WO2019106864A1 - Light-emitting device and illumination device - Google Patents

Light-emitting device and illumination device Download PDF

Info

Publication number
WO2019106864A1
WO2019106864A1 PCT/JP2018/020285 JP2018020285W WO2019106864A1 WO 2019106864 A1 WO2019106864 A1 WO 2019106864A1 JP 2018020285 W JP2018020285 W JP 2018020285W WO 2019106864 A1 WO2019106864 A1 WO 2019106864A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting device
wavelength
peak wavelength
Prior art date
Application number
PCT/JP2018/020285
Other languages
French (fr)
Japanese (ja)
Inventor
秀崇 加藤
草野 民男
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019556540A priority Critical patent/JP7034174B2/en
Publication of WO2019106864A1 publication Critical patent/WO2019106864A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a light emitting device and a lighting device including a light emitting element and a phosphor.
  • a light emitting device using a semiconductor light emitting element such as an LED (Laser Emitting Diode) as a light source and a lighting device mounting the light emitting device on a substrate or the like have been used.
  • a light emitting device or the like may be used in various manufacturing processes, for example, as a substitute for natural light such as sunlight.
  • the above-described light emitting device or the like may be used for indoor appreciation of a living thing (aquatic living thing) which inhabits the water of the sea and the like.
  • a light emitting device is a light emitting element having a light emitting portion emitting a first radiation having a first peak wavelength at 360 to 430 nm, and located on the light emitting portion of the light emitting element; And a covering material containing a phosphor that emits a second radiation having a second peak wavelength at 430 to 470 nm.
  • the light emitting device has a peak region including the first peak wavelength and the second peak wavelength, and a long wavelength region in which light intensity is continuously decreased from the upper limit of the second peak wavelength to a wavelength of 750 nm. It emits radiation.
  • a lighting device includes the light emitting device configured as described above, and a mounting board on which the light emitting device is mounted.
  • FIG. 1 It is a perspective view which shows the light-emitting device of embodiment of this invention. It is sectional drawing when the light-emitting device shown in FIG. 1 is cut
  • FIG. 1 is a perspective view showing a light emitting device 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the light emitting device 1 shown in FIG. 1 cut along a plane indicated by an imaginary line.
  • FIG. 3 is a cross-sectional view showing a part of the light emitting device 1 shown in FIG.
  • FIG. 4 is a view showing the spectrum of external radiation light in the light emitting device of the embodiment of the present invention, and the spectrum of sunlight in the sea at a depth of about 40 m.
  • FIG. 5 is a perspective view showing a lighting device 10 according to an embodiment of the present invention.
  • the light emitting device 1 includes a substrate 2, a light emitting element 3, a frame 4, a sealing member 5, a covering material 6, and a phosphor 7.
  • the lighting device 10 includes a light emitting device 1 and a mounting plate 11 on which the light emitting device 1 is mounted.
  • the light emitting device 1 includes the substrate 2, the light emitting element 3 mounted on the substrate 2, the frame 4 positioned on the upper surface of the substrate 2 and surrounding the light emitting element 3 in plan view, and the frame A sealing member 5 is disposed on the inner side of the housing 4 to seal the light emitting element 3, and a covering material 6 disposed on the light emitting element 3 via the sealing member 5.
  • the covering material 6 is located on the light emitting portion 3 a of the light emitting element 3 and includes the phosphor 7.
  • the light emitting element 3 is, for example, an LED, and emits light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.
  • the substrate 2 is an insulating substrate and is, for example, rectangular in plan view, and includes a first surface (for example, the upper surface) on which the light emitting element 3 is mounted and a second surface (for example, the lower surface) on the opposite side.
  • the substrate 2 is made of, for example, a ceramic material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body or a silicon nitride sintered body, or a material such as a glass ceramic sintered body.
  • the substrate 2 may be made of a composite material in which a plurality of materials among these materials are mixed.
  • the substrate 2 may be made of a polymer resin in which fine particles (filler particles) such as metal oxide are dispersed. The filler particles can adjust the thermal expansion coefficient of the substrate 2.
  • the substrate 2 is made of, for example, an aluminum oxide sintered body, it can be manufactured by the following process. First, a slurry obtained by adding an organic solvent and a binder to raw material powders such as aluminum oxide and silicon oxide and kneading them is formed into a sheet by a method such as a doctor blade method to prepare a ceramic green sheet. Next, the ceramic green sheet is cut into a predetermined shape and size to produce a plurality of sheets. Thereafter, these sheets are laminated in a plurality of layers as needed, and integrally sintered at a temperature of about 1300 to 1600 ° C. The substrate 2 can be manufactured by the above steps.
  • a wiring conductor (not shown) is located on the substrate 2 at least on the upper surface or inside of the substrate 2.
  • the wiring conductor electrically conducts the inside and the outside of the portion surrounded by the frame 4 of the substrate 2.
  • the wiring conductor is made of, for example, a conductive material appropriately selected from materials such as tungsten, molybdenum, manganese, copper, silver, palladium and gold.
  • the wiring conductor can be formed, for example, as follows. First, a metal paste obtained by adding an organic solvent to powder such as tungsten is printed on a plurality of sheets to be the substrate 2 in a predetermined pattern. Thereafter, a laminate of a plurality of sheets and a metal paste are co-fired. The wiring conductor can be formed on the substrate 2 by the above steps. A plated layer of, for example, nickel or gold is formed on the surface of the wiring conductor in order to reduce the possibility of oxidation or to improve the characteristics such as the wettability of the brazing material described later.
  • a metal reflection layer (see FIG. Not shown) may be arranged on the surface such as the upper surface of the substrate 2 on which the light emitting element 3 is mounted.
  • the metal reflection layer is made of, for example, a metal material such as aluminum, silver, gold, copper or platinum (platinum). These metal materials may be, for example, in the form of a metallized layer similar to the wiring conductor, or may be in the form of a thin film layer including a plating layer. Also, the metal reflection layer may be formed of a plurality of metal layers.
  • the light emitting element 3 is mounted on the upper surface of the substrate 2.
  • the light emitting element 3 is electrically and mechanically connected on the wiring conductor (or the plating layer on the surface thereof) located on the upper surface of the substrate 2 through, for example, a brazing material or a solder.
  • the light emitting element 3 has a light transmitting substrate (without the reference numeral) and a light emitting portion 3 a which is a photosemiconductor layer located on the light transmitting substrate.
  • the light-transmissive substrate may be any substrate as long as the photosemiconductor layer can be grown using a chemical vapor deposition method such as a metal organic chemical vapor deposition method or a molecular beam epitaxial growth method.
  • the translucent substrate for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon or zirconium diboride can be used.
  • the thickness of the translucent substrate is, for example, 50 ⁇ m or more and 1000 ⁇ m or less.
  • the optical semiconductor layer is composed of a first semiconductor layer located on the translucent substrate, a light emitting layer located on the first semiconductor layer, and a second semiconductor layer located on the light emitting layer.
  • the first semiconductor layer, the light emitting layer and the second semiconductor layer may be, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphorus or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride or indium nitride An object semiconductor or the like can be used.
  • the thickness of the first semiconductor layer is, for example, not less than 1 ⁇ m and not more than 5 ⁇ m.
  • the thickness of the light emitting layer is, for example, 25 nm or more and 150 nm or less.
  • the thickness of the second semiconductor layer is, for example, 50 nm or more and 600 nm or less.
  • the light emitting element 3 configured in this way can emit excitation light in a wavelength range of, for example, 360 to 430 nm (that is, 380 nm or more and 430 nm or less). That is, the light emitting device 1 of the embodiment emits light (visible light) in a violet wavelength region.
  • the frame 4 is made of, for example, a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide. Further, the frame 4 may be a porous material. Further, the frame 4 may be made of a resin material in which powder made of metal oxide such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide is mixed.
  • the frame 4 is connected to the upper surface of the substrate 2 via, for example, a resin, a brazing material, or solder.
  • the frame 4 is provided on the upper surface of the substrate 2 so as to surround the light emitting element 3 with a space from the light emitting element 3. Further, the frame 4 is formed so that the inclined inner wall surface spreads outward as the distance from the upper surface of the substrate 2 is increased.
  • the inner wall surface inclined so as to extend to the outside of the frame 4 functions as a reflective surface that emits the excitation light emitted from the light emitting element 3 to the outside.
  • the shape of the inner wall surface of the frame 4 is circular in plan view, the light emitted from the light emitting element 3 can be uniformly reflected outward by the reflection surface.
  • the inclined inner wall surface of the frame 4 is, for example, a metal layer made of tungsten, molybdenum, manganese or the like on the inner peripheral surface of the frame 4 made of a sintered material, nickel or gold etc. You may form the plating layer which consists of.
  • the plating layer has a function of reflecting the light emitted from the light emitting element 3.
  • the inclination angle of the inner wall surface of the frame 4 (the size of the angle formed by the inner wall surface of the frame and the upper surface of the substrate 2 in the vertical cross section) is, for example, 55 degrees or more and 70 degrees or less with respect to the upper surface of the substrate 2 The angle is set.
  • a light transmissive sealing member 5 is filled in an inner space surrounded by the substrate 2 and the frame 4.
  • the sealing member 5 has a function of sealing the light emitting element 3 and transmitting the light emitted from the inside of the light emitting element 3 to the outside to the outside.
  • the sealing member 5 is filled in the inner space surrounded by the substrate 2 and the frame 4 leaving a part of the space surrounded by the frame 4.
  • the sealing member 5 is made of, for example, a translucent insulating resin such as silicone resin, acrylic resin or epoxy resin, or a translucent glass material.
  • the refractive index of the sealing member 5 is set to, for example, 1.4 or more and 1.6 or less.
  • the covering material 6 is located on the light emitting portion 3 a of the light emitting element 3. That is, the covering material 6 is opposed to the upper surface of the light emitting element 3 via the sealing member 5.
  • the covering material 6 is provided along the upper surface of the sealing member 5 in the upper part of the inner space surrounded by the substrate 2 and the frame 4.
  • the covering material 6 is positioned to fit in the frame 4.
  • the covering material 6 has a function of converting the wavelength of the light emitted from the light emitting element 3.
  • the wavelength conversion function of the covering material 6 is due to the phosphor 7 located in the covering material 6.
  • the light emitted from the light emitting element 3 enters the inside of the covering material 6 through the sealing member 5.
  • the phosphor 7 contained inside the covering material 6 is excited by the light emitted from the light emitting element 3 to emit fluorescence.
  • the covering material 6 has a wavelength conversion function.
  • the covering material 6 transmits part of the light emitted from the light emitting element 3. That is, the external radiation emitted from the covering material 6 to the outside includes the radiation (first radiation) emitted from the light emitting element and the fluorescence (second radiation) emitted from the phosphor 7 There is.
  • the spectrum of the external radiation is a combination of the spectra of these first and second radiations.
  • the covering material 6 has, for example, a translucent insulating resin such as fluorocarbon resin, silicone resin, acrylic resin or epoxy resin, or a translucent glass material, and in the insulating resin and the glass material, the phosphor 7 Is contained.
  • the phosphors 7 are, for example, uniformly dispersed in the covering material 6.
