WO2019107001A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2019107001A1
WO2019107001A1 PCT/JP2018/039000 JP2018039000W WO2019107001A1 WO 2019107001 A1 WO2019107001 A1 WO 2019107001A1 JP 2018039000 W JP2018039000 W JP 2018039000W WO 2019107001 A1 WO2019107001 A1 WO 2019107001A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
convex portion
storage material
material container
heat exchanger
Prior art date
Application number
PCT/JP2018/039000
Other languages
French (fr)
Japanese (ja)
Inventor
森本 正和
西村 健
河地 典秀
聡也 長沢
中村 友彦
一雄 亀井
直人 後藤
佑輔 鬼頭
駿 丹野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018190748A external-priority patent/JP2019099137A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019107001A1 publication Critical patent/WO2019107001A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a heat exchanger that cools air by heat exchange with a refrigerant.
  • Examples of a heat exchanger that cools air by heat exchange with a refrigerant include an evaporator used as part of a refrigeration cycle. In the evaporator, the air is cooled by heat exchange between a refrigerant that evaporates to lower the temperature inside the tube and air that passes through the outside of the tube.
  • the cold storage material container is a container in which a cold storage material such as paraffin is contained, and is disposed in a state of being in contact with a tube through which the refrigerant passes in the heat exchanger.
  • the temperature of the tube or the like is kept low for a while even after the circulation of the refrigerant is stopped. Therefore, when such a heat exchanger is mounted on a vehicle air conditioner, it is possible to continuously blow low temperature air into the vehicle compartment even in the idle stop state.
  • a plurality of ribs are formed on the surface of the cold storage material container, and the tips of the respective ribs are joined to the surface of the tube.
  • a clearance space is formed between the cold storage material container and the tube (that is, around the rib). Condensed water generated on the surface of the cold storage material container is discharged to the outside through this gap space.
  • two tubes are arrange
  • the cool storage material container disposed at a position adjacent to each of the two tubes is further formed with a central convex portion (shutoff portion) which enters into a portion between the two tubes.
  • a central convex portion shutoff portion
  • the side surface of the central convex portion is in contact with each of the two tubes. Further, the tip of the central convex portion is in a state of being in contact with a fin provided on the opposite side across the tube.
  • An object of the present disclosure is to provide a heat exchanger with high drainage performance while having a configuration in which a central convex portion is formed in a cold storage material container.
  • a heat exchanger is a heat exchanger that cools air by heat exchange with a refrigerant, and a tube through which the refrigerant passes, a fin disposed adjacent to the tube, and a fin opposite to the tube And a regenerator material container, which is disposed adjacent to the tube at the side position and stores the regenerator material inside.
  • the tubes have a first tube and a second tube arranged so as to line up in the direction in which the air passes.
  • the cold storage material container is formed with a plurality of ribs projecting toward the tube and a central convex portion projecting toward a portion between the first tube and the second tube.
  • a gap is formed between the central convex portion and the first tube, between the central convex portion and the second tube, and between the central convex portion and the fin.
  • the heat exchanger having such a configuration gaps are formed between the central convex portion and the first tube, between the central convex portion and the second tube, and between the central convex portion and the fins.
  • the central convex portion of the cold storage material container is formed to be in the closed state. Air passing through the heat exchanger can flow in the vicinity of the cold storage material container through the respective gaps. As a result, the condensed water generated on the surface of the cold storage material container is easily discharged to the outside by the flow of air as described above. As described above, in the heat exchanger of the above configuration, the flow of air is not impeded by the central convex portion of the cold storage material container, so that the drainage performance can be sufficiently ensured.
  • FIG. 1 is a view showing an entire configuration of a heat exchanger according to the first embodiment.
  • FIG. 2 is a view showing a part of the II-II cross section of FIG.
  • FIG. 3 is a view showing the configuration of a cold storage material container provided in the heat exchanger of FIG.
  • FIG. 4 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the second embodiment.
  • FIG. 5 is a view showing the configuration of the heat exchanger according to the third embodiment.
  • FIG. 6 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the fourth embodiment.
  • FIG. 7 is a figure which shows the structure of a cool storage material container with which the heat exchanger which concerns on the modification of 4th Embodiment is provided.
  • FIG. 7 is a figure which shows the structure of a cool storage material container with which the heat exchanger which concerns on the modification of 4th Embodiment is provided.
  • FIG. 7 is a figure which shows the
  • FIG. 8 is a view showing the configuration of a cold storage material container provided in a heat exchanger according to another modification of the fourth embodiment.
  • FIG. 9 is a view showing the configuration of the heat exchanger according to the fifth embodiment.
  • FIG. 10 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the sixth embodiment.
  • FIG. 11 is a view showing the configuration of the heat exchanger according to the sixth embodiment.
  • FIG. 12 is a view schematically showing a state in which freezing starts to occur around the rib.
  • FIG. 13 is a diagram showing a part of FIG. 10 in an enlarged manner.
  • FIG. 14: is a figure which shows typically the positional relationship of a tube and a cool storage material container.
  • FIG. 15 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the seventh embodiment.
  • the heat exchanger 10 is configured as an evaporator that forms a part of a refrigeration cycle (not shown) configured as an air conditioning system of a vehicle.
  • a refrigerant is fed to the heat exchanger 10 by a compressor (not shown) disposed in a part of the refrigeration cycle.
  • the compressor is operated by the driving force of an internal combustion engine provided in a vehicle.
  • the heat exchanger 10 cools the air by performing heat exchange between the refrigerant and the air while evaporating the refrigerant sent therein.
  • the configuration of the heat exchanger 10 will be described with reference to FIG.
  • the heat exchanger 10 includes an upper tank 11, a lower tank 12, a tube 100, a fin 200, and a cold storage material container 300.
  • the upper tank 11 is a container for temporarily storing the refrigerant supplied to the heat exchanger 10 and supplying the refrigerant to the respective tubes 100.
  • the upper tank 11 is formed as an elongated rod-like container.
  • the upper tank 11 is disposed at the upper side portion of the heat exchanger 10 in a state in which the longitudinal direction thereof is parallel to the horizontal direction.
  • the lower tank 12 is a container having substantially the same shape as the upper tank 11.
  • the lower tank 12 receives the refrigerant coming from the upper tank 11 through the tube 100.
  • the lower tank 12 is disposed in the lower portion of the heat exchanger 10 in a state in which the longitudinal direction is parallel to the horizontal direction as the upper tank 11 is.
  • the tube 100 is an elongated tube having a flat cross section, and a plurality of the heat exchangers 10 are provided. Inside the tube 100, a plurality of flow paths FP (not shown in FIG. 1, see FIG. 2) along the longitudinal direction are formed.
  • the respective tubes 100 have their longitudinal direction along the vertical direction, and are stacked and arranged in such a manner that their main surfaces are opposed to each other.
  • the direction in which the plurality of stacked tubes 100 are arranged is the same as the longitudinal direction of the upper tank 11.
  • each tube 100 is connected to the upper tank 11 and the other end is connected to the lower tank 12.
  • the internal space of the upper tank 11 and the internal space of the lower tank 12 are communicated with each other by the flow paths FP in the respective tubes 100.
  • the refrigerant moves from the upper tank 11 to the lower tank 12 through the inside of the tube 100 (that is, the flow path FP). At that time, heat exchange is performed with the air passing through the outside of the tube 100, whereby the refrigerant changes from the liquid phase to the gas phase. In addition, air is deprived of heat by heat exchange with the refrigerant to reduce its temperature.
  • the air to be subjected to heat exchange is fed to the heat exchanger 10 by a fan (not shown) disposed in the vicinity of the heat exchanger 10.
  • the direction in which air is fed is the direction from the back side to the front side in the drawing of FIG. 1 (the y direction described later).
  • the fins 200 are formed by bending a metal plate in a wave shape, and are disposed between the respective tubes 100. That is, they are disposed adjacent to the tube 100.
  • the fins 200 are so-called "corrugated fins".
  • the top of each of the fins 200, which is corrugated, abuts against the outer surface of the tube 100 and is brazed. Therefore, the heat of the air passing through the heat exchanger 10 is transferred not only to the refrigerant through the tube 100 but also to the refrigerant through the fins 200 and the tube 100. That is, the contact area with air is increased by the fins 200, and heat exchange between the refrigerant and the air is efficiently performed.
  • the fin 200 is the whole of the space (except for the portion where the cold storage material container 300 described later is disposed) formed between two tubes 100 adjacent to each other along the left-right direction of FIG. It is disposed over the entire range from 11 to the lower tank 12. However, in FIG. 1, only a part thereof is illustrated, and the other parts are omitted.
  • the refrigerant reciprocates between the upper tank 11 and the lower tank 12 (that is, both) Flow) may be used.
  • the direction and the route through which the refrigerant passes are not particularly limited.
  • the x-axis is set with the direction from the left side to the right side in FIG. 1 being the longitudinal direction of the upper tank 11 as the x direction.
  • the y-axis is set with the direction from the back side to the front side in the drawing of FIG. 1 as a direction in which the air passes through the heat exchanger 10 as the y direction.
  • the z axis is set with the direction from the lower tank 12 to the upper tank 11, that is, the direction from the lower side to the upper side as the z direction.
  • the x-axis, the y-axis, and the z-axis are similarly set in the following drawings.
  • the cold storage material container 300 is a container disposed adjacent to the tube 100 along the x-axis, and accommodates the cold storage material HM (not shown in FIG. 1, see FIG. 2) inside. When viewed from the tube 100 next to the cool storage material container 300, the cool storage material container 300 is disposed adjacent to the tube 100 at a position opposite to the fins 200.
  • the cold storage material container 300 is for storing cold when the refrigerant is circulating in the refrigeration cycle including the heat exchanger 10, and keeping the tubes 100 and the like at a low temperature even after the circulation of the refrigerant is stopped.
  • the cold storage material container 300 is formed as an elongated plate-like container.
  • the cold storage material container 300 is disposed at a position between two tubes 100 adjacent to each other, with the longitudinal direction in the z direction.
  • the cold storage containers 300 are joined and held to the respective tubes 100 on both sides thereof.
  • fins 200 are disposed in a part thereof, and a cold storage material container 300 is disposed in another part thereof. ing.
  • the fins 200, the fins 200, and the cold storage material container 300 are regularly arranged in this order from the left side.
  • the relative positional relationship between the fins 200 and the cold storage material container 300 and the presence or absence of regularity in the arrangement thereof are not particularly limited.
  • the cold storage material container 300 When the refrigerant is circulating, the cold storage material container 300 is cooled by the tube 100. At this time, the cold storage material HM contained in the cold storage material container 300 is cooled to lower its temperature, and is solidified.
  • the cold storage material HM at this time is in a solidified state, the cold storage material container 300 and the tubes 100 and the fins 200 disposed in the vicinity thereof are maintained at low temperatures. Therefore, even if the circulation of the refrigerant is stopped, the air passing through the heat exchanger 10 is cooled. Thus, the heat storage material container 300 is disposed, so that the heat exchanger 10 can maintain its cooling performance for a while even after transition to the idle stop state.
  • FIG. 2 shows a part of the II-II cross section of FIG. 1, and specifically shows the respective cross sections of one cold storage material container 300 and the tubes 100 on both sides thereof. .
  • fins 200 on both sides of the tube 100 are also illustrated.
  • FIG. 3 is a view showing the appearance of the cold storage material container 300 as viewed along the x-axis.
  • each tube 100 aligned along the x-axis includes a first tube 110 and a second tube 120.
  • the pair of first tubes 110 and second tubes 120 are arranged along one side of the cool storage material container 300 along the y direction (that is, the direction in which the air passes through the heat exchanger 10).
  • the tubes 120 are shown respectively.
  • the first tube 110 and the second tube 120 aligned along one side of the cool storage material container 300 are separated from each other.
  • the portion that protrudes outward in this manner is hereinafter also referred to as "central convex portion 320".
  • the central convex portion 320 can be said to be a portion that protrudes toward the portion between the first tube 110 and the second tube 120.
  • the central convex portion 320 is a surface on the x-direction side and a surface on the -x-direction side at a position at the center in the y direction (that is, at a position along the air passing direction) Each is formed. Further, as shown in FIG. 3, the central convex portion 320 is formed to extend along the z-axis (that is, along the up-down direction).
  • the center convex part 320 is formed by making a part of board material which comprises the cool storage material container 300 project outside. Therefore, the space inside the central convex portion 320 is filled with the cold storage material HM. In the cool storage material container 300, the formation of such a central convex portion 320 sufficiently secures the volume (that is, the amount of the cool storage material HM) without wasting the space between the tubes 100. .
  • the formation of the central convex portion 320 causes excessive flow of air along the y direction in the space between the cool storage material container 300 and the tube 100 (that is, the gap space GP described later). Can also be obtained. Thereby, it is possible to prevent the cold storage material HM solidified inside the cold storage material container 300 from being heated too much by air and melting early.
  • the protrusion height of the central protrusion 320 along the x axis is preferably larger than the protrusion height of the rib 330 described next.
  • a plurality of ribs 330 are also formed in addition to the central convex portion 320 described above.
  • Each rib 330 is formed to project along the x-axis toward the tube 100 facing the cold storage material container 300.
  • the rib 330 is formed by projecting a part of the plate material of the cold storage material container 300 to the outside similarly to the central convex portion 320. Therefore, the space inside the rib 330 is also filled with the cold storage material HM.
  • each rib 330 is bonded to the surface of the tube 100. Thereby, the cool storage material container 300 is fixed to the tube 100. With such a configuration, a space is formed between the cold-storage material container 300 and the tube 100 adjacent to each other, that is, around the rib 330. Hereinafter, this space is also referred to as “gap space GP”.
  • the height of the gap space GP along the x direction is equal to the protruding height of the rib 330 along the same direction.
  • the plurality of ribs 330 are formed along the vertical direction on each of the y direction side and the ⁇ y direction side of the central convex portion 320.
