WO2019107048A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2019107048A1
WO2019107048A1 PCT/JP2018/040409 JP2018040409W WO2019107048A1 WO 2019107048 A1 WO2019107048 A1 WO 2019107048A1 JP 2018040409 W JP2018040409 W JP 2018040409W WO 2019107048 A1 WO2019107048 A1 WO 2019107048A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
humidity
light emitting
light
Prior art date
Application number
PCT/JP2018/040409
Other languages
French (fr)
Japanese (ja)
Inventor
井上 正史
博幸 藤木
英司 深津
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019107048A1 publication Critical patent/WO2019107048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • Substrates to be processed include, for example, substrates for semiconductor wafers, substrates for liquid crystal displays, substrates for flat panel displays (FPDs) such as organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, and magneto-optical disks.
  • FPDs flat panel displays
  • Substrates, substrates for photomasks, ceramic substrates, substrates for solar cells, etc. are included.
  • a single-wafer substrate processing apparatus for processing substrates one by one includes a chamber, a spin chuck housed in the chamber and rotating the substrate while holding the substrate substantially horizontal, and a substrate rotated by the spin chuck And a nozzle for supplying the processing solution to the surface of the substrate.
  • a chemical solution is supplied to a substrate held by a spin chuck. Thereafter, the rinse liquid is supplied to the substrate, whereby the chemical solution on the substrate is replaced with the rinse liquid. Thereafter, a spin dry process is performed to remove the rinse solution on the substrate. In the spin dry process, the substrate is rotated at a high speed, and the rinse solution adhering to the substrate is shaken off and eliminated (dried). A common rinse solution is deionized water.
  • a liquid level (interface between air and liquid) is formed in the pattern.
  • the surface tension of the liquid acts on the contact position between the liquid level and the pattern. This surface tension is one of the causes of collapsing the pattern.
  • the humidity above the surface of the substrate is high at the time of supply of the organic solvent, the low surface tension liquid on the surface of the substrate mixes with water, and as a result, the surface tension of the low surface tension liquid supplied to the surface of the substrate Rise, which may result in the collapse of the pattern. Therefore, it is desirable to measure the humidity of the space above the surface of the substrate with a hygrometer.
  • Patent Document 2 discloses a hygrometer for measuring the humidity in the chamber.
  • the hygrometer described in Patent Document 2 measures the humidity of the space on the side of the upper space in the chamber, not in the space above the surface (upper surface) of the substrate.
  • a resistance type hygrometer that measures the humidity of the atmosphere around the humidity sensitive film based on a change in resistance associated with absorption and desorption of the humidity sensitive film, and absorption and desorption of the humidity sensitive film
  • a capacitance type hygrometer is conceivable which measures the humidity of the atmosphere around the moisture sensitive film based on the change in capacitance accompanying humidity.
  • the atmosphere in the chamber may contain the processing solution.
  • the treatment liquid is an organic solvent such as IPA
  • the moisture sensitive film of the hygrometer is altered by contact with the organic solvent, and as a result, the atmosphere in the chamber can not be accurately measured by the moisture sensitive film of the hygrometer.
  • the humidity in the chamber could not be accurately measured by the conventional hygrometer which measures the humidity by the change of the moisture sensitive film.
  • such a problem is not limited to the hygrometer that measures humidity (the concentration of water contained in the atmosphere), but also to a gas concentration measurement unit that measures the concentration of a gas other than water contained in the atmosphere in the chamber. It is a common task.
  • one of the objects of the present invention is to provide a substrate processing apparatus capable of accurately measuring the concentration of a predetermined type of gas contained in the atmosphere in the chamber.
  • Another object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of accurately measuring the humidity in the chamber and thereby suppressing or preventing pattern collapse.
  • a chamber a substrate holding unit housed in the chamber for holding a substrate, a light emitting unit having a light emitting diode, and a light receiving unit having a light receiving diode for receiving light from the light emitting diode. It is an optical path formed between a light emitting diode and the light receiving diode, and the concentration of a predetermined type of gas contained in the atmosphere around the optical path disposed to pass through a predetermined area in the chamber is determined by TDLAS.
  • a substrate processing apparatus including: a TDLAS gas concentration measurement unit having a TDLAS gas concentration measurement unit that measures according to a method.
  • TDLAS refers to tunable diode laser absorption spectroscopy.
  • the optical path formed between the light emitting unit and the light receiving unit is arranged to pass through the predetermined area in the chamber.
  • the concentration of a predetermined type of gas contained in the atmosphere around the light path is measured by the TDLAS gas concentration measurement unit. Since the atmosphere around the optical path is measured by the TDLAS method, the concentration of a predetermined type of gas contained in the atmosphere in the chamber can be measured accurately, regardless of the treatment liquid present in the chamber.
  • the predetermined area is provided in an upper space above the upper surface of the substrate held by the substrate holding unit.
  • the optical path formed between the light emitting unit and the light receiving unit passes through the space above the upper surface of the substrate held by the substrate holding unit (hereinafter simply referred to as “upper space”).
  • upper space the space above the upper surface of the substrate held by the substrate holding unit
  • thermometer having a moisture sensitive film is employed instead of the TDLAS gas concentration measuring unit as a densitometer measurement unit, the humidity sensitive film is placed in the upper space to measure the concentration of the gas contained in the atmosphere in the upper space. Need to be placed. In this case, there is a problem that the moisture sensitive film interferes with peripheral members (a nozzle for discharging the processing liquid onto the substrate, an arm for holding the nozzle, an opposing member facing the upper surface of the substrate).
  • the substrate processing apparatus further includes a cylindrical guard surrounding a periphery of the substrate holding unit.
  • the light emitting unit and the light receiving unit may be disposed outside the guard in the chamber.
  • the guard may be a transmission window formed using a material capable of transmitting the light emission wavelength of the light emitting diode, and a transmission window through which the optical path passes may be formed.
  • the light emitting unit and the light receiving unit are disposed outside the guard inside the chamber.
  • the guard is formed with a transmission window formed of a material capable of transmitting the light emission wavelength of the light emitting diode, and the light path passes through the transmission window.
  • the light path can be passed through the upper space while the light emitting unit and the light receiving unit are disposed outside the guard. Therefore, the concentration of the predetermined type of gas contained in the atmosphere in the upper space can be accurately measured while the light emitting unit and the light receiving unit are disposed outside the guard.
  • the substrate processing apparatus has the guard at an upper position capable of capturing the processing liquid scattering from the peripheral portion of the substrate and a lower position set below the upper position.
  • the apparatus further includes a guard elevating unit that raises and lowers the substrate holding unit between a lower position retracted downward from the side of the peripheral portion of the substrate. And when the said guard is located in the said upper position, the said optical path may permeate
  • the light path passes through the transmission window when the guard is at the upper position.
  • the guard When the guard is at the lower position, the light path does not hit the guard in the first place.
  • This allows the light path to pass through at a predetermined one height region in the chamber regardless of the height position of the guard relative to the substrate holding unit. Therefore, regardless of the height position of the guard with respect to the substrate holding unit, the concentration of the predetermined type of gas contained in the atmosphere in the chamber can be accurately measured.
  • the substrate processing apparatus further includes a cylindrical guard surrounding a periphery of the substrate holding unit.
  • the light emitting unit and the light receiving unit may be supported by the guard.
  • the light emitting unit and the light receiving unit are supported by the guard. Thereby, the light emitting unit and the light receiving unit can be arranged relatively easily.
  • the light emitting unit and the light receiving unit are embedded in an inner peripheral end of the guard.
  • the optical path can be favorably disposed in the upper space.
  • the light emitting unit includes a first light emitting diode and a second light emitting diode different in light emission wavelength from the first light emitting diode.
  • the TDLAS gas concentration measurement unit may be configured to measure the concentration of the first type of gas contained in the atmosphere around the first light path formed between the first light emitting diode and the light receiving diode using the TDLAS method.
  • Multi-gas concentration measurement which measures and measures the concentration of the second type of gas contained in the atmosphere around the second light path formed between the second light emitting diode and the light receiving diode by the TDLAS method You may include a part.
  • the TDLAS gas concentration measurement unit includes the multiple gas concentration measurement unit.
  • the multiple gas concentration measuring unit measures the concentration of the first type of gas contained in the atmosphere around the first light path formed between the first light emitting diode and the light receiving diode by the TDLAS method.
  • the plural gas concentration measurement unit measures the concentration of the second type gas contained in the atmosphere around the second light path formed between the second light emitting diode and the light receiving diode by the TDLAS method.
  • the chambers include first and second chambers different from each other.
  • the light receiving unit may include a first light receiving diode disposed in the first chamber and a second light receiving diode disposed in the second chamber.
  • the TDLAS gas concentration measurement unit is disposed so as to pass through the internal space of the first chamber, which is a third optical path formed between the light emitting diode and the first light receiving diode.
  • the multi-chamber concentration measurement unit may be configured to measure the concentration of a predetermined gas contained in the atmosphere around the fourth light path disposed so as to pass through the internal space of the second chamber by the TDLAS method.
  • the TDLAS gas concentration measurement unit includes the multiple chamber concentration measurement unit.
  • the multi-chamber concentration measurement unit measures the concentration of a predetermined gas contained in the atmosphere around the third light path formed between the light emitting diode and the first light receiving diode using the TDLAS method.
  • the third light path is disposed to pass through the internal space of the first chamber.
  • the multi-chamber concentration measurement unit measures the concentration of a predetermined gas contained in the atmosphere around the fourth light path formed between the light emitting diode and the second light receiving diode by the TDLAS method.
  • the fourth light path is disposed to pass through the internal space of the second chamber.
  • the light emitting diode is disposed outside the chamber.
  • the light emitting unit may further include a first window disposed in the chamber, and a light guiding cable for guiding light from the light emitting diode to the first window.
  • the processing liquid contained in the atmosphere in the chamber does not adversely affect the light emitting diode.
  • the concentration of the predetermined type of gas contained in the atmosphere in the chamber can be measured with high accuracy without adversely affecting the light emitting diode.
  • the substrate processing apparatus includes at least a second window provided on at least one of the light receiving unit and the light emitting unit and disposed on the other side of the one or the other. It further includes a shutter disposed on at least one of the light receiving unit and the light emitting unit and opening and closing the region on the other side with respect to the second window.
  • the second window is closed by the shutter, which can suppress or prevent the treatment liquid from adhering to the second window.
  • the second window can be kept clean, so that the measurement accuracy of the gas concentration can be improved.
  • the substrate processing apparatus further includes a nozzle for discharging a processing liquid toward a liquid landing position on the upper surface of the substrate.
  • the said optical path may be arrange
  • the optical path avoids the landing position of the processing liquid on the upper surface of the substrate in plan view. Therefore, it is possible to suppress or prevent the light path from interfering with the processing liquid which is discharged from the nozzle or the nozzle and does not reach the liquid deposition position. Thereby, the measurement accuracy of gas concentration can be further improved.
  • the light emitting diode is provided to emit a wavelength of an absorption band of ammonia.
  • the concentration of ammonia contained in the atmosphere in the chamber can be accurately measured.
  • the light emitting diode is provided to emit a wavelength of an absorption band of water.
  • the emission wavelength of the light emitting diode includes the wavelength of the absorption band of water, it is possible to accurately measure the concentration of water contained in the atmosphere in the chamber, that is, the humidity in the chamber.
  • a low surface tension liquid for supplying a low surface tension liquid having a low surface tension lower than water to the upper surface of a substrate held by the substrate holding unit is the substrate processing apparatus.
  • the substrate is held by the substrate holding unit in a state where the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit by the TDLAS gas concentration measurement unit.
  • a humidity measurement process may be performed to measure the humidity in the upper space above the upper surface of the.
  • the low surface tension liquid removing unit removes the low surface tension liquid from the upper surface of the substrate by the low surface tension liquid removing unit when the humidity measured in the humidity measuring step is lower than a predetermined humidity.
  • the low surface tension liquid removing step may not be performed when the liquid removing step is performed and the humidity measured in the humidity measuring step is higher than the predetermined humidity. .
  • the humidity in the upper space is measured by the TDLAS gas concentration measurement unit in a state where the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit. Thereby, the humidity by the upper space can be measured accurately. Then, the low surface tension liquid removing step is performed only when the humidity measured in the humidity measuring step is lower than a predetermined humidity. Since the low surface tension liquid removing step is performed without water being mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
  • the substrate processing apparatus supplies a rinse liquid to the top surface of the substrate held by the substrate holding unit, and a top surface of the substrate held by the substrate holding unit.
  • a low surface tension liquid supply unit for supplying a low surface tension liquid having a low surface tension lower than that of the rinse liquid, and excluding the low surface tension liquid present on the upper surface of the substrate from the upper surface of the substrate
  • a controller for controlling the low surface tension liquid displacement unit.
  • the upper surface of the substrate held by the substrate holding unit is in a state where the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit by the TDLAS gas concentration measurement unit by the controller.
  • a humidity measurement process may be performed to measure the humidity in the upper space above.
  • the low surface tension liquid is supplied to the upper surface of the substrate by the low surface tension liquid removing unit when the controller measures that the humidity measured in the humidity measurement step is lower than a predetermined humidity.
  • the low surface tension liquid supply process may not be performed when the liquid supply process is performed and the humidity measured in the humidity measurement process is higher than the predetermined humidity.
  • the humidity in the upper space is measured by the TDLAS gas concentration measurement unit in a state in which the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit. Thereby, the humidity in the upper space can be accurately measured. Then, the low surface tension liquid supply process is performed only when the humidity measured in the humidity measurement process is lower than a predetermined humidity. Since the processing after the low surface tension liquid supply process is performed in a state where water is not mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
  • the present invention measures the humidity in the upper space above the upper surface of the substrate held by the substrate holding unit in a state where the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit.
  • the low surface tension liquid removing step is not performed when the humidity measured in the step is higher than the predetermined humidity.
  • the low surface tension liquid removing step is performed only when the humidity measured in the humidity measuring step is lower than the predetermined humidity. Since the low surface tension liquid removing step is performed without water being mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
  • the present invention measures humidity in the upper space above the upper surface of the substrate held by the substrate holding unit while the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit.
  • the low surface tension liquid supply process is performed only when the humidity measured in the humidity measurement process is lower than the predetermined humidity. Since the processing after the low surface tension liquid supply process is performed in a state where water is not mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
  • FIG. 1 is a schematic view from above of a substrate processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed in the horizontal direction.
  • FIG. 3 is a schematic view of the inside of the processing unit as viewed from above.
  • FIG. 4 is a schematic view for explaining the configuration of the light emitting unit shown in FIG.
  • FIG. 5 is a schematic view for explaining the configuration of the light receiving unit shown in FIG.
  • FIG. 6 is a schematic view showing the relationship between the guard and the light receiving unit and the light emitting unit.
  • FIG. 7 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus.
  • FIG. 1 is a schematic view from above of a substrate processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed in the horizontal direction.
  • FIG. 3 is a schematic view of
  • FIG. 8 is an enlarged cross-sectional view of the surface of a substrate to be processed by the substrate processing apparatus.
  • FIG. 9 is a flowchart for explaining the contents of an example of substrate processing performed in the processing unit.
  • FIG. 10 is a schematic view for explaining the SC1 process.
  • FIG. 11 is a flowchart at the time of transition from the rinse step to the SC2 step.
  • FIG. 12 is a schematic view for explaining the SC2 process.
  • FIG. 13 is a schematic view for explaining the substitution process.
  • FIG. 14 is a flowchart at the time of transition from the replacement step to the drying step.
  • FIG. 15 is a schematic view of the inside of the processing unit according to the second embodiment of the present invention as viewed in the horizontal direction.
  • FIG. 16 is a schematic view for explaining the substitution process.
  • FIG. 10 is a schematic view for explaining the SC1 process.
  • FIG. 11 is a flowchart at the time of transition from the rinse step to the SC2 step.
  • FIG. 12
  • FIG. 17 is a schematic view of a substrate processing apparatus according to a third embodiment of the present invention as viewed from above.
  • FIG. 18 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed in the horizontal direction.
  • FIG. 19 is a schematic view showing a first modified example of the present invention.
  • FIG. 20 is a schematic view showing a second modification of the present invention.
  • FIG. 21 is a schematic view showing a third modification of the present invention.
  • FIG. 22 is a schematic sectional view for explaining the principle of pattern collapse due to surface tension.
  • FIG. 1 is a schematic view from above of a substrate processing apparatus according to a first embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes a substrate W such as a silicon wafer one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid and a rinse liquid, and a load port on which a substrate container C that stores a plurality of substrates W processed by the processing unit 2 is mounted. It includes an LP, an indexer robot IR and a substrate transfer robot CR that transfer a substrate W between a load port LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1.
  • the indexer robot IR transfers the substrate W between the substrate container C and the substrate transfer robot CR.
  • the substrate transfer robot CR transfers the substrate W between the indexer robot IR and the processing unit 2.
  • the plurality of processing units 2 have, for example, the same configuration.
  • FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
  • FIG. 3 is a schematic view of the inside of the processing unit 2 as viewed from above.
  • FIG. 4 is a schematic view for explaining the configuration of the light emitting unit 81.
  • FIG. 5 is a schematic view for explaining the configuration of the light receiving section 82. As shown in FIG.
  • the processing unit 2 holds a box-shaped chamber 4 and a single substrate W in a horizontal posture in the chamber 4 and spins the substrate W around a vertical rotation axis A1 passing through the center of the substrate W.
  • An SC2 supply unit 7 for supplying SC2 (a mixed solution containing HCl and H 2 O 2 ), which is an example of a second chemical solution, on the upper surface, and a rinse liquid on the upper surface of the substrate W held by the spin chuck 5
  • a rinse liquid supply unit 8 for supplying, a blocking member 9 facing the upper surface of the substrate W held by the spin chuck 5, a processing cup 10 surrounding the periphery of the spin chuck 5, and an upper surface of the substrate W
  • Upper space Space overlaps the upper surface of the substrate W in plan view.
  • the chamber 4 includes a box-shaped partition 14 containing the spin chuck 5 and an FFU as a blower unit for sending clean air (air filtered by a filter) from above the partition 14 into the partition 14.
  • the FFU 15 is disposed above the partition 14 and attached to the ceiling of the partition 14.
  • the FFU 15 sends clean air of low humidity downward from the ceiling of the partition 14 into the chamber 4.
  • the exhaust duct 16 is connected to the bottom of the processing cup 10, and guides the gas in the chamber 4 to an exhaust processing facility provided in a factory where the substrate processing apparatus 1 is installed. Therefore, the downflow (downflow) flowing downward in the chamber 4 is formed by the FFU 15 and the exhaust duct 16.
  • the processing of the substrate W is performed in the state where the downflow is formed in the chamber 4.
  • the spin chuck 5 As shown in FIG. 2, as the spin chuck 5, a holding type chuck is adopted which holds the substrate W horizontally with the substrate W interposed in the horizontal direction. Specifically, the spin chuck 5 is mounted substantially horizontally on the spin motor (surface tension liquid removing unit) M, the spin shaft 17 integrated with the drive shaft of the spin motor M, and the upper end of the spin shaft 17 And a disc-like spin base 18. The diameter of the spin base 18 is equal to or larger than the diameter of the substrate W.
  • the spin motor surface tension liquid removing unit
  • a plurality (three or more, for example, six) of clamping pins 19 are arranged at the peripheral edge thereof.
  • the plurality of holding pins 19 are arranged at appropriate intervals (for example, at equal intervals) on the circumference corresponding to the outer peripheral shape of the substrate W at the outer peripheral portion of the upper surface 18 a of the spin base 18.
  • the spin chuck 5 is not limited to the sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum suction of the back surface of the substrate W, and further rotation around the vertical rotation axis in that state.
  • a vacuum suction type vacuum chuck
  • a vacuum suction type vacuum chuck
  • rotates the substrate W held by the spin chuck 5 may be employed.
  • the SC1 supply unit 6 includes an SC1 nozzle 21 for discharging the SC1 toward the upper surface of the substrate W, an SC1 pipe 22 for guiding the SC1 to the SC1 nozzle 21, and an SC1 valve for opening and closing the SC1 pipe 22. And 23.
  • SC1 valve 23 When the SC1 valve 23 is opened, SC1 from the SC1 supply source is supplied from the SC1 pipe 22 to the SC1 nozzle 21. Thereby, the SC1 is discharged from the SC1 nozzle 21.
  • the SC1 supply unit 6 further includes a first nozzle arm 24 to which the SC1 nozzle 21 is attached at its tip and a first arm support shaft 25 that supports the first nozzle arm 24. It includes a first arm support shaft 25 extending substantially vertically at the side, and a first swing motor 26 coupled to the first arm support shaft 25.
  • the first rocking motor 26 is, for example, a servomotor.
  • the SC1 nozzle 21 By discharging the SC1 from the SC1 nozzle 21, the SC1 nozzle 21 is moved between the central position facing the central portion of the upper surface of the substrate W and the peripheral position facing the peripheral edge of the upper surface of the substrate W.
  • the liquid deposition position of SC1 discharged from 21 draws a circular arc-shaped first trajectory C1 passing through the rotation axis A1.
  • the SC2 supply unit 7 discharges the SC2 toward the upper surface of the substrate W, the SC2 pipe 31 for guiding the SC2 to the SC2 nozzle 31, and the SC2 valve for opening and closing the SC2 pipe 32. And 33.
  • SC2 valve 33 When the SC2 valve 33 is opened, SC2 from the SC2 supply source is supplied from the SC2 pipe 32 to the SC2 nozzle 31. Thereby, the SC2 is discharged from the SC2 nozzle 31.
  • the SC2 supply unit 7 further includes a second nozzle arm 34 having a SC2 nozzle 31 attached at its tip and a second arm support shaft 35 for supporting the second nozzle arm 34. It includes a second arm support shaft 35 extending substantially vertically at the side, and a second swing motor 36 coupled to the second arm support shaft 35.
  • the second rocking motor 36 is, for example, a servomotor.
  • the SC2 nozzle 31 By discharging the SC2 from the SC2 nozzle 31, the SC2 nozzle 31 is moved between the central position facing the central portion of the upper surface of the substrate W and the peripheral position facing the peripheral edge of the upper surface of the substrate W.
  • the liquid deposition position of SC2 discharged from 31 draws a second locus C2 of arc shape passing through the rotation axis A1.
  • the rinse solution supply unit 8 discharges the rinse solution toward the upper surface of the substrate W, the rinse solution pipe 42 for guiding the rinse solution to the rinse solution nozzle 41, and the rinse solution And a rinse liquid valve 43 for opening and closing the pipe 42.
  • the rinse liquid valve 43 When the rinse liquid valve 43 is opened, the rinse liquid from the rinse liquid supply source is supplied from the rinse liquid pipe 42 to the rinse liquid nozzle 41. Thereby, the rinse liquid is discharged from the rinse liquid nozzle 41.
  • the rinse liquid supply unit 8 further includes a third nozzle arm 44 having a rinse liquid nozzle 41 attached to its tip and a third arm support shaft 45 for supporting the third nozzle arm 44, and is a spin chuck.
  • a third arm support shaft 45 extending substantially vertically on the side of 5 and a third rocking motor 46 coupled to the third arm support shaft 45 are included.
  • the third rocking motor 46 is, for example, a servomotor.
  • the rinse solution is, for example, water.
  • the water is any of pure water (deionized water), carbonated water, electrolytic ion water, hydrogen water, ozone water, and ammonia water of a dilution concentration (for example, about 10 to 100 ppm).
  • the blocking member 9 includes a blocking plate 47, an upper spin shaft 48 provided integrally rotatably with the blocking plate 47, and an upper surface nozzle 49 vertically penetrating the central portion of the blocking plate 47.
  • the blocking plate 47 has a disk shape having a diameter substantially equal to or larger than the diameter of the substrate W.
  • the blocking plate 47 has a substrate facing surface 50 formed of a circular horizontal flat surface facing the entire top surface of the substrate W on the lower surface thereof.
  • the upper spin shaft 48 is rotatably provided around a rotation axis A5 (an axis which coincides with the rotation axis A1 of the substrate W) extending vertically through the center of the blocking plate 47.
  • the upper spin axis 48 is cylindrical.
  • the inner circumferential surface of the upper spin shaft 48 is formed in a cylindrical surface centered on the rotation axis A5.
  • the upper spin shaft 48 is relatively rotatably supported by a support arm 51 extending horizontally above the blocking plate 47.
  • a cylindrical through hole 12 penetrating the blocking plate 47 and the upper spin shaft 48 up and down is formed.
  • the inner peripheral wall 12a of the through hole 12 is divided by a cylindrical surface.
  • An upper surface nozzle 49 is vertically inserted into the through hole 12.
  • the upper surface nozzle 49 is supported by a support arm 51.
  • the upper surface nozzle 49 functions as a central axis nozzle.
  • the upper surface nozzle 49 is non-rotatable with respect to the support arm 51.
  • the upper surface nozzle 49 moves up and down together with the blocking plate 47, the upper spin shaft 48, and the support arm 51.
  • the upper surface nozzle 49 has a cylindrical casing extending vertically inside the through hole 12, a first nozzle piping (surface tension liquid supply unit) 52 and a second nozzle piping (surface tension vertically passing the inside of the casing). And the liquid discharge unit 53).
  • the first nozzle piping 52 and the second nozzle piping 53 are both inner tubes.
  • the lower end of the first nozzle pipe 52 is opened at the lower end surface of the casing to form a first discharge port 52a.
  • An organic solvent supply unit (surface tension liquid supply unit) is connected to the first nozzle pipe 52.
  • the organic solvent supply unit includes an organic solvent pipe 54 connected to the upstream end side of the first nozzle pipe 52 and an organic solvent valve 55 interposed in the middle of the organic solvent pipe 54.
  • the organic solvent is, for example, IPA (isopropyl alcohol), and as such an organic solvent, in addition to IPA, for example, methanol, ethanol, acetone, EG (ethylene glycol) and HFE (hydrofluoroether) can be exemplified.
  • IPA isopropyl alcohol
  • methanol, ethanol, acetone, EG (ethylene glycol) and HFE hydrofluoroether
  • EG ethylene glycol
  • HFE hydrofluoroether
  • an organic solvent not only the case where it consists only of a single-piece component but the liquid mixed with other components may be sufficient.
  • it may be a mixture of IPA and acetone, or a mixture of IPA and methanol.
  • the lower end of the second nozzle pipe 53 is opened at the lower end surface of the casing to form a second discharge port 53a.
  • An inert gas supply unit (surface tension liquid removal unit) is connected to the second nozzle piping 53.
  • the inert gas supply unit includes an inert gas pipe 56 connected to the upstream end side of the second nozzle pipe 53 and an inert gas valve 57 interposed in the middle of the inert gas pipe 56.
  • the inert gas is nitrogen gas, but may be not only nitrogen gas but also other inert gas such as helium gas or argon gas.
  • the inert gas may be a single component gas or a mixed gas of nitrogen gas and a gas other than nitrogen gas.
  • a cylindrical cylindrical gap 13 is formed by the outer peripheral wall 49 a of the upper surface nozzle 49 and the cylindrical inner peripheral wall 12 a of the through hole 12.
  • the cylindrical gap 13 functions as a flow path through which the inert gas flows.
  • the lower end of the cylindrical gap 13 is opened in an annular shape surrounding the upper surface nozzle 49 to form an ambient gas discharge port 13 a.
  • an inert gas pipe 60 Connected to the cylindrical gap 13 is an inert gas pipe 60 to which an inert gas from an inert gas supply source is introduced.
  • a blocking plate rotation unit 58 having a configuration including an electric motor and the like is coupled to the blocking plate 47.
  • the shield plate rotation unit 58 rotates the shield plate 47 and the upper spin shaft 48 with respect to the support arm 51 around the rotation axis A5.
  • a blocking member lifting unit 59 having a configuration including an electric motor, a ball screw and the like is coupled to the support arm 51.
  • the blocking member lifting unit 59 vertically lifts the blocking member 9 (the blocking plate 47 and the upper spin shaft 48) and the upper surface nozzle 49 together with the support arm 51.
  • the blocking member lifting unit 59 has a blocking plate 47 at a blocking position in which the substrate facing surface 50 is close to the upper surface of the substrate W held by the spin chuck 5 (shown by a broken line in FIG. 2. See also FIG. 7A etc.) And a retracted position (shown by a solid line in FIG. 2) which is retracted upward largely beyond the blocking position.
  • the blocking member lifting unit 59 can hold the blocking plate 47 at a blocking position, a proximity position (shown by a two-dot chain line in FIG. 2), and a retracted position.
  • the space between the substrate facing surface 50 and the upper surface of the substrate W with the blocking plate 47 in the blocking position is not completely isolated from the space around it, but the surrounding space to the space is not There is no inflow of gas from the space. That is, the space is substantially isolated from the space around it.
  • the proximity position is a position slightly above the retracted position. In the state where the blocking plate 47 is disposed at the close position, the space between the substrate facing surface 50 of the blocking plate 47 and the substrate W is not blocked from the space around it.
  • the processing cup 10 is disposed outward (in a direction away from the rotation axis A1) of the substrate W held by the spin chuck 5.
  • the processing cup 10 receives first to third cups 61 to 63 surrounding the spin base 18 and a processing liquid (chemical solution, rinse liquid, organic solvent, hydrophobization agent, etc.) scattered around the substrate W. It includes a first guard 64, a second guard 65 and a third guard 66, and a guard lifting unit 67 (see FIG. 9) for raising and lowering the first to third guards 64 to 66 individually.
  • the processing cup 10 is disposed outside the outer periphery of the substrate W held by the spin chuck 5 (a direction away from the rotation axis A1).
  • the first to third cups 61 to 63 are cylindrical, respectively, and surround the spin chuck 5.
  • the second inner second cup 62 is disposed outside the first cup 61, and the outermost third cup 63 is disposed outside the second cup 62.
  • the third cup 63 is, for example, integral with the second guard 65 and ascends and descends with the second guard 65.
  • the first to third cups 61 to 63 respectively form an annular groove open upward.
  • a drainage pipe 76 is connected to the groove of the first cup 61.
  • the treatment liquid led to the groove of the first cup 61 is sent to the waste disposal facility outside the machine through the drainage pipe 76.
  • a recovery pipe 77 is connected to the groove of the second cup 62.
  • the treatment liquid (mainly the chemical solution) led to the groove of the second cup 62 is sent to a recovery facility outside the machine through the recovery pipe 77, and is recovered and processed in this recovery facility.
  • a recovery pipe 78 is connected to the groove of the third cup 63.
  • the treatment liquid for example, an organic solvent led to the groove of the third cup 63 is sent to a recovery facility outside the machine through the recovery pipe 78, and is recovered and processed in this recovery facility.
  • the first to third guards 64 to 66 are cylindrical, respectively, and surround the spin chuck 5.
  • the first to third guards 64 to 66 are respectively inclined from the upper end of the cylindrical guide portion 68 surrounding the spin chuck 5 to the center side (the direction approaching the rotation axis A1 of the substrate W) from the upper end of the guide portion 68 And an upwardly extending cylindrical slope 69.
  • the upper end portion of each inclined portion 69 constitutes the inner peripheral portion of the corresponding first to third guards 64 to 66 and has a diameter larger than that of the substrate W and the spin base 18.
  • the three inclined portions 69 are vertically stacked, and the three guide portions 68 are coaxially arranged.
  • the three guide portions 68 (the guide portions 68 of the first to third guards 64 to 66) can move into and out of the corresponding first to third cups 61 to 63, respectively. That is, the processing cup 10 is foldable, and the guard elevating unit 67 raises and lowers at least one of the first to third guards 64 to 66, whereby the processing cup 10 is unfolded and folded.
  • the inclined portion 69 may have a linear cross-sectional shape as shown in FIG. 2, or may extend while drawing a smooth upward convex arc, for example.
  • the first to third guards 64 to 66 are respectively at the upper position (the position where the upper end portion of each inclined portion 69 is higher than the upper surface of the substrate W) and the lower position (each position The upper end of the inclined portion 69 is raised and lowered between the upper surface of the substrate W and the lower surface of the substrate W).
  • any one of the first to third guards 64 to 66 faces the peripheral end face of the substrate W It takes place in the For example, in order to realize a state in which the innermost first guard 64 is opposed to the peripheral end face of the substrate W (state shown in FIG. 10, hereinafter may be referred to as “first guard opposed state”), Place all of the first to third guards 64 to 66 in the upper position. In the first guard opposing state, all the processing liquid discharged from the peripheral portion of the substrate W in the rotating state is received by the first guard 64. For example, in the SC1 process (S3 in FIG. 9), the rinse process (S4 in FIG. 9, S6 in FIG. 9), and the paddle rinse process (S7 in FIG. Be done.
  • SC1 process S3 in FIG. 9
  • the rinse process S4 in FIG. 9, S6 in FIG. 9
  • the paddle rinse process S7 in FIG. Be done.
  • second guard facing state In addition, in order to realize a state in which the second second guard 65 from the inner side faces the circumferential end surface of the substrate W (state shown in FIG. 12. Hereinafter, this may be referred to as “second guard facing state”).
  • the first guard 64 is placed at the lower position, and the second guard 65 and the third guard 66 are placed at the upper position.
  • the second guard opposing state all of the processing liquid discharged from the peripheral portion of the substrate W in a rotating state is received by the second guard 65.
  • the processing cup 10 is brought into the second guard opposing state.
  • third guard facing state In order to realize a state in which the outermost third guard 66 faces the circumferential end surface of the substrate W (state shown in FIG. 13. Hereinafter, this may be referred to as “third guard facing state”). , The first guard 64 and the second guard 65 in the lower position, and the third guard 66 in the upper position. In the third guard opposing state, all the processing liquid discharged from the peripheral portion of the substrate W in the rotating state is received by the third guard 66. For example, in the replacement step (S8 in FIG. 9) and the drying step (S9) described later, the processing cup 10 is brought into the third guard opposing state.