  • the emission spectrum of the external radiation which is the light finally emitted from the light emitting device 1 to the outside is shown in FIG.
  • An emission spectrum such as this is selected.
  • the external radiation can be set so as to have the above-mentioned spectrum. Note that the above emission spectrum can be measured, for example, with various commercially available measuring instruments provided with a spectroscope and a control circuit.
  • the first radiation emitted from the light emitting element 3 has the first peak wavelength ⁇ 1 at 360 to 430 nm.
  • the second radiation emitted from the phosphor 7 has the second peak wavelength ⁇ 2 at 430 to 470 nm.
  • the emission light (external emission light) from the light emitting device 1 to the outside which includes the first emission light and the second emission light, has a peak area P including the first peak wavelength and the second peak wavelength ⁇ 2, and a second peak It has a long wavelength region L in which the light intensity decreases continuously from the upper limit of the wavelength ⁇ 2 to the wavelength of 750 nm.
  • the light intensity (W / m 2 / nm) is the irradiance of light per unit area and unit wavelength.
  • the light emitting device 1 of the present embodiment has light having a peak from purple (wavelength 360 to 430 nm) to blue (wavelength 430 to 470 nm) and gradually decreases in light intensity from green to red (wavelength 480 to 750 nm). It radiates to the outside and illuminates an external object.
  • the illumination object illuminated by the light emitting device 1 of the present embodiment is viewed as a relatively strong purple-blue color tone.
  • Such color (color tone) approximates the color tone when viewing aquatic organisms living in the depths of about 40 m (eg, about 30 to 50 m) in the sea.
  • the light emitting device 1 of the present embodiment can facilitate, for example, the manufacture of a lighting device having a depth of about 40 m, which corresponds to the depth at which relatively many types of aquatic organisms inhabit.
  • aquatic organisms include fish and shellfish such as Thailand, sea bass and shrimp, cnidarians such as anemones and sea algae.
  • the detail of the illuminating device 10 containing the light-emitting device 1 of such embodiment is mentioned later.
  • the above organisms may be bred in a water tank or the like for the purpose of, for example, watching (individuals etc.), displaying (aquarium etc.), aquaculture, research, etc. indoors (above ground).
  • a lighting device including the light emitting device 1 of the embodiment if used, a breeding environment suitable for each of the above applications can be easily configured.
  • the breeder in the case of breeding the above-mentioned aquatic organism for ornamental use, it is possible to reproduce with high accuracy the color tone in the water in which the aquatic organism is actually inhabited. Therefore, the breeder can view the living thing indoors or the like in the same color as when actually viewing the aquatic life in water.
  • the light emitting device 1 in this case can easily constitute, for example, a comfortable viewing environment.
  • the added value can be effectively improved (sold at a higher price, etc.).
  • the light intensity in the long wavelength region may satisfy the following condition. That is, the light intensity of the external radiation in the long wavelength range L is 1 to 20% of the light intensity at the first peak wavelength ⁇ 1 in the wavelength range of 495 to 570 nm, and the first intensity in the wavelength range of 570 to 590 nm.
  • the intensity may be 0.2 to 3% of the light intensity at the peak wavelength ⁇ 1, and may be 1% or less of the light intensity at the first peak wavelength ⁇ 1 in the wavelength range of 590 to 750 nm. That is, the light intensity decreases at a relatively large reduction rate from the green region to the yellow region, and the external radiation light (including 0% with respect to the light intensity at the first peak wavelength ⁇ 1) containing almost no component from the orange to red region It may be
  • the light emitting device 1 that emits this external radiation can reproduce the attenuation of the long wavelength component of sunlight in water with higher accuracy, with the proportion of the green to red (especially red) region becoming smaller as the depth gets deeper. Therefore, the light emitting device 1 can be made more advantageous in enhancing the reproducibility of the illumination environment in water at the water depth (30 to 50 m, etc.) as described above.
  • the external radiation may have a light intensity in the ultraviolet region of less than 360 nm which may be 1% or less of the light intensity at the first peak wavelength ⁇ 1 or may be 0%. . That is, the light emitting device 1 may not substantially include a light component (ultraviolet light) in the ultraviolet region.
  • a light component ultraviolet light
  • external radiation light when the light intensity in the ultraviolet region of less than 360 nm is 1% or less of the light intensity at the first peak wavelength ⁇ 1, it is effective in reducing the adverse effect of ultraviolet light on aquatic organisms.
  • the phosphor 7 that emits the second radiation will be described by way of a specific example.
  • emits the fluorescence corresponding to 2nd peak wavelength (lambda) 2 as the fluorescent substance 7 in FIG. 3 the example in which the 2nd fluorescent substance 7b was used is shown. .
  • the first phosphor 7a showing a blue color for example (Sr, Ca, Ba) 10 (PO 4) 6 C l2: a Eu.
  • the second phosphor 7b exhibiting blue-green color is, for example, Sr 4 Al 14 O 25 : Eu.
  • the proportions of the elements in parentheses may be set arbitrarily within the range of the molecular formula.
  • the second phosphor 7b allows the spectrum in the blue to blue-green region of the external radiation to be closer to the spectrum of sunlight.
  • the lower limit of the first peak wavelength ⁇ 1 is about 360 nm
  • the upper limit full wavelength range of the long wavelength range is about 750 nm. Therefore, the above whole wavelength range substantially corresponds to the wavelength range of visible light.
  • the ratio of light energy (J) in the wavelength region of 360 to 430 nm indicates the ratio of light energy in a relatively short wavelength region to the light energy of visible light emitted from the light emitting device 1.
  • the illumination device 10 includes the light emitting device 1 having any one of the above-described configurations and the mounting plate 11 on which the light emitting device 1 is mounted.
  • the mounting plate 11 includes a rectangular flat base 12 and a translucent lid 13 located on the base 12 for sealing the light emitting device.
  • the lighting apparatus 10 in this embodiment further includes a housing 21 having a groove-shaped portion for housing the mounting plate 11, and a pair of end plates 22 for closing an end on the short side of the housing 21. There is.
  • the external radiation emitted from the lighting device 10 to the outside basically has the same spectrum as the external radiation of the light emitting device 1. Therefore, the external radiation of the lighting device 10 also has the same effect as the external radiation of the light emitting device 1.
  • the same spectrum as the external emission light of the light emitting device 1 refers to the peak region P having the first peak wavelength ⁇ 1 of 360 to 430 nm and the second peak wavelength ⁇ of 430 to 470 nm, and 750 nm from the upper limit of the second peak wavelength ⁇ 2. And a long wavelength region L in which the light intensity decreases continuously.
  • the plurality of light emitting devices 1 are mounted in the mounting space formed by the mounting plate 11 including the translucent lid 13 and the housing 21, and the lighting device 10 used for breeding aquatic organisms and the like is configured. It is done. According to such a lighting device 10, since the light emitting device 1 having the above configuration is included, it is possible to provide a lighting device suitable for breeding aquatic organisms.
  • the lighting device 10 may include a light emitting device (without a code) (hereinafter, referred to as another light emitting device) that emits external radiation having a spectrum different from that of the light emitting device 1 of the embodiment.
  • a light emitting device without a code
  • Other light emitting devices may include multiple types having external radiation with different spectra.
  • external radiation light having a spectrum similar to that of the light emitting device 1 according to the embodiment can also be obtained by combining the external radiation light of a plurality of other light emitting devices.
  • the spectrum of the external radiation light of the illuminating device 10 can also be finely adjusted by appropriately adjusting the light emission intensity of a plurality of other light emitting devices. As fine adjustment in this case, for example, making one or both of the maximum peak wavelengths at the first and second peak wavelengths ⁇ 1 and ⁇ 2 different can be mentioned.
  • the mounting plate 11 has a function of arranging and holding the plurality of light emitting devices 1. In addition, the mounting plate 11 has a function of dissipating the heat generated by the light emitting device 1 to the outside.
  • the mounting plate 11 is formed of, for example, a metal material such as aluminum, copper or stainless steel, an organic resin material, or a composite material including these.
  • the mounting plate 11 in this embodiment is an elongated rectangular shape in plan view, and for example, the length in the longitudinal direction is 100 mm or more and 2000 mm or less.
  • the mounting plate 11 includes the base 12 having the mounting area on the top surface on which the plurality of light emitting devices 1 are mounted, and the translucent lid 13 sealing the mounting area. Further, the mounting plate 11 is accommodated in the grooved portion of the housing 21. Both ends of the groove-like portion are closed by the end plates 22, respectively, and the mounting plate 11 and the plurality of light emitting devices 1 mounted thereon are fixed and accommodated in the housing 21.
  • a printed circuit board such as a rigid board, a flexible board, or a rigid flexible board is used as the base 12.
  • the wiring pattern disposed on the base 12 and the wiring conductor of the substrate 2 in the light emitting device 1 are electrically connected to each other via a solder or a conductive adhesive.
  • An electric signal (current) transmitted from an external power source through the base 12 is transmitted to the light emitting element 3 through the substrate 2 and the light emitting element 3 emits light.
  • the lid 13 has a function of sealing the light emitting device 1 and transmitting external radiation emitted by the light emitting devices to the outside. Therefore, the lid 13 is made of a translucent material through which the external radiation is transmitted. As a translucent material, an acrylic resin, glass, etc. are mentioned, for example.
  • the lid 13 is a rectangular plate (e.g., an elongated rectangular shape similar to the base 12), and the length in the longitudinal direction is set to, for example, 98 mm or more and 1998 mm or less.
  • the lid 13 is inserted from an opening at one side or the other in the longitudinal direction of the grooved portion of the housing 21 and is slid and positioned along the longitudinal direction of the housing 21. As described above, both ends of the grooved portion are closed by the end plate 22, and the lid 13 is fixed to the housing 21. That is, a plurality of light emitting devices 1 are mounted on the mounting plate 11, and the lighting device 10 configured by being sealed by the housing 21 and the lid 13 is configured.
  • the lid 13 may be made of a material having a function of diffusing light. In this case, the glare can be reduced while maintaining the spectrum of the external radiation light of the lighting device 10 the same as the light emitting device 1.
  • a material for diffusing light for example, a material obtained by adding particles of a resin material or the like having a refractive index of light different from that of the material to the light transmitting material is mentioned.
  • said illuminating device 10 is an illuminating device of the linear light emission which arranged the several light-emitting devices 1 linearly, the surface which arranged not only this but several light-emitting devices 1 in the shape of a lattice or a zigzag lattice shape It may be a light emitting illumination device.
  • the mounting plate 11 (the base 12 or the like) is not limited to the elongated rectangular shape in plan view, but may be a rectangular shape having a small aspect ratio such as square in plan view It may be For example, when the lighting device is disposed on a water tank where aquatic organisms are bred, the mounting plate 11 having a shape (for example, a circular shape or the like) similar to the shape of the water tank may be used.
  • a plurality of lighting devices including the mounting plate 11 in which the plurality of light emitting devices 1 are linearly arranged and mounted
  • a lighting module mounted on the vehicle it may be used for breeding aquatic organisms.
  • a sealing material or the like (not shown) for reducing the influence when water adheres is disposed at a predetermined site such as between the housing 21 and the lid 13 It may be one in which a hygroscopic agent or the like is disposed in the housing.
  • the wiring conductor may be coated with a plating layer such as gold plating.

