WO2013186983A1 - Cold storage heat exchanger - Google Patents

Cold storage heat exchanger Download PDF

Info

Publication number
WO2013186983A1
WO2013186983A1 PCT/JP2013/003040 JP2013003040W WO2013186983A1 WO 2013186983 A1 WO2013186983 A1 WO 2013186983A1 JP 2013003040 W JP2013003040 W JP 2013003040W WO 2013186983 A1 WO2013186983 A1 WO 2013186983A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
melting point
regenerator
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2013/003040
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 壇上
山田 淳司
井上 誠司
西田 伸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US14/407,844 priority Critical patent/US20150168047A1/en
Publication of WO2013186983A1 publication Critical patent/WO2013186983A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/026Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat with different heat storage materials not coming into direct contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a cold storage heat exchanger used in a refrigeration cycle apparatus.
  • a refrigeration cycle apparatus is used as an air conditioner. Attempts have been made to provide limited cooling even when the refrigeration cycle apparatus is stopped. For example, in a vehicle air conditioner, a refrigeration cycle apparatus is driven by a traveling engine. For this reason, if the engine stops while the vehicle is temporarily stopped, the refrigeration cycle apparatus stops. In order to improve fuel efficiency, so-called idle stop vehicles that stop the engine while the vehicle is stopped, such as waiting for a signal, are increasing. In such an idle stop vehicle, there is a problem that the refrigeration cycle apparatus stops while the vehicle is stopped (the engine is stopped), thereby impairing the comfort in the passenger compartment. In addition, there is also a problem that if the engine is restarted even when the vehicle is stopped in order to maintain a feeling of air conditioning, improvement in fuel efficiency is hindered.
  • Patent Documents 1 to 5 disclose techniques for solving such problems.
  • the indoor heat exchanger in order to maintain the air conditioning feeling even when the engine is stopped, the indoor heat exchanger has a cold storage function. Thus, cold energy is stored while the vehicle is running, and this cold air is used while the vehicle is stopped.
  • Patent Document 1 describes a cool storage container that encloses a cool storage material arranged behind the air flow of a conventional evaporator.
  • Patent Documents 2 to 5 describe a system in which a small-capacity cold storage container is provided adjacent to a tube constituting a refrigerant flow path of an evaporator, and a cold storage material is enclosed therein.
  • the evaporator with a cool storage function of patent documents 2-5 collects cold air in the cool storage material by solidifying the cool storage material in the cool storage container during the operation of the air-conditioning compressor. And during the idle stop, the solid cool storage material is melted and the cool air is released into the air, so that the temperature change of the blown air is suppressed until the cool storage material is completely melted, and the air conditioning feeling is maintained. Can do.
  • the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a cold storage heat exchanger that can maintain a cold storage function in a wide range of air temperatures.
  • a cold storage heat exchanger that exchanges heat with air flowing around
  • the cold storage heat exchanger includes a refrigerant passage through which a refrigerant flows, a refrigerant
  • a cold storage container that houses therein a cold storage material that exchanges heat with the refrigerant flowing through the passage to keep the amount of heat from the refrigerant, and the cold storage container contains a plurality of cold storage materials having different melting points.
  • the plurality of regenerator materials include a regenerator material having a high melting point and a regenerator material having a low melting point, and the regenerator material having a high melting point is provided upstream of the regenerator material having a low melting point.
  • a plurality of cool storage materials having different melting points are accommodated in the cool storage container.
  • fusing point is provided in the upstream of an air flow rather than the cool storage material with low melting
  • FIG. 3 is an enlarged cross-sectional view showing a part of a III-III cross section of FIG. 1. It is sectional drawing which shows the cool storage container 47 of 1st Embodiment. It is a figure for demonstrating the cool storage state of two cool storage materials 50a, 50b of 1st Embodiment. It is an expanded sectional view showing a part of section of evaporator 40A of a 2nd embodiment.
  • the evaporator 40 constitutes a refrigeration cycle apparatus (not shown).
  • the refrigeration cycle apparatus is used for, for example, a vehicle air conditioner.
  • the refrigeration cycle apparatus includes a compressor, a radiator, a decompressor, and an evaporator 40. These components are connected in an annular shape by piping and constitute a refrigerant circulation path.
  • the compressor is driven by a power source for running the vehicle. For this reason, when the power source stops, the compressor also stops.
  • the compressor sucks the refrigerant from the evaporator 40, compresses it, and discharges it to the radiator.
  • the radiator cools the high-temperature refrigerant.
  • the radiator is also called a condenser.
  • the decompressor decompresses the refrigerant cooled by the radiator.
  • the decompressor can be provided by a fixed throttle, a temperature expansion valve, or an ejector.
  • the evaporator 40 evaporates the refrigerant decompressed by the decompressor and cools the medium.
  • the evaporator 40 cools the air supplied to the passenger compartment.
  • the refrigeration cycle apparatus can further include an internal heat exchange for exchanging heat between the high-pressure side liquid refrigerant and the low-pressure side gas refrigerant, and a receiver or accumulator tank element for storing excess refrigerant.
  • the power source can be provided by an internal combustion engine or an electric motor.
  • the evaporator 40 is a cold storage heat exchanger and has a refrigerant passage member branched into a plurality of branches.
  • the refrigerant passage member is provided by a metal passage member such as aluminum.
  • the refrigerant passage member is provided by headers 41 to 44 positioned in a pair and a plurality of refrigerant tubes 45 connecting the headers 41 to 44.
  • the first header 41 and the second header 42 form a pair, and are arranged in parallel at a predetermined distance from each other.
  • the third header 43 and the fourth header 44 also form a set and are arranged in parallel with a predetermined distance from each other.
  • a plurality of refrigerant tubes 45 are arranged at equal intervals between the first header 41 and the second header 42. Each refrigerant pipe 45 communicates with the corresponding header at its end.
  • a first heat exchanging portion 48 is formed by the first header 41, the second header 42, and a plurality of refrigerant tubes 45 arranged therebetween.
  • a plurality of refrigerant tubes 45 are arranged at equal intervals between the third header 43 and the fourth header 44.
  • Each refrigerant pipe 45 communicates with the corresponding header at its end.
  • a second heat exchanging portion 49 is formed by the third header 43, the fourth header 44, and a plurality of refrigerant tubes 45 arranged therebetween.
  • the evaporator 40 has a first heat exchange unit 48 and a second heat exchange unit 49 arranged in two layers. With respect to the air flow direction, the second heat exchange unit 49 is arranged on the upstream side, and the first heat exchange unit 48 is arranged on the downstream side.
  • a joint (not shown) as a refrigerant inlet is provided at the end of the first header 41.
  • the inside of the first header 41 is partitioned into a first partition and a second partition by a partition plate (not shown) provided approximately at the center in the length direction.
  • the plurality of refrigerant tubes 45 are divided into a first group and a second group.
  • the refrigerant is supplied to the first section of the first header 41.
  • the refrigerant is distributed from the first section to a plurality of refrigerant tubes 45 belonging to the first group.
  • the refrigerant flows into the second header 42 through the first group and is collected.
  • the refrigerant is distributed again from the second header 42 to the plurality of refrigerant tubes 45 belonging to the second group.
  • the refrigerant flows into the second section of the first header 41 through the second group.
  • a joint (not shown) as a refrigerant outlet is provided.
  • the inside of the third header 43 is partitioned into a first partition and a second partition by a partition plate (not shown) provided substantially at the center in the length direction.
  • the plurality of refrigerant tubes 45 are divided into a first group and a second group.
  • the first section of the third header 43 is adjacent to the second section of the first header 41.
  • the first section of the third header 43 and the second section of the first header 41 are in communication.
  • the refrigerant flows from the second section of the first header 41 into the first section of the third header 43.
  • the refrigerant is distributed from the first section to a plurality of refrigerant tubes 45 belonging to the first group.
  • the refrigerant flows into the fourth header 44 through the first group and is collected.
  • the refrigerant is distributed again from the fourth header 44 to the plurality of refrigerant tubes 45 belonging to the second group.
  • the refrigerant flows into the second section of the third header 43 through the second group.
  • coolant in a U shape is formed.
  • the refrigerant in the second section of the third header 43 flows out from the refrigerant outlet and flows toward the compressor.
  • the refrigerant pipe 45 is a multi-hole pipe having a plurality of refrigerant passages 45a through which the refrigerant flows.
  • the refrigerant tube 45 is also called a flat tube. This multi-hole tube can be obtained by an extrusion manufacturing method.
  • the plurality of refrigerant passages 45 a extend along the longitudinal direction of the refrigerant pipe 45 and open at both ends of the refrigerant pipe 45.
  • the plurality of refrigerant tubes 45 are arranged in a row.
  • the plurality of refrigerant tubes 45 are arranged so that their main surfaces face each other.
  • the plurality of refrigerant tubes 45 partition an air passage 460 for exchanging heat with air between two adjacent refrigerant tubes 45 and an accommodating portion 461 for accommodating a cold storage container 47 described later. .
  • the evaporator 40 includes fins 46 for increasing the contact area with the air supplied to the passenger compartment.
  • the fins 46 are provided by a plurality of corrugated fins 46.
  • the fins 46 are disposed in an air passage 460 that is defined between two adjacent refrigerant tubes 45.
  • the fin 46 is thermally coupled to the two adjacent refrigerant tubes 45.
  • the fins 46 are joined to the two adjacent refrigerant tubes 45 by a joining material excellent in heat transfer.
  • a brazing material can be used as the bonding material.
  • the fin 46 has a shape in which a thin metal plate such as aluminum is bent in a wave shape, and includes an air passage 460 called a louver.
  • the evaporator 40 further includes a plurality of cold storage containers 47.
  • the cold storage container 47 has a flat cylindrical shape.
  • the cold storage container 47 is closed by squeezing the cylinder in the thickness direction at both ends in the longitudinal direction, and spaces for accommodating the cold storage materials 50a and 50b are formed inside.
  • the cold storage container 47 has a wide main surface on both surfaces.
  • the two main walls that provide these two main surfaces are each arranged in parallel with the refrigerant pipe 45. And it arrange
  • tube 45 may contact at least one surface, and this embodiment both surfaces.
  • a plurality of cold storage containers 47 are disposed between two adjacent refrigerant pipes 45, and in this embodiment, two cold storage cases 60 are arranged.
  • Each cold storage case 60 is arranged along the flow direction of the intake air.
  • the plurality of cool storage cases 60 are arranged to be different cool storage cases 60 on the upstream side and the downstream side of the air flow.
  • Each cold storage case 60 accommodates cold storage materials 50a and 50b having different melting points independently.
  • each of the cold storage cases 60 is provided with one or more sealing ports 61 for sealing the cold storage materials 50a and 50b.
  • the sealing port 61 is provided on the upstream side (windward side) or the downstream side (leeward side) of the air flow in the outer periphery of the cold storage case 60.
  • the cold storage case 47 is referred to.
  • the cold storage container 47 is thermally coupled to two refrigerant tubes 45 disposed on both sides thereof.
  • the cold storage container 47 is joined to the two adjacent refrigerant pipes 45 by a joining material excellent in heat transfer.
  • a resin material such as a brazing material or an adhesive can be used.
  • the cold storage container 47 is brazed to the refrigerant pipe 45.
  • a large amount of brazing material is disposed between the cold storage container 47 and the refrigerant pipe 45 in order to connect them with a wide cross-sectional area.
  • This brazing material can be provided by placing a brazing foil between the cold storage container 47 and the refrigerant pipe 45. As a result, the cold storage container 47 exhibits good heat conduction with the refrigerant pipe 45.
  • each cold storage container 47 is substantially equal to the thickness of the air passage 460. Therefore, the thickness of the cold storage container 47 is substantially equal to the thickness of the fin 46.
  • the fin 46 and the cold storage container 47 can be interchanged. As a result, the arrangement pattern of the plurality of fins 46 and the plurality of cold storage containers 47 can be set with a high degree of freedom.
  • the thickness of the cold storage container 47 is clearly larger than the thickness of the refrigerant pipe 45.
  • This configuration is effective for accommodating a large amount of cool storage material 50a, 50b.
  • the lengths of the cold storage containers 47 are equal to each other. Further, the length in which the two cold storage cases 60 are arranged has substantially the same length as the fins 46. As a result, the cold storage container 47 occupies substantially the entire longitudinal direction of the accommodating portion 461 defined between the two adjacent refrigerant tubes 45. Accordingly, the two cold storage cases 60 arranged have the same area in contact with the refrigerant pipe 45. In other words, the two cold storage cases 60 arranged have the same area for heat exchange with the refrigerant pipe 45. Further, the gap between the cold storage container 47 and the headers 41 to 44 can be filled with a section of the fin 46 or a filler such as resin.