  • Each rib 330 formed on the y direction side of the central convex portion 320 is formed to extend from the central convex portion 320 toward an end portion on the y direction side of the cool storage material container 300.
  • the respective ribs 330 formed on the ⁇ y direction side of the central convex portion 320 are formed to extend from the central convex portion 320 toward the end of the cool storage material container 300 on the ⁇ y direction side.
  • Each rib 330 also extends in the downward direction toward the end of the cold storage material container 300 from the central convex portion 320.
  • the respective ribs 330 and the central convex portion 320 are connected to each other.
  • “connected” means that no gap is formed between the rib 330 and the central convex portion 320, and a boundary portion between the rib 330 and the central convex portion 320 in the cool storage material container 300. Is projecting along the x-axis in the same direction as the ribs 330 and the like.
  • Each rib 330 is arranged to align along the z-axis. In the present embodiment, the directions in which the respective ribs 330 extend toward the end of the cold storage material container 300 are parallel to one another.
  • the protrusion height of the central protrusion 320 along the x-axis is larger than the protrusion height of the rib 330 along the same direction.
  • the central protrusion 320 is not in contact with any of the first tube 110 and the second tube 120 on both sides along the y-axis.
  • the central convex portion 320 is not in contact with the fin 200 disposed at a position facing the tip. Therefore, air passes between the central projection 320 and the first tube 110, between the central projection 320 and the second tube 120, and between the central projection 320 and the fin 200. A gap is formed.
  • FIG. 3 only the central convex portion 320 and the rib 330 formed on the x-direction side surface of the cool storage material container 300 are shown. However, on the ⁇ x direction side surface of the cool storage material container 300 Also, a central convex portion 320 and a rib 330 similar to those shown in FIG. 3 are formed.
  • the effect of the cold storage material container 300 being formed as described above will be described.
  • dew condensation occurs on the surface of the cold storage material container 300 and the like, whereby dew condensation water is generated in the gap space GP.
  • the dew condensation water WT may stay on the surface of the cold storage material container 300 or the tube 100, and may block the flow of air. As a result, the efficiency of heat exchange in the heat exchanger 10 may be reduced. In order to prevent such a phenomenon, it is preferable that the heat exchange performance of the heat exchanger 10 be high.
  • Condensed water staying on the surface of the cold storage material container 300 or the like in the gap space GP is discharged to the outside by the flow of air as described above.
  • the flow of the air is not blocked by the central convex portion 320. Therefore, the central convex portion 320 is formed to sufficiently secure the volume of the cold storage material container 300. However, it is possible to secure sufficient drainage performance of the heat exchanger 10.
  • the range of the central convex portion 320 extending along the vertical direction is a range that includes the range from the upper end to the lower end of the tube 100. That is, the z coordinate of the upper end of the central convex portion 320 is equal to or greater than the z coordinate of the upper end of the tube 100, and the z coordinate of the lower end of the central convex portion 320 is equal to or less than the z coordinate of the lower end of the tube 100 Is preferred.
  • the inner fins 310 are accommodated in the cold storage material container 300 of the present embodiment. Heat transfer between the cold storage material container 300 and the cold storage material HM is performed more efficiently by the inner fins 310.
  • the inner fins 310 are disposed in a range extending substantially the whole of the space SP formed inside the cold storage material container 300.
  • the inner fin 310 does not exist in a portion of the space SP inside the central convex portion 320.
  • the space inside the central protrusion 320 is a space extending linearly along the z-axis, and the middle fin is not divided by the inner fin 310.
  • the inner fin 310 does not exist in the portion of the space SP inside the rib 330.
  • the space inside each rib 330 is a space extending linearly along the longitudinal direction of the rib 330, and the middle fin is not divided by the inner fin 310.
  • reference numeral 301 is a portion serving as an injection port for injecting the cold storage material HM into the cold storage material container 300 when the cold storage material container 300 is manufactured.
  • the portion is also referred to as “inlet 301”.
  • the inlet 301 is formed at a position further to the z direction side than the z direction side end of the central convex portion 320.
  • a portion of the refrigerant injected from the inlet 301 into the interior of the cold storage material container 300 moves downward through the path inside the central convex portion 320. Since the path is not divided by the inner fins 310 as described above, the refrigerant can flow smoothly to the lower end of the cold storage material container 300.
  • the respective ribs 330 and the central convex portion 320 are connected to each other. For this reason, a part of the refrigerant moving downward through the inner path of the central protrusion 320 flows into the space inside the rib 330 and moves in the path along the longitudinal direction of the rib 330. Since the path is not divided by the inner fins 310 as well, the refrigerant can flow smoothly to the y-direction end and the ⁇ y-direction end of the cold storage material container 300. In FIG. 3, as described above, a part of the path through which the refrigerant flows is indicated by the arrow.
  • the route through which the refrigerant flows is always secured without being divided by the inner fin 310. Therefore, it is possible to always smoothly inject the refrigerant into the cold storage material container 300 and complete the injection in a short time.
  • each rib 330 was formed as a projection shaped to extend linearly.
  • each rib 330 may be formed as, for example, a circular protrusion.
  • the second embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
  • FIG. 4 a part of the cool storage material container 300 according to the present embodiment is drawn as seen from the x direction side as in FIG. 3.
  • the ribs 330 formed on the -y direction side of the central convex portion 320 move upward from the central convex portion 320 toward the end in the -y direction. It is formed to extend in the direction toward the side.
  • the respective ribs 330 formed on the y direction side of the central convex portion 320 are lower side closer to the end portion on the y direction side from the central convex portion 320 as in the first embodiment (FIG. 3) It is formed to extend in the direction of
  • the dew condensation water moves to the y direction side along the surface of the inclined rib 330 also in the portion on the ⁇ y direction side with respect to the central protrusion 320.
  • Such movement of condensed water is likely to be promoted by the flow of air along the y direction. For this reason, it is possible to further improve the drainage performance of the heat exchanger 10.
  • a third embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
  • FIG. 5 shows the configuration of the heat exchanger 10 according to the present embodiment by a cross-sectional view drawn from the same viewpoint as FIG. 2.
  • the protrusion height of the rib 330 along the x-axis and the protrusion height of the central protrusion 320 along the same direction are the same. Even in such a configuration, the same effects as those described in the first embodiment can be obtained.
  • the protruding height of the central protrusion 320 by making the protruding height of the central protrusion 320 lower than in the case of the first embodiment, the flow of air passing through the gap space GP is further less likely to be blocked by the central protrusion 320. As a result, an effect is obtained that the drainage performance of the heat exchanger 10 is further enhanced.
  • a fourth embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
  • FIG. 6 is a view showing the appearance of the cool storage material container 300 according to the present embodiment as viewed along the x-axis.
  • an end-side convex portion 321 is formed separately from the central convex portion 320.
  • the end-side convex portion 321 is formed by projecting a part of the plate material constituting the cold storage material container 300 to the outside along the x-axis, similarly to the central convex portion 320 and the rib 330.
  • the end-side convex portion 321 is formed to extend along the z-axis similarly to the central convex portion 320.
  • the end-side convex portions 321 are formed so as to connect the y-direction end portions of the ribs 330 formed on the y-direction side with respect to the central convex portion 320.
  • the inner fin 310 does not exist in a portion of the space SP on the inner side of the end-side convex portion 321. For this reason, the space inside the end-side convex portion 321 is a space extending linearly along the z-axis, and the middle thereof is not divided by the inner fin 310.
  • the passage path of the refrigerant injected into the cold storage material container 300 is further increased. For this reason, it becomes possible to perform the injection of the refrigerant into the inside of the cool storage material container 300 more smoothly.
  • the end-side convex portion 321 may be formed at a position on the ⁇ y direction side. That is, the end-side convex portions 321 may be formed to connect the end portions on the -y direction side of the respective ribs 330 formed on the -y direction side with respect to the central convex portion 320.
  • the end-side convex portions 321 may be formed at both the position in the y direction and the position in the ⁇ y direction. That is, the end-side convex portion 321 connecting the y-direction end portions of the ribs 330 formed on the y-direction side with respect to the central convex portion 320 and the ⁇ y-direction side relative to the central convex portion 320 It is good also as composition which has both the end side convex part 321 which connects the end parts by the side of-y of each of these ribs 330.
  • a fifth embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
  • FIG. 9 shows the configuration of the heat exchanger 10 according to the present embodiment by a cross-sectional view drawn from the same viewpoint as FIG.
  • a pair of first tubes 110 and second tubes 120 aligned along the y-axis are connected to each other via a plate-like connection portion 130.
  • the tube 100 having the first tube 110, the second tube 120, and the connecting portion 130 can be integrally formed, for example, by extrusion.
  • a sixth embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
  • FIG. 10 shows the appearance of the cool storage material container 300 according to the present embodiment as viewed along the x-axis.
  • FIG. 11 is a cross-sectional view of the configuration of the heat exchanger 10 according to the present embodiment, drawn from the same viewpoint as FIG.
  • the position to be the end along the air passing direction (that is, the y direction) will be referred to as “end E1” and “end E2” below. It is written as In the above, “the end along the air passing direction” includes both the upstream end and the downstream end in the air flow direction.
  • the end E1 is the y-direction side of the cold storage material container 300, that is, the downstream end along the air passing direction.
  • the end E2 is an end on the -y direction side of the cool storage material container 300, that is, the upstream end along the direction in which the air passes.
  • the respective ribs 330 formed on the y-direction side of the central convex portion 320 are formed to extend from the central convex portion 320 toward the end E1.
  • the width along the up and down direction of these ribs 330 decreases as they approach the end E1.
  • the respective ribs 330 formed on the ⁇ y direction side of the central convex portion 320 are formed to extend from the central convex portion 320 toward the end E2.
  • the width along the up and down direction of these ribs 330 decreases as they approach the end E2.
  • the shape and arrangement of the ribs 330 arranged on the y direction side of the central protrusion 320 and the shape and arrangement of the ribs 330 arranged on the ⁇ y direction side of the central protrusion 320 are mutually symmetrical. It has become. Further, although only the central convex portion 320 and the rib 330 formed on the surface in the x direction of the cold storage material container 300 are shown in FIG. 10, the surface on the ⁇ x direction side of the cold storage material container 300 is shown. Also, a central convex portion 320 and a rib 330 similar to those shown in FIG. 10 are formed.
  • each rib 330 gradually decreases from the center convex portion 320 side to the end E1 (or end E2) side as described above, so that the above-mentioned vertical interval is The distance from the central convex portion 320 to the end E1 (or the end E2) increases.
  • FIG. 12A is a state in which the dew condensation water freezes between a pair of ribs 330 adjacent to each other among the plurality of ribs 330 in the present embodiment.
  • FIG. 12B is a state in which the dew condensation water freezes between a pair of ribs 330 adjacent to each other among the plurality of ribs 330 in the comparative example.
  • each rib 330 In the comparative example shown in FIG. 12 (B), the width along the vertical direction of each rib 330 is uniform throughout. For this reason, the vertical interval which is the interval between the ribs 330 adjacent to each other is also uniform from the central protrusion 320 side to the end E1 side as a whole.
  • condensation occurs on the surface of the cold storage material container 300 when evaporation of the refrigerant is performed, so that condensation water (of liquid) is generated in the gap space GP. WT occurs.
  • the dew condensation water WT is frozen, whereby ice C is generated in the gap space GP.
  • Ice C is generated starting from the portion where the cold storage material container 300 and the tube 100 are joined, that is, the tip portion of the rib 330, and tends to grow from there to the periphery.
  • the state in the middle of the process in which the ice C is thus grown is schematically shown in FIG. 12 (B).
  • the vertical distance from the central convex portion 320 to the end E1 is uniform.
  • the condensed water WT of the liquid is trapped inside the ice C.
  • the dew condensation water WT trapped inside the ice C is also cooled and frozen thereafter.
  • the condensation water WT is frozen in a closed space, a large volumetric expansion force is applied to the surrounding tube 100 and the cold storage material container 300 by the expansion of the condensation water WT during freezing. There are times when As a result, there is a possibility that a part of the tube 100, the cold storage material container 300 and the like may be damaged.
  • each rib 330 In order to prevent such breakage, it is also conceivable to increase the protruding height of each rib 330 to a certain extent to sufficiently enhance the drainage performance of the gap space GP. However, when the protruding height of each rib 330 is increased, the volume of the cold storage material container 300 disposed in the limited space is reduced. In this case, the amount of the cold storage material HM stored in the cold storage material container 300 decreases, and the function of cold storage is only exhibited for a short time, which is not preferable.
  • the vertical interval gradually increases from the central convex portion 320 side toward the end E1 side (or the end E2 side). Therefore, even after the growth of ice C starts, the end E1 side is not closed by the ice C, and the dew condensation water WT can be discharged from the portion to the outside.
  • the ice C grows from the central convex portion 320 side toward the end E1 side.
  • the dew condensation water WT on the end E1 side becomes ice C later (that is, finally) than the other part, so that the inside condensation water WT is not trapped.
  • the volumetric expansion force due to freezing does not act on the members such as the tube 100 and the like.
  • the width of the respective ribs 330 along the vertical direction is smaller as it gets closer to the end E1 (or the end E2), the condensed water WT Damage to the parts due to the freezing of the In addition, since it is not necessary to make the height of the rib 330 higher than necessary, the volume of the cold storage material container 300 is not sacrificed.
  • the vertical distance L12 at the position closest to the end E1 (or the end E2) is at the most central position along the air flow direction. It is 1.5 times the vertical interval L11. According to the results confirmed by the present inventors through experiments etc., if the vertical distance L12 on the end side is maintained at least 1.5 times the vertical distance L11 on the central side, the condensed water WT is inside the ice C It has been found that the phenomenon of being trapped inside can be reliably prevented.