  • the TDLAS gas concentration measurement unit 11 measures the component concentration of the gas by the TDLAS method (Tunable Diode Laser Absorption Spectroscopy).
  • the TDLAS method is a measurement method of measuring the concentration of a component of a target gas by measuring the intensity of an absorption spectrum inherent to the component of the gas molecule. This method focuses on the fact that the absorption spectrum is specific to the gas type and that the absorbance is proportional to the concentration of the component of the gas and the optical path length (Lambert-Beer's law). Measurement of gas component concentration by the TDLAS method has an advantage of high-speed response.
  • the measurement of the component concentration of the gas by this method is described in JP-A-2011-242222, JP-A-5333370, U.S. Patent Application Publication 2012/188550, JP-A-2013-50403, JP-A-2016-70686. JP-A-2016-70687, International Publication No. 2016/047701, etc. are already known.
  • the TDLAS gas concentration measurement unit 11 includes a light emitting unit 81, a light receiving unit 82, and a concentration measuring unit 83.
  • the light emitting unit 81 includes a light emitting diode disposed outside the chamber 4, a light emitting window (first window, second window) 84 disposed in the chamber 4, and light emission And a light guiding cable 85 for guiding the light from the diode to the light emitting window 84.
  • the light emitting diode includes a first light emitting diode LD1 and a second light emitting diode LD2.
  • the first and second light emitting diodes LD1 and LD2 are variable wavelength light emitting diodes.
  • the light guiding cable 85 is an optical fiber cable through which light propagates.
  • the first and second light emitting diodes LD1 and LD2 are disposed to face the proximal end surface 85b of the light guide cable 85, respectively, and in this state, the first and second light emitting diodes
  • the light from the first and second light emitting diodes LD1 and LD2 enters the proximal end surface 85b of the light guide cable 85 due to the light emission of the LD1 and LD2.
  • the light entering the inside of the light guide cable 85 from the proximal end surface 85 b is propagated while being totally reflected and emitted from the distal end surface 85 a.
  • the end surface 85a emits light.
  • the light emission window 84 is provided in a first cover 86 that covers the tip end surface 85 a of the light guide cable 85.
  • the light emission window 84 is disposed at a portion of the first cover 86 facing the tip end surface 85 a.
  • the light emitting window 84 is a flat lens formed using sapphire or the like.
  • the light emission window 84, the light guide cable 85 and the first cover 86 are held at a fixed height position in the chamber 4 by a holder not shown. Since the light emitting window 84 and the first and second light emitting diodes LD1 and LD2 are connected by the light guiding cable 85, the first and second light emitting diodes LD1 and LD2 are disposed outside the chamber 4, The light from the second light emitting diodes LD1 and LD2 is guided to the light receiving diode PD.
  • the light receiving unit 82 includes a light receiving window (second window) 87 disposed in the chamber 4 and a light receiving diode PD that receives light emitted from the light emitting diode and entering the light receiving window 87.
  • the light receiving window 87 is provided on a second cover 88 that covers the light receiving diode PD.
  • the light receiving window 87 is disposed at a portion of the second cover 88 facing the light receiving diode PD.
  • the light receiving window 87 is a flat lens formed of sapphire or the like.
  • the light receiving window 87, the second cover 88 and the light receiving diode PD are held at a fixed height position in the chamber 4 by a holder not shown.
  • the light emission window 84 and the light reception window 87 are disposed to face each other with the spin chuck 5 and the processing cup 10 interposed therebetween.
  • an optical path 89 extending from the light emitting window 84 to the light receiving window 87 is formed.
  • the light path 89 horizontally traverses the upper space SP. There is no member for covering the periphery of the optical path 89. That is, the optical path 89 is exposed to the upper space SP.
  • the height position of the optical path 89 (the height position of a predetermined area, which may be hereinafter referred to as “upper surface close position”) is a distance W3 from the upper surface of the substrate W held by the spin chuck 5.
  • the height positions of the light emitting window 84 and the light receiving window 87 are set so as to be at a height position separated by 0.1 mm to 20 mm).
  • the height position (upper surface proximity position) of the optical path 89 is set lower than the substrate facing surface 50 of the blocking plate 47 at the proximity position (shown by a two-dot chain line in FIG. 2).
  • the height position of the optical path 89 (the height position of the predetermined area, which may hereinafter be referred to as “upper surface close position”) is a distance W3 (0.1 mm to 20 mm) from the upper surface of the substrate W held by the spin chuck 5
  • the height positions of the light emitting window 84 and the light receiving window 87 are set so as to be at a height position separated by. Further, as shown in FIG. 3, when the light path 89 is viewed in plan, in plan view, the first trajectory C1 of the SC1 nozzle 21 and the upper surface rotation center of the substrate (the upper surface nozzle 49 discharging the organic solvent is disposed opposite)
  • the plan view positions of the light emitting window 84 and the light receiving window 87 are set so as to avoid.
  • the heights of the light emitting window 84 and the light receiving window 87 from the bottom of the chamber 4 are equal to each other.
  • the optical path 89 is provided so as to avoid the first trajectory C1 of the SC1 nozzle 21 and the upper surface rotation center of the substrate, processing immediately after the optical path 89 is discharged from the SC1 nozzle 21, SC1 nozzle 21 or upper surface nozzle 49 Interference with the liquid (SC1, rinse liquid) can be suppressed or prevented. Thereby, the measurement accuracy of gas concentration can be further improved.
  • the TDLAS gas concentration measurement unit 83 measures the concentration of a predetermined type of gas (a gas whose emission wavelength of the light emitting LED matches the absorption band) contained in the atmosphere around the light path 89 using the TDLAS method.
  • the concentration of the gas measured by the TDLAS gas concentration measurement unit 83 is an average value at each place of the light path 89.
  • the TDLAS gas concentration measurement unit 83 includes an LED drive unit 90, a signal processing unit 91, and a calculation unit 92.
  • the LED drive unit 90 drives the first and second light emitting diodes LD1 and LD2.
  • the LED drive unit 90 causes the first light emitting diode LD1 to emit a wavelength (about 1.5 ⁇ m) of an absorption band of ammonia (first type gas, NH 3 ).
  • the LED driving unit 90 causes the second light emitting diode LD2 to emit a wavelength (about 1.4 ⁇ m) of an absorption band of water (a second type gas, H 2 O).
  • the LED drive unit 90 is realized, for example, by combining an offset circuit, a sweep circuit, and a sine wave generation circuit.
  • the calculation unit 92 extracts the absorption spectrum by removing the influence of the interference component from the waveform (the absorption signal waveform) detected by the light receiving diode PD.
  • Operation unit 92 is realized, for example, by an amplifier and a low pass filter.
  • the signal processing unit 91 stores the correspondence between the concentration of the gas and the intensity (peak height) of the absorption spectrum. Then, based on the intensity of the absorption spectrum obtained by the calculation unit 92, the concentration of the component of the gas to be measured is calculated.
  • Signal processing unit 91 is implemented, for example, by a microcomputer.
  • the light path 89 (the first light emitting diode) is generated by light including the wavelength (about 1.5 ⁇ m) of the absorption band of ammonia (NH 3 ). 1) is formed.
  • the TDLAS gas concentration measurement unit 83 measures the concentration of ammonia contained in the atmosphere around the light path 89 based on the intensity of the light received by the light receiving diode PD.
  • the second light emitting diode LD2 by causing the second light emitting diode LD2 to emit light in a state in which the first light emitting diode LD1 is turned off, light containing the wavelength (about 1.4 ⁇ m) of the absorption band of water (water vapor, H 2 O) , An optical path 89 (second optical path) is formed.
  • the TDLAS gas concentration measurement unit 83 measures the concentration of water contained in the atmosphere around the light path 89, that is, the humidity of the atmosphere around the light path 89, based on the intensity of the light received by the light receiving diode PD. .
  • the TDLAS gas concentration measurement unit 83 separates two types of gas (that is, ammonia and water (water vapor The concentration of) can be measured.
  • the TDLAS gas concentration measurement unit 83 can measure the concentrations of two types of gases contained in the atmosphere around the light path 89. In other words, the TDLAS gas concentration measurement unit 83 functions as a multiple gas concentration measurement unit.
  • the treatment liquid contained in the atmosphere in the chamber 4 adversely affects the first and second light emitting diodes LD1 and LD2.
  • the treatment liquid contained in the atmosphere in the chamber 4 adversely affects the first and second light emitting diodes LD1 and LD2.
  • each of the ammonia concentration and the humidity of the atmosphere in the upper space SP can be accurately measured without adversely affecting the first and second light emitting diodes LD1 and LD2.
  • the height position of the optical path 89 is set to the above-described upper surface close position, and the light emitting window 84 and the light receiving window 87 are for the first to third guards 64 to 66 of the processing cup 10. Are disposed radially outward.
  • the optical path 89 does not hit the first to third guards 64 to 66.
  • the optical path 89 hits the third guards 64 to 66.
  • the portions of the first to third guards 64 to 66 to which the light path 89 hits are formed using an opaque material, the first to third guards 64 to 66 may block the light path 89. is there.
  • FIG. 6 is a schematic view showing the relationship among the first to third guards 64 to 66 and the light emitting unit 81 and the light receiving unit 82. As shown in FIG.
  • first to third guards 64 to 66 are formed using a general resin material.
  • This resin material is formed using an impermeable material which can not transmit light of a wavelength of about 1.3 ⁇ m to about 1.5 ⁇ m, but it is a part of the first to third guards 64 to 66.
  • Each has a transmission window 93 formed therein.
  • each of the transmission windows 93 corresponds to the first to third guards with the first to third guards 64 to 66 positioned at the upper position.
  • the optical path 89 is provided at a height such that the optical path 89 falls on the points 64-66.
  • the transmission window 93 is provided only at circumferential positions facing the light emitting window 84 (i.e., the light emitting unit 81) and the light receiving window 87 (i.e., the light receiving unit 82).
  • Transmission window 93 is formed using, for example, quartz. Light comprising wavelengths in the range of about 1.3 ⁇ m to about 1.5 ⁇ m is transmitted through the quartz. Quartz is a material capable of transmitting the emission wavelengths of the first and second light emitting diodes LD1 and LD2. Therefore, in the state where the first to third guards 64 to 66 are at the upper position, the light path 89 passes through the transmission window 93. When the first to third guards 64 to 66 are at the lower position, the light path 89 does not hit the first to third guards 64 to 66 in the first place.
  • the ammonia concentration of the atmosphere in the upper space SP (in particular, the upper surface close position at a height separated by W3 from the upper surface of the substrate W held by the spin chuck 5)
  • the humidity of the atmosphere can be accurately measured.
  • the light path 89 can be passed through the upper space SP while the light emitting window 84 and the light receiving window 87 are disposed outside the first to third guards 64 to 66, respectively. Therefore, while the light emitting window 84 and the light receiving window 87 are disposed outside the first to third guards 64 to 66, it is possible to accurately measure the ammonia concentration of the atmosphere of the upper space SP and the humidity of the atmosphere.
  • FIG. 7 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • Control device 3 is configured using, for example, a microcomputer.
  • the control device 3 has an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit.
  • the storage unit stores a program to be executed by the arithmetic unit.
  • a spin motor M a blocking plate rotation unit 58, a blocking member lifting unit 59, a guard lifting unit 67, and the like are connected to the control device 3 as control targets.
  • the control device 3 controls the operations of the spin motor M, the blocking plate rotating unit 58, the blocking member lifting and lowering unit 59, the guard lifting and lowering unit 67 and the like according to a predetermined program.
  • control device 3 opens and closes the SC1 valve 23, the SC2 valve 33, the rinse liquid valve 43, and the organic solvent valve 55 in accordance with a predetermined program.
  • a detection output (that is, measurement result) from the TDLAS gas concentration measurement unit 11 is input to the control device 3.
  • FIG. 8 is an enlarged cross-sectional view of the surface Wa of the substrate W to be processed by the substrate processing apparatus 1.
  • the substrate W to be processed is, for example, a silicon wafer, and the pattern 100 is formed on the surface Wa which is the pattern formation surface.
  • the pattern 100 is, for example, a fine pattern.
  • the pattern 100 may have a structure 101 having a convex shape (columnar shape) arranged in a matrix.
  • the line width W1 of the structure 101 is, for example, about 3 nm to 45 nm
  • the gap W2 of the pattern 100 is, for example, about 10 nm to several ⁇ m.
  • the film thickness T of the pattern 100 is, for example, about 0.2 ⁇ m to 1.0 ⁇ m.
  • the pattern 100 may have, for example, an aspect ratio (a ratio of the film thickness T to the line width W1) of, for example, about 5 to 500 (typically, about 5 to 50).
  • the pattern 100 may be one in which line-shaped patterns formed by fine trenches are repeatedly arranged.
  • the pattern 100 may be formed by providing a plurality of fine holes (voids or pores) in the thin film.
  • Pattern 100 includes, for example, an insulating film.
  • the pattern 100 may also include a conductor film. More specifically, the pattern 100 is formed of a laminated film in which a plurality of films are laminated, and may further include an insulating film and a conductor film.
  • the pattern 100 may be a pattern composed of a single layer film.
  • the insulating film may be a silicon oxide film (SiO 2 film) or a silicon nitride film (SiN film).
  • the conductor film may be an amorphous silicon film into which an impurity for reducing resistance is introduced, or may be a metal film (for example, a TiN film).
  • the pattern 100 may be a hydrophilic film.
  • a hydrophilic film a TEOS film (a kind of silicon oxide film) can be exemplified.
  • FIG. 9 is a flowchart for explaining the contents of a first example of substrate processing performed in the processing unit 2.
  • FIG. 10 is a schematic view for explaining the SC1 step (S3).
  • FIG. 11 is a flowchart at the time of transition from the rinse step (S4) to the SC2 step (S5).
  • FIG. 12 is a schematic view for explaining the SC2 step (S5).
  • FIG. 13 is a schematic view for explaining the substitution step (S8).
  • FIG. 14 is a flowchart at the time of transition from the replacement step (S8) to the drying step (S9).
  • a first example of substrate processing will be described with reference to FIGS. 1 to 9. 10 to 14 will be referred to as appropriate.
  • An unprocessed substrate W (for example, a circular substrate having a diameter of 300 mm) is carried from the substrate container C into the processing unit 2 by the indexer robot IR and the substrate transfer robot CR, and then carried into the chamber 4 and the substrate W is mounted on the surface Wa
  • the wafer W is delivered to the spin chuck 5 in a state of facing upward (see FIG. 8), and the substrate W is held by the spin chuck 5 (S1 in FIG. 9: substrate W carried-in).
  • the substrate W is carried into the chamber 4 in a state in which the blocking member 9 (the blocking plate 47) is retracted to the retracted position and in a state in which the first to third guards 64 to 66 are disposed at the lower position. .
  • the control device 3 controls the spin motor M to rotate the spin base 18 and the substrate W at a predetermined liquid processing speed (within the range of about 10 to 1200 rpm). , For example, to about 300 rpm) and then maintained at the liquid processing speed (S2 in FIG. 9: start of substrate W rotation).
  • the control device 3 executes an SC1 step (S3 in FIG. 9) of supplying the liquid SC1 to the upper surface of the substrate W.
  • control device 3 controls the first rocking motor 26 to move the SC1 nozzle 21 from the retracted position above the substrate W. Thereby, as shown in FIG. 10, the SC1 nozzle 21 is disposed above the substrate W.
  • control device 3 controls the guard lifting and lowering unit 67 (see FIG. 2) to raise the first to third guards 66 to the upper position, whereby the first guard 64 is attached to the circumferential end face of the substrate W.
  • An opposing first guard opposing state is realized. That is, the SC1 process (S3) is performed in the first guard opposing state of the processing cup 10 with the blocking member 9 disposed at the retracted position.
  • the control device 3 opens the SC1 valve 23. Thereby, the SC1 nozzle 21 discharges the SC1 toward the upper surface (surface Wa (see FIG. 8)) of the substrate W in a rotating state. Further, the control device 3 controls the first swing motor 26 so that the liquid deposition position P1 (see FIG. 10) of the SC1 from the SC1 nozzle 21 is between the upper surface central portion and the upper surface peripheral portion of the substrate W. Then, it reciprocates along the arc-shaped first trajectory C1 (see FIG. 3). As a result, the liquid deposition position P1 of SC1 scans the entire top surface of the substrate W, whereby the entire top surface of the substrate W is processed using SC1.
  • the SC 1 supplied onto the substrate W scatters from the upper surface peripheral portion of the substrate W toward the side of the substrate W.
  • the SC1 scattered from the upper surface peripheral portion of the substrate W is received by the inner wall of the first guard 64 and flows down along the inner wall of the first guard 64, and the first cup 61 and the drainage pipe 76 (see FIG. 2) ), And sent to the drainage treatment facility outside the machine.
  • the control device 3 When a predetermined time period has elapsed from the discharge start of SC1, the control device 3 closes the SC1 valve 23 to stop the discharge of SC1 from the SC1 nozzle 21, thereby terminating the SC1 step (S3) and performing the rinse step (S3). Move to S4). After completion of the SC1 step (S3), the control device 3 controls the first rocking motor 26 to return the SC1 nozzle 21 to the retracted position.
  • the rinse step (S4) is a step for replacing SC1 on the substrate W with a rinse liquid and removing SC1 from above the substrate W.
  • control device 3 controls the third rocking motor 46 to move the rinse liquid nozzle 41 from the retracted position above the substrate W. As a result, the rinse liquid nozzle 41 is pulled out above the substrate W and disposed on the upper central portion of the substrate W.
  • the control device 3 opens the rinse solution valve 43.
  • the rinse liquid is discharged from the rinse liquid nozzle 41 toward the upper surface (surface Wa (see FIG. 8)) of the substrate W in a rotating state.
  • the rinse solution supplied to the upper surface of the substrate W receives the centrifugal force due to the rotation of the substrate W and spreads over the entire region of the substrate W. Thereby, the SC 1 adhering on the substrate W is washed away by the rinse liquid in the entire area of the substrate W. Under the centrifugal force of the rotation of the substrate W, the rinse liquid moves to the peripheral portion of the substrate W and scatters from the peripheral portion of the substrate W toward the side of the substrate W.
  • the rinse liquid splashed from the peripheral portion of the substrate W is received by the inner wall of the first guard 64, flows down along the inner wall of the first guard 64, and flows through the first cup 61 and the drain pipe 79, It is sent to the recovery processing facility outside the aircraft.
  • the controller 3 measures the ammonia concentration at the upper surface proximity position of the upper surface of the substrate W by the TDLAS gas concentration measurement unit 11 (FIG. 11) T2). Then, when the measured humidity at that time is lower than the threshold concentration (YES in T3 of FIG. 11), the control device 3 closes the rinse solution valve 43 and discharges the rinse solution from the rinse solution nozzle 41. By stopping (T4 in FIG. 11), the rinse step (S4) is ended to shift to the SC2 step (S5) (T5 in FIG. 11). After the end of the rinse step (S4), the control device 3 controls the third swing motor 46 to return the rinse solution nozzle 41 to the retracted position.
  • the process of FIG. 11 is returned, and this process is repeatedly executed (looped). That is, the process does not shift to the SC2 step (S5) until the measured ammonia concentration falls below the threshold concentration, and the execution of the rinse step (S4) is continued.
  • the measured ammonia concentration is lower than the threshold concentration, no ammonia remains on the upper surface of the substrate W.
  • Ammonia has the property of easily remaining, and if it remains even after drying, the electrical characteristics of the pattern may be adversely affected.
  • the SC2 step (S5) to be described later there is a possibility that the contact with the SC1 may occur. Therefore, the ammonia residue on the upper surface of the substrate W is detected by monitoring the ammonia concentration immediately above the upper surface of the substrate W.
  • the control device 3 closes the rinse solution valve 43 and stops the discharge of the rinse solution from the rinse solution nozzle 41. Thus, the rinse step (S4) is completed. Thereafter, the control device 3 controls the third rocking motor 46 to return the rinse liquid nozzle 41 to the retracted position.
  • control device 3 executes an SC2 step (S5 in FIG. 9, see FIG. 12) of supplying SC2 of liquid to the upper surface of the substrate W.
  • control device 3 controls the second rocking motor 36 to move the SC2 nozzle 31 above the substrate W from the retracted position. Thereby, as shown in FIG. 12, the SC2 nozzle 31 is disposed above the substrate W.
  • control device 3 controls the guard lifting and lowering unit 67 (see FIG. 2) to lower the first guard 64 of the processing cup 10 in the first guard opposing state to the lower position.
  • the second guard facing state in which the second guard 65 faces the circumferential end surface of the substrate W is realized. That is, the SC2 process (S5) is performed in the second guard opposing state of the processing cup 10 in which the blocking member 9 is disposed at the retracted position.
  • the control device 3 opens the SC2 valve 33. Thereby, SC2 is discharged from the SC2 nozzle 31 toward the upper surface (surface Wa (see FIG. 8)) of the substrate W in a rotating state. Further, the control device 3 controls the second swing motor 36 so that the liquid deposition position P2 (see FIG. 12) of SC2 from the SC2 nozzle 31 is between the upper surface central portion and the upper surface peripheral portion of the substrate W. Then, it reciprocates along the arc-shaped second trajectory C2 (see FIG. 3). As a result, the liquid deposition position P2 of SC2 scans the entire top surface of the substrate W, whereby the entire top surface of the substrate W is processed using SC2.
  • the SC 2 supplied onto the substrate W is scattered from the upper surface peripheral portion of the substrate W toward the side of the substrate W.
  • the SC2 scattered from the upper surface peripheral portion of the substrate W is received by the inner wall of the first guard 64, flows down along the inner wall of the first guard 64, and flows down the first cup 61 and the recovery pipe 80 (see FIG. 2).
  • the control device 3 closes the SC2 valve 33 and stops the discharge of SC2 from the SC2 nozzle 31.
  • the SC2 process (S5) is completed.
  • the control device 3 controls the second swing motor 36 to return the SC2 nozzle 31 to the retracted position.
  • control device 3 executes a rinse step (S6 in FIG. 9) for replacing SC2 on the substrate W with a rinse liquid and removing SC2 from above the substrate W.
  • control device 3 controls the third rocking motor 46 to move the rinse liquid nozzle 41 from the retracted position above the substrate W. As a result, the rinse liquid nozzle 41 is pulled out above the substrate W and disposed on the upper central portion of the substrate W.
  • the control device 3 controls the guard lifting and lowering unit 67 (see FIG. 2) to make the first guard of the processing cup 10 in the second guard opposing state. Raise 64 to the upper position. Thereby, the first guard facing state in which the first guard 64 faces the circumferential end surface of the substrate W is realized. That is, the SC1 step (S5) is performed in the second guard opposing state of the processing cup 10 with the blocking member 9 disposed at the retracted position.
  • the rinse step (S6) is the same as the rinse step (S4), so the description will be omitted.
  • the control device 3 When a predetermined time period has elapsed from the start of supply of the rinse liquid, the control device 3 next stops the liquid film (liquid film of the processing liquid) of the rinse liquid in a state in which the supply of the rinse liquid to the substrate W is stopped.
  • a paddle rinse step (S7 in FIG. 9) held on top is performed. Specifically, the control device 3 controls the spin chuck 5 to stop the rotation of the substrate W in a state where the entire upper surface of the substrate W is covered with the rinse liquid, or the rinse step (S6)
  • the rotational speed of the substrate W is reduced to a low rotational speed (for example, about 10 to 100 rpm) that is lower than the rotational speed at.
  • a liquid film of a paddle-like rinse liquid covering the entire upper surface of the substrate W is formed on the upper surface of the substrate W.
  • the centrifugal force acting on the liquid film of the rinse liquid on the upper surface of the substrate W is smaller than the surface tension acting between the rinse liquid and the upper surface of the substrate W, or the above-mentioned centrifugal force and the surface tension And almost antagonistic. Due to the deceleration of the substrate W, the centrifugal force acting on the rinse liquid on the substrate W is weakened, and the amount of rinse liquid discharged from the substrate W is reduced.
  • the controller 3 closes the rinse liquid valve 43 and stops the discharge of the rinse liquid from the rinse liquid nozzle 41 in a state where the substrate W is stationary or in a state where the substrate W is rotating at a low rotational speed. In addition, after the liquid film of the paddle-like rinse liquid is formed on the upper surface of the substrate W, the supply of the rinse liquid to the upper surface of the substrate W may be continued. After stopping the discharge of the rinse liquid from the rinse liquid nozzle 41, the control device 3 controls the third swing motor 46 to return the rinse liquid nozzle 41 to the retracted position.
  • the replacement step (S8) is a step of replacing the rinse liquid on the substrate W with an organic solvent (in this example, IPA) having a lower surface tension than the rinse liquid (water).
  • an organic solvent in this example, IPA
  • control device 3 controls the blocking member lifting unit 59 to lower the blocking plate 47 and arrange the blocking plate 47 at the close position as shown in FIG.
  • control device 3 controls the guard lifting and lowering unit 67 to lower the second guard 65 of the processing cup 10 in the second guard opposing state to the lower position, so that the third guard 66 serves as a substrate.
  • the third guard facing state facing the circumferential end face of W is realized. That is, the replacement step (S8) is performed in the third guard opposing state of the processing cup 10 in which the blocking member 9 is disposed at the close position.
  • the controller 3 opens the organic solvent valve 55 while maintaining the rotation of the substrate W at the paddle speed (zero or low low rotation speed (eg, about 10 to 100 rpm)).
  • the organic solvent is discharged from the first discharge port 52 a of the upper surface nozzle 49 toward the central portion of the upper surface of the substrate W.
  • the rinse liquid on the upper surface of the substrate W is replaced with the organic solvent, and a liquid film of a paddle-like organic solvent covering the entire upper surface of the substrate W is formed.
  • the liquid film of the paddle-like organic solvent is held in a state of covering the entire area of the substrate W.
  • the supply of the organic solvent may be stopped if the liquid does not run out even if the supply of the organic solvent is stopped. However, if the supply of the organic solvent is stopped and the organic solvent runs out, the supply of the organic solvent is continued.
  • a small flow rate (e.g., about 10 (liters / minute)) of inert gas is discharged from the ambient gas discharge port 13a throughout the entire period between the substrate processing examples shown in FIG.
  • the inert gas is supplied to the space between the blocking plate 47 located at the close position and the upper surface of the substrate W.
  • the humidity of the atmosphere of this space decreases.
  • the control device 3 measures the concentration of water at a position close to the upper surface of the upper surface of the substrate W, that is, the humidity, by the TDLAS gas concentration measurement unit 11 (measurement process: E2 in FIG. 14). Then, if the measured humidity at that time is lower than the threshold humidity (for example, about 5%) (YES in E3 of FIG. 14), the control device 3 ends the replacement step (S8) and the drying step (S9) It shifts to (E4 in FIG. 14).
  • the threshold humidity for example, about 5%
  • the process of FIG. 14 is returned, and this process is repeatedly performed (looped). That is, the process does not shift to the drying step (S9) until the measured humidity falls below the threshold humidity (for example, about 5%), and the replacement step (S8) is continued.
  • the threshold humidity for example, about 5%
  • the drying step (S9) includes a liquid mass exclusion step of excluding the liquid film of the paddle-like organic solvent as it is from the upper surface of the substrate W, and a spin dry step of scattering and drying the substrate W.
  • the liquid mass removal step includes a drilling step and a hole enlargement step. First, a drilling process is performed, and a hole enlarging process is performed after completion of the drilling process.
  • the drilling step is a step of forming a circular hole (i.e., a dry area) in which the liquid is eliminated in the central portion of the paddle-like liquid film.
  • the control device 3 opens the inert gas valve 57.
  • the gas inert gas
  • the discharge flow rate of the gas at this time is about 50 (liter / minute) to 100 (liter / minute).
  • the gas blowing pressure gas pressure blows out the liquid at the center of the paddle-like liquid film.
  • a hole is formed at the center of the upper surface of the substrate W.
  • the controller 3 controls the spin motor M to increase the rotational speed of the substrate W to a predetermined hole expanding speed (for example, about 200 rpm). At this time, the holes begin to expand due to the centrifugal force acting on the paddle-like liquid film on the substrate W. Then, after the drilling speed is reached, the control device 3 further accelerates the rotation of the substrate W gradually. As a result, the hole is enlarged over the entire area of the substrate W, whereby the entire paddle-like liquid film is discharged out of the substrate W. After the hole is expanded on the entire upper surface of the substrate W, the control device 3 closes the inert gas valve 57 to stop the discharge of the gas from the second discharge port 53a.
  • a predetermined hole expanding speed for example, about 200 rpm.
  • the paddle-like liquid film maintains the liquid mass state in the entire period of the expansion of the hole, the liquid after the liquid mass division does not remain on the upper surface of the substrate W. That is, by performing the drilling process and the hole expanding process, the paddle-like liquid film can be removed from above the substrate W while preventing the liquid film from breaking up.
  • the control device 3 executes the spin dry step. Specifically, the controller 3 further accelerates the substrate W to a spin dry speed (for example, about 2400 rpm). Thereby, the liquid on the upper surface of the substrate W is shaken off.
  • a spin dry speed for example, about 2400 rpm
  • the control device 3 controls the spin motor M to stop the rotation of the spin chuck 5 (that is, the rotation of the substrate W) and controls the blocking plate rotation unit 58.
  • the rotation of the blocking plate 47 is stopped, and the blocking member lifting unit 59 is controlled to raise the blocking plate 47 and retract it to the retracted position.
  • the control device 3 arranges all of the first to third guards 64 to 66 at the lower position (S10 in FIG. 9).
  • the substrate transport robot CR enters the processing unit 2 and carries out the processed substrate W out of the processing unit 2 (S11 in FIG. 9).
  • the carried-out substrate W is delivered from the substrate transfer robot CR to the indexer robot IR, and is stored in the substrate container C by the indexer robot IR.
  • the process proceeds to the drying step (S9) and the measured humidity Is higher than or equal to the threshold humidity (e.g., about 5%), the replacement step (S8) is continued. Therefore, since the liquid organic solvent is removed from the upper surface of the substrate W in a state where water is not mixed with the low surface tension liquid present on the upper surface of the substrate W, pattern collapse can be suppressed or prevented.
  • the threshold humidity for example, about 5%
  • the optical path 89 formed between the light emitting window 84 and the light receiving window 87 is arranged to pass through the upper space SP in the chamber 4 (particularly, the upper surface proximity position). Ru. Then, the ammonia concentration and the humidity of the atmosphere around the light path 89 are measured by the TDLAS gas concentration measuring unit 83. The atmosphere around the optical path 89 is measured by the TDLAS method. Therefore, the peripheral members (SC1 nozzle 21, SC2 nozzle 31, rinse liquid 41, first nozzle arm 24, second nozzle arm 34, third nozzle arm) regardless of the treatment liquid existing in the upper space SP Each of the ammonia concentration and the humidity can be accurately measured while avoiding the interference with 44).
  • FIG. 15 is a schematic view of the inside of the processing unit 202 according to the second embodiment of the present invention as viewed in the horizontal direction.
  • FIG. 16 is a schematic diagram for explaining the replacement step (S9) of the example of the substrate processing performed in the processing unit 202. As shown in FIG.
  • the difference between the processing unit 202 according to the second embodiment and the processing unit 2 according to the first embodiment is that the blocking member 9 (see FIG. 2) is eliminated and the upper surface nozzle 49 (see FIG. 2) Instead of this, an organic solvent nozzle 203 for discharging the organic solvent is provided.
  • the organic solvent nozzle 203 is supported by the second nozzle arm 34.
  • the organic solvent nozzle 203 is, for example, a straight nozzle that discharges a liquid organic solvent in a continuous flow state.
  • the organic solvent is, for example, IPA (isopropyl alcohol), and as such an organic solvent, in addition to IPA, for example, methanol, ethanol, acetone, EG (ethylene glycol) and HFE (hydrofluoroether) can be exemplified.
  • IPA isopropyl alcohol
  • IPA isopropyl alcohol
  • methanol, ethanol, acetone, EG (ethylene glycol) and HFE (hydrofluoroether) can be exemplified.
  • EG ethylene glycol
  • HFE hydrofluoroether
  • an organic solvent not only the case where it consists only of a single-piece component but the liquid mixed with other components may be sufficient.
  • it may be a mixture of IPA and acetone, or a mixture of IPA and methanol.
  • the organic solvent nozzle 203 is attached to the second nozzle arm 34 in a vertical posture in which the processing liquid is discharged, for example, in a direction perpendicular to the upper surface of the substrate W.
  • an organic solvent pipe 204 Connected to the organic solvent nozzle 203 is an organic solvent pipe 204 to which the organic solvent from the organic solvent supply source is introduced.
  • An organic solvent valve 205 for opening and closing the organic solvent pipe 204 is interposed in the middle of the organic solvent pipe 204. When the organic solvent valve 205 is opened, the organic solvent is discharged downward from the organic solvent nozzle 203.
  • a substrate processing example equivalent to the substrate processing example shown in FIG. 9 is executed.
  • the controller 3 opens the organic solvent valve 205 while maintaining the rotation of the substrate W at the paddle speed (zero or low low rotation speed (eg, about 10 to 100 rpm)).
  • the organic solvent is discharged from the organic solvent nozzle 203 toward the center of the upper surface of the substrate W.
  • the rinse liquid on the upper surface of the substrate W is replaced with the organic solvent, and a liquid film of a paddle-like organic solvent covering the entire upper surface of the substrate W is formed.
  • the liquid film of the paddle-like organic solvent is held in a state of covering the entire area of the substrate W.