Abstract

This light-emitting device is provided with: a light-emitting element which has a light-emitting unit that has a first peak wavelength in the range 360-430 nm and emits first irradiation; and a coating material which is positioned on the light-emitting unit of the light-emitting element and which contains a phosphor that has a second peak wavelength in the range 430-470 nm and emits second irradiation. The light emitting device emits external irradiation which comprises a peak region that includes the first peak wavelength and the second peak wavelength, and a long wavelength region in which the light intensity continuously decreases from the second peak wavelength to the wavelength 750 nm.

Description

発光装置および照明装置Light emitting device and lighting device
 本発明は、発光素子および蛍光体を含む発光装置および照明装置に関する。 The present invention relates to a light emitting device and a lighting device including a light emitting element and a phosphor.
 近年、LED(Laser Emitting Diode)等の半導体発光素子(以下、単に発光素子という)を光源とする発光装置および発光装置を基板等に実装した照明装置が用いられている。このような発光装置等は、例えば、太陽光等の自然光の代替として、各種の製造工程で使用される場合がある。 2. Description of the Related Art In recent years, a light emitting device using a semiconductor light emitting element (hereinafter, simply referred to as a light emitting element) such as an LED (Laser Emitting Diode) as a light source and a lighting device mounting the light emitting device on a substrate or the like have been used. Such a light emitting device or the like may be used in various manufacturing processes, for example, as a substitute for natural light such as sunlight.
 上記の発光装置等を、植物または動物等の観賞に適した色調等の光源として用いることが試みられるようになってきている。例えば近年、海中等の水中に生息する生物(水生生物)の屋内での鑑賞に、上記の発光装置が用いられる場合がある。 Attempts have been made to use the above-described light emitting device or the like as a light source such as a color tone suitable for viewing a plant or an animal. For example, in recent years, the above-mentioned light emitting device may be used for indoor appreciation of a living thing (aquatic living thing) which inhabits the water of the sea and the like.
 本発明の1つの態様の発光装置は、360~430nmに第1ピーク波長を有する第1放射光を放射する発光部を有する発光素子と、前記発光素子の前記発光部上に位置しており、430~470nmに第2ピーク波長を有する第2放射光を放射する蛍光体を含む被覆材とを備えている。この発光装置は、前記第1ピーク波長および前記第2ピーク波長を含むピーク領域と、前記第2ピーク波長の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域とを有する外部放射光を放射する。 A light emitting device according to one aspect of the present invention is a light emitting element having a light emitting portion emitting a first radiation having a first peak wavelength at 360 to 430 nm, and located on the light emitting portion of the light emitting element; And a covering material containing a phosphor that emits a second radiation having a second peak wavelength at 430 to 470 nm. The light emitting device has a peak region including the first peak wavelength and the second peak wavelength, and a long wavelength region in which light intensity is continuously decreased from the upper limit of the second peak wavelength to a wavelength of 750 nm. It emits radiation.
 本発明の1つの態様の照明装置は、上記構成の発光装置と、該発光装置が実装された実装板とを備える。 A lighting device according to one aspect of the present invention includes the light emitting device configured as described above, and a mounting board on which the light emitting device is mounted.
本発明の実施形態の発光装置を示す斜視図である。It is a perspective view which shows the light-emitting device of embodiment of this invention. 図1に示す発光装置を仮想線で示す平面で切断したときの断面図である。It is sectional drawing when the light-emitting device shown in FIG. 1 is cut | disconnected by the plane shown with an imaginary line. 図2に示す発光装置の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of light-emitting device shown in FIG. 本発明の実施形態の発光装置における外部放射光のスペクトルおよび海中における太陽光のスペクトルを示す図である。It is a figure which shows the spectrum of the external radiation light in the light-emitting device of embodiment of this invention, and the spectrum of sunlight in the sea. 本発明の実施形態の照明装置を示す斜視図である。It is a perspective view showing a lighting installation of an embodiment of the present invention.
 本発明の実施形態の発光装置および照明装置を、添付の図面を参照して説明する。以下の説明における上下の区別は便宜的ものであり、発光装置および照明装置が実際に用いられるときの上下を規定するものではない。なお、以下の説明における「観賞に適する」こと等は、観賞の対象である水生生物を、それらの生物が本来生息している海中等の水中で見たときと同様の色(色調等)で見ることができる状態であることを意味する。この場合の色の再現は、目視で実感できるものであればよい。「水中」と「海中」とについては、特に区別せずに用いる。 Light emitting devices and lighting devices according to embodiments of the present invention will be described with reference to the accompanying drawings. The distinction between upper and lower in the following description is for convenience, and does not define upper and lower when the light emitting device and the lighting device are actually used. It should be noted that "appropriate for viewing" and the like in the following description is the same color (color tone, etc.) as viewed in the water, such as in the sea where the living creature originally inhabits. It means that it can be seen. The reproduction of the color in this case may be one that can be perceived visually. The terms "underwater" and "underwater" are used without distinction.
 図1は、本発明の実施形態の発光装置1を示す斜視図である。図2は、図1に示す発光装置1を仮想線で示す平面で切断したときの断面図である。図3は、図2に示す発光装置1の一部(二点鎖線で囲んだ部分X)を拡大して示す断面図である。図4は、本発明の実施形態の発光装置における外部放射光のスペクトル、および水深40m程度の海中における太陽光のスペクトルを示す図である。図5は、本発明の実施形態の照明装置10を示す斜視図である。これらの図において、発光装置1は、基板2と、発光素子3と、枠体4と、封止部材5と、被覆材6と、蛍光体7とを備えている。照明装置10は、発光装置1と、発光装置1が実装された実装板11とを備えている。 FIG. 1 is a perspective view showing a light emitting device 1 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the light emitting device 1 shown in FIG. 1 cut along a plane indicated by an imaginary line. FIG. 3 is a cross-sectional view showing a part of the light emitting device 1 shown in FIG. FIG. 4 is a view showing the spectrum of external radiation light in the light emitting device of the embodiment of the present invention, and the spectrum of sunlight in the sea at a depth of about 40 m. FIG. 5 is a perspective view showing a lighting device 10 according to an embodiment of the present invention. In these figures, the light emitting device 1 includes a substrate 2, a light emitting element 3, a frame 4, a sealing member 5, a covering material 6, and a phosphor 7. The lighting device 10 includes a light emitting device 1 and a mounting plate 11 on which the light emitting device 1 is mounted.
 本実施形態において、発光装置1は、基板2と、基板2に搭載された発光素子3と、基板2の上面に位置し、平面視で発光素子3を囲んでいる枠体4と、枠体4に内側に位置して発光素子3を封止している封止部材5と、封止部材5を介して発光素子3上に位置している被覆材6とを有している。また、被覆材6は、発光素子3の発光部3a上に位置し、蛍光体7を含んでいる。発光素子3は、例えば、LEDであって、半導体を用いたpn接合中の電子と正孔が再結合することによって、外部に向かって光を放出する。 In the present embodiment, the light emitting device 1 includes the substrate 2, the light emitting element 3 mounted on the substrate 2, the frame 4 positioned on the upper surface of the substrate 2 and surrounding the light emitting element 3 in plan view, and the frame A sealing member 5 is disposed on the inner side of the housing 4 to seal the light emitting element 3, and a covering material 6 disposed on the light emitting element 3 via the sealing member 5. In addition, the covering material 6 is located on the light emitting portion 3 a of the light emitting element 3 and includes the phosphor 7. The light emitting element 3 is, for example, an LED, and emits light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.
 基板2は、絶縁性の基板であって、例えば平面視で矩形状であり、発光素子3が搭載されている第1面(例えば上面)と、反対側の第2面(例えば下面)とを有している。基板2は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体または窒化ケイ素質焼結体等のセラミック材料、またはガラスセラミック焼結体等の材料からなる。また、基板2は、これらの材料のうち複数の材料を混合した複合系材料からなるものでもよい。また、基板2は、金属酸化物等の微粒子(フィラー粒子)を分散させた高分子樹脂からなるものでもよい。フィラー粒子により、基板2の熱膨張係数を調整することができる。 The substrate 2 is an insulating substrate and is, for example, rectangular in plan view, and includes a first surface (for example, the upper surface) on which the light emitting element 3 is mounted and a second surface (for example, the lower surface) on the opposite side. Have. The substrate 2 is made of, for example, a ceramic material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body or a silicon nitride sintered body, or a material such as a glass ceramic sintered body. In addition, the substrate 2 may be made of a composite material in which a plurality of materials among these materials are mixed. The substrate 2 may be made of a polymer resin in which fine particles (filler particles) such as metal oxide are dispersed. The filler particles can adjust the thermal expansion coefficient of the substrate 2.
 基板2は、例えば、酸化アルミニウム質焼結体からなる場合であれば、次の工程で製作することができる。まず、酸化アルミニウムおよび酸化ケイ素等の原料粉末に有機溶剤およびバインダを添加して混練したスラリーをドクターブレード法等の方法でシート状に成形してセラミックグリーンシートを作製する。次に、セラミックグリーンシートを所定の形状および寸法に切断して複数のシートを作製する。その後、これらのシートを必要に応じて複数層積層し、約1300~1600℃の温度で一体的に焼成する。以上の工程によって、基板2を製作することができる。 If the substrate 2 is made of, for example, an aluminum oxide sintered body, it can be manufactured by the following process. First, a slurry obtained by adding an organic solvent and a binder to raw material powders such as aluminum oxide and silicon oxide and kneading them is formed into a sheet by a method such as a doctor blade method to prepare a ceramic green sheet. Next, the ceramic green sheet is cut into a predetermined shape and size to produce a plurality of sheets. Thereafter, these sheets are laminated in a plurality of layers as needed, and integrally sintered at a temperature of about 1300 to 1600 ° C. The substrate 2 can be manufactured by the above steps.
 基板2には、少なくとも基板2の上面または内部には、配線導体(図示せず)が位置している。配線導体は、基板2の枠体4で囲まれた部分の内外を電気的に導通する。配線導体は、例えば、タングステン、モリブデン、マンガン、銅、銀、パラジウムおよび金等の材料から適宜選択された導電材料からなる。 A wiring conductor (not shown) is located on the substrate 2 at least on the upper surface or inside of the substrate 2. The wiring conductor electrically conducts the inside and the outside of the portion surrounded by the frame 4 of the substrate 2. The wiring conductor is made of, for example, a conductive material appropriately selected from materials such as tungsten, molybdenum, manganese, copper, silver, palladium and gold.
 基板2がセラミック材料からなる場合は、配線導体は、例えば次のようにして形成することができる。まず、タングステン等の粉末に有機溶剤を添加して得た金属ペーストを、基板2となる複数のシートにそれぞれ所定パターンで印刷する。その後、複数のシートを積層したものと金属ペーストとを同時焼成する。以上の工程により、基板2に配線導体を形成することができる。なお、配線導体の表面には、酸化の可能性低減または後述するろう材の濡れ性等の特性向上等のために、例えば、ニッケルまたは金等のめっき層が形成されている。 When the substrate 2 is made of a ceramic material, the wiring conductor can be formed, for example, as follows. First, a metal paste obtained by adding an organic solvent to powder such as tungsten is printed on a plurality of sheets to be the substrate 2 in a predetermined pattern. Thereafter, a laminate of a plurality of sheets and a metal paste are co-fired. The wiring conductor can be formed on the substrate 2 by the above steps. A plated layer of, for example, nickel or gold is formed on the surface of the wiring conductor in order to reduce the possibility of oxidation or to improve the characteristics such as the wettability of the brazing material described later.
