WO2019105081A9 - 基于无线通讯的换电站控制系统和换电站 - Google Patents

基于无线通讯的换电站控制系统和换电站 Download PDF

Info

Publication number
WO2019105081A9
WO2019105081A9 PCT/CN2018/103260 CN2018103260W WO2019105081A9 WO 2019105081 A9 WO2019105081 A9 WO 2019105081A9 CN 2018103260 W CN2018103260 W CN 2018103260W WO 2019105081 A9 WO2019105081 A9 WO 2019105081A9
Authority
WO
WIPO (PCT)
Prior art keywords
sub
control unit
wireless communication
control
substation
Prior art date
Application number
PCT/CN2018/103260
Other languages
English (en)
French (fr)
Other versions
WO2019105081A1 (zh
Inventor
夹磊
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Priority to EP18882699.4A priority Critical patent/EP3719955A4/en
Publication of WO2019105081A1 publication Critical patent/WO2019105081A1/zh
Publication of WO2019105081A9 publication Critical patent/WO2019105081A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of power exchange control, in particular to a power exchange control system and power exchange based on wireless communication.
  • the power exchange station is composed of a parking platform, a battery replacement trolley, a battery storage storage and charging rack, a battery compartment elevator, and other auxiliary equipment.
  • the power replacement process requires these components to work together in a unified manner, and each component contains multiple actuators.
  • servo motors are used to control the actions of these actuators, so the existing substation control system has the following characteristics: (1) a remote communication slave station with multiple sensor inputs and multiple output execution components; (2) It has moving parts such as RGV (rail guide vehicle).
  • RGV rail guide vehicle
  • the technical problem to be solved by the present invention is to provide a power exchange control system and power exchange based on wireless communication.
  • the wireless communication control method is used to replace the wired communication and sliding link component communication control method.
  • Distributed control and centralized management are adopted.
  • the control method improves the real-time and reliability of the substation control.
  • a wireless communication-based substation control system including: a main control unit, a state management module and a plurality of sub-control units,
  • the main control unit uses wireless communication to communicate with the state management module; each of the sub-control units uses wireless communication to separately communicate with the state management module;
  • the main control unit is used to send a corresponding control instruction to the state management module according to power replacement requirements
  • the state management module calls corresponding sub-control units according to the control instructions to control the working sequence of each sub-control unit;
  • Each of the sub-control units controls a substation subsystem in real time.
  • the sub-control unit sets two task cycles, namely a first task cycle and a second task cycle, the first task cycle is smaller than the second task cycle, and in the first task cycle, the The actuator of the substation subsystem outputs dynamic response commands for independent internal control;
  • the sub-control unit includes a kernel register, and uses a multi-core and multi-thread method to scan the hardware interface of the substation subsystem during the first task period.
  • the sub-control unit directly responds to the fault.
  • the fault response includes fault interruption and coordinated shutdown between substation subsystems.
  • process data includes temperature and water level.
  • the state management module includes a cache unit for storing data content in one or more preset periods of the sub-control unit and the main control unit in real time, the preset period being greater than or equal to the second task period.
  • the cache unit has a retransmission mechanism.
  • a communication flash occurs in the sub-control unit, after establishing a communication connection with the cache unit again, the cache unit will set the current period or more of the sub-control unit The data content of each cycle is sent to the sub-control unit.
  • the cache unit includes a cache control sub-unit.
  • the cache control sub-unit recovers the corresponding free memory and controls the free memory to store other Control subunit data in non-idle state.
  • the state management module further includes a data forwarding unit for receiving the process data and forwarding the process data to the main control unit.
  • main control unit is also used to analyze and process the process data and send corresponding feedback instructions.
  • the main control unit compares the process data with a preset process data range, and if the process data is not within the preset process data range, it controls to issue an alarm signal.
  • main control unit is also used to control each sub-control unit to perform clock timing synchronization during initialization.
  • main control unit is also used to interrupt the work of the substation subsystem in a communication blocking or abnormal state.
  • the power exchange station is divided into a plurality of power exchange subsystems according to the principle of on-site, each of the power exchange subsystems includes multiple sensors and actuators, and each of the multiple sensors and actuators of each power exchange subsystem
  • the communication is carried out by means of communication cables or wireless communication; the multiple electronic exchange systems communicate by wireless communication.
  • the substation subsystem includes an RGV subsystem, a substation platform subsystem, and a battery compartment elevator subsystem.
  • a power station including the above-mentioned power station control system and a power station subsystem.
  • the substation subsystem includes an RGV subsystem, a substation platform subsystem, and a battery compartment elevator subsystem.
  • the present invention provides a wireless communication-based substation control system and substation that can achieve considerable technological advancement and practicality, and has wide industrial use value. It has at least the following advantages:
  • the present invention adopts the wireless communication control method to replace the wired communication and the sliding link component communication control method, which reduces the use of communication cables, facilitates maintenance, provides flexible networking, and improves the efficiency of real-time control of the substation.
  • the sub-control unit performs real-time control of the corresponding substation subsystem itself. Respond to the linkage stop and transfer of the fault itself, directly bypass the logic layer and system interface to quickly execute the hardware layer, and open up multi-threaded operations, specifically used to respond to fault interruption and linkage stop;
  • the main control unit processes and stores the status and process data of each sub-control unit.
  • the sub-control units corresponding to each substation subsystem interact with the status of the main control unit in time sequence to form distributed control and centralized management, which improves the real-time and reliability of substation control.
