WO2019106803A1 - 模擬眼球、眼球手術練習用装置、眼球手術の練習方法 - Google Patents

模擬眼球、眼球手術練習用装置、眼球手術の練習方法 Download PDF

Info

Publication number
WO2019106803A1
WO2019106803A1 PCT/JP2017/043155 JP2017043155W WO2019106803A1 WO 2019106803 A1 WO2019106803 A1 WO 2019106803A1 JP 2017043155 W JP2017043155 W JP 2017043155W WO 2019106803 A1 WO2019106803 A1 WO 2019106803A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulated
eye
sclera
region
surgery
Prior art date
Application number
PCT/JP2017/043155
Other languages
English (en)
French (fr)
Inventor
誠二 小俣
新井 史人
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to PCT/JP2017/043155 priority Critical patent/WO2019106803A1/ja
Priority to US16/607,434 priority patent/US11475797B2/en
Priority to EP17933674.8A priority patent/EP3719779B1/en
Priority to JP2019527482A priority patent/JP7057780B2/ja
Publication of WO2019106803A1 publication Critical patent/WO2019106803A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/24Use of tools
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine

Definitions

  • the present disclosure relates to a simulated eye, a device for practicing eye surgery, and a method for practicing eye surgery.
  • the number of eye surgery in Japan is said to be about 2 million for cataract, about 200,000 for glaucoma, and about 20,000 for retinal vitreous surgery. Since eye surgery is a surgery that targets the extremely delicate tissue of the eye, it requires a lot of experience to improve. However, since medical accidents caused by surgery performed by less experienced physicians may develop into medical litigation, it is difficult for less experienced physicians to have clinical experience in surgery. As a countermeasure therefor, there is known an eye surgery training apparatus which can practice surgery with a feeling similar to human eye surgery using a simulated eye, so that a doctor can gain much experience close to surgery.
  • a simulated eye device for practicing cataract surgery is known as an example of a device for practicing eye surgery (see Patent Document 1).
  • the simulated eye device described in Patent Document 1 is disclosed to include a simulated nucleus corresponding to a human eye lens nucleus and a simulated cortex corresponding to a human eye lens cortex.
  • Patent Document 1 also discloses that the simulated eye can move around the contact point of the magnet and the magnetic body by incorporating a magnet in the simulated eye and embedding an iron ball as a magnetic body in the pedestal. .
  • Patent Document 3 There is also known a device for practicing eye surgery that can adjust the position of a simulated eye placed in the housing by inserting a large number of screws into the housing from the outside of the housing.
  • FIG. 1 is a schematic view for explaining the sclera thinning, and shows a state in which a portion close to the cornea area a among the sclera regions b adjacent to the cornea area a is sliced (b1) with a female c.
  • the present disclosure has been made to solve the above problems, and has conducted intensive studies to form a simulated sclera region in a simulated eye and adopt a configuration necessary for practicing glaucoma surgery. It has been newly found that it is possible to provide a simulated eye suitable for practicing surgery.
  • an object of the present disclosure is to provide a simulated eye, a device for practicing eye surgery, and a method for practicing eye surgery that can be used to practice eye surgery.
  • the present disclosure relates to a simulated eye, an apparatus for practicing eye surgery, and a method for practicing eye surgery as described below.
  • a simulated eyeball for practicing eye surgery The simulated eyeball is Simulated sclera region constituting simulated sclera, A conductive layer formed on the inner side of the simulated eye in the simulated sclera region; Including The conductive layer forms a simulated choroidal region, Simulated eyeballs.
  • the simulated eyeball includes a simulated cornea region constituting a simulated cornea, The conductive layer includes a stretched region which is separated from the simulated sclera and extends into the interior of the simulated eye near the boundary between the simulated corneal region and the simulated sclera region; The extension area forms a simulated iris area, The simulated eye according to the above [1].
  • a recess is formed on the simulated sclera on the conductive layer side of the simulated sclera and near the simulated cornea region, The recess forms a simulated Schlemm's canal, The simulated eye according to the above [1] or [2].
  • the simulated sclera comprises fibers of 50 nm to 500 nm in diameter, The simulated eye according to any one of the above [1] to [3].
  • the simulated sclera is Simulated sclera resin layer, The fiber layer laminated on the simulated sclera resin layer; The simulated eye according to the above [4], including [6]
  • the simulated sclera is A fabric formed of the fibers; A resin impregnated in the cloth, The simulated eye according to the above [4], including [7] At least two or more of the cloths are laminated, The simulated eye according to the above [6].
  • the simulated eyeball is formed into a hollow sealed shape, and the hollow portion can be filled with a fluid, A pressure sensor is formed inside or outside of the simulated eye to detect the pressure of the fluid filled in the hollow portion.
  • An eye surgery instrument at least the tip of which is formed of a conductive material A detection device for detecting that the tip of the ocular surgical instrument contacts the conductive layer of the simulated eye;
  • Equipment for practicing eye surgery including: [10] A practice method of eye surgery using a simulated eye and an eye surgery instrument, The simulated eyeball is Simulated sclera region, A conductive layer formed on the inner side of the simulated eye in the simulated sclera region; Including The tip of the ocular surgical instrument is formed of a conductive material,
  • the ocular surgical instrument comprises at least a scalpel,
  • the practice method is An incision step of cutting the simulated sclera with the scalpel, A detection step of detecting whether or not the blade tip of the knife and the conductor layer are in contact in the cutting step;
  • a method of practicing eye surgery including at least [11] A
  • the simulated sclera is With a resin layer, The fiber layer laminated on the resin layer;
  • the simulated sclera is A fabric formed of the fibers;
  • the cloth is laminated at least two or more, The simulated eye according to the above [13].
  • the simulated eyeball is Have a simulated scleral region, and The inside is formed to be a hollow sealing shape, and the hollow portion can be filled with a fluid;
  • a pressure sensor is formed inside the simulated eye or outside the simulated eye to detect the pressure of the fluid filled in the hollow portion. Simulated eyeballs.
  • the simulated eyeball and eye surgery training apparatus disclosed herein and the practice method of eye surgery can practice scleral thinning.
  • FIG. 1 is a schematic view for explaining scleral thinning.
  • 2A and 2B are schematic cross-sectional views of a portion of the simulated eye in the first embodiment.
  • 3A and 3B are cross-sectional views showing an example of a method of manufacturing the simulated eye 1A of the first embodiment.
  • FIG. 4A to FIG. 4C are cross-sectional views showing an outline of a simulated eye 1B of the second embodiment.
  • FIG. 5A and FIG. 5B are cross-sectional views showing an outline of another method of producing the simulated eye 1 B of the second embodiment.
  • FIG. 6A is a cross-sectional view showing an outline of a simulated eye 1C of the third embodiment.
  • FIGS. 6B to 6D are cross-sectional views showing an outline of a method of manufacturing the conductive layer 3 using the base material.
  • FIGS. 7A and 7B are cross-sectional views schematically showing a simulated eye 1D according to a fourth embodiment.
  • FIG. 8 is a schematic cross-sectional view showing a method of producing the fiber layer 23 of the simulated eye 1D of the fourth embodiment.
  • FIG. 9A and FIG. 9B are cross-sectional views showing an outline of a simulated eye 1D according to Modification 1 of the fourth embodiment.
  • 10A and 10B are cross-sectional views showing an outline of the simulated eye 1E of the fifth embodiment.
  • FIG. 11 is a cross-sectional view showing an outline of a simulated eye 1F of the seventh embodiment.
  • FIG. 12 is a schematic view of the eye surgery training apparatus 10.
  • FIG. 13 is a flowchart of a method of practicing eye surgery.
  • FIGS. 14A and 14B are photographs as a substitute of drawing
  • FIG. 14A is a photograph of a simulated eyeball prepared in Example 1
  • FIG. 14B is a photograph of an eye surgery training apparatus when conduction is confirmed.
  • 15A to 15C are photographs as a substitute of drawings
  • FIG. 15A is a photograph of a simulated eyeball prepared in Example 3
  • FIG. 15B is a SEM photograph of a fiber layer
  • FIG. 15C is a photograph of sliced simulated sclera (fiber layer).
  • FIG. 16A and 16B are photographs as a drawing substitute
  • FIG. 16A and 16B are photographs as a drawing substitute
  • FIG. 16A and 16B are photographs as a drawing substitute
  • FIG. 16A is a photograph of a simulated eyeball prepared in Example 5, and FIG. 16B is a photograph after fluid is filled in the simulated eyeball using a pump.
  • FIG. 17 shows the transition of the pressure in the simulated eye displayed on the monitor in the fifth embodiment.
  • FIGS. 2A and 2B are schematic cross-sectional views of a portion of the simulated eye in the first embodiment.
  • the description common to FIGS. 2A and 2B may be described as FIG. 2 in the specification. The same applies to the other figures.
  • the simulated eye 1A includes at least the conductive layer 3 formed on the inner side of the simulated sclera region 2 and the simulated eye of the simulated sclera region 2.
  • the “simulated sclera region” means a “region” in which the “simulated sclera” is formed. Therefore, when describing characteristics of "simulated sclera”, etc., describe as “simulated sclera”, and when describing a region provided with "simulated sclera”, describe as "simulated sclera region” .
  • the simulated eye 1 ⁇ / b> A in the first embodiment forms a conductive layer (simulated choroid) 3 on the inside of the simulated eye in the simulated sclera region 2.
  • the blade edge of the knife 4 reaches the conductor layer 3, the conductor layer 3 and the knife 4 are in contact to form a circuit, and the knife 4 penetrates the simulated sclera 2.
  • the blade edge of the scalpel 4 penetrates the simulated sclera 2 during the practice of slicing the simulated sclera region 2 with the scalpel 4 to produce the thin section 2a. Whether or not it can be detected.
  • the material forming the simulated sclera 2 is not particularly limited as long as it can be sliced with the blade edge of the knife 4.
  • vinyl polymers such as polyvinylidene chloride, polyvinyl chloride and polyvinyl alcohol, polyolefins such as polyethylene, polypropylene and polymethylpentene, polyesters such as polyethylene terephthalate, polyamides, cellophane and other cellulose polymers, Polymer materials selected from the group consisting of these combinations; rubber materials (elastomers), for example, silicone rubbers such as polydimethylsiloxane (PDMS), butadiene rubber, isoprene rubber, butyl rubber, fluororubber, ethylene propylene rubber, nitrile rubber And polymeric materials selected from the group consisting of natural rubber, polyurethane rubber and combinations thereof.
  • PDMS polydimethylsiloxane
  • butadiene rubber butadiene rubber
  • isoprene rubber butyl rubber
  • the material for forming the conductive layer 3 is not particularly limited as long as it is a conductive material.
  • ⁇ Conductive metal fine particles such as gold, silver, copper, aluminum, tin, magnesium, chromium, nickel, zirconium, iron or the like, or conductive materials such as carbon fiber, carbon nanotube or graphite, or oligothiophene derivative, tetracene,
  • a film (conductor layer 3) is formed by spraying a solution containing an organic semiconductor material such as a polythiophene type, polyacetylene type, polyaniline type, polypyrrole type or the like onto the inside of the simulated sclera region 2 with a spray or the like.
  • a film (conductive layer 3) of a conductive metal material is formed inside the simulated strong film region 2 by sputtering or the like.
  • a coating (conductor layer 3) is formed by spraying a known conductive polymer on the inside of the simulated sclera region 2 with a spray or the like. And the like.
  • the above-mentioned example is a method of forming the film-like conductive layer 3 by spraying a conductive material directly on the inner side of the simulated sclera region 2, but other methods are also available. It is also good.
  • ⁇ A non-conductive substrate for forming the conductive layer 3 is first formed using a mold produced by a 3D printer or the like, and the above-mentioned conductive metal fine particles, conductive material, and the like on the non-conductive substrate
  • the conductor layer 3 is produced by forming a film such as a conductive polymer by dip coating or the like, ⁇ Conductive metal fine particles, conductive material, conductive polymer, etc.
  • a conductive base material (conductor layer 3) is produced by curing the conductive polymer using a mold. And the like.
  • Examples of the material for forming the nonconductive substrate include materials forming the simulated sclera region 2.