 また、基板2の上面等の発光素子3が搭載される面には、基板2上方(外部)に効率よく光を反射させるために、配線導体およびめっき層と間隔を空けて金属反射層(図示せず)が配置されていてもよい。金属反射層は、例えば、アルミニウム、銀、金、銅またはプラチナ(白金)等の金属材料からなる。これらの金属材料は、例えば配線導体と同様のメタライズ層の形態でもよく、めっき層を含む薄膜層の形態でもよい。また、金属反射層は、複数の形態の金属層からなるものでもよい。 In addition, on the surface such as the upper surface of the substrate 2 on which the light emitting element 3 is mounted, a metal reflection layer (see FIG. Not shown) may be arranged. The metal reflection layer is made of, for example, a metal material such as aluminum, silver, gold, copper or platinum (platinum). These metal materials may be, for example, in the form of a metallized layer similar to the wiring conductor, or may be in the form of a thin film layer including a plating layer. Also, the metal reflection layer may be formed of a plurality of metal layers.
 発光素子3は、基板2の上面に搭載されている。発光素子3は、基板2の上面に位置する配線導体(または、その表面のめっき層)上に、例えば、ろう材または半田を介して電気的および機械的に接続されている。発光素子3は、透光性基体(符号なし)と、透光性基体上に位置する光半導体層である発光部3aとを有している。透光性基体は、有機金属気相成長法または分子線エピタキシャル成長法等の化学気相成長法を用いて、光半導体層を成長させることが可能なものであればよい。 The light emitting element 3 is mounted on the upper surface of the substrate 2. The light emitting element 3 is electrically and mechanically connected on the wiring conductor (or the plating layer on the surface thereof) located on the upper surface of the substrate 2 through, for example, a brazing material or a solder. The light emitting element 3 has a light transmitting substrate (without the reference numeral) and a light emitting portion 3 a which is a photosemiconductor layer located on the light transmitting substrate. The light-transmissive substrate may be any substrate as long as the photosemiconductor layer can be grown using a chemical vapor deposition method such as a metal organic chemical vapor deposition method or a molecular beam epitaxial growth method.
 透光性基体に用いられる材料としては、例えば、サファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウム等を用いることができる。なお、透光性基体の厚みは、例えば50μm以上1000μm以下である。 As a material used for the translucent substrate, for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon or zirconium diboride can be used. The thickness of the translucent substrate is, for example, 50 μm or more and 1000 μm or less.
 光半導体層は、透光性基体上に位置する第1半導体層と、第1半導体層上に位置する発光層と、発光層上に位置する第2半導体層とから構成されている。第1半導体層、発光層および第2半導体層は、例えば、III族窒化物半導体、ガリウムリンまたはガリウムヒ素等のIII-V族半導体、あるいは、窒化ガリウム、窒化アルミニウムまたは窒化インジウム等のIII族窒化物半導体等を用いることができる。なお、第1半導体層の厚みは、例えば1μm以上5μm以下である。発光層の厚みは、例えば25nm以上150nm以下である。第2半導体層の厚みは、例えば50nm以上600nm以下である。また、このように構成された発光素子3は、例えば360~430nm(すなわち、380nm以上かつ430nm以下)の波長範囲の励起光を発することができる。すなわち、実施形態の発光装置1は、紫色の波長領域の光(可視光)を放射する。 The optical semiconductor layer is composed of a first semiconductor layer located on the translucent substrate, a light emitting layer located on the first semiconductor layer, and a second semiconductor layer located on the light emitting layer. The first semiconductor layer, the light emitting layer and the second semiconductor layer may be, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphorus or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride or indium nitride An object semiconductor or the like can be used. The thickness of the first semiconductor layer is, for example, not less than 1 μm and not more than 5 μm. The thickness of the light emitting layer is, for example, 25 nm or more and 150 nm or less. The thickness of the second semiconductor layer is, for example, 50 nm or more and 600 nm or less. In addition, the light emitting element 3 configured in this way can emit excitation light in a wavelength range of, for example, 360 to 430 nm (that is, 380 nm or more and 430 nm or less). That is, the light emitting device 1 of the embodiment emits light (visible light) in a violet wavelength region.
 枠体4は、例えば、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料からなる。また、枠体4は、多孔質材料でもよい。また枠体4は、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等の金属酸化物からなる粉末を混合させた樹脂材料からなるものでもよい。 The frame 4 is made of, for example, a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide. Further, the frame 4 may be a porous material. Further, the frame 4 may be made of a resin material in which powder made of metal oxide such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide is mixed.
 枠体4は、基板2の上面に、例えば樹脂、ろう材または半田等を介して接続されている。枠体4は、発光素子3と間隔を空けて、発光素子3を取り囲むように基板2の上面に設けられている。また、枠体4は、傾斜する内壁面が、基板2の上面から遠ざかるに従い、外方に向かって広がるように形成されている。枠体4の外側に広がるように傾斜した内壁面が、発光素子3から発せられる励起光を外部に放射する反射面として機能する。なお、平面視して、枠体4の内壁面の形状を円形とすると、発光素子3が放射する光を一様に反射面にて外方に向かって反射させることができる。 The frame 4 is connected to the upper surface of the substrate 2 via, for example, a resin, a brazing material, or solder. The frame 4 is provided on the upper surface of the substrate 2 so as to surround the light emitting element 3 with a space from the light emitting element 3. Further, the frame 4 is formed so that the inclined inner wall surface spreads outward as the distance from the upper surface of the substrate 2 is increased. The inner wall surface inclined so as to extend to the outside of the frame 4 functions as a reflective surface that emits the excitation light emitted from the light emitting element 3 to the outside. When the shape of the inner wall surface of the frame 4 is circular in plan view, the light emitted from the light emitting element 3 can be uniformly reflected outward by the reflection surface.
 また、枠体4の傾斜している内壁面は、例えば、焼結材料からなる枠体4の内周面にタングステン、モリブデン、マンガン等から成る金属層と、金属層を被覆するニッケルまたは金等からなるめっき層を形成してもよい。このめっき層は、発光素子3の発する光を反射させる機能を有する。なお、枠体4の内壁面の傾斜角度(縦断面視において枠体の内壁面と基板2上面とのなす角の大きさ)は、基板2の上面に対して例えば55度以上70度以下の角度に設定されている。 Further, the inclined inner wall surface of the frame 4 is, for example, a metal layer made of tungsten, molybdenum, manganese or the like on the inner peripheral surface of the frame 4 made of a sintered material, nickel or gold etc. You may form the plating layer which consists of. The plating layer has a function of reflecting the light emitted from the light emitting element 3. The inclination angle of the inner wall surface of the frame 4 (the size of the angle formed by the inner wall surface of the frame and the upper surface of the substrate 2 in the vertical cross section) is, for example, 55 degrees or more and 70 degrees or less with respect to the upper surface of the substrate 2 The angle is set.
 基板2および枠体4で囲まれる内側の空間には、光透過性の封止部材5が充填されている。封止部材5は、発光素子3を封止するとともに、発光素子3の内部から発せられる光を外部に光を外部に透過させる機能を備えている。 A light transmissive sealing member 5 is filled in an inner space surrounded by the substrate 2 and the frame 4. The sealing member 5 has a function of sealing the light emitting element 3 and transmitting the light emitted from the inside of the light emitting element 3 to the outside to the outside.
 封止部材5は、基板2および枠体4で囲まれる内側の空間内に、枠体4で囲まれる空間の一部を残して充填されている。封止部材5は、例えば、シリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂や透光性のガラス材料が用いられる。封止部材5の屈折率は、例えば1.4以上1.6以下に設定されている。 The sealing member 5 is filled in the inner space surrounded by the substrate 2 and the frame 4 leaving a part of the space surrounded by the frame 4. The sealing member 5 is made of, for example, a translucent insulating resin such as silicone resin, acrylic resin or epoxy resin, or a translucent glass material. The refractive index of the sealing member 5 is set to, for example, 1.4 or more and 1.6 or less.
 被覆材6は、発光素子3の発光部3a上に位置している。すなわち、被覆材6は、発光素子3の上面と封止部材5を介して対向している。例えば図2に示すように、被覆材6は、基板2および枠体4で囲まれた内側の空間の上部に、封止部材5の上面に沿って設けられている。被覆材6は、枠体4内に収まるように位置している。被覆材6は、発光素子3の発する光の波長を変換する機能を有している。被覆材6における波長変換の機能は、被覆材6内に位置している蛍光体7による。 The covering material 6 is located on the light emitting portion 3 a of the light emitting element 3. That is, the covering material 6 is opposed to the upper surface of the light emitting element 3 via the sealing member 5. For example, as shown in FIG. 2, the covering material 6 is provided along the upper surface of the sealing member 5 in the upper part of the inner space surrounded by the substrate 2 and the frame 4. The covering material 6 is positioned to fit in the frame 4. The covering material 6 has a function of converting the wavelength of the light emitted from the light emitting element 3. The wavelength conversion function of the covering material 6 is due to the phosphor 7 located in the covering material 6.
 すなわち、発光素子3から放射された光が封止部材5を介して被覆材6の内部に入射する。被覆材6の内部に含有されている蛍光体7が、発光素子3から放射された光によって励起されて蛍光を発する。被覆材6は波長変換の機能を有している。また、被覆材6は、発光素子3から放射された光の一部を透過させる。つまり、被覆材6から外部に放射される外部放射光は、発光素子から放射された放射光(第1放射光)と、蛍光体7から放射された蛍光(第2放射光)とを含んでいる。外部放射光のスペクトルは、これらの第1および第2放射光のスペクトルが合成されたものになる。 That is, light emitted from the light emitting element 3 enters the inside of the covering material 6 through the sealing member 5. The phosphor 7 contained inside the covering material 6 is excited by the light emitted from the light emitting element 3 to emit fluorescence. The covering material 6 has a wavelength conversion function. In addition, the covering material 6 transmits part of the light emitted from the light emitting element 3. That is, the external radiation emitted from the covering material 6 to the outside includes the radiation (first radiation) emitted from the light emitting element and the fluorescence (second radiation) emitted from the phosphor 7 There is. The spectrum of the external radiation is a combination of the spectra of these first and second radiations.
 被覆材6は、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂、または透光性のガラス材料を有し、その絶縁樹脂、ガラス材料中に、蛍光体7が含有されている。蛍光体7は、例えば、被覆材6中に均一に分散している。 The covering material 6 has, for example, a translucent insulating resin such as fluorocarbon resin, silicone resin, acrylic resin or epoxy resin, or a translucent glass material, and in the insulating resin and the glass material, the phosphor 7 Is contained. The phosphors 7 are, for example, uniformly dispersed in the covering material 6.