  • the plurality of refrigerant tubes 45 are arranged at substantially constant intervals.
  • a plurality of gaps are formed between the plurality of refrigerant tubes 45.
  • a plurality of fins 46 and a plurality of cold storage containers 47 are arranged with a predetermined regularity.
  • a part of the gap is an air passage 460.
  • the remaining part of the gap is the accommodating part 461 of the cold storage container 47.
  • 10% or more and 50% or less is the accommodating portion 461.
  • a cool storage container 47 is disposed in the housing portion 461.
  • the cold storage containers 47 are arranged almost uniformly distributed throughout the evaporator 40.
  • the two refrigerant tubes 45 located on both sides of the cold storage container 47 define an air passage 460 for exchanging heat with air on the side opposite to the cold storage container 47.
  • two refrigerant tubes 45 are disposed between the two fins 46, and one cold storage container 47 including two cold storage cases 60 is disposed between the two refrigerant tubes 45. Yes.
  • the cold storage container 47 is made of metal such as aluminum and aluminum alloy.
  • a material containing a metal having a lower ionization tendency than hydrogen as a main material or a component is used.
  • the cold storage materials 50a and 50b are materials that exchange heat with the refrigerant flowing through the refrigerant passage 45a to keep the amount of heat from the refrigerant.
  • the cold storage materials 50a and 50b are retained by solidifying the heat from the refrigerant, and are released to the outside by melting the retained heat.
  • the cold storage material 50a having a high melting point is provided upstream of the cold storage material 50b having a low melting point. Therefore, in FIG. 3, the cool storage material 50a of the upper cool storage case 60 has a higher melting point than the cool storage material 50b of the lower cool storage case 60.
  • the melting point of the high-melting-point regenerator material 50a which is a regenerator material having a high melting point, may be not less than the cooling temperature zone during cooling, and may be not less than 5 degrees Celsius and not more than 25 degrees Celsius.
  • the melting point of the low melting point regenerator material 50b which is a regenerator material having a low melting point, may be 0 degrees Celsius or more and 15 degrees Celsius or less. Further, when the melting point of the high melting point regenerator material 50a is 5 degrees Celsius or more and 15 degrees Celsius or less, the low melting point regenerator material 50b has a melting point of 0 degrees Celsius or more and lower than the melting point of the high melting point regenerator material 50a.
  • the melting point of the low melting point regenerator material 50b may be 0 ° C. or higher and 10 ° C. or lower so that it can be solidified and melted even at low temperatures such as in winter.
  • the necessary heat quantity of the two cold storage materials 50a and 50b may be about 200 kJ / kg or more in consideration of the capacity of the cold storage container 47. As a result, it is possible to secure the necessary cold storage capacity during idle stop.
  • organic materials have low thermal conductivity and large supercooling except for paraffinic materials.
  • chemical heat storage chemical stability, toxic poison, corrosiveness, reaction promoting means (pressure holding, stirring required). Therefore, in this embodiment, two types of paraffin are used as the cold storage materials 50a and 50b.
  • the paraffin used for the high melting point regenerator material 50a may have 16 or 15 carbon atoms.
  • the paraffin used for the low melting-point cold storage material 50b should just have 15 or 14 carbon atoms.
  • the carbon number of the paraffin of the high melting point regenerator material 50a is 16
  • the carbon number of the low melting point regenerator material 50b may be 15 or 14
  • the carbon number of the paraffin of the high melting point regenerator material 50a is 15, The number of carbon atoms in the paraffin of the melting point regenerator material 50b may be 14.
  • the compressor When there is an air conditioning request from the passenger, for example, a cooling request, the compressor is driven by a power source.
  • the compressor sucks the refrigerant from the evaporator 40, compresses it, and discharges it.
  • the refrigerant discharged from the compressor is radiated by the radiator.
  • the refrigerant discharged from the radiator is decompressed by the decompressor and supplied to the evaporator 40.
  • the refrigerant evaporates in the evaporator 40, cools the cold storage container 47, and cools the surrounding air through the fins 46.
  • the power source is stopped to reduce energy consumption, and the compressor is stopped.
  • the refrigerant in the evaporator 40 gradually loses its cooling capacity.
  • the regenerator materials 50a and 50b gradually cool and cool the air.
  • the heat of the air is conducted to the cold storage materials 50a and 50b through the fins 46, the refrigerant pipe 45, and the cold storage container 47.
  • the refrigeration cycle apparatus cools the cold storage materials 50a and 50b again, and the cold storage materials 50a and 50b store cold.
  • the refrigerant temperature is the high melting point regenerator 50a (in FIG. 5).
  • A) is below the melting point of both of the low melting point regenerator material 50b (B in FIG. 5) and solidifies to cool.
  • the solidified cold storage material melts and releases the cool air accumulated while being released into the air, thereby suppressing the temperature rise of the blown air and extending the idle stop time.
  • the refrigerant temperature is higher than when the load is high.
  • the high-melting-point regenerator material 50a can solidify and store cold air when the air conditioner is activated.
  • the high-melting-point regenerator material 50a is released while the cold air accumulated while being melted is released into the air, thereby suppressing the temperature rise of the blown air and extending the idling stop time.
  • cool storage container 47 two cool storage materials 50a and 50b are separately accommodated as the plurality of cool storage materials 50a and 50b having different melting points. Yes. And the cool storage material 50a with high melting
  • the sealing port 61 is provided on the upstream side or the downstream side of the air flow in the outer periphery of the cold storage case 60. Therefore, since the sealing port 61 is not provided in the air passage 460, it is possible to prevent a ventilation resistance.
  • a second embodiment will be described using FIG. 6 and FIG.
  • the present embodiment is characterized in that the cold storage cases 60A are arranged so as to contact each other. Since it is the structure which is contacting in this way, space can be utilized more effectively. Therefore, the amount of the regenerator materials 50a and 50b that can be filled can be increased.
  • the operations and effects in the other configurations are the same as those in the first embodiment.
  • the present embodiment is characterized in that the inside of the cold storage container 47C is partitioned by the partition 70, and the cold storage materials 50a and 50b having different melting points are accommodated in the partitioned spaces.
  • the cool storage container 47C is provided with one sealing port 61 for sealing the cool storage materials 50a and 50b. Therefore, two kinds of cool storage materials 50a and 50b are sealed from one sealing port 61. Therefore, the configuration is simplified, and handling as the cold storage container 47C is facilitated.
  • the sealing port 61 is provided on the upstream side or the downstream side of the air flow in the outer periphery of the cold storage container 47C, and is provided on the leeward side in the present embodiment.
  • the present embodiment is characterized in that the cold storage cases 60E are integrally formed so as to be in contact with each other, and the two sealing ports 61 are on the same side. Even with such a configuration, the same operations and effects as those of the second embodiment described above can be achieved.
  • a sixth embodiment will be described with reference to FIG.
  • the present embodiment is characterized in that the cold storage cases 60F are integrally formed so as to be in contact with each other, and the two sealing ports 61 are on the same side. Furthermore, the one inlet 61 is constituted by a pipe 61F. Even with such a configuration, the same operations and effects as those of the second embodiment described above can be achieved.
  • a seventh embodiment will be described with reference to FIG.
  • the present embodiment is characterized in that the cold storage case 60G is arranged on one surface of the refrigerant passage 45a.
  • the configuration shown in FIG. 12 is a so-called drone cup type. By arranging it on one side of the refrigerant passage 45a, the entire space can be saved. Even with such a configuration, it is possible to achieve the same operations and effects as in the first embodiment. (Eighth embodiment)
  • an eighth embodiment will be described with reference to FIGS. 13 and 14.
  • This embodiment is also characterized in that cold storage cases 60H and 60I are arranged on one side of the refrigerant passage 45a, as in the seventh embodiment.
  • the two cold storage cases 60H and 60I extend along the air flow direction and are arranged along the air flow direction. Moreover, in the example shown in FIG.
  • the cool storage case 60H is arrange
  • the cold storage case 60I is disposed so as to be in contact with the air flow direction.
  • one of the adjacent cool storage containers 47J is characterized in that the high melting point cold storage material 50a is accommodated and the other is accommodated in the low melting point cold storage material 50b.
  • This embodiment can be applied when the cooling capacity of the evaporator 40J is sufficiently high.
  • the cold storage container 47J for storing the high melting point cold storage material 50a and the cold storage container 47J for storing the low melting point cold storage material 50b are alternately arranged between the refrigerant tubes 45. 15 and 16 show a cold storage container 47J in which the high melting point cold storage material 50a is accommodated.
  • the refrigerant temperature is the high melting point regenerator 50a (A in FIG. 17). ), Lower than both melting points of the low-melting-point regenerator material 50b (B in FIG. 17), and solidifies to cool. And during idle stop, the solidified cold storage material melts and releases the cool air accumulated while being released into the air, thereby suppressing the temperature rise of the blown air and extending the idle stop time.
  • the refrigerant temperature is higher than when the load is high.
  • the high-melting-point regenerator material 50a can solidify and store cold air when the air conditioner is activated.
  • the high-melting-point regenerator material 50a is released while the cold air accumulated while being melted is released into the air, thereby suppressing the temperature rise of the blown air and extending the idling stop time.
  • the high melting point regenerator material 50a is disposed on the windward side and the low melting point regenerator material 50b is disposed on the leeward side. be able to.
  • the cooling capacity of the evaporator 40J is sufficiently high as in the present embodiment and the temperature of the evaporator 40J decreases substantially uniformly in the air flow direction, it is not necessary to arrange the high melting point regenerator 50a only on the windward side. . Therefore, even if the single cold storage container 47J is arranged in the air flow direction as in the present embodiment, the same operations and effects as those in the first embodiment can be achieved.
  • the cold storage containers 47J having different melting points are alternately arranged (high melting point-low melting point-high melting point ...), but are not limited to each other, for example, not one by one but two by two. They may be arranged alternately (high melting point-high melting point-low melting point-low melting point-high melting point-high melting point ...), or may be alternately arranged in units of three. In other words, at least some of the cool storage materials 50a and 50b accommodated in the plurality of cool storage containers 47J may be configured to have a different melting point from the cool storage material 50b accommodated in the other cool storage containers. .
  • the number of the cold storage containers 47J for storing the high melting point cold storage material 50a and the number of the cold storage containers 47J for storing the low melting point cold storage material 50b are the same.
  • the melting point and the capacity of the cool storage material 50 accommodated in each cool storage container 47J may be selected as appropriate.
  • the cold storage materials 50a and 50b are two types, but are not limited to two types, and may be three or more types. As a result, cold storage can be performed in stages, and a wider range of air-conditioning temperature can be accommodated.
  • the refrigerant pipe 45 can be provided by a multi-hole extruded pipe or a pipe formed by bending a plate material on which dimples are formed. Furthermore, the fins can be omitted. Such a heat exchanger is also called a finless type. Instead of fins, protrusions extending from the refrigerant pipe may be provided to promote heat exchange with air.
  • the cold storage case 60 may not be arranged on the outer periphery of the refrigerant pipe 45, and the cold storage case may be arranged in the refrigerant passage.
  • the number of cold storage cases 60 may be one.
  • a heat exchanger may be placed horizontally and a regenerator material having a high melting point and a high specific gravity and a regenerator material having a low melting point and a low specific gravity may be disposed and enclosed in a single container. Accordingly, a cold storage material having a high melting point can exist upstream of the air flow without preparing a plurality of cold storage cases and dividing them.
  • regenerator materials there are a plurality of types of regenerator materials. However, a mixture of the respective regenerator materials may be employed.
  • the present disclosure can be applied to an evaporator having various flow paths.
  • the present disclosure may be applied to an evaporator such as a one-way type or a front and rear U-turn type.
  • the present disclosure may be applied to refrigeration cycle apparatuses such as refrigeration, heating, and hot water supply. Furthermore, the present disclosure may be applied to a refrigeration cycle apparatus including an ejector.
  • an inner fin may be provided inside the cold storage container 47.
  • an opening that exposes the top of the inner fin may be provided in the outer shell, and the top of the inner fin may be directly joined to the refrigerant pipe.

