an external circuit for securing a potential difference and a boosting system, and the upper portion 10a and the lower portion 10b are short-circuited.
 浄化構造体10において、上部10aと下部10bとの間に電位差を生じさせる方法は、幅方向Zの長さL2に対して鉛直方向Yの長さL1を大きくし、上部10aと下部10bの間の距離を長くする方法がある。また、浄化構造体10における導電体1自体の電気抵抗率を高める方法がある。なお、上部10aと下部10bとの間における好ましい電位差は、カソードとなる上部10aで生じる酸素還元反応の理論電位、カソードとなる下部10bで生じる有機物酸化反応の理論電位、及び過電圧により求めることができる。 In the purification structure 10, in the method of generating a potential difference between the upper portion 10a and the lower portion 10b, the length L1 in the vertical direction Y is made larger than the length L2 in the width direction Z, and between the upper portion 10a and the lower portion 10b. There is a way to increase the distance of There is also a method of increasing the electrical resistivity of the conductor 1 itself in the purification structure 10. The preferable potential difference between the upper portion 10a and the lower portion 10b can be determined by the theoretical potential of the oxygen reduction reaction generated in the upper portion 10a serving as the cathode, the theoretical potential of the organic substance oxidation reaction occurring in the lower portion 10b serving as the cathode, and overvoltage. .
 このように、本実施形態の浄化装置100は、導電体1を有し、酸素還元反応を生じさせる浄化構造体10と、浄化構造体10と浄化構造体10により浄化される被処理水30とを内部に保持するための処理槽20と、を備える。そして、浄化構造体10の一部が気相40と接触し、かつ、浄化構造体10の他部が被処理水30と接触する。浄化構造体10は、鉛直方向Yの長さL1が鉛直方向Yに垂直な幅方向Zの長さL2よりも長くなるように、処理槽20の内部に設置される。そして、浄化構造体10における、被処理水30中の有機物を酸化して水素イオンと電子を生成する有機物酸化反応が生じる部位(下部10b)には、嫌気性微生物3が付着していることが好ましい。 Thus, the purification device 100 of the present embodiment includes the purification structure 10 having the conductor 1 and causing an oxygen reduction reaction, and the treated water 30 to be purified by the purification structure 10 and the purification structure 10. And a processing tank 20 for holding the inside thereof. Then, a part of the purification structure 10 contacts the gas phase 40, and the other part of the purification structure 10 contacts the water 30 to be treated. The purification structure 10 is installed inside the processing tank 20 so that the length L1 in the vertical direction Y is longer than the length L2 in the width direction Z perpendicular to the vertical direction Y. Then, the anaerobic microorganism 3 adheres to a portion (lower portion 10b) where the organic substance oxidation reaction occurs in which the organic substance in the treated water 30 is oxidized to generate hydrogen ions and electrons in the purification structure 10 preferable.
 浄化装置100は、電子移動反応を介して、被処理水30に含まれる有機物を効率的に酸化分解できる。具体的には、被処理水30に含まれる有機物は、嫌気性微生物3の代謝、すなわち嫌気性微生物3の増殖によって分解され除去される。そして、この酸化分解処理は嫌気性条件下で行われるため、好気性条件下で行われる場合よりも、有機物から微生物の新しい細胞への変換効率を低く抑えることができる。このため、活性汚泥法を用いる場合よりも、微生物の増殖、すなわち汚泥の発生量を低減することが可能となる。また、通常の嫌気性処理では臭気性のメタンガスが生成されるが、本実施形態における酸化分解処理では、代謝生成物は二酸化炭素ガスであるため、メタンガスの生成を抑制できる。さらに、浄化装置100は、導電体1を有する浄化構造体10と処理槽20とにより構成されているため、構造が簡易であり、製造コストや維持管理コストを抑制することが可能となる。 The purification device 100 can efficiently oxidize and decompose the organic matter contained in the water to be treated 30 through the electron transfer reaction. Specifically, the organic matter contained in the water to be treated 30 is decomposed and removed by the metabolism of the anaerobic microorganism 3, that is, the growth of the anaerobic microorganism 3. And since this oxidative decomposition treatment is carried out under anaerobic conditions, the conversion efficiency from organic matter to new cells of microorganisms can be suppressed to a lower level than when carried out under aerobic conditions. For this reason, it is possible to reduce the growth of microorganisms, that is, the amount of generated sludge, as compared with the case of using the activated sludge method. Moreover, although the odorous methane gas is produced | generated by a normal anaerobic process, in the oxidation decomposition process in this embodiment, since a metabolic product is carbon dioxide gas, generation | occurrence | production of methane gas can be suppressed. Furthermore, since the purification device 100 is configured by the purification structure 10 having the conductor 1 and the treatment tank 20, the structure is simple, and the manufacturing cost and the maintenance cost can be suppressed.