  • the supply of the organic solvent may be stopped if the liquid does not run out even if the supply of the organic solvent is stopped. However, if the supply of the organic solvent is stopped and the organic solvent runs out, the supply of the organic solvent is continued.
  • Clean air ie, dry gas
  • the humidity of the atmosphere in the upper space SP is reduced.
  • a predetermined time period has elapsed from the start of the replacement step (S8 in FIG. 9)
  • Whether to shift from the substitution step (S8 in FIG. 9) to the drying step (S9 in FIG. 9) is determined based on the process described using FIG.
  • the substrate processing example executed in the processing unit 2, 202 has been described as performing the processing shown in FIG. 14 at the transition from the replacement step (S8 in FIG. 9) to the drying step (S9 in FIG. 9)
  • the process shown in FIG. 14 may be performed at the transition from the paddle rinse process (S7 in FIG. 9) to the replacement process (low surface tension liquid supply process; S8 in FIG. 9). Furthermore, it may be performed at the transition from the rinse step (S6 in FIG. 9) to the paddle rinse step (S7 in FIG. 9). That is, in this modification, the process shown in FIG. 14 is performed prior to the replacement step (S8 in FIG. 9).
  • the process shown in FIG. 14 is performed at the transition from the paddle rinse step (S7 in FIG. 9) to the replacement step (S8 in FIG. 9) will be described.
  • the controller 3 measures the concentration of water at the upper surface close position of the upper surface of the substrate W, that is, the humidity by the TDLAS gas concentration measurement unit 11.
  • the control device 3 ends the paddle rinse step (S7 in FIG. 9). It shifts to the substitution process (S8 in FIG. 9).
  • the process of FIG. 14 is returned, and this process is repeatedly performed (looped). That is, the paddle rinse step (S7 in FIG. 9) continues without shifting to the replacement step (S8 in FIG. 9) until the measured humidity decreases to the threshold humidity (for example, a predetermined concentration in the range of about 30% to 40%). Be done.
  • the threshold humidity for example, a predetermined concentration in the range of about 30% to 40%
  • the replacement step (S8 in FIG. 9) is performed only when the humidity measured in the humidity measurement step is lower than a predetermined humidity. Since the processing after the replacement step (S8 in FIG. 9) is performed in a state where water is not mixed with the organic solvent present on the upper surface of the substrate W, pattern collapse can be suppressed or prevented.
  • the organic solvent is excluded (dried) from the upper surface of the substrate only in the spin dry step without executing the liquid mass exclusion step in the drying step (S9 in FIG. 9). You may In this case, only the spin motor M corresponds to the organic solvent removal unit.
  • FIG. 17 is a schematic view of a substrate processing apparatus 301 according to a third embodiment of the present invention as viewed from above.
  • FIG. 18 is a schematic view of the interior of the plurality of processing units 302 provided in the substrate processing apparatus 301 as viewed in the horizontal direction.
  • the difference between the substrate processing apparatus 301 according to the third embodiment and the substrate processing apparatus 1 according to the first embodiment is that the TDLAS gas concentration measurement unit is not provided in each processing unit, and a plurality of processing units 302 are provided.
  • the concentration of the gas in the chamber 4 is measured by the TDLAS gas concentration measurement unit 311. That is, the TDLAS gas concentration measurement unit 311 functions as a multiple chamber concentration measurement unit.
  • the processing unit 302 has the same configuration as the processing unit 2 except that the processing unit 302 is not provided with the TDLAS gas concentration measurement unit 11 (see FIG. 2). In FIG. 18, the detailed configuration of the processing unit 302 is not shown.
  • the TDLAS gas concentration measurement unit 311 includes a light emitting unit 381, a light receiving unit 382, and a TDLAS gas concentration measurement unit 383.
  • FIG. 18 shows a case where the number of processing units 302 to be measured by one TDLAS gas concentration measuring unit 311 is two, for example.
  • the light emitting unit 381 includes light emitting diodes (first and second light emitting diodes LD1 and LD2) disposed outside the chamber of each processing unit 302, and light emitting windows (the first and second light emitting diodes disposed in the chamber 4 of each processing unit 302). 1) window 84 and a light guiding cable 385 for guiding the light from the light emitting diode to the light emitting window 84.
  • the number of units having light emitting diodes is only one regardless of the number of processing units 302.
  • the light guide cable 385 is branched at the tip end side and connected to the light emission window 84 in each processing unit 302.
  • the light guiding cable 385 connects the plurality of light emitting windows 84 to the first and second light emitting diodes LD1 and LD2.
  • the light guide cable 385 has the same configuration as the light guide cable 85 (see FIG. 2 and the like) except that the front end side of the light guide cable 385 is branched.
  • the light receiving unit 382 is provided in each processing unit 302.
  • the light receiving unit 382 has the same configuration as the light receiving unit 82.
  • the light receiving unit 382 includes a light receiving window 87 disposed in the chamber 4 and a light receiving diode PD that receives light emitted from the light emitting diode and entering the light receiving window 87.
  • the processing unit 302 shown on the left side of FIG. 18 is a first processing unit 302A
  • the processing unit 302 shown on the right side of FIG. 19 is a second processing unit 302B.
  • the light receiving diode PD of the first processing unit 302A is a first light receiving diode PD1
  • the light receiving diode PD of a second processing unit 302B is a second light receiving diode PD2.
  • a third optical path 89 is formed, and an optical path (fourth optical path) 89 connecting the light emitting window 84 and the light receiving window 87 is formed in the chamber (second chamber) 4 of the second processing unit 302B. Be done.
  • the TDLAS gas concentration measurement unit 383 determines the concentration of the gas in the chamber 4 of each processing unit 302 based on the waveform (absorption signal waveform) detected by the light receiving diode PD of the light receiving unit 382 provided in each processing unit 302. The concentration of gas contained in the atmosphere around each light path 89 (third and fourth light paths) is measured.
  • the TDLAS gas concentration measurement unit 383 has the same configuration as the TDLAS gas concentration measurement unit 83 according to the first embodiment, except that the measurement target of the TDLAS gas concentration measurement unit 383 straddles the plurality of processing units 302.
  • the concentration of the gas in the atmosphere in the chamber 4 can be measured in each of the chambers 4 of the plurality of processing units 302 using one TDLAS gas concentration measurement unit 311.
  • the number of light emitting diode units and the number of TDLAS gas concentration measurement units 383 can be reduced as compared to the case where the TDLAS gas concentration measurement unit is provided for each processing unit, and cost reduction can be achieved.
  • the number of processing units 302 to be measured by one TDLAS gas concentration measuring unit 311 may be three or more. That is, although the plural gas concentration measurement unit is two, it may be three or more.
  • the number of processing units 302 to be measured by one TDLAS gas concentration measuring unit 311 may be three or more. That is, although the plural gas concentration measurement unit is two, it may be three or more.
  • first and second light emitting diodes LD1 and LD2 are interposed between the first and second light emitting diodes LD1 and LD2 and the light emitting window (second window) 84 (FIGS. 2 and 18).
  • the light emitted from the first and second light emitting diodes LD1 and LD2 may directly enter the light emitting window 84 without interposing the reference.
  • the first and second light emitting diodes LD1 and LD2 are disposed in the chamber 4.
  • a shutter 401 for opening and closing the light emitting window 84 may be provided on the light receiving side with respect to the light emitting window 84.
  • a shutter 402 for opening and closing the light receiving window 87 may be provided on the light emitting side with respect to the light receiving window 87.
  • the shutters 401 and 402 are opened only when light is emitted from the first and second light emitting diodes LD1 and LD2 (ie, when performing concentration measurement using the TDLAS gas concentration measurement unit), and other states Then, it is closed. Both the shutters 401 and 402 may be provided, or only one of the shutters 401 and 402 may be provided.
  • the light receiving side of the light emitting window 84 and / or the light emitting side of the light receiving window 87 are opened only when it is necessary for measurement, and the light receiving side of the light emitting window 84 and / or the light emitting side of the light receiving window 87 is otherwise It is closed. Therefore, the light emission window 84 and / or the light reception window 87 can be kept clean, and therefore, the accuracy of concentration measurement using the TDLAS gas concentration measurement unit can be improved.
  • the light emitting unit and the light receiving unit may be of a reflective type. That is, the mirror 403 may be disposed between the light emitting window 84 (the light emitting unit 81) and the light receiving window 87 (the light receiving units 82 and 382). In this case, it is possible to arrange the light emission window 84 (light emission unit 81) and the light reception window 87 (light reception units 82 and 382) on the same side with respect to the rotation axis A1, as shown in FIG. is there. In this case, as compared with the case of the first embodiment shown in FIG. 3, the distance of the optical path 89 can be doubled, which enables more accurate measurement.
  • the light emitting unit 81 (the light emitting window 84, the light guiding cable 85, and the first cover 86) and the light receiving units 82 and 382 (the light receiving window 84, the second cover 88 and the light receiving diode PD)
  • a dedicated retainer it may be supported by a guard.
  • the first and second light emitting diodes LD1, LD2 and the light receiving diode PD are embedded in the inner peripheral end portions 64a, 65a, 66a of all the guards 64, 65, 66.
  • the first and second light emitting diodes LD1 and LD2 and the light receiving diode PD are disposed to face each other in the lateral direction across the spin chuck 5 and the upper space SP.
  • the light guide cables 85 and 385 are embedded in the first to third guards 64 to 66, and the inner peripheral end portions 64a, 65a and 66a of the first to third guards 64 to 66
  • the front end surface and the light receiving diode PD may face each other in the lateral direction.
  • a support is provided to extend upward from the elevating shaft of the outermost guard, and the light emitter 81 and the light receivers 82 and 382 are provided in the support. May be supported.
  • the measurement object of TDLAS gas concentration measurement unit 11 and 311 was made into gas of a total of two types, ammonia and water, was mentioned as an example and demonstrated, one type of gas is measurement object It may be three or more types.
  • gases that can be measured by the TDLAS gas concentration measurement unit 11, 311 include HF, HCL, HF, CO2, CO, H2S, CH4, HCN and the like.
  • the wavelength of the absorber of HF is about 1.3 ⁇ m.
  • the number of LEDs included in one light emitting unit may be one.
  • at least the number of LEDs corresponding to the type is included in one light emitting unit.
  • SC1 and SC2 have been described as the chemical solutions (first and second chemical solutions) by way of example, but the chemical solutions include, for example, sulfuric acid, acetic acid, nitric acid, hydrochloric acid, and hydrofluoric acid.
  • the processing cup 10 may be a single cup or may be a two-stage cup, or four stages The above multistage cup may be used.
  • the substrate processing apparatus is a substrate for liquid crystal display device, organic EL (electroluminescence Scence) display Equipment for processing substrates such as FPD (Flat Panel DiSplay) substrates for optical devices, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, substrates for photomasks, ceramic substrates, substrates for solar cells, etc. Good.
  • FPD Fluorescence Scence
  • Substrate processing apparatus 3 Controller 4: Chamber 5: Spin chuck (substrate holding unit) 52: First nozzle piping (surface tension liquid supply unit) 53: Second nozzle piping (surface tension liquid elimination unit) 81: Light emitting unit 81A: Light emitting unit 82: Light receiving unit 83: TDLAS gas concentration measuring unit 84: Light emitting window (first window, second window) 87: Light receiving window (second window) 89: light path 301: substrate processing apparatus 302: processing unit 311: TDLAS gas concentration measuring unit 381: light emitting unit 382: light receiving unit 383: TDLAS gas concentration measuring unit 401: shutter 402: shutter A1: rotation axis LD1: first light emission Diode LD2: Second light emitting diode M: Spin motor (surface tension liquid exclusion unit) PD: light receiving diode PD1: first light receiving diode PD2: second light receiving diode W: substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

This substrate processing device includes: a chamber; a substrate retention unit that is accommodated within the chamber and is for retaining a substrate; and a TDLAS gas concentration measurement unit that includes a light-emitting section comprising a light-emitting diode, a light-receiving section comprising a light-receiving diode for receiving light from the light-emitting diode, and a TDLAS gas concentration measurement section for measuring, by TDLAS scheme, the concentration of a predetermined species of gas contained in the atmosphere surrounding an optical path which is formed between the light-emitting diode and the light-receiving diode and which is disposed so as to pass through a predetermined region within the chamber.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 この発明は、基板処理装置および基板処理方法に関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method. Substrates to be processed include, for example, substrates for semiconductor wafers, substrates for liquid crystal displays, substrates for flat panel displays (FPDs) such as organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, and magneto-optical disks. Substrates, substrates for photomasks, ceramic substrates, substrates for solar cells, etc. are included.
 半導体装置の製造工程では、半導体ウエハ等の基板の表面が処理液で処理される。基板を一枚ずつ処理する枚葉式の基板処理装置は、チャンバと、チャンバ内に収容され、基板をほぼ水平に保持しながらその基板を回転させるスピンチャックと、このスピンチャックによって回転される基板の表面に処理液を供給するためのノズルとを含む。 In the manufacturing process of a semiconductor device, the surface of a substrate such as a semiconductor wafer is treated with a treatment liquid. A single-wafer substrate processing apparatus for processing substrates one by one includes a chamber, a spin chuck housed in the chamber and rotating the substrate while holding the substrate substantially horizontal, and a substrate rotated by the spin chuck And a nozzle for supplying the processing solution to the surface of the substrate.
 典型的な基板処理工程では、スピンチャックに保持された基板に対して薬液が供給される。その後、リンス液が基板に供給され、それによって、基板上の薬液がリンス液に置換される。その後、基板上のリンス液を排除するためのスピンドライ工程が行われる。スピンドライ工程では、基板が高速回転されることにより、基板に付着しているリンス液が振り切られて排除(乾燥)される。一般的なリンス液は脱イオン水である。 In a typical substrate processing process, a chemical solution is supplied to a substrate held by a spin chuck. Thereafter, the rinse liquid is supplied to the substrate, whereby the chemical solution on the substrate is replaced with the rinse liquid. Thereafter, a spin dry process is performed to remove the rinse solution on the substrate. In the spin dry process, the substrate is rotated at a high speed, and the rinse solution adhering to the substrate is shaken off and eliminated (dried). A common rinse solution is deionized water.
 基板の表面に微細なパターンが形成されている場合に、スピンドライ工程では、パターンの内部に入り込んだリンス液を排除できないおそれがあり、それによって、乾燥不良が生じるおそれがある。そこで、リンス液による処理後の基板の表面に、イソプロピルアルコール(isopropyl alcohol:IPA)等の有機溶剤を供給して、基板の表面のパターンの隙間に入り込んだリンス液を有機溶剤に置換することによって基板の表面を乾燥させる手法が提案されている。 In the case where a fine pattern is formed on the surface of the substrate, in the spin-drying process, there is a possibility that the rinse solution which has entered the inside of the pattern can not be removed, which may cause drying failure. Therefore, an organic solvent such as isopropyl alcohol (IPA) is supplied to the surface of the substrate after treatment with the rinse liquid, and the rinse liquid that has entered the gaps in the pattern on the substrate surface is replaced with the organic solvent. A method of drying the surface of the substrate has been proposed.
 図22に示すように、基板の高速回転により基板を乾燥させるスピンドライ工程では、液面(空気と液体との界面)が、パターン内に形成される。この場合、液面とパターンとの接触位置に、液体の表面張力が働く。この表面張力は、パターンを倒壊させる原因の一つである。 As shown in FIG. 22, in the spin-drying process in which the substrate is dried by high-speed rotation of the substrate, a liquid level (interface between air and liquid) is formed in the pattern. In this case, the surface tension of the liquid acts on the contact position between the liquid level and the pattern. This surface tension is one of the causes of collapsing the pattern.
 特許文献1のように、リンス処理後スピンドライ工程の前に液体の有機溶剤を基板の表面に供給する場合には、液体の有機溶剤がパターンの間に入り込む。有機溶剤の表面張力は、典型的なリンス液である水よりも低い。そのため、表面張力に起因するパターンの倒壊の問題が緩和される。 In the case where a liquid organic solvent is supplied to the surface of a substrate after rinse treatment and before a spin dry process as in Patent Document 1, the liquid organic solvent intercalates between the patterns. The surface tension of the organic solvent is lower than that of water, which is a typical rinse solution. Therefore, the problem of pattern collapse caused by surface tension is alleviated.
 しかしながら、有機溶剤の供給の際に、基板の表面の上方空間の湿度が高いと、基板の表面の低表面張力液体に水が混じる結果、基板の表面に供給された低表面張力液体の表面張力が上昇し、その結果、パターンの倒壊が生じるおそれがある。そのため、基板の表面の上方空間の湿度を湿度計によって計測しておくことが望ましい。 However, when the humidity above the surface of the substrate is high at the time of supply of the organic solvent, the low surface tension liquid on the surface of the substrate mixes with water, and as a result, the surface tension of the low surface tension liquid supplied to the surface of the substrate Rise, which may result in the collapse of the pattern. Therefore, it is desirable to measure the humidity of the space above the surface of the substrate with a hygrometer.
 下記特許文献2には、チャンバ内の湿度を計測するための湿度計が開示されている。特許文献2に記載の湿度計は、基板の表面(上面)の上方空間ではなく、チャンバ内における、上方空間の側方の空間の湿度を計測している。 Patent Document 2 below discloses a hygrometer for measuring the humidity in the chamber. The hygrometer described in Patent Document 2 measures the humidity of the space on the side of the upper space in the chamber, not in the space above the surface (upper surface) of the substrate.
特開2012-156561号公報JP, 2012-156561, A 米国特許出願公開第2017/256392号公報U.S. Patent Application Publication No. 2017/256392
 特許文献2に記載の湿度計として、感湿膜の吸脱湿に伴う抵抗の変化に基づいて感湿膜の周囲の雰囲気の湿度を計測する抵抗式の湿度計や、感湿膜の吸脱湿に伴う静電容量の変化に基づいて感湿膜の周囲の雰囲気の湿度を計測する静電容量式の湿度計が考えられる。 As a hygrometer described in Patent Document 2, a resistance type hygrometer that measures the humidity of the atmosphere around the humidity sensitive film based on a change in resistance associated with absorption and desorption of the humidity sensitive film, and absorption and desorption of the humidity sensitive film A capacitance type hygrometer is conceivable which measures the humidity of the atmosphere around the moisture sensitive film based on the change in capacitance accompanying humidity.
 しかしながら、これら感湿膜を有する湿度計を、チャンバ内に配置するとした場合、次のような問題が生じる。 However, when the hygrometer having the moisture sensitive film is disposed in the chamber, the following problems occur.
 すなわち、チャンバ内の雰囲気が処理液を含むことがある。処理液がIPA等の有機溶剤である場合には、湿度計の感湿膜が有機溶剤に触れることで変質し、その結果、湿度計の感湿膜によってチャンバ内の雰囲気を精度良く計測できないことがある。 That is, the atmosphere in the chamber may contain the processing solution. When the treatment liquid is an organic solvent such as IPA, the moisture sensitive film of the hygrometer is altered by contact with the organic solvent, and as a result, the atmosphere in the chamber can not be accurately measured by the moisture sensitive film of the hygrometer. There is.
 また、湿度センサの感湿膜と有機溶剤との接触を防止するために湿度センサに防曝構造を組み入れることが考えられるが、湿度センサの感湿膜が周囲の雰囲気と接触することによって湿度を計測するメカニズムを採用しているために、このような防曝構造を採用することはできない。そのため、チャンバ内に存在する処理液が湿度センサに降りかかり、湿度センサの計測精度を高く保つことができない。 It is also possible to incorporate an exposure structure into the humidity sensor in order to prevent contact between the humidity sensitive film of the humidity sensor and the organic solvent, but the humidity can be reduced by contacting the humidity sensitive film with the ambient atmosphere. Such a protection structure can not be adopted because it uses a measuring mechanism. Therefore, the processing liquid present in the chamber falls on the humidity sensor, and the measurement accuracy of the humidity sensor can not be maintained high.
 すなわち、基板処理装置のチャンバ内の湿度を計測する場合、感湿膜の変化によって湿度を計測する従来の湿度計では、チャンバ内の湿度を精度良く計測することができなかった。 That is, in the case of measuring the humidity in the chamber of the substrate processing apparatus, the humidity in the chamber could not be accurately measured by the conventional hygrometer which measures the humidity by the change of the moisture sensitive film.
 また、このような問題は、湿度(雰囲気に含まれる水の濃度)を計測する湿度計に限られず、チャンバ内の雰囲気に含まれる、水以外の気体の濃度を計測する気体濃度計測ユニットにも共通する課題である。 In addition, such a problem is not limited to the hygrometer that measures humidity (the concentration of water contained in the atmosphere), but also to a gas concentration measurement unit that measures the concentration of a gas other than water contained in the atmosphere in the chamber. It is a common task.
 そこで、この発明の目的の一つは、チャンバ内の雰囲気に含まれる所定の種類の気体の濃度を精度良く計測できる基板処理装置を提供することである。 Therefore, one of the objects of the present invention is to provide a substrate processing apparatus capable of accurately measuring the concentration of a predetermined type of gas contained in the atmosphere in the chamber.
 また、この発明の他の目的は、チャンバ内における湿度を精度良く計測することができ、これにより、パターン倒壊を抑制または防止できる基板処理装置および基板処理方法を提供することである。 Another object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of accurately measuring the humidity in the chamber and thereby suppressing or preventing pattern collapse.
 この発明は、チャンバと、前記チャンバ内に収容され、基板を保持するための基板保持ユニットと、発光ダイオードを有する発光部と、前記発光ダイオードからの光を受ける受光ダイオードを有する受光部と、前記発光ダイオードと前記受光ダイオードとの間に形成される光路であって、前記チャンバ内の所定領域を通過するように配置された前記光路の周囲の雰囲気に含まれる所定の種類の気体の濃度をTDLAS方式で計測するTDLAS気体濃度計測部とを有するTDLAS気体濃度計測ユニットとを含む、基板処理装置を提供する。 According to the present invention, there is provided a chamber, a substrate holding unit housed in the chamber for holding a substrate, a light emitting unit having a light emitting diode, and a light receiving unit having a light receiving diode for receiving light from the light emitting diode. It is an optical path formed between a light emitting diode and the light receiving diode, and the concentration of a predetermined type of gas contained in the atmosphere around the optical path disposed to pass through a predetermined area in the chamber is determined by TDLAS. A substrate processing apparatus including: a TDLAS gas concentration measurement unit having a TDLAS gas concentration measurement unit that measures according to a method.
 「TDLAS」とは、波長可変半導体レーザー吸収分光(Tunable Diode Laser Absorption Spectroscopy)のことをいう。 "TDLAS" refers to tunable diode laser absorption spectroscopy.
 この構成によれば、発光部と受光部との間に形成される光路が、チャンバ内の所定領域を通過するように配置される。光路の周囲の雰囲気に含まれる所定種類の気体の濃度が、TDLAS気体濃度計測部によって計測される。TDLAS方式によって光路の周囲の雰囲気を計測するので、チャンバ内に存在する処理液によらずに、チャンバ内の雰囲気に含まれる所定の種類の気体の濃度を精度良く計測できる。 According to this configuration, the optical path formed between the light emitting unit and the light receiving unit is arranged to pass through the predetermined area in the chamber. The concentration of a predetermined type of gas contained in the atmosphere around the light path is measured by the TDLAS gas concentration measurement unit. Since the atmosphere around the optical path is measured by the TDLAS method, the concentration of a predetermined type of gas contained in the atmosphere in the chamber can be measured accurately, regardless of the treatment liquid present in the chamber.
 この発明の一実施形態では、前記所定領域が、前記基板保持ユニットに保持されている基板の上面の上方の上方空間に設けられている。 In one embodiment of the present invention, the predetermined area is provided in an upper space above the upper surface of the substrate held by the substrate holding unit.
 この構成によれば、発光部と受光部との間に形成される光路が、基板保持ユニットに保持されている基板の上面の上方空間(以下、単に「上方空間」という)を通過する。これにより、上方空間の雰囲気に含まれる所定の種類の気体の濃度を、精度良く計測できる。 According to this configuration, the optical path formed between the light emitting unit and the light receiving unit passes through the space above the upper surface of the substrate held by the substrate holding unit (hereinafter simply referred to as “upper space”). Thereby, the concentration of the predetermined type of gas contained in the atmosphere in the upper space can be measured with high accuracy.
 仮に、濃度計計測部として、TDLAS気体濃度計測部に代えて、感湿膜を有する温度計を採用する場合、上方空間の雰囲気に含まれる気体の濃度を計測するべく、感湿膜を上方空間に配置する必要がある。この場合、周辺部材(基板に処理液を吐出するノズルや、このノズルを保持するアーム、基板の上面に対向する対向部材)に感湿膜が干渉するという問題がある。 If a thermometer having a moisture sensitive film is employed instead of the TDLAS gas concentration measuring unit as a densitometer measurement unit, the humidity sensitive film is placed in the upper space to measure the concentration of the gas contained in the atmosphere in the upper space. Need to be placed. In this case, there is a problem that the moisture sensitive film interferes with peripheral members (a nozzle for discharging the processing liquid onto the substrate, an arm for holding the nozzle, an opposing member facing the upper surface of the substrate).
 この構成によれば、このような周辺部材との干渉という問題が発生するのを抑制または防止できる。 According to this configuration, it is possible to suppress or prevent the occurrence of the problem of interference with such peripheral members.
 この発明の一実施形態では、前記基板処理装置が、前記基板保持ユニットの周囲を取り囲む筒状のガードをさらに含む。そして、前記発光部および前記受光部が、前記チャンバ内において前記ガードの外側に配置されていてもよい。さらに、前記ガードには、前記発光ダイオードの発光波長が透過可能な材質を用いて形成された透過窓であって、前記光路が通過する透過窓が形成されていてもよい。 In one embodiment of the present invention, the substrate processing apparatus further includes a cylindrical guard surrounding a periphery of the substrate holding unit. The light emitting unit and the light receiving unit may be disposed outside the guard in the chamber. Furthermore, the guard may be a transmission window formed using a material capable of transmitting the light emission wavelength of the light emitting diode, and a transmission window through which the optical path passes may be formed.
 この構成によれば、発光部および受光部が、チャンバの内部においてガードの外側に配置されている。ガードには、発光ダイオードの発光波長が透過可能な材質を用いて形成された透過窓が形成されており、この透過窓を光路が通過する。これにより、発光部および受光部をガードの外側に配置しながら、上方空間内に光路を通過させることができる。ゆえに、発光部および受光部をガードの外側に配置しながら、上方空間の雰囲気に含まれる所定の種類の気体の濃度を、精度良く計測できる。 According to this configuration, the light emitting unit and the light receiving unit are disposed outside the guard inside the chamber. The guard is formed with a transmission window formed of a material capable of transmitting the light emission wavelength of the light emitting diode, and the light path passes through the transmission window. Thus, the light path can be passed through the upper space while the light emitting unit and the light receiving unit are disposed outside the guard. Therefore, the concentration of the predetermined type of gas contained in the atmosphere in the upper space can be accurately measured while the light emitting unit and the light receiving unit are disposed outside the guard.
 この発明の一実施形態では、前記基板処理装置が、前記ガードを、前記基板の周縁部から飛散する処理液を捕獲可能な上位置と、前記上位置よりも下方に設定された下位置であって、前記基板の周縁部の側方から下方に退避した下位置との間で、前記基板保持ユニットに対して昇降させるガード昇降ユニットをさらに含む。そして、前記ガードが前記上位置に位置する場合に、前記光路が前記透過窓を透過してもよい。 In one embodiment of the present invention, the substrate processing apparatus has the guard at an upper position capable of capturing the processing liquid scattering from the peripheral portion of the substrate and a lower position set below the upper position. The apparatus further includes a guard elevating unit that raises and lowers the substrate holding unit between a lower position retracted downward from the side of the peripheral portion of the substrate. And when the said guard is located in the said upper position, the said optical path may permeate | transmit the said transmission window.
 この構成によれば、ガードが上位置に位置している状態では、透過窓を光路が通過する。ガードが下位置に位置している状態では、そもそもガードに光路が当たらない。これにより、基板保持ユニットに対するガードの高さ位置によらずに、チャンバ内における予め定める一の高さ領域において光路を通過させることができる。ゆえに、基板保持ユニットに対するガードの高さ位置によらずに、チャンバ内の雰囲気に含まれる所定の種類の気体の濃度を、精度良く計測できる。 According to this configuration, the light path passes through the transmission window when the guard is at the upper position. When the guard is at the lower position, the light path does not hit the guard in the first place. This allows the light path to pass through at a predetermined one height region in the chamber regardless of the height position of the guard relative to the substrate holding unit. Therefore, regardless of the height position of the guard with respect to the substrate holding unit, the concentration of the predetermined type of gas contained in the atmosphere in the chamber can be accurately measured.
 この発明の一実施形態では、前記基板処理装置が、前記基板保持ユニットの周囲を取り囲む筒状のガードをさらに含む。そして、前記発光部および前記受光部が前記ガードに支持されていてもよい。 In one embodiment of the present invention, the substrate processing apparatus further includes a cylindrical guard surrounding a periphery of the substrate holding unit. The light emitting unit and the light receiving unit may be supported by the guard.
 この構成によれば、発光部および受光部がガードに支持されている。これにより、比較的簡単に発光部および受光部を配置できる。 According to this configuration, the light emitting unit and the light receiving unit are supported by the guard. Thereby, the light emitting unit and the light receiving unit can be arranged relatively easily.
 この発明の一実施形態では、前記発光部および前記受光部が、前記ガードの内周端部に埋設されている。 In one embodiment of the present invention, the light emitting unit and the light receiving unit are embedded in an inner peripheral end of the guard.
 この構成によれば、発光部および受光部が、ガードの内周端部に埋設されていれば、上方空間に光路を良好に配置できる。 According to this configuration, if the light emitting unit and the light receiving unit are embedded in the inner peripheral end of the guard, the optical path can be favorably disposed in the upper space.
 この発明の一実施形態では、前記発光部が、第1の発光ダイオードと、前記第1の発光ダイオードとは発光波長の異なる第2の発光ダイオードとを含む。そして、前記TDLAS気体濃度計測部が、前記第1の発光ダイオードと前記受光ダイオードとの間に形成される第1の光路の周囲の雰囲気に含まれる第1の種類の気体の濃度をTDLAS方式で計測し、かつ前記第2の発光ダイオードと前記受光ダイオードとの間に形成される第2の光路の周囲の雰囲気に含まれる第2の種類の気体の濃度をTDLAS方式で計測する複数気体濃度計測部を含んでいてもよい。 In one embodiment of the present invention, the light emitting unit includes a first light emitting diode and a second light emitting diode different in light emission wavelength from the first light emitting diode. The TDLAS gas concentration measurement unit may be configured to measure the concentration of the first type of gas contained in the atmosphere around the first light path formed between the first light emitting diode and the light receiving diode using the TDLAS method. Multi-gas concentration measurement which measures and measures the concentration of the second type of gas contained in the atmosphere around the second light path formed between the second light emitting diode and the light receiving diode by the TDLAS method You may include a part.
 この構成によれば、TDLAS気体濃度計測部が、複数気体濃度計測部を含む。この複数気体濃度計測部は、第1の発光ダイオードと受光ダイオードとの間に形成される第1の光路の周囲の雰囲気に含まれる第1の種類の気体の濃度をTDLAS方式で計測する。また、複数気体濃度計測部は、第2の発光ダイオードと受光ダイオードとの間に形成される第2の光路の周囲の雰囲気に含まれる第2の種類の気体の濃度をTDLAS方式で計測する。これにより、1つのチャンバにおいて、当該チャンバ内の雰囲気に含まれる複数種類の気体の濃度を、それぞれ精度良く計測できる。 According to this configuration, the TDLAS gas concentration measurement unit includes the multiple gas concentration measurement unit. The multiple gas concentration measuring unit measures the concentration of the first type of gas contained in the atmosphere around the first light path formed between the first light emitting diode and the light receiving diode by the TDLAS method. Further, the plural gas concentration measurement unit measures the concentration of the second type gas contained in the atmosphere around the second light path formed between the second light emitting diode and the light receiving diode by the TDLAS method. Thereby, in one chamber, the concentrations of plural kinds of gases contained in the atmosphere in the chamber can be measured with high accuracy.
 この発明の他の実施形態では、前記チャンバが、互いに異なる第1および第2のチャンバを含む。そして、前記受光部が、前記第1のチャンバに配置された第1の受光ダイオードと、前記第2のチャンバに配置された第2の受光ダイオードとを含んでいてもよい。この場合、前記TDLAS気体濃度計測部が、前記発光ダイオードと前記第1の受光ダイオードとの間に形成される第3の光路であって、前記第1のチャンバの内部空間を通過するように配置された第3の光路の周囲の雰囲気に含まれる所定気体の濃度をTDLAS方式で計測し、かつ前記発光ダイオードと前記第2の受光ダイオードとの間に形成される第4の光路であって、前記第2のチャンバの内部空間を通過するように配置された第4の光路の周囲の雰囲気に含まれる所定気体の濃度をTDLAS方式で計測する複数チャンバ濃度計測部を含んでいてもよい。 In another embodiment of the present invention, the chambers include first and second chambers different from each other. The light receiving unit may include a first light receiving diode disposed in the first chamber and a second light receiving diode disposed in the second chamber. In this case, the TDLAS gas concentration measurement unit is disposed so as to pass through the internal space of the first chamber, which is a third optical path formed between the light emitting diode and the first light receiving diode. A fourth optical path formed between the light emitting diode and the second light receiving diode by measuring the concentration of a predetermined gas contained in the atmosphere around the third The multi-chamber concentration measurement unit may be configured to measure the concentration of a predetermined gas contained in the atmosphere around the fourth light path disposed so as to pass through the internal space of the second chamber by the TDLAS method.