Abstract

A cold storage heat exchanger (40) that exchanges heat with air flowing at the periphery of the heat exchanger, the heat exchanger including: refrigerant passages (45a) in which a refrigerant circulates; and cold storage containers (47, 47C, 47D, 47E, 47F, 47J) in which are housed cold storage materials (50a, 50b) that exchange heat with the refrigerant circulating in the refrigerant passages (45a) and retain an amount of heat. A plurality of the cold storage materials (50a, 50b) having different melting points are housed in the cold storage containers (47, 47C, 47D, 47E, 47F, 47J).

Description

蓄冷熱交換器Cold storage heat exchanger 関連出願の相互参照Cross-reference of related applications
 本開示は、2012年6月14日に出願された日本出願番号2012-135042号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2012-135042, filed on June 14, 2012, the contents of which are incorporated herein by reference.
 本開示は、冷凍サイクル装置に用いられる蓄冷熱交換器に関するものである。 The present disclosure relates to a cold storage heat exchanger used in a refrigeration cycle apparatus.
 従来、空調装置には、冷凍サイクル装置が用いられている。この冷凍サイクル装置が停止している状態においても、限定された冷房を提供する試みがなされている。例えば、車両用空調装置では、走行用エンジンによって冷凍サイクル装置が駆動される。このため、車両が一時的に停車している間にエンジンが停止すると、冷凍サイクル装置が停止する。燃費の向上を図るため、信号待ち等の車両停止中にエンジンを停止する、いわゆるアイドルストップ車が増加している。このようなアイドルストップ車では、車両停車中(エンジン停止中)に冷凍サイクル装置が停止することで車室内の快適性を損なうという問題がある。また空調感を維持するために車両停止中においてもエンジンを再起動させると、燃費の向上の妨げになるという問題もある。 Conventionally, a refrigeration cycle apparatus is used as an air conditioner. Attempts have been made to provide limited cooling even when the refrigeration cycle apparatus is stopped. For example, in a vehicle air conditioner, a refrigeration cycle apparatus is driven by a traveling engine. For this reason, if the engine stops while the vehicle is temporarily stopped, the refrigeration cycle apparatus stops. In order to improve fuel efficiency, so-called idle stop vehicles that stop the engine while the vehicle is stopped, such as waiting for a signal, are increasing. In such an idle stop vehicle, there is a problem that the refrigeration cycle apparatus stops while the vehicle is stopped (the engine is stopped), thereby impairing the comfort in the passenger compartment. In addition, there is also a problem that if the engine is restarted even when the vehicle is stopped in order to maintain a feeling of air conditioning, improvement in fuel efficiency is hindered.
 このような問題を解決する技術が、特許文献1~5に開示されている。特許文献1~5には、エンジン停止中においても空調感を維持するため、室内用熱交換器に蓄冷機能を持たせている。これによって車両走行中に冷熱を蓄え、この冷気を車両停止中に用いている。 Patent Documents 1 to 5 disclose techniques for solving such problems. In Patent Documents 1 to 5, in order to maintain the air conditioning feeling even when the engine is stopped, the indoor heat exchanger has a cold storage function. Thus, cold energy is stored while the vehicle is running, and this cold air is used while the vehicle is stopped.
 特許文献1には、蓄冷材を封入した蓄冷容器を従来のエバポレータの空気流れ後方へ配置したものが記載されている。また特許文献2~5には、蒸発器の冷媒流路を構成するチューブに隣接する形で小容量の蓄冷容器を設け、ここに蓄冷材を封入するものが記載されている。 Patent Document 1 describes a cool storage container that encloses a cool storage material arranged behind the air flow of a conventional evaporator. Patent Documents 2 to 5 describe a system in which a small-capacity cold storage container is provided adjacent to a tube constituting a refrigerant flow path of an evaporator, and a cold storage material is enclosed therein.
特開2009-188518号公報JP 2009-188518 A 特開2010-91250号公報JP 2010-91250 A 特開2010-112670号公報JP 2010-112670 A 特開2010-149814号公報JP 2010-149814 A 特開2011-12947号公報 特許文献2~5に記載の蓄冷機能付きエバポレータは、空調用コンプレッサの運転中に蓄冷容器内の蓄冷材が凝固することで冷気を蓄冷材に溜めている。そして、アイドルストップ中には逆に固体蓄冷材が融解しながら冷気を空気中に放出することで、蓄冷材が完全に融解するまでは吹出し空気の温度変化が抑えられ、空調感を維持することができる。JP, 2011-12947, A The evaporator with a cool storage function of patent documents 2-5 collects cold air in the cool storage material by solidifying the cool storage material in the cool storage container during the operation of the air-conditioning compressor. And during the idle stop, the solid cool storage material is melted and the cool air is released into the air, so that the temperature change of the blown air is suppressed until the cool storage material is completely melted, and the air conditioning feeling is maintained. Can do.
 しかし、アイドルストップ中に蓄冷材が凝固できない温度環境下で使用する場合には、十分な量の冷気を溜めることができない。したがって、長時間冷気を放出することができないので、空調感を維持するために、アイドルストップ時間が短縮されるという問題がある。 However, when used in a temperature environment where the cold storage material cannot solidify during idle stop, a sufficient amount of cold air cannot be stored. Therefore, since it is not possible to release cold air for a long time, there is a problem that the idle stop time is shortened in order to maintain the air conditioning feeling.
 そこで、本開示は前述の問題点を鑑みてなされたものであり、広範囲な空気温度における蓄冷機能を維持することができる蓄冷熱交換器を提供することを目的とする。 Therefore, the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a cold storage heat exchanger that can maintain a cold storage function in a wide range of air temperatures.
 前述の目的を達成するために、本開示の1つの態様において、周囲を流れる空気と熱交換する蓄冷熱交換器であって、蓄冷熱交換器は、内部に冷媒が流通する冷媒通路と、冷媒通路を流通する冷媒と熱交換して冷媒からの熱量を留める蓄冷材を内部に収容する蓄冷容器と、を含み、蓄冷容器には、融点が異なる複数の蓄冷材が収容されている。蓄冷熱交換器は、複数の蓄冷材は融点が高い蓄冷材と融点が低い蓄冷材を含み、融点が高い蓄冷材は、融点が低い蓄冷材よりも空気流れの上流側に設けられる。 In order to achieve the above-mentioned object, in one aspect of the present disclosure, a cold storage heat exchanger that exchanges heat with air flowing around, the cold storage heat exchanger includes a refrigerant passage through which a refrigerant flows, a refrigerant A cold storage container that houses therein a cold storage material that exchanges heat with the refrigerant flowing through the passage to keep the amount of heat from the refrigerant, and the cold storage container contains a plurality of cold storage materials having different melting points. In the regenerator heat exchanger, the plurality of regenerator materials include a regenerator material having a high melting point and a regenerator material having a low melting point, and the regenerator material having a high melting point is provided upstream of the regenerator material having a low melting point.
 このような本開示に従えば、蓄冷容器には、融点が異なる複数の蓄冷材がそれぞれ区分けして収容されている。そして、融点が高い蓄冷材は、融点が低い蓄冷材よりも空気流れの上流側に設けられる。したがって冷媒の温度が、たとえば高融点蓄冷材の融点以下であり、低融点蓄冷材の融点以上の場合には、高融点の蓄冷材のみが凝固することになる。したがって冷媒の温度が高い場合であっても、蓄冷することができる。また冷媒の温度がさらに低くなると、全ての蓄冷材が凝固することになる。したがって冷媒の温度に応じて、段階的に蓄冷することができるので、より広範囲な空気温度において蓄冷機能を維持することができる。 According to this disclosure, a plurality of cool storage materials having different melting points are accommodated in the cool storage container. And the cool storage material with high melting | fusing point is provided in the upstream of an air flow rather than the cool storage material with low melting | fusing point. Therefore, for example, when the temperature of the refrigerant is equal to or lower than the melting point of the high melting point regenerator material and is equal to or higher than the melting point of the low melting point regenerator material, only the high melting point regenerator material is solidified. Therefore, cold storage can be performed even when the temperature of the refrigerant is high. Moreover, when the temperature of a refrigerant | coolant becomes still lower, all the cool storage materials will solidify. Therefore, since cold storage can be performed in stages according to the temperature of the refrigerant, the cold storage function can be maintained in a wider range of air temperatures.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態の蒸発器40を示す正面図である。 第1実施形態の蒸発器40を示す側面図である。 図1のIII-III断面の一部を示す拡大断面図である。 第1実施形態の蓄冷容器47を示す断面図である。 第1実施形態の2つの蓄冷材50a,50bの蓄冷状態を説明するための図である。 第2実施形態の蒸発器40Aの断面の一部を示す拡大断面図である。 第2実施形態の蓄冷容器47を示す断面図である。 第3実施形態の蓄冷容器47Cを示す断面図である。 第4実施形態の蓄冷容器47Dを示す断面図である。 第5実施形態の蓄冷容器47Eを示す断面図である。 第6実施形態の蓄冷容器47Fを示す断面図である。 第7実施形態の蒸発器40Gを示す断面図である。 第8実施形態の蒸発器40Hの一例を示す断面図である。 第8実施形態の蒸発器40Iの他の例を示す断面図である。 第9実施形態の蒸発器40の一部を示す拡大断面図である。 第9実施形態の蓄冷容器47を示す断面図である。 第9実施形態の2つの蓄冷材50a,50bの蓄冷状態を説明するための図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a front view which shows the evaporator 40 of 1st Embodiment. It is a side view which shows the evaporator 40 of 1st Embodiment. FIG. 3 is an enlarged cross-sectional view showing a part of a III-III cross section of FIG. 1. It is sectional drawing which shows the cool storage container 47 of 1st Embodiment. It is a figure for demonstrating the cool storage state of two cool storage materials 50a, 50b of 1st Embodiment. It is an expanded sectional view showing a part of section of evaporator 40A of a 2nd embodiment. It is sectional drawing which shows the cool storage container 47 of 2nd Embodiment. It is sectional drawing which shows the cool storage container 47C of 3rd Embodiment. It is sectional drawing which shows the cool storage container 47D of 4th Embodiment. It is sectional drawing which shows the cool storage container 47E of 5th Embodiment. It is sectional drawing which shows the cool storage container 47F of 6th Embodiment. It is sectional drawing which shows the evaporator 40G of 7th Embodiment. It is sectional drawing which shows an example of the evaporator 40H of 8th Embodiment. It is sectional drawing which shows the other example of the evaporator 40I of 8th Embodiment. It is an expanded sectional view showing a part of evaporator 40 of a 9th embodiment. It is sectional drawing which shows the cool storage container 47 of 9th Embodiment. It is a figure for demonstrating the cool storage state of the two cool storage materials 50a and 50b of 9th Embodiment.
 以下、図面を参照しながら複数の実施形態について説明する。各実施形態で先行する実施形態で説明している事項に対応している部分には同一の参照符を付すか、または先行の参照符号に一文字追加し、重複する説明を略する場合がある。また各実施形態にて構成の一部を説明している場合、構成の他の部分は、先行して説明している実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
(第1実施形態)
 第1実施形態に関して、図1~図5を用いて説明する。蒸発器40は、冷凍サイクル装置(図示せず)を構成する。冷凍サイクル装置は、たとえば車両用の空調装置に用いられる。冷凍サイクル装置は、図示は省略するが、圧縮機、放熱器、減圧器、および蒸発器40を有する。これら構成部品は、配管によって環状に接続され、冷媒循環路を構成する。圧縮機は、車両の走行用の動力源によって駆動される。このため、動力源が停止すると、圧縮機も停止する。圧縮機は、蒸発器40から冷媒を吸引し、圧縮し、放熱器へ吐出する。放熱器は、高温冷媒を冷却する。放熱器は、凝縮器とも呼ばれる。減圧器は、放熱器によって冷却された冷媒を減圧する。減圧器は、固定の絞り、温度式膨張弁、あるいはエジェクタによって提供されうる。蒸発器40は、減圧器によって減圧された冷媒を蒸発させ、媒体を冷却する。蒸発器40は、車室に供給される空気を冷却する。
Hereinafter, a plurality of embodiments will be described with reference to the drawings. In some embodiments, portions corresponding to the matters described in the preceding embodiments may be given the same reference numerals, or one letter may be added to the preceding reference numerals, and overlapping descriptions may be omitted. In addition, when a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described in advance. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder the combination.
(First embodiment)
The first embodiment will be described with reference to FIGS. The evaporator 40 constitutes a refrigeration cycle apparatus (not shown). The refrigeration cycle apparatus is used for, for example, a vehicle air conditioner. Although not shown, the refrigeration cycle apparatus includes a compressor, a radiator, a decompressor, and an evaporator 40. These components are connected in an annular shape by piping and constitute a refrigerant circulation path. The compressor is driven by a power source for running the vehicle. For this reason, when the power source stops, the compressor also stops. The compressor sucks the refrigerant from the evaporator 40, compresses it, and discharges it to the radiator. The radiator cools the high-temperature refrigerant. The radiator is also called a condenser. The decompressor decompresses the refrigerant cooled by the radiator. The decompressor can be provided by a fixed throttle, a temperature expansion valve, or an ejector. The evaporator 40 evaporates the refrigerant decompressed by the decompressor and cools the medium. The evaporator 40 cools the air supplied to the passenger compartment.
 冷凍サイクル装置は、さらに、高圧側液冷媒と低圧側ガス冷媒とを熱交換する内部熱交換、余剰冷媒を蓄えるレシーバまたはアキュムレータのタンク要素を備えることができる。また、動力源は、内燃機関あるいは電動機によって提供されうる。 The refrigeration cycle apparatus can further include an internal heat exchange for exchanging heat between the high-pressure side liquid refrigerant and the low-pressure side gas refrigerant, and a receiver or accumulator tank element for storing excess refrigerant. The power source can be provided by an internal combustion engine or an electric motor.
 蒸発器40は、図1および図2に示すように、蓄冷熱交換器であって、複数に分岐した冷媒通路部材を有する。この冷媒通路部材は、アルミニウム等の金属製の通路部材によって提供される。冷媒通路部材は、組をなして位置づけられたヘッダ41~44と、それらヘッダ41~44の間を連結する複数の冷媒管45とによって提供されている。 As shown in FIGS. 1 and 2, the evaporator 40 is a cold storage heat exchanger and has a refrigerant passage member branched into a plurality of branches. The refrigerant passage member is provided by a metal passage member such as aluminum. The refrigerant passage member is provided by headers 41 to 44 positioned in a pair and a plurality of refrigerant tubes 45 connecting the headers 41 to 44.
