WO2019105245A1 - 光谱仪及光谱检测系统 - Google Patents

光谱仪及光谱检测系统 Download PDF

Info

Publication number
WO2019105245A1
WO2019105245A1 PCT/CN2018/116019 CN2018116019W WO2019105245A1 WO 2019105245 A1 WO2019105245 A1 WO 2019105245A1 CN 2018116019 W CN2018116019 W CN 2018116019W WO 2019105245 A1 WO2019105245 A1 WO 2019105245A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrometer
lens group
lens
grating
collimating
Prior art date
Application number
PCT/CN2018/116019
Other languages
English (en)
French (fr)
Inventor
芮训豹
Original Assignee
北京云端光科技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京云端光科技术有限公司 filed Critical 北京云端光科技术有限公司
Publication of WO2019105245A1 publication Critical patent/WO2019105245A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry

Definitions

  • the present disclosure relates to the field of spectroscopy, and in particular to a spectrometer and a spectroscopy system.
  • CT Czerny-Tumer
  • the spectrum detecting device using the CT reflection structure has a large number of apertures (F number, that is, F number), small light energy, low detection sensitivity, and slow detection speed.
  • F number that is, F number
  • the adjustment and stabilization mechanism of the spectrum detecting device is complicated, and the optimization of the volume and weight of the spectrum detecting device is limited, which is inconvenient for the user to use.
  • the present disclosure provides a spectrometer and a spectrum detecting system.
  • a spectrometer comprising an entrance slit, a collimator element, a grating, and a detector focusing member, through said entrance slit incident light passes through the collimating The grating, the grating and the focusing member are then passed to the detector, the focusing member being a first lens group for focusing.
  • the first lens group is a focus lens.
  • the collimating lens element of the second group for collimation.
  • the second lens group collimating lens.
  • each of the first lens group and/or the second lens group is one of a convex lens, a concave lens, and an aspheric lens.
  • a focal length of each of the first lens group and/or the second lens group is in a range of [10 mm, 75 mm].
  • each of the first lens group and/or the second lens group has a focal length of 25 mm . ⁇ 0 2019/105245 ⁇ (:17(: ⁇ 2018/116019
  • the grating is a transmission grating or a bulk holographic diffraction grating.
  • a spectroscopic detection system comprising a probe and a spectrometer, the spectrometer being the spectrometer provided by the first aspect of the disclosure.
  • the focusing member of the spectrometer is a first lens group for focusing, wherein the first lens group includes a plurality of lenses, and each lens has a lens when optimizing the detection accuracy of the spectrometer
  • An optimizable variable such as one-sided curvature, thickness, refractive index, etc., such that the number of optimizable variables in the first lens group including the plurality of lenses is doubled as the number of lenses included in the first lens group increases increase.
  • the aperture number of the spectrometer can be reduced, the light collecting ability can be improved, thereby improving the detection sensitivity and the signal-to-noise ratio of the spectrometer, thereby improving the detection efficiency of the spectrometer.
  • the spectrometer can be imaged or spectrally sharpened, thereby greatly shortening the debugging time of the spectrometer, and simplifying the adjustment stabilization mechanism, thereby realizing miniaturization and weight reduction of the spectrometer, thereby making the spectrometer more convenient. User use, improved user experience.
  • FIG. 1 is a block diagram of a spectral detection system, according to an exemplary embodiment.
  • FIG. 2 is a block diagram of a spectral detection system, according to another exemplary embodiment.
  • FIG. 3 is a block diagram of a spectral detection system, according to another exemplary embodiment.
  • FIG. 4 is a block diagram of a spectral detection system, according to another exemplary embodiment.
  • FIG. 1 is a block diagram of a spectroscopic detection system of the embodiment shown according to an exemplary embodiment.
  • the spectroscopic detection system can include a spectrometer 1 and a probe 2.
  • the probe 2 may include a laser 21, a dichroic color plate 22, a collimating lens 23, a filter set 24, and a focusing lens 25. Also, the probe 2 can be, for example, a Raman probe, a fluorescent probe, or the like.
  • the spectrometer 11 may include an entrance slit 11, a collimator 12, grating 13, detector 15 and the focusing element 14, the light incident on the entrance slit 11 of member 12 sequentially through a collimator, a grating 13 and focusing member 14 arrive at detector 15.
  • the entrance slit 11 is generally an elongated slit that can form an object point of the spectroscopic imaging system under illumination of incident light; the collimating member 12 can align the light emitted by the incident slit 11 Straight, making it into parallel light, as shown in Figures 1 and 2, the collimating member 12 can be a piece of collimating lens.
  • the grating 13 is a dispersive element, which can spatially disperse the received optical signal into a plurality of beams by wavelength, specifically, the parallel light collimated by the collimating member 12 is propagated to the grating 13 The light is diffracted by the grating 13. Since the light beams of different wavelengths have different diffraction angles, the optical signals are dispersed into a plurality of light beams by wavelength.
  • FIG. 1, FIG. 3, the above-mentioned grating 13 may be a transmission grating.
  • the above-mentioned grating 13 may be a phase hologram diffraction grating. Since the bulk holographic diffraction grating is a grating fabricated by holographic technology, the ghost line and the accompanying line are not generated during operation, and the stray light is low, thereby improving the detection precision of the spectrum detecting system.
  • the focusing member 14 may be a first lens group for focusing, which may be used to focus the light beam after the dispersion of the grating 13 to form a series of images of the incident slit 11 on the focal plane, wherein Each image point corresponds to a specific wavelength.