 この構成によれば、TDLAS気体濃度計測部が、複数チャンバ濃度計測部を含む。この複数チャンバ濃度計測部は、発光ダイオードと第1の受光ダイオードとの間に形成される第3の光路の周囲の雰囲気に含まれる所定気体の濃度をTDLAS方式で計測する。この第3の光路は、第1のチャンバの内部空間を通過するように配置されている。また、複数チャンバ濃度計測部は、発光ダイオードと第2の受光ダイオードとの間に形成される第4の光路の周囲の雰囲気に含まれる所定気体の濃度をTDLAS方式で計測する。この第4の光路は、第2のチャンバの内部空間を通過するように配置されている。これにより、複数のチャンバの各々において、当該チャンバ内の雰囲気に含まれる所定の種類の気体の濃度を、それぞれ精度良く計測できる。 According to this configuration, the TDLAS gas concentration measurement unit includes the multiple chamber concentration measurement unit. The multi-chamber concentration measurement unit measures the concentration of a predetermined gas contained in the atmosphere around the third light path formed between the light emitting diode and the first light receiving diode using the TDLAS method. The third light path is disposed to pass through the internal space of the first chamber. In addition, the multi-chamber concentration measurement unit measures the concentration of a predetermined gas contained in the atmosphere around the fourth light path formed between the light emitting diode and the second light receiving diode by the TDLAS method. The fourth light path is disposed to pass through the internal space of the second chamber. Thereby, in each of the plurality of chambers, the concentration of the predetermined type of gas contained in the atmosphere in the chambers can be measured with high accuracy.
 この発明の一実施形態では、前記発光ダイオードが、前記チャンバ外に配置されている。そして、前記発光部が、前記チャンバ内に配置された第1の窓と、前記発光ダイオードからの光を前記第1の窓に導く導光ケーブルとをさらに有していてもよい。 In one embodiment of the present invention, the light emitting diode is disposed outside the chamber. The light emitting unit may further include a first window disposed in the chamber, and a light guiding cable for guiding light from the light emitting diode to the first window.
 この構成によれば、発光ダイオードをチャンバ外に配置しながら、発光ダイオードからの光を受光ダイオードへと導くことができる。発光ダイオードがチャンバ外に配置されているから、チャンバ内の雰囲気に含まれる処理液が発光ダイオードに悪影響を与えることがない。これにより、発光ダイオードに悪影響を与えることなく、チャンバ内の雰囲気に含まれる所定の種類の気体の濃度を精度良く計測できる。 According to this configuration, it is possible to guide the light from the light emitting diode to the light receiving diode while arranging the light emitting diode outside the chamber. Since the light emitting diode is disposed outside the chamber, the processing liquid contained in the atmosphere in the chamber does not adversely affect the light emitting diode. As a result, the concentration of the predetermined type of gas contained in the atmosphere in the chamber can be measured with high accuracy without adversely affecting the light emitting diode.
 この発明の一実施形態では、前記基板処理装置が、前記受光部および前記発光部の少なくとも一方に設けられ、当該一方よりも他方側に配置された第2の窓を少なくとも有しており、前記受光部および前記発光部の少なくとも前記一方に配置され、前記第2の窓に対して前記他方側の領域を開閉するシャッタをさらに含む。 In one embodiment of the present invention, the substrate processing apparatus includes at least a second window provided on at least one of the light receiving unit and the light emitting unit and disposed on the other side of the one or the other. It further includes a shutter disposed on at least one of the light receiving unit and the light emitting unit and opening and closing the region on the other side with respect to the second window.
 この構成によれば、発光ダイオードからの光が第2の窓を介して投出され、および/または受光ダイオードに対して第2の窓を介して光が入射する。第2の窓に対し、発光ダイオードおよび/または受光ダイオードと反対側が、シャッタによって開閉される。シャッタの閉状態では、第2の窓がシャッタによって閉塞され、処理液が第2の窓に付着することを抑制または防止できる。これにより、第2の窓を清浄な状態に保つことができるから、気体濃度の計測精度を向上させることができる。 According to this configuration, light from the light emitting diode is emitted through the second window and / or light is incident on the light receiving diode through the second window. A side of the second window opposite to the light emitting diode and / or the light receiving diode is opened and closed by the shutter. In the closed state of the shutter, the second window is closed by the shutter, which can suppress or prevent the treatment liquid from adhering to the second window. As a result, the second window can be kept clean, so that the measurement accuracy of the gas concentration can be improved.
 この発明の一実施形態では、前記基板処理装置が、前記基板の上面の着液位置に向けて処理液を吐出するノズルをさらに含む。そして、前記光路が、平面視で、前記基板の上面における処理液の着液位置を回避した位置に配置されていてもよい。 In one embodiment of the present invention, the substrate processing apparatus further includes a nozzle for discharging a processing liquid toward a liquid landing position on the upper surface of the substrate. And the said optical path may be arrange | positioned in the planar view and the position which avoided the liquid contact position of the process liquid in the upper surface of the said board | substrate.
 この構成によれば、光路が、平面視で、基板の上面における処理液の着液位置を回避している。そのため、光路が、ノズルや、ノズルから吐出され前記着液位置に達していない処理液と干渉することを抑制または防止できる。これにより、気体濃度の計測精度を、より一層向上させることができる。 According to this configuration, the optical path avoids the landing position of the processing liquid on the upper surface of the substrate in plan view. Therefore, it is possible to suppress or prevent the light path from interfering with the processing liquid which is discharged from the nozzle or the nozzle and does not reach the liquid deposition position. Thereby, the measurement accuracy of gas concentration can be further improved.
 この発明の一実施形態では、前記発光ダイオードが、アンモニアの吸収帯の波長を発光するように設けられている。 In one embodiment of the present invention, the light emitting diode is provided to emit a wavelength of an absorption band of ammonia.
 この構成によれば、発光ダイオードの発光波長が、アンモニアの吸収帯の波長を含むので、チャンバ内の雰囲気に含まれるアンモニアの濃度を精度良く計測できる。 According to this configuration, since the light emission wavelength of the light emitting diode includes the wavelength of the absorption band of ammonia, the concentration of ammonia contained in the atmosphere in the chamber can be accurately measured.
 この発明の一実施形態では、前記発光ダイオードが、水の吸収帯の波長を発光するように設けられている。 In one embodiment of the present invention, the light emitting diode is provided to emit a wavelength of an absorption band of water.
 この構成によれば、発光ダイオードの発光波長が、水の吸収帯の波長を含むので、チャンバ内の雰囲気に含まれる水の濃度、すなわち、チャンバ内の湿度を精度良く計測できる。 According to this configuration, since the emission wavelength of the light emitting diode includes the wavelength of the absorption band of water, it is possible to accurately measure the concentration of water contained in the atmosphere in the chamber, that is, the humidity in the chamber.
 この発明の一実施形態では、前記基板処理装置が、前記基板保持ユニットに保持されている基板の上面に、水よりも低い低表面張力を有する低表面張力液体を供給するための低表面張力液体供給ユニットと、前記基板の上面に存在している低表面張力液体を前記基板の上面から排除するための低表面張力液体排除ユニットと、前記低表面張力液体排除ユニットを制御する制御装置とをさらに含む。そして、前記制御装置が、前記TDLAS気体濃度計測ユニットによって、前記基板保持ユニットに保持されている基板の上面に低表面張力液体が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程を実行してもよい。そして、前記制御装置が、前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記低表面張力液体排除ユニットにより前記基板の上面から低表面張力液体を排除する低表面張力液体排除工程を実行し、前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体排除工程を実行しなくてもよい。。 In one embodiment of the present invention, a low surface tension liquid for supplying a low surface tension liquid having a low surface tension lower than water to the upper surface of a substrate held by the substrate holding unit is the substrate processing apparatus. A supply unit, a low surface tension liquid removal unit for removing low surface tension liquid present on the top surface of the substrate from the top surface of the substrate, and a control device for controlling the low surface tension liquid removal unit Including. The substrate is held by the substrate holding unit in a state where the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit by the TDLAS gas concentration measurement unit. A humidity measurement process may be performed to measure the humidity in the upper space above the upper surface of the. The low surface tension liquid removing unit removes the low surface tension liquid from the upper surface of the substrate by the low surface tension liquid removing unit when the humidity measured in the humidity measuring step is lower than a predetermined humidity. The low surface tension liquid removing step may not be performed when the liquid removing step is performed and the humidity measured in the humidity measuring step is higher than the predetermined humidity. .
 この構成によれば、湿度計測工程において、基板保持ユニットに保持されている基板の上面に低表面張力液体が存在している状態において、TDLAS気体濃度計測ユニットによって上方空間における湿度が計測される。これにより、上方空間による湿度を精度良く計測できる。そして、湿度計測工程で計測された湿度が所定の湿度よりも低い場合のみ、低表面張力液体排除工程が実行される。基板の上面に存在する低表面張力液体に水が混じっていない状態で低表面張力液体排除工程が実行されるので、パターン倒壊を抑制または防止できる。 According to this configuration, in the humidity measurement step, the humidity in the upper space is measured by the TDLAS gas concentration measurement unit in a state where the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit. Thereby, the humidity by the upper space can be measured accurately. Then, the low surface tension liquid removing step is performed only when the humidity measured in the humidity measuring step is lower than a predetermined humidity. Since the low surface tension liquid removing step is performed without water being mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
 この発明の一実施形態では、前記基板処理装置が、前記基板保持ユニットに保持されている基板の上面にリンス液を供給するリンス液供給ユニットと、前記基板保持ユニットに保持されている基板の上面に、リンス液よりも低い低表面張力を有する低表面張力液体を供給するための低表面張力液体供給ユニットと、前記基板の上面に存在している低表面張力液体を前記基板の上面から排除するための低表面張力液体排除ユニットと、前記低表面張力液体排除ユニットを制御する制御装置とをさらに含む。そして、前記制御装置が、前記TDLAS気体濃度計測ユニットによって、前記基板保持ユニットに保持されている基板の上面にリンス液が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程を実行してもよい。そして、前記制御装置が、前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記低表面張力液体排除ユニットにより前記基板の上面に低表面張力液体を供給する低表面張力液体供給工程を実行し、前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体供給工程を実行しなくてもよい。 In one embodiment of the present invention, the substrate processing apparatus supplies a rinse liquid to the top surface of the substrate held by the substrate holding unit, and a top surface of the substrate held by the substrate holding unit. A low surface tension liquid supply unit for supplying a low surface tension liquid having a low surface tension lower than that of the rinse liquid, and excluding the low surface tension liquid present on the upper surface of the substrate from the upper surface of the substrate And a controller for controlling the low surface tension liquid displacement unit. The upper surface of the substrate held by the substrate holding unit is in a state where the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit by the TDLAS gas concentration measurement unit by the controller. A humidity measurement process may be performed to measure the humidity in the upper space above. And the low surface tension liquid is supplied to the upper surface of the substrate by the low surface tension liquid removing unit when the controller measures that the humidity measured in the humidity measurement step is lower than a predetermined humidity. The low surface tension liquid supply process may not be performed when the liquid supply process is performed and the humidity measured in the humidity measurement process is higher than the predetermined humidity.
 この構成によれば、湿度計測工程において、基板保持ユニットに保持されている基板の上面にリンス液が存在している状態において、TDLAS気体濃度計測ユニットによって上方空間における湿度が計測される。これにより、上方空間における湿度を精度良く計測できる。そして、湿度計測工程で計測された湿度が所定の湿度よりも低い場合のみ、低表面張力液体供給工程が実行される。基板の上面に存在する低表面張力液体に水が混じっていない状態で低表面張力液体供給工程以降の処理が実行されるので、パターン倒壊を抑制または防止できる。 According to this configuration, in the humidity measurement step, the humidity in the upper space is measured by the TDLAS gas concentration measurement unit in a state in which the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit. Thereby, the humidity in the upper space can be accurately measured. Then, the low surface tension liquid supply process is performed only when the humidity measured in the humidity measurement process is lower than a predetermined humidity. Since the processing after the low surface tension liquid supply process is performed in a state where water is not mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
 この発明は、基板保持ユニットに保持されている基板の上面に低表面張力液体が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程と、前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記基板の上面から低表面張力液体を排除する低表面張力液体排除工程とを含み、前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体排除工程を実行しない、基板処理方法である。 The present invention measures the humidity in the upper space above the upper surface of the substrate held by the substrate holding unit in a state where the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit. The humidity measurement step; and a low surface tension liquid exclusion step of excluding a low surface tension liquid from the upper surface of the substrate when the humidity measured in the humidity measurement step is lower than a predetermined humidity; In the substrate processing method, the low surface tension liquid removing step is not performed when the humidity measured in the step is higher than the predetermined humidity.
 この方法によれば、湿度計測工程で計測された湿度が所定の湿度よりも低い場合のみ、低表面張力液体排除工程が実行される。基板の上面に存在する低表面張力液体に水が混じっていない状態で低表面張力液体排除工程が実行されるので、パターン倒壊を抑制または防止できる。 According to this method, the low surface tension liquid removing step is performed only when the humidity measured in the humidity measuring step is lower than the predetermined humidity. Since the low surface tension liquid removing step is performed without water being mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
 この発明は、基板保持ユニットに保持されている基板の上面にリンス液が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程と、前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記基板の上面に低表面張力液体を供給する低表面張力液体供給工程とを含み、前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体供給工程を実行しない、基板処理方法である。 The present invention measures humidity in the upper space above the upper surface of the substrate held by the substrate holding unit while the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit. And a low surface tension liquid supplying step of supplying a low surface tension liquid to the upper surface of the substrate when the humidity measured in the humidity measuring step is lower than a predetermined humidity, and the humidity measuring step It is a substrate processing method which does not perform the low surface tension supply step when the measured humidity is higher than the predetermined humidity.
 この方法によれば、湿度計測工程で計測された湿度が所定の湿度よりも低い場合のみ、低表面張力液体供給工程が実行される。基板の上面に存在する低表面張力液体に水が混じっていない状態で低表面張力液体供給工程以降の処理が実行されるので、パターン倒壊を抑制または防止できる。 According to this method, the low surface tension liquid supply process is performed only when the humidity measured in the humidity measurement process is lower than the predetermined humidity. Since the processing after the low surface tension liquid supply process is performed in a state where water is not mixed with the low surface tension liquid present on the upper surface of the substrate, pattern collapse can be suppressed or prevented.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above and other objects, features and effects of the present invention will be made clear by the description of the embodiments described below with reference to the accompanying drawings.
図1は、この発明の第1の実施形態に係る基板処理装置を上から見た模式図である。FIG. 1 is a schematic view from above of a substrate processing apparatus according to a first embodiment of the present invention. 図2は、前記基板処理装置に備えられた処理ユニットの内部を水平方向に見た模式図である。FIG. 2 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed in the horizontal direction. 図3は、前記処理ユニットの内部を上から見た模式図である。FIG. 3 is a schematic view of the inside of the processing unit as viewed from above. 図4は、図2に示す発光部の構成を説明するための模式図である。FIG. 4 is a schematic view for explaining the configuration of the light emitting unit shown in FIG. 図5は、図2に示す受光部の構成を説明するための模式図である。FIG. 5 is a schematic view for explaining the configuration of the light receiving unit shown in FIG. 図6は、ガードと、受光部および発光部との関係を示す模式図である。FIG. 6 is a schematic view showing the relationship between the guard and the light receiving unit and the light emitting unit. 図7は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 7 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus. 図8は、前記基板処理装置による処理対象の基板の表面を拡大して示す断面図である。FIG. 8 is an enlarged cross-sectional view of the surface of a substrate to be processed by the substrate processing apparatus. 図9は、前記処理ユニットにおいて実行される基板処理例の内容を説明するための流れ図である。FIG. 9 is a flowchart for explaining the contents of an example of substrate processing performed in the processing unit. 図10は、SC1工程を説明するための模式図である。FIG. 10 is a schematic view for explaining the SC1 process. 図11は、リンス工程からSC2工程への移行時のフローチャートである。FIG. 11 is a flowchart at the time of transition from the rinse step to the SC2 step. 図12は、SC2工程を説明するための模式図である。FIG. 12 is a schematic view for explaining the SC2 process. 図13は、置換工程を説明するための模式図である。FIG. 13 is a schematic view for explaining the substitution process. 図14は、置換工程から乾燥工程への移行時のフローチャートである。FIG. 14 is a flowchart at the time of transition from the replacement step to the drying step. 図15は、この発明の第2の実施形態に係る処理ユニットの内部を水平方向に見た模式図である。FIG. 15 is a schematic view of the inside of the processing unit according to the second embodiment of the present invention as viewed in the horizontal direction. 図16は、置換工程を説明するための模式図である。FIG. 16 is a schematic view for explaining the substitution process. 図17は、この発明の第3の実施形態に係る基板処理装置を上から見た模式図である。FIG. 17 is a schematic view of a substrate processing apparatus according to a third embodiment of the present invention as viewed from above. 図18は、前記基板処理装置に備えられた処理ユニットの内部を水平方向に見た模式図である。FIG. 18 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed in the horizontal direction. 図19は、この発明の第1の変形例を示す模式図である。FIG. 19 is a schematic view showing a first modified example of the present invention. 図20は、この発明の第2の変形例を示す模式図である。FIG. 20 is a schematic view showing a second modification of the present invention. 図21は、この発明の第3の変形例を示す模式図である。FIG. 21 is a schematic view showing a third modification of the present invention. 図22は、表面張力によるパターンの倒壊の原理を説明するための図解的な断面図である。FIG. 22 is a schematic sectional view for explaining the principle of pattern collapse due to surface tension.
<第1の実施形態>
 図1は、この発明の第1の実施形態に係る基板処理装置を上から見た模式図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、処理液およびリンス液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容する基板収容器Cが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送するインデクサロボットIRおよび基板搬送ロボットCRと、基板処理装置1を制御する制御装置3とを含む。インデクサロボットIRは、基板収容器Cと基板搬送ロボットCRとの間で基板Wを搬送する。基板搬送ロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。
First Embodiment
FIG. 1 is a schematic view from above of a substrate processing apparatus according to a first embodiment of the present invention. The substrate processing apparatus 1 is a single wafer processing apparatus that processes a substrate W such as a silicon wafer one by one. In this embodiment, the substrate W is a disk-shaped substrate. The substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid and a rinse liquid, and a load port on which a substrate container C that stores a plurality of substrates W processed by the processing unit 2 is mounted. It includes an LP, an indexer robot IR and a substrate transfer robot CR that transfer a substrate W between a load port LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1. The indexer robot IR transfers the substrate W between the substrate container C and the substrate transfer robot CR. The substrate transfer robot CR transfers the substrate W between the indexer robot IR and the processing unit 2. The plurality of processing units 2 have, for example, the same configuration.
 図2は、処理ユニット2の構成例を説明するための図解的な断面図である。図3は、処理ユニット2の内部を上から見た模式図である。図4は、発光部81の構成を説明するための模式図である。図5は、受光部82の構成を説明するための模式図である。 FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2. FIG. 3 is a schematic view of the inside of the processing unit 2 as viewed from above. FIG. 4 is a schematic view for explaining the configuration of the light emitting unit 81. As shown in FIG. FIG. 5 is a schematic view for explaining the configuration of the light receiving section 82. As shown in FIG.
 処理ユニット2は、箱形のチャンバ4と、チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、基板Wの上面に第1の薬液の一例のSC1(NHOHとHとを含む混合液)を供給するためのSC1供給ユニット6と、基板Wの上面に第2の薬液の一例のSC2(HClとHとを含む混合液)を供給するためのSC2供給ユニット7と、スピンチャック5に保持されている基板Wの上面にリンス液を供給するためのリンス液供給ユニット8と、スピンチャック5に保持されている基板Wの上面に対向する遮断部材9と、スピンチャック5の周囲を取り囲む処理カップ10と、基板Wの上面の上方の上方空間(平面視で基板Wの上面に重複する空間。以下、単に「上方空間」という)SPの雰囲気の、アンモニア濃度および湿度をTDLAS方式で計測するためのTDLAS気体濃度計測ユニット11とを含む。 The processing unit 2 holds a box-shaped chamber 4 and a single substrate W in a horizontal posture in the chamber 4 and spins the substrate W around a vertical rotation axis A1 passing through the center of the substrate W. (Substrate holding unit) 5; SC1 supply unit 6 for supplying SC1 (mixed liquid containing NH 4 OH and H 2 O 2 ) as an example of the first chemical solution on the upper surface of the substrate W; An SC2 supply unit 7 for supplying SC2 (a mixed solution containing HCl and H 2 O 2 ), which is an example of a second chemical solution, on the upper surface, and a rinse liquid on the upper surface of the substrate W held by the spin chuck 5 A rinse liquid supply unit 8 for supplying, a blocking member 9 facing the upper surface of the substrate W held by the spin chuck 5, a processing cup 10 surrounding the periphery of the spin chuck 5, and an upper surface of the substrate W Upper space Space overlaps the upper surface of the substrate W in plan view. Hereinafter, comprising simply an atmosphere of "upper space" hereinafter) SP, a TDLAS gas concentration measuring unit 11 for measuring the ammonia concentration and humidity TDLAS scheme.
 図2に示すように、チャンバ4は、スピンチャック5を収容する箱状の隔壁14と、隔壁14の上部から隔壁14内に清浄空気(フィルタによってろ過された空気)を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)15と、隔壁14の下部からチャンバ4内の気体を排出する排気ダクト16とを含む。FFU15は、隔壁14の上方に配置されており、隔壁14の天井に取り付けられている。FFU15は、隔壁14の天井からチャンバ4内に下向きに低湿度の清浄空気を送る。排気ダクト16は、処理カップ10の底部に接続されており、基板処理装置1が設置される工場に設けられた排気処理設備に向けてチャンバ4内の気体を導出する。したがって、チャンバ4内を下方に流れるダウンフロー(下降流)が、FFU15および排気ダクト16によって形成される。基板Wの処理は、チャンバ4内にダウンフローが形成されている状態で行われる。 As shown in FIG. 2, the chamber 4 includes a box-shaped partition 14 containing the spin chuck 5 and an FFU as a blower unit for sending clean air (air filtered by a filter) from above the partition 14 into the partition 14. (Fan filter unit) 15 and an exhaust duct 16 for exhausting the gas in the chamber 4 from the lower part of the partition 14. The FFU 15 is disposed above the partition 14 and attached to the ceiling of the partition 14. The FFU 15 sends clean air of low humidity downward from the ceiling of the partition 14 into the chamber 4. The exhaust duct 16 is connected to the bottom of the processing cup 10, and guides the gas in the chamber 4 to an exhaust processing facility provided in a factory where the substrate processing apparatus 1 is installed. Therefore, the downflow (downflow) flowing downward in the chamber 4 is formed by the FFU 15 and the exhaust duct 16. The processing of the substrate W is performed in the state where the downflow is formed in the chamber 4.
 図2に示すように、スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック5は、スピンモータ(表面張力液体排除ユニット)Mと、このスピンモータMの駆動軸と一体化されたスピン軸17と、スピン軸17の上端に略水平に取り付けられた円板状のスピンベース18とを含む。スピンベース18の直径は、基板Wの直径と同等か、基板Wの直径よりも大きい。 As shown in FIG. 2, as the spin chuck 5, a holding type chuck is adopted which holds the substrate W horizontally with the substrate W interposed in the horizontal direction. Specifically, the spin chuck 5 is mounted substantially horizontally on the spin motor (surface tension liquid removing unit) M, the spin shaft 17 integrated with the drive shaft of the spin motor M, and the upper end of the spin shaft 17 And a disc-like spin base 18. The diameter of the spin base 18 is equal to or larger than the diameter of the substrate W.
 図2および図3に示すように、スピンベース18の上面18aには、その周縁部に複数個(3個以上。たとえば6個)の挟持ピン19が配置されている。複数個の挟持ピン19は、スピンベース18の上面18aの外周部において、基板Wの外周形状に対応する円周上で適当な間隔(たとえば等間隔)を空けて配置されている。 As shown in FIGS. 2 and 3, on the upper surface 18a of the spin base 18, a plurality (three or more, for example, six) of clamping pins 19 are arranged at the peripheral edge thereof. The plurality of holding pins 19 are arranged at appropriate intervals (for example, at equal intervals) on the circumference corresponding to the outer peripheral shape of the substrate W at the outer peripheral portion of the upper surface 18 a of the spin base 18.
 また、スピンチャック5としては、挟持式のものに限らず、たとえば、基板Wの裏面を真空吸着することにより、基板Wを水平な姿勢で保持し、さらにその状態で鉛直な回転軸線まわりに回転することにより、スピンチャック5に保持された基板Wを回転させる真空吸着式のもの(バキュームチャック)が採用されてもよい。 Further, the spin chuck 5 is not limited to the sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum suction of the back surface of the substrate W, and further rotation around the vertical rotation axis in that state. By doing this, a vacuum suction type (vacuum chuck) that rotates the substrate W held by the spin chuck 5 may be employed.
 図2に示すように、SC1供給ユニット6は、SC1を基板Wの上面に向けて吐出するSC1ノズル21と、SC1ノズル21にSC1を案内するSC1配管22と、SC1配管22を開閉するSC1バルブ23とを含む。SC1バルブ23が開かれると、SC1供給源からのSC1が、SC1配管22からSC1ノズル21に供給される。これにより、SC1ノズル21からSC1が吐出される。 As shown in FIG. 2, the SC1 supply unit 6 includes an SC1 nozzle 21 for discharging the SC1 toward the upper surface of the substrate W, an SC1 pipe 22 for guiding the SC1 to the SC1 nozzle 21, and an SC1 valve for opening and closing the SC1 pipe 22. And 23. When the SC1 valve 23 is opened, SC1 from the SC1 supply source is supplied from the SC1 pipe 22 to the SC1 nozzle 21. Thereby, the SC1 is discharged from the SC1 nozzle 21.
 SC1供給ユニット6は、さらに、SC1ノズル21が先端部に取り付けられた第1のノズルアーム24と、第1のノズルアーム24を支持する第1のアーム支持軸25であって、スピンチャック5の側方でほぼ鉛直に延びる第1のアーム支持軸25と、第1のアーム支持軸25に結合された第1の揺動モータ26とを含む。第1の揺動モータ26は、たとえばサーボモータである。第1の揺動モータ26により、第1のノズルアーム24を、スピンチャック5の側方に設定された鉛直な揺動軸線A2(図3参照。すなわち、第1のアーム支持軸25の中心軸線)を中心として水平面内で揺動させることができ、これにより、揺動軸線A2まわりにSC1ノズル21を回動させることができるようになっている。 The SC1 supply unit 6 further includes a first nozzle arm 24 to which the SC1 nozzle 21 is attached at its tip and a first arm support shaft 25 that supports the first nozzle arm 24. It includes a first arm support shaft 25 extending substantially vertically at the side, and a first swing motor 26 coupled to the first arm support shaft 25. The first rocking motor 26 is, for example, a servomotor. A vertical swing axis A2 (see FIG. 3) of the first nozzle arm 24 set to the side of the spin chuck 5 by the first swing motor 26 (ie, the central axis of the first arm support shaft 25 Can be rocked in the horizontal plane about the center axis), whereby the SC1 nozzle 21 can be pivoted about the rocking axis A2.
 SC1ノズル21からSC1を吐出しながら、SC1ノズル21を、基板Wの上面中央部に対向する中央位置と、基板Wの上面周縁部に対向する周縁位置との間で移動させることにより、SC1ノズル21から吐出されるSC1の着液位置が、回転軸線A1を通る円弧状の第1の軌跡C1を描く。 By discharging the SC1 from the SC1 nozzle 21, the SC1 nozzle 21 is moved between the central position facing the central portion of the upper surface of the substrate W and the peripheral position facing the peripheral edge of the upper surface of the substrate W. The liquid deposition position of SC1 discharged from 21 draws a circular arc-shaped first trajectory C1 passing through the rotation axis A1.
 図2に示すように、SC2供給ユニット7は、SC2を基板Wの上面に向けて吐出するSC2ノズル31と、SC2ノズル31にSC2を案内するSC2配管32と、SC2配管32を開閉するSC2バルブ33とを含む。SC2バルブ33が開かれると、SC2供給源からのSC2が、SC2配管32からSC2ノズル31に供給される。これにより、SC2ノズル31からSC2が吐出される。 As shown in FIG. 2, the SC2 supply unit 7 discharges the SC2 toward the upper surface of the substrate W, the SC2 pipe 31 for guiding the SC2 to the SC2 nozzle 31, and the SC2 valve for opening and closing the SC2 pipe 32. And 33. When the SC2 valve 33 is opened, SC2 from the SC2 supply source is supplied from the SC2 pipe 32 to the SC2 nozzle 31. Thereby, the SC2 is discharged from the SC2 nozzle 31.
 SC2供給ユニット7は、さらに、SC2ノズル31が先端部に取り付けられた第2のノズルアーム34と、第2のノズルアーム34を支持する第2のアーム支持軸35であって、スピンチャック5の側方でほぼ鉛直に延びる第2のアーム支持軸35と、第2のアーム支持軸35に結合された第2の揺動モータ36とを含む。第2の揺動モータ36は、たとえばサーボモータである。第2の揺動モータ36により、第2のノズルアーム34を、スピンチャック5の側方に設定された鉛直な揺動軸線A3(図3参照。すなわち、第2のアーム支持軸35の中心軸線)を中心として水平面内で揺動させることができ、これにより、揺動軸線A3まわりにSC2ノズル31を回動させることができるようになっている。 The SC2 supply unit 7 further includes a second nozzle arm 34 having a SC2 nozzle 31 attached at its tip and a second arm support shaft 35 for supporting the second nozzle arm 34. It includes a second arm support shaft 35 extending substantially vertically at the side, and a second swing motor 36 coupled to the second arm support shaft 35. The second rocking motor 36 is, for example, a servomotor. A vertical swing axis A3 (see FIG. 3) of the second nozzle arm 34 set to the side of the spin chuck 5 by the second swing motor 36 (ie, the central axis of the second arm support shaft 35 Can be rocked in the horizontal plane about the center axis), whereby the SC2 nozzle 31 can be rotated about the rocking axis A3.
 SC2ノズル31からSC2を吐出しながら、SC2ノズル31を、基板Wの上面中央部に対向する中央位置と、基板Wの上面周縁部に対向する周縁位置との間で移動させることにより、SC2ノズル31から吐出されるSC2の着液位置が、回転軸線A1を通る円弧状の第2の軌跡C2を描く。 By discharging the SC2 from the SC2 nozzle 31, the SC2 nozzle 31 is moved between the central position facing the central portion of the upper surface of the substrate W and the peripheral position facing the peripheral edge of the upper surface of the substrate W. The liquid deposition position of SC2 discharged from 31 draws a second locus C2 of arc shape passing through the rotation axis A1.
 図2に示すように、リンス液供給ユニット8は、リンス液を基板Wの上面に向けて吐出するリンス液ノズル41と、リンス液ノズル41にリンス液を案内するリンス液配管42と、リンス液配管42を開閉するリンス液バルブ43とを含む。リンス液バルブ43が開かれると、リンス液供給源からのリンス液が、リンス液配管42からリンス液ノズル41に供給される。これにより、リンス液ノズル41からリンス液が吐出される。 As shown in FIG. 2, the rinse solution supply unit 8 discharges the rinse solution toward the upper surface of the substrate W, the rinse solution pipe 42 for guiding the rinse solution to the rinse solution nozzle 41, and the rinse solution And a rinse liquid valve 43 for opening and closing the pipe 42. When the rinse liquid valve 43 is opened, the rinse liquid from the rinse liquid supply source is supplied from the rinse liquid pipe 42 to the rinse liquid nozzle 41. Thereby, the rinse liquid is discharged from the rinse liquid nozzle 41.
 リンス液供給ユニット8は、さらに、リンス液ノズル41が先端部に取り付けられた第3のノズルアーム44と、第3のノズルアーム44を支持する第3のアーム支持軸45であって、スピンチャック5の側方でほぼ鉛直に延びる第3のアーム支持軸45と、第3のアーム支持軸45に結合された第3の揺動モータ46とを含む。第3の揺動モータ46は、たとえばサーボモータである。第3の揺動モータ46により、第3のノズルアーム44を、スピンチャック5の側方に設定された鉛直な揺動軸線A4(図3参照。すなわち、第3のアーム支持軸45の中心軸線)を中心として水平面内で揺動させることができ、これにより、揺動軸線A4まわりにリンス液ノズル41を回動させることができるようになっている。 The rinse liquid supply unit 8 further includes a third nozzle arm 44 having a rinse liquid nozzle 41 attached to its tip and a third arm support shaft 45 for supporting the third nozzle arm 44, and is a spin chuck. A third arm support shaft 45 extending substantially vertically on the side of 5 and a third rocking motor 46 coupled to the third arm support shaft 45 are included. The third rocking motor 46 is, for example, a servomotor. A vertical swing axis A4 set on the side of the spin chuck 5 by the third swing motor 46 (see FIG. 3. That is, the central axis of the third arm support shaft 45. Can be swung in the horizontal plane about the rotation axis), whereby the rinse liquid nozzle 41 can be pivoted around the swing axis A4.
 リンス液は、たとえば水である。この実施形態において、水は、純水(脱イオン水)、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)のアンモニア水のいずれかである。 The rinse solution is, for example, water. In this embodiment, the water is any of pure water (deionized water), carbonated water, electrolytic ion water, hydrogen water, ozone water, and ammonia water of a dilution concentration (for example, about 10 to 100 ppm).