 第1ヘッダ41と第2ヘッダ42とは、組をなしており、互いに所定距離れて平行に配置されている。第3ヘッダ43と第4ヘッダ44とも、組をなしており、互いに所定距離れて平行に配置されている。第1ヘッダ41と第2ヘッダ42との間には、複数の冷媒管45が等間隔に配列されている。各冷媒管45は、その端部において対応するヘッダ内に連通している。これら第1ヘッダ41と、第2ヘッダ42と、それらの間に配置された複数の冷媒管45によって第1熱交換部48が形成されている。第3ヘッダ43と第4ヘッダ44との間には、複数の冷媒管45が等間隔に配列されている。 The first header 41 and the second header 42 form a pair, and are arranged in parallel at a predetermined distance from each other. The third header 43 and the fourth header 44 also form a set and are arranged in parallel with a predetermined distance from each other. A plurality of refrigerant tubes 45 are arranged at equal intervals between the first header 41 and the second header 42. Each refrigerant pipe 45 communicates with the corresponding header at its end. A first heat exchanging portion 48 is formed by the first header 41, the second header 42, and a plurality of refrigerant tubes 45 arranged therebetween. A plurality of refrigerant tubes 45 are arranged at equal intervals between the third header 43 and the fourth header 44.
 各冷媒管45は、その端部において対応するヘッダ内に連通している。これら第3ヘッダ43と、第4ヘッダ44と、それらの間に配置された複数の冷媒管45によって第2熱交換部49が形成されている。この結果、蒸発器40は、2層に配置された第1熱交換部48と第2熱交換部49とを有する。空気の流れ方向に関して、第2熱交換部49が上流側に配置され、第1熱交換部48が下流側に配置されている。 Each refrigerant pipe 45 communicates with the corresponding header at its end. A second heat exchanging portion 49 is formed by the third header 43, the fourth header 44, and a plurality of refrigerant tubes 45 arranged therebetween. As a result, the evaporator 40 has a first heat exchange unit 48 and a second heat exchange unit 49 arranged in two layers. With respect to the air flow direction, the second heat exchange unit 49 is arranged on the upstream side, and the first heat exchange unit 48 is arranged on the downstream side.
 第1ヘッダ41の端部には、冷媒入口としてのジョイント(図示せず)が設けられている。第1ヘッダ41内は、その長さ方向のほぼ中央に設けられた仕切板(図示せず)によって、第1区画と第2区画とに区画されている。これに対応して、複数の冷媒管45は、第1群と第2群とに区分されている。冷媒は、第1ヘッダ41の第1区画に供給される。冷媒は、第1区画から、第1群に属する複数の冷媒管45に分配される。冷媒は、第1群を通して第2ヘッダ42に流入し、集合される。冷媒は、第2ヘッダ42から、第2群に属する複数の冷媒管45に再び分配される。冷媒は、第2群を通して第1ヘッダ41の第2区画に流入する。このように、第1熱交換部48においては、冷媒をU字状に流す流路が形成される。 A joint (not shown) as a refrigerant inlet is provided at the end of the first header 41. The inside of the first header 41 is partitioned into a first partition and a second partition by a partition plate (not shown) provided approximately at the center in the length direction. Correspondingly, the plurality of refrigerant tubes 45 are divided into a first group and a second group. The refrigerant is supplied to the first section of the first header 41. The refrigerant is distributed from the first section to a plurality of refrigerant tubes 45 belonging to the first group. The refrigerant flows into the second header 42 through the first group and is collected. The refrigerant is distributed again from the second header 42 to the plurality of refrigerant tubes 45 belonging to the second group. The refrigerant flows into the second section of the first header 41 through the second group. Thus, in the 1st heat exchange part 48, the flow path which flows a refrigerant | coolant in a U shape is formed.
 第3ヘッダ43の端部には、冷媒出口としてのジョイント(図示せず)が設けられている。第3ヘッダ43内は、その長さ方向のほぼ中央に設けられた仕切板(図示せず)によって、第1区画と第2区画とに区画されている。これに対応して、複数の冷媒管45は、第1群と第2群とに区分されている。第3ヘッダ43の第1区画は、第1ヘッダ41の第2区画に隣接している。第3ヘッダ43の第1区画と第1ヘッダ41の第2区画とは連通している。 At the end of the third header 43, a joint (not shown) as a refrigerant outlet is provided. The inside of the third header 43 is partitioned into a first partition and a second partition by a partition plate (not shown) provided substantially at the center in the length direction. Correspondingly, the plurality of refrigerant tubes 45 are divided into a first group and a second group. The first section of the third header 43 is adjacent to the second section of the first header 41. The first section of the third header 43 and the second section of the first header 41 are in communication.
 冷媒は、第1ヘッダ41の第2区画から、第3ヘッダ43の第1区画に流入する。冷媒は、第1区画から、第1群に属する複数の冷媒管45に分配される。冷媒は、第1群を通して第4ヘッダ44に流入し、集合される。冷媒は、第4ヘッダ44から、第2群に属する複数の冷媒管45に再び分配される。冷媒は、第2群を通して第3ヘッダ43の第2区画に流入する。このように、第2熱交換部49においては、冷媒をU字状に流す流路が形成される。第3ヘッダ43の第2区画内の冷媒は、冷媒出口から流出し、圧縮機へ向けて流れる。 The refrigerant flows from the second section of the first header 41 into the first section of the third header 43. The refrigerant is distributed from the first section to a plurality of refrigerant tubes 45 belonging to the first group. The refrigerant flows into the fourth header 44 through the first group and is collected. The refrigerant is distributed again from the fourth header 44 to the plurality of refrigerant tubes 45 belonging to the second group. The refrigerant flows into the second section of the third header 43 through the second group. Thus, in the 2nd heat exchange part 49, the flow path which flows a refrigerant | coolant in a U shape is formed. The refrigerant in the second section of the third header 43 flows out from the refrigerant outlet and flows toward the compressor.
 次に、冷媒管45などの具体的な構成に関して説明する。図3では、蓄冷容器47の厚みは省略して示し、蓄冷材50a,50bにハッチングを施して示す。冷媒管45は、内部に冷媒が流通する複数の冷媒通路45aを有する多穴管である。冷媒管45は、扁平管とも呼ばれる。この多穴管は、押出製法によって得ることができる。複数の冷媒通路45aは、冷媒管45の長手方向に沿って延びており、冷媒管45の両端に開口している。複数の冷媒管45は、列をなして並べられている。各列において、複数の冷媒管45は、その主面が対向するように配置されている。複数の冷媒管45は、互いに隣接する2つの冷媒管45の間に、空気と熱交換するための空気通路460と、後述する蓄冷容器47を収容するための収容部461とを区画している。 Next, a specific configuration of the refrigerant pipe 45 and the like will be described. In FIG. 3, the thickness of the cool storage container 47 is omitted, and the cool storage materials 50a and 50b are hatched. The refrigerant pipe 45 is a multi-hole pipe having a plurality of refrigerant passages 45a through which the refrigerant flows. The refrigerant tube 45 is also called a flat tube. This multi-hole tube can be obtained by an extrusion manufacturing method. The plurality of refrigerant passages 45 a extend along the longitudinal direction of the refrigerant pipe 45 and open at both ends of the refrigerant pipe 45. The plurality of refrigerant tubes 45 are arranged in a row. In each row, the plurality of refrigerant tubes 45 are arranged so that their main surfaces face each other. The plurality of refrigerant tubes 45 partition an air passage 460 for exchanging heat with air between two adjacent refrigerant tubes 45 and an accommodating portion 461 for accommodating a cold storage container 47 described later. .
 蒸発器40は、車室へ供給される空気と接触面積を増加させるためのフィン46を備える。フィン46は、複数のコルゲート型のフィン46によって提供されている。フィン46は、隣接する2つの冷媒管45の間に区画された空気通路460に配置されている。フィン46は、隣接する2つの冷媒管45と熱的に結合している。フィン46は、熱伝達に優れた接合材によって、隣接する2つの冷媒管45に接合されている。接合材としては、ろう材を用いることができる。フィン46は、薄いアルミニウム等の金属板が波状に曲げられた形状をもっており、ルーバーと呼ばれる空気通路460を備える。 The evaporator 40 includes fins 46 for increasing the contact area with the air supplied to the passenger compartment. The fins 46 are provided by a plurality of corrugated fins 46. The fins 46 are disposed in an air passage 460 that is defined between two adjacent refrigerant tubes 45. The fin 46 is thermally coupled to the two adjacent refrigerant tubes 45. The fins 46 are joined to the two adjacent refrigerant tubes 45 by a joining material excellent in heat transfer. A brazing material can be used as the bonding material. The fin 46 has a shape in which a thin metal plate such as aluminum is bent in a wave shape, and includes an air passage 460 called a louver.
 次に、蓄冷容器47に関して説明する。蒸発器40は、さらに、複数の蓄冷容器47を有している。蓄冷容器47は、扁平な筒状である。蓄冷容器47は、その長手方向両端において、筒をその厚さ方向に押しつぶすことによって閉じられ、内部に蓄冷材50a,50bを収容するための空間が形成される。蓄冷容器47は、広い主面を両面に有している。これら2つの主面を提供する2つの主壁は、それぞれが冷媒管45と平行に配置されている。そして少なくとも片面、本実施形態では両面に、冷媒管45が接触するように配置されている。 Next, the cold storage container 47 will be described. The evaporator 40 further includes a plurality of cold storage containers 47. The cold storage container 47 has a flat cylindrical shape. The cold storage container 47 is closed by squeezing the cylinder in the thickness direction at both ends in the longitudinal direction, and spaces for accommodating the cold storage materials 50a and 50b are formed inside. The cold storage container 47 has a wide main surface on both surfaces. The two main walls that provide these two main surfaces are each arranged in parallel with the refrigerant pipe 45. And it arrange | positions so that the refrigerant | coolant pipe | tube 45 may contact at least one surface, and this embodiment both surfaces.
 蓄冷容器47は、隣接する2つの冷媒管45の間に複数、本実施形態では2つの蓄冷ケース60が配置されている。各蓄冷ケース60は、吸込み空気の流れ方向に沿って配列されている。換言すると、複数の蓄冷ケース60は、空気の流れの上流側と下流側とで異なる蓄冷ケース60となるように配置されている。また各蓄冷ケース60は、それぞれ独立して融点が異なる蓄冷材50a,50bを収容している。 A plurality of cold storage containers 47 are disposed between two adjacent refrigerant pipes 45, and in this embodiment, two cold storage cases 60 are arranged. Each cold storage case 60 is arranged along the flow direction of the intake air. In other words, the plurality of cool storage cases 60 are arranged to be different cool storage cases 60 on the upstream side and the downstream side of the air flow. Each cold storage case 60 accommodates cold storage materials 50a and 50b having different melting points independently.
 図4に示すように、蓄冷ケース60のそれぞれに、蓄冷材50a,50bを封入するための封入口61が1つ以上設けられている。また封入口61は、蓄冷ケース60の外周のうち、空気流れの上流側(風上側)または下流側(風下側)に設けられる。以下、蓄冷ケース60を特定しない場合は、蓄冷容器47と称する。 As shown in FIG. 4, each of the cold storage cases 60 is provided with one or more sealing ports 61 for sealing the cold storage materials 50a and 50b. The sealing port 61 is provided on the upstream side (windward side) or the downstream side (leeward side) of the air flow in the outer periphery of the cold storage case 60. Hereinafter, when the cold storage case 60 is not specified, the cold storage case 47 is referred to.
 蓄冷容器47は、その両側に配置された2つの冷媒管45に熱的に結合している。蓄冷容器47は、熱伝達に優れた接合材によって、隣接する2つの冷媒管45に接合されている。接合材としては、ろう材または接着剤などの樹脂材料を用いることができる。蓄冷容器47は、冷媒管45にろう付けされている。蓄冷容器47と冷媒管45との間には、それらの間を広い断面積によって連結するために大量のろう材が配置されている。このろう材は、蓄冷容器47と冷媒管45との間にろう材の箔を配置することによって提供することができる。この結果、蓄冷容器47は、冷媒管45との間で良好な熱伝導を示す。 The cold storage container 47 is thermally coupled to two refrigerant tubes 45 disposed on both sides thereof. The cold storage container 47 is joined to the two adjacent refrigerant pipes 45 by a joining material excellent in heat transfer. As the bonding material, a resin material such as a brazing material or an adhesive can be used. The cold storage container 47 is brazed to the refrigerant pipe 45. A large amount of brazing material is disposed between the cold storage container 47 and the refrigerant pipe 45 in order to connect them with a wide cross-sectional area. This brazing material can be provided by placing a brazing foil between the cold storage container 47 and the refrigerant pipe 45. As a result, the cold storage container 47 exhibits good heat conduction with the refrigerant pipe 45.
 各蓄冷容器47の厚さは、空気通路460の厚さとほぼ等しい。よって、蓄冷容器47の厚さは、フィン46の厚さとほぼ等しい。フィン46と蓄冷容器47とは、入れ替え可能である。この結果、複数のフィン46と複数の蓄冷容器47との配置パターンを、高い自由度をもって設定することができる。 The thickness of each cold storage container 47 is substantially equal to the thickness of the air passage 460. Therefore, the thickness of the cold storage container 47 is substantially equal to the thickness of the fin 46. The fin 46 and the cold storage container 47 can be interchanged. As a result, the arrangement pattern of the plurality of fins 46 and the plurality of cold storage containers 47 can be set with a high degree of freedom.
 また蓄冷容器47の厚さは、冷媒管45の厚さよりも明らかに大きい。この構成は、大量の蓄冷材50a,50bを収容するために有効である。蓄冷容器47の長さは、互いに等しい。また2つの蓄冷ケース60が配列された長さは、フィン46とほぼ同じ長さを有する。この結果、蓄冷容器47は、隣接する2つの冷媒管45の間に区画された収容部461の長手方向のほぼ全体を占めている。したがって配列された2つの蓄冷ケース60は、互いに冷媒管45と接触している面積が等しい。換言すると、配列された2つの蓄冷ケース60は、冷媒管45と熱交換する面積が互いに等しい。また蓄冷容器47とヘッダ41~44との間の隙間は、フィン46の切片、あるいは樹脂などの充填材によって埋めることができる。 Also, the thickness of the cold storage container 47 is clearly larger than the thickness of the refrigerant pipe 45. This configuration is effective for accommodating a large amount of cool storage material 50a, 50b. The lengths of the cold storage containers 47 are equal to each other. Further, the length in which the two cold storage cases 60 are arranged has substantially the same length as the fins 46. As a result, the cold storage container 47 occupies substantially the entire longitudinal direction of the accommodating portion 461 defined between the two adjacent refrigerant tubes 45. Accordingly, the two cold storage cases 60 arranged have the same area in contact with the refrigerant pipe 45. In other words, the two cold storage cases 60 arranged have the same area for heat exchange with the refrigerant pipe 45. Further, the gap between the cold storage container 47 and the headers 41 to 44 can be filled with a section of the fin 46 or a filler such as resin.
 複数の冷媒管45は、ほぼ一定の間隔で配置されている。それら複数の冷媒管45の間には、複数の隙間が形成されている。これら複数の隙間には、複数のフィン46と複数の蓄冷容器47とが、所定の規則性をもって配置されている。隙間のうちの一部は、空気通路460である。隙間のうちの残部は、蓄冷容器47の収容部461である。複数の冷媒管45の間に形成された合計間隔のうち、たとえば10%以上50%以下が収容部461とされる。収容部461には、蓄冷容器47が配置されている。 The plurality of refrigerant tubes 45 are arranged at substantially constant intervals. A plurality of gaps are formed between the plurality of refrigerant tubes 45. In the plurality of gaps, a plurality of fins 46 and a plurality of cold storage containers 47 are arranged with a predetermined regularity. A part of the gap is an air passage 460. The remaining part of the gap is the accommodating part 461 of the cold storage container 47. Of the total interval formed between the plurality of refrigerant tubes 45, for example, 10% or more and 50% or less is the accommodating portion 461. A cool storage container 47 is disposed in the housing portion 461.