  • a state management module is added between the main control unit and the sub-control unit, which can dynamically and reasonably use the scheduling of each sub-control unit. According to the main control unit, the known timing is passed, and the sub-control unit is notified in advance of the memory recovery. When some sub-control units are abnormal and do not affect the overall situation, they are quickly removed.
  • the present invention improves the wireless stable communication rate while meeting the requirements of motion control.
  • FIG. 1 is a schematic diagram of a power exchange control system based on wireless communication according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an exchange station provided by an embodiment of the present invention.
  • Main control unit 2 Status management module
  • Sub control unit 4 RGV subsystem
  • a power exchange control system based on wireless communication includes: a main control unit 1, a state management module 2 and a plurality of sub-control units 3, wherein the main control unit 1 uses wireless communication and state management The module 2 communicates; each sub-control unit 3 communicates with the state management module 2 using wireless communication.
  • the invention adopts a wireless communication method to replace the current hard-wired communication method of the power exchange control system, which saves cables, is easy to maintain and has flexible networking.
  • the main control unit 1 is used to send a corresponding control instruction to the state management module 2 according to the power replacement requirement; the state management module 2 calls the corresponding sub-control unit 3 according to the control instruction to control the working sequence of each sub-control unit 3,
  • Each of the sub-control units 3 controls a substation subsystem in real time.
  • the substation is divided into multiple substation subsystems according to the on-site principle.
  • Each substation subsystem includes multiple sensors and actuators.
  • the multiple sensors and substation subsystems of each substation subsystem The communication between the actuators is performed by means of communication cables or wireless communication; the multiple electronic exchange systems communicate by wireless communication.
  • the substation subsystem includes an RGV subsystem 4, a substation platform subsystem 5 and a battery compartment elevator subsystem 6.
  • RGV subsystem 4 a substation platform subsystem 5
  • a battery compartment elevator subsystem 6 a battery compartment elevator subsystem 6.
  • the sensors include distance sensors, displacement sensors, temperature sensors, hydraulic sensors and so on.
  • the actuator includes lifting mechanism, bolt tightening mechanism, servo motor, etc.
  • Each substation subsystem can continue to be connected by wired communication according to the local principle.
  • Each substation subsystem corresponds to the sub-control unit 3 and the main control unit 1 and the state management module 2 by wireless communication, using distribution Type control, centralized management control method, improve the efficiency of real-time control.
  • distributed control and centralized management are the master-slave question and answer mode, with the sub-control unit as the local control unit of the substation subsystem to ensure the implementation of the response, and according to the synchronous call of the main control unit, to ensure that the overall control sequence meets the needs of power replacement .
  • Each sub-control unit 3 performs independent real-time management and controls the corresponding substation subsystem.
  • the sub-control unit 3 sets two task cycles, namely a first task cycle and a second task cycle, the first task cycle is smaller than the second task cycle, wherein the first task cycle is a fast task cycle, and the first task The priority of the cycle is higher than the second task cycle.
  • the sub-control unit 3 includes a kernel register, adopts a multi-core multi-thread operation mode, and constantly scans the hardware interface of the substation subsystem during the first task cycle at the same time.
  • the sub-control unit 3 does not need to Communicate with the main control unit through the system interface, and directly through the hardware interface, the IO physical scanning area quickly communicates and responds to faults.
  • the fault response includes fault interruption and coordinated shutdown between substation subsystems, which improves the real-time and efficiency of substation control.
  • the sub-control unit 3 receives the execution start information transmitted by the state management module 2.
  • the sub-control unit 3 outputs dynamic response commands to it in real time
  • a slow task cycle that is, a second task cycle, is entered when the first task cycle is idle, enter the second task cycle, collect process data of the substation subsystem, and Upload process data to the state management module 2.
  • the sub-control unit 3 performs real-time control of the substation subsystem and opens up multiple threads for response.
  • the fast interrupt is used to respond to the linkage stop and transfer of the fault itself, directly bypassing the logic layer and system interface to quickly execute the hardware layer, which improves the real-time control and response efficiency.
  • the state management module 2 includes a cache unit for storing in real time the data content of the sub-control unit 3 and the main control unit 1 in one or more preset periods, where the preset period is greater than or equal to the second task period, which can be
  • the control requirements can be set, for example, it can be set to store the data content of the first 10 cycles in real time.
  • the cache unit may acquire data of the main control unit 1 and each sub-control unit 3 in real time or set a preset period of time, and classify and store the acquired data.
  • the cache unit also has a retransmission mechanism.
  • the sub-control unit 3 has a communication flicker
  • the handshake communication with the cache is again established.
  • the cache unit resets the data content of the current one or more cycles corresponding to the sub-control unit 3 Sent to the corresponding sub-control unit 3, so that the corresponding electronic exchange system can continue to run quickly.
  • the state management module 2 makes an interface call of the sub-control unit 3 according to the state sequence in real time, and transmits real-time local task requirements.
  • the cache unit includes a cache control sub-unit, and also has the ability of nodes to track resources. When a sub-control unit 3 corresponding to the substation subsystem is in an idle state, the cache control sub-unit can timely recover the corresponding free memory and control the The free memory is used to store data of control subunits in other non-idle states, thereby improving real-time control.
  • the state management module 2 further includes a data forwarding unit for receiving the process data of the sub-control unit 3, collecting the process data, and forwarding it to the main control unit 1 for batch processing and storage.
  • the state management module 2 can dynamically and reasonably schedule each sub-control unit 3, according to the known timing of the main control unit 1 to inform the sub-control unit 3 in advance of the virtual memory recovery, also formed when some sub-control unit 3 abnormal situation At this time, rapid removal is performed without affecting the overall control system.