 また、浄化構造体10は、鉛直方向Yの長さL1が長くなるように処理槽20に設置されることから、下部10bは水面30aから離れ、周囲の酸素濃度は低下する。そのため、下部10bには嫌気性微生物3が多く付着することから、被処理水30中の有機物を効率的に酸化分解することが可能となる。 In addition, since the purification structure 10 is installed in the treatment tank 20 so that the length L1 in the vertical direction Y becomes long, the lower portion 10b is separated from the water surface 30a, and the surrounding oxygen concentration decreases. Therefore, since many anaerobic microorganisms 3 adhere to lower part 10b, it becomes possible to oxidize and decompose the organic substance in to-be-processed water 30 efficiently.
 浄化構造体10は、気相40中の酸素を還元する酸素還元反応が生じる部位(上部10a)と、被処理水30中の有機物を酸化して水素イオンと電子を生成する有機物酸化反応が生じる部位(下部10b)との間に電位差が生じることが好ましい。これにより、導電体1を通じて有機物酸化反応が生じる部位から酸素還元反応が生じる部位へ効率的に電子を伝導することができる。その結果、電子伝導を伴う嫌気性微生物3の代謝も促進される。また、嫌気性微生物3の代謝が促進される下部10bには、嫌気性微生物3が泳動して付着する。そのため、下部10bにおいて、被処理水30における有機物の分解効率をより高めることが可能となる。 In the purification structure 10, an oxygen reduction reaction that reduces oxygen in the gas phase 40 (upper part 10a) and an organic matter oxidation reaction that oxidizes the organic matter in the water 30 to generate hydrogen ions and electrons occur Preferably, a potential difference is generated between the site (lower part 10b). Thus, electrons can be efficiently conducted from the site where the organic substance oxidation reaction occurs through the conductor 1 to the site where the oxygen reduction reaction occurs. As a result, the metabolism of the anaerobic microorganism 3 accompanied by electron conduction is also promoted. In addition, the anaerobic microorganism 3 migrates and adheres to the lower portion 10b where the metabolism of the anaerobic microorganism 3 is promoted. Therefore, in the lower portion 10b, it is possible to further increase the decomposition efficiency of the organic matter in the water 30 to be treated.
 浄化構造体10における、気相40中の酸素を還元する酸素還元反応が生じる部位(上部10a)には、好気性微生物4が付着していることが好ましい。また、浄化構造体10における、気相40中の酸素を還元する酸素還元反応が生じる部位(上部10a)には、酸素還元触媒2が担持されていることが好ましい。これにより、浄化構造体10の下部10bから移動した電子及び水素イオンが、酸素還元触媒2及び/又は好気性微生物4の作用により酸素分子と反応しやすくなる。そのため、嫌気性微生物3の代謝が促進し、有機物の酸化分解をより効率的に行うことが可能となる It is preferable that the aerobic microorganism 4 adheres to the part (upper part 10a) which the oxygen reduction reaction which reduce | restores the oxygen in the gaseous phase 40 in the purification | cleaning structure 10 produces. In addition, it is preferable that the oxygen reduction catalyst 2 be supported on a part (upper part 10 a) in the purification structure 10 where the oxygen reduction reaction for reducing the oxygen in the gas phase 40 occurs. Thereby, electrons and hydrogen ions transferred from the lower portion 10 b of the purification structure 10 easily react with oxygen molecules by the action of the oxygen reduction catalyst 2 and / or the aerobic microorganism 4. Therefore, the metabolism of the anaerobic microorganism 3 is promoted, and the oxidative decomposition of the organic matter can be performed more efficiently.
 上述のように、浄化構造体10の下部10bが水面30aから離れることにより、下部10bには嫌気性微生物3が付着しやすくなる。そのため、図1乃至図3に示すように、浄化構造体10は、導電体1の主面1aが鉛直方向Yと略平行になるように処理槽20の内部に配設されることが好ましい。 As described above, when the lower portion 10b of the purification structure 10 is separated from the water surface 30a, the anaerobic microorganism 3 easily adheres to the lower portion 10b. Therefore, as shown in FIGS. 1 to 3, the purification structure 10 is preferably disposed inside the processing tank 20 so that the main surface 1 a of the conductor 1 is substantially parallel to the vertical direction Y.
 図1乃至図3に示す浄化装置100では、一つの処理槽20の内部に一つの浄化構造体10が設置されている。しかし、本実施形態はこのような態様に限定されず、複数の浄化構造体10が処理槽20の内部に設置されていてもよい。一つの処理槽20の内部に複数の浄化構造体10が設置されていることにより、被処理水30中の有機物をより効率的に浄化することが可能となる。 In the purification device 100 shown in FIGS. 1 to 3, one purification structure 10 is installed inside one treatment tank 20. However, the present embodiment is not limited to such an aspect, and a plurality of purification structures 10 may be installed inside the treatment tank 20. By installing the plurality of purification structures 10 inside one treatment tank 20, it becomes possible to more efficiently purify the organic matter in the water 30 to be treated.