  • the first lens group may include a plurality of lenses stacked in a propagation direction of light (as shown in FIGS. 1-4, the first lens group includes three lenses), and each of the first lens groups
  • the lens may for example be a convex lens, a concave lens, or an aspherical lens.
  • the types of the lenses in the first lens group may be different. As shown in FIG.
  • the first lens group includes three lenses, as shown in FIG. 1 and FIG. They are convex lenses, aspherical lenses, and convex lenses from top to bottom. As shown in Fig. 2 and Fig. 4, they are convex lenses, aspherical lenses, and convex lenses from left to right;
  • the types of the lenses in the first lens group may also be the same.
  • each lens in the first lens group is an aspherical lens, or each lens in the first lens group is a convex lens, or Each of the lenses in the first lens group is a concave lens.
  • the type of each lens in the first lens group it is not specifically limited in the present disclosure.
  • the first lens group may be a focusing lens, wherein the focusing lens may generally include 6 to 8 lenses, which facilitates mass production of the spectrometer, thereby reducing cost.
  • each of the above-described focus lenses may have a diameter of, for example, 14 mm and a thickness of, for example, 18 mm .
  • the focal length of each lens may be in the [10 mm, 75 mm] in the range of, preferably, the focal length of each lens in the first lens group is 25 mm.
  • the focal length of each lens in the first lens group is not limited to the above range.
  • the lens in the first lens group may be coated with an anti-reflection film.
  • the detector 5 may be placed on the focal plane, which may be used to detect the light intensity of each wavelength image point.
  • the detector 5 can be, for example, a charge -coupled device ( CCD).
  • the straight lens 23 is then focused onto the sample to be tested 3 ;
  • the Raman signal generated by the sample 3 to be tested is accompanied by the laser reflected light passing through the collimating lens 23 , wherein light having a wavelength greater than the wavelength of the laser can be transmitted through the collimating lens 23 , in this way, the 99.9% laser can be filtered out, and then passed through the dichroic film 22;
  • the Raman signal in the optical signal after passing through the dichroic film 22 can pass through the filter set 24 unimpeded , wherein light having a wavelength greater than the wavelength of the laser transmissive filter set 24, and thus of dichroic sheet 22 is not filtered clean filter out laser signal;
  • a Raman signal through the focusing lens 25 focuses the spectrometer 1
  • the incident slit 11 is such that the Raman probe focuses the optical signal to the incident slit 11;
  • the optical signal passing through the incident slit 11 is incident on the collimating member 12 inside the spectrometer 1 at a diverging angle
  • the above-described collimator lens 23 may be a lens group for collimation
  • the above-described focus lens 25 may be a lens group for focusing.
  • the parameter information such as the type and the focal length of each lens in the collimating lens 23 and the focusing lens 25 may be the same as or different from the parameter information of the type and the focal length of each lens in the first lens group, and is not specifically limited in the present disclosure. .
  • the focusing member of the spectrometer is a first lens group for focusing, wherein the first lens group includes a plurality of lenses, and each lens has a lens when optimizing the detection accuracy of the spectrometer
  • An optimizable variable such as one-sided curvature, thickness, refractive index, etc., such that the number of optimizable variables in the first lens group including the plurality of lenses is doubled as the number of lenses included in the first lens group increases increase.
  • the aperture number of the spectrometer can be reduced, the light collecting ability can be improved, thereby improving the detection sensitivity and the signal-to-noise ratio of the spectrometer, thereby improving the detection efficiency of the spectrometer.
  • the spectrometer can be imaged or spectrally sharpened, thereby greatly shortening the debugging time of the spectrometer, and simplifying the adjustment stabilization mechanism, thereby realizing miniaturization and weight reduction of the spectrometer, thereby making the spectrometer more convenient. User use, improved user experience.
  • the collimating member 12 may also be a second lens group for collimation, which may include propagation along the light.
  • a plurality of lenses stacked in the direction (as shown in FIGS. 3 and 4, the second lens group includes three lenses), and each of the lenses in the second lens group may be, for example, a convex lens, a concave lens, or an aspheric lens.
  • the types of the lenses in the second lens group may be different. As shown in FIGS.
  • the second lens group includes three lenses, which are convex lenses, aspherical lenses, and convex lenses from left to right;
  • the types of the lenses in the second lens group may be the same.
  • each lens in the second lens group is an aspherical lens, or each lens in the second lens group is a convex lens, or
  • Each of the lenses in the second lens group is a concave lens.
  • the type of each lens in the second lens group it is not specifically limited in the present disclosure.
  • the second lens group may be a collimating lens, wherein the collimating lens may generally include 6 to 8 lenses, which further facilitates mass production of the spectrometer and further reduces the cost.
  • each of the lenses in the above collimating lens may have a diameter of, for example, 14 and a thickness of, for example, 18 .
  • the focal length of each lens in the second lens group may also be in the range of [10, 75], and preferably, the focal length of each lens in the second lens group is 25.
  • the focal length of each lens in the second lens group is not limited to the above range. ⁇ 0 2019/105245 ⁇ (:17(: ⁇ 2018/116019