  • the above-described configuration that is, the configuration in which the vertical distance L12 on the end side is 1.5 times or more the vertical distance L11 on the central side is the first to fifth embodiments described above. It can be adopted in any heat exchanger 10 up to.
  • the ribs 330 in this embodiment all extend downward as approaching the end E1 (or the end E2) from the central convex portion 320. .
  • the dew condensation water WT of the liquid existing between the ribs 330 is easily discharged to the end side by gravity. Therefore, the phenomenon that the condensed water WT is trapped inside the ice C is further prevented.
  • those which are formed so as to extend in the downward direction toward the end side may be all the ribs 330 as in this embodiment, and some of the ribs Only 330 may be sufficient.
  • the ribs 330 in the present embodiment are all connected to the central protrusion 320. For this reason, compared with the structure which the rib 330 does not connect with the center convex part 320, the volume of the cool storage material container 300 is ensured still larger. Thereby, the cooling performance of the cool storage material container 300 can be exhibited over a long time.
  • FIG. 1 The structure in the vicinity of the center convex part 320 among the heat exchangers 10 which concern on this embodiment is typically shown by FIG. In the figure, illustration of the rib 330 is omitted.
  • reference numeral 101 is attached to an end of the tube 100 (specifically, the second tube 120) on the central convex portion 320 side.
  • the end is also referred to as “end 101”.
  • the distance between the end 101 and the central protrusion 320 is shown as "L13" in FIG. This L13 can be said to be the shortest distance between the central projection 320 and the tube 100.
  • the gap formed between the central convex portion 320 and the tube 100 is hereinafter also referred to as a “gap GPa”.
  • the protruding height of the rib 330 (not shown), that is, the height of the clearance space GP along the x axis is indicated as “L14”.
  • a distance L13 between the central convex portion 320 and the tube 100 is larger than a projection height L14 of the rib 330.
  • L13 is smaller than L14
  • freezing may be completed at a relatively early stage in the portion between the end 101 and the central convex portion 320.
  • condensation water (liquid) existing in the vicinity of the end portion 101 and inside the gap space GP may be trapped by the ice generated between the end portion 101 and the central convex portion 320. . That is, the discharge of the condensed water WT as described with reference to FIG. 12A may be hindered by the ice.
  • the gap GPa is formed between the central convex portion 320 and the tube 100.
  • condensed water is discharged to the outside from the gap GPa also in the portion of the rib 330 on the central convex portion 320 side.
  • L13 which is the distance between the central convex portion 320 and the tube 100 is larger than L14 which is the protruding height of the rib 330, the gap GPa is prevented from being blocked by ice. It is done.
  • a seventh embodiment will be described with reference to FIG. In the following, points different from the sixth embodiment described above will be mainly described, and descriptions of points in common with the sixth embodiment will be omitted as appropriate.
  • FIG. 15 a part of the cool storage material container 300 according to the present embodiment is drawn as seen from the x direction side as in FIG.
  • the respective ribs 330 formed on the -y direction side of the central convex portion 320 move upward as they approach the end E2 from the central convex portion 320. It is formed to extend to
  • the ribs 330 formed on the y-direction side of the central convex portion 320 are directed downward as they approach the end E1 from the central convex portion 320. It is formed to extend to

Abstract

This heat exchanger (10) is provided with: tubes (100) having a refrigerant passing through the inside thereof; fins (200) which are disposed so as to be adjacent to the tubes; and a cold storage material container (300) which is disposed so as to be adjacent to the tubes in a position on the opposite side from the fins, the cold storage material container containing therein a cold storage material (HM). The tubes include first tubes (110) and second tubes (120) disposed so as to be aligned in the direction through which air passes. The cold storage material container has therein a plurality of ribs (330) that protrude toward the tubes, and a central protruding section (320) that protrudes into a portion that is between the first tubes and the second tubes. Gaps are formed anywhere between the central protruding section and the first tubes, between the central protruding section and the second tubes, and between the central protruding section and the fins.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年11月29日に出願された日本国特許出願2017-228891号と、2018年10月9日に出願された日本国特許出願2018-190748号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-228891 filed on Nov. 29, 2017, and Japanese Patent Application No. 2018-190748 filed on October 9, 2018. Claiming the benefit of its priority, the entire contents of which patent application is hereby incorporated by reference.
 本開示は、冷媒との熱交換によって空気を冷却する熱交換器に関する。 The present disclosure relates to a heat exchanger that cools air by heat exchange with a refrigerant.
 冷媒との熱交換によって空気を冷却する熱交換器としては、例えば、冷凍サイクルの一部として用いられる蒸発器が挙げられる。蒸発器では、チューブの内側において蒸発し温度を低下させる冷媒と、チューブの外側を通過する空気との間で熱交換が行われることにより、当該空気が冷却される。 Examples of a heat exchanger that cools air by heat exchange with a refrigerant include an evaporator used as part of a refrigeration cycle. In the evaporator, the air is cooled by heat exchange between a refrigerant that evaporates to lower the temperature inside the tube and air that passes through the outside of the tube.
 近年では、蓄冷材容器を備えた構成の熱交換器が提案されており、既に実用化されている(例えば、下記特許文献1を参照)。蓄冷材容器は、内部にパラフィン等の蓄冷材が収容された容器であって、熱交換器のうち冷媒が通るチューブに接した状態で配置されるものである。蓄冷材容器を備えた熱交換器では、冷媒の循環が停止した後においても、チューブ等の温度がしばらくの間は低温に保たれる。このため、このような熱交換器が車両用空調装置に搭載された場合には、アイドルストップの状態においても低温の空気を車室内に吹き出し続けることが可能となる。 In recent years, a heat exchanger configured to include a cold storage material container has been proposed and has already been put to practical use (see, for example, Patent Document 1 below). The cold storage material container is a container in which a cold storage material such as paraffin is contained, and is disposed in a state of being in contact with a tube through which the refrigerant passes in the heat exchanger. In the heat exchanger provided with the cold storage material container, the temperature of the tube or the like is kept low for a while even after the circulation of the refrigerant is stopped. Therefore, when such a heat exchanger is mounted on a vehicle air conditioner, it is possible to continuously blow low temperature air into the vehicle compartment even in the idle stop state.
 下記特許文献1に記載されているように、蓄冷材容器の表面には複数のリブ(凸部)が形成されており、それぞれのリブの先端がチューブの表面に接合されている。その結果、蓄冷材容器とチューブとの間(つまりリブの周囲)には隙間空間が形成されている。蓄冷材容器の表面で生じた結露水は、この隙間空間を通って外部へと排出される。 As described in Patent Document 1 below, a plurality of ribs (convex portions) are formed on the surface of the cold storage material container, and the tips of the respective ribs are joined to the surface of the tube. As a result, a clearance space is formed between the cold storage material container and the tube (that is, around the rib). Condensed water generated on the surface of the cold storage material container is discharged to the outside through this gap space.
 また、下記特許文献1に記載された熱交換器では、空気の通過する方向に沿って2つのチューブが並ぶように配置されている。これら2つのチューブのそれぞれと隣り合う位置に配置された蓄冷材容器には、上記2つのチューブの間となる部分に入り込むような中央凸部(遮断部)が更に形成されている。このような中央凸部が形成された構成においては、蓄冷材容器の容積が大きくなるので、蓄冷性能を更に高めることが可能となる。 Moreover, in the heat exchanger described in the following patent document 1, two tubes are arrange | positioned so that two tubes may be located in a line along the direction through which air passes. The cool storage material container disposed at a position adjacent to each of the two tubes is further formed with a central convex portion (shutoff portion) which enters into a portion between the two tubes. In the configuration in which such a central convex portion is formed, since the volume of the cold storage material container is increased, it is possible to further enhance the cold storage performance.
特許第5920087号公報Patent No. 5920087
 上記特許文献1に記載された熱交換器では、中央凸部の側面が2つのチューブのそれぞれに当接した状態となっている。また、中央凸部の先端は、チューブを挟んで反対側となる位置に設けられたフィンに当接した状態となっている。 In the heat exchanger described in Patent Document 1, the side surface of the central convex portion is in contact with each of the two tubes. Further, the tip of the central convex portion is in a state of being in contact with a fin provided on the opposite side across the tube.
 このような構成においては、蓄冷材容器の近傍における空気の流れが、中央凸部によって妨げられてしまう。その結果、蓄冷材容器の表面で生じた結露水は、熱交換器を通過する空気の流れによっては排出されにくくなっていると考えられる。つまり、中央凸部を設けたことにより、熱交換器の排水性能が低下してしまう可能性がある。 In such a configuration, the flow of air in the vicinity of the cold storage material container is hindered by the central convex portion. As a result, it is considered that condensation water generated on the surface of the cold storage material container is difficult to be discharged by the flow of air passing through the heat exchanger. That is, the drainage performance of the heat exchanger may be reduced by providing the central convex portion.
 本開示は、蓄冷材容器に中央凸部を形成した構成としながらも、排水性能の高い熱交換器を提供することを目的とする。 An object of the present disclosure is to provide a heat exchanger with high drainage performance while having a configuration in which a central convex portion is formed in a cold storage material container.
 本開示に係る熱交換器は、冷媒との熱交換によって空気を冷却する熱交換器であって、内部を冷媒が通るチューブと、チューブと隣り合うように配置されたフィンと、フィンとは反対側となる位置において、チューブと隣り合うように配置された容器であって、内部に蓄冷材を収容する蓄冷材容器と、を備える。チューブは、空気が通過する方向に沿って並ぶように配置された第1チューブと第2チューブとを有している。蓄冷材容器には、チューブに向けて突出する複数のリブと、第1チューブと第2チューブとの間となる部分に向けて突出する中央凸部と、が形成されている。中央凸部と第1チューブとの間、中央凸部と第2チューブとの間、及び、中央凸部とフィンとの間には、いずれも隙間が形成されている。 A heat exchanger according to the present disclosure is a heat exchanger that cools air by heat exchange with a refrigerant, and a tube through which the refrigerant passes, a fin disposed adjacent to the tube, and a fin opposite to the tube And a regenerator material container, which is disposed adjacent to the tube at the side position and stores the regenerator material inside. The tubes have a first tube and a second tube arranged so as to line up in the direction in which the air passes. The cold storage material container is formed with a plurality of ribs projecting toward the tube and a central convex portion projecting toward a portion between the first tube and the second tube. A gap is formed between the central convex portion and the first tube, between the central convex portion and the second tube, and between the central convex portion and the fin.
 このような構成の熱交換器では、中央凸部と第1チューブとの間、中央凸部と第2チューブとの間、及び、中央凸部とフィンとの間の、いずれにも隙間が形成された状態となるように、蓄冷材容器の中央凸部が形成されている。熱交換器を通過する空気は、上記それぞれの隙間を通って蓄冷材容器の近傍を流れることができる。その結果、蓄冷材容器の表面で生じた結露水は、上記のような空気の流れによって外部に排出されやすくなる。このように、上記構成の熱交換器では、蓄冷材容器の中央凸部によって空気の流れが妨げられないため、その排水性能を十分に確保することができる。 In the heat exchanger having such a configuration, gaps are formed between the central convex portion and the first tube, between the central convex portion and the second tube, and between the central convex portion and the fins. The central convex portion of the cold storage material container is formed to be in the closed state. Air passing through the heat exchanger can flow in the vicinity of the cold storage material container through the respective gaps. As a result, the condensed water generated on the surface of the cold storage material container is easily discharged to the outside by the flow of air as described above. As described above, in the heat exchanger of the above configuration, the flow of air is not impeded by the central convex portion of the cold storage material container, so that the drainage performance can be sufficiently ensured.
 本開示によれば、蓄冷材容器に中央凸部を形成した構成としながらも、排水性能の高い熱交換器が提供される。 According to the present disclosure, it is possible to provide a heat exchanger with high drainage performance while having a configuration in which the central convex portion is formed in the cold storage material container.
図1は、第1実施形態に係る熱交換器の全体構成を示す図である。FIG. 1 is a view showing an entire configuration of a heat exchanger according to the first embodiment. 図2は、図1のII-II断面の一部を示す図である。FIG. 2 is a view showing a part of the II-II cross section of FIG. 図3は、図1の熱交換器が備える蓄冷材容器の構成を示す図である。FIG. 3 is a view showing the configuration of a cold storage material container provided in the heat exchanger of FIG. 図4は、第2実施形態に係る熱交換器が備える、蓄冷材容器の構成を示す図である。FIG. 4 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the second embodiment. 図5は、第3実施形態に係る熱交換器の構成を示す図である。FIG. 5 is a view showing the configuration of the heat exchanger according to the third embodiment. 図6は、第4実施形態に係る熱交換器が備える、蓄冷材容器の構成を示す図である。FIG. 6 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the fourth embodiment. 図7は、第4実施形態の変形例に係る熱交換器が備える、蓄冷材容器の構成を示す図である。FIG. 7: is a figure which shows the structure of a cool storage material container with which the heat exchanger which concerns on the modification of 4th Embodiment is provided. 図8は、第4実施形態の他の変形例に係る熱交換器が備える、蓄冷材容器の構成を示す図である。FIG. 8 is a view showing the configuration of a cold storage material container provided in a heat exchanger according to another modification of the fourth embodiment. 図9は、第5実施形態に係る熱交換器の構成を示す図である。FIG. 9 is a view showing the configuration of the heat exchanger according to the fifth embodiment. 図10は、第6実施形態に係る熱交換器が備える、蓄冷材容器の構成を示す図である。FIG. 10 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the sixth embodiment. 図11は、第6実施形態に係る熱交換器の構成を示す図である。FIG. 11 is a view showing the configuration of the heat exchanger according to the sixth embodiment. 図12は、リブの周囲で凍結が生じ始めた状態を模式的に示す図である。FIG. 12 is a view schematically showing a state in which freezing starts to occur around the rib. 図13は、図10の一部を拡大して示す図である。FIG. 13 is a diagram showing a part of FIG. 10 in an enlarged manner. 図14は、チューブと蓄冷材容器との位置関係を模式的に示す図である。FIG. 14: is a figure which shows typically the positional relationship of a tube and a cool storage material container. 図15は、第7実施形態に係る熱交換器が備える、蓄冷材容器の構成を示す図である。FIG. 15 is a view showing the configuration of a cold storage material container provided in the heat exchanger according to the seventh embodiment.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 第1実施形態について説明する。本実施形態に係る熱交換器10は、車両の空調システムとして構成された冷凍サイクル(不図示)の一部を成す蒸発器として構成されている。熱交換器10には、冷凍サイクルの一部に配置された不図示のコンプレッサにより冷媒が送り込まれる。コンプレッサは、車両に備えられた内燃機関の駆動力により動作する。熱交換器10は、送り込まれた冷媒を内部で蒸発させながら、冷媒と空気との熱交換を行うことにより空気を冷却するものである。 The first embodiment will be described. The heat exchanger 10 according to the present embodiment is configured as an evaporator that forms a part of a refrigeration cycle (not shown) configured as an air conditioning system of a vehicle. A refrigerant is fed to the heat exchanger 10 by a compressor (not shown) disposed in a part of the refrigeration cycle. The compressor is operated by the driving force of an internal combustion engine provided in a vehicle. The heat exchanger 10 cools the air by performing heat exchange between the refrigerant and the air while evaporating the refrigerant sent therein.