  • FIG. 3A and 3B are cross-sectional views showing an example of a method of manufacturing the simulated eye 1A of the first embodiment.
  • molds M1 and M2 for forming a simulated sclera region 2 are produced using a 3D printer or the like.
  • the material constituting the above-mentioned simulated sclera 2 is poured into the gap S between the molds M1 and M2 shown in FIG. 3A and cured.
  • the mold is removed to form a simulated sclera 2.
  • Conductor layer 3 may be formed in the whole region on the inner side of simulated sclera region 2, or may be formed only in part. In the case of forming only a part, at least the inner side of the simulated sclera region to be incised with a scalpel and, if necessary, a region for forming a circuit with the detection device may be provided. In the manufacturing method shown in FIG. 3A, the simulated cornea region 5 can also be manufactured at the same time. Therefore, the simulated cornea 5 may be formed of the same material as the simulated sclera 2.
  • the simulated sclera 2 and the simulated cornea 5 may be formed of different materials.
  • the mold shown in FIG. 3A is turned upside down, first, a material in an amount capable of forming the simulated cornea area 5 is introduced into the mold M1, and then the mold M2 is inserted to simulate the simulated cornea area 5 Cure the material to be made. Next, a material different from the simulated cornea region 5 is poured into the gap S between the molds M1 and M2 and hardened, whereby the simulated sclera region 2 and the simulated cornea region 5 can be integrally molded of different materials.
  • the thickness of the simulated sclera of the human eye is about 0.1 mm to 1 mm. Therefore, the mold may be designed so that the thickness of the simulated sclera 2 is also about 0.1 mm to 1 mm.
  • the thickness of the simulated sclera 2 including the fiber layer may be about 0.1 mm to 1 mm for the simulated sclera 2 provided with the fiber layer described later.
  • the simulated sclera provided with the fiber layer mentioned later can reproduce the feeling which cut
  • the thickness is about
  • the thickness is not limited to 0.1 mm to 1 mm, and may be designed to be thicker than the sclera of the human eye such as 2 mm, 3 mm, 4 mm, and the like.
  • FIG. 4A is a cross-sectional view showing an outline of a simulated eye 1B of the second embodiment.
  • the simulated eye 1B of the second embodiment is a concave portion 21 in the simulated sclera 2 on the inner side of the simulated sclera 2 (the side on which the conductor layer 3 is laminated) and in the vicinity of the simulated corneal region 5. It is formed.
  • the recess 21 can be used as a simulated Schlemm's canal.
  • Schlemm's canal In the human eye, there is a vein system having a luminal structure called Schlemm's canal as a drainage function in the eye.
  • Schlemm's canal In trabeculotomy in glaucoma surgery, after scleral sectioning, a metal thin rod with a diameter of about 0.5 mm is inserted into Schlemm's canal, and it is necessary to cut the trabecular meshwork.
  • conventional simulated eyeballs do not have any lumen structure that simulates Schlemm's canal, and can not practice practicing dissection of trabeculae.
  • the thin metal rod is inserted into the simulated Schlemm's canal after slicing the simulated sclera 2 Practice is also possible.
  • a mold M 2 provided with a protrusion for forming the recess 21 may be used.
  • the conductive layer 3 will be formed along the shape of the recessed part 21. Therefore, although the details will be described later, first, a base material forming the conductor layer 3 is formed using a mold manufactured by a 3D printer or the like, and a film is formed on the base material from the above-described conductive material. By using the conductive layer 3, it is preferable to prevent the conductive layer 3 from being formed inside the recess 21 as shown in FIG. 4C.
  • FIG. 5A and FIG. 5B are cross-sectional views showing an outline of another method of producing the simulated eye 1 B of the second embodiment.
  • the resin 6 is extruded like a soap bubble using an extrusion device P such as a syringe.
  • the extruded resin 6 forms a layer of the resin 6 in close contact with the inner side of the simulated sclera 2, as shown in FIG. 5B, in which case the resin 6 enters the inside of the recess 21 by surface tension. There is no. Therefore, the space of the recess 21 can be maintained.
  • the resin 6 water-soluble resins such as polyvinyl alcohol (PVA) and polyethylene glycol, or vinyl polymers such as polyvinylidene chloride, polyvinyl chloride and polyvinyl alcohol, polyolefins such as polyethylene, polypropylene and polymethylpentene, and polyethylene terephthalate Etc., polymeric materials selected from the group consisting of polyesters, polyamides, cellophanes and other cellulosic polymers, and combinations thereof; rubber materials (elastomers), eg silicone rubbers such as polydimethylsiloxane (PDMS), butadiene rubber, isoprene Polymer materials selected from the group consisting of rubber, butyl rubber, fluoro rubber, ethylene propylene rubber, nitrile rubber, natural rubber, polyurethane rubber and combinations thereof That.
  • the simulated eye 1B of the second embodiment is formed by spraying a conductive material on the inner side of the resin 6, or providing a base material on which a
  • FIG. 6A is a cross-sectional view showing an outline of a simulated eye 1C of the third embodiment.
  • the simulated eye 1C according to the third embodiment is a stretched region in which the conductor layer 3 is separated from the simulated sclera 2 from the vicinity of the boundary between the simulated corneal region 5 and the simulated sclera region 2 and extends into the simulated eye 1C.
  • the extension area 31 forms a simulated iris area 31.
  • the iris region of the eye is formed by the conductive layer 3.
  • glaucoma surgery for example, in trabeculectomy, surgery can be performed so that the metal rod does not accidentally touch the iris at the time of trabeculectomy.
  • use in surgery practice to insert instruments such as iStent, Trabectome, Hydras micro stent, gut, Sipath micro stent, XEN, etc. into the eye without touching the iris from the limbus of the cornea Can.
  • 6B to 6D are cross-sectional views showing an outline of a method of manufacturing the conductive layer 3 using the base material. First, as shown in FIG. 6B, using a 3D printer or the like, a mold M4 and a mold M3 having a convex portion M41 for forming the stretched region 31 are manufactured.
  • a mold M4 having no convex portion 41 may be used.
  • the gap between the molds M3 and M4 may be filled and cured with the material for forming the non-conductive substrate described in the first embodiment, and a film may be formed of the conductive material.
  • the conductor layer 3 having the stretched region 31 shown in FIG. 6D can be manufactured.
  • FIGS. 7A and 7B are cross-sectional views schematically showing a simulated eye 1D according to a fourth embodiment.
  • the simulated sclera 2 includes fibers with a diameter of 50 to 500 nm. More specifically, as shown in FIG. 7A, the simulated sclera 2 includes a simulated sclera resin layer 22 and a fiber layer 23 laminated on the simulated sclera resin layer 22.
  • the simulated sclera resin layer 22 of the simulated eye 1 D is used as a base for laminating the fiber layer 23.
  • the material forming the simulated sclera resin layer 22 may be the same material as the material forming the pseudo-sclera region 2 of the simulated eye 1A of the first embodiment.
  • a mold may be used as in the case of the simulated sclera 2 of the simulated eye 1A of the first embodiment.
  • the fiber layer 23 may be stacked on the simulated sclera region 2 of the simulated eye 1A of the first embodiment.
  • FIG. 8 is a schematic cross-sectional view showing a method of producing the fiber layer 23 of the simulated eye 1D of the fourth embodiment.
  • the fiber layer 23 is formed by laminating the fibers 23 by electrospinning while rotating the mold M2 in a state where the simulated sclera resin layer 22 is placed on the mold M2. ing.
  • the electrospinning method when a high voltage is applied to the solution in which the raw material forming the fiber layer 23 is dissolved, the charged solution is split, the solvent is evaporated, and the nanofibers are collected on the grounded target. It is the method used.
  • the raw material for forming the fiber layer 23 is not particularly limited as long as it can be made liquid by dissolving the raw material in a solvent.
  • polyolefin polymers such as polyethylene and polypropylene; polystyrene; polyimides, polyamides, polyamideimides; polyarylenes such as polyparaphenylene oxide, poly (2,6-dimethylphenylene oxide) and polyparaphenylene sulfide (aromatic polymers And the like; and polyolefinic polymers, polystyrenes, polyimides, polyarylenes (aromatic polymers), sulfonic acid groups (—SO 3 H), carboxyl groups (—COOH), phosphoric acid groups, sulfonium groups, ammonium groups, or Pyridinium group introduced; fluorine-containing polymers such as polytetrafluoroethylene and polyvinylidene fluoride; perfluorosulfonic acid, carboxyl group and phosphate group introduced into the skeleton of flu
  • Solvents include methanol, ethanol, isopropanol, butanol, benzyl alcohol, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, hexane, cyclohexane, dichloromethane, chloroform, carbon tetrachloride, It may be appropriately selected from solvents which can dissolve the raw materials, such as benzene, toluene, xylene, dimethylformamide, N-methylpyrrolidone (NMP), diethyl ether, dioxane, tetrahydrofuran, 1-methoxy-2-propanol and the like.
  • solvents which can dissolve the raw materials, such as benzene, toluene, xylene, dimethylformamide, N-methylpyrrolidon
  • the diameter of the fibers forming the fiber layer 23 is preferably 50 nm to 500 nm, more preferably 80 nm to 400 nm, and particularly preferably 100 nm to 300 nm.
  • the fiber diameter can be adjusted by the size of the nozzle for injecting the raw material solution, the voltage to be applied, and the like.
  • the fiber layer 23 may be formed of only the injected / laminated fibers, but if necessary, it contains a water-soluble adhesive such as PVA or a rubber (adhesive) such as polyurethane rubber. It is also good.
  • the adhesive may be impregnated during or after the production of the fiber layer 23, or may be applied by a spray method or the like.
  • the adhesive when injecting the fibers 23 by the electrospinning method, the adhesive may be simultaneously injected to impregnate the fiber layer 23 with the adhesive. Then, as shown in FIG. 7A, after laminating the fiber layer 23 on the simulated sclera resin layer 22, the conductor layer 3 is formed in the same manner as in the first to third embodiments, as shown in FIG. 7B.
  • the simulated eye 1D can be produced.
  • the sclera of human eyeball contains many collagen fibers. Therefore, at the time of glaucoma surgery, it is necessary to perform slicing while cutting collagen fibers with a scalpel.
  • many simulated eyeballs that are commercially available are formed of soft rubber such as silicone rubber. Therefore, even when using a simulated eye made of silicone rubber or the like, although it is possible to practice slicing with a scalpel, the feeling of cutting fibers with a scalpel can not be reproduced.
  • the simulated sclera 2 includes fibers. Therefore, when slicing with a scalpel using the simulated eyeball 1D, it is possible to obtain a feeling imitated when cutting fibers of the sclera of a human body.
  • the fiber layer 23 of the simulated eye 1D of the fourth embodiment is directly formed on the simulated sclera resin layer 22 by the electrospinning method as shown in FIG. 8, but the fiber layer 23 may contain fibers. It may be manufactured by other methods. For example, as shown in FIG. 9A, a plurality of cloths 231 made of fibers with a diameter of 50 nm to 500 nm manufactured by means of electrospinning or the like are laminated, and impregnated with the water-soluble adhesive exemplified above. The layer 23 may be made. The cloth may be any of fibers woven and non-woven fibers.
  • the fiber layer 23 of the modified example 1 of the fourth embodiment is manufactured using a mold so as to have a shape that can be laminated on the simulated sclera resin layer 22 and placed on the separately prepared simulated sclera resin layer 22
  • the simulated sclera 2 shown in FIG. 7A can be produced.
  • FIG. 9B first, the simulated sclera resin layer 22 is formed using a mold, and then the upper mold (not shown) is removed, and then the cloth 231 is laminated on the simulated sclera resin layer 22;
  • the simulated sclera 2 shown in FIG. 7A may be produced by impregnating with a water-soluble adhesive and pressing with the upper mold and the mold M2 (not shown).
  • FIG. 10A and FIG. 10B are cross-sectional views showing an outline of the simulated eye 1E of the fifth embodiment.
  • a plurality of cloths 231 are laminated on a mold M2, then impregnated with a water-soluble adhesive, and the upper mold not shown By pressing with the mold M2, a simulated sclera 2 in which cloths are laminated is produced.
  • the simulated eye 1E of the fifth embodiment can be manufactured.
  • the simulated eyeball 1E shown in FIG. 10B does not have a simulated corneal region, when it is used only for practicing slicing of the simulated sclera 2, the simulated corneal region is unnecessary.