 図2に示すように、遮断部材9は、遮断板47と、遮断板47に一体回転可能に設けられた上スピン軸48と、遮断板47の中央部を上下方向に貫通する上面ノズル49とを含む。遮断板47は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状である。遮断板47は、その下面に基板Wの上面全域に対向する円形の水平平坦面からなる基板対向面50を有している。 As shown in FIG. 2, the blocking member 9 includes a blocking plate 47, an upper spin shaft 48 provided integrally rotatably with the blocking plate 47, and an upper surface nozzle 49 vertically penetrating the central portion of the blocking plate 47. including. The blocking plate 47 has a disk shape having a diameter substantially equal to or larger than the diameter of the substrate W. The blocking plate 47 has a substrate facing surface 50 formed of a circular horizontal flat surface facing the entire top surface of the substrate W on the lower surface thereof.
 上スピン軸48は、遮断板47の中心を通り鉛直に延びる回転軸線A5(基板Wの回転軸線A1と一致する軸線)まわりに回転可能に設けられている。上スピン軸48は、円筒状である。上スピン軸48の内周面は、回転軸線A5を中心とする円筒面に形成されている。上スピン軸48は、遮断板47の上方で水平に延びる支持アーム51に相対回転可能に支持されている。 The upper spin shaft 48 is rotatably provided around a rotation axis A5 (an axis which coincides with the rotation axis A1 of the substrate W) extending vertically through the center of the blocking plate 47. The upper spin axis 48 is cylindrical. The inner circumferential surface of the upper spin shaft 48 is formed in a cylindrical surface centered on the rotation axis A5. The upper spin shaft 48 is relatively rotatably supported by a support arm 51 extending horizontally above the blocking plate 47.
 遮断板47の中央部には、遮断板47および上スピン軸48を上下に貫通する円筒状の貫通穴12が形成されている。貫通穴12の内周壁12aは、円筒面によって区画されている。貫通穴12には、上面ノズル49が上下に挿通している。 At a central portion of the blocking plate 47, a cylindrical through hole 12 penetrating the blocking plate 47 and the upper spin shaft 48 up and down is formed. The inner peripheral wall 12a of the through hole 12 is divided by a cylindrical surface. An upper surface nozzle 49 is vertically inserted into the through hole 12.
 上面ノズル49は、支持アーム51によって支持されている。上面ノズル49は、中心軸ノズルとして機能する。上面ノズル49は、支持アーム51に対して回転不能である。上面ノズル49は、遮断板47、上スピン軸48、および支持アーム51と共に昇降する。 The upper surface nozzle 49 is supported by a support arm 51. The upper surface nozzle 49 functions as a central axis nozzle. The upper surface nozzle 49 is non-rotatable with respect to the support arm 51. The upper surface nozzle 49 moves up and down together with the blocking plate 47, the upper spin shaft 48, and the support arm 51.
 上面ノズル49は、貫通穴12の内部を上下に延びる円柱状のケーシングと、ケーシングの内部を上下に挿通する第1のノズル配管(表面張力液体供給ユニット)52および第2のノズル配管(表面張力液体排除ユニット)53とを含む。第1のノズル配管52および第2のノズル配管53はいずれもインナーチューブである。第1のノズル配管52の下端は、ケーシングの下端面に開口して、第1の吐出口52aを形成している。第1のノズル配管52には、有機溶剤供給ユニット(表面張力液体供給ユニット)が接続されている。有機溶剤供給ユニットは、第1のノズル配管52の上流端側に接続された有機溶剤配管54と、有機溶剤配管54の途中部に介装された有機溶剤バルブ55とを含む。有機溶剤バルブ55が開かれると、第1のノズル配管52の第1の吐出口52aから下方に向けて液体の有機溶剤が吐出される。有機溶剤バルブ55が閉じられると、第1の吐出口52aからの液体の有機溶剤の吐出が停止される。 The upper surface nozzle 49 has a cylindrical casing extending vertically inside the through hole 12, a first nozzle piping (surface tension liquid supply unit) 52 and a second nozzle piping (surface tension vertically passing the inside of the casing). And the liquid discharge unit 53). The first nozzle piping 52 and the second nozzle piping 53 are both inner tubes. The lower end of the first nozzle pipe 52 is opened at the lower end surface of the casing to form a first discharge port 52a. An organic solvent supply unit (surface tension liquid supply unit) is connected to the first nozzle pipe 52. The organic solvent supply unit includes an organic solvent pipe 54 connected to the upstream end side of the first nozzle pipe 52 and an organic solvent valve 55 interposed in the middle of the organic solvent pipe 54. When the organic solvent valve 55 is opened, the liquid organic solvent is discharged downward from the first discharge port 52 a of the first nozzle pipe 52. When the organic solvent valve 55 is closed, the discharge of the liquid organic solvent from the first discharge port 52a is stopped.
 有機溶剤は、たとえばIPA(isopropyl alcohol)であるが、このような有機溶剤として、IPA以外に、たとえば、メタノール、エタノール、アセトン、EG(エチレングリコール)およびHFE(ハイドロフルオロエーテル)を例示できる。また、有機溶剤としては、単体成分のみからなる場合だけでなく、他の成分と混合した液体であってもよい。たとえば、IPAとアセトンの混合液であってもよいし、IPAとメタノールの混合液であってもよい。 The organic solvent is, for example, IPA (isopropyl alcohol), and as such an organic solvent, in addition to IPA, for example, methanol, ethanol, acetone, EG (ethylene glycol) and HFE (hydrofluoroether) can be exemplified. Moreover, as an organic solvent, not only the case where it consists only of a single-piece component but the liquid mixed with other components may be sufficient. For example, it may be a mixture of IPA and acetone, or a mixture of IPA and methanol.
 第2のノズル配管53の下端は、ケーシングの下端面に開口して、第2の吐出口53aを形成している。第2のノズル配管53には、不活性ガス供給ユニット(表面張力液体排除ユニット)が接続されている。不活性ガス供給ユニットは、第2のノズル配管53の上流端側に接続された不活性ガス配管56と、不活性ガス配管56の途中部に介装された不活性ガスバルブ57とを含む。不活性ガスバルブ57が開かれると、第2のノズル配管53の第2の吐出口53aから下方に向けて不活性ガスが吐出される。不活性ガスバルブ57が閉じられると、第2の吐出口53aからの不活性ガスの吐出が停止される。 The lower end of the second nozzle pipe 53 is opened at the lower end surface of the casing to form a second discharge port 53a. An inert gas supply unit (surface tension liquid removal unit) is connected to the second nozzle piping 53. The inert gas supply unit includes an inert gas pipe 56 connected to the upstream end side of the second nozzle pipe 53 and an inert gas valve 57 interposed in the middle of the inert gas pipe 56. When the inert gas valve 57 is opened, the inert gas is discharged downward from the second discharge port 53 a of the second nozzle piping 53. When the inert gas valve 57 is closed, the discharge of the inert gas from the second discharge port 53a is stopped.
 この実施形態において、不活性ガスは窒素ガスであるが、窒素ガスに限らずヘリウムガスやアルゴンガスなどの他の不活性ガスであってもよい。また、不活性ガスは、単一成分のガスであっても良いし、窒素ガスと窒素ガス以外のガスとの混合ガスであっても良い。 In this embodiment, the inert gas is nitrogen gas, but may be not only nitrogen gas but also other inert gas such as helium gas or argon gas. The inert gas may be a single component gas or a mixed gas of nitrogen gas and a gas other than nitrogen gas.
 また、上面ノズル49の外周壁49aと、貫通穴12の筒状の内周壁12aとによって、筒状の筒状間隙13が形成されている。筒状間隙13は、不活性ガスが流通する流路として機能する。筒状間隙13の下端は、上面ノズル49を取り囲む環状に開口して周囲気体吐出口13aを形成している。筒状間隙13には、不活性ガス供給源からの不活性ガスが導かれる不活性ガス配管60が接続されている。 Further, a cylindrical cylindrical gap 13 is formed by the outer peripheral wall 49 a of the upper surface nozzle 49 and the cylindrical inner peripheral wall 12 a of the through hole 12. The cylindrical gap 13 functions as a flow path through which the inert gas flows. The lower end of the cylindrical gap 13 is opened in an annular shape surrounding the upper surface nozzle 49 to form an ambient gas discharge port 13 a. Connected to the cylindrical gap 13 is an inert gas pipe 60 to which an inert gas from an inert gas supply source is introduced.
 遮断板47には、電動モータ等を含む構成の遮断板回転ユニット58が結合されている。遮断板回転ユニット58は、遮断板47および上スピン軸48を、支持アーム51に対して回転軸線A5まわりに回転させる。また、支持アーム51には、電動モータ、ボールねじ等を含む構成の遮断部材昇降ユニット59が結合されている。遮断部材昇降ユニット59は、遮断部材9(遮断板47および上スピン軸48)および上面ノズル49を、支持アーム51と共に鉛直方向に昇降する。 To the blocking plate 47, a blocking plate rotation unit 58 having a configuration including an electric motor and the like is coupled. The shield plate rotation unit 58 rotates the shield plate 47 and the upper spin shaft 48 with respect to the support arm 51 around the rotation axis A5. Further, a blocking member lifting unit 59 having a configuration including an electric motor, a ball screw and the like is coupled to the support arm 51. The blocking member lifting unit 59 vertically lifts the blocking member 9 (the blocking plate 47 and the upper spin shaft 48) and the upper surface nozzle 49 together with the support arm 51.
 遮断部材昇降ユニット59は、遮断板47を、基板対向面50がスピンチャック5に保持されている基板Wの上面に近接する遮断位置(図2に破線で図示。図7A等も併せて参照)と、遮断位置よりも大きく上方に退避した退避位置(図2に実線で図示)の間で昇降させる。遮断部材昇降ユニット59は、遮断位置、近接位置(図2に二点鎖線で図示)および退避位置で遮断板47を保持可能である。遮断板47が遮断位置にある状態の、基板対向面50が基板Wの上面との間に空間は、その周囲の空間から完全に隔離されているわけではないが、当該空間への、周囲の空間からの気体の流入はない。すなわち、当該空間は、実質的にその周囲の空間と遮断されている。近接位置は、退避位置よりもやや上方の位置である。遮断板47が近接位置に配置されている状態では、遮断板47の基板対向面50と基板Wとの間の空間は、その周囲の空間から遮断されていない。 The blocking member lifting unit 59 has a blocking plate 47 at a blocking position in which the substrate facing surface 50 is close to the upper surface of the substrate W held by the spin chuck 5 (shown by a broken line in FIG. 2. See also FIG. 7A etc.) And a retracted position (shown by a solid line in FIG. 2) which is retracted upward largely beyond the blocking position. The blocking member lifting unit 59 can hold the blocking plate 47 at a blocking position, a proximity position (shown by a two-dot chain line in FIG. 2), and a retracted position. The space between the substrate facing surface 50 and the upper surface of the substrate W with the blocking plate 47 in the blocking position is not completely isolated from the space around it, but the surrounding space to the space is not There is no inflow of gas from the space. That is, the space is substantially isolated from the space around it. The proximity position is a position slightly above the retracted position. In the state where the blocking plate 47 is disposed at the close position, the space between the substrate facing surface 50 of the blocking plate 47 and the substrate W is not blocked from the space around it.
 処理カップ10は、スピンチャック5に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。処理カップ10は、スピンベース18の周囲を取り囲む第1~第3のカップ61~63と、基板Wの周囲に飛散した処理液(薬液、リンス液、有機溶剤、疎水化剤等)を受け止める、第1のガード64、第2のガード65および第3のガード66と、第1~第3のガード64~66を個別に昇降させるガード昇降ユニット67(図9参照)とを含む。処理カップ10は、スピンチャック5に保持されている基板Wの外周よりも外側(回転軸線A1から離れる方向)に配置されている。 The processing cup 10 is disposed outward (in a direction away from the rotation axis A1) of the substrate W held by the spin chuck 5. The processing cup 10 receives first to third cups 61 to 63 surrounding the spin base 18 and a processing liquid (chemical solution, rinse liquid, organic solvent, hydrophobization agent, etc.) scattered around the substrate W. It includes a first guard 64, a second guard 65 and a third guard 66, and a guard lifting unit 67 (see FIG. 9) for raising and lowering the first to third guards 64 to 66 individually. The processing cup 10 is disposed outside the outer periphery of the substrate W held by the spin chuck 5 (a direction away from the rotation axis A1).
 第1~第3のカップ61~63は、それぞれ円筒状であり、スピンチャック5の周囲を取り囲んでいる。内側から2番目の第2のカップ62は、第1のカップ61よりも外側に配置されており、最も外側の第3のカップ63は、第2のカップ62よりも外側に配置されている。第3のカップ63は、たとえば、第2のガード65と一体であり、第2のガード65と共に昇降する。第1~第3のカップ61~63は、それぞれ、上向きに開いた環状の溝を形成している。 The first to third cups 61 to 63 are cylindrical, respectively, and surround the spin chuck 5. The second inner second cup 62 is disposed outside the first cup 61, and the outermost third cup 63 is disposed outside the second cup 62. The third cup 63 is, for example, integral with the second guard 65 and ascends and descends with the second guard 65. The first to third cups 61 to 63 respectively form an annular groove open upward.
 第1のカップ61の溝には、排液配管76が接続されている。第1のカップ61の溝に導かれた処理液は、排液配管76を通して機外の廃液設備に送られる。 A drainage pipe 76 is connected to the groove of the first cup 61. The treatment liquid led to the groove of the first cup 61 is sent to the waste disposal facility outside the machine through the drainage pipe 76.
 第2のカップ62の溝には、回収配管77が接続されている。第2のカップ62の溝に導かれた処理液(主として薬液)は、回収配管77を通して機外の回収設備に送られ、この回収設備において回収処理される。 A recovery pipe 77 is connected to the groove of the second cup 62. The treatment liquid (mainly the chemical solution) led to the groove of the second cup 62 is sent to a recovery facility outside the machine through the recovery pipe 77, and is recovered and processed in this recovery facility.
 第3のカップ63の溝には、回収配管78が接続されている。第3のカップ63の溝に導かれた処理液(たとえば有機溶剤)は、回収配管78を通して機外の回収設備に送られ、この回収設備において回収処理される。 A recovery pipe 78 is connected to the groove of the third cup 63. The treatment liquid (for example, an organic solvent) led to the groove of the third cup 63 is sent to a recovery facility outside the machine through the recovery pipe 78, and is recovered and processed in this recovery facility.
 第1~第3のガード64~66は、それぞれ円筒状であり、スピンチャック5の周囲を取り囲んでいる。第1~第3のガード64~66は、それぞれ、スピンチャック5の周囲を取り囲む円筒状の案内部68と、案内部68の上端から中心側(基板Wの回転軸線A1に近づく方向)に斜め上方に延びる円筒状の傾斜部69とを含む。各傾斜部69の上端部は、対応する第1~第3のガード64~66の内周部を構成しており、基板Wおよびスピンベース18よりも大きな直径を有している。3つの傾斜部69は、上下に重ねられており、3つの案内部68は、同軸的に配置されている。3つの案内部68(第1~第3のガード64~66の案内部68)は、それぞれ、対応する第1~第3のカップ61~63内に出入り可能である。すなわち、処理カップ10は、折り畳み可能であり、ガード昇降ユニット67が第1~第3のガード64~66の少なくとも一つを昇降させることにより、処理カップ10の展開および折り畳みが行われる。なお、傾斜部69は、その断面形状が図2に示すように直線状であってもよいし、また、たとえば滑らかな上に凸の円弧を描きつつ延びていてもよい。 The first to third guards 64 to 66 are cylindrical, respectively, and surround the spin chuck 5. The first to third guards 64 to 66 are respectively inclined from the upper end of the cylindrical guide portion 68 surrounding the spin chuck 5 to the center side (the direction approaching the rotation axis A1 of the substrate W) from the upper end of the guide portion 68 And an upwardly extending cylindrical slope 69. The upper end portion of each inclined portion 69 constitutes the inner peripheral portion of the corresponding first to third guards 64 to 66 and has a diameter larger than that of the substrate W and the spin base 18. The three inclined portions 69 are vertically stacked, and the three guide portions 68 are coaxially arranged. The three guide portions 68 (the guide portions 68 of the first to third guards 64 to 66) can move into and out of the corresponding first to third cups 61 to 63, respectively. That is, the processing cup 10 is foldable, and the guard elevating unit 67 raises and lowers at least one of the first to third guards 64 to 66, whereby the processing cup 10 is unfolded and folded. The inclined portion 69 may have a linear cross-sectional shape as shown in FIG. 2, or may extend while drawing a smooth upward convex arc, for example.
 第1~第3のガード64~66は、それぞれ、ガード昇降ユニット67の駆動によって、上位置(各傾斜部69の上端部が、基板Wの上面よりも上方の位置)と、下位置(各傾斜部69の上端部が、基板Wの上面よりも下方の位置)との間で昇降させられる。 The first to third guards 64 to 66 are respectively at the upper position (the position where the upper end portion of each inclined portion 69 is higher than the upper surface of the substrate W) and the lower position (each position The upper end of the inclined portion 69 is raised and lowered between the upper surface of the substrate W and the lower surface of the substrate W).
 基板Wへの処理液(SC1、SC2、リンス液および有機溶剤)の供給や基板Wの乾燥は、第1~第3のガード64~66のいずれかが、基板Wの周端面に対向している状態で行われる。たとえば最も内側の第1のガード64が基板Wの周端面に対向している状態(図10に示す状態。以下、「第1のガード対向状態」という場合がある)を実現するために、第1~第3のガード64~66の全てを上位置に配置する。第1のガード対向状態では、回転状態にある基板Wの周縁部から排出される処理液の全てが、第1のガード64によって受け止められる。たとえば、後述するSC1工程(図9のS3)や、リンス工程(図9のS4、図9のS6)、パドルリンス工程(図9のS7)では、処理カップ10が第1のガード対向状態とされる。 In the supply of the processing liquid (SC1, SC2, rinse liquid and organic solvent) to the substrate W and the drying of the substrate W, any one of the first to third guards 64 to 66 faces the peripheral end face of the substrate W It takes place in the For example, in order to realize a state in which the innermost first guard 64 is opposed to the peripheral end face of the substrate W (state shown in FIG. 10, hereinafter may be referred to as “first guard opposed state”), Place all of the first to third guards 64 to 66 in the upper position. In the first guard opposing state, all the processing liquid discharged from the peripheral portion of the substrate W in the rotating state is received by the first guard 64. For example, in the SC1 process (S3 in FIG. 9), the rinse process (S4 in FIG. 9, S6 in FIG. 9), and the paddle rinse process (S7 in FIG. Be done.
 また、内側から2番目の第2のガード65が基板Wの周端面に対向している状態(図12に示す状態。以下、「第2のガード対向状態」という場合がある)を実現するために、第1のガード64を下位置に配置し、第2のガード65および第3のガード66を上位置に配置する。第2のガード対向状態では、回転状態にある基板Wの周縁部から排出される処理液の全てが、第2のガード65によって受け止められる。たとえば、後述するSC2工程(図9のS5)では、処理カップ10が第2のガード対向状態とされる。 In addition, in order to realize a state in which the second second guard 65 from the inner side faces the circumferential end surface of the substrate W (state shown in FIG. 12. Hereinafter, this may be referred to as “second guard facing state”). The first guard 64 is placed at the lower position, and the second guard 65 and the third guard 66 are placed at the upper position. In the second guard opposing state, all of the processing liquid discharged from the peripheral portion of the substrate W in a rotating state is received by the second guard 65. For example, in the SC2 step (S5 in FIG. 9) described later, the processing cup 10 is brought into the second guard opposing state.
 また、たとえば最も外側の第3のガード66が基板Wの周端面に対向している状態(図13に示す状態。以下、「第3のガード対向状態」という場合がある)を実現するために、第1のガード64および第2のガード65を下位置に配置し、第3のガード66を上位置に配置する。第3のガード対向状態では、回転状態にある基板Wの周縁部から排出される処理液の全てが、第3のガード66によって受け止められる。たとえば、後述する置換工程(図9のS8)および乾燥工程(S9)では、処理カップ10が第3のガード対向状態とされる。 Also, for example, in order to realize a state in which the outermost third guard 66 faces the circumferential end surface of the substrate W (state shown in FIG. 13. Hereinafter, this may be referred to as “third guard facing state”). , The first guard 64 and the second guard 65 in the lower position, and the third guard 66 in the upper position. In the third guard opposing state, all the processing liquid discharged from the peripheral portion of the substrate W in the rotating state is received by the third guard 66. For example, in the replacement step (S8 in FIG. 9) and the drying step (S9) described later, the processing cup 10 is brought into the third guard opposing state.
 TDLAS気体濃度計測ユニット11は、TDLAS方式(波長可変半導体レーザー吸収分光(Tunable Diode Laser Absorption Spectroscopy)方式)により気体の成分濃度を計測する。TDLAS方式は、気体分子の成分に固有の吸収スペクトルの強度を計測して、対象気体の成分濃度を計測する計測方式である。この方式は、吸収スペクトルが気体種別に固有であること、および吸光度が気体の成分濃度および光路長に比例すること(Lambert-Beerの法則)に着目したものである。TDLAS方式による気体の成分濃度の計測は、高速応答性を利点としている。この方式による気体の成分濃度の計測は、特開2011-242222号公報、特許5333370号公報、米国特許出願公開第2012/188550 号公報、特開2013-50403号公報、特開2016-70686号公報、特開2016-70687号公報、国際公報第2016/047701号公報等において、既に公知である。 The TDLAS gas concentration measurement unit 11 measures the component concentration of the gas by the TDLAS method (Tunable Diode Laser Absorption Spectroscopy). The TDLAS method is a measurement method of measuring the concentration of a component of a target gas by measuring the intensity of an absorption spectrum inherent to the component of the gas molecule. This method focuses on the fact that the absorption spectrum is specific to the gas type and that the absorbance is proportional to the concentration of the component of the gas and the optical path length (Lambert-Beer's law). Measurement of gas component concentration by the TDLAS method has an advantage of high-speed response. The measurement of the component concentration of the gas by this method is described in JP-A-2011-242222, JP-A-5333370, U.S. Patent Application Publication 2012/188550, JP-A-2013-50403, JP-A-2016-70686. JP-A-2016-70687, International Publication No. 2016/047701, etc. are already known.
 図4に示すように、TDLAS気体濃度計測ユニット11は、発光部81と、受光部82と、濃度計測部83とを含む。 As shown in FIG. 4, the TDLAS gas concentration measurement unit 11 includes a light emitting unit 81, a light receiving unit 82, and a concentration measuring unit 83.
 図2および図4に示すように、発光部81は、チャンバ4外に配置された発光ダイオードと、チャンバ4内に配置された発光窓(第1の窓、第2の窓)84と、発光ダイオードからの光を発光窓84に導く導光ケーブル85とを含む。 As shown in FIGS. 2 and 4, the light emitting unit 81 includes a light emitting diode disposed outside the chamber 4, a light emitting window (first window, second window) 84 disposed in the chamber 4, and light emission And a light guiding cable 85 for guiding the light from the diode to the light emitting window 84.
 発光ダイオードは、第1の発光ダイオードLD1および第2の発光ダイオードLD2を有している。第1のおよび第2の発光ダイオードLD1,LD2は、波長可変型の発光ダイオードである。 The light emitting diode includes a first light emitting diode LD1 and a second light emitting diode LD2. The first and second light emitting diodes LD1 and LD2 are variable wavelength light emitting diodes.
 導光ケーブル85は、内部を光が伝播する光ファイバケーブルである。第1および第2の発光ダイオードLD1,LD2は、図4に示すように、それぞれ導光ケーブル85の基端面85bに対向するように配置されており、この状態で第1のおよび第2の発光ダイオードLD1,LD2の発光により、導光ケーブル85の基端面85bに第1のおよび第2の発光ダイオードLD1,LD2からの光が入る。基端面85bから導光ケーブル85の内部に入った光は、全反射しながら伝播され、先端面85aから放たれる。これにより、先端面85aが発光する。 The light guiding cable 85 is an optical fiber cable through which light propagates. As shown in FIG. 4, the first and second light emitting diodes LD1 and LD2 are disposed to face the proximal end surface 85b of the light guide cable 85, respectively, and in this state, the first and second light emitting diodes The light from the first and second light emitting diodes LD1 and LD2 enters the proximal end surface 85b of the light guide cable 85 due to the light emission of the LD1 and LD2. The light entering the inside of the light guide cable 85 from the proximal end surface 85 b is propagated while being totally reflected and emitted from the distal end surface 85 a. Thus, the end surface 85a emits light.
 発光窓84は、導光ケーブル85の先端面85aを覆う第1のカバー86に設けられている。発光窓84は、第1のカバー86における先端面85aと対向する部分に配置されている。発光窓84は、サファイヤ等を用いて形成された平板状のレンズである。 The light emission window 84 is provided in a first cover 86 that covers the tip end surface 85 a of the light guide cable 85. The light emission window 84 is disposed at a portion of the first cover 86 facing the tip end surface 85 a. The light emitting window 84 is a flat lens formed using sapphire or the like.
 発光窓84、導光ケーブル85および第1のカバー86は、図示しない保持器によって、チャンバ4内の一定の高さ位置に保持されている。発光窓84と第1のおよび第2の発光ダイオードLD1,LD2とを導光ケーブル85によって接続するので、第1のおよび第2の発光ダイオードLD1,LD2をチャンバ4外に配置しながら、第1のおよび第2の発光ダイオードLD1,LD2からの光が受光ダイオードPDへと導かれる。 The light emission window 84, the light guide cable 85 and the first cover 86 are held at a fixed height position in the chamber 4 by a holder not shown. Since the light emitting window 84 and the first and second light emitting diodes LD1 and LD2 are connected by the light guiding cable 85, the first and second light emitting diodes LD1 and LD2 are disposed outside the chamber 4, The light from the second light emitting diodes LD1 and LD2 is guided to the light receiving diode PD.
 受光部82は、チャンバ4内に配置された受光窓(第2の窓)87と、発光ダイオードから発せられ受光窓87に入る光を受ける受光ダイオードPDとを含む。受光窓87は、受光ダイオードPDを覆う第2のカバー88に設けられている。受光窓87は、第2のカバー88における受光ダイオードPDと対向する部分に配置されている。受光窓87は、サファイヤ等を用いて形成された平板状のレンズである。受光窓87、第2のカバー88および受光ダイオードPDは、図示しない保持器によって、チャンバ4内の一定の高さ位置に保持されている。 The light receiving unit 82 includes a light receiving window (second window) 87 disposed in the chamber 4 and a light receiving diode PD that receives light emitted from the light emitting diode and entering the light receiving window 87. The light receiving window 87 is provided on a second cover 88 that covers the light receiving diode PD. The light receiving window 87 is disposed at a portion of the second cover 88 facing the light receiving diode PD. The light receiving window 87 is a flat lens formed of sapphire or the like. The light receiving window 87, the second cover 88 and the light receiving diode PD are held at a fixed height position in the chamber 4 by a holder not shown.
 図2および図3に示すように、発光窓84および受光窓87は、スピンチャック5および処理カップ10を挟んで互いに対向するように配置されている。 As shown in FIGS. 2 and 3, the light emission window 84 and the light reception window 87 are disposed to face each other with the spin chuck 5 and the processing cup 10 interposed therebetween.
 第1および第2の発光ダイオードLD1,LD2の一方を発光させることにより、発光窓84から受光窓87に至る光路89が形成される。この光路89は、上方空間SPを水平に横切っている。光路89の周囲を覆うための部材は設けられていない。すなわち、光路89は、上方空間SPに曝されている。 By causing one of the first and second light emitting diodes LD1 and LD2 to emit light, an optical path 89 extending from the light emitting window 84 to the light receiving window 87 is formed. The light path 89 horizontally traverses the upper space SP. There is no member for covering the periphery of the optical path 89. That is, the optical path 89 is exposed to the upper space SP.
 この実施形態では、光路89の高さ位置(所定領域の高さ位置。以下、「上面近接位置」という場合がある。)が、スピンチャック5に保持されている基板Wの上面から間隔W3(0.1mm~20mm)を隔てた高さ位置になるように、発光窓84および受光窓87の高さ位置が設定されている。この実施形態では、光路89の高さ位置(上面近接位置)が、近接位置(図2に二点鎖線で図示)における遮断板47の基板対向面50よりも、下方に設定されている。 In this embodiment, the height position of the optical path 89 (the height position of a predetermined area, which may be hereinafter referred to as “upper surface close position”) is a distance W3 from the upper surface of the substrate W held by the spin chuck 5. The height positions of the light emitting window 84 and the light receiving window 87 are set so as to be at a height position separated by 0.1 mm to 20 mm). In this embodiment, the height position (upper surface proximity position) of the optical path 89 is set lower than the substrate facing surface 50 of the blocking plate 47 at the proximity position (shown by a two-dot chain line in FIG. 2).
 光路89の高さ位置(所定領域の高さ位置。以下、「上面近接位置」という場合がある。)が、スピンチャック5に保持されている基板Wの上面から間隔W3(0.1mm~20mm)を隔てた高さ位置になるように、発光窓84および受光窓87の高さ位置が設定されている。また、図3に示すように、光路89が平面視において、平面視で、SC1ノズル21の第1の軌跡C1および基板の上面回転中心(有機溶剤を吐出する上面ノズル49が対向配置される)を回避するように、発光窓84および受光窓87の平面視位置が設定されている。発光窓84および受光窓87のチャンバ4の底面から高さは、互いに等しい。 The height position of the optical path 89 (the height position of the predetermined area, which may hereinafter be referred to as “upper surface close position”) is a distance W3 (0.1 mm to 20 mm) from the upper surface of the substrate W held by the spin chuck 5 The height positions of the light emitting window 84 and the light receiving window 87 are set so as to be at a height position separated by. Further, as shown in FIG. 3, when the light path 89 is viewed in plan, in plan view, the first trajectory C1 of the SC1 nozzle 21 and the upper surface rotation center of the substrate (the upper surface nozzle 49 discharging the organic solvent is disposed opposite) The plan view positions of the light emitting window 84 and the light receiving window 87 are set so as to avoid. The heights of the light emitting window 84 and the light receiving window 87 from the bottom of the chamber 4 are equal to each other.
 SC1ノズル21の第1の軌跡C1および基板の上面回転中心を回避するように光路89が設けられるので、光路89が、SC1ノズル21や、SC1ノズル21や上面ノズル49から吐出された直後の処理液(SC1、リンス液)と干渉することを抑制または防止できる。これにより、気体濃度の計測精度を、より一層向上させることができる。 Since the optical path 89 is provided so as to avoid the first trajectory C1 of the SC1 nozzle 21 and the upper surface rotation center of the substrate, processing immediately after the optical path 89 is discharged from the SC1 nozzle 21, SC1 nozzle 21 or upper surface nozzle 49 Interference with the liquid (SC1, rinse liquid) can be suppressed or prevented. Thereby, the measurement accuracy of gas concentration can be further improved.
 TDLAS気体濃度計測部83は、光路89の周囲の雰囲気に含まれる所定の種類の気体(発光LEDの発光波長が、吸収帯と一致する気体)の濃度をTDLAS方式で計測する。TDLAS気体濃度計測部83によって計測される気体の濃度は、光路89各所の平均値である。TDLAS気体濃度計測部83は、LED駆動部90と、信号処理部91と、演算部92とを有している。 The TDLAS gas concentration measurement unit 83 measures the concentration of a predetermined type of gas (a gas whose emission wavelength of the light emitting LED matches the absorption band) contained in the atmosphere around the light path 89 using the TDLAS method. The concentration of the gas measured by the TDLAS gas concentration measurement unit 83 is an average value at each place of the light path 89. The TDLAS gas concentration measurement unit 83 includes an LED drive unit 90, a signal processing unit 91, and a calculation unit 92.
 LED駆動部90は、第1のおよび第2の発光ダイオードLD1,LD2を駆動する。この実施形態では、LED駆動部90は、第1の発光ダイオードLD1から、アンモニア(第1の種類の気体。NH)の吸収帯の波長(約1.5μm)を発光させる。また、LED駆動部90は、第2の発光ダイオードLD2から、水(第2の種類の気体。HO)の吸収帯の波長(約1.4μm)を発光させる。 The LED drive unit 90 drives the first and second light emitting diodes LD1 and LD2. In this embodiment, the LED drive unit 90 causes the first light emitting diode LD1 to emit a wavelength (about 1.5 μm) of an absorption band of ammonia (first type gas, NH 3 ). In addition, the LED driving unit 90 causes the second light emitting diode LD2 to emit a wavelength (about 1.4 μm) of an absorption band of water (a second type gas, H 2 O).
 すなわち、第1の発光ダイオードLD1と、第2の発光ダイオードLD2とは、発光波長が互いに異なる。LED駆動部90は、たとえば、オフセット回路と、スイープ回路と、正弦波発生回路とを組み合わせることにより実現される。 That is, the light emitting wavelengths of the first light emitting diode LD1 and the second light emitting diode LD2 are different from each other. The LED drive unit 90 is realized, for example, by combining an offset circuit, a sweep circuit, and a sine wave generation circuit.
 実際の雰囲気は、計測対象の気体以外の成分(干渉成分)が含まれるから、これら干渉成分の影響を除外したスペクトル計測が必要になる。演算部92は、受光ダイオードPDで検出された波形(吸収信号波形)から、干渉成分の影響を除去して、吸収スペクトルを抽出している。演算部92は、たとえば、アンプおよびローパスフィルタによって実現される。 Since the actual atmosphere includes components other than the gas to be measured (interference components), it is necessary to measure the spectrum excluding the influence of these interference components. The calculation unit 92 extracts the absorption spectrum by removing the influence of the interference component from the waveform (the absorption signal waveform) detected by the light receiving diode PD. Operation unit 92 is realized, for example, by an amplifier and a low pass filter.