 浄化構造体10の下部10bには、例えば、電子伝達メディエーター分子が修飾されていてもよい。または、処理槽20内の被処理水30は、電子伝達メディエーター分子を含んでいてもよい。これにより、嫌気性微生物3から下部10bへの電子移動を促進し、より効率的な液体処理を実現できる。 In the lower portion 10b of the purification structure 10, for example, an electron transfer mediator molecule may be modified. Alternatively, the treated water 30 in the treatment tank 20 may contain an electron transfer mediator molecule. Thereby, electron transfer from the anaerobic microorganism 3 to the lower portion 10b can be promoted, and more efficient liquid processing can be realized.
 具体的には、嫌気性微生物3による代謝機構では、細胞内または最終電子受容体との間で電子の授受が行われる。被処理水30中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を下部10bへと受け渡す。この結果、下部10bにおける有機物の酸化分解速度を高めることが可能になる。なお、メディエーター分子が下部10bの表面に担持されていても同様の効果が得られる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。 Specifically, in the metabolic mechanism by the anaerobic microorganism 3, electrons are exchanged in cells or with the final electron acceptor. When a mediator molecule is introduced into the water 30 to be treated, the mediator molecule acts as a final electron acceptor for metabolism and delivers the received electron to the lower part 10b. As a result, it is possible to increase the rate of oxidative decomposition of the organic matter in the lower portion 10b. The same effect can be obtained even if the mediator molecule is supported on the surface of the lower portion 10b. Such electron transfer mediator molecules are not particularly limited. As the electron transfer mediator molecule, for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methyl viologen can be used.
[浄化電極]
 次に、本実施形態に係る浄化電極について説明する。なお、上述の浄化装置と同一構成には同一符号を付し、重複する説明は省略する。
[Purification electrode]
Next, the purification electrode according to the present embodiment will be described. In addition, the same code | symbol is attached | subjected to the same structure as the above-mentioned purification apparatus, and the overlapping description is abbreviate | omitted.
 本実施形態の浄化電極は、浄化装置に用いられものであって、導電体1と、導電体1に担持される酸素還元触媒2と、バインダーのみからなる。つまり、浄化電極は、浄化構造体10である導電体1と、導電体1の酸素還元反応が生じる部位(上部10a)に担持される酸素還元触媒2と、酸素還元触媒2を導電体1に結着するバインダーのみからなるものである。このような浄化電極を被処理水30に浸漬することにより、図4に示すように、上部10aでは、酸素還元触媒2の作用により、気相40中の酸素を還元する酸素還元反応が生じる。また、下部10bでは、嫌気性微生物3の作用により、被処理水30中の有機物を酸化して水素イオンと電子を生成する有機物酸化反応が生じる。さらに、浄化構造体10の上部10aと下部10bとの間に電位差が生じるように配置することにより、導電体1を通じて下部10bから上部10aへ効率的に電子が伝導する。その結果、電子伝導を伴う嫌気性微生物3の代謝も促進されることから、被処理水30における有機物の分解効率をより高めることが可能となる。 The purification electrode of the present embodiment is used in a purification device, and comprises only the conductor 1, the oxygen reduction catalyst 2 supported on the conductor 1, and the binder. That is, the purification electrode includes the conductor 1 as the purification structure 10, the oxygen reduction catalyst 2 supported on the portion (upper portion 10a) where the oxygen reduction reaction of the conductor 1 occurs, and the oxygen reduction catalyst 2 as the conductor 1 It consists only of the binder to bind. By immersing such a purification electrode in the water 30 to be treated, as shown in FIG. 4, in the upper portion 10 a, an oxygen reduction reaction that reduces oxygen in the gas phase 40 occurs by the action of the oxygen reduction catalyst 2. In the lower portion 10b, the action of the anaerobic microorganism 3 causes an organic matter oxidation reaction that oxidizes the organic matter in the water to be treated 30 to generate hydrogen ions and electrons. Furthermore, by arranging the potential difference between the upper portion 10a and the lower portion 10b of the purification structure 10, electrons are efficiently conducted from the lower portion 10b to the upper portion 10a through the conductor 1. As a result, since the metabolism of the anaerobic microorganism 3 accompanied by electron conduction is also promoted, it is possible to further enhance the decomposition efficiency of the organic matter in the water 30 to be treated.
 なお、浄化電極の用途は、処理槽20を備える浄化装置100に限定されるものではない。つまり、浄化電極は、嫌気性微生物が存在する被処理水に浸漬するだけで、電子移動反応を介して、被処理水30に含まれる有機物を効率的に酸化分解することができる。そのため、本実施形態の浄化電極は、処理槽20を用いない浄化装置にも適用することができる。 The application of the purification electrode is not limited to the purification device 100 including the treatment tank 20. That is, the purification electrode can efficiently oxidize and decompose the organic matter contained in the water to be treated 30 through the electron transfer reaction only by immersing in the water to be treated in which the anaerobic microorganism is present. Therefore, the purification electrode of the present embodiment can be applied to a purification device that does not use the treatment tank 20.