 発光素子3および被覆材6中に含有される蛍光体7としては、最終的に発光装置1から外部に放射される光である外部放射光(Radiated-light)の発光スペクトルが、図4に示すような発光スペクトルとなるようなものが選ばれる。この場合、第1放射光を放射する発光素子3についても、外部放射光が上記スペクトルになるように設定することができる。なお、上記の発光スペクトルは、例えば、分光器および制御回路を備える市販の各種測定器で測定することができる。 For the phosphor 7 contained in the light emitting element 3 and the covering material 6, the emission spectrum of the external radiation (radiated-light) which is the light finally emitted from the light emitting device 1 to the outside is shown in FIG. An emission spectrum such as this is selected. In this case, also for the light emitting element 3 that emits the first radiation, the external radiation can be set so as to have the above-mentioned spectrum. Note that the above emission spectrum can be measured, for example, with various commercially available measuring instruments provided with a spectroscope and a control circuit.
 本実施形態の発光装置1では、前述したように、発光素子3から放射される第1放射光が、360~430nmに第1ピーク波長λ1を有している。また、蛍光体7から放射される第2放射光が、430~470nmに第2ピーク波長λ2を有している。これらの第1放射光および第2放射光を含む、発光装置1から外部への放射光(外部放射光)は、第1ピーク波長および第2ピーク波長λ2を含むピーク領域Pと、第2ピーク波長λ2の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域Lとを有している。なお、光強度(W/m/nm)は、単位面積および単位波長あたりの光の放射照度である。 In the light emitting device 1 of the present embodiment, as described above, the first radiation emitted from the light emitting element 3 has the first peak wavelength λ1 at 360 to 430 nm. Further, the second radiation emitted from the phosphor 7 has the second peak wavelength λ2 at 430 to 470 nm. The emission light (external emission light) from the light emitting device 1 to the outside, which includes the first emission light and the second emission light, has a peak area P including the first peak wavelength and the second peak wavelength λ2, and a second peak It has a long wavelength region L in which the light intensity decreases continuously from the upper limit of the wavelength λ2 to the wavelength of 750 nm. The light intensity (W / m 2 / nm) is the irradiance of light per unit area and unit wavelength.
 すなわち、本実施形態の発光装置1は、紫色(波長360~430nm)から青色(波長430~470nm)においてピークを有し、緑色から赤色(波長480~750nm)にかけて光強度が次第に小さくなる光を外部に放射し、外部の被照明物に対する照明を行なう。言い換えれば、本実施形態の発光装置1で照明された被照明物は、紫~青の色調が比較的強い色として視認される。このような色(色調)は、深さ約40m(例えば約30~50m)の海中において、その水深で生息している水生生物を見たときの色調に近似している。 That is, the light emitting device 1 of the present embodiment has light having a peak from purple (wavelength 360 to 430 nm) to blue (wavelength 430 to 470 nm) and gradually decreases in light intensity from green to red (wavelength 480 to 750 nm). It radiates to the outside and illuminates an external object. In other words, the illumination object illuminated by the light emitting device 1 of the present embodiment is viewed as a relatively strong purple-blue color tone. Such color (color tone) approximates the color tone when viewing aquatic organisms living in the depths of about 40 m (eg, about 30 to 50 m) in the sea.
 したがって、本実施形態の発光装置1は、例えば、水深40m程度の、比較的多種類の水生生物が生息する深度に対応した照明装置の製作を容易にすることができる。このような水生生物としては、例えばタイ、スズキ、エビなどの魚介類、イソギンチャク等の刺胞動物、海藻類等が挙げられる。なお、このような実施形態の発光装置1を含む照明装置10の詳細については後述する。 Therefore, the light emitting device 1 of the present embodiment can facilitate, for example, the manufacture of a lighting device having a depth of about 40 m, which corresponds to the depth at which relatively many types of aquatic organisms inhabit. Examples of such aquatic organisms include fish and shellfish such as Thailand, sea bass and shrimp, cnidarians such as anemones and sea algae. In addition, the detail of the illuminating device 10 containing the light-emitting device 1 of such embodiment is mentioned later.
 上記の生物は、例えば室内(地上)において観賞(個人等)、展示(水族館等)、養殖または研究等の目的で水槽等において飼育される場合がある。このような場合に、実施形態の発光装置1を含む照明装置を用いれば、上記の各用途に適した飼育環境を容易に構成することができる。例えば、観賞用に上記の水生生物を飼育する場合であれば、その水生生物が実際に生息している水中における色調を高い精度で再現することができる。そのため、飼育者は、実際に水中で水生生物を見るときと同じ色調で、室内等においてその生物を観賞することができる。この場合の発光装置1は、例えば、心地良い観賞環境を容易に構成することができる。また、このような発光装置1および照明装置を製作および販売するときには、その付加価値を効果的に向上させること(より高い価格で販売すること等)もできる。 The above organisms may be bred in a water tank or the like for the purpose of, for example, watching (individuals etc.), displaying (aquarium etc.), aquaculture, research, etc. indoors (above ground). In such a case, if a lighting device including the light emitting device 1 of the embodiment is used, a breeding environment suitable for each of the above applications can be easily configured. For example, in the case of breeding the above-mentioned aquatic organism for ornamental use, it is possible to reproduce with high accuracy the color tone in the water in which the aquatic organism is actually inhabited. Therefore, the breeder can view the living thing indoors or the like in the same color as when actually viewing the aquatic life in water. The light emitting device 1 in this case can easily constitute, for example, a comfortable viewing environment. In addition, when such a light emitting device 1 and a lighting device are manufactured and sold, the added value can be effectively improved (sold at a higher price, etc.).
 上記構成の発光装置1において、長波長領域の光強度が下記条件を満たすものでもよい。すなわち、長波長領域Lにおける外部放射光の光強度は、495~570nmの波長領域において第1ピーク波長λ1における光強度の1~20%の強さであり、570~590nmの波長領域において第1ピーク波長λ1における光強度の0.2~3%の強さであり、590~750nmの波長領域において第1ピーク波長λ1における光強度の1%以下の強さであってもよい。すなわち、緑色領域から黄色領域にかけて比較的大きな減少割合で光強度が小さくなり、橙色から赤色領域の成分をほとんど含まない(第1ピーク波長λ1における光強度に対して0%を含む)外部放射光であってもよい。 In the light emitting device 1 configured as described above, the light intensity in the long wavelength region may satisfy the following condition. That is, the light intensity of the external radiation in the long wavelength range L is 1 to 20% of the light intensity at the first peak wavelength λ1 in the wavelength range of 495 to 570 nm, and the first intensity in the wavelength range of 570 to 590 nm. The intensity may be 0.2 to 3% of the light intensity at the peak wavelength λ1, and may be 1% or less of the light intensity at the first peak wavelength λ1 in the wavelength range of 590 to 750 nm. That is, the light intensity decreases at a relatively large reduction rate from the green region to the yellow region, and the external radiation light (including 0% with respect to the light intensity at the first peak wavelength λ1) containing almost no component from the orange to red region It may be
 この場合には、外部放射光は、長波長領域Lにおいて光の波長が長いほど光強度小さくなる。この外部放射光を放射する発光装置1は、深くなるにつれて緑色~赤色(特に赤色)領域の割合が小さくなる、水中における太陽光の長波長域成分の減衰をより高い精度で再現できる。そのため、前述したような水深(30~50m等)における水中の照明環境の再現性を高める上で、より有利な発光装置1とすることができる。 In this case, as the wavelength of the light in the long wavelength region L is longer, the light intensity of the external radiation light becomes smaller. The light emitting device 1 that emits this external radiation can reproduce the attenuation of the long wavelength component of sunlight in water with higher accuracy, with the proportion of the green to red (especially red) region becoming smaller as the depth gets deeper. Therefore, the light emitting device 1 can be made more advantageous in enhancing the reproducibility of the illumination environment in water at the water depth (30 to 50 m, etc.) as described above.
 また、上記構成の発光装置1において、外部放射光は、360nm未満の紫外領域における光強度が、第1ピーク波長λ1における光強度の1%以下であってもよく、0%であってもよい。すなわち、発光装置1は、実質的に紫外領域の光成分(紫外線)を含んでいないものでもよい。外部放射光について、360nm未満の紫外領域における光強度が、第1ピーク波長λ1における光強度の1%以下であるときには、紫外線による水生生物への悪影響の低減等に有効である。 Further, in the light emitting device 1 configured as described above, the external radiation may have a light intensity in the ultraviolet region of less than 360 nm which may be 1% or less of the light intensity at the first peak wavelength λ1 or may be 0%. . That is, the light emitting device 1 may not substantially include a light component (ultraviolet light) in the ultraviolet region. With regard to external radiation light, when the light intensity in the ultraviolet region of less than 360 nm is 1% or less of the light intensity at the first peak wavelength λ1, it is effective in reducing the adverse effect of ultraviolet light on aquatic organisms.
 上記第2放射光を放射する蛍光体7について、具体的な例を挙げて説明する。なお、図3では、蛍光体7として、第2ピーク波長λ2に対応した蛍光を放射する蛍光体(第1蛍光体7a)に加えて、第2蛍光体7bが用いられた例を示している。 The phosphor 7 that emits the second radiation will be described by way of a specific example. In addition, in addition to the fluorescent substance (1st fluorescent substance 7a) which radiates | emits the fluorescence corresponding to 2nd peak wavelength (lambda) 2 as the fluorescent substance 7 in FIG. 3, the example in which the 2nd fluorescent substance 7b was used is shown. .
 青色を示す第1蛍光体7aは、例えば(Sr,Ca,Ba)10(POl2:Euである。青緑色を示す第2蛍光体7bは、例えばSrAl1425:Euである。かっこ内の元素の割合は、分子式の範囲内であれば任意に設定して構わない。第2蛍光体7bにより、外部放射光の青~青緑領域におけるスペクトルを太陽光のスペクトルにさらに近付けることができる。 The first phosphor 7a showing a blue color, for example (Sr, Ca, Ba) 10 (PO 4) 6 C l2: a Eu. The second phosphor 7b exhibiting blue-green color is, for example, Sr 4 Al 14 O 25 : Eu. The proportions of the elements in parentheses may be set arbitrarily within the range of the molecular formula. The second phosphor 7b allows the spectrum in the blue to blue-green region of the external radiation to be closer to the spectrum of sunlight.
 なお、図4において、上記の波長領域における光エネルギー(J)は、光強度を示す曲線と相対強度=0の直線との間に挟まれる部分の面積(つまり単位波長における光強度の積算値(積分値))として表されている。また、第1ピーク波長λ1の下限が約360nmであり、長波長領域の上限全波長領域が約750nmである。そのため、上記の全波長領域は、ほぼ可視光の波長領域に相当する。例えば、360~430nmの波長領域の光エネルギー(J)の割合は、発光装置1から放射される可視光の光エネルギーにおける比較的波長が短い領域の光エネルギーの割合を示している。 In FIG. 4, the light energy (J) in the above wavelength region is the area of the portion sandwiched between the curve indicating the light intensity and the straight line of relative intensity = 0 (that is, the integrated value of the light intensity at the unit wavelength Integral value) is represented. Further, the lower limit of the first peak wavelength λ1 is about 360 nm, and the upper limit full wavelength range of the long wavelength range is about 750 nm. Therefore, the above whole wavelength range substantially corresponds to the wavelength range of visible light. For example, the ratio of light energy (J) in the wavelength region of 360 to 430 nm indicates the ratio of light energy in a relatively short wavelength region to the light energy of visible light emitted from the light emitting device 1.
 本発明の実施形態の照明装置10を図5に示している。実施形態の照明装置10は、上記いずれかの構成の発光装置1と、発光装置1が実装された実装板11とを備えている。図5に示す例において実装板11は、長方形平板状の基部12と、基部12上に位置して発光装置を封止する透光性の蓋体13とを備えている。また、この実施形態における照明装置10は、実装板11を収容する溝状の部分を有する筐体21と、筐体21の短辺側の端部を塞ぐ一対の端板22とをさらに備えている。 A lighting device 10 according to an embodiment of the present invention is shown in FIG. The illumination device 10 according to the embodiment includes the light emitting device 1 having any one of the above-described configurations and the mounting plate 11 on which the light emitting device 1 is mounted. In the example shown in FIG. 5, the mounting plate 11 includes a rectangular flat base 12 and a translucent lid 13 located on the base 12 for sealing the light emitting device. In addition, the lighting apparatus 10 in this embodiment further includes a housing 21 having a groove-shaped portion for housing the mounting plate 11, and a pair of end plates 22 for closing an end on the short side of the housing 21. There is.