 図1を参照しながら、熱交換器10の構成について説明する。熱交換器10は、上部タンク11と、下部タンク12と、チューブ100と、フィン200と、蓄冷材容器300と、を備えている。 The configuration of the heat exchanger 10 will be described with reference to FIG. The heat exchanger 10 includes an upper tank 11, a lower tank 12, a tube 100, a fin 200, and a cold storage material container 300.
 上部タンク11は、熱交換器10に対して供給された冷媒を一時的に貯留し、当該冷媒をそれぞれのチューブ100に供給するための容器である。上部タンク11は、細長い棒状の容器として形成されている。上部タンク11は、その長手方向を水平方向に沿わせた状態で、熱交換器10のうち上方側部分に配置されている。 The upper tank 11 is a container for temporarily storing the refrigerant supplied to the heat exchanger 10 and supplying the refrigerant to the respective tubes 100. The upper tank 11 is formed as an elongated rod-like container. The upper tank 11 is disposed at the upper side portion of the heat exchanger 10 in a state in which the longitudinal direction thereof is parallel to the horizontal direction.
 下部タンク12は、上部タンク11と略同一形状の容器である。下部タンク12は、上部タンク11からチューブ100を通って来た冷媒を受け入れるものである。下部タンク12は、上部タンク11と同様にその長手方向を水平方向に沿わせた状態で、熱交換器10のうち下方側部分に配置されている。 The lower tank 12 is a container having substantially the same shape as the upper tank 11. The lower tank 12 receives the refrigerant coming from the upper tank 11 through the tube 100. The lower tank 12 is disposed in the lower portion of the heat exchanger 10 in a state in which the longitudinal direction is parallel to the horizontal direction as the upper tank 11 is.
 チューブ100は、扁平形状の断面を有する細長い管であって、熱交換器10に複数備えられている。チューブ100の内部には、その長手方向に沿った流路FP(図1では不図示、図2を参照)が複数形成されている。それぞれのチューブ100は、その長手方向を鉛直方向に沿わせており、互いの主面を対向させた状態で積層配置されている。積層された複数のチューブ100が並ぶ方向は、上部タンク11の長手方向と同じである。 The tube 100 is an elongated tube having a flat cross section, and a plurality of the heat exchangers 10 are provided. Inside the tube 100, a plurality of flow paths FP (not shown in FIG. 1, see FIG. 2) along the longitudinal direction are formed. The respective tubes 100 have their longitudinal direction along the vertical direction, and are stacked and arranged in such a manner that their main surfaces are opposed to each other. The direction in which the plurality of stacked tubes 100 are arranged is the same as the longitudinal direction of the upper tank 11.
 それぞれのチューブ100は、その一端が上部タンク11に接続されており、その他端が下部タンク12に接続されている。このような構成により、上部タンク11の内部空間と、下部タンク12の内部空間とは、それぞれのチューブ100内の流路FPによって連通されている。 One end of each tube 100 is connected to the upper tank 11 and the other end is connected to the lower tank 12. With such a configuration, the internal space of the upper tank 11 and the internal space of the lower tank 12 are communicated with each other by the flow paths FP in the respective tubes 100.
 冷媒は、チューブ100の内部(つまり流路FP)を通って上部タンク11から下部タンク12へと移動する。その際、チューブ100の外側を通過する空気との間で熱交換が行われ、これにより冷媒は液相から気相へと変化する。また、空気は冷媒との熱交換により熱を奪われて、その温度を低下させる。尚、熱交換の対象となる上記の空気は、熱交換器10の近傍に配置された不図示のファンによって、熱交換器10へと送り込まれるものである。空気が送り込まれる方向は、図1の紙面奥側から手前側に向かう方向(後に述べるy方向)となっている。 The refrigerant moves from the upper tank 11 to the lower tank 12 through the inside of the tube 100 (that is, the flow path FP). At that time, heat exchange is performed with the air passing through the outside of the tube 100, whereby the refrigerant changes from the liquid phase to the gas phase. In addition, air is deprived of heat by heat exchange with the refrigerant to reduce its temperature. The air to be subjected to heat exchange is fed to the heat exchanger 10 by a fan (not shown) disposed in the vicinity of the heat exchanger 10. The direction in which air is fed is the direction from the back side to the front side in the drawing of FIG. 1 (the y direction described later).
 フィン200は、金属板を波状に折り曲げることにより形成されたものであって、それぞれのチューブ100の間に配置されている。つまり、チューブ100と隣り合うように配置されている。フィン200は、所謂「コルゲートフィン」と称されるものである。波状であるフィン200のそれぞれの頂部は、チューブ100の外表面に対して当接しており、且つろう接されている。このため、熱交換器10を通過する空気の熱は、チューブ100を介して冷媒に伝達されるだけでなく、フィン200及びチューブ100を介しても冷媒に伝達される。つまり、フィン200によって空気との接触面積が大きくなっており、冷媒と空気との熱交換が効率よく行われる。 The fins 200 are formed by bending a metal plate in a wave shape, and are disposed between the respective tubes 100. That is, they are disposed adjacent to the tube 100. The fins 200 are so-called "corrugated fins". The top of each of the fins 200, which is corrugated, abuts against the outer surface of the tube 100 and is brazed. Therefore, the heat of the air passing through the heat exchanger 10 is transferred not only to the refrigerant through the tube 100 but also to the refrigerant through the fins 200 and the tube 100. That is, the contact area with air is increased by the fins 200, and heat exchange between the refrigerant and the air is efficiently performed.
 フィン200は、図1の左右方向に沿って互いに隣り合う2本のチューブ100の間に形成された空間(後述の蓄冷材容器300が配置されている部分を除く)の全体、すなわち、上部タンク11から下部タンク12に至るまでの全範囲に亘って配置されている。ただし、図1においてはその一部のみが図示されており、他の部分については図示が省略されている。 The fin 200 is the whole of the space (except for the portion where the cold storage material container 300 described later is disposed) formed between two tubes 100 adjacent to each other along the left-right direction of FIG. It is disposed over the entire range from 11 to the lower tank 12. However, in FIG. 1, only a part thereof is illustrated, and the other parts are omitted.
 尚、上部タンク11の内部空間、及び下部タンク12の内部空間が仕切り板によって複数に区分された構成とした上で、上部タンク11と下部タンク12との間を冷媒が往復しながら(つまり双方向に)流れるような態様としてもよい。以下に説明する熱交換器10の構成上の工夫を実現するにあたっては、冷媒が通る方向や経路は特に限定されない。 In addition, after the internal space of the upper tank 11 and the internal space of the lower tank 12 are divided into a plurality by the partition plate, the refrigerant reciprocates between the upper tank 11 and the lower tank 12 (that is, both) Flow) may be used. In realizing the contrivance of the configuration of the heat exchanger 10 described below, the direction and the route through which the refrigerant passes are not particularly limited.
 図1においては、上部タンク11の長手方向であって、図1の左側から右側に向かう方向をx方向としてx軸を設定している。また、熱交換器10を空気が通過する方向であって、図1の紙面奥側から手前側に向かう方向をy方向としてy軸を設定している。更に、下部タンク12から上部タンク11へと向かう方向、すなわち下方側から上方側に向かう方向をz方向としてz軸を設定している。以降の図面においても、同様にしてx軸、y軸、z軸を設定している。 In FIG. 1, the x-axis is set with the direction from the left side to the right side in FIG. 1 being the longitudinal direction of the upper tank 11 as the x direction. Further, the y-axis is set with the direction from the back side to the front side in the drawing of FIG. 1 as a direction in which the air passes through the heat exchanger 10 as the y direction. Furthermore, the z axis is set with the direction from the lower tank 12 to the upper tank 11, that is, the direction from the lower side to the upper side as the z direction. The x-axis, the y-axis, and the z-axis are similarly set in the following drawings.
 蓄冷材容器300は、x軸に沿ってチューブ100と隣り合うように配置された容器であって、内部に蓄冷材HM(図1では不図示、図2を参照)を収容するものである。蓄冷材容器300の隣にあるチューブ100から見た場合には、蓄冷材容器300は、フィン200とは反対側となる位置において、当該チューブ100と隣り合うように配置されている。 The cold storage material container 300 is a container disposed adjacent to the tube 100 along the x-axis, and accommodates the cold storage material HM (not shown in FIG. 1, see FIG. 2) inside. When viewed from the tube 100 next to the cool storage material container 300, the cool storage material container 300 is disposed adjacent to the tube 100 at a position opposite to the fins 200.
 蓄冷材容器300は、熱交換器10を含む冷凍サイクルを冷媒が循環しているときに蓄冷を行い、冷媒の循環が停止した後においてもチューブ100等を低温に保つためのものである。蓄冷材容器300は、細長い板状の容器として形成されている。蓄冷材容器300は、その長手方向をz方向に沿わせた状態で、互いに隣り合う2本のチューブ100の間となる位置に配置されている。蓄冷材容器300は、その両側にあるそれぞれのチューブ100に対して接合され保持されている。 The cold storage material container 300 is for storing cold when the refrigerant is circulating in the refrigeration cycle including the heat exchanger 10, and keeping the tubes 100 and the like at a low temperature even after the circulation of the refrigerant is stopped. The cold storage material container 300 is formed as an elongated plate-like container. The cold storage material container 300 is disposed at a position between two tubes 100 adjacent to each other, with the longitudinal direction in the z direction. The cold storage containers 300 are joined and held to the respective tubes 100 on both sides thereof.
 図1に示されるように、チューブ100とチューブ100との間に形成された複数の空間には、その一部にフィン200が配置されており、他の一部に蓄冷材容器300が配置されている。本実施形態では、左側からフィン200、フィン200、蓄冷材容器300、の順となるよう、これらが規則的に配置されている。しかしながら、フィン200と蓄冷材容器300との相対的な位置関係や、これらの配置における規則性の有無は特に限定されない。 As shown in FIG. 1, in a plurality of spaces formed between the tube 100 and the tube 100, fins 200 are disposed in a part thereof, and a cold storage material container 300 is disposed in another part thereof. ing. In the present embodiment, the fins 200, the fins 200, and the cold storage material container 300 are regularly arranged in this order from the left side. However, the relative positional relationship between the fins 200 and the cold storage material container 300 and the presence or absence of regularity in the arrangement thereof are not particularly limited.
 冷媒が循環しているときには、チューブ100によって蓄冷材容器300が冷却される。このとき、蓄冷材容器300の内部に収容された蓄冷材HMは、冷却されてその温度を低下させ、凝固した状態となる。 When the refrigerant is circulating, the cold storage material container 300 is cooled by the tube 100. At this time, the cold storage material HM contained in the cold storage material container 300 is cooled to lower its temperature, and is solidified.
 その後、車両がアイドルストップの状態になると、冷凍サイクルのコンプレッサが停止した状態となる。このため、冷凍サイクルにおける冷媒の循環は行われなくなり、熱交換器10における冷媒の蒸発も行われなくなる。 Thereafter, when the vehicle enters the idle stop state, the compressor of the refrigeration cycle stops. Therefore, the circulation of the refrigerant in the refrigeration cycle is not performed, and the evaporation of the refrigerant in the heat exchanger 10 is not performed.
 しかしながら、このときの蓄冷材HMは凝固した状態となっているので、蓄冷材容器300、及びその近傍に配置されているチューブ100やフィン200は、いずれも低温に維持される。このため、冷媒の循環が停止していても、熱交換器10を通過する空気は冷却される。このように、蓄冷材容器300が配置されていることにより、アイドルストップの状態に移行した後においても、熱交換器10はその冷却性能をしばらくの間維持することができる。 However, since the cold storage material HM at this time is in a solidified state, the cold storage material container 300 and the tubes 100 and the fins 200 disposed in the vicinity thereof are maintained at low temperatures. Therefore, even if the circulation of the refrigerant is stopped, the air passing through the heat exchanger 10 is cooled. Thus, the heat storage material container 300 is disposed, so that the heat exchanger 10 can maintain its cooling performance for a while even after transition to the idle stop state.