 そのため、浄化電極は、導電体1を有し、酸素還元反応を生じさせる浄化構造体10を備え、浄化構造体10の一部が気相と接触し、かつ、浄化構造体10の他部が被処理水30と接触する浄化装置に用いられることが好ましい。このような浄化装置では、浄化構造体10は、鉛直方向Yの長さL1が鉛直方向Yに垂直な幅方向Zの長さL1よりも長くなるように設置される。そして、浄化電極は、導電体1と、導電体1に担持される酸素還元触媒2と、バインダーのみからなることが好ましい。このような浄化電極を用いることにより、バイオガスの発生を抑制しつつも、簡易なシステムで被処理水を浄化することが可能となる。また、浄化電極に対して外部から運転に必要な電力を付与する必要がなく、浄化電極を被処理水に挿入するだけで運転できるため、電力供給が困難な場所でも被処理水の浄化を行うことが可能となる。 Therefore, the purification electrode includes the conductor 1 and is provided with the purification structure 10 causing the oxygen reduction reaction, a part of the purification structure 10 is in contact with the gas phase, and the other part of the purification structure 10 is It is preferable to use for the purification apparatus which contacts the to-be-processed water 30. FIG. In such a purification device, the purification structure 10 is installed such that the length L1 in the vertical direction Y is longer than the length L1 in the width direction Z perpendicular to the vertical direction Y. The purification electrode preferably comprises only the conductor 1, the oxygen reduction catalyst 2 supported on the conductor 1, and the binder. By using such a purification electrode, it is possible to purify the water to be treated with a simple system while suppressing the generation of biogas. In addition, it is not necessary to apply power necessary for operation from the outside to the purification electrode, and the operation can be performed only by inserting the purification electrode into the water to be treated. It becomes possible.
 以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.
[実施例1]
 実施例1では、導電体に酸素還元触媒を担持した浄化構造体を作製した。具体的には、まず、導電体として、縦5mm、横5mm、長さ100mmの角柱状のカーボンフェルトを8本準備した。
Example 1
In Example 1, a purification structure having an oxygen reduction catalyst supported on a conductor was produced. Specifically, first, eight square columnar carbon felts 5 mm long, 5 mm wide, and 100 mm long were prepared as a conductor.
 次に、鉄及び窒素を担持したカーボンブラックからなる炭素系触媒80mgを、濃度が5質量%のナフィオン溶液0.76mL及びエタノール2.8mLの混合溶液に分散させることにより、触媒スラリーを調製した。そして、各カーボンフェルトの上部20mmの部分に、得られた触媒スラリーを50μLずつ4面に垂らして乾燥した。これにより、カーボンフェルトの上部に炭素系触媒を担持した浄化構造体を8本得た。なお、本例では、8本の浄化構造体を1セットとし、合計で2セット作製した。 Next, a catalyst slurry was prepared by dispersing 80 mg of a carbon-based catalyst composed of carbon black supporting iron and nitrogen in a mixed solution of 0.76 mL of a 5% by mass Nafion solution and 2.8 mL of ethanol. Then, 50 μL each of the obtained catalyst slurry was dropped on four faces of the upper 20 mm portion of each carbon felt to dry it. As a result, eight purification structures having a carbon-based catalyst supported on the top of the carbon felt were obtained. In addition, in this example, eight purification structures were made into one set, and two sets in total were produced.
[実施例2]
 実施例1で使用した、縦5mm、横5mm、長さ100mmの角柱状のカーボンフェルトを8本準備した。そして、当該カーボンフェルトをそのまま浄化構造体として使用した。なお、本例も、8本の浄化構造体を1セットとし、合計で2セット作製した。
Example 2
Eight square columnar carbon felts 5 mm long, 5 mm wide and 100 mm long used in Example 1 were prepared. And the said carbon felt was used as a purification structure as it was. In addition, also in this example, eight purification structures were regarded as one set, and two sets in total were prepared.
[評価]
 実施例1及び実施例2で得られた浄化構造体を被処理水である有機性廃水に浸漬し、28日間運転した後における被処理水の浄化率を測定した。
[Evaluation]
The purification structures obtained in Example 1 and Example 2 were immersed in the organic wastewater as the water to be treated, and the purification rate of the water to be treated after operating for 28 days was measured.