  • the simulated corneal region may be prepared in the same manner as the simulated sclera 2, and only the simulated sclera region 2 may be used for the practice of slicing.
  • the simulated cornea region may be separately prepared and adhered to the simulated sclera 2 shown in FIG. 10B using an adhesive or the like.
  • the simulated eye 1D of the fourth embodiment and the first modification, and the simulated eye 1E of the fifth embodiment are novel simulated eyes from which a sensation of cutting scleral fibers can be obtained. Therefore, the conductive layer 3 is formed in the simulated eye 1D and the simulated eye 1E, but the conductive layer 3 may not be formed. That is, in the case of use for practice for obtaining a sense of cutting collagen fibers of sclera of human body, the simulation shown in FIG. 7A in which the conductor layer 3 is not formed is the simulation according to the sixth embodiment. It may be an eye 1D '. Similarly, what does not form the conductor layer 3 of the simulated eye 1E shown in FIG. 10B may be used as the simulated eye 1E ′ according to the sixth embodiment.
  • FIG. 11 is a cross-sectional view showing an outline of a simulated eye 1F of the seventh embodiment.
  • Most glaucoma are induced by an increase in intraocular pressure (20 mm Hg or more), so it is necessary to return to normal pressure (about 11 mm Hg) after the procedure ends. Therefore, it is required to monitor the intraocular pressure before, after and during surgery.
  • normal pressure about 11 mm Hg
  • the simulated eye 1F of the seventh embodiment is for solving the above problems, and is formed so as to have a hollow sealed shape inside, and the hollow portion 11 can be filled with a fluid, and the hollow portion is hollow.
  • 11 includes a pressure sensor 12 that detects the pressure of the fluid filled.
  • the pressure sensor 12 may be disposed inside the simulated eyeball 1F as shown in FIG.
  • a tube 13 connected in a sealed state with the simulated eye 1F may be provided, and a pressure sensor 12 may be provided at a location via the tube 13, that is, outside the simulated eye 1F.
  • the fluid may, for example, be a liquid such as water or a gas such as air.
  • sealed state refers to a state in which the fluid filled in the simulated eye 1F does not leak out of the simulated eye 1F, or the fluid is continuously filled in the simulated eye 1F. Even if a part of the fluid leaks out of the simulated eye 1F, it means a sealed state that can maintain a pressure of about 10 mmHg to 30 mmHg.
  • the simulated eye 1F of the seventh embodiment is manufactured by using a 3D printer or the like to produce a mold for molding the simulated sclera 2 and the simulated cornea 5, and a mold for molding the conductive layer (simulated choroid) 3.
  • the sclera 2, the simulated cornea 5 and the conductor layer (simulated choroid) 3 can be prepared, and then the conductor layer (simulated choroid) 3 can be made in close contact with the inside of the simulated sclera 2.
  • the simulated eye 1F can be produced by separately producing the upper portion U and the lower portion D and bonding the upper portion U and the lower portion D.
  • the simulated eye 1F is preferably substantially spherical, but may be in a shape other than approximately spherical as long as it can be sealed.
  • the simulated eye 1F is not particularly limited as long as it is formed so as to be able to send the fluid to the hollow portion 11.
  • a method of sending the fluid into the simulated eye 1F for example, an example of sending the fluid using the tube 13 for disposing the pressure sensor outside, or providing a tube different from the tube 13 to send the fluid is given.
  • a liquid having viscosity as the fluid to be filled in the hollow portion 11, it is substantially liquid tight except that a minute hole is formed so that air can pass through the simulated eye 1F but liquid having the viscosity can not pass. It may be formed and the liquid may be injected into the simulated eye 1F using a syringe or the like.
  • the pressure sensor 12 is not particularly limited as long as the pressure in the simulated eyeball 1F can be measured, and a commercially available pressure sensor may be used.
  • a commercially available pressure sensor may be used.
  • the simulated sclera 2 is sliced using the simulated eye 1F shown in FIG. 11, when the simulated sclera 2 is penetrated with a scalpel, the pressure in the simulated eye 1F decreases. Therefore, although the simulated eye 1F of the embodiment shown in FIG. 11 forms the conductive layer 3, the conductive layer 3 may not be formed.
  • the simulated eye according to the first to seventh embodiments and the modification thereof have been described above, the embodiments shown in the specification and the drawings are representative descriptions of the respective embodiments. Therefore, the technical features described in each embodiment may be combined to create a simulated eye.
  • the recess 21 may or may not be formed, and the simulated sclera 2 may or may not include the fiber layer, and the stretched region 31 is formed in the conductor layer 3 Also, it does not have to be formed.
  • FIG. 12 is a schematic view of the eye surgery training apparatus 10.
  • the eye surgery training apparatus 10 includes a simulated eye 1 having a conductive layer 3 formed thereon, an eye surgical instrument 4 having at least a tip formed of a conductive material, and a conductor of the simulated eye 1 having a tip of the eye surgical instrument 4.
  • At least a detection device 14 that detects contact with the layer 3 is included. Then, the eyeball surgical instrument 4 and the detection device 14, and the conductor layer 3 and the detection device 14 are connected by the electric wire 15 so that a circuit can be formed when the tip of the ocular surgical instrument 4 touches the conductor layer 3. You should do it.
  • the detection device 14 is not particularly limited as long as it can detect conduction, and a known conduction detection device such as a tester may be used.
  • the eye surgery instrument 4 is not particularly limited as long as it is an instrument used for eye surgery, and at least the scalpel includes a scalpel formed of a conductive material, and as the eye surgery surgical instrument 4 other than a scalpel, for example, Punches used to make scleral windows, tweezers for grasping sclera sliced with a scalpel, metal rods inserted into Schlemm's canal, and the like can be mentioned.
  • the ocular surgical instrument 4 comes into contact with the simulated choroidal region 3 at the time of simulated sclera dissection; When it is inserted, it can be detected that the metal rod is in contact with the simulated iris area 31.
  • the simulated eye 1 shown in each embodiment is a new simulated eye in which the simulated choroidal region 3 and the simulated iris region 31 are formed by the conductor layer. As described above, the simulated eye 1 shown in the embodiment is particularly useful for glaucoma surgery, but can also be used for practicing the procedures necessary for eye surgery.
  • the simulated eye and eye surgery training apparatus disclosed herein and the practice method of eye surgery are not limited to glaucoma surgery.
  • FIG. 13 is a flowchart of a method of practicing eye surgery.
  • the practice method is -Incision process (ST1) which incises simulated sclera with a scalpel,
  • NO conductor layer
  • YES in ST2 a change appears in the meter or the like of the detection device such as a tester, so that it is possible to confirm that conduction has occurred.
  • a notification step may be included to notify that the electrical connection has been made, for example, by emitting a warning sound when the blade tip of the female contacts the conductive layer.
  • a warning sound when the blade tip of the female contacts the conductive layer.
  • it may be detected in the same process as the scalpel whether or not the tip portion contacts the conductor layer.
  • Example 1 [Preparation of simulated eyeball] First, using a 3D printer, molds in the shapes of M1 of FIG. 3A and M2 of FIG. 4B were produced. Next, a 10% PDMS solution (1 g of a curing agent with respect to 10 g of a main material of Dow Corning Silpot 184) was poured into the gap of the mold to cure the PDMS solution to prepare a simulated corneal region and a simulated sclera region. .
  • a 10% PDMS solution (1 g of a curing agent with respect to 10 g of a main material of Dow Corning Silpot 184) was poured into the gap of the mold to cure the PDMS solution to prepare a simulated corneal region and a simulated sclera region.
  • FIG. 14A is a photograph of a simulated eyeball produced in Example 1.
  • FIG. 14A is a photograph of a simulated eyeball produced in Example 1.
  • Example 2 [Preparation of eye surgery training device and continuity test] As a female, a crescent knife manufactured by Inami Co., Ltd., and as a detection device, an alduino made by Alduino was used. Next, an eye surgery practice apparatus was produced by connecting the conductor layer of the simulated eyeball and the detection device produced in Example 1, and the scalpel and the detection device with electric wires. Next, when the simulated sclera was incised until the blade edge of the female reached the conductive layer, the detection device confirmed conduction.
  • FIG. 14B is a photograph of the eye surgery training apparatus when conduction has been confirmed.
  • Example 3 [Preparation of a simulated eye including a fiber layer]
  • a 3D printer was used to make molds in the shape of M1 and M2 of FIG. 3A.
  • a 10% PDMS solution was poured into the gap between the molds, and the PDMS solution was cured to produce a simulated cornea region and a simulated sclera resin layer.
  • the mold M1 was removed, and a rotation rod was attached to the bottom of the mold M2.
  • the apparatus of the nano fiber electrospinning unit made by Kato Tech Co., Ltd. was used for preparation of the fiber layer by the electrospinning method.
  • As a material for forming the fiber layer an 11 wt% vinyl chloride solution was used.
  • FIG. 15A is a photograph of a simulated eyeball prepared in Example 3
  • FIG. 15B is a SEM photograph of a fiber layer.
  • FIG. 15C is a photograph of sliced simulated sclera (fiber layer). As apparent from FIG. 15C, the simulated sclera (fiber layer) of the simulated eyeball prepared in Example 3 was sliced to confirm that it could be peeled off. In addition, when the fiber layer was cut with a scalpel, it was confirmed that the feeling of cutting the fiber could be reproduced.
  • Example 4 Preparation of a simulated eye including a pressure sensor
  • a mold for forming the upper portion U and the lower portion D of the simulated eyeball 1F shown in FIG. 11 was produced, and the upper portion U and the lower portion D were respectively produced in the same procedure as in Example 1.
  • the upper U and the lower D were joined by PDMS to produce a simulated eyeball 1F having a liquid-tight structure.
  • two injection needles were inserted into the simulated eye 1F, water was injected from one side, and the simulated eye 1F was filled with water. At that time, since a small amount of air and water leaked from the injection needle, the intraocular pressure was increased by continuing the inflow of water.
  • a pressure sensor (a substrate-mounted pressure sensor manufactured by Honeywell) was attached to the other injection needle to monitor the intraocular pressure of the simulated eye 1F.
  • the pressure data of this pressure sensor is read by Alduino Alduino Nano, and when the constant pressure is exceeded, the inflow of water into the simulated eye 1F is stopped, and the water is allowed to flow when the pressure drops, so that the simulated eye 1F I controlled the intraocular pressure.
  • FIG. 16A is a photograph of a simulated eye 1F produced in Example 5.
  • FIG. 16B is a photograph after pure water is filled in the simulated eye 1F using a pump.
  • FIG. 17 is a result showing transition of pressure in the simulated eye 1F displayed on the monitor. In FIG. 17, the part surrounded by a square indicates the transition of the pressure of the simulated eye 1F (the transition of time in the ⁇ direction).
  • the numerical values in FIG. 17 are the results of monitoring at one second intervals. From the above results, it was confirmed that the intraocular pressure at the time of glaucoma surgery can be reproduced by producing a simulated eye 1F including a pressure sensor.
  • Example 5 when the scalpel of the scalpel penetrated the simulated sclera 2 and then the scalpel was withdrawn, a drop in pressure in the simulated eyeball was confirmed. Therefore, in the case of the simulated eye according to the present embodiment, it is possible to detect whether the blade edge of the scalpel has penetrated the simulated sclera 2 even if the conductive layer is not formed.
  • the operator can practice simulated eye surgery using an eye surgery instrument from the outside of the simulated eye as well as actual surgery.
  • the tip of the eye surgery tool formed of the conductive material is formed on the inner side of the simulated eye in the simulated sclera area. Conduction in contact with the conductive layer makes it possible to detect that the tip of the ocular surgical instrument penetrates the simulated sclera region or the like. Therefore, you can practice eye surgery in an environment close to the actual surgery. Therefore, it is useful in the field of an eye training device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Medicinal Chemistry (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Instructional Devices (AREA)