  • the function of power-off retransmission of the sub-control unit 3 and the reconnection of the abnormal sub-control unit 3 can be realized.
  • the main control unit 1 mainly allocates the state machine action steps to the subsystems, and processes and stores the process data of each substation subsystem.
  • the main control unit 1 is also used to analyze and process the process data and send corresponding feedback instructions.
  • the main control unit 1 can qualitatively analyze the big data in the form of process data to form a pre-diagnosis. For example, the main control unit 1 compares the process data with a preset process data range. If the process data is not within the preset process data range, the control sends an alarm signal, which improves the reliability of the control.
  • the main control unit 1 is also used to control the clock synchronization of each sub-control unit 3 during initialization, control the clock of each sub-control unit 3 and the main control unit 1 to be in synchronization state, and ensure the accuracy of the real-time response of the system, and also ensure that each The accuracy of the sub-control unit 3 responding to the interruption.
  • the main control unit 1 can also actively interrupt the work of the substation subsystem in the communication blocked or abnormal state according to the actual operating conditions. Specifically, the substation subsystem is in the communication blocked or abnormal state, the main control unit 1 sends to the state management module 2 An interrupt control instruction, the terminal control instruction contains address information of the sub-control unit 3 corresponding to the substation subsystem in a communication blocked or abnormal state, and the state management module 2 forwards the interrupt control instruction to the corresponding sub-control unit 3 The sub-control unit 3 interrupts the work of the corresponding substation subsystem according to the interrupt control instruction. The entire process does not affect the normal work of other sub-control units 3.
  • Embodiments of the present invention provide a power exchange control system based on wireless communication.
  • the wireless communication control method is used to replace the wired communication and sliding link component communication control methods, which reduces the use of communication cables, facilitates maintenance, and provides flexible networking.
  • the efficiency of power plant real-time control In addition, compared with the traditional wireless control, due to the position loop of the motor and the like, the speed loop control requires high real-time control requirements.
  • the sub-control unit performs real-time control on the corresponding substation subsystem itself, and develops an isochronous fast interrupt to respond Linked stop and transfer of its own faults, directly bypass the logic layer and system interface to quickly execute the hardware layer, and open up multi-threaded operations, specifically used to respond to fault interruptions and linked stops; the main control unit processes and stores the status of each sub-control unit and Process data.
  • the sub-control units corresponding to each substation subsystem interact with the status of the main control unit in time sequence to form distributed control and centralized management, which improves the real-time and reliability of substation control.
  • a state management module between the main control unit and the sub-control unit can dynamically and rationally use the scheduling of each sub-control unit.
  • the known timing is passed to inform the sub-control unit in advance of the memory recovery.
  • some sub-control units are abnormal and do not affect the overall situation, they are quickly removed.
  • the invention improves the wireless stable communication rate under the condition of meeting the requirements of motion control.
  • An embodiment of the present invention also provides a power exchange station, as shown in FIG. 2, including any one of the above-mentioned power exchange control systems, and further including a plurality of power exchange subsystems.
  • the substation control system includes a main control unit 1, a state management module 2, and a plurality of sub-control units 3.
  • the main control unit 1 sends corresponding control instructions to the state management module 2 according to the power exchange requirements; the state management module 2 according to the control instructions,
  • the corresponding sub-control unit 3 is called to control the working sequence of each sub-control unit 3, and each of the sub-control units 3 controls a substation subsystem in real time.
  • the substation is divided into multiple substation subsystems according to the principle of on-site, each of the substation subsystems includes multiple sensors and actuators, and the multiple sensors and executives of each substation subsystem
  • the communication between the institutions is carried out by means of communication cables or wireless communication; the multiple electronic exchange systems communicate by means of wireless communication.
  • the substation subsystem includes RGV subsystem 4, substation platform 5 and battery compartment elevator subsystem 6.
  • RGV subsystem 4 substation platform 5
  • battery compartment elevator subsystem 6 battery compartment elevator subsystem 6.
  • the way of dividing the subsystem of the substation is not limited to this. More detailed division can be made according to specific control requirements and other factors, or other forms of division, such as dividing the substation into a substation of the exchange platform, Battery pack storage subsystem, battery pack exchange subsystem, RGV subsystem, etc.
  • the sensors include distance sensors, displacement sensors, temperature sensors, hydraulic sensors and so on.
  • the actuator includes lifting mechanism, bolt tightening mechanism, servo motor, etc.
  • Each substation subsystem can continue to be connected by wired communication according to the local principle.
  • Each substation subsystem corresponds to the sub-control unit 3 and the main control unit 1 and the state management module 2 by wireless communication, using distribution Type control, centralized management control method, improve the efficiency of real-time control.
  • distributed control and centralized management are the master-slave question and answer mode, with the sub-control unit as the local control unit of the substation subsystem to ensure the implementation of the response, and according to the synchronous call of the main control unit, to ensure that the overall control sequence meets the needs of power replacement .
  • the wireless communication control method is used to replace the wired communication and sliding link component communication control between the substation subsystems of the exchange station, which reduces the use of communication cables, facilitates maintenance, and provides flexible networking; the control system uses distributed control.
  • the centralized management method performs coordinated control on each component of the power exchange station, which improves the efficiency of real-time control of the power exchange station, thereby improving the efficiency of power exchange and improving the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Power Sources (AREA)