 具体的には、まず、容器として、容量が100mLのバイアル瓶を準備した。そして、バイアル瓶の内部に、浄化構造体を鉛直方向に1セットずつ設置し、さらに有機性廃水を注入した。この際、有機性廃水の注入量は、浄化構造体の下から80mmが有機性廃水に浸かるように調整した。具体的には、1本のバイアル瓶の内部に、8本の浄化構造体と48mLの有機性廃水とを入れることにより、下から80mmが有機性廃水に浸かるようにした。なお、有機性廃水としては、全有機体炭素(TOC)が272mg/Lの液体を使用した。 Specifically, first, a vial having a volume of 100 mL was prepared as a container. Then, one set of purification structures was installed in the vertical direction inside the vial, and organic wastewater was further injected. At this time, the injection amount of the organic wastewater was adjusted so that 80 mm from the bottom of the purification structure was immersed in the organic wastewater. Specifically, by putting eight purification structures and 48 mL of organic wastewater into the inside of one vial, 80 mm from the bottom was immersed in the organic wastewater. In addition, as organic wastewater, a liquid with a total organic carbon (TOC) of 272 mg / L was used.
 さらに、バイアル瓶の有機性廃水には、微生物燃料電池用の種菌を入れた。そして、バイアル瓶に、浄化構造体と有機性廃水と種菌を入れた後に密閉することにより、実施例1及び実施例2の浄化装置(バッチ系)を2組ずつ作製した。なお、各例の浄化装置では、装置外部から内部に酸素が連続的に供給されるように調整した。 In addition, the organic wastewater of the vial contained the seed for the microbial fuel cell. Then, after putting the purification structure, the organic wastewater and the inoculum into a vial and sealing the container, two sets of purification devices (batch systems) of Example 1 and Example 2 were produced. In addition, in the purification apparatus of each example, it adjusted so that oxygen could be continuously supplied inside from an apparatus exterior.
 得られた実施例1-1及び1-2の浄化装置並びに実施例2-1及び2-2の浄化装置をそれぞれ28日間運転した。この際、一週間に2回ずつ有機性廃水のTOCを測定した。なお、TOCの測定毎に浄化構造体及び有機性廃水を新しいバイアル瓶に移し、さらに新たな有機性廃水を60mL注入した。また、各例の浄化装置を28日間運転した後に、有機性廃水中のTOCを測定した。 The resulting purifiers of Examples 1-1 and 1-2 and the purifiers of Examples 2-1 and 2-2 were each operated for 28 days. At this time, TOC of the organic wastewater was measured twice a week. In addition, the purification structure and the organic wastewater were transferred to a new vial for each TOC measurement, and 60 mL of new organic wastewater was further injected. In addition, after operating the purifier of each example for 28 days, TOC in organic wastewater was measured.
 1週間に2回及び28日間運転後に1回の合計9回のTOC測定結果の平均値を、図6に示す。図6に示すように、実施例1及び実施例2の浄化構造体の両方とも、TOCが処理前と比べて半分以下となっており、有機性廃水が浄化されていることが分かる。さらに、酸素還元触媒を担持した実施例1-1及び1-2と、酸素還元触媒を担持していない実施例2-1及び2-2を比較すると、実施例1-1及び1-2の方が、TOCが低下していることが分かる。そのため、浄化構造体に酸素還元触媒を担持することにより、酸素還元反応を促進し、より効率的に被処理水を浄化できることが分かる。 The average value of the TOC measurement results of a total of nine times twice a week and one time after operation for 28 days is shown in FIG. As shown in FIG. 6, in both of the purification structures of Example 1 and Example 2, the TOC is half or less compared to that before the treatment, and it can be seen that the organic wastewater is purified. Furthermore, when Examples 1-1 and 1-2 carrying an oxygen reduction catalyst and Examples 2-1 and 2-2 not carrying an oxygen reduction catalyst are compared, One can see that the TOC is falling. Therefore, it is understood that the oxygen reduction reaction can be promoted and the water to be treated can be purified more efficiently by supporting the oxygen reduction catalyst on the purification structure.
 このように、酸素還元触媒を担持した実施例1の浄化構造体は、酸素還元触媒を担持していない実施例2の浄化構造体よりも、より効率的に有機物を酸化することができる。ただ、酸素還元触媒を担持していない浄化構造体でもTOCが処理前と比べて半分以下となっていることから、導電体のみからなる浄化構造体も高い浄化性能を発揮できることが分かる。 Thus, the purification structure of Example 1 carrying an oxygen reduction catalyst can oxidize organic matter more efficiently than the purification structure of Example 2 carrying no oxygen reduction catalyst. However, even if the purification structure which does not support the oxygen reduction catalyst has a TOC of half or less compared to that before the treatment, it can be seen that the purification structure consisting only of the conductor can also exhibit high purification performance.