 蓄冷容器47は、蒸発器40の全体にほぼ均等に分散して配置されている。蓄冷容器47の両側に位置する2つの冷媒管45は、蓄冷容器47とは反対側において空気と熱交換するための空気通路460を区画している。別の観点では、2つのフィン46の間に2つの冷媒管45が配置され、さらにこれら2つの冷媒管45の間に2つの蓄冷ケース60を1組とした蓄冷容器47が1つ配置されている。 The cold storage containers 47 are arranged almost uniformly distributed throughout the evaporator 40. The two refrigerant tubes 45 located on both sides of the cold storage container 47 define an air passage 460 for exchanging heat with air on the side opposite to the cold storage container 47. In another aspect, two refrigerant tubes 45 are disposed between the two fins 46, and one cold storage container 47 including two cold storage cases 60 is disposed between the two refrigerant tubes 45. Yes.
 蓄冷容器47は、アルミニウムおよびアルミニウム合金等の金属製である。また蓄冷容器47のアルミニウム以外の材料としては、たとえばイオン化傾向が水素よりも低い金属を主材、もしくは成分として含む材料が用いられる。 The cold storage container 47 is made of metal such as aluminum and aluminum alloy. In addition, as the material other than aluminum for the cold storage container 47, for example, a material containing a metal having a lower ionization tendency than hydrogen as a main material or a component is used.
 次に、蓄冷材50a,50bに関して説明する。蓄冷材50a,50bは、冷媒通路45aを流通する冷媒と熱交換して冷媒からの熱量を留める材料である。蓄冷材50a,50bは、冷媒からの熱を凝固することで留め、留めた熱を融解することによって外部に放出する。融点が高い蓄冷材50aは、融点が低い蓄冷材50bよりも空気流れの上流側に設けられる。したがって図3では、上方の蓄冷ケース60の蓄冷材50aの方が、下方の蓄冷ケース60の蓄冷材50bよりも高融点である。蒸発器40の風上側の空気熱負荷が高くなる傾向になるため、温度が高くても凝固しやすい高融点蓄冷材50aを風上側に配置し、低融点蓄冷材50bを風下側に配置している。 Next, the regenerator materials 50a and 50b will be described. The cold storage materials 50a and 50b are materials that exchange heat with the refrigerant flowing through the refrigerant passage 45a to keep the amount of heat from the refrigerant. The cold storage materials 50a and 50b are retained by solidifying the heat from the refrigerant, and are released to the outside by melting the retained heat. The cold storage material 50a having a high melting point is provided upstream of the cold storage material 50b having a low melting point. Therefore, in FIG. 3, the cool storage material 50a of the upper cool storage case 60 has a higher melting point than the cool storage material 50b of the lower cool storage case 60. Since the air heat load on the windward side of the evaporator 40 tends to increase, a high melting point regenerator material 50a that is easy to solidify even at a high temperature is disposed on the windward side, and a low melting point regenerator material 50b is disposed on the leeward side. Yes.
 融点が高い蓄冷材である高融点蓄冷材50aの融点は、冷房時の冷却温度帯以上であればよいので、摂氏5度以上摂氏25度以下であればよい。また融点が低い蓄冷材である低融点蓄冷材50bの融点は、摂氏0度以上摂氏15度以下であればよい。さらに高融点蓄冷材50aの融点が摂氏5度以上摂氏15度以下のときは、低融点蓄冷材50bの融点が摂氏0度以上であって、高融点蓄冷材50aの融点未満である。さらにいうと、高融点蓄冷材50aの融点は吹出し空気の温感許容値(=15~17℃)を上回らないため15℃以下であればよい。また低融点蓄冷材50bの融点は、冬季などの低温でも凝固・融解できるように、0℃以上10℃以下であればよい。2つの蓄冷材50a,50bの必要熱量は、蓄冷容器47の容量を考慮して、約200kJ/kg以上であればよい。これによってアイドルストップ時に必要な蓄冷容量を確保することができる。 The melting point of the high-melting-point regenerator material 50a, which is a regenerator material having a high melting point, may be not less than the cooling temperature zone during cooling, and may be not less than 5 degrees Celsius and not more than 25 degrees Celsius. The melting point of the low melting point regenerator material 50b, which is a regenerator material having a low melting point, may be 0 degrees Celsius or more and 15 degrees Celsius or less. Further, when the melting point of the high melting point regenerator material 50a is 5 degrees Celsius or more and 15 degrees Celsius or less, the low melting point regenerator material 50b has a melting point of 0 degrees Celsius or more and lower than the melting point of the high melting point regenerator material 50a. Furthermore, since the melting point of the high melting point regenerator material 50a does not exceed the allowable temperature sensation of the blown air (= 15 to 17 ° C.), it may be 15 ° C. or less. The melting point of the low melting point regenerator material 50b may be 0 ° C. or higher and 10 ° C. or lower so that it can be solidified and melted even at low temperatures such as in winter. The necessary heat quantity of the two cold storage materials 50a and 50b may be about 200 kJ / kg or more in consideration of the capacity of the cold storage container 47. As a result, it is possible to secure the necessary cold storage capacity during idle stop.
 一般に有機材料は、熱伝導率が小さく、パラフィン系を除いて過冷却が大きい。またケミカル蓄熱では、化学安定性および劇毒物、腐食性、反応促進手段(圧力保持、撹拌必要)である。したがって本実施形態では、2種類のパラフィンを蓄冷材50a,50bとして用いている。 Generally, organic materials have low thermal conductivity and large supercooling except for paraffinic materials. In chemical heat storage, chemical stability, toxic poison, corrosiveness, reaction promoting means (pressure holding, stirring required). Therefore, in this embodiment, two types of paraffin are used as the cold storage materials 50a and 50b.
 高融点蓄冷材50aに用いられるパラフィンは、炭素数が16または15であればよい。また低融点蓄冷材50bに用いられるパラフィンは、炭素数が15または14であればよい。そして高融点蓄冷材50aのパラフィンの炭素数が16のとき、低融点蓄冷材50bの炭素数は、15または14であればよく、高融点蓄冷材50aのパラフィンの炭素数が15のとき、低融点蓄冷材50bのパラフィンの炭素数は14であればよい。これによって同じパラフィンであっても、融点を互いに異ならせることができる。また水和物を主成分とする蓄冷材を用いてもよい。 The paraffin used for the high melting point regenerator material 50a may have 16 or 15 carbon atoms. Moreover, the paraffin used for the low melting-point cold storage material 50b should just have 15 or 14 carbon atoms. And when the carbon number of the paraffin of the high melting point regenerator material 50a is 16, the carbon number of the low melting point regenerator material 50b may be 15 or 14, and when the carbon number of the paraffin of the high melting point regenerator material 50a is 15, The number of carbon atoms in the paraffin of the melting point regenerator material 50b may be 14. Thereby, even if it is the same paraffin, melting | fusing point can mutually differ. Moreover, you may use the cool storage material which has a hydrate as a main component.
 次に、この実施形態の作動を説明する。乗員からの空調要求、例えば冷房要求があると、圧縮機は動力源によって駆動される。圧縮機は蒸発器40から冷媒を吸入し、圧縮して、吐出する。圧縮機から吐出された冷媒は、放熱器で放熱される。放熱器から出た冷媒は、減圧器によって減圧され、蒸発器40に供給される。冷媒は、蒸発器40において蒸発し、蓄冷容器47を冷却するとともに、フィン46を介して周囲の空気を冷却する。車両が一時停止すると、動力源は消費エネルギを減らすために停止し、圧縮機が停止する。その後、蒸発器40の冷媒は徐々に冷却能力を失ってゆく。この過程で、蓄冷材50a,50bは、徐々に放冷し、空気を冷却する。このとき、空気の熱は、フィン46、冷媒管45、および蓄冷容器47を通して、蓄冷材50a,50bに伝導する。この結果、冷凍サイクル装置が一時的に停止しても、蓄冷材50a,50bによって空気を冷却することができる。やがて、車両が再び走行を始めると、動力源が再び圧縮機を駆動する。このため、冷凍サイクル装置は、再び蓄冷材50a,50bを冷却し、蓄冷材50a,50bが蓄冷する。 Next, the operation of this embodiment will be described. When there is an air conditioning request from the passenger, for example, a cooling request, the compressor is driven by a power source. The compressor sucks the refrigerant from the evaporator 40, compresses it, and discharges it. The refrigerant discharged from the compressor is radiated by the radiator. The refrigerant discharged from the radiator is decompressed by the decompressor and supplied to the evaporator 40. The refrigerant evaporates in the evaporator 40, cools the cold storage container 47, and cools the surrounding air through the fins 46. When the vehicle is temporarily stopped, the power source is stopped to reduce energy consumption, and the compressor is stopped. Thereafter, the refrigerant in the evaporator 40 gradually loses its cooling capacity. In this process, the regenerator materials 50a and 50b gradually cool and cool the air. At this time, the heat of the air is conducted to the cold storage materials 50a and 50b through the fins 46, the refrigerant pipe 45, and the cold storage container 47. As a result, even if the refrigeration cycle apparatus is temporarily stopped, the air can be cooled by the cold storage materials 50a and 50b. Eventually, when the vehicle starts running again, the power source drives the compressor again. For this reason, the refrigeration cycle apparatus cools the cold storage materials 50a and 50b again, and the cold storage materials 50a and 50b store cold.
 さらに具体的な作動について図5を用いて説明すると、夏季や中間期において、通常の高負荷時の制御下でエアコンを作動させている時は、冷媒温度は高融点蓄冷材50a(図5中A)、低融点蓄冷材50b(図5中B)の両方の融点を下回り、凝固することで冷気を溜めている。そして、アイドルストップ中は、凝固した蓄冷材が融解しながら溜めた冷気を空気中に放出することで、吹出し空気の温度上昇を抑制しアイドルストップ時間を延長している。 A more specific operation will be described with reference to FIG. 5. When the air conditioner is operated under normal high load control in the summer or intermediate period, the refrigerant temperature is the high melting point regenerator 50a (in FIG. 5). A) is below the melting point of both of the low melting point regenerator material 50b (B in FIG. 5) and solidifies to cool. And during idle stop, the solidified cold storage material melts and releases the cool air accumulated while being released into the air, thereby suppressing the temperature rise of the blown air and extending the idle stop time.
 省燃費モード使用時は、冷媒温度は高負荷時よりも高い。このような場合、エアコン作動時は高融点蓄冷材50aのみが凝固し冷気を溜めることができる。省燃費モード時におけるアイドルストップ中は、高融点蓄冷材50aが融解しながら溜めた冷気を空気中に放出することで、吹出し空気の温度上昇を抑制しアイドルストップ時間を延長している。 When using the fuel saving mode, the refrigerant temperature is higher than when the load is high. In such a case, only the high-melting-point regenerator material 50a can solidify and store cold air when the air conditioner is activated. During the idling stop in the fuel saving mode, the high-melting-point regenerator material 50a is released while the cold air accumulated while being melted is released into the air, thereby suppressing the temperature rise of the blown air and extending the idling stop time.
 以上説明したように本実施形態の蒸発器40は、蓄冷容器47に、融点が異なる複数の蓄冷材50a,50bとして、本実施形態では2つの蓄冷材50a,50bがそれぞれ区分けして収容されている。そして、融点が高い蓄冷材50aは、融点が低い蓄冷材50bよりも空気流れの上流側に設けられる。したがって冷媒の温度が、たとえば高融点蓄冷材50aの融点以下であり、低融点蓄冷材50bの融点以上の場合には、高融点蓄冷材50aのみが凝固することになる。したがって冷媒の温度が高い場合であっても、蓄冷することができる。また冷媒の温度がさらに低くなると、全ての蓄冷材50a,50bが凝固することになる。したがって冷媒の温度に応じて、段階的に蓄冷することができるので、より広範囲な空気温度において蓄冷機能を維持することができる。 As described above, in the evaporator 40 of the present embodiment, in the cool storage container 47, two cool storage materials 50a and 50b are separately accommodated as the plurality of cool storage materials 50a and 50b having different melting points. Yes. And the cool storage material 50a with high melting | fusing point is provided in the upstream of an air flow rather than the cool storage material 50b with low melting | fusing point. Therefore, when the temperature of the refrigerant is, for example, equal to or lower than the melting point of the high melting point regenerator material 50a and equal to or higher than the melting point of the low melting point regenerator material 50b, only the high melting point regenerator material 50a is solidified. Therefore, cold storage can be performed even when the temperature of the refrigerant is high. Moreover, if the temperature of a refrigerant | coolant becomes still lower, all the cool storage materials 50a and 50b will solidify. Therefore, since cold storage can be performed in stages according to the temperature of the refrigerant, the cold storage function can be maintained in a wider range of air temperatures.
 また封入口61は、蓄冷ケース60の外周のうち、空気流れの上流側または下流側に設けられる。したがって封入口61が空気通路460に設けられていないので、通風抵抗になることを防ぐことができる。
(第2実施形態)
 次に、第2実施形態に関して、図6および図7を用いて説明する。本実施形態では、蓄冷ケース60Aが互いに接触するように配置されている点に特徴を有する。このように接触している構成であるので、よりスペースを有効に活用することができる。したがって充填できる蓄冷材50a,50bの量を多くすることができる。その他の構成における作用および効果は、前述の第1実施形態と同様である。
(第3実施形態)
 次に、第3実施形態に関して、図8を用いて説明する。本実施形態では、蓄冷容器47Cの内部は、仕切り70によって区画され、仕切られた空間に、融点が異なる蓄冷材50a,50bそれぞれ収容されている点に特徴を有する。この蓄冷容器47Cには、蓄冷材50a,50bを封入するための封入口61が1つ設けられている。したがって1つの封入口61から、二種類の蓄冷材50a,50bを封入することになる。したがって構成が簡素になり、蓄冷容器47Cとしての取扱いが容易となる。また封入口61は、蓄冷容器47Cの外周のうち、空気流れの上流側または下流側に設けられ、本実施形態では風下側に設けられる。このような構成であるので、よりスペースを有効に活用することができる。したがって充填できる蓄冷材50a,50bの量を多くすることができる。その他の構成における作用および効果は、前述の第1実施形態と同様である。
(第4実施形態)
 次に、第4実施形態に関して、図9を用いて説明する。本実施形態では、蓄冷ケース60Dが互いに離間するように配置し、封入口61が二つとも同一側である点に特徴を有する。このような構成であっても、前述の第1実施形態と同様の作用および効果を達成することができる。
(第5実施形態)
 次に、第5実施形態に関して、図10を用いて説明する。本実施形態では、蓄冷ケース60Eが互いに接触するように一体に形成し、封入口61が二つとも同一側である点に特徴を有する。このような構成であっても、前述の第2実施形態と同様の作用および効果を達成することができる。
(第6実施形態)
 次に、第6実施形態に関して、図11を用いて説明する。本実施形態では、蓄冷ケース60Fが互いに接触するように一体に形成し、封入口61が二つとも同一側である点に特徴を有する。さらに一方の封入口61は、パイプ61Fによって構成されている。このような構成であっても、前述の第2実施形態と同様の作用および効果を達成することができる。
(第7実施形態)
 次に、第7実施形態に関して、図12を用いて説明する。本実施形態では、冷媒通路45aの片面に蓄冷ケース60Gを配置している点に特徴を有する。図12に示す構成は、いわゆるドロンカップ型といわれるものである。冷媒通路45aの片面に配置することによって、全体として省スペース化することができる。このような構成であっても、前述の第1実施形態と同様の作用および効果を達成することができる。
(第8実施形態)
 次に、第8実施形態に関して、図13および図14を用いて説明する。本実施形態でも、前述の第7実施形態と同様に、冷媒通路45aの片面に蓄冷ケース60H,60Iを配置している点に特徴を有する。2つの蓄冷ケース60H,60Iは、空気流れ方向に沿って延び、空気流れ方向に沿って配列されている。また図13に示す例では、空気流れ方向に間隔をあけて、蓄冷ケース60Hが配置されている。図14に示す例では、空気流れ方向に接するように、蓄冷ケース60Iが配置されている。このように蓄冷ケース60H,60Iを冷媒通路45aの片面だけに配置することによって、全体として省スペース化することができる。また、前述の第1実施形態と同様の作用および効果を達成することができる。
(第9実施形態)
 次に、第9実施形態に関して、図15~図17を用いて説明する。本実施形態では、図15および図16に示すように、各蓄冷容器47Jにはそれぞれ1種類の蓄冷材50が収容される点に特徴を有する。また隣接する蓄冷容器47Jでは一方が高融点蓄冷材50aが収容され、他方が低融点蓄冷材50bが収容されている点に特徴を有する。本実施形態は、蒸発器40Jの冷却能力が十分に高い場合に適用できる。
The sealing port 61 is provided on the upstream side or the downstream side of the air flow in the outer periphery of the cold storage case 60. Therefore, since the sealing port 61 is not provided in the air passage 460, it is possible to prevent a ventilation resistance.
(Second Embodiment)