 信号処理部91は、気体の濃度と、吸収スペクトルの強度(ピーク高さ)との対応関係を記憶している。そして、演算部92によって得られた吸収スペクトルの強度に基づいて、計測対象の気体の成分濃度を算出する。信号処理部91は、たとえばマイクロコンピュータによって実現される。 The signal processing unit 91 stores the correspondence between the concentration of the gas and the intensity (peak height) of the absorption spectrum. Then, based on the intensity of the absorption spectrum obtained by the calculation unit 92, the concentration of the component of the gas to be measured is calculated. Signal processing unit 91 is implemented, for example, by a microcomputer.
 第2の発光ダイオードLD2を消灯させた状態で、第1の発光ダイオードLD1を発光させることにより、アンモニア(NH)の吸収帯の波長(約1.5μm)を含む光によって、光路89(第1の光路)が形成される。このとき、TDLAS気体濃度計測部83は、受光ダイオードPDが受けた光の強度に基づいて、光路89の周囲の雰囲気に含まれるアンモニア濃度を計測する。 By causing the first light emitting diode LD1 to emit light in a state in which the second light emitting diode LD2 is turned off, the light path 89 (the first light emitting diode) is generated by light including the wavelength (about 1.5 μm) of the absorption band of ammonia (NH 3 ). 1) is formed. At this time, the TDLAS gas concentration measurement unit 83 measures the concentration of ammonia contained in the atmosphere around the light path 89 based on the intensity of the light received by the light receiving diode PD.
 一方、第1の発光ダイオードLD1を消灯させた状態で、第2の発光ダイオードLD2を発光させることにより、水(水蒸気。HO)の吸収帯の波長(約1.4μm)を含む光によって、光路89(第2の光路)が形成される。このとき、TDLAS気体濃度計測部83は、受光ダイオードPDが受けた光の強度に基づいて、光路89の周囲の雰囲気に含まれる水の濃度、すなわち、光路89の周囲の雰囲気の湿度を計測する。 On the other hand, by causing the second light emitting diode LD2 to emit light in a state in which the first light emitting diode LD1 is turned off, light containing the wavelength (about 1.4 μm) of the absorption band of water (water vapor, H 2 O) , An optical path 89 (second optical path) is formed. At this time, the TDLAS gas concentration measurement unit 83 measures the concentration of water contained in the atmosphere around the light path 89, that is, the humidity of the atmosphere around the light path 89, based on the intensity of the light received by the light receiving diode PD. .
 このように、LED駆動部90が、第1および第2の発光ダイオードLD1,LD2の発光波長を互いに異ならせるので、TDLAS気体濃度計測部83によって、2種類の気体(つまり、アンモニアおよび水(水蒸気))の濃度を計測できる。TDLAS気体濃度計測部83は、光路89の周囲の雰囲気に含まれる2種類の気体の濃度を計測できる。換言すると、TDLAS気体濃度計測部83が複数気体濃度計測部として機能する。 As described above, since the LED drive unit 90 makes the light emission wavelengths of the first and second light emitting diodes LD1 and LD2 different from each other, the TDLAS gas concentration measurement unit 83 separates two types of gas (that is, ammonia and water (water vapor The concentration of) can be measured. The TDLAS gas concentration measurement unit 83 can measure the concentrations of two types of gases contained in the atmosphere around the light path 89. In other words, the TDLAS gas concentration measurement unit 83 functions as a multiple gas concentration measurement unit.
 また、第1のおよび第2の発光ダイオードLD1,LD2がチャンバ4外に配置されているから、チャンバ4内の雰囲気に含まれる処理液が第1のおよび第2の発光ダイオードLD1,LD2に悪影響を与えることがない。これにより、第1のおよび第2の発光ダイオードLD1,LD2に悪影響を与えることなく、上方空間SPの雰囲気の、アンモニア濃度および湿度のそれぞれを、精度良く計測できる。 Further, since the first and second light emitting diodes LD1 and LD2 are disposed outside the chamber 4, the treatment liquid contained in the atmosphere in the chamber 4 adversely affects the first and second light emitting diodes LD1 and LD2. Never give. As a result, each of the ammonia concentration and the humidity of the atmosphere in the upper space SP can be accurately measured without adversely affecting the first and second light emitting diodes LD1 and LD2.
 前述のように、光路89の高さ位置が、前述の上面近接位置に設定されており、かつ発光窓84および受光窓87が、処理カップ10の第1~第3のガード64~66に対して径方向の外方に配置されている。第1~第3のガード64~66の全てが下位置に配置されている状態(図2参照)では、第1~第3のガード64~66に光路89が当たることはないが、いずれかの第1~第3のガード64~66が基板Wの周端面に対向している状態(第1のガード対向状態、第2のガード対向状態あるいは第3のガード対向状態)では、第1~第3のガード64~66に光路89が当たる。このとき、第1~第3のガード64~66における光路89が当たる部分が、不透明材料を用いて形成されていると、第1~第3のガード64~66によって光路89が遮られるおそれがある。 As described above, the height position of the optical path 89 is set to the above-described upper surface close position, and the light emitting window 84 and the light receiving window 87 are for the first to third guards 64 to 66 of the processing cup 10. Are disposed radially outward. When all of the first to third guards 64 to 66 are arranged at the lower position (see FIG. 2), the optical path 89 does not hit the first to third guards 64 to 66. In the state in which the first to third guards 64 to 66 face the circumferential end surface of the substrate W (first guard facing state, second guard facing state, or third guard facing state), The optical path 89 hits the third guards 64 to 66. At this time, if the portions of the first to third guards 64 to 66 to which the light path 89 hits are formed using an opaque material, the first to third guards 64 to 66 may block the light path 89. is there.
 図6は、第1~第3のガード64~66と、発光部81および受光部82との関係を示す模式図である。 FIG. 6 is a schematic view showing the relationship among the first to third guards 64 to 66 and the light emitting unit 81 and the light receiving unit 82. As shown in FIG.
 図6に示すように、第1~第3のガード64~66の大部分は、一般的な樹脂材料を用いて形成されている。この樹脂材料は、約1.3μm~約1.5μmの波長の光が透過することが不能な不透過材料を用いて形成されているが、第1~第3のガード64~66の一部には、それぞれ、透過窓93が形成されている。各透過窓93は、対応する第1~第3のガード64~66において、当該第1~第3のガード64~66が上位置に位置している状態で、当該第1~第3のガード64~66に光路89が当たるような高さ位置に設けられている。透過窓93は、発光窓84(すなわち発光部81)および受光窓87(すなわち受光部82)に対向する周方向位置のみに設けられている。 As shown in FIG. 6, most of the first to third guards 64 to 66 are formed using a general resin material. This resin material is formed using an impermeable material which can not transmit light of a wavelength of about 1.3 μm to about 1.5 μm, but it is a part of the first to third guards 64 to 66. Each has a transmission window 93 formed therein. In each of the first to third guards 64 to 66, each of the transmission windows 93 corresponds to the first to third guards with the first to third guards 64 to 66 positioned at the upper position. The optical path 89 is provided at a height such that the optical path 89 falls on the points 64-66. The transmission window 93 is provided only at circumferential positions facing the light emitting window 84 (i.e., the light emitting unit 81) and the light receiving window 87 (i.e., the light receiving unit 82).
 透過窓93は、たとえば石英を用いて形成されている。約1.3μm~約1.5μmの範囲の波長を含む光は、石英を透過する。石英は、第1のおよび第2の発光ダイオードLD1,LD2の発光波長が透過可能な材質である。そのため、各第1~第3のガード64~66が上位置に位置している状態では、透過窓93を光路89が通過する。第1~第3のガード64~66が下位置に位置している状態では、そもそも第1~第3のガード64~66に光路89が当たらない。これにより、各ガードの高さ位置によらずに、上方空間SP(とくに、スピンチャック5に保持されている基板Wの上面からW3を隔てた高さの上面近接位置)の雰囲気のアンモニア濃度および当該雰囲気の湿度を、精度良く計測できる。 Transmission window 93 is formed using, for example, quartz. Light comprising wavelengths in the range of about 1.3 μm to about 1.5 μm is transmitted through the quartz. Quartz is a material capable of transmitting the emission wavelengths of the first and second light emitting diodes LD1 and LD2. Therefore, in the state where the first to third guards 64 to 66 are at the upper position, the light path 89 passes through the transmission window 93. When the first to third guards 64 to 66 are at the lower position, the light path 89 does not hit the first to third guards 64 to 66 in the first place. Thus, regardless of the height position of each guard, the ammonia concentration of the atmosphere in the upper space SP (in particular, the upper surface close position at a height separated by W3 from the upper surface of the substrate W held by the spin chuck 5) The humidity of the atmosphere can be accurately measured.
 これにより、発光窓84および受光窓87のそれぞれを第1~第3のガード64~66の外側に配置しながら、上方空間SP内に光路89を通過させることができる。ゆえに、発光窓84および受光窓87を第1~第3のガード64~66の外側に配置しながら、上方空間SPの雰囲気のアンモニア濃度および当該雰囲気の湿度のそれぞれを、精度良く計測できる。 Thus, the light path 89 can be passed through the upper space SP while the light emitting window 84 and the light receiving window 87 are disposed outside the first to third guards 64 to 66, respectively. Therefore, while the light emitting window 84 and the light receiving window 87 are disposed outside the first to third guards 64 to 66, it is possible to accurately measure the ammonia concentration of the atmosphere of the upper space SP and the humidity of the atmosphere.
 図7は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。 FIG. 7 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
 制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット、固定メモリデバイス、ハードディスクドライブ等の記憶ユニット、および入出力ユニットを有している。記憶ユニットには、演算ユニットが実行するプログラムが記憶されている。 Control device 3 is configured using, for example, a microcomputer. The control device 3 has an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit. The storage unit stores a program to be executed by the arithmetic unit.
 また、制御装置3には、制御対象として、スピンモータM、遮断板回転ユニット58、遮断部材昇降ユニット59、ガード昇降ユニット67等が接続されている。制御装置3は、予め定められたプログラムに従って、スピンモータM、遮断板回転ユニット58、遮断部材昇降ユニット59、ガード昇降ユニット67等の動作を制御する。 In addition, a spin motor M, a blocking plate rotation unit 58, a blocking member lifting unit 59, a guard lifting unit 67, and the like are connected to the control device 3 as control targets. The control device 3 controls the operations of the spin motor M, the blocking plate rotating unit 58, the blocking member lifting and lowering unit 59, the guard lifting and lowering unit 67 and the like according to a predetermined program.
 また、制御装置3は、予め定められたプログラムに従って、SC1バルブ23、SC2バルブ33、リンス液バルブ43、有機溶剤バルブ55を開閉する。 Further, the control device 3 opens and closes the SC1 valve 23, the SC2 valve 33, the rinse liquid valve 43, and the organic solvent valve 55 in accordance with a predetermined program.
 また、制御装置3には、TDLAS気体濃度計測ユニット11からの検出出力(すなわち計測結果)が入力されるようになっている。 Further, a detection output (that is, measurement result) from the TDLAS gas concentration measurement unit 11 is input to the control device 3.
 次に、処理ユニット2において実行される基板処理例の内容を説明する。以下では、デバイス形成面である、表面Waにパターン100が形成された基板Wを処理する場合について説明する。 Next, the contents of the example of substrate processing performed in the processing unit 2 will be described. Below, the case where the board | substrate W in which the pattern 100 was formed in the surface Wa which is a device formation surface is processed is demonstrated.
 図8は、基板処理装置1による処理対象の基板Wの表面Waを拡大して示す断面図である。処理対象の基板Wは、たとえばシリコンウエハであり、そのパターン形成面である表面Waにパターン100が形成されている。パターン100は、たとえば微細パターンである。パターン100は、図8に示すように、凸形状(柱状)を有する構造体101が行列状に配置されたものであってもよい。この場合、構造体101の線幅W1はたとえば3nm~45nm程度に、パターン100の隙間W2はたとえば10nm~数μm程度に、それぞれ設けられている。パターン100の膜厚Tは、たとえば、0.2μm~1.0μm程度である。また、パターン100は、たとえば、アスペクト比(線幅W1に対する膜厚Tの比)が、たとえば、5~500程度であってもよい(典型的には、5~50程度である)。 FIG. 8 is an enlarged cross-sectional view of the surface Wa of the substrate W to be processed by the substrate processing apparatus 1. The substrate W to be processed is, for example, a silicon wafer, and the pattern 100 is formed on the surface Wa which is the pattern formation surface. The pattern 100 is, for example, a fine pattern. As shown in FIG. 8, the pattern 100 may have a structure 101 having a convex shape (columnar shape) arranged in a matrix. In this case, the line width W1 of the structure 101 is, for example, about 3 nm to 45 nm, and the gap W2 of the pattern 100 is, for example, about 10 nm to several μm. The film thickness T of the pattern 100 is, for example, about 0.2 μm to 1.0 μm. The pattern 100 may have, for example, an aspect ratio (a ratio of the film thickness T to the line width W1) of, for example, about 5 to 500 (typically, about 5 to 50).
 また、パターン100は、微細なトレンチにより形成されたライン状のパターンが、繰り返し並ぶものであってもよい。また、パターン100は、薄膜に、複数の微細穴(ボイド(void)またはポア(pore))を設けることにより形成されていてもよい。 Further, the pattern 100 may be one in which line-shaped patterns formed by fine trenches are repeatedly arranged. Alternatively, the pattern 100 may be formed by providing a plurality of fine holes (voids or pores) in the thin film.
 パターン100は、たとえば絶縁膜を含む。また、パターン100は、導体膜を含んでいてもよい。より具体的には、パターン100は、複数の膜を積層した積層膜により形成されており、さらには、絶縁膜と導体膜とを含んでいてもよい。パターン100は、単層膜で構成されるパターンであってもよい。絶縁膜は、シリコン酸化膜(SiO膜)やシリコン窒化膜(SiN膜)であってもよい。また、導体膜は、低抵抗化のための不純物を導入したアモルファスシリコン膜であってもよいし、金属膜(たとえばTiN膜)であってもよい。 Pattern 100 includes, for example, an insulating film. The pattern 100 may also include a conductor film. More specifically, the pattern 100 is formed of a laminated film in which a plurality of films are laminated, and may further include an insulating film and a conductor film. The pattern 100 may be a pattern composed of a single layer film. The insulating film may be a silicon oxide film (SiO 2 film) or a silicon nitride film (SiN film). The conductor film may be an amorphous silicon film into which an impurity for reducing resistance is introduced, or may be a metal film (for example, a TiN film).
 また、パターン100は、親水性膜であってもよい。親水性膜として、TEOS膜(シリコン酸化膜の一種)を例示できる。 Also, the pattern 100 may be a hydrophilic film. As a hydrophilic film, a TEOS film (a kind of silicon oxide film) can be exemplified.
 図9は、処理ユニット2において実行される第1の基板処理例の内容を説明するための流れ図である。図10は、SC1工程(S3)を説明するための模式図である。図11は、リンス工程(S4)からSC2工程(S5)への移行時のフローチャートである。図12は、SC2工程(S5)を説明するための模式図である。図13は、置換工程(S8)を説明するための模式図である。図14は、置換工程(S8)から乾燥工程(S9)への移行時のフローチャートである。図1~図9を参照しながら、第1の基板処理例について説明する。図10~図14については、適宜参照する。 FIG. 9 is a flowchart for explaining the contents of a first example of substrate processing performed in the processing unit 2. FIG. 10 is a schematic view for explaining the SC1 step (S3). FIG. 11 is a flowchart at the time of transition from the rinse step (S4) to the SC2 step (S5). FIG. 12 is a schematic view for explaining the SC2 step (S5). FIG. 13 is a schematic view for explaining the substitution step (S8). FIG. 14 is a flowchart at the time of transition from the replacement step (S8) to the drying step (S9). A first example of substrate processing will be described with reference to FIGS. 1 to 9. 10 to 14 will be referred to as appropriate.
 未処理の基板W(たとえば直径300mmの円形基板)は、インデクサロボットIRおよび基板搬送ロボットCRによって基板収容器Cから処理ユニット2に搬入され、次いでチャンバ4内に搬入され、基板Wがその表面Wa(図8参照)を上方に向けた状態でスピンチャック5に受け渡され、スピンチャック5に基板Wが保持される(図9のS1:基板W搬入)。チャンバ4への基板Wの搬入は、遮断部材9(遮断板47)が退避位置に退避された状態で、かつ第1~第3のガード64~66が下位置に配置された状態で行われる。 An unprocessed substrate W (for example, a circular substrate having a diameter of 300 mm) is carried from the substrate container C into the processing unit 2 by the indexer robot IR and the substrate transfer robot CR, and then carried into the chamber 4 and the substrate W is mounted on the surface Wa The wafer W is delivered to the spin chuck 5 in a state of facing upward (see FIG. 8), and the substrate W is held by the spin chuck 5 (S1 in FIG. 9: substrate W carried-in). The substrate W is carried into the chamber 4 in a state in which the blocking member 9 (the blocking plate 47) is retracted to the retracted position and in a state in which the first to third guards 64 to 66 are disposed at the lower position. .
 基板搬送ロボットCRが処理ユニット2外に退避した後、制御装置3は、スピンモータMを制御してスピンベース18および基板Wの回転速度を、所定の液処理速度(約10~1200rpmの範囲内で、たとえば約300rpm)まで上昇させ、その後、その液処理速度に維持させる(図9のS2:基板W回転開始)。 After the substrate transport robot CR retracts out of the processing unit 2, the control device 3 controls the spin motor M to rotate the spin base 18 and the substrate W at a predetermined liquid processing speed (within the range of about 10 to 1200 rpm). , For example, to about 300 rpm) and then maintained at the liquid processing speed (S2 in FIG. 9: start of substrate W rotation).
 基板Wの回転が液処理速度に達すると、制御装置3は、基板Wの上面に液体のSC1を供給するSC1工程(図9のS3)を実行する。 When the rotation of the substrate W reaches the liquid processing speed, the control device 3 executes an SC1 step (S3 in FIG. 9) of supplying the liquid SC1 to the upper surface of the substrate W.
 具体的には、制御装置3は、第1の揺動モータ26を制御して、SC1ノズル21を、退避位置から基板Wの上方に移動させる。これにより、図10に示すように、SC1ノズル21が基板Wの上方に配置される。 Specifically, the control device 3 controls the first rocking motor 26 to move the SC1 nozzle 21 from the retracted position above the substrate W. Thereby, as shown in FIG. 10, the SC1 nozzle 21 is disposed above the substrate W.
 その後、制御装置3は、ガード昇降ユニット67(図2参照)を制御して、第1~第3のガード66を上位置に上昇させることにより、第1のガード64が基板Wの周端面に対向する第1のガード対向状態が実現される。すなわち、SC1工程(S3)は、遮断部材9が退避位置に配置され、かつ処理カップ10の第1のガード対向状態で実行される。 Thereafter, the control device 3 controls the guard lifting and lowering unit 67 (see FIG. 2) to raise the first to third guards 66 to the upper position, whereby the first guard 64 is attached to the circumferential end face of the substrate W. An opposing first guard opposing state is realized. That is, the SC1 process (S3) is performed in the first guard opposing state of the processing cup 10 with the blocking member 9 disposed at the retracted position.
 SC1工程(S3)において、制御装置3は、SC1バルブ23を開く。それにより、回転状態の基板Wの上面(表面Wa(図8参照))に向けて、SC1ノズル21からSC1が吐出される。また、制御装置3は、第1の揺動モータ26を制御して、SC1ノズル21からのSC1の着液位置P1(図10参照)を、基板Wの上面中央部と上面周縁部との間で、円弧状の第1の軌跡C1(図3参照)に沿って往復移動させる。これにより、SC1の着液位置P1が基板Wの上面全域を走査し、これにより、基板Wの上面の全域がSC1を用いて処理される。 In the SC1 step (S3), the control device 3 opens the SC1 valve 23. Thereby, the SC1 nozzle 21 discharges the SC1 toward the upper surface (surface Wa (see FIG. 8)) of the substrate W in a rotating state. Further, the control device 3 controls the first swing motor 26 so that the liquid deposition position P1 (see FIG. 10) of the SC1 from the SC1 nozzle 21 is between the upper surface central portion and the upper surface peripheral portion of the substrate W. Then, it reciprocates along the arc-shaped first trajectory C1 (see FIG. 3). As a result, the liquid deposition position P1 of SC1 scans the entire top surface of the substrate W, whereby the entire top surface of the substrate W is processed using SC1.
 基板W上に供給されたSC1は、基板Wの上面周縁部から基板Wの側方に向けて飛散する。基板Wの上面周縁部から飛散するSC1は、第1のガード64の内壁に受け止められ、第1のガード64の内壁を伝って流下し、第1のカップ61および排液配管76(図2参照)を介して、機外の排液処理設備に送られる。 The SC 1 supplied onto the substrate W scatters from the upper surface peripheral portion of the substrate W toward the side of the substrate W. The SC1 scattered from the upper surface peripheral portion of the substrate W is received by the inner wall of the first guard 64 and flows down along the inner wall of the first guard 64, and the first cup 61 and the drainage pipe 76 (see FIG. 2) ), And sent to the drainage treatment facility outside the machine.
 SC1の吐出開始から予め定める期間が経過すると、制御装置3は、SC1バルブ23を閉じて、SC1ノズル21からのSC1の吐出を停止することにより、SC1工程(S3)を終了させてリンス工程(S4)へと移行させる。SC1工程(S3)の終了後、制御装置3が第1の揺動モータ26を制御して、SC1ノズル21を退避位置に戻させる。 When a predetermined time period has elapsed from the discharge start of SC1, the control device 3 closes the SC1 valve 23 to stop the discharge of SC1 from the SC1 nozzle 21, thereby terminating the SC1 step (S3) and performing the rinse step (S3). Move to S4). After completion of the SC1 step (S3), the control device 3 controls the first rocking motor 26 to return the SC1 nozzle 21 to the retracted position.
 次に、リンス工程(図9のS4)について説明する。リンス工程(S4)は、基板W上のSC1をリンス液に置換して基板W上からSC1を排除するための工程である。 Next, the rinse step (S4 in FIG. 9) will be described. The rinse step (S4) is a step for replacing SC1 on the substrate W with a rinse liquid and removing SC1 from above the substrate W.
 具体的には、制御装置3は、第3の揺動モータ46を制御して、リンス液ノズル41を、退避位置から基板Wの上方に移動させる。これにより、リンス液ノズル41が基板Wの上方に引き出され、基板Wの上面中央部上に配置される。 Specifically, the control device 3 controls the third rocking motor 46 to move the rinse liquid nozzle 41 from the retracted position above the substrate W. As a result, the rinse liquid nozzle 41 is pulled out above the substrate W and disposed on the upper central portion of the substrate W.
 リンス工程(S4)において、制御装置3は、リンス液バルブ43を開く。それにより、回転状態の基板Wの上面(表面Wa(図8参照))に向けて、リンス液ノズル41からリンス液が吐出される。基板Wの上面に供給されたリンス液は、基板Wの回転による遠心力を受けて基板Wの全域に行き渡る。これにより、基板W上に付着しているSC1が、基板Wの全域においてリンス液によって洗い流される。基板Wの回転による遠心力を受けてリンス液は、基板Wの周縁部に移動し、基板Wの周縁部から基板Wの側方に向けて飛散する。基板Wの周縁部から飛散したリンス液は、第1のガード64の内壁に受け止められ、第1のガード64の内壁を伝って流下し、第1のカップ61および排液配管79を介して、機外の回収処理設備に送られる。 In the rinse step (S4), the control device 3 opens the rinse solution valve 43. Thus, the rinse liquid is discharged from the rinse liquid nozzle 41 toward the upper surface (surface Wa (see FIG. 8)) of the substrate W in a rotating state. The rinse solution supplied to the upper surface of the substrate W receives the centrifugal force due to the rotation of the substrate W and spreads over the entire region of the substrate W. Thereby, the SC 1 adhering on the substrate W is washed away by the rinse liquid in the entire area of the substrate W. Under the centrifugal force of the rotation of the substrate W, the rinse liquid moves to the peripheral portion of the substrate W and scatters from the peripheral portion of the substrate W toward the side of the substrate W. The rinse liquid splashed from the peripheral portion of the substrate W is received by the inner wall of the first guard 64, flows down along the inner wall of the first guard 64, and flows through the first cup 61 and the drain pipe 79, It is sent to the recovery processing facility outside the aircraft.
 リンス液の供給開始から予め定める期間が経過すると、SC2工程(図9のS5。図12参照)への移行が可能になる。 When a predetermined time period has elapsed from the start of supply of the rinse solution, it is possible to shift to the SC2 step (S5 in FIG. 9; see FIG. 12).
 リンス液の吐出開始から予め定める期間が経過すると(図11のT1でYES)、制御装置3は、TDLAS気体濃度計測ユニット11によって基板Wの上面の上面近接位置におけるアンモニア濃度を計測する(図11のT2)。そして、そのときの計測湿度が、閾値濃度よりも低い場合(図11のT3でYES)には、制御装置3は、リンス液バルブ43を閉じて、リンス液ノズル41からのリンス液の吐出を停止する(図11のT4)ことにより、リンス工程(S4)を終了させてSC2工程(S5)へと移行させる(図11のT5)。リンス工程(S4)の終了後、制御装置3が第3の揺動モータ46を制御して、リンス液ノズル41を退避位置に戻させる。 When a predetermined time period has elapsed from the start of the discharge of the rinse liquid (YES in T1 of FIG. 11), the controller 3 measures the ammonia concentration at the upper surface proximity position of the upper surface of the substrate W by the TDLAS gas concentration measurement unit 11 (FIG. 11) T2). Then, when the measured humidity at that time is lower than the threshold concentration (YES in T3 of FIG. 11), the control device 3 closes the rinse solution valve 43 and discharges the rinse solution from the rinse solution nozzle 41. By stopping (T4 in FIG. 11), the rinse step (S4) is ended to shift to the SC2 step (S5) (T5 in FIG. 11). After the end of the rinse step (S4), the control device 3 controls the third swing motor 46 to return the rinse solution nozzle 41 to the retracted position.
 一方、計測アンモニア濃度が、閾値濃度以上である場合(図11のT4でNO)には、図11の処理がリターンされ、この処理が繰り返し実行(ループ)される。すなわち、計測アンモニア濃度が閾値濃度未満に下がるまでSC2工程(S5)には移行せず、リンス工程(S4)の実行が継続される。 On the other hand, if the measured ammonia concentration is equal to or higher than the threshold concentration (NO in T4 of FIG. 11), the process of FIG. 11 is returned, and this process is repeatedly executed (looped). That is, the process does not shift to the SC2 step (S5) until the measured ammonia concentration falls below the threshold concentration, and the execution of the rinse step (S4) is continued.
 計測アンモニア濃度が閾値濃度未満に下がっている場合には、基板Wの上面においてアンモニアの残留がない。アンモニアは残留し易いという性質があり、また、乾燥後にも残留していると、パターンの電気特性にも悪影響を与えるおそれがある。さらには、後述するSC2工程(S5)において、SC1との混触が生じるおそれがある。そのため、基板Wの上面の直上におけるアンモニア濃度を監視することにより、基板Wの上面におけるアンモニア残りを検出している。 If the measured ammonia concentration is lower than the threshold concentration, no ammonia remains on the upper surface of the substrate W. Ammonia has the property of easily remaining, and if it remains even after drying, the electrical characteristics of the pattern may be adversely affected. Furthermore, in the SC2 step (S5) to be described later, there is a possibility that the contact with the SC1 may occur. Therefore, the ammonia residue on the upper surface of the substrate W is detected by monitoring the ammonia concentration immediately above the upper surface of the substrate W.
 制御装置3は、リンス液バルブ43を閉じて、リンス液ノズル41からのリンス液の吐出を停止する。これにより、リンス工程(S4)が終了する。その後、制御装置3は、第3の揺動モータ46を制御して、リンス液ノズル41を退避位置に戻させる。 The control device 3 closes the rinse solution valve 43 and stops the discharge of the rinse solution from the rinse solution nozzle 41. Thus, the rinse step (S4) is completed. Thereafter, the control device 3 controls the third rocking motor 46 to return the rinse liquid nozzle 41 to the retracted position.
 次いで、制御装置3は、基板Wの上面に液体のSC2を供給するSC2工程(図9のS5。図12参照)を実行する。 Next, the control device 3 executes an SC2 step (S5 in FIG. 9, see FIG. 12) of supplying SC2 of liquid to the upper surface of the substrate W.
 具体的には、制御装置3は、第2の揺動モータ36を制御して、SC2ノズル31を、退避位置から基板Wの上方に移動させる。これにより、図12に示すように、SC2ノズル31が基板Wの上方に配置される。 Specifically, the control device 3 controls the second rocking motor 36 to move the SC2 nozzle 31 above the substrate W from the retracted position. Thereby, as shown in FIG. 12, the SC2 nozzle 31 is disposed above the substrate W.
 その後、制御装置3は、ガード昇降ユニット67(図2参照)を制御して、第1のガード対向状態にある処理カップ10の第1のガード64を、下位置まで下降させる。これにより、第2のガード65が基板Wの周端面に対向する第2のガード対向状態が実現される。すなわち、SC2工程(S5)は、遮断部材9が退避位置に配置され、かつ処理カップ10の第2のガード対向状態で実行される。 Thereafter, the control device 3 controls the guard lifting and lowering unit 67 (see FIG. 2) to lower the first guard 64 of the processing cup 10 in the first guard opposing state to the lower position. Thereby, the second guard facing state in which the second guard 65 faces the circumferential end surface of the substrate W is realized. That is, the SC2 process (S5) is performed in the second guard opposing state of the processing cup 10 in which the blocking member 9 is disposed at the retracted position.
 SC2工程(S5)において、制御装置3は、SC2バルブ33を開く。それにより、回転状態の基板Wの上面(表面Wa(図8参照))に向けて、SC2ノズル31からSC2が吐出される。また、制御装置3は、第2の揺動モータ36を制御して、SC2ノズル31からのSC2の着液位置P2(図12参照)を、基板Wの上面中央部と上面周縁部との間で、円弧状の第2の軌跡C2(図3参照)に沿って往復移動させる。これにより、SC2の着液位置P2が基板Wの上面全域を走査し、これにより、基板Wの上面の全域がSC2を用いて処理される。 In the SC2 step (S5), the control device 3 opens the SC2 valve 33. Thereby, SC2 is discharged from the SC2 nozzle 31 toward the upper surface (surface Wa (see FIG. 8)) of the substrate W in a rotating state. Further, the control device 3 controls the second swing motor 36 so that the liquid deposition position P2 (see FIG. 12) of SC2 from the SC2 nozzle 31 is between the upper surface central portion and the upper surface peripheral portion of the substrate W. Then, it reciprocates along the arc-shaped second trajectory C2 (see FIG. 3). As a result, the liquid deposition position P2 of SC2 scans the entire top surface of the substrate W, whereby the entire top surface of the substrate W is processed using SC2.
 基板W上に供給されたSC2は、基板Wの上面周縁部から基板Wの側方に向けて飛散する。基板Wの上面周縁部から飛散するSC2は、第1のガード64の内壁に受け止められ、第1のガード64の内壁を伝って流下し、第1のカップ61および回収配管80(図2参照)を介して、機外の回収処理設備に送られる。 The SC 2 supplied onto the substrate W is scattered from the upper surface peripheral portion of the substrate W toward the side of the substrate W. The SC2 scattered from the upper surface peripheral portion of the substrate W is received by the inner wall of the first guard 64, flows down along the inner wall of the first guard 64, and flows down the first cup 61 and the recovery pipe 80 (see FIG. 2). Are sent to a recovery processing facility outside the aircraft.
 SC2の吐出開始から予め定める期間が経過すると、制御装置3は、SC2バルブ33を閉じて、SC2ノズル31からのSC2の吐出を停止する。これにより、SC2工程(S5)が終了する。その後、制御装置3が第2の揺動モータ36を制御して、SC2ノズル31を退避位置に戻させる。 When a predetermined time period has elapsed since the discharge start of SC2, the control device 3 closes the SC2 valve 33 and stops the discharge of SC2 from the SC2 nozzle 31. Thus, the SC2 process (S5) is completed. Thereafter, the control device 3 controls the second swing motor 36 to return the SC2 nozzle 31 to the retracted position.
 次いで、制御装置3は、基板W上のSC2をリンス液に置換して基板W上からSC2を排除するためのリンス工程(図9のS6)を実行する。 Next, the control device 3 executes a rinse step (S6 in FIG. 9) for replacing SC2 on the substrate W with a rinse liquid and removing SC2 from above the substrate W.
 具体的には、制御装置3は、第3の揺動モータ46を制御して、リンス液ノズル41を、退避位置から基板Wの上方に移動させる。これにより、リンス液ノズル41が基板Wの上方に引き出され、基板Wの上面中央部上に配置される。 Specifically, the control device 3 controls the third rocking motor 46 to move the rinse liquid nozzle 41 from the retracted position above the substrate W. As a result, the rinse liquid nozzle 41 is pulled out above the substrate W and disposed on the upper central portion of the substrate W.
 リンス液ノズル41が基板Wの上方に引き出された後、制御装置3は、ガード昇降ユニット67(図2参照)を制御して、第2のガード対向状態にある処理カップ10の第1のガード64を、上位置まで上昇させる。これにより、第1のガード64が基板Wの周端面に対向する第1のガード対向状態が実現される。すなわち、SC1工程(S5)は、遮断部材9が退避位置に配置され、かつ処理カップ10の第2のガード対向状態で実行される。リンス工程(S6)は、リンス工程(S4)と同等の工程であるので、説明を省略する。 After the rinse liquid nozzle 41 is pulled out above the substrate W, the control device 3 controls the guard lifting and lowering unit 67 (see FIG. 2) to make the first guard of the processing cup 10 in the second guard opposing state. Raise 64 to the upper position. Thereby, the first guard facing state in which the first guard 64 faces the circumferential end surface of the substrate W is realized. That is, the SC1 step (S5) is performed in the second guard opposing state of the processing cup 10 with the blocking member 9 disposed at the retracted position. The rinse step (S6) is the same as the rinse step (S4), so the description will be omitted.