 さらに、28日間運転した後における実施例1-1及び1-2並びに実施例2-1及び2-2の浄化構造体から、全真菌に対するGeobacter菌の比率(Ratio of Geobacter)を測定した。具体的には、まず、実施例1-1及び1-2並びに実施例2-1及び2-2の浄化構造体の下部に付着した微生物から、DNAを抽出した。次に、抽出したDNAを用い、定量PCRにより、全真菌およびGeobacter菌のDNA濃度を定量した。そして、数式1より、全真菌に対するGeobacter菌の比率を算出した。
Figure JPOXMLDOC01-appb-M000001
Furthermore, the ratio of Geobacter to total fungi (Ratio of Geobacter) was determined from the purified structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2 after 28 days of operation. Specifically, first, DNA was extracted from the microorganisms attached to the lower part of the purification structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2. Next, using extracted DNA, the DNA concentration of all fungi and Geobacter bacteria was quantified by quantitative PCR. And the ratio of Geobacter bacteria to all fungi was calculated from Formula 1.
Figure JPOXMLDOC01-appb-M000001
 なお、全真菌のDNA濃度の測定に用いた検量線は、大腸菌から抽出したDNAおよび下記のプライマーを用いた定量PCRより得た。また、括弧内は塩基配列を示した。
  B1055F (5’-ATG GYT GTC GTC AGCT-3’)
  B1392R (5’-ACG GGC GGT GTG TAC-3’)
 また、Geobacter菌のDNA濃度の測定に用いた検量線は、geobacter sulfurreducensから抽出したDNAおよび下記のプライマーを用いた定量PCRより得た。なお、括弧内は塩基配列を示した。
  Geo494F (5’-AGG AAG CAC CGG CTAACT CC-3’)
  Geo825R (5’-TAC CCG CRA CAC CTA GT-3’)
The calibration curve used for measuring the DNA concentration of all fungi was obtained from quantitative PCR using DNA extracted from E. coli and the following primers. Also, the parenthesis indicates the base sequence.
B1055F (5'-ATG GYT GTC GTC AGCT-3 ')
B1392R (5'-ACG GGC GGT GTG TAC-3 ')
Moreover, the calibration curve used for measurement of the DNA concentration of Geobacter bacteria was obtained from quantitative PCR using DNA extracted from geobacter sulfurreducens and the following primers. In parentheses, the base sequence is shown.
Geo494F (5'-AGG AAG CAC CGG CTAACT CC-3 ')
Geo 825 R (5'-TAC CCG CRA CAC CTA GT-3 ')
 上述のようにして算出した、実施例1-1及び1-2並びに実施例2-1及び2-2の浄化構造体における全真菌に対するGeobacter菌の比率を図7に示す。図7に示すように、酸素還元触媒を用いた実施例1-1及び1-2の浄化構造体は、酸素還元触媒を用いていない実施例2-1及び2-2の浄化構造体と比べてGeobacter菌の比率が高いことが分かる。つまり、実施例1-1及び1-2の浄化構造体の方が、電流生成菌が付着している割合が高いことが分かる。このことから、酸素還元触媒を担持することにより、浄化構造体の上部において酸素還元反応が進行し、それに伴い下部から上部への電子が移動し易くなるため、嫌気性微生物の増殖が促進されることが分かる。 The ratio of Geobacter to total fungi in the purified structures of Examples 1-1 and 1-2 and Examples 2-1 and 2-2 calculated as described above is shown in FIG. As shown in FIG. 7, the purification structures of Examples 1-1 and 1-2 using the oxygen reduction catalyst are compared with the purification structures of Examples 2-1 and 2-2 not using the oxygen reduction catalyst. Thus, it can be seen that the proportion of Geobacter bacteria is high. That is, it is understood that the purification structures of Examples 1-1 and 1-2 have a higher percentage of the current generating bacteria attached. From this, by supporting the oxygen reduction catalyst, the oxygen reduction reaction proceeds in the upper part of the purification structure, and the electrons from the lower part to the upper part are easily moved accordingly, thereby promoting the growth of the anaerobic microorganism. I understand that.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。また、本実施形態に係る浄化装置及び浄化電極は、有機物を含む液体、例えば各種産業の工場などから発生する廃水や、下水汚泥などの有機性廃水などの処理に広く適用できる。さらに、浄化装置及び浄化電極は、水域の環境改善などにも利用できる。 As mentioned above, although this embodiment was described, this embodiment is not limited to these, A various deformation | transformation is possible within the range of the summary of this embodiment. In addition, the purification device and the purification electrode according to the present embodiment can be widely applied to the treatment of a liquid containing an organic substance, for example, wastewater generated from factories of various industries or organic wastewater such as sewage sludge. Furthermore, the purification device and the purification electrode can be used to improve the environment of the water area.
 特願2017-230016号(出願日:2017年11月30日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2017-230016 (filing date: November 30, 2017) are incorporated herein by reference.