Abstract

緑内障手術の練習に使用できる模擬眼球を提供することを課題とする。 眼球手術練習用の模擬眼球であって、前記模擬眼球は、模擬強膜を構成する模擬強膜領域と、前記模擬強膜領域の模擬眼球の内部側に形成した導電体層と、を含み、前記導電体層が模擬脈絡膜領域を形成する模擬眼球により、課題を解決できる。

Description

模擬眼球、眼球手術練習用装置、眼球手術の練習方法
 本開示は、模擬眼球、眼球手術練習用装置、眼球手術の練習方法に関する。
 国内における眼球手術症例数は、白内障では約200万例、緑内障では約20万例、網膜硝子体手術は約2万例と言われている。眼球手術は、眼という非常にデリケートな組織を対象とする手術であることから、上達するためには多くの経験が必要である。しかしながら、経験の少ない医師が行う手術による医療事故は医療訴訟に発展する可能性があることから、経験の少ない医師が臨床で手術経験を積み難くなっている。その対策として、医師が手術に極めて近い経験を多く積むことができるように、模擬眼球を用い、人間の眼球手術に近い感覚で手術の練習ができる眼球手術練習用装置が知られている。
 眼球手術練習用装置の一例として、白内障手術練習用の模擬眼装置が知られている(特許文献1参照)。特許文献1に記載の模擬眼装置は、人眼水晶体核に対応する模擬核と、人眼水晶体皮質に対応する模擬皮質とを備えることが開示されている。また、特許文献1には、模擬眼に磁石を組み込み、台座には磁性体としての鉄球を埋め込むことで、模擬眼が磁石と磁性体の接点を中心として動くことができることも開示されている。
 その他の眼球手術練習用装置としては、網膜硝子体手術の一つである網膜上膜(ERM)および内境界膜(ILM)が眼球内空の底面部に積層されている模擬眼球を用い、当該模擬眼球を針金によるバネ力により顔型模型に押し付ける装置も知られている(特許文献2参照)。
 また、ハウジングの外側から多数のネジをハウジング内部に挿入可能とすることで、ハウジング内に配置した模擬眼球の位置を調整できる眼球手術練習用装置も知られている(特許文献3参照)。
国際公開第2011/125136号 米国特許出願公開第2012/0021397号明細書 米国特許出願公開第2016/0063898号明細書
 ところで、種々の眼球手術の中で、緑内障手術は、(1)眼内と結膜下の間にバイパスを作製して、眼内の水を結膜の下に作製したプールにしみ出させる線維柱帯切除術、(2)眼内の排水管の組織を切開して、眼内の排水の効率を良くする線維柱帯切開術、が主な術式である。両術式は、眼球の白目に相当する強膜を薄切する必要がある。図1は強膜の薄切りを説明するための概略図で、角膜領域aに隣接する強膜領域bの内、角膜領域aに近い部分をメスcで薄切り(b1)した状態を示している。しかしながら、上記特許文献1~3に記載の模擬眼球は、主に白内障の練習を念頭においた発明である。したがって、従来の模擬眼球は、強膜の薄切りの練習に必要な工夫がなされておらず、緑内障手術の練習に使えないという問題がある。
 本開示は、上記問題を解決するためになされたものであり、鋭意研究を行ったところ、模擬眼球に模擬強膜領域を形成し、緑内障手術の練習に必要な構成を採用することで、緑内障手術の練習に適した模擬眼球を提供できることを新たに見出した。
 すなわち、本開示の目的は、眼球手術の練習に使用可能な模擬眼球、眼球手術練習用装置、眼球手術の練習方法を提供することである。
 本開示は、以下に示す、模擬眼球、眼球手術練習用装置、眼球手術の練習方法に関する。
[1]眼球手術練習用の模擬眼球であって、
 前記模擬眼球は、
  模擬強膜を構成する模擬強膜領域と、
  前記模擬強膜領域の模擬眼球の内部側に形成した導電体層と、
を含み、
 前記導電体層が模擬脈絡膜領域を形成する、
模擬眼球。
[2]前記模擬眼球が、模擬角膜を構成する模擬角膜領域を含み、
 前記導電体層が、前記模擬角膜領域と前記模擬強膜領域の境界付近において、前記模擬強膜から離間して前記模擬眼球の内部に延伸する延伸領域を含み、
 前記延伸領域が模擬虹彩領域を形成する、
上記[1]に記載の模擬眼球。
[3]前記模擬強膜の前記導電体層側であって、且つ、前記模擬角膜領域近傍の前記模擬強膜に凹部が形成され、
 前記凹部が模擬シュレム管を形成する、
上記[1]または[2]に記載の模擬眼球。
[4]前記模擬強膜が、直径50nm~500nmの繊維を含む、
上記[1]~[3]の何れか一つに記載の模擬眼球。
[5]前記模擬強膜が、
  模擬強膜樹脂層と、
  該模擬強膜樹脂層上に積層した前記繊維層と、
を含む、上記[4]に記載の模擬眼球。
[6]前記模擬強膜が、
  前記繊維で形成された布と、
  前記布に含浸した樹脂と、
を含む、上記[4]に記載の模擬眼球。
[7]前記布が、少なくとも2枚以上積層されている、
上記[6]に記載の模擬眼球。
[8]前記模擬眼球は、内部が中空な密封形状となるように形成され、前記中空部分には流体を充填することができ、
 前記模擬眼球の内部または外部に、前記中空部分に充填した流体の圧力を検出する圧力センサが形成されている、
上記[1]~[7]の何れか一つに記載の模擬眼球。
[9]上記[1]~[8]の何れか一つに記載の模擬眼球、
 少なくとも先端部が導電性材料で形成された眼球手術器具、
 前記眼球手術器具の先端部が前記模擬眼球の前記導電体層に接触したことを検知する検知装置、
を含む、眼球手術練習用装置。
[10]模擬眼球および眼球手術器具を用いた眼球手術の練習方法であって、
 前記模擬眼球は、
  模擬強膜領域と、
  前記模擬強膜領域の模擬眼球の内部側に形成した導電体層と、
を含み、
 前記眼球手術器具の先端部は導電性材料で形成され、
 前記眼球手術器具は少なくともメスを含み、
 前記練習方法は、
  前記メスで模擬強膜を切開する切開工程、
  前記切開工程の際に、前記メスの刃先と前記導電体層が接触したか否か検知する検知工程、
を少なくとも含む、眼球手術の練習方法。
[11]眼球手術練習用の模擬眼球であって、
 前記模擬眼球は、模擬強膜を含み、
 該模擬強膜が、直径50nm~500nmの繊維を含む、
模擬眼球。
[12]前記模擬強膜が、
  樹脂層と、
  該樹脂層上に積層した前記繊維層と、
を含む、上記[11]に記載の模擬眼球。
[13]前記模擬強膜が、
  前記繊維で形成された布と、
  前記布に含浸した樹脂と、
を含む、上記[11]に記載の模擬眼球。
[14]前記布が、少なくとも2枚以上積層されている、
上記[13]に記載の模擬眼球。
[15]眼球手術練習用の模擬眼球であって、
 前記模擬眼球は、
  模擬強膜領域を有し、且つ、
  内部が中空な密封形状となるように形成され、前記中空部分には流体を充填することができ、
 前記模擬眼球の内部または模擬眼球の外部に、前記中空部分に充填した流体の圧力を検出する圧力センサが形成されている、
模擬眼球。
 本願で開示する模擬眼球、眼球手術練習用装置、眼球手術の練習方法により、強膜の薄切りの練習ができる。
図1は、強膜の薄切りを説明するための概略図である。 図2Aおよび図2Bは、第1の実施形態における模擬眼球の一部の概略断面図である。 図3Aおよび図3Bは、第1の実施形態の模擬眼球1Aの製造方法の一例を示す断面図である。 図4A乃至図4Cは、第2の実施形態の模擬眼球1Bの概略を示す断面図である。 図5Aおよび図5Bは、第2の実施形態の模擬眼球1Bの他の作製方法の概略を示す断面図である。 図6Aは、第3の実施形態の模擬眼球1Cの概略を示す断面図である。図6B乃至図6Dは、基材を用いた導電体層3の製造方法の概略を示す断面図である。 図7Aおよび図7Bは、第4の実施形態の模擬眼球1Dの概略を示す断面図である。 図8は、第4の実施形態の模擬眼球1Dの繊維層23の作製方法を示す概略断面図である。 図9Aおよび図9Bは、第4の実施形態の変形例1の模擬眼球1Dの概略を示す断面図である。 10Aおよび図10Bは、第5の実施形態の模擬眼球1Eの概略を示す断面図である。 図11は、第7の実施形態の模擬眼球1Fの概略を示す断面図である。 図12は、眼球手術練習用装置10の概略図である。 図13は、眼球手術の練習方法のフローチャートである。 図14Aおよび図14Bは図面代用写真で、図14Aは実施例1で作製した模擬眼球の写真、図14Bは導通を確認した際の眼球手術練習装置の写真である。 図15A乃至図15Cは図面代用写真で、図15Aは実施例3で作製した模擬眼球の写真、図15Bは繊維層のSEM写真、図15Cは模擬強膜(繊維層)を薄切りした際の写真である。 図16Aおよび図16Bは図面代用写真で、図16Aは実施例5で作製した模擬眼球の写真、図16Bはポンプを用いて模擬眼球内に流体を充填した後の写真である。 図17は、実施例5において、モニターに表示された模擬眼球内の圧力の推移を示している。
 以下、図面を参照しつつ、模擬眼球、眼球手術練習用装置、眼球手術の練習方法の各実施形態について、詳しく説明する。なお、本明細書において、同種の機能を有する部材には、同一または類似の符号が付されている。そして、同一または類似の符号の付された部材について、繰り返しとなる説明が省略される場合がある。
(第1の実施形態)
 図2Aおよび図2Bを参照して、第1の実施形態における模擬眼球1Aについて説明する。図2Aおよび図2Bは、第1の実施形態における模擬眼球の一部の概略断面図である。なお、図2Aおよび図2Bに共通する説明に関しては、明細書中において、図2と記載することがある。他の図についても同様である。
 第1の実施形態における模擬眼球1Aは、模擬強膜領域2、模擬強膜領域2の模擬眼球の内部側に形成した導電体層3を少なくとも有している。なお、本明細書において、「模擬強膜領域」とは、「模擬強膜」が形成された「領域」を意味する。したがって、「模擬強膜」の特性等の記載をする場合は「模擬強膜」と記載し、「模擬強膜」が設けられている領域について記載する場合は「模擬強膜領域」と記載する。なお、符号については、「模擬強膜」および「模擬強膜領域」の何れに対しても同じ番号を付与する。また、「模擬角膜」と「模擬角膜領域」、「模擬脈絡膜」と「模擬脈絡膜領域」の違いも、「模擬強膜」と「模擬強膜領域」の説明と同様である。
 実際の緑内障手術時に強膜を薄切りする際に、経験の少ない医師が執刀すると強膜を切りすぎて強膜の下にある脈絡膜にメス4の刃先が達する場合がある。この脈絡膜は神経が密集しており、メス4の刃先が接触すると患者が疼痛を感じるという問題が発生する。したがって、実際の強膜の薄切りの際には、メス4の刃先が脈絡膜に到達しないように強膜を薄切りする必要がある。第1の実施形態における模擬眼球1Aは、模擬強膜領域2の模擬眼球の内部側に導電体層(模擬脈絡膜)3を形成している。そのため、図2Bに示すように、メス4の刃先が導電体層3に達した場合、導電体層3とメス4が接触して回路を形成し、メス4が模擬強膜2を貫通したことを検知できる。したがって、第1の実施形態における模擬眼球1Aを用いると、メス4で模擬強膜領域2を薄切りして薄切片2aを作製する練習の際に、メス4の刃先が模擬強膜2を貫通したか否か検知できる。
 模擬強膜2を形成する材料は、メス4の刃先で薄切りできる材料であれば特に制限はない。第1の実施形態の場合、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリビニルアルコール等のビニル系ポリマー、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリアミド、セロファンその他のセルロース系ポリマーおよびこれらの組み合わせからなる群から選択される高分子材料;ゴム材(エラストマー)、例えば、ポリジメチルシロキサン(PDMS)等のシリコーンゴム、ブタジエンゴム、イソプレンゴム、ブチルゴム、フッ素ゴム、エチレンプロピレンゴム、ニトリルゴム、天然ゴム、ポリウレタンゴムおよびこれらの組み合わせからなる群から選択される高分子材料;等が挙げられる。
 導電体層3を形成するための材料は、導電性の材料であれば特に制限はない。例えば、
・金、銀、銅、アルミニウム、スズ、マグネシウム、クロム、ニッケル、ジルコニウム、鉄等の導電性金属微粒子、或いは、カーボンファイバー、カーボンナノチューブ、グラファイト等の導電性材料、或いは、オリゴチオフェン誘導体、テトラセン、ポリチオフェン系、ポリアセチレン系、ポリアニリン系、ポリピロール系等の有機半導体材料を含む溶液をスプレー等で模擬強膜領域2の内側に吹き付けることで皮膜(導電体層3)を形成、
・スパッタ等により、模擬強膜領域2の内側に、導電性金属材料の皮膜(導電体層3)を形成、
・公知の導電性高分子をスプレー等で模擬強膜領域2の内側に吹き付けることで皮膜(導電体層3)を形成、
等の方法が挙げられる。
 また、上記の例示は、導電性の材料を模擬強膜領域2の内部側に直接スプレー等をすることで、皮膜状の導電体層3を形成する方法であるが、その他の方法であってもよい。例えば、
・3Dプリンタ等で作製した鋳型を用い、先ず導電体層3を構成するための非導電性の基材を形成し、該非導電性の基材上に上記の導電性金属微粒子、導電性材料、導電性高分子等の皮膜をディップコート法等により形成することで導電体層3を作製、
・上記の非導電性の基材を形成するための材料の中に、導電性金属微粒子、導電性材料、導電性高分子等を分散し、鋳型を用いて基材を硬化することで導電性材料を内部に含む導電体層3を作製、
・鋳型を用いて導電性高分子を硬化することで、導電性基材(導電体層3)を作製、