Abstract

本发明涉及一种基于无线通讯的换电站控制系统和换电站,所述换电站控制系统包括:主控制单元、状态管理模块和多个子控制单元,其中,所述主控制单元采用无线通信的方式与状态管理模块进行通讯;每个所述子控制单元采用无线通信的方式分别与状态管理模块进行通讯;所述主控制单元用于根据换电需求向所述状态管理模块发送相应的控制指令;所述状态管理模块根据所述控制指令,调用相应的子控制单元,控制各个子控制单元的工作时序,每个所述子控制单元实时控制一个换电站子系统。本发明采用无线通讯的控制方式取代有线通讯以及滑动链接部件的通讯控制方式,采用分布式控制,集中管理的控制方法,提高了换电站控制的实时性和可靠性。

Description

基于无线通讯的换电站控制系统和换电站 技术领域
本发明涉及换电站控制技术领域,尤其涉及一种基于无线通讯的换电站控制系统和换电站。
背景技术
随着传统化石能源消耗带来的供应压力以及尾气的污染,节能环保的电动汽车近几年呈现了井喷式发展,电动汽车的发展目前由于受限于电池技术,电池容量有限和充电时间长是现阶段不可回避的问题,然而在诸多的加电方式中,换电方式是一种极速、方便且安全的办法。
换电站由停车平台、取换电池小车、电池仓存储充电架、电池仓升降机以及其他辅助设备等组成,换电过程需要这些部件统一协作来完成,每个部件中又分别包含有多个执行机构,通常采用伺服电机等控制这些执行机构的动作本身,所以现有的换电站控制系统具有如下特点:(1)具有多个传感器输入,以及多个输出执行部件的远程通讯从站;(2)具有RGV(导轨指引车)等移动部件。基于以上特点使现有的换电站控制系统具有通讯电缆繁多,容易损坏,故障节点多,且难以维护,移动部件滑动链接处易损,需要频繁更换的缺点。
发明内容
本发明所要解决的技术问题在于,提供一种基于无线通讯的换电站控制系统和换电站,采用无线通讯的控制方式取代有线通讯以及滑动链接部件的通讯控制方式,采用分布式控制,集中管理的控制方法,提高了换电站控制的实时性和可靠性。
为了解决上述技术问题,根据本发明一方面,提供了一种基于无线通讯的换电站控制系统,包括:主控制单元、状态管理模块和多个子控制单元,
其中,所述主控制单元采用无线通信的方式与状态管理模块进行通讯;每个所述子控制单元采用无线通信的方式分别与状态管理模块进行通讯;
所述主控制单元用于根据换电需求向所述状态管理模块发送相应的控制指令;
所述状态管理模块根据所述控制指令,调用相应的子控制单元,控制各个子控制单元的工作时序;
每个所述子控制单元实时控制一个换电站子系统。
进一步的,所述子控制单元设定两个任务周期,分别为第一任务周期和第二任务周期,所述第一任务周期小于第二任务周期,在所述第一任务 周期,实时向所述换电站子系统的执行机构输出动态响应指令,进行单独内部控制;
在所述第一任务周期处于空闲状况下,进入所述第二任务周期,采集所述换电站子系统的过程数据,并将所述过程数据上传给状态管理模块。
进一步的,所述子控制单元包括内核寄存器,采用多核多线程的方式,在所述第一任务周期扫描所述换电站子系统的硬件接口,若所述换电站子系统出现硬件故障,则所述子控制单元直接进行故障响应。
进一步的,所述故障响应包括故障中断和各个换电站子系统间的联动停机。
进一步的,所述过程数据包括温度和水位。
进一步的,所述状态管理模块包括缓存单元,用于实时存储所述子控制单元和主控制单元一个或多个预设周期内的数据内容,所述预设周期大于等于第二任务周期。
进一步的,所述缓存单元具有重传机制,当所述子控制单元出现通讯闪断,再次与所述缓存单元建立通讯连接后,所述缓存单元将所述子控制单元的当前一个周期或多个周期的数据内容发送给所述子控制单元。
进一步的,所述缓存单元包括缓存控制子单元,当某个子控制单元对应的换电站子系统处于空闲状态,所述缓存控制子单元回收对应的空闲内存,并控制所述空闲内存用于存储其他非空闲状态的控制子单元数据。
进一步的,所述状态管理模块还包括数据转发单元,用于接收所述过程数据,并将所述过程数据转发给所述主控制单元。
进一步的,所述主控制单元还用于对所述过程数据进行分析处理,并发送相应的反馈指令。
进一步的,所述主控制单元将所述过程数据与预设的过程数据范围进行对比,所述过程数据不在所述预设过程数据范围内,则控制发出报警信号。
进一步的,所述主控制单元还用于控制各个子控制单元在初始化期间进行时钟对时同步。
进一步的,所述主控制单元还用于中断处于通讯阻塞或异常状态的换电站子系统工作。
进一步的,所述换电站按照就地原则分为多个换电站子系统,每个所述换电站子系统包括多个传感器和执行机构,每个换电站子系统的多个传感器和执行机构之间采用通讯线缆或无线通讯的方式进行通讯;所述多个换电子系统之间通过无线通信方式进行通讯。
进一步的,所述换电站子系统包括RGV子系统、换电平台子系统和电池仓升降机子系统。
根据本发明另一方面,提供一种换电站,包括上述换电站控制系统和换电站子系统。
进一步的,所述换电站子系统包括RGV子系统、换电平台子系统和电池仓升降机子系统。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种基于无线通讯的换电站控制系统和换电站可达到相当的技术进步性及实用性,并具有产业上的广泛利用价值,其至少具有下列优点:
(1)本发明采用无线通讯的控制方式取代有线通讯以及滑动链接部件的通讯控制方式,减少通讯电缆的使用,方便维护,组网灵活,提高了换电站实时控制的效率。
(2)相比较传统的无线控制,由于电机等位置环,速度环的控制需要实时性控制要求很高,子控制单元对于对应的换电站子系统自身进行实时控制,开辟等时快速中断用来响应联动停止和传递本身故障,直接绕过逻辑层和系统接口对硬件层快速执行,并且开辟多线程操作,专门用来响应故障中断和联动停止;
主控制单元处理和存储各个子控制单元的状态和过程数据。各个换电站子系统对应的子控制单元与主控制单元状态时序交互,形成分布式控制,集中管理,提高了换电站控制的实时性和可靠性。
(3)主控制单元和子控制单元之间增加状态管理模块,可以动态地合理利用各个子控制单元的调度,根据主控制单元传递已知的时序,提前告知子控制单元对于内存回收,也形成了当某些子控制单元异常情况并且不影响整体的情况下进行快速切除。
(4)本发明在满足运动控制需求的状态下,提高了无线的稳定通讯速率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明一实施例提供基于无线通讯的换电站控制系统示意图;
图2为本发明一实施例提供的换电站示意图。
主要附图标记说明:
1:主控制单元       2:状态管理模块
3:子控制单元       4:RGV子系统
5:换电平台子系统   6:电池仓升降机子系统
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种基于无线通讯的换电站控制系统和换电站的具体实施方式及其功效,详细说明如后。
如附图1所示,一种基于无线通讯的换电站控制系统,包括:主控制单元1、状态管理模块2和多个子控制单元3,其中,主控制单元1采用无线通信的方式与状态管理模块2进行通讯;每个子控制单元3采用无线通信的方式分别与状态管理模块2进行通讯。本发明采用无线通讯的方式取代目前换电站控制系统采用硬线连接的通讯方式,省线缆,易维护且组网灵活。主控制单元1用于根据换电需求向状态管理模块2发送相应的控制指令;状态管理模块2根据所述控制指令,调用相应的子控制单元3,控制各个子控制单元3的工作时序,每个所述子控制单元3实时控制一个换电站子系统。
在图2所示示例中,换电站按照就地原则分为多个换电站子系统,每个所述换电站子系统包括多个传感器和执行机构,每个换电站子系统的多个传感器和执行机构之间采用通讯线缆或无线通讯的方式进行通讯;所述多个换电子系统之间通过无线通信方式进行通讯。图2中,所述换电站子系统包括RGV子系统4、换电平台子系统5和电池仓升降机子系统6。但可以理解的是,换电站划分子系统的方式并不限于此,可根据具体的控制需求等因素进行更细致的划分,或者其他形式的划分,例如将换电站划分为换电平台子系统、电池包存储子系统、电池包交换子系统和RGV子系统等。其中,传感器包括距离传感器、位移传感器、温度传感器、液压传感器等。执行机构包括升降机构、螺栓拧紧机构、伺服电机等。
各个换电站子系统内根据就地原则可继续采用有线通讯的方式连接,各个换电站子系统对应子控制单元3与主控制单元1和状态管理模块2之间采用无线通讯的方式连接,采用分布式控制,集中管理的控制方式,提高了实时控制的效率。其中,分布式控制,集中管理为主从问答模式,以子控制单元作为换电站子系统的局部控制单元,保证实施响应,并且根据主控制单元的同步调用,以保证整体控制时序满足换电需求。
以下对换电站控制系统的组成部分分别进行说明:
(一)子控制单元
每个子控制单元3进行单独式实时管理,控制对应的换电站子系统。子控制单元3设定两个任务周期,分别为第一任务周期和第二任务周期,所述第一任务周期小于第二任务周期,其中,第一任务周期为快速任务周期,且第一任务周期的优先级高于第二任务周期。子控制单元3包括内核 寄存器,采用多核多线程的操作方式,在第一任务周期等时恒定地扫描换电站子系统的硬件接口,若换电站子系统出现硬件故障,则子控制单元3不需要通过系统接口与主控制单元通信,而直接通过硬件接口,IO物理扫描区域快速通讯,进行故障响应。故障响应包括故障中断和各个换电站子系统间的联动停机,提高了换电站控制的实时性和效率。
在第一任务周期,子控制单元3接收状态管理模块2传递的执行开始信息,对于换电站子系统的伺服电机等实时性要求很高的执行机构,子控制单元3实时向其输出动态响应指令,进行单独内部控制。对于温度、水位等过程数据,开辟慢速任务周期,即第二任务周期,在第一任务周期处于空闲状况下,进入所述第二任务周期,采集所述换电站子系统的过程数据,并将过程数据上传给状态管理模块2。
由于电机等位置环,速度环的控制需要实时性控制要求很高,所以采用了分布管理,集中控制的策略,子控制单元3对于换电站子系统进行实时控制,开辟多线程,用来响应等时快速中断用来响应联动停止和传递本身故障,直接绕过逻辑层和系统接口对硬件层快速执行,提高了控制的实时性和响应效率。
(二)状态管理模块
状态管理模块2包括缓存单元,用于实时存储所述子控制单元3和主控制单元1一个或多个预设周期内的数据内容,所述预设周期大于等于第二任务周期,可根据具体的控制需求进行设定,例如可以设定为实时存储前10个周期的数据内容。缓存单元可实时或设定预设的时间段定时获取主控制单元1和每个子控制单元3的数据,并对所获取而定数据进行分类存储。