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本公开涉及一种光谱仪及光谱检测系统。该光谱仪包括:入射狭缝(11)、准直件(12)、光栅(13)、聚焦件(14)和探测器(15),经所述入射狭缝(11)入射的光依次经过所述准直件(12)、所述光栅(13)和所述聚焦件(14)后到达所述探测器(15),所述聚焦件(14)为用于聚焦的第一透镜组。由此,可以降低光谱仪的光圈数,提升光的收集能力,从而提升光谱仪的探测灵敏度、信噪比,进而提高了光谱仪的检测效率。此外,通过调节第一透镜组的焦距部分即可使得光谱仪成像或光谱清晰,从而大大缩短光谱仪的调试时间,并且简化了调整稳定机构,可实现光谱仪的小型化、轻量化,进而使得光谱仪更加便于用户使用,提升了用户体验。

Description

光谱仪及光谱检测系统 技术领域
[0001] 本公开涉及光谱技术领域, 具体地, 涉及一种光谱仪及光谱检测系统。
背景技术
[0002] 当前的光谱检测设备大多采用切尼 -特纳 (Czerny-Tumer, C-T) 反射结构, 即 以两个凹面反射镜分别作为准直镜和聚焦镜, 以平面透射光栅作为色散元件。 由于在对光谱仪检测设备的检测精度进行优化时, 整个光谱检测设备中的主要 优化参数为反射镜的单面曲率、厚度、折射率, 光栅的角度等, 优化变量少, 不能有效校正像差, 不容易提高分辨率, 因此, 采用该种 C-T反射结构的光谱检 测设备的光圈数 (F number, 即 F数) 大, 光能量小, 探测灵敏度低, 检测速度 慢。 并且, 该种光谱检测设备的调整稳定机构复杂, 导致光谱检测设备体积、 重量优化受到限制, 不便于用户使用。
[0003] 发明内容
[0004] 为了克服相关技术中存在的问题, 本公开提供一种光谱仪及光谱检测系统。
[0005] 根据本公开实施例的第一方面, 提供一种光谱仪, 包括入射狭缝、准直件、 光 栅、 聚焦件和探测器, 经所述入射狭缝入射的光依次经过所述准直件、所述光 栅和所述聚焦件后到达所述探测器, 所述聚焦件为用于聚焦的第一透镜组。
[0006] 可选地, 所述第一透镜组为聚焦镜头。
[0007] 可选地, 所述准直件为用于准直的第二透镜组。
[0008] 可选地, 所述第二透镜组为准直镜头。
[0009] 可选地, 所述第一透镜组和 /或所述第二透镜组中的各透镜上镀有增透膜。
[0010] 可选地, 所述第一透镜组和 /或所述第二透镜组中的各透镜为凸透镜、 凹透镜 、 非球面透镜中的其中一者。
[0011] 可选地, 所述第一透镜组和 /或所述第二透镜组中的各透镜的焦距在 [10 mm, 75 mm]范围内。
[0012] 可选地, 所述第一透镜组和 /或所述第二透镜组中的各透镜的焦距为 25 mm。 \¥0 2019/105245 卩(:17(:\2018/116019
[0013] 可选地, 所述光栅为透射光栅或体相全息衍射光栅。
[0014] 根据本公开实施例的第二方面, 提供一种光谱检测系统, 包括探头和光谱仪, 所述光谱仪为本公开第一方面提供的所述光谱仪。