等の方法が挙げられる。
 非導電性の基材を形成するための材料は、例えば、模擬強膜領域2を形成する材料が挙げられる。
 図3Aおよび図3Bは、第1の実施形態の模擬眼球1Aの製造方法の一例を示す断面図である。先ず、図3Aに示すとおり、3Dプリンタ等を用いて模擬強膜領域2(必要に応じて模擬角膜領域5)を形成するための鋳型M1およびM2を作製する。次に、図3Aに示す鋳型M1およびM2の隙間Sに上記の模擬強膜2を構成する材料を流し込み、硬化する。次に材料を硬化後、鋳型を剥がすことで模擬強膜2を形成する。そして、導電体層3を形成する材料を模擬強膜領域2の内部側にスプレー等をすることで、図2Aに示す第1の実施形態の模擬眼球1Aを作製することができる。なお、導電体層3は、模擬強膜領域2の内部側の全領域に形成してもよいし、一部のみに形成してもよい。一部のみに形成する場合は、少なくともメスで切開する模擬強膜領域の内部側、および、必要に応じて検知装置と回路を形成するための領域を設ければよい。図3Aに示す製造方法では、模擬角膜領域5も同時に製造できる。したがって、模擬角膜5は、模擬強膜2と同じ材料で形成してもよい。
 また、模擬強膜2と模擬角膜5を異なる材料で形成してもよい。具体的には、図3Aに示す鋳型の上下を逆向きにし、先ず鋳型M1に、模擬角膜領域5を形成できる量の材料を投入し、次に、鋳型M2を挿入して模擬角膜領域5を構成する材料を硬化する。次に、鋳型M1およびM2の隙間Sに模擬角膜領域5とは異なる材料を流し込み硬化することで、模擬強膜領域2と模擬角膜領域5とを異なる材料で一体成型することもできる。また、模擬強膜2の薄切りに特化し、模擬角膜領域5が不要の模擬眼球1Aを作製する場合は、鋳型M1およびM2の形状を変えることで、模擬角膜領域5を含まない模擬眼球1Aを作製することもできる。
 人体の眼球の模擬強膜の厚さは、約0.1mm~1mmである。したがって、模擬強膜2の厚さも、約0.1mm~1mmとなるように、鋳型を設計すればよい。なお、後述する繊維層を設けた模擬強膜2については、繊維層を含めた模擬強膜2の厚さを約0.1mm~1mmとなりようにすればよい。また、後述する繊維層を設けた模擬強膜は、メスで繊維を切断する感覚を再現できる。したがって、薄切りの練習を繰り返し実施する目的、換言すると、脈絡膜にメスの刃先分が到達しないように薄切りをするのではなく、薄切りを繰り返し練習する目的で模擬眼球を用いる場合は、厚さは約0.1mm~1mmに限定されず、2mm、3mm、4mm等、人体の眼球の強膜より厚くなるように設計してもよい。
(第2の実施形態)
 図4Aは、第2の実施形態の模擬眼球1Bの概略を示す断面図である。第2の実施形態の模擬眼球1Bは、模擬強膜2の内部側(導電体層3を積層する側)であって、且つ、模擬角膜領域5の近傍の模擬強膜2に、凹部21が形成されている。凹部21は模擬シュレム管として用いることができる。
 人間の眼球内には、眼内の排水機能としてシュレム管という管腔構造を有する静脈系がある。緑内障手術の線維柱帯切開術では、強膜薄切後、直径0.5mm程度の金属細棒をシュレム管に挿入し、繊維柱体を切り裂く行為が必要になる。しかしながら、従来の模擬眼球は、シュレム管を模した管腔構造は一切なく、繊維柱体を切開する練習を実施することができない。第2の実施形態の模擬眼球1Bでは、模擬強膜2に凹部21を設けることで模擬シュレム管を形成していることから、模擬強膜2の薄切り後に、金属細棒を模擬シュレム管に挿入する練習も可能となる。
 凹部21は、図4Bに示すように、凹部21を形成するための凸部を設けた鋳型M2を用いればよい。なお、模擬強膜2に凹部21を形成した場合、スプレー等で導電体層3を形成すると、凹部21の形状に沿って導電体層3が形成されてしまう。そのため、詳しくは後述するが、3Dプリンタ等で作製した鋳型を用いて先ず導電体層3を構成する基材を形成し、該基材に上記の導電性の材料で皮膜を形成することで作製した導電体層3を用いることで、図4Cに示すように、凹部21の内部に導電体層3が形成されないようにすることが好ましい。
 図5Aおよび図5Bは、第2の実施形態の模擬眼球1Bの他の作製方法の概略を示す断面図である。先ず、図5Aに示すように、シリンジ等の押出装置Pを用いて、樹脂6をシャボン玉のように押し出す。押し出された樹脂6は、図5Bに示すように、模擬強膜2の内部側に密着した樹脂6の層を形成するが、その際、樹脂6は表面張力により、凹部21の内部に入り込むことはない。したがって、凹部21の空間を維持することができる。樹脂6としては、ポリビニルアルコール(PVA)、ポリエチレングリコール等の水溶性樹脂、或いは、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリビニルアルコール等のビニル系ポリマー、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリアミド、セロファンその他のセルロース系ポリマーおよびこれらの組み合わせからなる群から選択される高分子材料;ゴム材(エラストマー)、例えば、ポリジメチルシロキサン(PDMS)等のシリコーンゴム、ブタジエンゴム、イソプレンゴム、ブチルゴム、フッ素ゴム、エチレンプロピレンゴム、ニトリルゴム、天然ゴム、ポリウレタンゴムおよびこれらの組み合わせからなる群から選択される高分子材料が挙げられる。樹脂6を形成した後は、樹脂6の内部側に導電性の材料をスプレーする、或いは、導電性の材料で皮膜を形成した基材を設けることで、第2の実施形態の模擬眼球1Bを作製することができる。
(第3の実施形態)
 図6Aは、第3の実施形態の模擬眼球1Cの概略を示す断面図である。第3の実施形態の模擬眼球1Cは、模擬角膜領域5と模擬強膜領域2の境界付近から、導電体層3が、模擬強膜2から離間して模擬眼球1Cの内部に延伸する延伸領域31を含んでいる。延伸領域31は、模擬虹彩領域31を形成する。第3の実施形態の模擬眼球1Cを用いると、眼球の虹彩領域が導電体層3で形成される。したがって、緑内障手術の練習に加え、例えば、繊維柱体切開術において、線維柱体切開時に金属棒が誤って虹彩に触れないように手術することができる。或いは、マイクロ緑内障手術において、iStentやトラベクトーム、ハイドラスマイクロステント、ガット、サイパスマイクロステント、XEN等の器具を角膜輪部から虹彩に触れないように眼球内に挿入する手術の練習に使用することができる。
 模擬眼球1Cの導電体層3の延伸領域31は、模擬眼球1C内で模擬強膜2から離間した位置で保持される必要がある。したがって、導電体層3および延伸領域31は、スプレー等で形成した皮膜ではなく、基材を用いて作製する必要がある。図6B乃至図6Dは、基材を用いた導電体層3の製造方法の概略を示す断面図である。先ず、図6Bに示すように、3Dプリンタ等を用いて、延伸領域31を形成するための凸部M41を有した鋳型M4と鋳型M3を作製する。なお、第1および第2の実施形態の模擬眼球1A、1Bの場合には、凸部41を有しない鋳型M4を用いればよい。次に、鋳型M3およびM4の隙間に、第1の実施形態で説明した非導電性の基材を形成する材料を充填・硬化し、導電性材料で皮膜を形成すればよい。或いは、導電性材料を分散した基材を充填・硬化、又は、導電性高分子を充填・硬化することで、図6Dに示す、延伸領域31を有する導電体層3を作製することができる。
(第4の実施形態)
 図7Aおよび図7Bは、第4の実施形態の模擬眼球1Dの概略を示す断面図である。第4の実施形態の模擬眼球1Dは、模擬強膜2が、直径50~500nmの繊維を含んでいる。より具体的には、図7Aに示すように、模擬強膜2は、模擬強膜樹脂層22、該模擬強膜樹脂層22の上に積層した繊維層23を含んでいる。
 模擬眼球1Dの模擬強膜樹脂層22は、繊維層23を積層させるための土台として用いられる。模擬強膜樹脂層22を形成する材料は、第1の実施形態の模擬眼球1Aの擬強膜領域2を形成する材料と同じ材料を用いればよい。また、第1の実施形態の模擬眼球1Aの模擬強膜2と同様、鋳型を用いて作製すればよい。換言すると、第1の実施形態の模擬眼球1Aの模擬強膜領域2の上に、繊維層23を積層してもよい。
 図8は、第4の実施形態の模擬眼球1Dの繊維層23の作製方法を示す概略断面図である。図8に示す実施形態では、鋳型M2の上に模擬強膜樹脂層22を載置した状態で、鋳型M2を回転させながら電界紡糸法により繊維23を積層することで、繊維層23を形成している。電界紡糸法は、繊維層23を形成する原料を溶解した溶液に高電圧を印加すると、チャージした溶液が分裂し溶媒が蒸発して、アースをとったターゲットにナノファイバーが捕集されることを利用した方法である。
 繊維層23を形成する原料としては、原料を溶媒に溶解することで液体にできるものであれば特に制限はない。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー;ポリスチレン;ポリイミド、ポリアミド、ポリアミドイミド;ポリパラフェニレンオキサイド、ポリ(2、6-ジメチルフェニレンオキサイド)、ポリパラフェニレンスルフィドの如きポリアリーレン類(芳香族系ポリマー);ポリオレフィン系ポリマー、ポリスチレン、ポリイミド、ポリアリーレン類(芳香族系ポリマー)に、スルホン酸基(-SO3H)、カルボキシル基(-COOH)、リン酸基、スルホニウム基、アンモニウム基、または、ピリジニウム基を導入したもの;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素系のポリマー;含フッ素系のポリマーの骨格にスルホン酸基、カルボキシル基、リン酸基を導入したパーフルオロスルホン酸ポリマー、パーフルオロカルボン酸ポリマー、パーフルオロリン酸ポリマー;ポリブダジエン系化合物;エラストマーやゲル等のポリウレタン系化合物;シリコーン系化合物;ポリ塩化ビニル;ポリエチレンテレフタレート;ナイロン;ポリアリレート;等が挙げられる。なおこれらの原料は、単独あるいは複数を組み合わせて用いてもよく、また官能基化してもよく、これらの原料となる単量体を2種以上組み合わせた共重合体としてもよい。
 溶媒は、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、メチルアセテート、エチルアセテート、プロピルアセテート、ブチルアセテート、ギ酸メチル、ギ酸エチル、ヘキサン、シクロヘキサン、ジクロロメタン、クロロホルム、四塩化炭素、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、N-メチルピロリドン(NMP)、ジエチルエーテル、ジオキサン、テトラヒドロフラン、1-メトキシ-2-プロパノール等、原料を溶解できる溶媒の中から適宜選択すればよい。
 繊維層23を形成する繊維の直径は、50nm~500nmが好ましく、80nm~400nmがより好ましく、100nm~300nmが特に好ましい。繊維径は、原料溶液を射出するノズルのサイズ、印加する電圧等で調整することができる。なお、繊維層23は、射出・積層した繊維のみで形成してもよいが、必要に応じて、PVA等の水溶性の接着剤、又は、ポリウレタンゴム等のゴム(接着剤)を含んでいてもよい。接着剤は、繊維層23を作製中および作製後に含浸させたり、スプレー法等で塗布すればよい。あるいは、電界紡糸法により繊維23を射出する際に、接着剤も同時に射出することで、繊維層23に接着剤を含浸させてもよい。そして、図7Aに示すように、模擬強膜樹脂層22上に繊維層23を積層後、第1~第3の実施形態と同様に、導電体層3を形成することで、図7Bに示す模擬眼球1Dを作製することができる。
 ところで、人体の眼球の強膜はコラーゲン繊維を多く含んでいる。そのため、緑内障手術時には、メスでコラーゲン繊維を切断しながら薄切りを行う必要がある。しかしながら、市販されている模擬眼球は、シリコーンゴム等の軟質ゴムで形成されたものが多い。したがって、シリコーンゴム等で作製された模擬眼球を用いた場合でも、メスで薄切りの練習はできるものの、メスで繊維を切断する感覚は再現できない。一方、第4の実施形態の模擬眼球1Dは、模擬強膜2が繊維を含んでいる。したがって、模擬眼球1Dを用いてメスで薄切りする際には、人体の強膜の繊維を切断する時に模した感覚を得ることができる。
(第4の実施形態の変形例1)
 第4の実施形態の模擬眼球1Dの繊維層23は、図8に示すとおり、電界紡糸法により模擬強膜樹脂層22上に直接形成されているが、繊維層23は繊維を含んでいればその他の方法で製造してもよい。例えば、図9Aに示すように、電界紡糸法等の手段により製造した直径50nm~500nmの繊維で作製した布231を複数枚積層し、上記に例示した水溶性接着剤を含浸させることで、繊維層23を作製してもよい。なお、布は繊維を織り込んだものであっても、繊維を織り込んでいない不織布の何れでもよい。第4の実施形態の変形例1の繊維層23は、鋳型を用いて、模擬強膜樹脂層22上に積層できる形状となるように作製し、別途作製した模擬強膜樹脂層22上に被せることで、図7Aに示す模擬強膜2を作製することができる。あるいは、図9Bに示すように、先ず鋳型を用いて模擬強膜樹脂層22を形成し、次に図示しない上側の鋳型を取り除いた後、布231を模擬強膜樹脂層22上に積層し、次に水溶性接着剤を含浸させ、図示しない上側の鋳型と鋳型M2で押圧することで、図7Aに示す模擬強膜2を作製してもよい。
(第5の実施形態)