 チューブ100及び蓄冷材容器300の更に具体的な構成について、図2及び図3を参照しながら説明する。図2は、図1のII-II断面の一部を示すものであり、具体的には、一つの蓄冷材容器300と、その両側にあるチューブ100と、のそれぞれの断面を示す図である。図2においては、上記チューブ100の更に両側にあるフィン200についても図示されている。図3は、蓄冷材容器300をx軸に沿って見た場合の外観を示す図である。 More specific configurations of the tube 100 and the cold storage material container 300 will be described with reference to FIGS. 2 and 3. FIG. 2 shows a part of the II-II cross section of FIG. 1, and specifically shows the respective cross sections of one cold storage material container 300 and the tubes 100 on both sides thereof. . In FIG. 2, fins 200 on both sides of the tube 100 are also illustrated. FIG. 3 is a view showing the appearance of the cold storage material container 300 as viewed along the x-axis.
 図2に示されるように、x軸に沿って並ぶそれぞれのチューブ100は、第1チューブ110と第2チューブ120とを有している。一対の第1チューブ110及び第2チューブ120は、蓄冷材容器300の片面に沿って、y方向(すなわち、熱交換器10を空気が通過する方向)に沿って並ぶように配置されている。図2では、蓄冷材容器300のx方向側の面に沿って並ぶ一対の第1チューブ110及び第2チューブ120と、-x方向側の面に沿って並ぶ一対の第1チューブ110及び第2チューブ120と、がそれぞれ示されている。 As shown in FIG. 2, each tube 100 aligned along the x-axis includes a first tube 110 and a second tube 120. The pair of first tubes 110 and second tubes 120 are arranged along one side of the cool storage material container 300 along the y direction (that is, the direction in which the air passes through the heat exchanger 10). In FIG. 2, a pair of first tubes 110 and a second tube 120 aligned along the surface of the cold storage material container 300 in the x direction, and a pair of the first tubes 110 and the second tube aligned along the surface in the −x direction. The tubes 120 are shown respectively.
 蓄冷材容器300の片面に沿って並ぶ第1チューブ110と第2チューブ120との間は、互いに離間している。蓄冷材容器300のうち、第1チューブ110と第2チューブ120との間となる空間と対向する部分は、当該空間に向けて突出している。このように外側に向けて突出した部分のことを、以下では「中央凸部320」とも称する。中央凸部320は、第1チューブ110と第2チューブ120との間となる部分に向けて突出する部分、ということができる。 The first tube 110 and the second tube 120 aligned along one side of the cool storage material container 300 are separated from each other. A portion of the cold storage material container 300 facing the space between the first tube 110 and the second tube 120 protrudes toward the space. The portion that protrudes outward in this manner is hereinafter also referred to as "central convex portion 320". The central convex portion 320 can be said to be a portion that protrudes toward the portion between the first tube 110 and the second tube 120.
 中央凸部320は、蓄冷材容器300のうちy方向における中央となる位置(つまり、空気の通過する方向に沿った中央となる位置)において、x方向側の面及び-x方向側の面のそれぞれに形成されている。また、図3に示されるように、中央凸部320はz軸に沿って(つまり上下方向に沿って)伸びるように形成されている。 The central convex portion 320 is a surface on the x-direction side and a surface on the -x-direction side at a position at the center in the y direction (that is, at a position along the air passing direction) Each is formed. Further, as shown in FIG. 3, the central convex portion 320 is formed to extend along the z-axis (that is, along the up-down direction).
 中央凸部320は、蓄冷材容器300を構成する板材の一部を、外側に突出させることにより形成されている。このため、中央凸部320の内側の空間は蓄冷材HMで満たされている。蓄冷材容器300では、このような中央凸部320が形成されていることにより、チューブ100間の空間を無駄にすることなく、その容積(つまり蓄冷材HMの量)が十分に確保されている。 The center convex part 320 is formed by making a part of board material which comprises the cool storage material container 300 project outside. Therefore, the space inside the central convex portion 320 is filled with the cold storage material HM. In the cool storage material container 300, the formation of such a central convex portion 320 sufficiently secures the volume (that is, the amount of the cool storage material HM) without wasting the space between the tubes 100. .
 また、中央凸部320が形成されていることにより、蓄冷材容器300とチューブ100との間の空間(つまり、後に述べる隙間空間GP)をy方向に沿って空気が過剰に流れ過ぎてしまうことを抑制するという効果も得られる。これにより、蓄冷材容器300の内側で凝固している蓄冷材HMが、空気によって加熱され過ぎて早期に融解してしまうことを防止することができる。この点に鑑みれば、x軸に沿った中央凸部320の突出高さは、次に述べるリブ330の突出高さよりも大きいことが好ましい。 In addition, the formation of the central convex portion 320 causes excessive flow of air along the y direction in the space between the cool storage material container 300 and the tube 100 (that is, the gap space GP described later). Can also be obtained. Thereby, it is possible to prevent the cold storage material HM solidified inside the cold storage material container 300 from being heated too much by air and melting early. In view of this point, the protrusion height of the central protrusion 320 along the x axis is preferably larger than the protrusion height of the rib 330 described next.
 図3に示されるように、蓄冷材容器300には上記の中央凸部320の他、複数のリブ330も形成されている。それぞれのリブ330は、蓄冷材容器300と対向するチューブ100に向けて、x軸に沿って突出するように形成されている。リブ330は、中央凸部320と同様に、蓄冷材容器300を構成する板材の一部を、外側に突出させることにより形成されている。このため、リブ330の内側の空間も蓄冷材HMで満たされている。 As shown in FIG. 3, in the cold-storage material container 300, a plurality of ribs 330 are also formed in addition to the central convex portion 320 described above. Each rib 330 is formed to project along the x-axis toward the tube 100 facing the cold storage material container 300. The rib 330 is formed by projecting a part of the plate material of the cold storage material container 300 to the outside similarly to the central convex portion 320. Therefore, the space inside the rib 330 is also filled with the cold storage material HM.
 それぞれのリブ330の先端面は、チューブ100の表面に対して接合されている。これにより、チューブ100に対して蓄冷材容器300が固定されている。このような構成により、互いに隣り合う蓄冷材容器300とチューブ100との間、すなわちリブ330の周囲には空間が形成されている。以下では、この空間のことを「隙間空間GP」とも称する。x方向に沿った隙間空間GPの高さは、同方向に沿ったリブ330の突出高さに等しい。 The tip surface of each rib 330 is bonded to the surface of the tube 100. Thereby, the cool storage material container 300 is fixed to the tube 100. With such a configuration, a space is formed between the cold-storage material container 300 and the tube 100 adjacent to each other, that is, around the rib 330. Hereinafter, this space is also referred to as “gap space GP”. The height of the gap space GP along the x direction is equal to the protruding height of the rib 330 along the same direction.
 図3に示されるように、複数のリブ330は、中央凸部320のy方向側と-y方向側のそれぞれにおいて、上下方向に沿って並ぶように形成されている。 As shown in FIG. 3, the plurality of ribs 330 are formed along the vertical direction on each of the y direction side and the −y direction side of the central convex portion 320.
 中央凸部320のy方向側に形成されているそれぞれのリブ330は、中央凸部320から、蓄冷材容器300のうちy方向側の端部に向けて伸びるように形成されている。同様に、中央凸部320の-y方向側に形成されているそれぞれのリブ330は、中央凸部320から、蓄冷材容器300のうち-y方向側の端部に向けて伸びるように形成されている。いずれのリブ330も、中央凸部320から蓄冷材容器300の端部に近づくほど、下方側に向かう方向に伸びている。 Each rib 330 formed on the y direction side of the central convex portion 320 is formed to extend from the central convex portion 320 toward an end portion on the y direction side of the cool storage material container 300. Similarly, the respective ribs 330 formed on the −y direction side of the central convex portion 320 are formed to extend from the central convex portion 320 toward the end of the cool storage material container 300 on the −y direction side. ing. Each rib 330 also extends in the downward direction toward the end of the cold storage material container 300 from the central convex portion 320.
 それぞれのリブ330と中央凸部320とは互いに繋がっている。ここでいう「繋がっている」というのは、リブ330と中央凸部320との間に隙間が形成されておらず、且つ、蓄冷材容器300のうちリブ330と中央凸部320との境界部分が、x軸に沿ってリブ330等と同じ方向に突出していることを意味する。 The respective ribs 330 and the central convex portion 320 are connected to each other. Here, “connected” means that no gap is formed between the rib 330 and the central convex portion 320, and a boundary portion between the rib 330 and the central convex portion 320 in the cool storage material container 300. Is projecting along the x-axis in the same direction as the ribs 330 and the like.
 それぞれのリブ330は、z軸に沿って並ぶように配置されている。本実施形態では、蓄冷材容器300の端部に向かってそれぞれのリブ330の伸びる方向が、互いに平行となっている。 Each rib 330 is arranged to align along the z-axis. In the present embodiment, the directions in which the respective ribs 330 extend toward the end of the cold storage material container 300 are parallel to one another.
 図2に示されるように、本実施形態では、x軸に沿った中央凸部320の突出高さが、同方向に沿ったリブ330の突出高さよりも大きくなっている。ただし、中央凸部320は、y軸に沿った両側にある第1チューブ110及び第2チューブ120のいずれに対しても当接していない。また、中央凸部320は、その先端と対向する位置に配置されたフィン200とも当接していない。このため、中央凸部320と第1チューブ110との間、中央凸部320と第2チューブ120との間、及び、中央凸部320とフィン200との間には、いずれも、空気の通る隙間が形成されている。 As shown in FIG. 2, in the present embodiment, the protrusion height of the central protrusion 320 along the x-axis is larger than the protrusion height of the rib 330 along the same direction. However, the central protrusion 320 is not in contact with any of the first tube 110 and the second tube 120 on both sides along the y-axis. Further, the central convex portion 320 is not in contact with the fin 200 disposed at a position facing the tip. Therefore, air passes between the central projection 320 and the first tube 110, between the central projection 320 and the second tube 120, and between the central projection 320 and the fin 200. A gap is formed.
 尚、図3においては、蓄冷材容器300のx方向側の面に形成された中央凸部320及びリブ330のみが示されているのであるが、蓄冷材容器300の-x方向側の面にも、図3に示されるものと同様の中央凸部320及びリブ330が形成されている。 In FIG. 3, only the central convex portion 320 and the rib 330 formed on the x-direction side surface of the cool storage material container 300 are shown. However, on the −x direction side surface of the cool storage material container 300 Also, a central convex portion 320 and a rib 330 similar to those shown in FIG. 3 are formed.
 蓄冷材容器300が以上のように形成されていることの効果について説明する。熱交換器10において冷媒の蒸発及び空気の冷却が行われると、蓄冷材容器300の表面などで結露が生じることにより、隙間空間GPでは結露水が発生する。結露水WTは、蓄冷材容器300やチューブ100の表面に滞留し、空気の流れを阻害してしまうことがある。その結果、熱交換器10における熱交換の効率が低下してしまうことがある。このような現象を防止するためには、熱交換器10の排水性能は高い方が好ましい。 The effect of the cold storage material container 300 being formed as described above will be described. When evaporation of the refrigerant and cooling of the air are performed in the heat exchanger 10, dew condensation occurs on the surface of the cold storage material container 300 and the like, whereby dew condensation water is generated in the gap space GP. The dew condensation water WT may stay on the surface of the cold storage material container 300 or the tube 100, and may block the flow of air. As a result, the efficiency of heat exchange in the heat exchanger 10 may be reduced. In order to prevent such a phenomenon, it is preferable that the heat exchange performance of the heat exchanger 10 be high.
 そこで、本実施形態では上記のように、中央凸部320と第1チューブ110との間、中央凸部320と第2チューブ120との間、及び、中央凸部320とフィン200との間のそれぞれに、空気の通る隙間を形成することとしている。このような構成においては、隙間空間GPをy方向に流れる空気が、上記それぞれの隙間を通って、中央凸部320の近傍を通過することができる。図2においては、このように空気が通過する経路が矢印によって示されている。尚、当該経路を示す矢印の一部はリブ330を貫くように描かれているのであるが、これは、互いに隣り合うリブ330の間を通る経路を示している。 Therefore, in the present embodiment, as described above, between the central projection 320 and the first tube 110, between the central projection 320 and the second tube 120, and between the central projection 320 and the fin 200. In each case, a gap through which air passes is formed. In such a configuration, air flowing in the clearance space GP in the y direction can pass through the respective clearances and pass through the vicinity of the central convex portion 320. In FIG. 2, the path through which air passes is indicated by an arrow in this manner. In addition, although a part of the arrow which shows the said path | route is drawn so that the rib 330 may be penetrated, this shows the path | route which passes between the ribs 330 adjacent to each other.
 隙間空間GPにおいて蓄冷材容器300等の表面に滞留している結露水は、上記のような空気の流れによって外部に排出されることとなる。このように、本実施形態に係る熱交換器10では中央凸部320によって空気の流れが妨げられない、このため、中央凸部320を形成して蓄冷材容器300の容積を十分に確保した構成としながらも、熱交換器10の排水性能を十分に確保することが可能となっている。 Condensed water staying on the surface of the cold storage material container 300 or the like in the gap space GP is discharged to the outside by the flow of air as described above. As described above, in the heat exchanger 10 according to the present embodiment, the flow of the air is not blocked by the central convex portion 320. Therefore, the central convex portion 320 is formed to sufficiently secure the volume of the cold storage material container 300. However, it is possible to secure sufficient drainage performance of the heat exchanger 10.
 このような効果を十分に得るためには、上下方向に沿って伸びる中央凸部320の範囲を、チューブ100の上端から下端に至るまでの範囲を包含するような範囲とすることが好ましい。つまり、中央凸部320の上端のz座標が、チューブ100の上端のz座標以上となっており、中央凸部320の下端のz座標が、チューブ100の下端のz座標以下となっていることが好ましい。 In order to obtain such an effect sufficiently, it is preferable that the range of the central convex portion 320 extending along the vertical direction is a range that includes the range from the upper end to the lower end of the tube 100. That is, the z coordinate of the upper end of the central convex portion 320 is equal to or greater than the z coordinate of the upper end of the tube 100, and the z coordinate of the lower end of the central convex portion 320 is equal to or less than the z coordinate of the lower end of the tube 100 Is preferred.