 本開示によれば、構造が簡易であり、かつ、廃水を効率的に浄化することが可能な浄化装置、及び当該浄化装置を用いられる浄化電極を得ることができる。 According to the present disclosure, it is possible to obtain a purification device having a simple structure and capable of efficiently purifying waste water, and a purification electrode using the purification device.
 1,1A 導電体
 10a 上部(酸素還元反応が生じる部位)
 10b 下部(有機物酸化反応が生じる部位)
 2 酸素還元触媒
 3 嫌気性微生物
 4 好気性微生物
 10,10A 浄化構造体
 20 処理槽
 30 被処理水
 40 気相
 100 浄化装置
1,1A Conductor 10a upper part (site where oxygen reduction reaction occurs)
10b Lower part (site where organic substance oxidation reaction occurs)
2 Oxygen reduction catalyst 3 Anaerobic microorganism 4 Aerobic microorganism 10, 10A Purification structure 20 Treatment tank 30 Water to be treated 40 Gas phase 100 Purification device

Claims (9)

  1.  導電体を有し、酸素還元反応を生じさせる浄化構造体と、
     前記浄化構造体と前記浄化構造体により浄化される被処理水とを内部に保持するための処理槽と、
     を備え、
     前記浄化構造体の一部が気相と接触し、かつ、前記浄化構造体の他部が前記被処理水と接触し、
     前記浄化構造体は、鉛直方向の長さが前記鉛直方向に垂直な幅方向の長さよりも長くなるように、前記処理槽の内部に設置される、浄化装置。
    A purification structure having a conductor and causing an oxygen reduction reaction;
    A treatment tank for internally holding the purification structure and the water to be treated which is purified by the purification structure;
    Equipped with
    A part of the purification structure is in contact with the gas phase, and the other part of the purification structure is in contact with the water to be treated,
    The purification apparatus is installed inside the processing tank such that the length in the vertical direction is longer than the length in the width direction perpendicular to the vertical direction.
  2.  前記浄化構造体は、前記気相中の酸素を還元する酸素還元反応が生じる部位と、前記被処理水中の有機物を酸化して水素イオンと電子を生成する有機物酸化反応が生じる部位との間に電位差が生じ、前記導電体を通じて前記有機物酸化反応が生じる部位から前記酸素還元反応が生じる部位へ前記電子が伝導する、請求項1に記載の浄化装置。 The purification structure is between a site where an oxygen reduction reaction that reduces oxygen in the gas phase takes place and a site where an organic matter oxidation reaction that produces hydrogen ions and electrons by oxidizing organic substances in the water to be treated occurs. The purification device according to claim 1, wherein a potential difference is generated, and the electrons are conducted from the site where the organic substance oxidation reaction occurs to the site where the oxygen reduction reaction occurs through the conductor.
  3.  前記浄化構造体における、前記気相中の酸素を還元する酸素還元反応が生じる部位には、好気性微生物が付着している、請求項1又は2に記載の浄化装置。 The purification device according to claim 1 or 2, wherein an aerobic microorganism is attached to a portion of the purification structure in which an oxygen reduction reaction for reducing oxygen in the gas phase occurs.
  4.  前記浄化構造体における、前記気相中の酸素を還元する酸素還元反応が生じる部位には、酸素還元触媒が担持されている、請求項1乃至3のいずれか一項に記載の浄化装置。 The purification apparatus according to any one of claims 1 to 3, wherein an oxygen reduction catalyst is supported at a site where an oxygen reduction reaction for reducing oxygen in the gas phase occurs in the purification structure.
  5.  前記浄化構造体における、前記被処理水中の有機物を酸化して水素イオンと電子を生成する有機物酸化反応が生じる部位には、嫌気性微生物が付着している、請求項1乃至4のいずれか一項に記載の浄化装置。 The anaerobic microbe adheres to the site | part which the organic substance oxidation reaction which oxidizes the organic substance in the said to-be-processed water in the said purification structure, and produces | generates a hydrogen ion and an electron occurs. The purification device as described in a paragraph.
  6.  前記浄化構造体の形状は、板状、棒状又は紐状である、請求項1乃至5のいずれか一項に記載の浄化装置。 The purification device according to any one of claims 1 to 5, wherein a shape of the purification structure is a plate shape, a rod shape, or a string shape.
  7.  複数の前記浄化構造体が前記処理槽の内部に設置されている、請求項1乃至6のいずれか一項に記載の浄化装置。 The purification apparatus according to any one of claims 1 to 6, wherein a plurality of the purification structures are installed inside the treatment tank.
  8.  請求項1乃至7のいずれか一項に記載の浄化装置に用いられる浄化電極であって、
     前記導電体と、前記導電体に担持される酸素還元触媒と、バインダーのみからなる浄化電極。
    It is a purification electrode used for the purification apparatus as described in any one of Claims 1 thru | or 7, Comprising:
    A purification electrode comprising only the conductor, an oxygen reduction catalyst supported on the conductor, and a binder.