[0015] 通过上述技术方案, 光谱仪的聚焦件为用于聚焦的第一透镜组, 其中, 该第一 透镜组包含多片透镜, 并且, 在对光谱仪检测精度进行优化时, 每片透镜都有 单面曲率、 厚度、 折射率等可优化的变量, 这样, 包含有多片透镜的第一透镜 组中可优化变量的数量会随该第一透镜组所包含透镜的片数的增多而成倍增长 。 由此, 可以降低光谱仪的光圈数, 提升光的收集能力, 从而提高光谱仪的探 测灵敏度、 信噪比, 进而提高了光谱仪的检测效率。 此外, 通过调节第一透镜 组的焦距部分即可使得光谱仪成像或光谱清晰, 从而大大缩短光谱仪的调试时 间, 并且简化了调整稳定机构, 可实现光谱仪的小型化、 轻量化, 进而使得光 谱仪更加便于用户使用, 提升了用户体验。
[0016] 本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
发明概述
对附图的简要说明
附图说明
[0017] 附图是用来提供对本公开的进一步理解, 并且构成说明书的一部分, 与下面的 具体实施方式一起用于解释本公开, 但并不构成对本公开的限制。 在附图中: [0018] 图 1是根据一示例性实施例示出的一种光谱检测系统的框图。
[0019] 图 2是根据另一示例性实施例示出的一种光谱检测系统的框图。
[0020] 图 3是根据另一示例性实施例示出的一种光谱检测系统的框图。
[0021] 图 4是根据另一示例性实施例示出的一种光谱检测系统的框图。
[0022] 具体实施方式
[0023] 以下结合附图对本公开的具体实施方式进行详细说明。 应当理解的是, 此处所 描述的具体实施方式仅用于说明和解释本公开, 并不用于限制本公开。
[0024] 在本公开中, 在未作相反说明的情况下, 使用的方位词如“上”“下”、 通常是指 以相应附图的图面为基准定义的, “内”“外”是指相应部件轮廓的内和外, 此外, 本公开中使用的术语“第一”“第二”等是为了区别一个要素和另一个要素, 不具有 \¥0 2019/105245 卩(:17(:\2018/116019 顺序性和重要性。 下面的描述涉及附图时, 除非另有表示, 不同附图中的相同 数字表示相同或相似的要素。
[0025] 图 1是根据一示例性实施例示出的一种光谱检测系统的框图。 如图 1所示, 该光 谱检测系统可以包括光谱仪 1和探头 2。
[0026] 其中, 探头 2可以包括激光器 21、 二向色片 22、准直透镜 23、滤光片组 24、 聚 焦透镜 25。 并且, 该探头 2可以例如为拉曼探头、 荧光探头等。
[0027] 如图 1所示, 光谱仪 1可以包括入射狭缝 11、准直件 12、 光栅 13、 聚焦件 14和探 测器 15, 经入射狭缝 11入射的光依次经过准直件 12、 光栅 13和聚焦件 14后到达 探测器 15。
[0028] 在本公开中, 入射狭缝 11通常是一条细长狭缝, 可以在入射光的照射下形成光 谱仪成像系统的物点; 准直件 12可以对入射狭缝 11发出的光进行准直, 使其变 为平行光, 如图 1、 2所示, 该准直件 12可以为一片准直透镜。
[0029] 光栅 13为色散元件, 它可以使其接收到的光信号在空间上按波长分散成为多条 光束, 具体来说, 经过准直件 12准直后的平行光传播到该光栅 13后, 被该光栅 1 3衍射, 由于不同波长的光线具有不同的衍射角, 从而将光信号按波长分散为多 条光束。
[0030] 在一种实施方式中, 如图 1、 图 3所示, 上述光栅 13可以是透射光栅。
[0031] 在另一种实施方式中, 如图 2、 图 4所示, 上述光栅 13可以是体相全息衍射光栅 。 由于该体相全息衍射光栅是利用全息照相技术制作的光栅, 其工作时不会产 生鬼线和伴线, 杂散光低, 进而提高了光谱检测系统的检测精度。