 中央凸部320を上下方向に沿って伸びるように形成したことのもう一つの効果について説明する。図2に示されるように、本実施形態の蓄冷材容器300の内部には、インナーフィン310が収容されている。インナーフィン310によって、蓄冷材容器300と、蓄冷材HMとの間の熱伝達がより効率的に行われる。図2のようにz軸に沿って見た場合には、インナーフィン310は、蓄冷材容器300の内部に形成された空間SPのうち、略全体に亘るような範囲に配置されている。 Another effect of forming the central projection 320 so as to extend in the vertical direction will be described. As shown in FIG. 2, the inner fins 310 are accommodated in the cold storage material container 300 of the present embodiment. Heat transfer between the cold storage material container 300 and the cold storage material HM is performed more efficiently by the inner fins 310. When viewed along the z-axis as shown in FIG. 2, the inner fins 310 are disposed in a range extending substantially the whole of the space SP formed inside the cold storage material container 300.
 ただし、空間SPのうち中央凸部320の内側の部分には、インナーフィン310は存在していない。このため、中央凸部320の内側の空間は、z軸に沿って直線状に伸びる空間となっており、その途中はインナーフィン310によって分断されていない。 However, the inner fin 310 does not exist in a portion of the space SP inside the central convex portion 320. For this reason, the space inside the central protrusion 320 is a space extending linearly along the z-axis, and the middle fin is not divided by the inner fin 310.
 同様に、空間SPのうちリブ330の内側の部分にも、インナーフィン310は存在していない。このため、それぞれのリブ330の内側の空間は、リブ330の長手方向に沿って直線状に伸びる空間となっており、その途中はインナーフィン310によって分断されていない。 Similarly, the inner fin 310 does not exist in the portion of the space SP inside the rib 330. For this reason, the space inside each rib 330 is a space extending linearly along the longitudinal direction of the rib 330, and the middle fin is not divided by the inner fin 310.
 図3において符号301が付されているのは、蓄冷材容器300の製造時において、蓄冷材容器300の内部に蓄冷材HMを注入するための注入口となる部分である。以下では、当該部分のことを「注入口301」とも称する。注入口301は、中央凸部320のz方向側端部よりも、更にz方向側となる位置に形成されている。 In FIG. 3, reference numeral 301 is a portion serving as an injection port for injecting the cold storage material HM into the cold storage material container 300 when the cold storage material container 300 is manufactured. Hereinafter, the portion is also referred to as “inlet 301”. The inlet 301 is formed at a position further to the z direction side than the z direction side end of the central convex portion 320.
 注入口301から蓄冷材容器300の内部に注入された冷媒は、その一部が、中央凸部320の内側の経路を通って下方側へと移動する。当該経路は、上記のようにインナーフィン310によって分断されていないので、冷媒は蓄冷材容器300の下端までスムーズに流入することができる。 A portion of the refrigerant injected from the inlet 301 into the interior of the cold storage material container 300 moves downward through the path inside the central convex portion 320. Since the path is not divided by the inner fins 310 as described above, the refrigerant can flow smoothly to the lower end of the cold storage material container 300.
 先に述べたように、本実施形態では、それぞれのリブ330と中央凸部320とは互いに繋がっている。このため、中央凸部320の内側の経路を通って下方側へと移動する冷媒の一部は、リブ330の内側の空間に流入し、リブ330の長手方向に沿った経路を移動する。当該経路は、やはりインナーフィン310によって分断されていないので、冷媒は、蓄冷材容器300のy方向側端部及び-y方向側端部までスムーズに流入することができる。図3においては、以上のように冷媒の流入する経路の一部が矢印によって示されている。 As described above, in the present embodiment, the respective ribs 330 and the central convex portion 320 are connected to each other. For this reason, a part of the refrigerant moving downward through the inner path of the central protrusion 320 flows into the space inside the rib 330 and moves in the path along the longitudinal direction of the rib 330. Since the path is not divided by the inner fins 310 as well, the refrigerant can flow smoothly to the y-direction end and the −y-direction end of the cold storage material container 300. In FIG. 3, as described above, a part of the path through which the refrigerant flows is indicated by the arrow.
 以上のように冷媒の流入する経路は、蓄冷材容器300の内部においてインナーフィン310の位置ずれ等が生じた場合であっても、インナーフィン310によって分断されることなく常に確保される。このため、蓄冷材容器300の内部への冷媒の注入を常にスムーズに行い、短時間のうちに完了させることが可能となる。 As described above, even if the positional displacement or the like of the inner fin 310 occurs inside the cool storage material container 300, the route through which the refrigerant flows is always secured without being divided by the inner fin 310. Therefore, it is possible to always smoothly inject the refrigerant into the cold storage material container 300 and complete the injection in a short time.
 上記の例においては、それぞれのリブ330が直線状に伸びるような形状の突起として形成されていた。このような態様に替えて、それぞれのリブ330が、例えば円形の突起として形成されているような態様であってもよい。 In the above-mentioned example, each rib 330 was formed as a projection shaped to extend linearly. Alternatively, each rib 330 may be formed as, for example, a circular protrusion.
 第2実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 The second embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
 図4では、本実施形態に係る蓄冷材容器300の一部が、図3と同様にx方向側から見て描かれている。同図に示されるように、本実施形態では、中央凸部320の-y方向側に形成されているそれぞれのリブ330が、中央凸部320から-y方向側の端部に近づくほど、上方側に向かう方向に伸びるように形成されている。一方、中央凸部320のy方向側に形成されているそれぞれのリブ330は、第1実施形態(図3)と同様に、中央凸部320からy方向側の端部に近づくほど、下方側に向かう方向に伸びるように形成されている。 In FIG. 4, a part of the cool storage material container 300 according to the present embodiment is drawn as seen from the x direction side as in FIG. 3. As shown in the figure, in the present embodiment, the ribs 330 formed on the -y direction side of the central convex portion 320 move upward from the central convex portion 320 toward the end in the -y direction. It is formed to extend in the direction toward the side. On the other hand, the respective ribs 330 formed on the y direction side of the central convex portion 320 are lower side closer to the end portion on the y direction side from the central convex portion 320 as in the first embodiment (FIG. 3) It is formed to extend in the direction of
 このように、一部のリブ330が、端部に近づくほど下方側に向かう方向、とは異なる方向に伸びるように形成されている場合でも、第1実施形態で説明したものと同様の効果を奏する。 As described above, even when the ribs 330 are formed to extend in a direction different from the downward direction toward the end, the same effect as that described in the first embodiment can be obtained. Play.
 本実施形態では、中央凸部320よりも-y方向側の部分においても、傾斜したリブ330の表面に沿って、重力により結露水はy方向側へと移動する。このような結露水の移動は、y方向に沿った空気の流れによって促進されやすい。このため、熱交換器10の排水性能を更に高めることが可能となっている。 In the present embodiment, the dew condensation water moves to the y direction side along the surface of the inclined rib 330 also in the portion on the −y direction side with respect to the central protrusion 320. Such movement of condensed water is likely to be promoted by the flow of air along the y direction. For this reason, it is possible to further improve the drainage performance of the heat exchanger 10.
 第3実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 A third embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
 図5は、本実施形態に係る熱交換器10の構成を、図2と同様の視点で描かれた断面図によって示すものである。同図に示されるように、本実施形態では、x軸に沿ったリブ330の突出高さと、同方向に沿った中央凸部320の突出高さとが互いに同じとなっている。このような構成においても、第1実施形態で説明したものと同様の効果を奏する。更に本実施形態では、中央凸部320の突出高さを第1実施形態の場合よりも低くすることで、隙間空間GPを通過する空気の流れが、中央凸部320によって更に妨げられにくくなる。その結果、熱交換器10の排水性能が更に高くなるという効果も得られる。 FIG. 5 shows the configuration of the heat exchanger 10 according to the present embodiment by a cross-sectional view drawn from the same viewpoint as FIG. 2. As shown in the figure, in the present embodiment, the protrusion height of the rib 330 along the x-axis and the protrusion height of the central protrusion 320 along the same direction are the same. Even in such a configuration, the same effects as those described in the first embodiment can be obtained. Furthermore, in the present embodiment, by making the protruding height of the central protrusion 320 lower than in the case of the first embodiment, the flow of air passing through the gap space GP is further less likely to be blocked by the central protrusion 320. As a result, an effect is obtained that the drainage performance of the heat exchanger 10 is further enhanced.
 第4実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 A fourth embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
 図6は、本実施形態に係る蓄冷材容器300を、x軸に沿って見た場合の外観を示す図である。同図に示されるように、本実施形態に係る蓄冷材容器300には、中央凸部320とは別に、端部側凸部321が形成されている。端部側凸部321は、中央凸部320やリブ330と同様に、蓄冷材容器300を構成する板材の一部を、x軸に沿って外側に突出させることにより形成されている。端部側凸部321は、中央凸部320と同様にz軸に沿って伸びるように形成されている。また、端部側凸部321は、中央凸部320よりもy方向側に形成されたそれぞれのリブ330の、y方向側の端部同士を繋ぐように形成されている。 FIG. 6 is a view showing the appearance of the cool storage material container 300 according to the present embodiment as viewed along the x-axis. As shown in the figure, in the cool storage material container 300 according to the present embodiment, an end-side convex portion 321 is formed separately from the central convex portion 320. The end-side convex portion 321 is formed by projecting a part of the plate material constituting the cold storage material container 300 to the outside along the x-axis, similarly to the central convex portion 320 and the rib 330. The end-side convex portion 321 is formed to extend along the z-axis similarly to the central convex portion 320. Further, the end-side convex portions 321 are formed so as to connect the y-direction end portions of the ribs 330 formed on the y-direction side with respect to the central convex portion 320.
 図示は省略するが、空間SPのうち端部側凸部321の内側の部分には、インナーフィン310は存在していない。このため、端部側凸部321の内側の空間は、z軸に沿って直線状に伸びる空間となっており、その途中はインナーフィン310によって分断されていない。 Although illustration is omitted, the inner fin 310 does not exist in a portion of the space SP on the inner side of the end-side convex portion 321. For this reason, the space inside the end-side convex portion 321 is a space extending linearly along the z-axis, and the middle thereof is not divided by the inner fin 310.
 このため、注入口301から蓄冷材容器300の内部に注入された冷媒は、その一部が、端部側凸部321の内側の経路を通って下方側へと移動する。当該経路は、上記のようにインナーフィン310によって分断されていないので、冷媒は蓄冷材容器300の下端までスムーズに流入することができる。 For this reason, a part of the refrigerant injected from the injection port 301 into the inside of the cold storage material container 300 moves downward through the path inside the end-side convex portion 321. Since the path is not divided by the inner fins 310 as described above, the refrigerant can flow smoothly to the lower end of the cold storage material container 300.
 このように、本実施形態では、端部側凸部321を形成することにより、蓄冷材容器300の内部に注入された冷媒の通る経路が更に増加している。このため、蓄冷材容器300の内部への冷媒の注入をよりスムーズに行うことが可能となる。 As described above, in the present embodiment, by forming the end-portion-side convex portion 321, the passage path of the refrigerant injected into the cold storage material container 300 is further increased. For this reason, it becomes possible to perform the injection of the refrigerant into the inside of the cool storage material container 300 more smoothly.
 本実施形態の変形例について、図7を参照しながら説明する。同図に示される変形例のように、端部側凸部321を-y方向側となる位置に形成してもよい。つまり、端部側凸部321を、中央凸部320よりも-y方向側に形成されたそれぞれのリブ330の、-y方向側の端部同士を繋ぐように形成してもよい。 A modification of the present embodiment will be described with reference to FIG. As in the modification shown in the figure, the end-side convex portion 321 may be formed at a position on the −y direction side. That is, the end-side convex portions 321 may be formed to connect the end portions on the -y direction side of the respective ribs 330 formed on the -y direction side with respect to the central convex portion 320.
 本実施形態の他の変形例について、図8を参照しながら説明する。同図に示される変形例のように、端部側凸部321を、y方向側となる位置及び-y方向側となる位置の両方に形成してもよい。つまり、中央凸部320よりもy方向側に形成されたそれぞれのリブ330の、y方向側の端部同士を繋ぐ端部側凸部321と、中央凸部320よりも-y方向側に形成されたそれぞれのリブ330の、-y方向側の端部同士を繋ぐ端部側凸部321と、の両方を有する構成としてもよい。 Another modification of the present embodiment will be described with reference to FIG. As in the modification shown in the figure, the end-side convex portions 321 may be formed at both the position in the y direction and the position in the −y direction. That is, the end-side convex portion 321 connecting the y-direction end portions of the ribs 330 formed on the y-direction side with respect to the central convex portion 320 and the −y-direction side relative to the central convex portion 320 It is good also as composition which has both the end side convex part 321 which connects the end parts by the side of-y of each of these ribs 330.
 第5実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 A fifth embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
 図9は、本実施形態に係る熱交換器10の構成を、図2と同様の視点で描かれた断面図によって示すものである。同図に示されるように、本実施形態では、y軸に沿って並ぶ一対の第1チューブ110と第2チューブ120とが、板状の接続部130を介して互いに繋がっている。このような第1チューブ110、第2チューブ120、及び接続部130を有するチューブ100は、例えば押出成形によって一体に形成することができる。このように、第1チューブ110と第2チューブ120とが互いに分離していないような構成であっても、第1実施形態で説明したものと同様の効果を奏する。 FIG. 9 shows the configuration of the heat exchanger 10 according to the present embodiment by a cross-sectional view drawn from the same viewpoint as FIG. As shown in the figure, in the present embodiment, a pair of first tubes 110 and second tubes 120 aligned along the y-axis are connected to each other via a plate-like connection portion 130. The tube 100 having the first tube 110, the second tube 120, and the connecting portion 130 can be integrally formed, for example, by extrusion. Thus, even if the first tube 110 and the second tube 120 are not separated from each other, the same effects as those described in the first embodiment can be obtained.