 図4の実施形態および変形例1は、模擬強膜樹脂層22上に繊維層23を形成しているが、模擬強膜樹脂層22を設けず、繊維層のみで模擬強膜2を形成してもよい。図10Aおよび図10Bは、第5の実施形態の模擬眼球1Eの概略を示す断面図である。第5の実施形態の模擬眼球1Eは、先ず、図10Aに示すように、鋳型M2の上に複数枚の布231を積層し、次に水溶性接着剤を含浸させ、図示しない上側の鋳型と鋳型M2で押圧することで、布を積層した模擬強膜2を作製する。次いで、導電体層3を模擬強膜2の内側に形成することで、第5の実施形態の模擬眼球1Eを作製することができる。なお、図10Bに示す模擬眼球1Eは模擬角膜領域が形成されていないが、模擬強膜2の薄切りの練習のみに使用する場合は、模擬角膜領域は不要である。または、模擬角膜領域を模擬強膜2と同様に作製し、模擬強膜領域2のみを薄切りの練習に用いてもよい。或いは、模擬角膜領域を別途作製し、図10Bに示す模擬強膜2に接着剤等を用いて接着してもよい。
(第6の実施形態)
 上記のとおり、第4の実施形態および変形例1の模擬眼球1D、並びに、第5の実施形態の模擬眼球1Eは、強膜の繊維を切断する感覚が得られる新規の模擬眼球である。そのため、模擬眼球1Dおよび模擬眼球1Eでは導電体層3を形成しているが、導電体層3を形成しなくてもよい。つまり、人体の強膜のコラーゲン繊維を切断する感覚を得る練習用の用途に用いる場合は、導電体層3を形成していない図7Aに示す状態のものを、第6の実施形態である模擬眼球1D’としてもよい。同様に、図10Bに示す模擬眼球1Eの導電体層3を形成していないものを、第6の実施形態である模擬眼球1E’としてもよい。
(第7の実施形態)
 図11は、第7の実施形態の模擬眼球1Fの概略を示す断面図である。緑内障の多くは眼球内圧の上昇(20mmHg以上)により誘発されることから、術式終了後には正常眼圧(11mmHg程度)に戻っている必要がある。このため手術前後および術中において眼内圧をモニタする事が求められている。しかし、現行の練習用の模擬眼球において、このような圧力を測定するシステムは知られていない。
 第7の実施形態の模擬眼球1Fは、上記の問題を解決するためのもので、内部が中空の密封形状となるように形成され、中空部分11には流体を充填することができ、中空部分11に充填した流体の圧力を検出する圧力センサ12を含んでいる。圧力センサ12は、図11に示すように、模擬眼球1Fの内部に配置すればよい。或いは、模擬眼球1Fと密封状態に接続するチューブ13を設け、チューブ13を介した場所、つまり、模擬眼球1Fの外部に圧力センサ12を設けてもよい。流体としては、水等の液体、或いは、空気等の気体が挙げられる。なお、本明細書において、「密封状態」とは、模擬眼球1F内に充填した流体が模擬眼球1Fの外部に漏出しない状態、或いは、模擬眼球1F内に継続的に流体を充填することで、流体の一部が模擬眼球1Fの外部に漏出しても、約10mmHg~30mmHgの圧力を維持できる程度の密封状態を意味する。
 第7の実施形態の模擬眼球1Fは、3Dプリンタ等を用いて、模擬強膜2と模擬角膜5を造形する型、および、導電体層(模擬脈絡膜)3を造形する型を作製し、模擬強膜2と模擬角膜5および導電体層(模擬脈絡膜)3を作製し、この後、導電体層(模擬脈絡膜)3を模擬強膜2の内部側に密着させる事で作製できる。なお、模擬眼球1Fは、流体が漏れないように密閉状に作製する必要がある。そのため、図11の点線に示すように、模擬眼球1Fは、上部Uおよび下部Dを別々に作製し、上部Uと下部Dを接着することで作製できる。模擬眼球1Fは略球形が好ましいが、密封状態にできれば、略球形以外の形状であってもよい。
 模擬眼球1Fは、流体を中空部分11に送ることができるように形成されていれば特に制限はない。流体を模擬眼球1F内に送る方法としては、例えば、圧力センサを外部に配置するためのチューブ13を用いて流体を送る、或いは、チューブ13とは別のチューブを設けて流体を送る例が挙げられる。又は、中空部分11に充填する流体として粘度がある液体を用いる場合は、模擬眼球1Fに空気は通過するが粘度のある液体は通過できないような微小な孔を形成する以外は略液密状に形成し、シリンジ等を用いて模擬眼球1F内に液体を注入してもよい。第7の実施形態の模擬眼球1Fを用いると、実際の緑内障患者の眼圧に近い圧力を再現できる。
 圧力センサ12は、模擬眼球1F内の圧力が測定できれば特に制限はなく、市販の圧力センサを用いればよい。なお、図11に示す模擬眼球1Fを用いて模擬強膜2を薄切りする場合、メスで模擬強膜2を貫通すると模擬眼球1F内の圧力が下がる。そのため、図11に示す実施形態の模擬眼球1Fは導電体層3を形成しているが、導電体層3を形成しなくてもよい。
 上記のとおり第1~第7の実施形態の模擬眼球およびその変形例について説明をしたが、明細書および図面に示した実施形態は、各実施形態の代表的な説明である。したがって、各実施形態で記載した技術的特徴を組み合わせて模擬眼球を作製してもよい。例えば、全ての実施形態において、凹部21を形成しても形成しなくてもよく、模擬強膜2が繊維層を含んでも含まなくてもよく、導電体層3に延伸領域31が形成されても形成されなくてもよい。
 図12は、眼球手術練習用装置10の概略図である。眼球手術練習用装置10は、導電体層3が形成された模擬眼球1、少なくとも先端部が導電性材料で形成された眼球手術器具4、眼球手術器具4の先端部が模擬眼球1の導電体層3に接触したことを検知する検知装置14、を少なくとも含んでいる。そして、眼球手術器具4の先端部が導電体層3に触れた際に回路を形成できるように、眼球手術器具4と検知装置14、および、導電体層3と検知装置14を電線15で接続しておけばよい。検知装置14としては、導通したことを検知できれば特に制限はなく、テスター等の公知の導通検知装置を用いればよい。また、眼球手術器具4としては、眼球手術に用いられる器具であれば特に制限はないが、少なくとも刃先が導電性材料で形成されたメスを含み、メス以外の眼球手術器具4としては、例えば、強膜窓の作成に使用するパンチ、メスで薄切りした強膜を把持するピンセット、シュレム管内に挿入する金属棒、等があげられる。何れの眼球手術器具4も先端部を導電性材料で形成しておくことで、例えば、模擬強膜切開時に眼球手術器具4が模擬脈絡膜領域3に接触したこと、金属棒を模擬シュレム管21内に挿入した際に、金属棒が模擬虹彩領域31に接触したことを検知できる。なお、各実施形態に示す模擬眼球1は、導電体層で模擬脈絡膜領域3や模擬虹彩領域31を形成した新規の模擬眼球である。上記の通り、実施形態に示す模擬眼球1は、緑内障手術に特に有用であるが、眼球手術に必要な手技の練習の用途にも用いることができる。例えば、角膜から眼球内部に針等の眼球手術器具を挿入する際に、針先が虹彩や脈絡膜に触れずに眼球内に挿入する練習に用いることができる。つまり、本明細書で開示する模擬眼球、眼球手術練習用装置、眼球手術の練習方法は、緑内障手術に限定されない。
 図13は、眼球手術の練習方法のフローチャートである。練習方法は、
・メスで模擬強膜を切開する切開工程(ST1)、
・切開工程の際に、メスの刃先と導電体層が接触したか否か検知する検知工程(ST2)、
を少なくとも含んでいる。ST2でメスの刃先が導電体層に接触をしていない場合は、引き続きメスの刃先が導電体層に接触したかどうか検知を続ける(NO)。一方、ST2でYESの場合は、テスター等の検知装置のメーター等に変化が現れるので、導通したことを確認できる。なお、必要に応じて、メスの刃先が導電体層に接触した場合には、警告音を発する等、導通したことを通知する通知工程(ST3)を含んでいてもよい。なお、メス以外の眼球手術器具を用いた場合も、メスと同様の工程で、先端部が導電体層に接触したか否かを検知すればよい。
 以下に実施例を掲げ、各実施形態を具体的に説明するが、この実施例は単にその具体的な態様の参考のために提供されているものである。これらの例示は、発明の範囲を限定したり、あるいは制限するものではない。
<実施例1>
[模擬眼球の作製]
 先ず、3Dプリンタを用いて、図3AのM1および図4BのM2の形状の鋳型を作製した。次に、10%PDMS溶液(ダウコーニング社製シルポット184の主材10gに対して硬化剤1g)を鋳型の隙間に流し込み、PDMS溶液を硬化することで模擬角膜領域と模擬強膜領域を作製した。
 次に、導電性高分子であるデナトロン(ナガセケムテックス株式会社製)の70%水溶液を作製した模擬強膜領域の内部側に塗付し、乾燥することで導電体層を形成し、実施例1の模擬眼球を作製した。図14Aは実施例1で作製した模擬眼球の写真である。
<実施例2>
[眼球手術練習装置の作製および導通試験]
 メスとしてイナミ社製クレッセントナイフ、検知装置としてアルドゥイーノ製アルドゥイーノウノを用いた。次に、実施例1で作製した模擬眼球の導電体層と検知装置、および、メスと検知装置を電線で接続することで眼球手術練習装置を作製した。
 次に、メスの刃先が導電体層に到達するまで模擬強膜を切開したところ、検知装置が導通を確認した。図14Bは、導通を確認した際の眼球手術練習装置の写真である。
 以上の結果より、導電体層を形成した模擬眼球、および、模擬眼球を用いた眼球手術練習装置により、模擬強膜の薄切り練習の際に、メスが模擬強膜を貫通したか否か検知できることを確認した。
<実施例3>
[繊維層を含む模擬眼球の作製]
 先ず、3Dプリンタを用いて、図3AのM1およびM2の形状の鋳型を作製した。次に、10%PDMS溶液を鋳型の隙間に流し込み、PDMS溶液を硬化することで模擬角膜領域と模擬強膜樹脂層を作製した。
 次に、鋳型M1を外し、鋳型M2の底部に回転用の棒を取り付けた。電界紡糸法による繊維層の作製には、カトーテック社製ナノファイバーエレクトロスピニングユニットの装置を用いた。繊維層を形成する材料は、11wt%塩化ビニル溶液を用いた。なお、溶媒には、テトラヒドロフラン(THF)とN,N-ジメチルホルムアミド(DMF)を1:1で混合した混合液を用いた。
 次に、作製した模擬角膜領域と模擬強膜樹脂層上に、印加電圧18kV、供給速度0.1mm/minで繊維を積層することで模擬眼球を作製した。なお、電界紡糸法により繊維層を作製する際に、8wt%ポリビニルアルコール溶液(接着剤)も同時に射出することで、繊維層に接着剤を含浸させた。図15Aは、実施例3で作製した模擬眼球の写真、図15Bは繊維層のSEM写真である。繊維の直径は平均すると約150nmであった。
 次に、メスを用いて、実施例3で作製した模擬眼球の薄切りを行った。図15Cは模擬強膜(繊維層)を薄切りした際の写真である。図15Cから明らかなように、実施例3で作製した模擬眼球の模擬強膜(繊維層)を薄切りして、剥離できることを確認した。また、メスで繊維層を切断した際には、繊維を切断する感覚を再現できることを確認した。
<実施例4>
[圧力センサを含む模擬眼球の作製]
 先ず、図11に示す模擬眼球1Fの上部Uおよび下部Dを形成するための鋳型を作製し、実施例1と同様の手順で上部Uおよび下部Dをそれぞれ作製した。次に、上部Uおよび下部DをPDMSにより接合することで、液密構造の模擬眼球1Fを作製した。
 次に、注射針を二つ模擬眼球1Fに挿入し、片方から水を注入し、模擬眼球1F内に水を満たした。その際、注射針から空気および水が微量漏れる為、水を流入させ続ける事により、眼内圧を増加させた。また、他方の注射針には、密閉された圧力センサ(Honeywell社製基板取付型圧力センサ)を取り付け、模擬眼球1Fの眼内圧をモニタした。この圧力センサの圧力データをアルドゥイーノ社アルドゥイーノナノにより読み取り、一定の圧力を超えた時に模擬眼球1F内への水の流入を止め、圧力が下がった時に水を流入させることにより、模擬眼球1Fの眼圧を制御した。
 図16Aは、実施例5で作製した模擬眼球1Fの写真である。図16Bはポンプを用いて模擬眼球1F内に純水を充填した後の写真である。図17は、モニタに表示された模擬眼球1F内の圧力の推移を示す結果である。図17中、四角で囲った部分が模擬眼球1Fの圧力の推移(↓方向に時間が推移)を示している。なお、図17の数値は、1秒間隔でモニタした結果である。以上の結果より、圧力センサを含む模擬眼球1Fを作製することで、緑内障手術時の眼圧を再現できることを確認した。
 また、実施例5において、メスの刃先で模擬強膜2を貫通した後メスを引き抜くと、模擬眼球内の圧力の低下を確認した。したがって、本実施形態の模擬眼球の場合、導電体層を形成しない場合であっても、メスの刃先が模擬強膜2を貫通したか否か検知することもできる。
 本明細書で開示する各種実施形態により、術者は実際の手術と同様、模擬眼球の外側から眼球手術器具を用いて模擬眼球の手術の練習ができる。その際に、術者が扱う眼球手術器具が模擬強膜領域を貫通すると、導電性を有する材料で形成された眼球手術器具の先端部が、模擬強膜領域の模擬眼球の内部側に形成した導電体層に対し接触して導通することで、眼球手術器具の先端部が模擬強膜領域を貫通等したことを検知できる。そのため、実際の手術に近い環境で眼球手術の練習ができる。したがって、眼科練習装置の分野において有用である。
1、1A、1B、1C、1D、1D’、1E、1F…模擬眼球、2…模擬強膜、模擬強膜領域、3…導電体層、模擬脈絡膜領域、4…眼球手術器具、メス、5…模擬角膜、模擬角膜領域、6…樹脂、11…中空部分、12…センサ、13…チューブ、14…検知装置、15…電線、21…凹部、模擬シュレム管、22…模擬強膜樹脂層、23…繊維、繊維層、31…導電体層の延伸領域、模擬虹彩領域、231…布
 