Next, a second embodiment will be described using FIG. 6 and FIG. The present embodiment is characterized in that the cold storage cases 60A are arranged so as to contact each other. Since it is the structure which is contacting in this way, space can be utilized more effectively. Therefore, the amount of the regenerator materials 50a and 50b that can be filled can be increased. The operations and effects in the other configurations are the same as those in the first embodiment.
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. The present embodiment is characterized in that the inside of the cold storage container 47C is partitioned by the partition 70, and the cold storage materials 50a and 50b having different melting points are accommodated in the partitioned spaces. The cool storage container 47C is provided with one sealing port 61 for sealing the cool storage materials 50a and 50b. Therefore, two kinds of cool storage materials 50a and 50b are sealed from one sealing port 61. Therefore, the configuration is simplified, and handling as the cold storage container 47C is facilitated. Further, the sealing port 61 is provided on the upstream side or the downstream side of the air flow in the outer periphery of the cold storage container 47C, and is provided on the leeward side in the present embodiment. Since it is such a structure, a space can be utilized more effectively. Therefore, the amount of the regenerator materials 50a and 50b that can be filled can be increased. The operations and effects in the other configurations are the same as those in the first embodiment.
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. The present embodiment is characterized in that the cold storage cases 60D are arranged so as to be separated from each other, and the two sealing ports 61 are on the same side. Even with such a configuration, it is possible to achieve the same operations and effects as in the first embodiment.
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG. The present embodiment is characterized in that the cold storage cases 60E are integrally formed so as to be in contact with each other, and the two sealing ports 61 are on the same side. Even with such a configuration, the same operations and effects as those of the second embodiment described above can be achieved.
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. The present embodiment is characterized in that the cold storage cases 60F are integrally formed so as to be in contact with each other, and the two sealing ports 61 are on the same side. Furthermore, the one inlet 61 is constituted by a pipe 61F. Even with such a configuration, the same operations and effects as those of the second embodiment described above can be achieved.
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG. The present embodiment is characterized in that the cold storage case 60G is arranged on one surface of the refrigerant passage 45a. The configuration shown in FIG. 12 is a so-called drone cup type. By arranging it on one side of the refrigerant passage 45a, the entire space can be saved. Even with such a configuration, it is possible to achieve the same operations and effects as in the first embodiment.
(Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIGS. 13 and 14. This embodiment is also characterized in that cold storage cases 60H and 60I are arranged on one side of the refrigerant passage 45a, as in the seventh embodiment. The two cold storage cases 60H and 60I extend along the air flow direction and are arranged along the air flow direction. Moreover, in the example shown in FIG. 13, the cool storage case 60H is arrange | positioned at intervals in the air flow direction. In the example illustrated in FIG. 14, the cold storage case 60I is disposed so as to be in contact with the air flow direction. By arranging the cold storage cases 60H and 60I on only one side of the refrigerant passage 45a as described above, the space can be saved as a whole. In addition, the same operations and effects as those of the first embodiment described above can be achieved.
(Ninth embodiment)
Next, a ninth embodiment will be described with reference to FIGS. As shown in FIGS. 15 and 16, this embodiment is characterized in that one type of cool storage material 50 is accommodated in each cool storage container 47 </ b> J. Further, one of the adjacent cool storage containers 47J is characterized in that the high melting point cold storage material 50a is accommodated and the other is accommodated in the low melting point cold storage material 50b. This embodiment can be applied when the cooling capacity of the evaporator 40J is sufficiently high.
 したがって高融点蓄冷材50aを収容する蓄冷容器47Jと、低融点蓄冷材50bを収容する蓄冷容器47Jとが、冷媒管45の間に交互に配置されている。図15および図16では、高融点蓄冷材50aが収容されている蓄冷容器47Jを示している。 Therefore, the cold storage container 47J for storing the high melting point cold storage material 50a and the cold storage container 47J for storing the low melting point cold storage material 50b are alternately arranged between the refrigerant tubes 45. 15 and 16 show a cold storage container 47J in which the high melting point cold storage material 50a is accommodated.
 具体的な作動について図17を用いて説明すると、夏季や中間期において、通常の高負荷時の制御下でエアコンを作動させている時は、冷媒温度は高融点蓄冷材50a(図17中A)、低融点蓄冷材50b(図17中B)の両方の融点を下回り、凝固することで冷気を溜めている。そして、アイドルストップ中は、凝固した蓄冷材が融解しながら溜めた冷気を空気中に放出することで、吹出し空気の温度上昇を抑制しアイドルストップ時間を延長している。 The specific operation will be described with reference to FIG. 17. When the air conditioner is operated under normal high load control in the summer or intermediate period, the refrigerant temperature is the high melting point regenerator 50a (A in FIG. 17). ), Lower than both melting points of the low-melting-point regenerator material 50b (B in FIG. 17), and solidifies to cool. And during idle stop, the solidified cold storage material melts and releases the cool air accumulated while being released into the air, thereby suppressing the temperature rise of the blown air and extending the idle stop time.
 省燃費モード使用時は、冷媒温度は高負荷時よりも高い。このような場合、エアコン作動時は高融点蓄冷材50aのみが凝固し冷気を溜めることができる。省燃費モード時におけるアイドルストップ中は、高融点蓄冷材50aが融解しながら溜めた冷気を空気中に放出することで、吹出し空気の温度上昇を抑制しアイドルストップ時間を延長している。 When using the fuel saving mode, the refrigerant temperature is higher than when the load is high. In such a case, only the high-melting-point regenerator material 50a can solidify and store cold air when the air conditioner is activated. During the idling stop in the fuel saving mode, the high-melting-point regenerator material 50a is released while the cold air accumulated while being melted is released into the air, thereby suppressing the temperature rise of the blown air and extending the idling stop time.
 前述の第1実施形態では、蒸発器40の風上側の温度が高く低融点蓄冷材50bが凝固しない場合には、風上側に高融点蓄冷材50a、風下側に低融点蓄冷材50bを配置することができる。しかし本実施形態のように蒸発器40Jの冷却能力が十分に高く、蒸発器40Jの温度が空気流れ方向にほぼ均一に下がる場合は、風上にだけ高融点蓄冷材50aを配置する必要はない。したがって本実施形態のように、空気流れ方向にわたって単一の蓄冷容器47Jを配置しても、前述の第1実施形態と同様の作用および効果を達成することができる。 In the first embodiment described above, when the temperature on the windward side of the evaporator 40 is high and the low melting point regenerator material 50b does not solidify, the high melting point regenerator material 50a is disposed on the windward side and the low melting point regenerator material 50b is disposed on the leeward side. be able to. However, when the cooling capacity of the evaporator 40J is sufficiently high as in the present embodiment and the temperature of the evaporator 40J decreases substantially uniformly in the air flow direction, it is not necessary to arrange the high melting point regenerator 50a only on the windward side. . Therefore, even if the single cold storage container 47J is arranged in the air flow direction as in the present embodiment, the same operations and effects as those in the first embodiment can be achieved.
 また本実施形態では、融点が異なる蓄冷容器47Jを交互(高融点-低融点-高融点…)に配置しているが、交互に限るものではなく、たとえば1個づつ交互ではなく、2個づつ交互(高融点-高融点-低融点-低融点-高融点-高融点…)に配置してもよく、3個づつ交互であってもよい。換言すると、複数の蓄冷容器47Jに収容される各蓄冷材50a,50bのうち少なくとも一部の蓄冷材50aは、他の蓄冷容器に収容される蓄冷材50bと融点が異なるように構成すればよい。したがって高融点蓄冷材50aを収容する蓄冷容器47Jと、低融点蓄冷材50bを収容する蓄冷容器47Jとが、同数である必要もない。蒸発器40Jを流れる冷媒の温度分布に応じて、各蓄冷容器47Jに収容される蓄冷材50の融点や容量を適宜選択してもよい。 In this embodiment, the cold storage containers 47J having different melting points are alternately arranged (high melting point-low melting point-high melting point ...), but are not limited to each other, for example, not one by one but two by two. They may be arranged alternately (high melting point-high melting point-low melting point-low melting point-high melting point-high melting point ...), or may be alternately arranged in units of three. In other words, at least some of the cool storage materials 50a and 50b accommodated in the plurality of cool storage containers 47J may be configured to have a different melting point from the cool storage material 50b accommodated in the other cool storage containers. . Therefore, it is not necessary that the number of the cold storage containers 47J for storing the high melting point cold storage material 50a and the number of the cold storage containers 47J for storing the low melting point cold storage material 50b are the same. Depending on the temperature distribution of the refrigerant flowing through the evaporator 40J, the melting point and the capacity of the cool storage material 50 accommodated in each cool storage container 47J may be selected as appropriate.
 以上、実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。 The embodiment has been described above, but the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present disclosure.
 上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。 The structure of the above embodiment is merely an example, and the scope of the present disclosure is not limited to the scope of these descriptions. The scope of the present disclosure is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
 前述の第1実施形態および第9実施形態では、蓄冷材50a,50bは2種類であってが、2種類に限るものではなく、3種類以上であってもよい。これによって、より段階的に蓄冷することができ、より広範囲な空調温度範囲に対応することができる。 In the first embodiment and the ninth embodiment described above, the cold storage materials 50a and 50b are two types, but are not limited to two types, and may be three or more types. As a result, cold storage can be performed in stages, and a wider range of air-conditioning temperature can be accommodated.
 また冷媒管45は、多穴押出管、あるいはディンプルを形成した板材を筒状に曲げた管によって提供することができる。さらに、フィンは省略することができる。このような熱交換器は、フィンレス型とも呼ばれる。フィンに代えて、冷媒管から延び出す突条などを設けて、空気との熱交換を促進してもよい。 The refrigerant pipe 45 can be provided by a multi-hole extruded pipe or a pipe formed by bending a plate material on which dimples are formed. Furthermore, the fins can be omitted. Such a heat exchanger is also called a finless type. Instead of fins, protrusions extending from the refrigerant pipe may be provided to promote heat exchange with air.
 また冷媒管45の外周に蓄冷ケース60が配置されておらず、冷媒通路の中に蓄冷ケースが配置してもよい。また蓄冷ケース60は、1つであってもよい。たとえば熱交換器を横置きにして、融点が高く比重が重い蓄冷材と、融点が低く比重が軽い蓄冷材を配置して一つの容器に封入してもよい。これによって、蓄冷ケースを複数用意して区分けしなくても融点が高い蓄冷材が空気流れの上流に存在することができる。 Further, the cold storage case 60 may not be arranged on the outer periphery of the refrigerant pipe 45, and the cold storage case may be arranged in the refrigerant passage. Further, the number of cold storage cases 60 may be one. For example, a heat exchanger may be placed horizontally and a regenerator material having a high melting point and a high specific gravity and a regenerator material having a low melting point and a low specific gravity may be disposed and enclosed in a single container. Accordingly, a cold storage material having a high melting point can exist upstream of the air flow without preparing a plurality of cold storage cases and dividing them.
 また前述の第1実施形態では、蓄冷材は複数種類であったが、それぞれの蓄冷材が混合されたものを採用してもよい。 In the first embodiment described above, there are a plurality of types of regenerator materials. However, a mixture of the respective regenerator materials may be employed.
 本開示は、種々の流れ経路をもつ蒸発器に適用することができる。例えば、第1実施形態のような左右Uターン型に代えて、一方向型、前後Uターン型などの蒸発器に本開示を適用してもよい。 The present disclosure can be applied to an evaporator having various flow paths. For example, instead of the left and right U-turn type as in the first embodiment, the present disclosure may be applied to an evaporator such as a one-way type or a front and rear U-turn type.
 さらに、本開示は、冷凍用、暖房用、給湯用といった冷凍サイクル装置に適用されてもよい。さらに、本開示は、エジェクタを備える冷凍サイクル装置に適用されてもよい。 Furthermore, the present disclosure may be applied to refrigeration cycle apparatuses such as refrigeration, heating, and hot water supply. Furthermore, the present disclosure may be applied to a refrigeration cycle apparatus including an ejector.
 また蓄冷容器47の内部にインナフィンを設けても良い。このような構成の場合、外殻にインナフィンの頂部を露出させる開口を設け、インナフィンの頂部を冷媒管に直接に接合してもよい。 Further, an inner fin may be provided inside the cold storage container 47. In such a configuration, an opening that exposes the top of the inner fin may be provided in the outer shell, and the top of the inner fin may be directly joined to the refrigerant pipe.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on an embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (12)