 リンス液の供給開始から予め定める期間が経過すると、制御装置3は、次に、基板Wへのリンス液の供給を停止させた状態でリンス液の液膜(処理液の液膜)を基板W上に保持するパドルリンス工程(図9のS7)を行う。具体的には、制御装置3は、スピンチャック5を制御することにより、基板Wの上面全域がリンス液に覆われている状態で、基板Wの回転を停止させる、もしくは、リンス工程(S6)での回転速度よりも低速の低回転速度(たとえば約10~100rpm)まで基板Wの回転速度を低下させる。これにより、基板Wの上面に、基板Wの上面の全域を覆うパドル状のリンス液の液膜が形成される。この状態では、基板Wの上面のリンス液の液膜に作用する遠心力がリンス液と基板Wの上面との間で作用する表面張力よりも小さいか、あるいは前記の遠心力と前記の表面張力とがほぼ拮抗している。基板Wの減速により、基板W上のリンス液に作用する遠心力が弱まり、基板W上から排出されるリンス液の量が減少する。 When a predetermined time period has elapsed from the start of supply of the rinse liquid, the control device 3 next stops the liquid film (liquid film of the processing liquid) of the rinse liquid in a state in which the supply of the rinse liquid to the substrate W is stopped. A paddle rinse step (S7 in FIG. 9) held on top is performed. Specifically, the control device 3 controls the spin chuck 5 to stop the rotation of the substrate W in a state where the entire upper surface of the substrate W is covered with the rinse liquid, or the rinse step (S6) The rotational speed of the substrate W is reduced to a low rotational speed (for example, about 10 to 100 rpm) that is lower than the rotational speed at. As a result, a liquid film of a paddle-like rinse liquid covering the entire upper surface of the substrate W is formed on the upper surface of the substrate W. In this state, the centrifugal force acting on the liquid film of the rinse liquid on the upper surface of the substrate W is smaller than the surface tension acting between the rinse liquid and the upper surface of the substrate W, or the above-mentioned centrifugal force and the surface tension And almost antagonistic. Due to the deceleration of the substrate W, the centrifugal force acting on the rinse liquid on the substrate W is weakened, and the amount of rinse liquid discharged from the substrate W is reduced.
 制御装置3は、基板Wが静止している状態もしくは基板Wが低回転速度で回転している状態で、リンス液バルブ43を閉じて、リンス液ノズル41からのリンス液の吐出を停止させる。また、基板Wの上面にパドル状のリンス液の液膜が形成された後に、基板Wの上面へのリンス液の供給が続行されていていてもよい。リンス液ノズル41からのリンス液の吐出停止後、制御装置3は、第3の揺動モータ46を制御して、リンス液ノズル41を退避位置に戻させる。 The controller 3 closes the rinse liquid valve 43 and stops the discharge of the rinse liquid from the rinse liquid nozzle 41 in a state where the substrate W is stationary or in a state where the substrate W is rotating at a low rotational speed. In addition, after the liquid film of the paddle-like rinse liquid is formed on the upper surface of the substrate W, the supply of the rinse liquid to the upper surface of the substrate W may be continued. After stopping the discharge of the rinse liquid from the rinse liquid nozzle 41, the control device 3 controls the third swing motor 46 to return the rinse liquid nozzle 41 to the retracted position.
 次いで、制御装置3は、置換工程(図9のS8。図14参照)を実行する。置換工程(S8)は、基板W上のリンス液を、リンス液(水)よりも表面張力の低い有機溶剤(この例では、IPA)に置換する工程である。 Next, the control device 3 executes a replacement step (S8 in FIG. 9, see FIG. 14). The replacement step (S8) is a step of replacing the rinse liquid on the substrate W with an organic solvent (in this example, IPA) having a lower surface tension than the rinse liquid (water).
 具体的には、制御装置3は、遮断部材昇降ユニット59を制御して、遮断板47を下降させ、図13に示すように、近接位置に配置する。 Specifically, the control device 3 controls the blocking member lifting unit 59 to lower the blocking plate 47 and arrange the blocking plate 47 at the close position as shown in FIG.
 また、制御装置3は、ガード昇降ユニット67を制御して、第2のガード対向状態にある処理カップ10の第2のガード65を、下位置まで下降させることにより、第3のガード66が基板Wの周端面に対向する第3のガード対向状態が実現される。すなわち、置換工程(S8)は、遮断部材9が近接位置に配置され、かつ処理カップ10の第3のガード対向状態で実行される。 In addition, the control device 3 controls the guard lifting and lowering unit 67 to lower the second guard 65 of the processing cup 10 in the second guard opposing state to the lower position, so that the third guard 66 serves as a substrate. The third guard facing state facing the circumferential end face of W is realized. That is, the replacement step (S8) is performed in the third guard opposing state of the processing cup 10 in which the blocking member 9 is disposed at the close position.
 置換工程(S8)において、制御装置3は、基板Wの回転をパドル速度(零または低速の低回転速度(たとえば約10~100rpm))に維持しながら、有機溶剤バルブ55を開く。これにより、図13に示すように、上面ノズル49の第1の吐出口52aから基板Wの上面中央部に向けて有機溶剤が吐出される。これにより、基板Wの上面上のリンス液が有機溶剤に置換され、基板Wの上面の全域を覆うパドル状の有機溶剤の液膜が形成される。その後、このパドル状の有機溶剤の液膜が、基板Wの全域を覆う状態のまま保持される。有機溶剤の供給を停止しても有機溶剤が液切れしないようであれば、有機溶剤の供給を停止してもよい。しかしながら、有機溶剤の供給を停止すると有機溶剤が液切れするようであれば、有機溶剤の供給が続行される。 In the replacement step (S8), the controller 3 opens the organic solvent valve 55 while maintaining the rotation of the substrate W at the paddle speed (zero or low low rotation speed (eg, about 10 to 100 rpm)). As a result, as shown in FIG. 13, the organic solvent is discharged from the first discharge port 52 a of the upper surface nozzle 49 toward the central portion of the upper surface of the substrate W. As a result, the rinse liquid on the upper surface of the substrate W is replaced with the organic solvent, and a liquid film of a paddle-like organic solvent covering the entire upper surface of the substrate W is formed. Thereafter, the liquid film of the paddle-like organic solvent is held in a state of covering the entire area of the substrate W. The supply of the organic solvent may be stopped if the liquid does not run out even if the supply of the organic solvent is stopped. However, if the supply of the organic solvent is stopped and the organic solvent runs out, the supply of the organic solvent is continued.
 図9に示す基板処理例の間の全期間に亘って、周囲気体吐出口13aからは、小流量(たとえば約10(リットル/分))の不活性ガスが吐出されている。この不活性ガスの吐出により、近接位置に位置する遮断板47と基板Wの上面との間の空間に、不活性ガスが供給される。この空間への不活性ガスの供給に伴い、この空間の雰囲気の湿度が低下する。置換工程(S8)の開始から予め定める期間が経過すると、乾燥工程(S9)への移行が可能になる。 A small flow rate (e.g., about 10 (liters / minute)) of inert gas is discharged from the ambient gas discharge port 13a throughout the entire period between the substrate processing examples shown in FIG. By the discharge of the inert gas, the inert gas is supplied to the space between the blocking plate 47 located at the close position and the upper surface of the substrate W. With the supply of the inert gas to this space, the humidity of the atmosphere of this space decreases. When a predetermined time period has elapsed from the start of the substitution step (S8), the transition to the drying step (S9) becomes possible.
 図14に示すように、置換工程(S8)の開始から予め定める期間が経過すると(図1
4のE1でYES)、制御装置3は、TDLAS気体濃度計測ユニット11によって基板Wの上面の上面近接位置における水の濃度、すなわち湿度を計測する(計測工程。図14のE2)。そして、そのときの計測湿度が、閾値湿度(たとえば約5%)よりも低い場合(図14のE3でYES)には、制御装置3は、置換工程(S8)を終了し乾燥工程(S9)へと移行させる(図14のE4)。
As shown in FIG. 14, when a predetermined time period has elapsed from the start of the substitution step (S8) (FIG.
The control device 3 measures the concentration of water at a position close to the upper surface of the upper surface of the substrate W, that is, the humidity, by the TDLAS gas concentration measurement unit 11 (measurement process: E2 in FIG. 14). Then, if the measured humidity at that time is lower than the threshold humidity (for example, about 5%) (YES in E3 of FIG. 14), the control device 3 ends the replacement step (S8) and the drying step (S9) It shifts to (E4 in FIG. 14).
 一方、計測湿度が、閾値湿度(たとえば約5%)以上である場合(図14のE3でNO)には、図14の処理がリターンされ、この処理が繰り返し実行(ループ)される。すなわち、計測湿度が閾値湿度(たとえば約5%)未満に下がるまで乾燥工程(S9)には移行せず、置換工程(S8)が継続される。 On the other hand, if the measured humidity is equal to or higher than the threshold humidity (for example, about 5%) (NO in E3 of FIG. 14), the process of FIG. 14 is returned, and this process is repeatedly performed (looped). That is, the process does not shift to the drying step (S9) until the measured humidity falls below the threshold humidity (for example, about 5%), and the replacement step (S8) is continued.
 次に、乾燥工程(低表面張力液体排除工程。図9のS9)について説明する。乾燥工程(S9)の開始に際して、制御装置3は、遮断部材昇降ユニット59を制御して、遮断板47を遮断位置(図2に破線で図示)までさらに下降させる。乾燥工程(S9)は、基板Wの上面から、パドル状の有機溶剤の液膜を液塊のまま排除する液塊排除工程と、基板Wを振り切り乾燥させるスピンドライ工程とを含む。液塊排除工程は、穴あけ工程と、穴拡大工程とを含む。まず穴あけ工程が実行され、穴あけ工程の終了後に穴拡大工程が実行される。 Next, the drying step (low surface tension liquid removal step; S9 in FIG. 9) will be described. At the start of the drying step (S9), the control device 3 controls the blocking member lifting unit 59 to further lower the blocking plate 47 to the blocking position (shown by a broken line in FIG. 2). The drying step (S9) includes a liquid mass exclusion step of excluding the liquid film of the paddle-like organic solvent as it is from the upper surface of the substrate W, and a spin dry step of scattering and drying the substrate W. The liquid mass removal step includes a drilling step and a hole enlargement step. First, a drilling process is performed, and a hole enlarging process is performed after completion of the drilling process.
 穴あけ工程は、パドル状の液膜の中央部に、液体が排除された円形の穴(すなわち乾燥領域)を形成する工程である。具体的には、制御装置3は、不活性ガスバルブ57を開く。これにより、上面ノズル49の第2の吐出口53aから気体(不活性ガス)が下向きに吐出される。このときの気体の吐出流量は、約50(リットル/分)~100(リットル/分)である。気体の吹き付け圧力(ガス圧)によって、パドル状の液膜の中央部にある液体が吹き飛ばされて排除される。これにより、基板Wの上面中央部に穴が形成される。 The drilling step is a step of forming a circular hole (i.e., a dry area) in which the liquid is eliminated in the central portion of the paddle-like liquid film. Specifically, the control device 3 opens the inert gas valve 57. Thereby, the gas (inert gas) is discharged downward from the second discharge port 53 a of the upper surface nozzle 49. The discharge flow rate of the gas at this time is about 50 (liter / minute) to 100 (liter / minute). The gas blowing pressure (gas pressure) blows out the liquid at the center of the paddle-like liquid film. Thus, a hole is formed at the center of the upper surface of the substrate W.
 穴拡大工程において、制御装置3は、スピンモータMを制御して、基板Wの回転速度を、所定の穴拡大速度(たとえば約200rpm)まで上昇させる。このとき、基板W上のパドル状の液膜に作用する遠心力により、穴が拡大し始める。そして、制御装置3は、穴あけ速度に達した後、基板Wの回転をさらに徐々に加速する。これにより、基板Wの全域に穴が拡大させられ、これにより、パドル状の液膜が全て基板W外に排出される。基板Wの上面全域に穴が拡大した後、制御装置3は、不活性ガスバルブ57を閉じて、第2の吐出口53aからの気体の吐出を停止させる。この穴の拡大の全期間においてパドル状の液膜は液塊状態を保持しているから、液塊分裂後の液体が基板Wの上面に残存しない。すなわち、穴あけ工程および穴拡大工程を実行することにより、液膜の液塊の分裂を防ぎながらパドル状の液膜を基板W上から排除できる。 In the hole enlarging process, the controller 3 controls the spin motor M to increase the rotational speed of the substrate W to a predetermined hole expanding speed (for example, about 200 rpm). At this time, the holes begin to expand due to the centrifugal force acting on the paddle-like liquid film on the substrate W. Then, after the drilling speed is reached, the control device 3 further accelerates the rotation of the substrate W gradually. As a result, the hole is enlarged over the entire area of the substrate W, whereby the entire paddle-like liquid film is discharged out of the substrate W. After the hole is expanded on the entire upper surface of the substrate W, the control device 3 closes the inert gas valve 57 to stop the discharge of the gas from the second discharge port 53a. Since the paddle-like liquid film maintains the liquid mass state in the entire period of the expansion of the hole, the liquid after the liquid mass division does not remain on the upper surface of the substrate W. That is, by performing the drilling process and the hole expanding process, the paddle-like liquid film can be removed from above the substrate W while preventing the liquid film from breaking up.
 穴拡大工程の終了後(液塊排除工程の終了後)には、制御装置3は、スピンドライ工程を実行する。具体的には、制御装置3は、スピンドライ速度(たとえば約2400rpm)まで基板Wをさらに加速させる。これにより、基板Wの上面上の液体が振り切られる。 After the end of the hole enlarging step (after the end of the liquid mass removing step), the control device 3 executes the spin dry step. Specifically, the controller 3 further accelerates the substrate W to a spin dry speed (for example, about 2400 rpm). Thereby, the liquid on the upper surface of the substrate W is shaken off.
 スピンドライ工程の開始から予め定める期間が経過すると、制御装置3は、スピンモータMを制御してスピンチャック5の回転(すなわち、基板Wの回転)を停止させ、遮断板回転ユニット58を制御して遮断板47の回転を停止させ、かつ、遮断部材昇降ユニット59を制御して遮断板47を上昇させ、退避位置へと退避させる。さらに、制御装置3は、第1~第3のガード64~66の全てを下位置に配置する(図9のS10)。その後、基板搬送ロボットCRが、処理ユニット2に進入して、処理済みの基板Wを処理ユニット2外へと搬出する(図9のS11)。搬出された基板Wは、基板搬送ロボットCRからインデクサロボットIRへと渡され、インデクサロボットIRによって、基板収容器Cに収納される。 When a predetermined time period has elapsed from the start of the spin dry process, the control device 3 controls the spin motor M to stop the rotation of the spin chuck 5 (that is, the rotation of the substrate W) and controls the blocking plate rotation unit 58. The rotation of the blocking plate 47 is stopped, and the blocking member lifting unit 59 is controlled to raise the blocking plate 47 and retract it to the retracted position. Further, the control device 3 arranges all of the first to third guards 64 to 66 at the lower position (S10 in FIG. 9). Thereafter, the substrate transport robot CR enters the processing unit 2 and carries out the processed substrate W out of the processing unit 2 (S11 in FIG. 9). The carried-out substrate W is delivered from the substrate transfer robot CR to the indexer robot IR, and is stored in the substrate container C by the indexer robot IR.
 前述のように、置換工程(S8)の開始から予め定める期間の経過時において、計測湿度が閾値湿度(たとえば約5%)よりも低い場合のみ、乾燥工程(S9)へと移行し、計測湿度が、閾値湿度(たとえば約5%)以上である場合には、置換工程(S8)が継続される。そのため、基板Wの上面に存在する低表面張力液体に水が混じっていない状態で、基板Wの上面から液体の有機溶剤が排除されるので、パターン倒壊を抑制または防止できる。 As described above, only when the measured humidity is lower than the threshold humidity (for example, about 5%) at the elapse of a predetermined period from the start of the substitution step (S8), the process proceeds to the drying step (S9) and the measured humidity Is higher than or equal to the threshold humidity (e.g., about 5%), the replacement step (S8) is continued. Therefore, since the liquid organic solvent is removed from the upper surface of the substrate W in a state where water is not mixed with the low surface tension liquid present on the upper surface of the substrate W, pattern collapse can be suppressed or prevented.
 以上のように、この実施形態によれば、発光窓84と受光窓87との間に形成される光路89が、チャンバ4内の上方空間SP(とくに上面近接位置)を通過するように配置される。そして、光路89の周囲の雰囲気のアンモニア濃度および湿度が、TDLAS気体濃度計測部83によって計測される。TDLAS方式によって光路89の周囲の雰囲気を計測する。そのため、上方空間SPに存在する処理液によらずに、かつ周辺部材(SC1ノズル21、SC2ノズル31、リンス液41、第1のノズルアーム24、第2のノズルアーム34、第3のノズルアーム44)との干渉を回避しながら、アンモニア濃度および湿度のそれぞれを、精度良く計測できる。 As described above, according to this embodiment, the optical path 89 formed between the light emitting window 84 and the light receiving window 87 is arranged to pass through the upper space SP in the chamber 4 (particularly, the upper surface proximity position). Ru. Then, the ammonia concentration and the humidity of the atmosphere around the light path 89 are measured by the TDLAS gas concentration measuring unit 83. The atmosphere around the optical path 89 is measured by the TDLAS method. Therefore, the peripheral members (SC1 nozzle 21, SC2 nozzle 31, rinse liquid 41, first nozzle arm 24, second nozzle arm 34, third nozzle arm) regardless of the treatment liquid existing in the upper space SP Each of the ammonia concentration and the humidity can be accurately measured while avoiding the interference with 44).
 また、TDLAS方式による計測が高速応答性を有しているので、アンモニア濃度および湿度を短時間で計測することができ、これにより、アンモニア濃度および湿度に応じた処理を、遅れなく実行できる。
<第2の実施形態>
 図15は、この発明の第2の実施形態に係る処理ユニット202の内部を水平方向に見た模式図である。図16は、処理ユニット202において実行される基板処理例の置換工程(S9)を説明するための模式図である。
In addition, since the measurement by the TDLAS method has high-speed response, the ammonia concentration and humidity can be measured in a short time, whereby processing according to the ammonia concentration and humidity can be executed without delay.
Second Embodiment
FIG. 15 is a schematic view of the inside of the processing unit 202 according to the second embodiment of the present invention as viewed in the horizontal direction. FIG. 16 is a schematic diagram for explaining the replacement step (S9) of the example of the substrate processing performed in the processing unit 202. As shown in FIG.
 第2の実施形態において、前述の第1の実施形態と共通する部分には、図1~図14の場合と同一の参照符号を付し説明を省略する。 In the second embodiment, the same reference numerals as those in FIGS. 1 to 14 are added to portions in common with the first embodiment described above, and the descriptions thereof will be omitted.
 第2の実施形態に係る処理ユニット202が、第1の実施形態に係る処理ユニット2と相違する点は、遮断部材9(図2参照)を廃止すると共に、上面ノズル49(図2参照)に代えて、有機溶剤を吐出するための有機溶剤ノズル203を設けた点である。図15の例では、有機溶剤ノズル203は、第2のノズルアーム34によって支持されている。 The difference between the processing unit 202 according to the second embodiment and the processing unit 2 according to the first embodiment is that the blocking member 9 (see FIG. 2) is eliminated and the upper surface nozzle 49 (see FIG. 2) Instead of this, an organic solvent nozzle 203 for discharging the organic solvent is provided. In the example of FIG. 15, the organic solvent nozzle 203 is supported by the second nozzle arm 34.
 有機溶剤ノズル203は、たとえば、連続流の状態で液体状の有機溶剤を吐出するストレートノズルである。有機溶剤は、たとえばIPA(isopropyl alcohol)であるが、このような有機溶剤として、IPA以外に、たとえば、メタノール、エタノール、アセトン、EG(エチレングリコール)およびHFE(ハイドロフルオロエーテル)を例示できる。また、有機溶剤としては、単体成分のみからなる場合だけでなく、他の成分と混合した液体であってもよい。たとえば、IPAとアセトンの混合液であってもよいし、IPAとメタノールの混合液であってもよい。 The organic solvent nozzle 203 is, for example, a straight nozzle that discharges a liquid organic solvent in a continuous flow state. The organic solvent is, for example, IPA (isopropyl alcohol), and as such an organic solvent, in addition to IPA, for example, methanol, ethanol, acetone, EG (ethylene glycol) and HFE (hydrofluoroether) can be exemplified. Moreover, as an organic solvent, not only the case where it consists only of a single-piece component but the liquid mixed with other components may be sufficient. For example, it may be a mixture of IPA and acetone, or a mixture of IPA and methanol.
 有機溶剤ノズル203は、たとえば基板Wの上面に垂直な方向に処理液を吐出する垂直姿勢で第2のノズルアーム34に取り付けられている。有機溶剤ノズル203には、有機溶剤供給源からの有機溶剤が導かれる有機溶剤配管204が接続されている。有機溶剤配管204の途中部には、有機溶剤配管204を開閉するための有機溶剤バルブ205が介装されている。有機溶剤バルブ205が開かれることにより、有機溶剤ノズル203から有機溶剤が下方に向けて吐出される。 The organic solvent nozzle 203 is attached to the second nozzle arm 34 in a vertical posture in which the processing liquid is discharged, for example, in a direction perpendicular to the upper surface of the substrate W. Connected to the organic solvent nozzle 203 is an organic solvent pipe 204 to which the organic solvent from the organic solvent supply source is introduced. An organic solvent valve 205 for opening and closing the organic solvent pipe 204 is interposed in the middle of the organic solvent pipe 204. When the organic solvent valve 205 is opened, the organic solvent is discharged downward from the organic solvent nozzle 203.
 処理ユニット202では、図9に示される基板処理例と同等の基板処理例が実行される。 In the processing unit 202, a substrate processing example equivalent to the substrate processing example shown in FIG. 9 is executed.
 置換工程(図9のS8)において、制御装置3は、基板Wの回転をパドル速度(零または低速の低回転速度(たとえば約10~100rpm))に維持しながら、有機溶剤バルブ205を開く。これにより、図16に示すように、有機溶剤ノズル203から基板Wの上面中央部に向けて有機溶剤が吐出される。これにより、基板Wの上面上のリンス液が有機溶剤に置換され、基板Wの上面の全域を覆うパドル状の有機溶剤の液膜が形成される。その後、このパドル状の有機溶剤の液膜が、基板Wの全域を覆う状態のまま保持される。有機溶剤の供給を停止しても有機溶剤が液切れしないようであれば、有機溶剤の供給を停止してもよい。しかしながら、有機溶剤の供給を停止すると有機溶剤が液切れするようであれば、有機溶剤の供給が続行される。 In the replacement step (S8 in FIG. 9), the controller 3 opens the organic solvent valve 205 while maintaining the rotation of the substrate W at the paddle speed (zero or low low rotation speed (eg, about 10 to 100 rpm)). Thereby, as shown in FIG. 16, the organic solvent is discharged from the organic solvent nozzle 203 toward the center of the upper surface of the substrate W. As a result, the rinse liquid on the upper surface of the substrate W is replaced with the organic solvent, and a liquid film of a paddle-like organic solvent covering the entire upper surface of the substrate W is formed. Thereafter, the liquid film of the paddle-like organic solvent is held in a state of covering the entire area of the substrate W. The supply of the organic solvent may be stopped if the liquid does not run out even if the supply of the organic solvent is stopped. However, if the supply of the organic solvent is stopped and the organic solvent runs out, the supply of the organic solvent is continued.
 図9に示す基板処理例の間の全期間に亘って、天井に取り付けられているFFU15から、低湿度の清浄空気(すなわち、乾燥気体)が上方空間SPに供給されている。上方空間SPへの低湿度空気の供給に伴い、上方空間SPの雰囲気の湿度が低下する。置換工程(図9のS8)の開始から予め定める期間が経過すると、乾燥工程(図9のS9)への移行が可能になる。置換工程(図9のS8)から乾燥工程(図9のS9)に移行するか否かは、図14を用いて説明した処理に基づいて決定される。 Clean air (ie, dry gas) with low humidity is supplied to the upper space SP from the FFU 15 mounted on the ceiling throughout the entire period during the substrate processing example shown in FIG. With the supply of low humidity air to the upper space SP, the humidity of the atmosphere in the upper space SP is reduced. When a predetermined time period has elapsed from the start of the replacement step (S8 in FIG. 9), it is possible to shift to the drying step (S9 in FIG. 9). Whether to shift from the substitution step (S8 in FIG. 9) to the drying step (S9 in FIG. 9) is determined based on the process described using FIG.
 第2の実施形態においても、第1の実施形態で述べた作用効果と同等の作用効果を奏する。
<変形処理例>
 処理ユニット2,202において実行される基板処理例では、置換工程(図9のS8)から乾燥工程(図9のS9)への移行時に、図14に示す処理を実行するものとして説明したが、図14に示す処理は、パドルリンス工程(図9のS7)から置換工程(低表面張力液体供給工程。図9のS8)への移行時に行ってもよい。さらには、リンス工程(図9のS6)からパドルリンス工程(図9のS7)への移行時に行ってもよい。すなわち、この変形処理例では、図14に示す処理が、置換工程(図9のS8)に先立って実行される。以下、パドルリンス工程(図9のS7)から置換工程(図9のS8)への移行時に図14に示す処理を行う場合について説明する。
Also in the second embodiment, the same effects as the effects described in the first embodiment can be obtained.
<Example of deformation processing>
Although the substrate processing example executed in the processing unit 2, 202 has been described as performing the processing shown in FIG. 14 at the transition from the replacement step (S8 in FIG. 9) to the drying step (S9 in FIG. 9) The process shown in FIG. 14 may be performed at the transition from the paddle rinse process (S7 in FIG. 9) to the replacement process (low surface tension liquid supply process; S8 in FIG. 9). Furthermore, it may be performed at the transition from the rinse step (S6 in FIG. 9) to the paddle rinse step (S7 in FIG. 9). That is, in this modification, the process shown in FIG. 14 is performed prior to the replacement step (S8 in FIG. 9). Hereinafter, the case where the process shown in FIG. 14 is performed at the transition from the paddle rinse step (S7 in FIG. 9) to the replacement step (S8 in FIG. 9) will be described.
 パドルリンス工程(図9のS7)の開始から予め定める期間が経過すると、制御装置3は、TDLAS気体濃度計測ユニット11によって基板Wの上面の上面近接位置における水の濃度、すなわち湿度を計測する。そして、そのときの計測湿度が、閾値湿度(たとえば、約30%~40%の範囲の所定濃度)よりも低い場合には、制御装置3は、パドルリンス工程(図9のS7)を終了し置換工程(図9のS8)へと移行させる。 When a predetermined time period has elapsed from the start of the paddle rinse step (S7 in FIG. 9), the controller 3 measures the concentration of water at the upper surface close position of the upper surface of the substrate W, that is, the humidity by the TDLAS gas concentration measurement unit 11. When the measured humidity at that time is lower than the threshold humidity (for example, a predetermined concentration in the range of about 30% to 40%), the control device 3 ends the paddle rinse step (S7 in FIG. 9). It shifts to the substitution process (S8 in FIG. 9).
 一方、計測湿度が、閾値湿度(たとえば、約30%~40%の範囲の所定濃度)よりも高い場合には、図14の処理がリターンされ、この処理が繰り返し実行(ループ)される。すなわち、計測湿度が閾値湿度(たとえば、約30%~40%の範囲の所定濃度)に下がるまで置換工程(図9のS8)には移行せず、パドルリンス工程(図9のS7)が継続される。 On the other hand, if the measured humidity is higher than the threshold humidity (for example, a predetermined concentration in the range of about 30% to 40%), the process of FIG. 14 is returned, and this process is repeatedly performed (looped). That is, the paddle rinse step (S7 in FIG. 9) continues without shifting to the replacement step (S8 in FIG. 9) until the measured humidity decreases to the threshold humidity (for example, a predetermined concentration in the range of about 30% to 40%). Be done.
 この変形処理例では、湿度計測工程で計測された湿度が所定の湿度よりも低い場合のみ、置換工程(図9のS8)が実行される。基板Wの上面に存在する有機溶剤に水が混じっていない状態で置換工程(図9のS8)以降の処理が実行されるので、パターン倒壊を抑制または防止できる。
<その他の変形処理例>
 また、第1および第2の実施形態において、乾燥工程(図9のS9)において液塊排除工程を実行せずに、スピンドライ工程のみで、基板の上面から有機溶剤を排除(乾燥)するようにしてもよい。この場合、スピンモータMのみが、有機溶剤排除ユニットに相当する。この場合、置換工程(図9のS8)において有機溶剤の液膜が必ずしもパドル状を呈している必要がないから、置換工程(図9のS8)におけて液処理速度と同等の回転速度で基板Wを回転させることもでき、この場合には、パドルリンス工程(図9のS7)を省略してもよい。
<第3の実施形態>
 図17は、この発明の第3の実施形態に係る基板処理装置301を上から見た模式図である。図18は、基板処理装置301に備えられた複数の処理ユニット302の内部を水平方向に見た模式図である。
In this deformation processing example, the replacement step (S8 in FIG. 9) is performed only when the humidity measured in the humidity measurement step is lower than a predetermined humidity. Since the processing after the replacement step (S8 in FIG. 9) is performed in a state where water is not mixed with the organic solvent present on the upper surface of the substrate W, pattern collapse can be suppressed or prevented.
<Other deformation processing example>
In the first and second embodiments, the organic solvent is excluded (dried) from the upper surface of the substrate only in the spin dry step without executing the liquid mass exclusion step in the drying step (S9 in FIG. 9). You may In this case, only the spin motor M corresponds to the organic solvent removal unit. In this case, since the liquid film of the organic solvent does not necessarily have a paddle shape in the substitution step (S8 in FIG. 9), the rotational speed is the same as the liquid processing speed in the substitution step (S8 in FIG. 9). The substrate W can also be rotated, and in this case, the paddle rinse step (S7 in FIG. 9) may be omitted.
Third Embodiment
FIG. 17 is a schematic view of a substrate processing apparatus 301 according to a third embodiment of the present invention as viewed from above. FIG. 18 is a schematic view of the interior of the plurality of processing units 302 provided in the substrate processing apparatus 301 as viewed in the horizontal direction.
 第3の実施形態において、前述の第1の実施形態と共通する部分には、図1~図14の場合と同一の参照符号を付し説明を省略する。 In the third embodiment, the same reference numerals as those in FIGS. 1 to 14 are added to parts in common with the first embodiment described above, and the descriptions thereof will be omitted.
 第3の実施形態に係る基板処理装置301が、第1の実施形態に係る基板処理装置1と相違する点は、TDLAS気体濃度計測ユニットを各処理ユニットに設けるのではなく、複数の処理ユニット302のチャンバ4内の気体の濃度を、TDLAS気体濃度計測ユニット311で計測するようにした点である。すなわち、TDLAS気体濃度計測ユニット311は、複数チャンバ濃度計測部として機能する。 The difference between the substrate processing apparatus 301 according to the third embodiment and the substrate processing apparatus 1 according to the first embodiment is that the TDLAS gas concentration measurement unit is not provided in each processing unit, and a plurality of processing units 302 are provided. The concentration of the gas in the chamber 4 is measured by the TDLAS gas concentration measurement unit 311. That is, the TDLAS gas concentration measurement unit 311 functions as a multiple chamber concentration measurement unit.
 処理ユニット302は、TDLAS気体濃度計測ユニット11(図2参照)を備えていない点を除いて、処理ユニット2と同等の構成である。図18では、処理ユニット302の詳細な構成の図示は省略している。 The processing unit 302 has the same configuration as the processing unit 2 except that the processing unit 302 is not provided with the TDLAS gas concentration measurement unit 11 (see FIG. 2). In FIG. 18, the detailed configuration of the processing unit 302 is not shown.
 TDLAS気体濃度計測ユニット311は、発光部381と、受光部382と、TDLAS気体濃度計測部383とを含む。図18には、1つのTDLAS気体濃度計測ユニット311の計測対象となる処理ユニット302の個数が、たとえば2つである場合を示している。 The TDLAS gas concentration measurement unit 311 includes a light emitting unit 381, a light receiving unit 382, and a TDLAS gas concentration measurement unit 383. FIG. 18 shows a case where the number of processing units 302 to be measured by one TDLAS gas concentration measuring unit 311 is two, for example.
 発光部381は、各処理ユニット302のチャンバ外に配置された発光ダイオード(第1のおよび第2の発光ダイオードLD1,LD2)と、各処理ユニット302のチャンバ4内に配置された発光窓(第1の窓)84と、発光ダイオードからの光を発光窓84に導く導光ケーブル385とを含む。発光ダイオードを有するユニットの個数は、処理ユニット302の個数に関係なく1つのみである。導光ケーブル385は、先端側が分岐して、各処理ユニット302内の発光窓84に接続されている。すなわち、導光ケーブル385は、複数の発光窓84と第1のおよび第2の発光ダイオードLD1,LD2とを接続している。導光ケーブル385の先端側が分岐している点を除いて、導光ケーブル385は導光ケーブル85(図2等参照)と同等の構成である。 The light emitting unit 381 includes light emitting diodes (first and second light emitting diodes LD1 and LD2) disposed outside the chamber of each processing unit 302, and light emitting windows (the first and second light emitting diodes disposed in the chamber 4 of each processing unit 302). 1) window 84 and a light guiding cable 385 for guiding the light from the light emitting diode to the light emitting window 84. The number of units having light emitting diodes is only one regardless of the number of processing units 302. The light guide cable 385 is branched at the tip end side and connected to the light emission window 84 in each processing unit 302. That is, the light guiding cable 385 connects the plurality of light emitting windows 84 to the first and second light emitting diodes LD1 and LD2. The light guide cable 385 has the same configuration as the light guide cable 85 (see FIG. 2 and the like) except that the front end side of the light guide cable 385 is branched.