 この照明装置10から外部に放射される外部放射光は、基本的に、発光装置1の外部放射光と同じスペクトルを有している。そのため、照明装置10の外部放射光も、発光装置1の外部放射光と同様の効果を有している。なお、発光装置1の外部放射光と同じスペクトルとは、360~430nmの第1ピーク波長λ1および430~470nmの第2ピーク波長λを有するピーク領域Pと、第2ピーク波長λ2の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域Lとを有するスペクトルである。 The external radiation emitted from the lighting device 10 to the outside basically has the same spectrum as the external radiation of the light emitting device 1. Therefore, the external radiation of the lighting device 10 also has the same effect as the external radiation of the light emitting device 1. The same spectrum as the external emission light of the light emitting device 1 refers to the peak region P having the first peak wavelength λ1 of 360 to 430 nm and the second peak wavelength λ of 430 to 470 nm, and 750 nm from the upper limit of the second peak wavelength λ2. And a long wavelength region L in which the light intensity decreases continuously.
 すなわち、透光性の蓋体13を含む実装板11および筐体21によって構成される実装空間内に、複数の発光装置1が実装されて、水生生物等の飼育に用いられる照明装置10が構成されている。このような照明装置10によれば、上記構成の発光装置1を含んでいることから、水生生物の飼育に適した照明装置を提供することができる。 That is, the plurality of light emitting devices 1 are mounted in the mounting space formed by the mounting plate 11 including the translucent lid 13 and the housing 21, and the lighting device 10 used for breeding aquatic organisms and the like is configured. It is done. According to such a lighting device 10, since the light emitting device 1 having the above configuration is included, it is possible to provide a lighting device suitable for breeding aquatic organisms.
 また、照明装置10は、実施形態の発光装置1とは異なるスペクトルの外部放射光を放射する発光装置(符号なし)(以下、他の発光装置という)を含んでいても構わない。他の発光装置は、互いにスペクトルが異なる外部放射光を有する複数種のものを含んでいてもよい。 In addition, the lighting device 10 may include a light emitting device (without a code) (hereinafter, referred to as another light emitting device) that emits external radiation having a spectrum different from that of the light emitting device 1 of the embodiment. Other light emitting devices may include multiple types having external radiation with different spectra.
 この場合、複数種の他の発光装置の外部放射光を合成させることで、実施形態の発光装置1と同様のスペクトルを有する外部放射光とすることもできる。この構成において、照明装置10から外部に放射される、発光装置1と同じスペクトルの外部放射光の光強度を効果的に高めることもできる。また、あわせて、複数種の他の発光装置の発光強度を適宜調整することで、照明装置10の外部放射光のスペクトルを微調整することもできる。この場合の微調整としては、例えば、第1、第2ピーク波長λ1、λ2における最大ピーク波長の一方または両方を異ならせること等を挙げることができる。 In this case, external radiation light having a spectrum similar to that of the light emitting device 1 according to the embodiment can also be obtained by combining the external radiation light of a plurality of other light emitting devices. In this configuration, it is also possible to effectively increase the light intensity of the external radiation of the same spectrum as the light emitting device 1 emitted from the lighting device 10 to the outside. Moreover, the spectrum of the external radiation light of the illuminating device 10 can also be finely adjusted by appropriately adjusting the light emission intensity of a plurality of other light emitting devices. As fine adjustment in this case, for example, making one or both of the maximum peak wavelengths at the first and second peak wavelengths λ1 and λ2 different can be mentioned.
 実装板11は、複数の発光装置1を配列して保持する機能を有している。また、実装板11は、発光装置1が発する熱を外部に放散させる機能を有している。実装板11は、例えば、アルミニウム、銅またはステンレス鋼等の金属材料、有機樹脂材料またはこれらを含む複合材料等により形成されている。 The mounting plate 11 has a function of arranging and holding the plurality of light emitting devices 1. In addition, the mounting plate 11 has a function of dissipating the heat generated by the light emitting device 1 to the outside. The mounting plate 11 is formed of, for example, a metal material such as aluminum, copper or stainless steel, an organic resin material, or a composite material including these.
 この実施形態における実装板11は、平面視において細長い長方形状であり、例えば、長手方向の長さが100mm以上2000mm以下である。前述したように、実装板11は、複数の発光装置1が実装される実装領域を上面に有する基部12と、実装領域を封止する透光性の蓋体13とを含んでいる。また、実装板11は、筐体21の溝状の部分に収容される。溝状の部分の両端がそれぞれ端板22で塞がれて、筐体21内に実装板11およびこれに実装された複数の発光装置1が固定されて収容される。 The mounting plate 11 in this embodiment is an elongated rectangular shape in plan view, and for example, the length in the longitudinal direction is 100 mm or more and 2000 mm or less. As described above, the mounting plate 11 includes the base 12 having the mounting area on the top surface on which the plurality of light emitting devices 1 are mounted, and the translucent lid 13 sealing the mounting area. Further, the mounting plate 11 is accommodated in the grooved portion of the housing 21. Both ends of the groove-like portion are closed by the end plates 22, respectively, and the mounting plate 11 and the plurality of light emitting devices 1 mounted thereon are fixed and accommodated in the housing 21.
 基部12としては、例えば、リジッド基板、フレキシブル基板またはリジッドフレキシブル基板等のプリント基板が用いられる。基部12に配置された配線パターンと発光装置1における基板2の配線導体とが、半田または導電性接着剤を介して互いに電気的に接続される。外部の電源から基部12を介して伝送された電気信号(電流)が基板2を介して発光素子3に伝わり、発光素子3が発光する。 For example, a printed circuit board such as a rigid board, a flexible board, or a rigid flexible board is used as the base 12. The wiring pattern disposed on the base 12 and the wiring conductor of the substrate 2 in the light emitting device 1 are electrically connected to each other via a solder or a conductive adhesive. An electric signal (current) transmitted from an external power source through the base 12 is transmitted to the light emitting element 3 through the substrate 2 and the light emitting element 3 emits light.
 蓋体13は、発光装置1を封止するとともに、これらの発光装置が放射する外部放射光を外部に透過させる機能を有している。そのため、蓋体13は、この外部放射光が透過する透光性の材料からなる。透光性の材料としては、例えば、アクリル樹脂およびガラス等が挙げられる。蓋体13は、矩形状(基部12と同様の細長い長方形状等)の板体であって、長手方向の長さが、例えば、98mm以上1998mm以下に設定されている。 The lid 13 has a function of sealing the light emitting device 1 and transmitting external radiation emitted by the light emitting devices to the outside. Therefore, the lid 13 is made of a translucent material through which the external radiation is transmitted. As a translucent material, an acrylic resin, glass, etc. are mentioned, for example. The lid 13 is a rectangular plate (e.g., an elongated rectangular shape similar to the base 12), and the length in the longitudinal direction is set to, for example, 98 mm or more and 1998 mm or less.
 蓋体13は、筐体21の溝状の部分における長手方向一方側または他方側の開口から挿し込まれ、筐体21の長手方向に沿ってスライドされて位置決めされる。前述したように溝状の部分の両端が端板22で塞がれて、筐体21に蓋体13が固定される。すなわち、複数の発光装置1が実装板11に実装され、筐体21および蓋体13等で封止されてなる照明装置10が構成される。 The lid 13 is inserted from an opening at one side or the other in the longitudinal direction of the grooved portion of the housing 21 and is slid and positioned along the longitudinal direction of the housing 21. As described above, both ends of the grooved portion are closed by the end plate 22, and the lid 13 is fixed to the housing 21. That is, a plurality of light emitting devices 1 are mounted on the mounting plate 11, and the lighting device 10 configured by being sealed by the housing 21 and the lid 13 is configured.
 また、蓋体13は、光を拡散させる機能を有する材料からなるものでもよい。この場合には、照明装置10の外部放射光のスペクトルを発光装置1と同じに維持しながら、まぶしさを低減することができる。光を拡散させる材料としては、例えば、上記透光性の材料に、その材料とは光の屈折率が異なる樹脂材料等の粒子を添加したものが挙げられる。 Moreover, the lid 13 may be made of a material having a function of diffusing light. In this case, the glare can be reduced while maintaining the spectrum of the external radiation light of the lighting device 10 the same as the light emitting device 1. As a material for diffusing light, for example, a material obtained by adding particles of a resin material or the like having a refractive index of light different from that of the material to the light transmitting material is mentioned.
 なお、上記の照明装置10は、複数の発光装置1を直線状に配列した線発光の照明装置であるが、これに限らず複数の発光装置1を格子状または千鳥格子状に配列した面発光の照明装置であってもよい。また、実装板11(基部12等)は、平面視で細長い長方形状のものに限らず、平面視で正方形状等の縦横比が小さい四角形状でもよく、円形状または楕円形状等の四角形状以外のものでもよい。例えば、照明装置が水生生物の飼育されている水槽上に配置されるものであるときに、この水槽の形状と同様の形状(例えば円形状等)の実装板11が用いられてもよい。 In addition, although said illuminating device 10 is an illuminating device of the linear light emission which arranged the several light-emitting devices 1 linearly, the surface which arranged not only this but several light-emitting devices 1 in the shape of a lattice or a zigzag lattice shape It may be a light emitting illumination device. In addition, the mounting plate 11 (the base 12 or the like) is not limited to the elongated rectangular shape in plan view, but may be a rectangular shape having a small aspect ratio such as square in plan view It may be For example, when the lighting device is disposed on a water tank where aquatic organisms are bred, the mounting plate 11 having a shape (for example, a circular shape or the like) similar to the shape of the water tank may be used.
 また、複数の発光装置1が直線状に配列されて実装された実装板11を含む照明装置(実施形態の照明装置10または上記他の形態の照明装置等)が、さらに複数個、他の基板に搭載されてなる照明用モジュールとして、水生生物の飼育等に利用されてもよい。また、上記の照明装置10およびモジュール等は、水が付着したときの影響を低減するためのシーリング材等(図示せず)が、筐体21と蓋体13との間等の所定部位に配置されたものでもよく、筐体内に吸湿剤等が配置されたものでもよい。また、配線導体に金めっき等のめっき層が被着されたものでもよい。 In addition, a plurality of lighting devices (the lighting device 10 according to the embodiment or the lighting device according to the other aspect described above) including the mounting plate 11 in which the plurality of light emitting devices 1 are linearly arranged and mounted As a lighting module mounted on the vehicle, it may be used for breeding aquatic organisms. Further, in the above-described lighting device 10 and module etc., a sealing material or the like (not shown) for reducing the influence when water adheres is disposed at a predetermined site such as between the housing 21 and the lid 13 It may be one in which a hygroscopic agent or the like is disposed in the housing. Further, the wiring conductor may be coated with a plating layer such as gold plating.
1 発光装置
2 基板
3 発光素子
4 枠体
5 封止部材
6 被覆材
7 蛍光体
7a 第1蛍光体
7b 第2蛍光体
10 照明装置
11 実装板
12 基部
13 蓋体
21 筐体
22 端板
λ1 第1ピーク波長
λ2 第2ピーク波長
P ピーク領域
L 長波長領域
DESCRIPTION OF SYMBOLS 1 light-emitting device 2 board | substrate 3 light-emitting element 4 frame 5 sealing member 6 coating material 7 fluorescent substance 7a 1st fluorescent substance 7b 2nd fluorescent substance
10 Lighting system
11 mounting board
12 base
13 lid
21 case
22 end plate λ1 first peak wavelength λ2 second peak wavelength P peak region L long wavelength region