[0032] 上述聚焦件 14可以为用于聚焦的第一透镜组, 它可以用于聚焦上述光栅 13色散 后的光束, 使其在焦平面上形成一系列上述入射狭缝 11的像, 其中, 每个像点 对应于一特定波长。 其中, 该第一透镜组可以包括沿光的传播方向层叠的多片 透镜 (如图 1-4中所示, 该第一透镜组包括 3片透镜) , 并且, 该第一透镜组中的 各透镜可以例如是凸透镜、 凹透镜、 或非球面透镜。 另外, 需要说明的是, 该 第一透镜组中的各透镜的类型可以不同, 如图 1-4中所示, 该第一透镜组包括 3片 透镜, 如图 1、 图 3中所示, 它们从上到下依次为凸透镜、 非球面透镜、 凸透镜 , 如图 2、 图 4中所示, 它们从左到右依次为凸透镜、 非球面透镜、 凸透镜; 该 第一透镜组中的各透镜的类型也可以相同, 例如, 该第一透镜组中的各透镜均 为非球面透镜, 或者, 该第一透镜组中的各透镜均为凸透镜, 又或者, 该第一 透镜组中的各透镜均为凹透镜。 关于第一透镜组中各透镜的类型, 在本公开中 不作具体限定。
[0033] 优选地, 上述第一透镜组可以为聚焦镜头, 其中, 该聚焦镜头一般可以包括 6~ 8片透镜, 这样, 便于光谱仪的大批量生产, 从而降低成本。 另外, 上述聚焦镜 头中的各透镜的直径可以例如是 14 mm, 厚度可以例如是 18 mm
[0034] 此外, 上述第一透镜组中各透镜的焦距可以在 [10 mm, 75 mm]范围内, 优选地 , 该第一透镜组中的各透镜的焦距为 25 mm。 另外, 需要说明的是, 该第一透镜 组中各透镜的焦距并不局限于上述范围。
[0035] 另外, 为了减少上述第一透镜组中各透镜反射光的强度, 以增加其透射光的强 度, 使成像更清晰, 可以在第一透镜组中的各透镜上镀有增透膜。
[0036] 返回图 1, 探测器 5可以放置在焦平面上, 它可以用于检测各波长像点的光强度 。 其中, 该探测器 5可以例如是电荷稱合元件 (Charge-coupled DeviceCCD)
、 光电倍增管 ( Photomultiplier Tube, PMT ) 等。
[0037] 下面以探头 1为拉曼探头为例来具体说明上述光谱检测系统的工作原理:
[0038] (1) 如图 1-4所示, 激光器 21 (例如, 光纤激光器) 发出的激光照射到二向色 片 22上, 该二向色片 22使入射激光以 45度角反射到准直透镜 23后被聚焦到待测 样品 3上; (2) 待测样品 3产生的拉曼信号伴随着激光反射光经过准直透镜 23, 其中, 波长大于激光波长的光可透射该准直透镜 23, 这样, 可以滤除掉 99.9%激 光, 然后, 通过二向色片 22; (3) 通过二向色片 22后的光信号中的拉曼信号可 以无阻碍地通过滤光片组 24, 其中, 波长大于激光波长的光可透射该滤光片组 2 4, 进而对二向色片 22未滤除干净的激光信号进行滤除; (4) 拉曼信号经过聚 焦透镜 25聚焦到光谱仪 1的入射狭缝 11, 这样, 拉曼探头把光信号聚焦到入射狭 缝 11 ; (5) 通过入射狭缝 11的光信号以发散的角度入射到光谱仪 1内部的准直 件 12上, 经过该准直件 12准直的光信号被光栅 13衍射 (不同波长的光线具有不 同的衍射角) ; (6) 所有波长的衍射光线被聚焦件 14反射聚焦, 到达探测器 15 表面, 从而实现分光探测。 \¥0 2019/105245 卩(:17(:\2018/116019