 第6実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 A sixth embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
 図10に示されるのは、本実施形態に係る蓄冷材容器300を、x軸に沿って見た場合の外観を示す図である。図11に示されるのは、本実施形態に係る熱交換器10の構成を、図2と同様の視点で描かれた断面図によって示すものである。 FIG. 10 shows the appearance of the cool storage material container 300 according to the present embodiment as viewed along the x-axis. What is shown in FIG. 11 is a cross-sectional view of the configuration of the heat exchanger 10 according to the present embodiment, drawn from the same viewpoint as FIG.
 図10に示されるように、蓄冷材容器300のうち、空気の通過する方向(つまりy方向)に沿った端部となる位置のことを、以下では「端部E1」及び「端部E2」と表記する。尚、上記における「空気の通過する方向に沿った端部」には、空気の流れ方向における上流側の端部と、下流側の端部との両方が含まれる。 As shown in FIG. 10, in the cool storage material container 300, the position to be the end along the air passing direction (that is, the y direction) will be referred to as “end E1” and “end E2” below. It is written as In the above, “the end along the air passing direction” includes both the upstream end and the downstream end in the air flow direction.
 端部E1は、蓄冷材容器300のうちy方向側、すなわち空気の通過する方向に沿った下流側の端部である。また、端部E2は、蓄冷材容器300のうち-y方向側、すなわち空気の通過する方向に沿った上流側の端部である。 The end E1 is the y-direction side of the cold storage material container 300, that is, the downstream end along the air passing direction. The end E2 is an end on the -y direction side of the cool storage material container 300, that is, the upstream end along the direction in which the air passes.
 中央凸部320のy方向側に形成されているそれぞれのリブ330は、中央凸部320から端部E1に向けて伸びるように形成されている。これらのリブ330は、端部E1に近づくほど、その上下方向に沿った幅が小さくなっている。 The respective ribs 330 formed on the y-direction side of the central convex portion 320 are formed to extend from the central convex portion 320 toward the end E1. The width along the up and down direction of these ribs 330 decreases as they approach the end E1.
 同様に、中央凸部320の-y方向側に形成されているそれぞれのリブ330は、中央凸部320から端部E2に向けて伸びるように形成されている。これらのリブ330は、端部E2に近づくほど、その上下方向に沿った幅が小さくなっている。 Similarly, the respective ribs 330 formed on the −y direction side of the central convex portion 320 are formed to extend from the central convex portion 320 toward the end E2. The width along the up and down direction of these ribs 330 decreases as they approach the end E2.
 本実施形態では、中央凸部320のy方向側に配置されたリブ330の形状及び配置と、中央凸部320の-y方向側に配置されたリブ330の形状及び配置とが、互いに対称となっている。また、図10においては、蓄冷材容器300のx方向側の面に形成された中央凸部320及びリブ330のみが示されているのであるが、蓄冷材容器300の-x方向側の面にも、図10に示されるものと同様の中央凸部320及びリブ330が形成されている。 In the present embodiment, the shape and arrangement of the ribs 330 arranged on the y direction side of the central protrusion 320 and the shape and arrangement of the ribs 330 arranged on the −y direction side of the central protrusion 320 are mutually symmetrical. It has become. Further, although only the central convex portion 320 and the rib 330 formed on the surface in the x direction of the cold storage material container 300 are shown in FIG. 10, the surface on the −x direction side of the cold storage material container 300 is shown. Also, a central convex portion 320 and a rib 330 similar to those shown in FIG. 10 are formed.
 説明の便宜上、互いに隣り合う一対のリブ330の、上下方向に沿った間隔のことを、以下では「上下間隔」と称する。本実施形態では、それぞれのリブ330の幅が、上記のように中央凸部320側から端部E1(又は端部E2)側に行くほど次第に小さくなっていることにより、上記の上下間隔は、中央凸部320側から端部E1(又は端部E2)側に行くほど次第に大きくなっている。 For convenience of explanation, the distance along the up and down direction of the pair of ribs 330 adjacent to each other is hereinafter referred to as “vertical distance”. In the present embodiment, the width of each rib 330 gradually decreases from the center convex portion 320 side to the end E1 (or end E2) side as described above, so that the above-mentioned vertical interval is The distance from the central convex portion 320 to the end E1 (or the end E2) increases.
 このような形状のリブ330が蓄冷材容器300に形成されていることの効果について、図12を参照しながら説明する。図12(A)に示されるのは、本実施形態における複数のリブ330のうち、互いに隣り合う一対のリブ330の間において、結露水の凍結が生じる様子である。図12(B)に示されるのは、比較例における複数のリブ330のうち、互いに隣り合う一対のリブ330の間において、結露水の凍結が生じる様子である。 The effect that the rib 330 of such a shape is formed in the cool storage material container 300 is demonstrated, referring FIG. What is shown in FIG. 12A is a state in which the dew condensation water freezes between a pair of ribs 330 adjacent to each other among the plurality of ribs 330 in the present embodiment. What is shown in FIG. 12B is a state in which the dew condensation water freezes between a pair of ribs 330 adjacent to each other among the plurality of ribs 330 in the comparative example.
 図12(B)に示される比較例では、それぞれのリブ330の上下方向に沿った幅が、全体で一様となっている。このため、互いに隣り合うリブ330間の間隔である上下間隔も、中央凸部320側から端部E1側に至るまで全体で一様となっている。 In the comparative example shown in FIG. 12 (B), the width along the vertical direction of each rib 330 is uniform throughout. For this reason, the vertical interval which is the interval between the ribs 330 adjacent to each other is also uniform from the central protrusion 320 side to the end E1 side as a whole.
 このような構成の蓄冷材容器300を備えた熱交換器10において、冷媒の蒸発が行われると、蓄冷材容器300の表面などで結露が生じることにより、隙間空間GPでは(液体の)結露水WTが発生する。冷媒の温度が0℃以下まで低下すると、結露水WTが凍結することにより、隙間空間GPでは氷Cが発生する。 In the heat exchanger 10 provided with the cold storage material container 300 having such a configuration, condensation occurs on the surface of the cold storage material container 300 when evaporation of the refrigerant is performed, so that condensation water (of liquid) is generated in the gap space GP. WT occurs. When the temperature of the refrigerant decreases to 0 ° C. or less, the dew condensation water WT is frozen, whereby ice C is generated in the gap space GP.
 氷Cは、蓄冷材容器300とチューブ100とが接合されている部分、すなわちリブ330の先端部分を起点として発生し、そこから周囲へと広がって行くように成長する傾向がある。図12(B)には、このように氷Cが成長していく過程の途中の状態が模式的に示されている。 Ice C is generated starting from the portion where the cold storage material container 300 and the tube 100 are joined, that is, the tip portion of the rib 330, and tends to grow from there to the periphery. The state in the middle of the process in which the ice C is thus grown is schematically shown in FIG. 12 (B).
 こ比較例においては、上記のように、中央凸部320側から端部E1側に至るまで上下間隔が一様となっている。このような構成においては、リブ330の先端部分で発生した氷Cが成長していく過程において、図12(B)に示されるように、氷Cの内側に液体の結露水WTが閉じ込められてしまうことがある。 In the comparative example, as described above, the vertical distance from the central convex portion 320 to the end E1 is uniform. In such a configuration, in the process of growing the ice C generated at the tip portion of the rib 330, as shown in FIG. 12B, the condensed water WT of the liquid is trapped inside the ice C. There are times when
 氷Cの内側に閉じ込められた結露水WTも、その後は冷却されて凍結することとなる。ただし、当該結露水WTの凍結は閉じられた空間内で行われるので、結露水WTの凍結時における膨張により、周囲にあるチューブ100や蓄冷材容器300に対して大きな体積膨張力が加えられてしまうことがある。その結果、チューブ100や蓄冷材容器300等の一部が破損してしまう可能性がある。 The dew condensation water WT trapped inside the ice C is also cooled and frozen thereafter. However, since the condensation water WT is frozen in a closed space, a large volumetric expansion force is applied to the surrounding tube 100 and the cold storage material container 300 by the expansion of the condensation water WT during freezing. There are times when As a result, there is a possibility that a part of the tube 100, the cold storage material container 300 and the like may be damaged.
 このような破損を防止するためには、各リブ330の突出高さをある程度高くして、隙間空間GPの排水性能を十分に高めておくことも考えられる。しかしながら、各リブ330の突出高さを高くすると、限られたスペースに配置された蓄冷材容器300の容積が小さくなってしまう。この場合、蓄冷材容器300に収容される蓄冷材HMの量が少なくなり、蓄冷の機能が短時間しか発揮されないこととなるので、好ましくない。 In order to prevent such breakage, it is also conceivable to increase the protruding height of each rib 330 to a certain extent to sufficiently enhance the drainage performance of the gap space GP. However, when the protruding height of each rib 330 is increased, the volume of the cold storage material container 300 disposed in the limited space is reduced. In this case, the amount of the cold storage material HM stored in the cold storage material container 300 decreases, and the function of cold storage is only exhibited for a short time, which is not preferable.
 そこで、本実施形態においては、リブ330の形状を工夫することによって、上記のような凍結に伴う蓄冷材容器300の破損を防止することとしている。 So, in this embodiment, it is supposed that breakage of the cool storage material container 300 accompanying freezing as mentioned above is prevented by devising the shape of the rib 330. As shown in FIG.
 図12(A)に示される本実施形態においては、中央凸部320側から端部E1側(又は端部E2側)に行くほど上下間隔が次第に大きくなっている。このため、氷Cの成長が始まった後においても、端部E1側は氷Cによっては閉じられておらず、当該部分から外側へと結露水WTが排出され得る状態となっている。 In the present embodiment shown in FIG. 12A, the vertical interval gradually increases from the central convex portion 320 side toward the end E1 side (or the end E2 side). Therefore, even after the growth of ice C starts, the end E1 side is not closed by the ice C, and the dew condensation water WT can be discharged from the portion to the outside.
 図12(A)に示される構成においては、氷Cは、中央凸部320側から端部E1側に向けて成長していくこととなる。その結果、端部E1側の結露水WTは、他の部分よりも後において(つまり最後に)氷Cとなるので、これによって内側の結露水WTが閉じ込められてしまうことが無い。このため、図12(B)の比較例のように、凍結による体積膨張力がチューブ100等の部材に働いてしまうことが無い。 In the configuration shown in FIG. 12A, the ice C grows from the central convex portion 320 side toward the end E1 side. As a result, the dew condensation water WT on the end E1 side becomes ice C later (that is, finally) than the other part, so that the inside condensation water WT is not trapped. For this reason, as in the comparative example of FIG. 12B, the volumetric expansion force due to freezing does not act on the members such as the tube 100 and the like.
 このように、本実施形態に係る熱交換器10では、それぞれのリブ330の上下方向に沿った幅が、端部E1(又は端部E2)に近づくほど小さくなっていることにより、結露水WTの凍結に伴う部材の破損が防止されている。尚、リブ330の高さを必要以上に高くする必要が無いので、蓄冷材容器300の容積が犠牲になってしまうことが無い。 As described above, in the heat exchanger 10 according to the present embodiment, the width of the respective ribs 330 along the vertical direction is smaller as it gets closer to the end E1 (or the end E2), the condensed water WT Damage to the parts due to the freezing of the In addition, since it is not necessary to make the height of the rib 330 higher than necessary, the volume of the cold storage material container 300 is not sacrificed.
 尚、以上のような構成、すなわち、それぞれのリブ330の上下方向に沿った幅が、端部E1(又は端部E2)に近づくほど小さくなっている構成は、これまでに説明した第1実施形態から第5実施形態までのいずれの熱交換器10にも採用することができる。 The above-described configuration, that is, the configuration in which the width along the vertical direction of each rib 330 becomes smaller toward the end E1 (or the end E2) is the first embodiment described above. It can be adopted in any of the heat exchangers 10 from the embodiment to the fifth embodiment.
 図13の拡大図に示されるように、本実施形態においては、最も端部E1(又は端部E2)に近い位置における上下間隔L12が、空気の流れ方向に沿って最も中央側となる位置における上下間隔L11の1.5倍となっている。本発明者らが実験等によって確認したところによれば、端部側の上下間隔L12を、中央側の上下間隔L11の1.5倍以上確保しておけば、結露水WTが氷Cの内側に閉じ込められてしまう現象を確実に防止し得ることが判明している。 As shown in the enlarged view of FIG. 13, in the present embodiment, the vertical distance L12 at the position closest to the end E1 (or the end E2) is at the most central position along the air flow direction. It is 1.5 times the vertical interval L11. According to the results confirmed by the present inventors through experiments etc., if the vertical distance L12 on the end side is maintained at least 1.5 times the vertical distance L11 on the central side, the condensed water WT is inside the ice C It has been found that the phenomenon of being trapped inside can be reliably prevented.
 尚、上記のような構成、すなわち、端部側の上下間隔L12を、中央側の上下間隔L11の1.5倍以上とした構成は、これまでに説明した第1実施形態から第5実施形態までのいずれの熱交換器10にも採用することができる。 The above-described configuration, that is, the configuration in which the vertical distance L12 on the end side is 1.5 times or more the vertical distance L11 on the central side is the first to fifth embodiments described above. It can be adopted in any heat exchanger 10 up to.