  9.  導電体を有し、酸素還元反応を生じさせる浄化構造体を備え、前記浄化構造体の一部が気相と接触し、かつ、前記浄化構造体の他部が被処理水と接触し、前記浄化構造体は、鉛直方向の長さが前記鉛直方向に垂直な幅方向の長さよりも長くなるように設置される浄化装置に用いられる浄化電極であって、
     前記導電体と、前記導電体に担持される酸素還元触媒と、バインダーのみからなる浄化電極。
    A purification structure having a conductor and causing an oxygen reduction reaction, wherein a part of the purification structure is in contact with a gas phase, and the other part of the purification structure is in contact with the water to be treated, The purification structure is a purification electrode used for a purification device installed so that the length in the vertical direction is longer than the length in the width direction perpendicular to the vertical direction,
    A purification electrode comprising only the conductor, an oxygen reduction catalyst supported on the conductor, and a binder.
PCT/JP2018/043342 2017-11-30 2018-11-26 Purification device and purification electrode WO2019107303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557213A JP7010303B2 (en) 2017-11-30 2018-11-26 Purification device and purification electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017230016 2017-11-30
JP2017-230016 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107303A1 true WO2019107303A1 (en) 2019-06-06

Family

ID=66664999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043342 WO2019107303A1 (en) 2017-11-30 2018-11-26 Purification device and purification electrode

Country Status (2)

Country Link
JP (1) JP7010303B2 (en)
WO (1) WO2019107303A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174573A (en) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd Electrode for oxygen reduction, and its manufacturing method
JP2014213211A (en) * 2013-04-22 2014-11-17 パナソニック株式会社 Liquid treatment apparatus
WO2016114139A1 (en) * 2015-01-15 2016-07-21 パナソニック株式会社 Microbial fuel cell system
WO2017199475A1 (en) * 2016-05-17 2017-11-23 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device
CN107381725A (en) * 2017-06-26 2017-11-24 清华大学 Air cathode and preparation method and sewage disposal system
WO2017208495A1 (en) * 2016-06-01 2017-12-07 パナソニックIpマネジメント株式会社 Purification unit and purification device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174573A (en) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd Electrode for oxygen reduction, and its manufacturing method
JP2014213211A (en) * 2013-04-22 2014-11-17 パナソニック株式会社 Liquid treatment apparatus
WO2016114139A1 (en) * 2015-01-15 2016-07-21 パナソニック株式会社 Microbial fuel cell system
WO2017199475A1 (en) * 2016-05-17 2017-11-23 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device
WO2017208495A1 (en) * 2016-06-01 2017-12-07 パナソニックIpマネジメント株式会社 Purification unit and purification device
CN107381725A (en) * 2017-06-26 2017-11-24 清华大学 Air cathode and preparation method and sewage disposal system

Also Published As

Publication number Publication date
JPWO2019107303A1 (en) 2020-11-19
JP7010303B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
Mathuriya et al. Architectural adaptations of microbial fuel cells
Gajda et al. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder
Kaewkannetra et al. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology
Song et al. Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate
US9663391B2 (en) Liquid processing apparatus
CN102800883A (en) Nitrification microbial fuel cell
EP3466895A1 (en) Purification unit and purification device
JP6643642B2 (en) Purification unit and purification device
KR101040185B1 (en) Microbial fuel cell unit equipped with functional electrodes and microbial fuel cell prepared therewith
WO2019107303A1 (en) Purification device and purification electrode
JP6447932B2 (en) Liquid processing unit and liquid processing apparatus
KR101391776B1 (en) Microbial fuel cell using sole cathodic electrode for the removal of nitrogen and organics
NL2014797B1 (en) Bio-electrochemical system for recovery of components and/or generating electrical energy from a waste stream and method there for.
JP7178085B2 (en) Microbial fuel cell and sludge decomposition treatment method
Koleva et al. Alternative biological process for livestock manure utilization and energy production using microbial fuel cells
Nyambiya et al. Generating electrical energy from bacteria: Harare waste water management case study
WO2019064889A1 (en) Liquid treatment system
JP2017148776A (en) Water treatment equipment
JP2023113427A (en) Water treatment equipment and water treatment method
WO2019078003A1 (en) Microbial fuel cell, liquid processing system, and liquid processing structure
Afrianto et al. Electrode Materials and Their Effects on Electricity Generation and Wastewater Treatment in a Microbial Fuel Cell
BR102021005323A2 (en) STACKABLE SEQUENTIAL BIOELECTROCHEMICAL SYSTEM FOR ELECTRICITY GENERATION
Prathiba et al. Recent advancements on the development of microbial fuel cells: Anode modification and scale-up challenges in upgrading anode electrode
JP2020082006A (en) Liquid treatment system
WO2019078002A1 (en) Liquid processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883731

Country of ref document: EP

Kind code of ref document: A1