[0039] 另外, 需要说明的是, 上述准直透镜 23可以是用于准直的透镜组, 上述聚焦透 镜 25可以是用于聚焦的透镜组。 并且, 准直透镜 23和聚焦透镜 25中各透镜的类 型、 焦距等参数信息可以与上述第一透镜组中各透镜的类型、 焦距等参数信息 相同, 也可以不同, 在本公开中不作具体限定。
[0040] 通过上述技术方案, 光谱仪的聚焦件为用于聚焦的第一透镜组, 其中, 该第一 透镜组包含多片透镜, 并且, 在对光谱仪检测精度进行优化时, 每片透镜都有 单面曲率、 厚度、 折射率等可优化的变量, 这样, 包含有多片透镜的第一透镜 组中可优化变量的数量会随该第一透镜组所包含透镜的片数的增多而成倍增长 。 由此, 可以降低光谱仪的光圈数, 提升光的收集能力, 从而提高光谱仪的探 测灵敏度、 信噪比, 进而提高了光谱仪的检测效率。 此外, 通过调节第一透镜 组的焦距部分即可使得光谱仪成像或光谱清晰, 从而大大缩短光谱仪的调试时 间, 并且简化了调整稳定机构, 可实现光谱仪的小型化、 轻量化, 进而使得光 谱仪更加便于用户使用, 提升了用户体验。
[0041] 此外, 为了进一步提升光谱仪检测精度的优化参数的数量, 如图 3、 4所示, 上 述准直件 12还可以为用于准直的第二透镜组, 它可以包括沿光的传播方向层叠 的多片透镜 (如图 3、 4中所示, 该第二透镜组包括 3片透镜) , 并且, 该第二透 镜组中的各透镜可以例如是凸透镜、 凹透镜、 或非球面透镜。 另外, 该第二透 镜组中的各透镜的类型可以不同, 如图 3、 4中所示, 该第二透镜组包括 3片透镜 , 它们从左到右依次为凸透镜、 非球面透镜、 凸透镜; 该第二透镜组中的各透 镜的类型也可以相同, 例如, 该第二透镜组中的各透镜均为非球面透镜, 或者 , 该第二透镜组中的各透镜均为凸透镜, 又或者, 该第二透镜组中的各透镜均 为凹透镜。 关于第二透镜组中各透镜的类型, 在本公开中也不作具体限定。
[0042] 优选地, 上述第二透镜组可以为准直镜头, 其中, 该准直镜头一般可以包括 6~ 8片透镜, 这样, 更加便于光谱仪的大批量生产, 进一步降低成本。 另外, 上述 准直镜头中的各透镜的直径可以例如是 14 , 厚度可以例如是 18 。
[0043] 此外, 上述第二透镜组中各透镜的焦距也可以在 [10 ,75 ]范围内, 优选 地, 该第二透镜组中的各透镜的焦距为 25 。 另外, 需要说明的是, 该第二透 镜组中各透镜的焦距并不局限于上述范围。 \¥0 2019/105245 卩(:17(:\2018/116019
[0044] 另外, 为了减少上述第二透镜组中各透镜反射光的强度, 以增加其透射光的强 度, 使成像更清晰, 可以在第二透镜组中的各透镜上镀有增透膜。
[0045] 以上结合附图详细描述了本公开的优选实施方式, 但是, 本公开并不限于上述 实施方式中的具体细节, 在本公开的技术构思范围内, 可以对本公开的技术方 案进行多种简单变型, 这些简单变型均属于本公开的保护范围。
[0046] 另外需要说明的是, 在上述具体实施方式中所描述的各个具体技术特征, 在不 矛盾的情况下, 可以通过任何合适的方式进行组合。 为了避免不必要的重复, 本公开对各种可能的组合方式不再另行说明。
[0047] 此外, 本公开的各种不同的实施方式之间也可以进行任意组合, 只要其不违背 本公开的思想, 其同样应当视为本公开所公开的内容。