Claims (15)

  1.  眼球手術練習用の模擬眼球であって、
     前記模擬眼球は、
      模擬強膜を構成する模擬強膜領域と、
      前記模擬強膜領域の模擬眼球の内部側に形成した導電体層と、
    を含み、
     前記導電体層が模擬脈絡膜領域を形成する、
    模擬眼球。
  2.  前記模擬眼球が、模擬角膜を構成する模擬角膜領域を含み、
     前記導電体層が、前記模擬角膜領域と前記模擬強膜領域の境界付近において、前記模擬強膜から離間して前記模擬眼球の内部に延伸する延伸領域を含み、
     前記延伸領域が模擬虹彩領域を形成する、
    請求項1に記載の模擬眼球。
  3.  前記模擬強膜の前記導電体層側であって、且つ、前記模擬角膜領域近傍の前記模擬強膜に凹部が形成され、
     前記凹部が模擬シュレム管を形成する、
    請求項1または2に記載の模擬眼球。
  4.  前記模擬強膜が、直径50nm~500nmの繊維を含む、
    請求項1~3の何れか一項に記載の模擬眼球。
  5.  前記模擬強膜が、
      模擬強膜樹脂層と、
      該模擬強膜樹脂層上に積層した前記繊維層と、
    を含む、請求項4に記載の模擬眼球。
  6.  前記模擬強膜が、
      前記繊維で形成された布と、
      前記布に含浸した樹脂と、
    を含む、請求項4に記載の模擬眼球。
  7.  前記布が、少なくとも2枚以上積層されている、
    請求項6に記載の模擬眼球。
  8.  前記模擬眼球は、内部が中空な密封形状となるように形成され、前記中空部分には流体を充填することができ、
     前記模擬眼球の内部または外部に、前記中空部分に充填した流体の圧力を検出する圧力センサが形成されている、
    請求項1~7の何れか一項に記載の模擬眼球。
  9.  請求項1~8の何れか一項に記載の模擬眼球、
     少なくとも先端部が導電性材料で形成された眼球手術器具、
     前記眼球手術器具の先端部が前記模擬眼球の前記導電体層に接触したことを検知する検知装置、
    を含む、眼球手術練習用装置。
  10.  模擬眼球および眼球手術器具を用いた眼球手術の練習方法であって、
     前記模擬眼球は、
      模擬強膜領域と、
      前記模擬強膜領域の模擬眼球の内部側に形成した導電体層と、
    を含み、
     前記眼球手術器具の先端部は導電性材料で形成され、
     前記眼球手術器具は少なくともメスを含み、
     前記練習方法は、
      前記メスで模擬強膜を切開する切開工程、
      前記切開工程の際に、前記メスの刃先と前記導電体層が接触したか否か検知する検知工程、
    を少なくとも含む、眼球手術の練習方法。
  11.  眼球手術練習用の模擬眼球であって、
     前記模擬眼球は、模擬強膜を含み、
     該模擬強膜が、直径50nm~500nmの繊維を含む、
    模擬眼球。
  12.  前記模擬強膜が、
      樹脂層と、
      該樹脂層上に積層した前記繊維層と、
    を含む、請求項11に記載の模擬眼球。
  13.  前記模擬強膜が、
      前記繊維で形成された布と、
      前記布に含浸した樹脂と、
    を含む、請求項11に記載の模擬眼球。
  14.  前記布が、少なくとも2枚以上積層されている、
    請求項13に記載の模擬眼球。
  15.  眼球手術練習用の模擬眼球であって、
     前記模擬眼球は、
      模擬強膜領域を有し、且つ、
      内部が中空な密封形状となるように形成され、前記中空部分には流体を充填することができ、
     前記模擬眼球の内部または模擬眼球の外部に、前記中空部分に充填した流体の圧力を検出する圧力センサが形成されている、
    模擬眼球。
     