Claims (4)

  1.  360~430nmに第1ピーク波長を有する第1放射光を放射する発光部を有する発光素子と、前記発光素子の前記発光部上に位置しており、430~470nmに第2ピーク波長を有する第2放射光を放射する蛍光体を含む被覆材とを備えており、
    前記第1ピーク波長および前記第2ピーク波長を含むピーク領域と、前記第2ピーク波長の上限から750nmの波長にかけて、光強度が連続的に減少する長波長領域とを有する外部放射光を放射する発光装置。
    A light emitting element having a light emitting portion emitting a first radiation having a first peak wavelength at 360 to 430 nm, and a light emitting portion located on the light emitting portion of the light emitting element, having a second peak wavelength at 430 to 470 nm And 2 a covering material containing a phosphor that emits radiation,
    The external radiation is emitted having a peak region including the first peak wavelength and the second peak wavelength, and a long wavelength region in which the light intensity decreases continuously from the upper limit of the second peak wavelength to a wavelength of 750 nm. Light emitting device.
  2.  前記長波長領域における前記外部放射光の光強度は、495~570nmの波長領域において前記第1ピーク波長における光強度の1~20%の強さであり、570~590nmの波長領域において前記第1ピーク波長における光強度の0.2~3%の強さであり、590~750nmの波長領域において前記第1ピーク波長における光強度の1%以下の強さである請求項1記載の発光装置。 The light intensity of the external radiation in the long wavelength range is 1 to 20% of the light intensity at the first peak wavelength in the wavelength range of 495 to 570 nm, and the first intensity in the wavelength range of 570 to 590 nm. The light emitting device according to claim 1, which is 0.2 to 3% of the light intensity at the peak wavelength and 1% or less of the light intensity at the first peak wavelength in the wavelength range of 590 to 750 nm.
  3.  前記外部放射光は、360nm未満の紫外領域における光強度が、前記第1ピーク波長における光強度の1%以下である請求項1または請求項2記載の発光装置。 The light emitting device according to claim 1 or 2, wherein the light intensity in the ultraviolet region of less than 360 nm of the external radiation light is 1% or less of the light intensity at the first peak wavelength.
  4.  請求項1~3のいずれか1項記載の発光装置と、
    該発光装置が実装された実装板とを備える照明装置。
    A light emitting device according to any one of claims 1 to 3;
    And a mounting plate on which the light emitting device is mounted.
PCT/JP2018/020285 2017-11-28 2018-05-28 Light-emitting device and illumination device WO2019106864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019556540A JP7034174B2 (en) 2017-11-28 2018-05-28 Light emitting device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017227898 2017-11-28
JP2017-227898 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019106864A1 true WO2019106864A1 (en) 2019-06-06