缓存单元还具有重传机制,当子控制单元3出现通讯闪断,再次与缓存进行握手沟通,建立通讯连接后,缓存单元将对应子控制单元3的当前一个周期或多个周期的数据内容重新发送给对应子控制单元3,使对应的换电子系统能后快速继续运行。
状态管理模块2实时根据状态时序进行子控制单元3的接口调用,传递实时就地任务需求。缓存单元包括缓存控制子单元,还具备节点跟踪资源的能力,当某个子控制单元3对应的换电站子系统处于空闲状态,所述缓存控制子单元可及时回收对应的空闲内存,并控制所述空闲内存用于存储其他非空闲状态的控制子单元数据,从而提高控制的实时性。
状态管理模块2还包括数据转发单元,用于接收子控制单元3的过程数据,将所述过程数据进行收集,并转发给所述主控制单元1进行批量处理及存储。
状态管理模块2可以动态地合理调度各个子控制单元3,根据主控制单 元1传递已知的时序,提前告知子控制单元3对于虚拟内存回收,也形成了当某些子控制单元3出现异常情况时,在不影响整体控制系统的情况下,进行快速切除。能够实现子控制单元3的断电重传和异常子控制单元3切除再组网的功能。
(三)主控制单元
主控制单元1主要是对于子系统进行状态机动作步骤的分配,并且处理和存储各个换电站子系统的过程数据。
主控制单元1还用于对所述过程数据进行分析处理,并发送相应的反馈指令。主控制单元1可以对过程数据形式的大数据进行定性分析,形成预先诊断。例如,主控制单元1将所述过程数据与预设的过程数据范围进行对比,所述过程数据不在所述预设过程数据范围内,则控制发出报警信号,提高了控制的可靠性。
主控制单元1还用于控制各个子控制单元3在初始化期间进行时钟对时同步,控制各个子控制单元3与主控制单元1的时钟处于同步状态,保正系统实时响应的精度,也保证了各个子控制单元3响应中断的精度。
主控制单元1还可以根据实际操作情况,主动中断处于通讯阻塞或异常状态的换电站子系统工作,具体地,换电站子系统处于通讯阻塞或异常状态,主控制单元1向状态管理模块2发送中断控制指令,所述终端控制指令中包含处于通信阻塞或异常状态下的换电站子系统所对应的子控制单元3的地址信息,状态管理模块2将中断控制指令转发给对应的子控制单元3,子控制单元3根据中断控制指令中断对应的换电站子系统的工作,整个过程中,不影响其他子控制单元3的正常工作。
本发明实施例提供一种基于无线通讯的换电站控制系统,采用无线通讯的控制方式取代有线通讯以及滑动链接部件的通讯控制方式,减少通讯电缆的使用,方便维护,组网灵活,提高了换电站实时控制的效率。此外,相比较传统的无线控制,由于电机等位置环,速度环的控制需要实时性控制要求很高,子控制单元对于对应的换电站子系统自身进行实时控制,开辟等时快速中断用来响应联动停止和传递本身故障,直接绕过逻辑层和系统接口对硬件层快速执行,并且开辟多线程操作,专门用来响应故障中断和联动停止;主控制单元处理和存储各个子控制单元的状态和过程数据。各个换电站子系统对应的子控制单元与主控制单元状态时序交互,形成分布式控制,集中管理,提高了换电站控制的实时性和可靠性。再者,主控制单元和子控制单元之间增加状态管理模块,可以动态地合理利用各个子控制单元的调度,根据主控制单元传递已知的时序,提前告知子控制单元对于内存回收,也形成了当某些子控制单元异常情况并且不影响整体的情况下进行快速切除。本发明在满足运动控制需求的状态下,提高了无线的 稳定通讯速率。
本发明实施例还提供一种换电站,如图2所示,包括上述示例中的任意一种换电站控制系统,还包括多个换电站子系统。换电站控制系统包括主控制单元1、状态管理模块2、多个子控制单元3,主控制单元1根据换电需求向状态管理模块2发送相应的控制指令;状态管理模块2根据所述控制指令,调用相应的子控制单元3,控制各个子控制单元3的工作时序,每个所述子控制单元3实时控制一个换电站子系统。
如图2所示示例,换电站按照就地原则分为多个换电站子系统,每个所述换电站子系统包括多个传感器和执行机构,每个换电站子系统的多个传感器和执行机构之间采用通讯线缆或无线通讯的方式进行通讯;所述多个换电子系统之间通过无线通信方式进行通讯。所述换电站子系统包括RGV子系统4、换电平台子系统5和电池仓升降机子系统6。但可以理解的是,换电站划分子系统的方式并不限于此,可根据具体的控制需求等因素进行更细致的划分,或者其他形式的划分,例如将换电站划分为换电平台子系统、电池包存储子系统、电池包交换子系统和RGV子系统等。其中,传感器包括距离传感器、位移传感器、温度传感器、液压传感器等。执行机构包括升降机构、螺栓拧紧机构、伺服电机等。
各个换电站子系统内根据就地原则可继续采用有线通讯的方式连接,各个换电站子系统对应子控制单元3与主控制单元1和状态管理模块2之间采用无线通讯的方式连接,采用分布式控制,集中管理的控制方式,提高了实时控制的效率。其中,分布式控制,集中管理为主从问答模式,以子控制单元作为换电站子系统的局部控制单元,保证实施响应,并且根据主控制单元的同步调用,以保证整体控制时序满足换电需求。
所述换电站的各个换电站子系统之间采用无线通讯的控制方式取代有线通讯以及滑动链接部件的通讯控制方式,减少通讯电缆的使用,方便维护,组网灵活;控制系统采用分布式控制,集中管理的方式对换电站各组成部分进行协调控制,提高了换电站实时控制的效率,从而提高了换电效率,提升了用户体验。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (15)