  1.  周囲を流れる空気と熱交換する蓄冷熱交換器(40)であって、
     内部に冷媒が流通する冷媒通路(45a)と、
     前記冷媒通路(45a)を流通する冷媒と熱交換して前記冷媒からの熱量を留める蓄冷材(50a,50b)を内部に収容する蓄冷容器(47、47C、47D、47E、47F、47J)と、を含み、
     前記蓄冷容器(47、47C、47D、47E、47F、47J)には、融点が異なる複数の前記蓄冷材(50a、50b)が収容されていることを特徴とする蓄冷熱交換器。
    A regenerative heat exchanger (40) for exchanging heat with air flowing around it,
    A refrigerant passage (45a) through which the refrigerant flows;
    A cold storage container (47, 47C, 47D, 47E, 47F, 47J) containing therein a cold storage material (50a, 50b) for exchanging heat with the refrigerant flowing through the refrigerant passage (45a) and retaining the amount of heat from the refrigerant; Including,
    The regenerator (47, 47C, 47D, 47E, 47F, 47J) accommodates a plurality of the regenerators (50a, 50b) having different melting points.
  2.  前記複数の蓄冷材(50a、50b)は融点が高い蓄冷材(50a)と融点が低い蓄冷材(50b)を含み、
     前記融点が高い蓄冷材(50a)は、前記融点が低い蓄冷材(50b)よりも空気流れの上流側に設けられることを特徴とする請求項1に記載の蓄冷熱交換器。
    The plurality of cold storage materials (50a, 50b) include a cold storage material (50a) having a high melting point and a cold storage material (50b) having a low melting point,
    The regenerator heat exchanger according to claim 1, wherein the regenerator material (50a) having a high melting point is provided upstream of the regenerator material (50b) having a low melting point.
  3.  前記蓄冷容器(47、47C、47D、47E、47F、47J)は、複数(47J)であり、
     各蓄冷容器(47J)にはそれぞれ1種類の蓄冷材(50a、50b)が収容され、
     少なくとも複数の蓄冷容器(47J)の一部に収容される蓄冷材(50a)は、他の前記蓄冷容器(47J)に収容される前記蓄冷材(50b)と融点が異なることを特徴とする請求項1に記載の蓄冷熱交換器。
    The cold storage containers (47, 47C, 47D, 47E, 47F, 47J) are plural (47J),
    Each cool storage container (47J) contains one type of cool storage material (50a, 50b),
    The regenerator material (50a) accommodated in at least a part of the plurality of regenerator containers (47J) is different in melting point from the regenerator material (50b) accommodated in the other regenerator container (47J). Item 2. The cold storage heat exchanger according to Item 1.
  4.  前記複数の蓄冷材(50a、50b)は、2つの異なる融点をもつ蓄冷材(50a、50b)であり、
     前記融点が高い蓄冷材(50a)の融点は、摂氏5度以上摂氏25度以下であり、
     前記融点が低い蓄冷材(50b)の融点は、摂氏0度以上摂氏15度以下であり、
     前記融点の高い蓄冷材(50a)の融点が摂氏5度以上摂氏15度以下のときは、前記融点の低い蓄冷材(50b)の融点が摂氏0度以上であって、前記融点が高い蓄冷材(50a)の融点未満であることを特徴とする請求項1~3のいずれか1つに記載の蓄冷熱交換器。
    The plurality of regenerator materials (50a, 50b) are regenerator materials (50a, 50b) having two different melting points,
    The melting point of the regenerator material (50a) having a high melting point is 5 degrees Celsius or more and 25 degrees Celsius or less,
    The melting point of the cold storage material (50b) having a low melting point is 0 degree Celsius or more and 15 degrees Celsius or less,
    When the melting point of the regenerator material (50a) having a high melting point is not less than 5 degrees Celsius and not more than 15 degrees Celsius, the regenerator material (50b) having a low melting point is not less than 0 degrees Celsius, and the regenerator material having a high melting point The regenerative heat exchanger according to any one of claims 1 to 3, wherein the regenerator heat exchanger is less than the melting point of (50a).
  5.  前記蓄冷容器(47、47C、47D、47E、47F、47J)の少なくとも片面に、前記冷媒通路(45a)を形成する冷媒管(45)が配置されていることを特徴とする請求項1~4のいずれか1つに記載の蓄冷熱交換器。 The refrigerant pipe (45) forming the refrigerant passage (45a) is disposed on at least one surface of the cold storage container (47, 47C, 47D, 47E, 47F, 47J). The cold storage heat exchanger as described in any one of these.
  6.  前記蓄冷容器(47、47D、47E、47F)は、互いに独立した複数のケース(60、60A、60D、60E、60F、60G、60H、60I)を含み、
     前記複数のケース(60、60A、60D、60E、60F、60G、60H、60I)は、空気の流れの上流側と下流側とで異なるケースとなるように配置され、
     前記複数のケース(60、60A、60D、60E、60F、60G、60H、60I)のそれぞれには、融点が異なる対応する蓄冷材(50a、50b)が収容されていることを特徴とする請求項2に記載の蓄冷熱交換器。
    The cold storage container (47, 47D, 47E, 47F) includes a plurality of cases (60, 60A, 60D, 60E, 60F, 60G, 60H, 60I) independent from each other,
    The plurality of cases (60, 60A, 60D, 60E, 60F, 60G, 60H, 60I) are arranged to be different cases on the upstream side and the downstream side of the air flow,
    Each of the plurality of cases (60, 60A, 60D, 60E, 60F, 60G, 60H, 60I) contains a corresponding cold storage material (50a, 50b) having a different melting point. 2. The cold storage heat exchanger according to 2.
  7.  前記複数のケース(60、60A、60D、60E、60F)のそれぞれに、対応する前記蓄冷材(50a、50b)を封入するための封入口(61、61F)が1つ以上設けられていることを特徴とする請求項6に記載の蓄冷熱交換器。 Each of the plurality of cases (60, 60A, 60D, 60E, 60F) is provided with one or more sealing ports (61, 61F) for sealing the corresponding cold storage material (50a, 50b). The regenerative heat exchanger according to claim 6.
  8.  前記蓄冷容器(47C)の内部は、仕切り(70)によって区画され、
     前記仕切り(70)により仕切られた複数の空間のそれぞれに、融点が異なる対応する前記蓄冷材(50a、50b)が収容されていることを特徴とする請求項1または2のいずれか1つに記載の蓄冷熱交換器。
    The inside of the cold storage container (47C) is partitioned by a partition (70),
    The cold storage material (50a, 50b) having a different melting point is accommodated in each of the plurality of spaces partitioned by the partition (70), according to any one of claims 1 and 2. The regenerative heat exchanger described.
  9.  前記蓄冷容器(47C)には、前記複数の蓄冷材(50a、50b)を封入するための封入口(61)が1つ以上設けられていることを特徴とする請求項8に記載の蓄冷熱交換器。 The cool storage heat according to claim 8, wherein the cool storage container (47C) is provided with one or more sealing ports (61) for sealing the plurality of cool storage materials (50a, 50b). Exchanger.
  10.  前記1つ以上の封入口(61、61F)は、前記蓄冷容器(47C)または対応する前記ケース(60、60A、60D、60E、60F)の外周のうち、空気流れの上流側または下流側に設けられることを特徴とする請求項7または9に記載の蓄冷熱交換器。 The one or more sealing ports (61, 61F) are arranged on the upstream side or the downstream side of the air flow in the outer periphery of the cold storage container (47C) or the corresponding case (60, 60A, 60D, 60E, 60F). The regenerative heat exchanger according to claim 7 or 9, wherein the regenerative heat exchanger is provided.
  11.  前記複数の蓄冷材(50a、50b)は、パラフィンまたは水和物が主成分であることを特徴とする請求項1~10のいずれか1つに記載の蓄冷熱交換器。 The cold storage heat exchanger according to any one of claims 1 to 10, wherein the plurality of cold storage materials (50a, 50b) are mainly composed of paraffin or hydrate.
  12.  前記融点が高い蓄冷材(50a)に用いられるパラフィンは、炭素数が16または15であり、
     前記融点が低い蓄冷材(50b)に用いられるパラフィンは、炭素数が15または14であり、
     前記融点が高い蓄冷材(50a)のパラフィンの炭素数が16のとき、前記融点が低い蓄冷材(50b)のパラフィンの炭素数は、15または14であり、
     前記融点が高い蓄冷材(50a)のパラフィンの炭素数が15のとき、前記融点が低い蓄冷材(50b)のパラフィンの炭素数は14であることを特徴とする請求項4に記載の蓄冷熱交換器。
    The paraffin used for the cold storage material (50a) having a high melting point has 16 or 15 carbon atoms,
    The paraffin used for the cold storage material (50b) having a low melting point has 15 or 14 carbon atoms,
    When the carbon number of the paraffin of the cold storage material (50a) having a high melting point is 16, the carbon number of the paraffin of the cold storage material (50b) having a low melting point is 15 or 14,
    The regenerator heat according to claim 4, wherein when the carbon number of the paraffin of the regenerator material (50a) having a high melting point is 15, the carbon number of the paraffin of the regenerator material (50b) having a low melting point is 14. Exchanger.
PCT/JP2013/003040 2012-06-14 2013-05-13 Cold storage heat exchanger WO2013186983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/407,844 US20150168047A1 (en) 2012-06-14 2013-05-13 Cold storage heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-135042 2012-06-14
JP2012135042A JP2013256262A (en) 2012-06-14 2012-06-14 Cold storage heat exchanger