Family

ID=66664767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020285 WO2019106864A1 (en) 2017-11-28 2018-05-28 Light-emitting device and illumination device

Country Status (2)

Country Link
JP (1) JP7034174B2 (en)
WO (1) WO2019106864A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075505A1 (en) * 2019-10-18 2021-04-22 京セラ株式会社 Light-emitting device and illumination device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152229A (en) * 2001-11-16 2003-05-23 Rohm Co Ltd Semiconductor light emitting device
JP2013072041A (en) * 2011-09-28 2013-04-22 Koito Mfg Co Ltd Light-emitting module and phosphor
WO2017065766A1 (en) * 2015-10-14 2017-04-20 Starlite Led Inc. Led flip chip plant grow light
WO2017069206A1 (en) * 2015-10-20 2017-04-27 京セラ株式会社 Indoor light source and illumination device
JP2017175193A (en) * 2016-03-18 2017-09-28 コニカミノルタ株式会社 Reader, reading method, and reading program

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213953A (en) * 1998-01-29 1999-08-06 Toshiba Lighting & Technology Corp Fluorescent lamp
JP2004253747A (en) * 2002-02-27 2004-09-09 Mitsubishi Chemicals Corp Light emitting device and lighting device using same
US20070253196A1 (en) * 2006-04-27 2007-11-01 Pfo Lighting LED aquarium light
JP4314279B2 (en) * 2007-02-01 2009-08-12 株式会社東芝 Phosphor, method for manufacturing the same, and light emitting device
JP2008274254A (en) * 2007-03-30 2008-11-13 Mitsubishi Chemicals Corp Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device
JP2010121068A (en) * 2008-11-20 2010-06-03 Niigata Univ Fluorophor and fluorophor-containing composition, and light-emitting device, illuminating device and image-displaying device each using the composition
WO2011105571A1 (en) * 2010-02-26 2011-09-01 三菱化学株式会社 Halophosphate phosphor and white light emitting device
US8568009B2 (en) * 2010-08-20 2013-10-29 Dicon Fiberoptics Inc. Compact high brightness LED aquarium light apparatus, using an extended point source LED array with light emitting diodes
JP2013102731A (en) * 2011-11-14 2013-05-30 Sharp Corp Lighting device for culturing and culturing device
JP2016188263A (en) * 2013-08-28 2016-11-04 パナソニックIpマネジメント株式会社 Phosphor and light-emitting device using the same
JP6201848B2 (en) * 2014-03-24 2017-09-27 三菱ケミカル株式会社 Phosphor, phosphor-containing composition, light emitting device, illumination device, and liquid crystal display device
JP6428245B2 (en) * 2014-12-19 2018-11-28 日亜化学工業株式会社 Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152229A (en) * 2001-11-16 2003-05-23 Rohm Co Ltd Semiconductor light emitting device
JP2013072041A (en) * 2011-09-28 2013-04-22 Koito Mfg Co Ltd Light-emitting module and phosphor
WO2017065766A1 (en) * 2015-10-14 2017-04-20 Starlite Led Inc. Led flip chip plant grow light
WO2017069206A1 (en) * 2015-10-20 2017-04-27 京セラ株式会社 Indoor light source and illumination device
JP2017175193A (en) * 2016-03-18 2017-09-28 コニカミノルタ株式会社 Reader, reading method, and reading program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075505A1 (en) * 2019-10-18 2021-04-22 京セラ株式会社 Light-emitting device and illumination device
JPWO2021075505A1 (en) * 2019-10-18 2021-04-22
JP7233559B2 (en) 2019-10-18 2023-03-06 京セラ株式会社 Light emitting device and lighting device

Also Published As

Publication number Publication date
JP7034174B2 (en) 2022-03-11
JPWO2019106864A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP7321340B2 (en) Light emitting device and lighting device
JP6913790B2 (en) Indoor light source and lighting equipment
JP2022103159A (en) Light-emitting device, lighting device, and lighting device for raising creature
JP2016122722A (en) Photosynthesis promotion light source
US20220264728A1 (en) Lighting device, lighting control method, and lighting control program
WO2019106864A1 (en) Light-emitting device and illumination device
WO2019164014A1 (en) Light emitting device and illumination apparatus
WO2019163983A1 (en) Light emitting device and lighting device
JP3238005U (en) Luminous device and lighting device for aquatic life breeding
WO2019107281A1 (en) Light emitting device and illumination device
JP3243360U (en) Lighting equipment for growing organisms
JP2019175926A (en) Light-emitting device and illuminating device
WO2021075505A1 (en) Light-emitting device and illumination device
JP2019129245A (en) Light-emitting device and lighting unit
JP2020107422A (en) Illumination device and illumination system
JP2022070972A (en) Illuminating device and illuminating module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884770

Country of ref document: EP

Kind code of ref document: A1