PCT/JP2017/043155 2017-11-30 2017-11-30 模擬眼球、眼球手術練習用装置、眼球手術の練習方法 WO2019106803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/043155 WO2019106803A1 (ja) 2017-11-30 2017-11-30 模擬眼球、眼球手術練習用装置、眼球手術の練習方法
US16/607,434 US11475797B2 (en) 2017-11-30 2017-11-30 Simulated eyeball, device for training in ophthalmic surgery, and method for training in ophthalmic surgery
EP17933674.8A EP3719779B1 (en) 2017-11-30 2017-11-30 Simulated eyeball, ocular surgery training device, and ocular surgery training method
JP2019527482A JP7057780B2 (ja) 2017-11-30 2017-11-30 模擬眼球、眼球手術練習用装置、眼球手術の練習方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043155 WO2019106803A1 (ja) 2017-11-30 2017-11-30 模擬眼球、眼球手術練習用装置、眼球手術の練習方法

Publications (1)

Publication Number Publication Date
WO2019106803A1 true WO2019106803A1 (ja) 2019-06-06

Family

ID=66663841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043155 WO2019106803A1 (ja) 2017-11-30 2017-11-30 模擬眼球、眼球手術練習用装置、眼球手術の練習方法

Country Status (4)

Country Link
US (1) US11475797B2 (ja)
EP (1) EP3719779B1 (ja)
JP (1) JP7057780B2 (ja)
WO (1) WO2019106803A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037253A (ja) * 2019-08-27 2021-03-11 株式会社トプコン 積層体、検査装置及び模型眼
WO2021055751A1 (en) * 2019-09-18 2021-03-25 Ivantis, Inc. Synthetic eye model for ocular implant surgical training
WO2022178363A1 (en) * 2021-02-22 2022-08-25 Slabber Nico J Simulated eye surgical training tool
US11540940B2 (en) 2021-01-11 2023-01-03 Alcon Inc. Systems and methods for viscoelastic delivery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066892A1 (ja) * 2018-09-28 2020-04-02 三井化学株式会社 模擬強膜、及び模擬眼球
CN113971900B (zh) * 2021-11-17 2023-12-19 中国人民解放军陆军特色医学中心 一种青光眼教学用仿真眼球旋转模型

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127708A (ja) * 2005-11-01 2007-05-24 Tsutomu Hara 眼球模型
US20110181836A1 (en) * 2010-01-25 2011-07-28 Rowe T Scott Phantom for rendering biological tissue regions
WO2011125136A1 (ja) 2010-04-09 2011-10-13 株式会社Frontier Vision 白内障手術練習用模擬水晶体
US20120021397A1 (en) 2010-07-23 2012-01-26 Van Dalen Johan T W Model Human Eye and Face Manikin for Use Therewith
US20160063898A1 (en) 2014-08-26 2016-03-03 Bioniko Consulting Llc Ophthalmic surgical simulation system

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762496A (en) * 1987-02-13 1988-08-09 William F. Maloney Ophthalmologic lens phantom system
US5370641A (en) * 1992-05-22 1994-12-06 O'donnell, Jr.; Francis E. Laser trabeculodissection
US5868580A (en) * 1997-07-30 1999-02-09 The United States Of America As Represented By The Secretary Of The Army Training device for digital assessment of intraocular pressure
US5893719A (en) * 1997-10-29 1999-04-13 Radow; Brett K. Variable pathological and surgical eye model and method related thereto
US6146892A (en) * 1998-09-28 2000-11-14 The Regents Of The University Of Michigan Fibrillar matrices
JP3559960B2 (ja) * 2000-06-05 2004-09-02 秀樹 梅山 白内障手術練習用モデル
US6589057B1 (en) * 2000-09-27 2003-07-08 Becton, Dickinson & Company Incision trainer for ophthalmological surgery
US8556635B2 (en) * 2000-10-23 2013-10-15 Christopher C. Toly Physiological simulator for use as a brachial plexus nerve block trainer
US7857626B2 (en) * 2000-10-23 2010-12-28 Toly Christopher C Medical physiological simulator including a conductive elastomer layer
US6773263B2 (en) * 2001-10-09 2004-08-10 Robert J. Nicholls Medical simulator
US20070142749A1 (en) * 2004-03-04 2007-06-21 Oussama Khatib Apparatus for medical and/or simulation procedures
US20060173077A1 (en) 2005-01-28 2006-08-03 Cagle Gerald D Surgical method
US8308487B2 (en) * 2007-06-28 2012-11-13 Eye Care And Cure Pte. Ltd Model human eye
US8128412B2 (en) * 2007-06-28 2012-03-06 Eye Care And Cure Pte. Ltd Model human eye
US8137111B2 (en) * 2007-06-28 2012-03-20 Eye Care And Cure Pte. Ltd Model human eye
US8157568B2 (en) * 2008-05-22 2012-04-17 Tsutomu Hara Ophthalmologic model
WO2010084595A1 (ja) * 2009-01-22 2010-07-29 株式会社Frontier Vision 白内障手術練習用模擬眼装置
US9437119B1 (en) * 2012-05-08 2016-09-06 Bioniko Consulting Llc Method for fabricating simulated tissue structures by means of multi material 3D printing
US10290236B2 (en) * 2012-05-08 2019-05-14 Bioniko Consulting Llc Method for fabricating simulated tissue structures by means of multi material 3D printing
US20140341965A1 (en) * 2013-03-14 2014-11-20 Georgetown University Compositions and Methods Comprising Biodegradable Scaffolds and Retinal Pigment Epithelial Cells
EP2972171A4 (en) * 2013-03-14 2016-08-24 Sigma Inc 7 REACTIVE DEVICE WITH SENSORS
US20160086517A1 (en) * 2014-09-18 2016-03-24 Huayi Gao Method and apparatus for eye model and testing thereof
CA3227451A1 (en) * 2014-10-24 2016-04-28 Dongeun Huh Methods and devices for modeling the eye
EP3748610A1 (en) * 2015-07-16 2020-12-09 Applied Medical Resources Corporation Simulated dissectable tissue
DE102015014324A1 (de) * 2015-11-05 2017-05-11 Novartis Ag Augenmodell
CN105551358B (zh) 2016-01-26 2018-09-21 温州眼视光发展有限公司 一种模拟眼
US10360815B2 (en) * 2017-08-14 2019-07-23 Bioniko Consulting, LLC Simulating eye surgery
CA3023531C (en) * 2018-02-08 2022-04-12 William Turk Human anatomic models for use in surgical simulation having synthetic tissue planes
EP3561795B1 (en) * 2018-04-23 2023-04-05 Yu-Hsuan Huang Augmented reality training system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127708A (ja) * 2005-11-01 2007-05-24 Tsutomu Hara 眼球模型
US20110181836A1 (en) * 2010-01-25 2011-07-28 Rowe T Scott Phantom for rendering biological tissue regions
WO2011125136A1 (ja) 2010-04-09 2011-10-13 株式会社Frontier Vision 白内障手術練習用模擬水晶体
US20120021397A1 (en) 2010-07-23 2012-01-26 Van Dalen Johan T W Model Human Eye and Face Manikin for Use Therewith
US20160063898A1 (en) 2014-08-26 2016-03-03 Bioniko Consulting Llc Ophthalmic surgical simulation system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARYUAMA, HISATAKA: "Fabrication of retina model having photoelastic pressure sensor for vitreoretinal surgery simulator", IEEE CONFERENCE PROCEEDINGS, 18 June 2017 (2017-06-18) - 27 July 2017 (2017-07-27), pages 391 - 392, XP033130779 *
See also references of EP3719779A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037253A (ja) * 2019-08-27 2021-03-11 株式会社トプコン 積層体、検査装置及び模型眼
WO2021055751A1 (en) * 2019-09-18 2021-03-25 Ivantis, Inc. Synthetic eye model for ocular implant surgical training
US11540940B2 (en) 2021-01-11 2023-01-03 Alcon Inc. Systems and methods for viscoelastic delivery
WO2022178363A1 (en) * 2021-02-22 2022-08-25 Slabber Nico J Simulated eye surgical training tool

Also Published As

Publication number Publication date
US20200135056A1 (en) 2020-04-30
EP3719779A4 (en) 2020-10-07
EP3719779A1 (en) 2020-10-07
JPWO2019106803A1 (ja) 2020-10-08
JP7057780B2 (ja) 2022-04-20
US11475797B2 (en) 2022-10-18
EP3719779B1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
WO2019106803A1 (ja) 模擬眼球、眼球手術練習用装置、眼球手術の練習方法
JP7057828B2 (ja) 電界紡糸装置、電界紡糸システム及び電界紡糸方法
Tong et al. 3D printed stretchable triboelectric nanogenerator fibers and devices
JP6581218B2 (ja) 人工角膜
US20150064142A1 (en) Elastic scaffolds for tissue growth
CN108225625A (zh) 柔性压力传感器及其制备方法
US9704418B2 (en) Device for ocular surgery training
CN109374024B (zh) 一种具有凹坑结构的压阻式电子皮肤及其制备方法
CN109448522A (zh) 侧脑室穿刺培训系统及其制作方法
EP2734261B1 (en) A device for adjusting the intraocular pressure
Majerus et al. Flexible, structured MWCNT/PDMS sensor for chronic vascular access monitoring
Li et al. Airbrushed PVDF–TrFE Fibrous Sensors for E-Textiles
CN109183274A (zh) 一种用于电子皮肤基底的复合膜及制备方法
US11679578B2 (en) Nanofiber sheet, method for using same, and method for producing same
JP2018010034A (ja) 臓器モデルおよびその製造方法
KR20180072911A (ko) 안구건조증 치료 장치
KR101415885B1 (ko) 인조 피부 제조를 위한 나노섬유 매트 및 그의 제조방법
CN106409099A (zh) 模拟脏器
Deol et al. Amalgamating Additive Manufacturing and Electrospinning for Fabrication of 3D Scaffolds
Mondésert Anisotropic PCL electrospun scaffolds for soft tissue engineering: Elaboration, morphological and mechanical properties
Tan et al. Towards high performance and durable soft tactile actuators
Fernandes Fabrication of Skin-Like Sensors in Thin Polymeric Membranes
KR102242444B1 (ko) 다공성 보형물 생성 방법 및 장치
JP2022530009A (ja) 人工角膜デバイス、キット、およびそれらの外科的使用方法
Helgason Silver Nanowire-Based Wearable Devices for Physiological Sensing

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019527482

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017933674

Country of ref document: EP

Effective date: 20200630