 受光部382は、各処理ユニット302に設けられている。受光部382は、受光部82と同等の構成である。受光部382は、チャンバ4内に配置された受光窓87と、発光ダイオードから発せられ受光窓87に入る光を受ける受光ダイオードPDとを含む。 The light receiving unit 382 is provided in each processing unit 302. The light receiving unit 382 has the same configuration as the light receiving unit 82. The light receiving unit 382 includes a light receiving window 87 disposed in the chamber 4 and a light receiving diode PD that receives light emitted from the light emitting diode and entering the light receiving window 87.
 図18の左側に示す処理ユニット302を第1の処理ユニット302Aとし、図19の右側に示す処理ユニット302を第2の処理ユニット302Bとする。このとき、第1の処理ユニット302Aの受光ダイオードPDを第1の受光ダイオードPD1とし、第2の処理ユニット302Bの受光ダイオードPDを第2の受光ダイオードPD2とする。このとき、第1のおよび第2の発光ダイオードLD1,LD2を発光させることにより、第1の処理ユニット302Aのチャンバ(第1のチャンバ)4内に、発光窓84と受光窓87とを結ぶ光路(第3の光路)89が形成され、かつ第2の処理ユニット302Bのチャンバ(第2のチャンバ)4内に、発光窓84と受光窓87とを結ぶ光路(第4の光路)89が形成される。 The processing unit 302 shown on the left side of FIG. 18 is a first processing unit 302A, and the processing unit 302 shown on the right side of FIG. 19 is a second processing unit 302B. At this time, the light receiving diode PD of the first processing unit 302A is a first light receiving diode PD1, and the light receiving diode PD of a second processing unit 302B is a second light receiving diode PD2. At this time, by causing the first and second light emitting diodes LD1 and LD2 to emit light, an optical path connecting the light emitting window 84 and the light receiving window 87 in the chamber (first chamber) 4 of the first processing unit 302A. A third optical path 89 is formed, and an optical path (fourth optical path) 89 connecting the light emitting window 84 and the light receiving window 87 is formed in the chamber (second chamber) 4 of the second processing unit 302B. Be done.
 TDLAS気体濃度計測部383は、各処理ユニット302に設けられた受光部382の受光ダイオードPDで検出された波形(吸収信号波形)に基づいて、各処理ユニット302のチャンバ4内の気体の濃度(各光路89(第3および第4の光路)の周囲の雰囲気に含まれる気体の濃度)を計測する。TDLAS気体濃度計測部383の計測対象が複数の処理ユニット302に跨る点を除いて、TDLAS気体濃度計測部383は第1の実施形態に係るTDLAS気体濃度計測部83と同等の構成である。 The TDLAS gas concentration measurement unit 383 determines the concentration of the gas in the chamber 4 of each processing unit 302 based on the waveform (absorption signal waveform) detected by the light receiving diode PD of the light receiving unit 382 provided in each processing unit 302. The concentration of gas contained in the atmosphere around each light path 89 (third and fourth light paths) is measured. The TDLAS gas concentration measurement unit 383 has the same configuration as the TDLAS gas concentration measurement unit 83 according to the first embodiment, except that the measurement target of the TDLAS gas concentration measurement unit 383 straddles the plurality of processing units 302.
 第3の実施形態においても、第1の実施形態で述べた作用効果と同等の作用効果に加えて、下記の作用効果を奏する。 Also in the third embodiment, in addition to the same effects as the effects described in the first embodiment, the following effects can be obtained.
 すなわち、この実施形態では、1つのTDLAS気体濃度計測ユニット311を用いて複数の処理ユニット302のチャンバ4の各々において、当該チャンバ4内の雰囲気の気体の濃度を計測できる。これにより、TDLAS気体濃度計測ユニットを処理ユニットごとに設ける場合と比較して、発光ダイオードのユニット個数およびTDLAS気体濃度計測部383の個数を削減することができ、コストダウンを図ることができる。 That is, in this embodiment, the concentration of the gas in the atmosphere in the chamber 4 can be measured in each of the chambers 4 of the plurality of processing units 302 using one TDLAS gas concentration measurement unit 311. As a result, the number of light emitting diode units and the number of TDLAS gas concentration measurement units 383 can be reduced as compared to the case where the TDLAS gas concentration measurement unit is provided for each processing unit, and cost reduction can be achieved.
 1つのTDLAS気体濃度計測ユニット311の計測対象となる処理ユニット302の個数が3以上であってもよいのはむろんのことである。すなわち、複数気体濃度計測部が、2としたが、3以上であってもよい。
<変形例>
 以上、この発明の3つの実施形態について説明したが、この発明は他の形態で実施することもできる。
It goes without saying that the number of processing units 302 to be measured by one TDLAS gas concentration measuring unit 311 may be three or more. That is, although the plural gas concentration measurement unit is two, it may be three or more.
<Modification>
As mentioned above, although three embodiment of this invention was described, this invention can also be implemented with another form.
 たとえば、図19に示す発光部81Aのように、第1のおよび第2の発光ダイオードLD1,LD2と発光窓(第2の窓)84との間に導光ケーブル85,385(図2、図18参照)が介在しておらず、第1のおよび第2の発光ダイオードLD1,LD2から発せられた光が直接発光窓84に入光してもよい。この場合、第1のおよび第2の発光ダイオードLD1,LD2が、チャンバ4内に配置されることになる。 For example, as in a light emitting unit 81A shown in FIG. 19, light guiding cables 85 and 385 are interposed between the first and second light emitting diodes LD1 and LD2 and the light emitting window (second window) 84 (FIGS. 2 and 18). The light emitted from the first and second light emitting diodes LD1 and LD2 may directly enter the light emitting window 84 without interposing the reference. In this case, the first and second light emitting diodes LD1 and LD2 are disposed in the chamber 4.
 また、図19において二点鎖線で示すように、発光窓84に対し受光側に、発光窓84を開閉するためのシャッタ401が設けられていてもよい。また、受光窓87に対し発光側に、受光窓87を開閉するためのシャッタ402が設けられていてもよい。シャッタ401,402は、第1のおよび第2の発光ダイオードLD1,LD2から光が発せられる場合(すなわち、TDLAS気体濃度計測ユニットを用いた濃度計測を行う場合)だけ開状態となり、それ以外の状態では、閉状態とされている。シャッタ401,402の双方が設けられていてもよいし、シャッタ401,402の一方のみが設けられていてもよい。この場合、計測のために必要なときだけ、発光窓84の受光側および/または受光窓87の発光側が開き、それ以外のときには、発光窓84の受光側および/または受光窓87の発光側は閉塞している。そのため、発光窓84および/または受光窓87を清浄な状態に保つことができ、ゆえに、TDLAS気体濃度計測ユニットを用いた濃度計測の精度を向上させることができる。 In addition, as indicated by a two-dot chain line in FIG. 19, a shutter 401 for opening and closing the light emitting window 84 may be provided on the light receiving side with respect to the light emitting window 84. In addition, a shutter 402 for opening and closing the light receiving window 87 may be provided on the light emitting side with respect to the light receiving window 87. The shutters 401 and 402 are opened only when light is emitted from the first and second light emitting diodes LD1 and LD2 (ie, when performing concentration measurement using the TDLAS gas concentration measurement unit), and other states Then, it is closed. Both the shutters 401 and 402 may be provided, or only one of the shutters 401 and 402 may be provided. In this case, the light receiving side of the light emitting window 84 and / or the light emitting side of the light receiving window 87 are opened only when it is necessary for measurement, and the light receiving side of the light emitting window 84 and / or the light emitting side of the light receiving window 87 is otherwise It is closed. Therefore, the light emission window 84 and / or the light reception window 87 can be kept clean, and therefore, the accuracy of concentration measurement using the TDLAS gas concentration measurement unit can be improved.
 また、図20に示すように、発光部および受光部が反射型であってもよい。すなわち、発光窓84(発光部81)と受光窓87(受光部82,382)との間に鏡403が配置されていてもよい。この場合、発光窓84(発光部81)と受光窓87(受光部82,382)を、図20に示すように、回転軸線A1に対し、同一の側に集約して配置することも可能である。この場合、図3に示す第1の実施形態の場合と比較して、光路89の距離を2倍稼ぐことができ、これにより、より一層高精度な計測が可能になる。 Further, as shown in FIG. 20, the light emitting unit and the light receiving unit may be of a reflective type. That is, the mirror 403 may be disposed between the light emitting window 84 (the light emitting unit 81) and the light receiving window 87 (the light receiving units 82 and 382). In this case, it is possible to arrange the light emission window 84 (light emission unit 81) and the light reception window 87 (light reception units 82 and 382) on the same side with respect to the rotation axis A1, as shown in FIG. is there. In this case, as compared with the case of the first embodiment shown in FIG. 3, the distance of the optical path 89 can be doubled, which enables more accurate measurement.
 また、前述の各実施形態では、発光部81(発光窓84、導光ケーブル85および第1のカバー86)や、受光部82,382(受光窓84、第2のカバー88および受光ダイオードPD)が、専用の保持器でなく、ガードに支持されていてもよい。 In each of the embodiments described above, the light emitting unit 81 (the light emitting window 84, the light guiding cable 85, and the first cover 86) and the light receiving units 82 and 382 (the light receiving window 84, the second cover 88 and the light receiving diode PD) Instead of a dedicated retainer, it may be supported by a guard.
 この一例として、図21には、全てのガード64,65,66の内周端部64a,65a,66aに第1のおよび第2の発光ダイオードLD1,LD2および受光ダイオードPDを埋設している。そして、第1のおよび第2の発光ダイオードLD1,LD2および受光ダイオードPDが、スピンチャック5および上方空間SPを挟んで、互いに横方向に対向するように配置されている。しかし、第1~第3のガード64,65,66の全てがに埋設されている必要はなく、そのうちの少なくとも1つの内周端部64a,65a,66aに埋設されていればよい(少なくとも最も外側の第3のガード66に埋設されていることが望ましい)。また、導光ケーブル85,385が第1~第3のガード64~66に埋設され、第1~第3のガード64~66の内周端部64a,65a,66aから、導光ケーブル85,385の先端面と受光ダイオードPDとが、互いに横方向に対向していてもよい。 As an example of this, in FIG. 21, the first and second light emitting diodes LD1, LD2 and the light receiving diode PD are embedded in the inner peripheral end portions 64a, 65a, 66a of all the guards 64, 65, 66. The first and second light emitting diodes LD1 and LD2 and the light receiving diode PD are disposed to face each other in the lateral direction across the spin chuck 5 and the upper space SP. However, it is not necessary for all of the first to third guards 64, 65, 66 to be embedded in at least one of the inner peripheral end 64a, 65a, 66a thereof (at least the most. It is desirable to be embedded in the outer third guard 66). Also, the light guide cables 85 and 385 are embedded in the first to third guards 64 to 66, and the inner peripheral end portions 64a, 65a and 66a of the first to third guards 64 to 66 The front end surface and the light receiving diode PD may face each other in the lateral direction.
 また、発光部81および受光部82,382をガードに設ける場合、最も外側のガードの昇降軸から上方に拡張するように支持部を設け、その支持部に、発光部81および受光部82,382を支持させるようにしてもよい。 When the light emitter 81 and the light receivers 82 and 382 are provided on the guard, a support is provided to extend upward from the elevating shaft of the outermost guard, and the light emitter 81 and the light receivers 82 and 382 are provided in the support. May be supported.
 また、前述の各実施形態では、TDLAS気体濃度計測ユニット11,311の計測対象を、アンモニアおよび水の合計2種類の気体とする場合を例に挙げて説明したが、1種類の気体を計測対象としても良いし、3種類以上であってもよい。TDLAS気体濃度計測ユニット11,311によって計測可能な気体として、HF、HCL、HF、CO2、CO、H2S、CH4、HCN等を例示できる。たとえばHFの吸収体の波長は約1.3μmである。 Moreover, in the above-mentioned each embodiment, although the case where the measurement object of TDLAS gas concentration measurement unit 11 and 311 was made into gas of a total of two types, ammonia and water, was mentioned as an example and demonstrated, one type of gas is measurement object It may be three or more types. Examples of gases that can be measured by the TDLAS gas concentration measurement unit 11, 311 include HF, HCL, HF, CO2, CO, H2S, CH4, HCN and the like. For example, the wavelength of the absorber of HF is about 1.3 μm.
 計測対象の気体が1種類である場合には、1つの発光部に含まれるLEDの個数は1つで足りる。計測対象の気体が複数である場合には、少なくともその種類に応じた個数のLEDが、1つの発光部に含まれる。 When the gas to be measured is one type, the number of LEDs included in one light emitting unit may be one. When there are a plurality of gases to be measured, at least the number of LEDs corresponding to the type is included in one light emitting unit.
 なお、前述の各実施形態において、薬液(第1および第2の薬液)として、それぞれ、SC1およびSC2を例に挙げて説明したが、薬液は、たとえば、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、および腐食防止剤の少なくとも1つを含む液であってもよい。 In each of the embodiments described above, SC1 and SC2 have been described as the chemical solutions (first and second chemical solutions) by way of example, but the chemical solutions include, for example, sulfuric acid, acetic acid, nitric acid, hydrochloric acid, and hydrofluoric acid. A solution containing at least one of ammonia water, hydrogen peroxide solution, organic acid (eg citric acid, oxalic acid etc.), organic alkali (eg TMAH: tetramethyl ammonium hydroxide etc.), surfactant, and corrosion inhibitor It may be
 さらには、処理カップ10が3段のカップである場合を例に挙げて説明したが、処理カップ10は、単カップであってもよいし、2段のカップであってもよいし、4段以上の多段カップであってもよい。 Furthermore, although the case where the processing cup 10 is a three-stage cup has been described as an example, the processing cup 10 may be a single cup or may be a two-stage cup, or four stages The above multistage cup may be used.
 また、前述の実施形態において、基板処理装置1が半導体ウエハからなる基板Wの表面を処理する装置である場合について説明したが、基板処理装置が、液晶表示装置用基板、有機EL(electrolumineScence)表示装置などのFPD(Flat Panel DiSplay)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板を処理する装置であってもよい。 In the above embodiment, although the case where the substrate processing apparatus 1 processes the surface of the substrate W made of a semiconductor wafer has been described, the substrate processing apparatus is a substrate for liquid crystal display device, organic EL (electroluminescence Scence) display Equipment for processing substrates such as FPD (Flat Panel DiSplay) substrates for optical devices, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, substrates for photomasks, ceramic substrates, substrates for solar cells, etc. Good.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used for clarifying the technical contents of the present invention, and the present invention is construed as being limited to these specific examples. It is not to be construed that the scope of the present invention is limited only by the appended claims.
 この出願は、2017年11月28日に日本国特許庁に提出された特願2017-228040号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2017-228040 filed with the Japanese Patent Office on November 28, 2017, and the entire disclosure of this application is incorporated herein by reference.
1   :基板処理装置
3   :制御装置
4   :チャンバ
5   :スピンチャック(基板保持ユニット)
52  :第1のノズル配管(表面張力液体供給ユニット)
53  :第2のノズル配管(表面張力液体排除ユニット)
81   :発光部
81A  :発光部
82   :受光部
83   :TDLAS気体濃度計測部
84   :発光窓(第1の窓、第2の窓)
87   :受光窓(第2の窓)
89   :光路
301  :基板処理装置
302  :処理ユニット
311  :TDLAS気体濃度計測ユニット
381  :発光部
382  :受光部
383  :TDLAS気体濃度計測部
401  :シャッタ
402  :シャッタ
A1   :回転軸線
LD1  :第1の発光ダイオード
LD2  :第2の発光ダイオード
M    :スピンモータ(表面張力液体排除ユニット)
PD   :受光ダイオード
PD1  :第1の受光ダイオード
PD2  :第2の受光ダイオード
W    :基板
1: Substrate processing apparatus 3: Controller 4: Chamber 5: Spin chuck (substrate holding unit)
52: First nozzle piping (surface tension liquid supply unit)
53: Second nozzle piping (surface tension liquid elimination unit)
81: Light emitting unit 81A: Light emitting unit 82: Light receiving unit 83: TDLAS gas concentration measuring unit 84: Light emitting window (first window, second window)
87: Light receiving window (second window)
89: light path 301: substrate processing apparatus 302: processing unit 311: TDLAS gas concentration measuring unit 381: light emitting unit 382: light receiving unit 383: TDLAS gas concentration measuring unit 401: shutter 402: shutter A1: rotation axis LD1: first light emission Diode LD2: Second light emitting diode M: Spin motor (surface tension liquid exclusion unit)
PD: light receiving diode PD1: first light receiving diode PD2: second light receiving diode W: substrate

Claims (17)

  1.  チャンバと、
     前記チャンバ内に収容され、基板を保持するための基板保持ユニットと、
     発光ダイオードを有する発光部と、前記発光ダイオードからの光を受ける受光ダイオードを有する受光部と、前記発光ダイオードと前記受光ダイオードとの間に形成される光路であって、前記チャンバ内の所定領域を通過するように配置された前記光路の周囲の雰囲気に含まれる所定の種類の気体の濃度をTDLAS方式で計測するTDLAS気体濃度計測部とを有するTDLAS気体濃度計測ユニットとを含む、基板処理装置。
    A chamber,
    A substrate holding unit housed in the chamber for holding a substrate;
    A light path formed between the light emitting diode and the light receiving diode, and a light receiving portion having a light emitting diode, a light receiving portion having a light receiving diode for receiving light from the light emitting diode, and a predetermined region in the chamber A substrate processing apparatus, comprising: a TDLAS gas concentration measurement unit having a TDLAS gas concentration measurement unit configured to measure the concentration of a predetermined type of gas contained in an atmosphere around the light path arranged to pass by the TDLAS method.
  2.  前記所定領域が、前記基板保持ユニットに保持されている基板の上面の上方の上方空間に設けられている、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the predetermined area is provided in an upper space above the upper surface of the substrate held by the substrate holding unit.
  3.  前記基板保持ユニットの周囲を取り囲む筒状のガードをさらに含み、前記発光部および前記受光部が、前記チャンバ内において前記ガードの外側に配置されていて、
     前記ガードには、前記発光ダイオードの発光波長が透過可能な材質を用いて形成された透過窓であって、前記光路が通過する透過窓が形成されている、請求項2に記載の基板処理装置。
    The light emitting unit and the light receiving unit are disposed outside the guard in the chamber, and further including a cylindrical guard surrounding the periphery of the substrate holding unit.
    The substrate processing apparatus according to claim 2, wherein the guard is a transmission window formed using a material capable of transmitting the light emission wavelength of the light emitting diode, wherein the transmission window through which the optical path passes is formed. .
  4.  前記ガードを、前記基板の周縁部から飛散する処理液を捕獲可能な上位置と、前記上位置よりも下方に設定された下位置であって、前記基板の周縁部の側方から下方に退避した下位置との間で、前記基板保持ユニットに対して昇降させるガード昇降ユニットをさらに含み、
     前記ガードが前記上位置に位置する場合に、前記光路が前記透過窓を透過する、請求項3に記載の基板処理装置。
    The guard is retracted downward from the side of the peripheral portion of the substrate at an upper position capable of capturing the processing liquid scattering from the peripheral portion of the substrate and a lower position set below the upper position. A guard lift unit for raising and lowering the substrate holding unit between the lower position and the lower position;
    The substrate processing apparatus according to claim 3, wherein the light path passes through the transmission window when the guard is at the upper position.
  5.  前記基板保持ユニットの周囲を取り囲む筒状のガードをさらに含み、
     前記発光部および前記受光部が前記ガードに支持されている、請求項2に記載の基板処理装置。
    And a cylindrical guard surrounding the substrate holding unit.
    The substrate processing apparatus according to claim 2, wherein the light emitting unit and the light receiving unit are supported by the guard.
  6.  前記発光部および前記受光部が、前記ガードの内周端部に埋設されている、請求項5に記載の基板処理装置。 The substrate processing apparatus according to claim 5, wherein the light emitting unit and the light receiving unit are embedded in an inner peripheral end of the guard.
  7.  前記発光部が、第1の発光ダイオードと、前記第1の発光ダイオードとは発光波長の異なる第2の発光ダイオードとを含み、
     前記TDLAS気体濃度計測部が、前記第1の発光ダイオードと前記受光ダイオードとの間に形成される第1の光路の周囲の雰囲気に含まれる第1の種類の気体の濃度をTDLAS方式で計測し、かつ前記第2の発光ダイオードと前記受光ダイオードとの間に形成される第2の光路の周囲の雰囲気に含まれる第2の種類の気体の濃度をTDLAS方式で計測する複数気体濃度計測部を含む、請求項1~6のいずれか一項に記載の基板処理装置。
    The light emitting unit includes a first light emitting diode, and a second light emitting diode having a different light emission wavelength from the first light emitting diode.
    The TDLAS gas concentration measurement unit measures the concentration of the first type of gas contained in the atmosphere around the first light path formed between the first light emitting diode and the light receiving diode using the TDLAS method. And a plurality of gas concentration measurement units configured to measure the concentration of the second type of gas contained in the atmosphere around the second light path formed between the second light emitting diode and the light receiving diode using the TDLAS method. The substrate processing apparatus according to any one of claims 1 to 6, comprising.
  8.  前記チャンバが、互いに異なる第1のチャンバおよび第2のチャンバを含み、
     前記受光部が、前記第1のチャンバに配置された第1の受光ダイオードと、前記第2のチャンバに配置された第2の受光ダイオードとを含み、
     前記TDLAS気体濃度計測部が、前記発光ダイオードと前記第1の受光ダイオードとの間に形成される第3の光路であって、前記第1のチャンバの内部空間を通過するように配置された第3の光路の周囲の雰囲気に含まれる所定気体の濃度をTDLAS方式で計測し、かつ前記発光ダイオードと前記第2の受光ダイオードとの間に形成される第4の光路であって、前記第2のチャンバの内部空間を通過するように配置された第4の光路の周囲の雰囲気に含まれる所定気体の濃度をTDLAS方式で計測する複数チャンバ濃度計測部を含む、請求項1~6のいずれか一項に記載の基板処理装置。
    The chambers include first and second chambers different from each other,
    The light receiving unit includes a first light receiving diode disposed in the first chamber and a second light receiving diode disposed in the second chamber;
    The TDLAS gas concentration measurement unit is a third optical path formed between the light emitting diode and the first light receiving diode, and is disposed so as to pass through the internal space of the first chamber A fourth optical path formed between the light emitting diode and the second light receiving diode by measuring the concentration of a predetermined gas contained in the atmosphere around the third optical path according to the TDLAS method; 7. A multi-chamber concentration measurement unit for measuring the concentration of a predetermined gas contained in the atmosphere around the fourth light path arranged to pass through the inner space of the chamber according to the TDLAS method. The substrate processing apparatus according to one aspect.
  9.  前記発光ダイオードが、前記チャンバ外に配置されており、
     前記発光部が、前記チャンバ内に配置された第1の窓と、前記発光ダイオードからの光を前記第1の窓に導く導光ケーブルとをさらに有する、請求項1~6のいずれか一項に記載の基板処理装置。
    The light emitting diode is disposed outside the chamber,
    The light emitting unit according to any one of claims 1 to 6, further comprising: a first window disposed in the chamber; and a light guiding cable for guiding light from the light emitting diode to the first window. The substrate processing apparatus as described.
  10.  前記受光部および前記発光部の少なくとも一方に設けられ、当該一方よりも他方側に配置された第2の窓を少なくとも有しており、
     前記受光部および前記発光部の少なくとも前記一方に配置され、前記第2の窓に対して前記他方側の領域を開閉するシャッタをさらに含む、請求項1~6のいずれか一項に記載の基板処理装置。
    It has at least a second window provided on at least one of the light receiving unit and the light emitting unit and disposed on the other side of the one,
    The substrate according to any one of claims 1 to 6, further comprising a shutter disposed on at least one of the light receiving unit and the light emitting unit and opening and closing an area on the other side with respect to the second window. Processing unit.
  11.  前記基板の上面の着液位置に向けて処理液を吐出するノズルをさらに含み、
     前記光路が、平面視で、前記基板の上面における処理液の着液位置を回避した位置に配置されている、請求項1~6のいずれか一項に記載の基板処理装置。
    The plasma processing apparatus further includes a nozzle for discharging the processing liquid toward the liquid deposition position on the upper surface of the substrate,
    The substrate processing apparatus according to any one of claims 1 to 6, wherein the optical path is disposed at a position avoiding the landing position of the processing liquid on the upper surface of the substrate in plan view.
  12.  前記発光ダイオードが、アンモニアの吸収帯の波長を発光するように設けられている、請求項1~6のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 6, wherein the light emitting diode is provided to emit a wavelength of an absorption band of ammonia.
  13.  前記発光ダイオードが、水の吸収帯の波長を発光するように設けられている、請求項1~6のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 6, wherein the light emitting diode is provided to emit a wavelength of an absorption band of water.
  14.  前記基板保持ユニットに保持されている基板の上面に、水よりも低い低表面張力を有する低表面張力液体を供給するための低表面張力液体供給ユニットと、
     前記基板の上面に存在している低表面張力液体を前記基板の上面から排除するための低表面張力液体排除ユニットと、
     前記低表面張力液体排除ユニットを制御する制御装置とをさらに含み、
     前記制御装置が、前記TDLAS気体濃度計測ユニットによって、前記基板保持ユニットに保持されている基板の上面に低表面張力液体が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程を実行し、
     前記制御装置が、前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記低表面張力液体排除ユニットにより前記基板の上面から低表面張力液体を排除する低表面張力液体排除工程を実行し、前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体排除工程を実行しない、請求項1~6のいずれか一項に記載の基板処理装置。
    A low surface tension liquid supply unit for supplying a low surface tension liquid having a low surface tension lower than water on the upper surface of the substrate held by the substrate holding unit;
    A low surface tension liquid removal unit for removing low surface tension liquid present on the top surface of the substrate from the top surface of the substrate;
    And a controller for controlling the low surface tension liquid displacement unit.
    The upper surface of the substrate held by the substrate holding unit in a state where the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit by the TDLAS gas concentration measurement unit by the control device. Perform a humidity measurement process to measure the humidity in the upper space above the
    The low surface tension liquid is excluded by the low surface tension liquid exclusion unit from the upper surface of the substrate when the humidity measured in the humidity measurement step is lower than a predetermined humidity. 7. The low surface tension liquid removing step according to any one of claims 1 to 6, wherein the low surface tension liquid removing step is not performed when the step is performed and the humidity measured in the humidity measuring step is higher than the predetermined humidity. Substrate processing equipment.
  15.  前記基板保持ユニットに保持されている基板の上面にリンス液を供給するリンス液供給ユニットと、
     前記基板保持ユニットに保持されている基板の上面に、リンス液よりも低い低表面張力を有する低表面張力液体を供給するための低表面張力液体供給ユニットと、
     前記基板の上面に存在している低表面張力液体を前記基板の上面から排除するための低表面張力液体排除ユニットと、
     前記低表面張力液体排除ユニットを制御する制御装置とをさらに含み、
     前記制御装置が、前記TDLAS気体濃度計測ユニットによって、前記基板保持ユニットに保持されている基板の上面にリンス液が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程を実行し、
     前記制御装置が、前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記低表面張力液体排除ユニットにより前記基板の上面に低表面張力液体を供給する低表面張力液体供給工程を実行し、前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体供給工程を実行しない、請求項1~6のいずれか一項に記載の基板処理装置。
    A rinse liquid supply unit for supplying a rinse liquid to the upper surface of the substrate held by the substrate holding unit;
    A low surface tension liquid supply unit for supplying a low surface tension liquid having a low surface tension lower than that of the rinse liquid on the upper surface of the substrate held by the substrate holding unit;
    A low surface tension liquid removal unit for removing low surface tension liquid present on the top surface of the substrate from the top surface of the substrate;
    And a controller for controlling the low surface tension liquid displacement unit.
    In the state in which the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit by the TDLAS gas concentration measurement unit, the control device is located above the upper surface of the substrate held by the substrate holding unit Perform a humidity measurement process to measure the humidity in the upper space of the
    A low surface tension liquid supply for supplying a low surface tension liquid to the upper surface of the substrate by the low surface tension liquid removing unit when the controller measures that the humidity measured in the humidity measurement step is lower than a predetermined humidity. The process according to any one of claims 1 to 6, wherein the low surface tension liquid supply process is not performed when the process is performed and the humidity measured in the humidity measurement process is higher than the predetermined humidity. Substrate processing equipment.
  16.  基板保持ユニットに保持されている基板の上面に低表面張力液体が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程と、
     前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記基板の上面から低表面張力液体を排除する低表面張力液体排除工程とを含み、
     前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体排除工程を実行しない、基板処理方法。
    Measuring the humidity in the upper space above the upper surface of the substrate held by the substrate holding unit in a state in which the low surface tension liquid is present on the upper surface of the substrate held by the substrate holding unit; ,
    A low surface tension liquid removing step of removing a low surface tension liquid from the upper surface of the substrate when the humidity measured in the humidity measuring step is lower than a predetermined humidity;
    The substrate processing method, wherein the low surface tension liquid removing step is not performed when the humidity measured in the humidity measuring step is higher than the predetermined humidity.
  17.  基板保持ユニットに保持されている基板の上面にリンス液が存在している状態において、前記基板保持ユニットに保持されている基板の上面の上方の上方空間における湿度を計測する湿度計測工程と、
     前記湿度計測工程で計測された前記湿度が所定の湿度よりも低い場合に、前記基板の上面に低表面張力液体を供給する低表面張力液体供給工程とを含み、
     前記湿度計測工程で計測された前記湿度が前記所定の湿度よりも高い場合に、前記低表面張力液体供給工程を実行しない、基板処理方法。
    A humidity measuring step of measuring humidity in an upper space above the upper surface of the substrate held by the substrate holding unit in a state in which the rinse liquid is present on the upper surface of the substrate held by the substrate holding unit;
    And a low surface tension liquid supply step of supplying a low surface tension liquid to the upper surface of the substrate when the humidity measured in the humidity measurement step is lower than a predetermined humidity.
    The substrate processing method, wherein the low surface tension liquid supply process is not performed when the humidity measured in the humidity measurement process is higher than the predetermined humidity.
PCT/JP2018/040409 2017-11-28 2018-10-30 Substrate processing device and substrate processing method WO2019107048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017228040A JP6894830B2 (en) 2017-11-28 2017-11-28 Substrate processing equipment and substrate processing method
JP2017-228040 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107048A1 true WO2019107048A1 (en) 2019-06-06

Family

ID=66664831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040409 WO2019107048A1 (en) 2017-11-28 2018-10-30 Substrate processing device and substrate processing method

Country Status (3)

Country Link
JP (1) JP6894830B2 (en)
TW (1) TWI686891B (en)
WO (1) WO2019107048A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497262B2 (en) * 2020-09-24 2024-06-10 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE POSITION ADJUSTING METHOD
JP2022175030A (en) * 2021-05-12 2022-11-25 東京エレクトロン株式会社 Device for processing substrate, and method for measuring temperature and concentration of processing gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123712A1 (en) * 2006-06-15 2008-05-29 Spectrasensors, Inc. Measuring water vapor in high purity gases
JP2009200193A (en) * 2008-02-21 2009-09-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2017157800A (en) * 2016-03-04 2017-09-07 東京エレクトロン株式会社 Liquid-processing method, substrate processing device, and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123712A1 (en) * 2006-06-15 2008-05-29 Spectrasensors, Inc. Measuring water vapor in high purity gases
JP2009200193A (en) * 2008-02-21 2009-09-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2017157800A (en) * 2016-03-04 2017-09-07 東京エレクトロン株式会社 Liquid-processing method, substrate processing device, and storage medium

Also Published As

Publication number Publication date
JP2019102482A (en) 2019-06-24
JP6894830B2 (en) 2021-06-30
TW201926508A (en) 2019-07-01
TWI686891B (en) 2020-03-01

Similar Documents

Publication Publication Date Title
JP6057334B2 (en) Substrate processing equipment
US10115610B2 (en) Substrate processing apparatus
US10276407B2 (en) Substrate processing apparatus and substrate processing method
TWI618114B (en) Substrate processing apparatus and substrate processing method
WO2019107048A1 (en) Substrate processing device and substrate processing method
WO2015093226A1 (en) Substrate processing apparatus, control method for substrate processing apparatus, and recording medium
JP2017183552A (en) Wafer processing apparatus
WO2018037982A1 (en) Substrate processing device and substrate processing method
JP2020203314A (en) Substrate treating method and substrate treating apparatus
JP7042704B2 (en) Board processing equipment and board processing method
JP2009267101A (en) Substrate-treating device
JP5155035B2 (en) Substrate processing apparatus and substrate processing method
US10882080B2 (en) Substrate processing apparatus and method of processing substrate
JP6429314B2 (en) Substrate processing system
JP6016096B2 (en) Substrate processing equipment
JP6499472B2 (en) Substrate processing apparatus and substrate processing method
KR20070063648A (en) Brush sesning apparatus for wafer cleaning apparatus and brush sesning method the same
JP2006286833A (en) Substrate processing apparatus
JP7379141B2 (en) Substrate holding device, substrate processing method
KR20100030341A (en) Single wafer type cleaning apparatus
JP2013157353A (en) Device and method for processing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882960

Country of ref document: EP

Kind code of ref document: A1