Publications (1)

Publication Number Publication Date
WO2013186983A1 true WO2013186983A1 (en) 2013-12-19

Family

ID=49757835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003040 WO2013186983A1 (en) 2012-06-14 2013-05-13 Cold storage heat exchanger

Country Status (3)

Country Link
US (1) US20150168047A1 (en)
JP (1) JP2013256262A (en)
WO (1) WO2013186983A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137807A (en) * 2014-01-22 2015-07-30 株式会社デンソー cold storage heat exchanger
WO2016174852A1 (en) * 2015-04-30 2016-11-03 株式会社デンソー Evaporator
JP2016211837A (en) * 2015-04-30 2016-12-15 株式会社デンソー Evaporator
CN106255861A (en) * 2014-05-23 2016-12-21 株式会社电装 Heat exchanger
WO2017208760A1 (en) * 2016-06-01 2017-12-07 株式会社デンソー Regenerative heat exchanger
CN109405616A (en) * 2018-11-01 2019-03-01 扬州大学 A kind of phase-change accumulation energy bushing type geothermal heat exchanger
CN110605953A (en) * 2018-11-11 2019-12-24 南京酷朗电子有限公司 Quick replacement type energy storage module

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525726B2 (en) * 2008-12-26 2014-06-18 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cool storage function
JP6458680B2 (en) * 2015-02-02 2019-01-30 株式会社デンソー Heat exchanger
JP6406116B2 (en) * 2015-04-28 2018-10-17 株式会社デンソー Air conditioner for vehicles
WO2017057174A1 (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
JP6409836B2 (en) 2015-10-01 2018-10-24 株式会社デンソー Cold storage heat exchanger
JP6888904B2 (en) * 2015-11-24 2021-06-18 ダイムラー・アクチェンゲゼルシャフトDaimler AG Refrigeration cycle system
CN109153316B (en) 2016-05-19 2021-11-23 株式会社电装 Cold storage evaporator and refrigeration cycle device for vehicle having the same
JP6579050B2 (en) * 2016-07-08 2019-09-25 株式会社デンソー Cold storage heat exchanger, air conditioning unit
JP6699507B2 (en) * 2016-10-24 2020-05-27 株式会社デンソー Air conditioner
IT201900010215A1 (en) * 2019-06-26 2020-12-26 Mta Spa Drying device for the treatment of gases, especially air
DE202019105225U1 (en) * 2019-09-20 2020-12-22 Akg Verwaltungsgesellschaft Mbh Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833097A (en) * 1981-08-21 1983-02-26 Hitachi Ltd Heat accumulating device
JP2003080933A (en) * 2001-09-13 2003-03-19 Denso Corp Air conditioner for vehicle
JP2004069126A (en) * 2002-08-05 2004-03-04 Inoac Corp Cold storing agent vessel
JP2010091250A (en) * 2008-09-12 2010-04-22 Denso Corp Heat regenerator
JP2010234837A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Air conditioner for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234967A (en) * 1993-02-09 1994-08-23 Nippon Petrochem Co Ltd Cold storage agent
US20030131623A1 (en) * 2001-09-05 2003-07-17 Suppes Galen J. Heat pump using phase change materials
FR2847973B1 (en) * 2002-11-29 2006-01-27 Valeo Climatisation THERMAL INERTIAL HEAT EXCHANGER FOR A HEAT PUMP CIRCUIT, IN PARTICULAR A MOTOR VEHICLE.
FR2861166B1 (en) * 2003-10-21 2006-11-24 Valeo Climatisation HEAT EXCHANGER USING ACCUMULATION FLUID
FR2945859B1 (en) * 2009-05-19 2011-06-17 Valeo Systemes Thermiques THERMAL EXCHANGE DEVICE CONTAINING THERMAL STORAGE MATERIAL
JP5408017B2 (en) * 2009-06-05 2014-02-05 株式会社デンソー Cold storage heat exchanger
US9150081B2 (en) * 2009-06-10 2015-10-06 Delphi Technologies, Inc. Evaporator phase change thermal siphon
US20120042687A1 (en) * 2010-08-23 2012-02-23 Showa Denko K.K. Evaporator with cool storage function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833097A (en) * 1981-08-21 1983-02-26 Hitachi Ltd Heat accumulating device
JP2003080933A (en) * 2001-09-13 2003-03-19 Denso Corp Air conditioner for vehicle
JP2004069126A (en) * 2002-08-05 2004-03-04 Inoac Corp Cold storing agent vessel
JP2010091250A (en) * 2008-09-12 2010-04-22 Denso Corp Heat regenerator
JP2010234837A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Air conditioner for vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137807A (en) * 2014-01-22 2015-07-30 株式会社デンソー cold storage heat exchanger
CN106255861A (en) * 2014-05-23 2016-12-21 株式会社电装 Heat exchanger
EP3147617A4 (en) * 2014-05-23 2017-06-21 Denso Corporation Heat exchanger
CN106255861B (en) * 2014-05-23 2018-01-09 株式会社电装 Heat exchanger
WO2016174852A1 (en) * 2015-04-30 2016-11-03 株式会社デンソー Evaporator
JP2016211837A (en) * 2015-04-30 2016-12-15 株式会社デンソー Evaporator
US10677537B2 (en) 2015-04-30 2020-06-09 Denso Corporation Evaporator
CN107532861A (en) * 2015-04-30 2018-01-02 株式会社电装 Evaporator
JPWO2017208760A1 (en) * 2016-06-01 2018-10-18 株式会社デンソー Cold storage heat exchanger
CN109070697A (en) * 2016-06-01 2018-12-21 株式会社电装 cold-storage heat exchanger
WO2017208760A1 (en) * 2016-06-01 2017-12-07 株式会社デンソー Regenerative heat exchanger
US11073342B2 (en) 2016-06-01 2021-07-27 Denso Corporation Regenerative heat exchanger
CN109405616A (en) * 2018-11-01 2019-03-01 扬州大学 A kind of phase-change accumulation energy bushing type geothermal heat exchanger
CN109405616B (en) * 2018-11-01 2020-03-31 扬州大学 Phase-change energy-storage sleeve type geothermal heat exchanger
CN110605953A (en) * 2018-11-11 2019-12-24 南京酷朗电子有限公司 Quick replacement type energy storage module
CN110605953B (en) * 2018-11-11 2020-10-30 南京酷朗电子有限公司 Quick replacement type energy storage method

Also Published As

Publication number Publication date
JP2013256262A (en) 2013-12-26
US20150168047A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
WO2013186983A1 (en) Cold storage heat exchanger
JP5444782B2 (en) Cold storage heat exchanger
CN102264564B (en) Evaporator having cold thermal energy storage function
JP6281394B2 (en) Cold storage heat exchanger
WO2010150774A1 (en) Evaporator with cold storage function
US9109841B2 (en) Air to refrigerant heat exchanger with phase change material
JP5276954B2 (en) Evaporator with cool storage function
JP5274175B2 (en) Cold storage heat exchanger
JP5764335B2 (en) Evaporator with cool storage function
JP6183100B2 (en) Cold storage heat exchanger
WO2014030306A1 (en) Cold storage heat exchanger
CN105452793A (en) Tube having a container of phase change material for a heat exchange bundle, in particular for an evaporator of an air conditioning system of a vehicle
JP2011051393A (en) Cold-storage heat exchanger and method for manufacturing the same
JP5552309B2 (en) Evaporator with cool storage function
KR101611694B1 (en) Tube-fin thermal storage evaporator
JP2012126149A (en) Evaporator with cool storage function
JP6658885B2 (en) Cool storage heat exchanger
JP6206209B2 (en) Cold storage heat exchanger
JP2010243066A (en) Cold storage heat exchanger
JP6573030B2 (en) Cold storage heat exchanger
JP6214242B2 (en) Heat exchanger
JP2013200073A (en) Evaporator with cooling storage function
JP6126361B2 (en) Air cooler with cool storage function
WO2022044741A1 (en) Cold-storage heat exchanger
JP6327386B2 (en) Cold storage heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14407844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803492

Country of ref document: EP

Kind code of ref document: A1