  1. 一种基于无线通讯的换电站控制系统,其特征在于,包括:主控制单元、状态管理模块和多个子控制单元,
    其中,所述主控制单元采用无线通信的方式与状态管理模块进行通讯;每个所述子控制单元采用无线通信的方式分别与状态管理模块进行通讯;
    所述主控制单元用于根据换电需求向所述状态管理模块发送相应的控制指令;
    所述状态管理模块根据所述控制指令,调用相应的子控制单元,控制各个子控制单元的工作时序;
    每个所述子控制单元实时控制一个换电站子系统。
  2. 根据权利要求1所述的基于无线通讯的换电站控制系统,其特征在于,
    所述子控制单元设定两个任务周期,分别为第一任务周期和第二任务周期,所述第一任务周期小于第二任务周期,在所述第一任务周期,实时向所述换电站子系统的执行机构输出动态响应指令,进行单独内部控制;
    在所述第一任务周期处于空闲状况下,进入所述第二任务周期,采集所述换电站子系统的过程数据,并将所述过程数据上传给状态管理模块。
  3. 根据权利要求2所述的基于无线通讯的换电站控制系统,其特征在于,
    所述子控制单元包括内核寄存器,采用多核多线程的方式,在所述第一任务周期扫描所述换电站子系统的硬件接口,若所述换电站子系统出现硬件故障,则所述子控制单元直接进行故障响应。
  4. 根据权利要求3所述的基于无线通讯的换电站控制系统,其特征在于,
    所述故障响应包括故障中断和各个换电站子系统间的联动停机。
  5. 根据权利要求2所述的基于无线通讯的换电站控制系统,其特征在于,
    所述过程数据包括温度和水位。
  6. 根据权利要求2所述的基于无线通讯的换电站控制系统,其特征在于,
    所述状态管理模块包括缓存单元,用于实时存储所述子控制单元和主控制单元一个或多个预设周期内的数据内容,所述预设周期大于等于第二任务周期。
  7. 根据权利要求6所述的基于无线通讯的换电站控制系统,其特征在于,
    所述缓存单元具有重传机制,当所述子控制单元出现通讯闪断,再次与所述缓存单元建立通讯连接后,所述缓存单元将所述子控制单元的当前一个周期或多个周期的数据内容发送给所述子控制单元。
  8. 根据权利要求6所述的基于无线通讯的换电站控制系统,其特征在于,
    所述缓存单元包括缓存控制子单元,当某个子控制单元对应的换电站子系统处于空闲状态,所述缓存控制子单元回收对应的空闲内存,并控制所述空闲内存用于存储其他非空闲状态的控制子单元数据。
  9. 根据权利要求2所述的基于无线通讯的换电站控制系统,其特征在于,
    所述状态管理模块还包括数据转发单元,用于接收所述过程数据,并将所述过程数据转发给所述主控制单元。
  10. 根据权利要求2所述的基于无线通讯的换电站控制系统,其特征在于,
    所述主控制单元还用于对所述过程数据进行分析处理,并发送相应的反馈指令。
  11. 根据权利要求10所述的基于无线通讯的换电站控制系统,其特征在于,
    所述主控制单元将所述过程数据与预设的过程数据范围进行对比,所述过程数据不在所述预设过程数据范围内,则控制发出报警信号。
  12. 根据权利要求1所述的基于无线通讯的换电站控制系统,其特征在于,
    所述主控制单元还用于控制各个子控制单元在初始化期间进行时钟对时同步。
  13. 根据权利要求1所述的基于无线通讯的换电站控制系统,其特征在于,
    所述主控制单元还用于中断处于通讯阻塞或异常状态的换电站子系统工作。
  14. 根据权利要求1-13中任意一项所述的基于无线通讯的换电站控制系统,其特征在于,
    所述换电站按照就地原则分为多个换电站子系统,每个所述换电站子系统包括多个传感器和执行机构,每个换电站子系统的多个传感器和执行机构之间采用通讯线缆或无线通讯的方式进行通讯;所述多个换电子系统之间通过无线通信方式进行通讯。
  15. 根据权利要求14所述的基于无线通讯的换电站控制系统,其特征在于,
PCT/CN2018/103260 2017-11-28 2018-08-30 基于无线通讯的换电站控制系统和换电站 WO2019105081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18882699.4A EP3719955A4 (en) 2017-11-28 2018-08-30 BATTERY SWAP STATION CONTROL SYSTEM BASED ON WIRELESS COMMUNICATION AND BATTERY SWAP STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711216951.2 2017-11-28
CN201711216951.2A CN108400652B (zh) 2017-11-28 2017-11-28 基于无线通讯的换电站控制系统和换电站