 図10及び図13に示されるように、本実施形態におけるリブ330はいずれも、中央凸部320側から端部E1(又は端部E2)側に近づくに従って、下方側に向かう方向に伸びている。このような構成においては、リブ330間に存在する液体の結露水WTが、重力によって端部側へと排出されやすくなる。このため、結露水WTが氷Cの内側に閉じ込められてしまう現象が更に防止される。尚、複数のリブ330のうち、端部側に近づくほど下方側に向かう方向に伸びるように形成されているものは、本実施形態のように全てのリブ330であってよく、一部のリブ330のみであってもよい。 As shown in FIGS. 10 and 13, the ribs 330 in this embodiment all extend downward as approaching the end E1 (or the end E2) from the central convex portion 320. . In such a configuration, the dew condensation water WT of the liquid existing between the ribs 330 is easily discharged to the end side by gravity. Therefore, the phenomenon that the condensed water WT is trapped inside the ice C is further prevented. Among the plurality of ribs 330, those which are formed so as to extend in the downward direction toward the end side may be all the ribs 330 as in this embodiment, and some of the ribs Only 330 may be sufficient.
 図10及び図13に示されるように、本実施形態におけるリブ330はいずれも、中央凸部320に繋がっている。このため、リブ330が中央凸部320に繋がっていない構成に比べて、蓄冷材容器300の容積が更に大きく確保されている。これにより、蓄冷材容器300の冷却性能をより長時間に亘って発揮することができる。 As shown in FIGS. 10 and 13, the ribs 330 in the present embodiment are all connected to the central protrusion 320. For this reason, compared with the structure which the rib 330 does not connect with the center convex part 320, the volume of the cool storage material container 300 is ensured still larger. Thereby, the cooling performance of the cool storage material container 300 can be exhibited over a long time.
 その他の構成について説明する。図14には、本実施形態に係る熱交換器10のうち、中央凸部320の近傍の部分における構成が模式的に示されている。同図においては、リブ330の図示が省略されている。 Other configurations will be described. The structure in the vicinity of the center convex part 320 among the heat exchangers 10 which concern on this embodiment is typically shown by FIG. In the figure, illustration of the rib 330 is omitted.
 同図において符号101が付されているのは、チューブ100(具体的には第2チューブ120)のうち中央凸部320側の端部である。以下では、当該端部のことを「端部101」とも称する。端部101と中央凸部320との間の距離が、図14では「L13」として示されている。このL13は、中央凸部320とチューブ100との間の最短距離ということができる。尚、中央凸部320とチューブ100との間に形成されている隙間のことを、以下では「隙間GPa」とも称する。 In the same figure, reference numeral 101 is attached to an end of the tube 100 (specifically, the second tube 120) on the central convex portion 320 side. Hereinafter, the end is also referred to as “end 101”. The distance between the end 101 and the central protrusion 320 is shown as "L13" in FIG. This L13 can be said to be the shortest distance between the central projection 320 and the tube 100. The gap formed between the central convex portion 320 and the tube 100 is hereinafter also referred to as a “gap GPa”.
 図14では、不図示のリブ330の突出高さ、すなわち隙間空間GPのx軸に沿った高さが、「L14」として示されている。本実施形態では、中央凸部320とチューブ100との間の距離であるL13が、リブ330の突出高さであるL14よりも大きくなっている。 In FIG. 14, the protruding height of the rib 330 (not shown), that is, the height of the clearance space GP along the x axis is indicated as “L14”. In the present embodiment, a distance L13 between the central convex portion 320 and the tube 100 is larger than a projection height L14 of the rib 330.
 仮に、L13がL14よりも小さい場合には、端部101と中央凸部320との間となる部分で、比較的早い段階で凍結が完了してしまう可能性がある。この場合、端部101の近傍であり且つ隙間空間GPの内側に存在する結露水(液体)が、端部101と中央凸部320との間に生じた氷によって閉じ込められてしまう可能性がある。つまり、図12(A)を参照しながら説明したような結露水WTの排出が、氷によって妨げられてしまう可能性がある。 If L13 is smaller than L14, freezing may be completed at a relatively early stage in the portion between the end 101 and the central convex portion 320. In this case, condensation water (liquid) existing in the vicinity of the end portion 101 and inside the gap space GP may be trapped by the ice generated between the end portion 101 and the central convex portion 320. . That is, the discharge of the condensed water WT as described with reference to FIG. 12A may be hindered by the ice.
 しかしながら、本実施形態ではL13がL14よりも大きくなっているので、端部101と中央凸部320との間が、早い段階で氷により塞がれてしまうことが無い。このため、端部101の近傍においても、閉じ込められた結露水の体積膨張力により部材が破損してしまう現象が確実に防止される。 However, in the present embodiment, since L13 is larger than L14, the space between the end portion 101 and the central convex portion 320 is not blocked by ice at an early stage. For this reason, also in the vicinity of the end portion 101, the phenomenon that the member is damaged due to the volumetric expansion force of the confined dew condensation water is reliably prevented.
 以上のように、本実施形態では、中央凸部320とチューブ100との間に隙間GPaが形成されている。これにより、リブ330のうち中央凸部320側の部分においても、隙間GPaから外部へと結露水が排出される。また、中央凸部320とチューブ100との間の距離であるL13が、リブ330の突出高さであるL14よりも大きくなっていることにより、隙間GPaが氷によって塞がれてしまうことが防止されている。 As described above, in the present embodiment, the gap GPa is formed between the central convex portion 320 and the tube 100. As a result, condensed water is discharged to the outside from the gap GPa also in the portion of the rib 330 on the central convex portion 320 side. In addition, since L13 which is the distance between the central convex portion 320 and the tube 100 is larger than L14 which is the protruding height of the rib 330, the gap GPa is prevented from being blocked by ice. It is done.
 尚、上記のような構成、すなわち、L13をL14よりも大きくした構成は、これまでに説明した第1実施形態から第5実施形態までのいずれの熱交換器10にも採用することができる。 The above-described configuration, that is, the configuration in which L13 is larger than L14, can be employed in any of the heat exchangers 10 of the first to fifth embodiments described above.
 第7実施形態について、図15を参照しながら説明する。以下では、上記の第6実施形態と異なる点について主に説明し、第6実施形態と共通する点については適宜説明を省略する。 A seventh embodiment will be described with reference to FIG. In the following, points different from the sixth embodiment described above will be mainly described, and descriptions of points in common with the sixth embodiment will be omitted as appropriate.
 図15では、本実施形態に係る蓄冷材容器300の一部が、図13と同様にx方向側から見て描かれている。同図に示されるように、本実施形態では、中央凸部320の-y方向側に形成されているそれぞれのリブ330が、中央凸部320から端部E2に近づくほど、上方側に向かう方向に伸びるように形成されている。一方、中央凸部320のy方向側に形成されているそれぞれのリブ330は、第6実施形態(図13)と同様に、中央凸部320から端部E1に近づくほど、下方側に向かう方向に伸びるように形成されている。 In FIG. 15, a part of the cool storage material container 300 according to the present embodiment is drawn as seen from the x direction side as in FIG. As shown in the figure, in the present embodiment, the respective ribs 330 formed on the -y direction side of the central convex portion 320 move upward as they approach the end E2 from the central convex portion 320. It is formed to extend to On the other hand, in the same way as in the sixth embodiment (FIG. 13), the ribs 330 formed on the y-direction side of the central convex portion 320 are directed downward as they approach the end E1 from the central convex portion 320. It is formed to extend to
 このように、一部のリブ330が、端部に近づくほど下方側に向かう方向、とは異なる方向に伸びるように形成されている場合でも、第6実施形態で説明したものと同様の効果を奏する。 As described above, even when the ribs 330 are formed to extend in a direction different from the direction toward the lower side toward the end, the same effects as those described in the sixth embodiment can be obtained. Play.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to the specific example. However, the present disclosure is not limited to these specific examples. Those appropriately modified in design by those skilled in the art are also included in the scope of the present disclosure as long as the features of the present disclosure are included. The elements included in the above-described specific examples, and the arrangement, conditions, and shapes thereof are not limited to those illustrated, but can be appropriately modified. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (8)

  1.  冷媒との熱交換によって空気を冷却する熱交換器(10)であって、
     内部を冷媒が通るチューブ(100)と、
     前記チューブと隣り合うように配置されたフィン(200)と、
     前記フィンとは反対側となる位置において、前記チューブと隣り合うように配置された容器であって、内部に蓄冷材(HM)を収容する蓄冷材容器(300)と、を備え、
     前記チューブは、空気が通過する方向に沿って並ぶように配置された第1チューブ(110)と第2チューブ(120)とを有しており、
     前記蓄冷材容器には、
     前記チューブに向けて突出する複数のリブ(330)と、
     前記第1チューブと前記第2チューブとの間となる部分に向けて突出する中央凸部(320)と、が形成されており、
     前記中央凸部と前記第1チューブとの間、前記中央凸部と前記第2チューブとの間、及び、前記中央凸部と前記フィンとの間には、いずれも隙間が形成されている熱交換器。
    A heat exchanger (10) for cooling air by heat exchange with a refrigerant,
    A tube (100) through which the refrigerant passes, and
    A fin (200) disposed adjacent to the tube;
    And a regenerator material container (300) which is disposed adjacent to the tube at a position opposite to the fins and which accommodates a regenerator material (HM) therein.
    The tubes have a first tube (110) and a second tube (120) arranged to line up with the direction of air passage.
    In the cold storage material container,
    A plurality of ribs (330) projecting towards the tube;
    A central projection (320) is formed which protrudes toward the portion between the first tube and the second tube,
    A thermal gap is formed between the central convex portion and the first tube, between the central convex portion and the second tube, and between the central convex portion and the fin. Exchanger.
  2.  前記リブと前記中央凸部とが繋がっている、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the rib and the central convex portion are connected.
  3.  前記リブの突出高さと、前記中央凸部の突出高さとが互いに同じである、請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the projection height of the rib and the projection height of the central convex portion are the same as each other.
  4.  それぞれの前記リブは、
     前記蓄冷材容器のうち空気が通過する方向に沿った端部に向けて伸びるように形成されており、前記端部に近づくほど、その上下方向に沿った幅が小さくなっている、請求項1乃至3のいずれか1項に記載の熱交換器。
    Each said rib is
    The storage medium container is formed to extend toward an end along the direction in which air passes in the cold storage material container, and the width along the vertical direction decreases as the end approaches the end. The heat exchanger according to any one of to 3.
  5.  互いに隣り合う一対の前記リブの、上下方向に沿った間隔を上下間隔としたときに、
     最も前記端部に近い位置における前記上下間隔が、空気の流れ方向に沿って最も中央側となる位置における前記上下間隔の1.5倍以上である、請求項4に記載の熱交換器。
    When the space | interval along the up-down direction of a pair of said adjacent rib is made into an up-and-down space,
    The heat exchanger according to claim 4, wherein the vertical distance at the position closest to the end is 1.5 or more times the vertical distance at the position closest to the center in the air flow direction.
  6.  少なくとも一部の前記リブは、前記端部に近づくほど下方側に向かう方向に伸びている、請求項4又は5に記載の熱交換器。 The heat exchanger according to claim 4 or 5, wherein at least a part of the ribs extend in a downward direction toward the end.
  7.  前記中央凸部と前記チューブとの間の距離が、前記リブの突出高さよりも大きい、請求項1乃至6のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 6, wherein a distance between the central convex portion and the tube is larger than a protruding height of the rib.
  8.  前記中央凸部は上下方向に沿って伸びるように形成されている、請求項1乃至7のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 7, wherein the central convex portion is formed to extend in the vertical direction.
PCT/JP2018/039000 2017-11-29 2018-10-19 Heat exchanger WO2019107001A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-228891 2017-11-29
JP2017228891 2017-11-29
JP2018190748A JP2019099137A (en) 2017-11-29 2018-10-09 Heat exchanger
JP2018-190748 2018-10-09

Publications (1)

Publication Number Publication Date
WO2019107001A1 true WO2019107001A1 (en) 2019-06-06

Family

ID=66663926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039000 WO2019107001A1 (en) 2017-11-29 2018-10-19 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2019107001A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012947A (en) * 2009-06-05 2011-01-20 Denso Corp Heat regenerator
JP2012237474A (en) * 2011-05-10 2012-12-06 Denso Corp Cold storage heat exchanger
CN204494917U (en) * 2015-01-30 2015-07-22 株式会社电装 The partitioned portion of cold-accumulating box stretch out structure and heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012947A (en) * 2009-06-05 2011-01-20 Denso Corp Heat regenerator
JP2012237474A (en) * 2011-05-10 2012-12-06 Denso Corp Cold storage heat exchanger
CN204494917U (en) * 2015-01-30 2015-07-22 株式会社电装 The partitioned portion of cold-accumulating box stretch out structure and heat exchanger

Similar Documents

Publication Publication Date Title
JP6623912B2 (en) Evaporator
US9340089B2 (en) Cooling unit of air conditioning apparatus for vehicle
WO2010150774A1 (en) Evaporator with cold storage function
US20100223949A1 (en) Evaporator with cool storage function
CN108826758B (en) Evaporator with cold accumulation function
WO2013186983A1 (en) Cold storage heat exchanger
US20110154855A1 (en) Evaporator with cool storage function
US20160114646A1 (en) Cold storage heat exchanger
JP2013061136A5 (en)
JP5274175B2 (en) Cold storage heat exchanger
CN104676979A (en) Evaporator having cool storage function
WO2015045344A1 (en) Cold-storage heat exchanger
US20130212881A1 (en) Method of manufacturing evaporator with cool storage function
JP2014040958A (en) Cold-storage heat exchanger
CN103375944A (en) Evaporator for air conditioning system
US10696128B2 (en) Cold storage heat exchanger
WO2019107001A1 (en) Heat exchanger
JP6658885B2 (en) Cool storage heat exchanger
JP2019099137A (en) Heat exchanger
JP2010243066A (en) Cold storage heat exchanger
WO2016174852A1 (en) Evaporator
JP6206209B2 (en) Cold storage heat exchanger
JP6720927B2 (en) Heat exchanger
WO2017057174A1 (en) Cold storage heat exchanger
JP6327386B2 (en) Cold storage heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884781

Country of ref document: EP

Kind code of ref document: A1