Claims

\¥0 2019/105245 卩(:17€謂18/116019 权利要求书
[权利要求 1] 一种光谱仪, 包括入射狭缝 (11) 、准直件 (12) 、 光栅 (13) 、 聚 焦件 (14) 和探测器 (15) , 经所述入射狭缝 (11) 入射的光依次经 过所述准直件 (12) 、所述光栅 (13) 和所述聚焦件 (14) 后到达所 述探测器 (15) , 其特征在于, 所述聚焦件 (14) 为用于聚焦的第一 透镜组。
[权利要求 2] 根据权利要求1所述的光谱仪, 其特征在于, 所述第一透镜组为聚焦 镜头。
[权利要求 3] 根据权利要求12所述的光谱仪, 其特征在于, 所述准直件 (12) 为 用于准直的第二透镜组。
[权利要求 4] 根据权利要求3所述的光谱仪, 其特征在于, 所述第二透镜组为准直 镜头。
[权利要求 5] 根据权利要求3所述的光谱仪, 其特征在于, 所述第一透镜组和/或所 述第二透镜组中的各透镜上镀有增透膜。
[权利要求 6] 根据权利要求3所述的光谱仪, 其特征在于, 所述第一透镜组和/或所 述第二透镜组中的各透镜为凸透镜、 凹透镜、 非球面透镜中的其中一 者。
[权利要求 7] 根据权利要求3所述的光谱仪, 其特征在于, 所述第一透镜组和/或所 述第二透镜组中的各透镜的焦距在[1075 ]范围内。
[权利要求 8] 根据权利要求7所述的光谱仪, 其特征在于, 所述第一透镜组和/或所
Figure imgf000009_0001
[权利要求 9] 根据权利要求1所述的光谱仪, 其特征在于, 所述光栅 (13) 为透射 光栅或体相全息衍射光栅。
[权利要求 10] 一种光谱检测系统, 包括探头和光谱仪, 其特征在于, 所述光谱仪为 根据权利要求1-9中任一项所述的光谱仪。
PCT/CN2018/116019 2017-11-28 2018-11-16 光谱仪及光谱检测系统 WO2019105245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711218057.9A CN108007570A (zh) 2017-11-28 2017-11-28 光谱仪及光谱检测系统
CN201711218057.9 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019105245A1 true WO2019105245A1 (zh) 2019-06-06

Family

ID=62054376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116019 WO2019105245A1 (zh) 2017-11-28 2018-11-16 光谱仪及光谱检测系统

Country Status (2)