Publications (2)

Publication Number Publication Date
WO2019105081A1 WO2019105081A1 (zh) 2019-06-06
WO2019105081A9 true WO2019105081A9 (zh) 2020-07-16

Family

ID=63094280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103260 WO2019105081A1 (zh) 2017-11-28 2018-08-30 基于无线通讯的换电站控制系统和换电站

Country Status (3)

Country Link
EP (1) EP3719955A4 (zh)
CN (1) CN108400652B (zh)
WO (1) WO2019105081A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400652B (zh) * 2017-11-28 2020-11-06 蔚来(安徽)控股有限公司 基于无线通讯的换电站控制系统和换电站
CN109448349B (zh) * 2018-11-22 2021-12-28 广州南湾信息科技有限公司 一种水文遥测设备
CN110053511A (zh) * 2019-05-05 2019-07-26 广州市旋通节能科技有限公司 一种电动船充电换电的智能管理控制系统
CN111263385B (zh) * 2020-01-19 2023-02-28 深圳拓邦股份有限公司 充换电柜及其通信方法
US20230015794A1 (en) * 2021-07-16 2023-01-19 Gogoro Inc. Battery exchange method and battery exchange system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009053050A1 (de) * 2009-11-16 2011-05-19 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Austauschen einer Batterie in einem Fahrzeug
KR20120062089A (ko) * 2010-12-06 2012-06-14 한국전자통신연구원 모바일 단말을 이용하여 전기차량을 충전 제어하는 차량 모바일 게이트웨이, 이를 포함하는 전기차량 및 모바일 단말을 이용한 전기차량 충전 제어 방법
CN202043250U (zh) * 2011-05-26 2011-11-16 山东鲁能智能技术有限公司 电动汽车充换电站视频监控系统
JP5505373B2 (ja) * 2011-06-17 2014-05-28 横河電機株式会社 通信システム、通信装置、及び通信方法
CN105140977B (zh) * 2014-05-29 2017-09-05 国家电网公司 基于电网调度的电动汽车换电方法和换电服务物联网
CN105182884B (zh) * 2015-10-13 2018-06-12 中国矿业大学 一种新能源汽车充换电设施远程监控系统与方法
CN105667464A (zh) * 2016-03-18 2016-06-15 蔚来汽车有限公司 基于云存储的电动汽车换电系统和方法
US9873408B2 (en) * 2016-05-11 2018-01-23 Peter D. Capizzo Device for refueling, exchanging, and charging power sources on remote controlled vehicles, UAVs, drones, or any type of robotic vehicle or machine with mobility
CN106532806B (zh) * 2016-10-21 2020-06-09 国网山东省电力公司电力科学研究院 一种电动汽车充换电站智能化换电控制方法及系统
CN106681220A (zh) * 2017-01-13 2017-05-17 上海蔚来汽车有限公司 基于中央处理器和可编程逻辑器件的换电动作控制系统
CN106882163A (zh) * 2017-01-13 2017-06-23 上海蔚来汽车有限公司 电动汽车换电站的模块化控制系统及其控制方法
CN107161020B (zh) * 2017-05-15 2020-10-23 上海蔚来汽车有限公司 充换电站及充换电控制系统
CN107277158A (zh) * 2017-07-06 2017-10-20 上海蔚来汽车有限公司 基于b/s架构的充换电站监控系统及充换电站
CN108400652B (zh) * 2017-11-28 2020-11-06 蔚来(安徽)控股有限公司 基于无线通讯的换电站控制系统和换电站

Also Published As

Publication number Publication date
CN108400652B (zh) 2020-11-06
CN108400652A (zh) 2018-08-14
EP3719955A1 (en) 2020-10-07
EP3719955A4 (en) 2021-05-19
WO2019105081A1 (zh) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019105081A9 (zh) 基于无线通讯的换电站控制系统和换电站
CN104578187B (zh) 一种多端柔性直流输电系统级协调控制装置
CN102983593B (zh) 基于智能开关的微网无缝切换控制方法
CN207150526U (zh) 多组件级快速关断装置及光伏系统
CN203398797U (zh) 一种双模式储能装置的多机并联控制系统
CN103670921B (zh) 风力发电机组智能状态监控系统
CN101877528B (zh) 基于高压变频器的双cpu冗余容错系统及其实现方法
CN102749890B (zh) 一种dcs控制模块的冗余方法
CN201374005Y (zh) 带式输送设备自动化控制系统
CN202034819U (zh) 基于燃料电池的不间断电源供电系统
CN105406599B (zh) 一种厂级agc接入电力监控网络的冗余架构方法
CN102157980A (zh) 基于燃料电池的不间断电源供电系统及其供电方法
CN202632002U (zh) 用于主、备控制器之间的故障自动切换装置
CN201674386U (zh) 基于高压变频器的双cpu冗余容错系统
CN104679710A (zh) 一种面向半导体生产线搬运系统软件故障快速恢复方法
CN102866698A (zh) 一种分布式控制系统控制器的hmi冗余通讯方法
CN205104918U (zh) 一种大功率变流器主从控制系统
CN110737233A (zh) 综合管廊智能控制器主控设备、装置、系统及控制方法
CN202257236U (zh) 一种换热站远程监测系统
CN202274579U (zh) 无人值守机房空调故障报警器
CN105259924B (zh) 一种定日镜场控制系统
CN104694969A (zh) 氧化铝输送及电解烟气净化控制系统
CN204461491U (zh) 电力电缆沟环境监测装置
CN202600420U (zh) 变电站电源监控器双cpu电路
CN202093384U (zh) Mvb双冗余车门网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018882699

Country of ref document: EP

Effective date: 20200629