Country Link
CN (1) CN108007570A (zh)
WO (1) WO2019105245A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007570A (zh) * 2017-11-28 2018-05-08 北京云端光科技术有限公司 光谱仪及光谱检测系统
WO2019222879A1 (zh) * 2018-05-21 2019-11-28 深圳达闼科技控股有限公司 一种光谱分析系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023339A1 (en) * 2001-09-13 2003-03-20 New Chromex, Inc. An apparatus and method for producing a substantially straight instrument image
EP1674844A1 (en) * 2004-12-09 2006-06-28 National Institutes of Natural Sciences Spectroscope
CN104535184A (zh) * 2014-12-22 2015-04-22 中国科学院长春光学精密机械与物理研究所 棱镜-光栅成像光谱仪的光路结构
CN205785525U (zh) * 2016-06-06 2016-12-07 北京大学 一种探测相机垂直放置的通用型透射式光栅光谱仪
CN107271038A (zh) * 2017-07-03 2017-10-20 中国科学院长春光学精密机械与物理研究所 一种高分辨率光谱仪系统
CN108007570A (zh) * 2017-11-28 2018-05-08 北京云端光科技术有限公司 光谱仪及光谱检测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422681A (zh) * 2013-09-02 2015-03-18 中国科学院大连化学物理研究所 一种拉曼光谱仪
CN104502286A (zh) * 2014-12-25 2015-04-08 中国科学院长春光学精密机械与物理研究所 一种串联光栅色散成像光谱仪
CN105675132B (zh) * 2015-12-29 2018-06-22 北京华泰诺安探测技术有限公司 消像散光谱仪
CN105571713A (zh) * 2016-03-06 2016-05-11 苏州大学 一种锥衍射装架Offner型分光装置
CN207423365U (zh) * 2017-11-28 2018-05-29 北京云端光科技术有限公司 光谱仪及光谱检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023339A1 (en) * 2001-09-13 2003-03-20 New Chromex, Inc. An apparatus and method for producing a substantially straight instrument image
EP1674844A1 (en) * 2004-12-09 2006-06-28 National Institutes of Natural Sciences Spectroscope
CN104535184A (zh) * 2014-12-22 2015-04-22 中国科学院长春光学精密机械与物理研究所 棱镜-光栅成像光谱仪的光路结构
CN205785525U (zh) * 2016-06-06 2016-12-07 北京大学 一种探测相机垂直放置的通用型透射式光栅光谱仪
CN107271038A (zh) * 2017-07-03 2017-10-20 中国科学院长春光学精密机械与物理研究所 一种高分辨率光谱仪系统
CN108007570A (zh) * 2017-11-28 2018-05-08 北京云端光科技术有限公司 光谱仪及光谱检测系统

Also Published As

Publication number Publication date
CN108007570A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
JP5546454B2 (ja) 広幅分光計
CN106706589B (zh) 一种用于细胞分析仪的荧光检测系统
CN105675132B (zh) 消像散光谱仪
CN103616074B (zh) 数字微镜光栅光谱仪的波长标定方法
WO2019105245A1 (zh) 光谱仪及光谱检测系统
CN103900688A (zh) 一种基于自由曲面的成像光谱仪分光系统
CN110632058B (zh) 一种用于拉曼光谱分析的小型分光装置
CN203465002U (zh) 一种透射式光栅光谱仪
CN210603594U (zh) 一种光谱仪
CN207423365U (zh) 光谱仪及光谱检测系统
CN106918393B (zh) 一种双通道空间外差光谱仪
CN212008328U (zh) Icp-aes光路系统
JP4029406B2 (ja) 光学分析器
Adams et al. Volume phase holographic grating performance on the VIRUS-P instrument
KR20160143969A (ko) 평면거울 및 렌즈를 이용한 성능개선 분광기
JP2021051074A (ja) 分光分析装置
CN111811650A (zh) 基于全息凹面光栅的c-t型结构成像系统
RU100636U1 (ru) Устройство регистрации лидарного сигнала
RU2630031C1 (ru) Двухканальная зеркально-линзовая система
RU2815391C1 (ru) Двухканальная зеркально-линзовая система
RU217680U1 (ru) Двухканальная зеркально-линзовая система
CN221811638U (zh) 一种光学结构对称型透射光栅式成像光谱仪
US11307091B2 (en) Apertureless spectrometer
CN209961682U (zh) 宽谱边缘能量提升装置
CN220853866U (zh) 一种体相位全息透射式光栅光谱仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883502

Country of ref document: EP

Kind code of ref document: A1