WO2019105078A1 - 柴油机变海拔自适应系统及其控制方法 - Google Patents

柴油机变海拔自适应系统及其控制方法 Download PDF

Info

Publication number
WO2019105078A1
WO2019105078A1 PCT/CN2018/103187 CN2018103187W WO2019105078A1 WO 2019105078 A1 WO2019105078 A1 WO 2019105078A1 CN 2018103187 W CN2018103187 W CN 2018103187W WO 2019105078 A1 WO2019105078 A1 WO 2019105078A1
Authority
WO
WIPO (PCT)
Prior art keywords
adaptive system
diesel engine
pressure
vgt
fuel injection
Prior art date
Application number
PCT/CN2018/103187
Other languages
English (en)
French (fr)
Inventor
刘瑞林
张众杰
Original Assignee
中国人民解放军陆军军事交通学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军陆军军事交通学院 filed Critical 中国人民解放军陆军军事交通学院
Publication of WO2019105078A1 publication Critical patent/WO2019105078A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the technical field of engines, and in particular to a diesel engine variable altitude adaptive system.
  • the Qinghai-Tibet Plateau is the most representative plateau in the world, with an average elevation of over 4,000 m and a total area of 2.4 million km2, accounting for about a quarter of the country's land area.
  • vehicles are driving on highland highways (such as the Qinghai-Tibet line, the Sichuan-Tibet line and the Yunnan-Tibet line), they have the characteristics of high altitude, large drop, steep slope, long slope and complicated working conditions.
  • the reduction of intake air volume causes the diesel engine to deteriorate.
  • the performance of various technologies such as power, fuel consumption rate and heat load deteriorates significantly.
  • the diesel engine power is reduced by 4.0% ⁇ 13.0%, the economy is reduced by 2.7% ⁇ 12.9%, the vortex front temperature and the cylinder head temperature are increased by 7% ⁇ 10%, and the body heat intensity is increased by 1% ⁇ 3. %, combined with a decrease in the boiling point of water, is prone to "opening" of the cooling system.
  • different control parameters of diesel engine have the characteristics of nonlinearity, strong coupling and multiple constraints. It only depends on single parameter or single system regulation control, and it is difficult to meet the working requirements of diesel engine changing altitude and changing working conditions.
  • the diesel engine variable altitude adaptive system can jointly control the main parameters in the booster system, fuel injection system and cooling system according to the altitude and working conditions, and realize the power and economy of the 6000m altitude diesel engine under the constraints of certain diesel engine working processes.
  • the goal of heat balance performance is not reduced compared to 0 m altitude.
  • the existing diesel engine supercharging system and cooling system can not adapt to the technical defects of altitude and working condition change, the supercharged system and the fuel injection system change altitude, and the working condition does not match.
  • the invention designs a diesel engine variable altitude adaptive system, which enables the diesel engine ECU to dynamically control the double VGT two-stage adjustable supercharging system, the fuel injection system and the cooling system according to the change of altitude and working conditions, achieving an altitude of 0m to 6000m. Within the scope, the diesel engine's power, economy and heat balance performance are not reduced.
  • a diesel engine variable altitude adaptive system consisting of a dual VGT two-stage adjustable boost adaptive system, a fuel injection adaptive system and a cooling adaptive system, wherein the three systems respectively communicate with a diesel ECU; the dual VGT II
  • the stage adjustable boost adaptive system includes high and low pressure VGT, high and low pressure turbines and high and low pressure compressors.
  • the high and low pressure stages VGT are series structures.
  • the high and low pressure turbines are respectively connected to the turbine speed sensor and have internal windings.
  • the VGT blade rotates its own axis, and the intercooler and the boost pressure sensor are respectively arranged after the high and low pressure air engines;
  • the cooling adaptive system includes a thermostat, a radiator, an electric control water pump, an electric control water pump frequency conversion, and an electric control Fan, electric control fan inverter and cooling water flow sensor, thermostat, radiator, electric control pump, electric control pump inverter and cooling water flow sensor are installed on the inlet and outlet circulation lines of the diesel engine. sensor.
  • the diesel engine ECU receives the actual supercharging pressure of the high and low pressure compressors outputted by the double VGT two-stage adjustable boost adaptive system, and queries the target supercharging pressure map to finally optimize the calibration to obtain the supercharging pressure target map, so that the VGT blade The opening is optimal, and the VGT blade is dynamically adjusted by the driving signal;
  • Diesel engine ECU received diesel engine load, speed, temperature and pressure signals, query different altitude fuel injection, fuel injection advance angle and common rail pressure map, output control signal dynamic control fuel injection fuel injection adaptive system high pressure pump pressure control Valve and injector solenoid valves work;
  • the diesel engine ECU receives the actual coolant temperature and flow output from the cooling adaptive system, and then according to the cooling water target temperature and flow map transmitted by the ECU, the coolant flow rate and coolant temperature are obtained at different altitudes and different working conditions.
  • the best map to control the electronically controlled water pump and the electronically controlled fan to achieve the best speed.
  • the above fuel injection adaptive system adopts German Bosch electronically controlled high pressure common rail technology.
  • the above-mentioned cooling adaptive system is optimized for the maximum effective thermal efficiency of the diesel engine.
  • the coolant boiling point and the temperature difference ⁇ T (5 ⁇ T ⁇ 9°C) of the coolant are used as the limiting conditions, and the coolant flow rate at different altitudes and different working conditions is calibrated. And the best temperature for the coolant temperature.
  • the above-mentioned dual VGT two-stage adjustable boost adaptive system and fuel injection adaptive system are optimized with the maximum diesel power and the minimum fuel consumption rate, and the maximum combustion pressure is ⁇ 17 MPa, the vortex front temperature is ⁇ 750 ° C and the turbine speed is limited.
  • Conditions, calibration to obtain the boost pressure at different altitudes and different working conditions that is, the best map of the pressure of the high and low pressure compressors and the best map of the fuel injection pulse width, fuel injection pressure, and fuel injection advance angle.
  • the ECU of the invention dynamically controls the double VGT two-stage adjustable supercharging system, the fuel injection system and the cooling system according to the change of altitude and working condition, realizes different altitude environmental conditions (atmospheric pressure, atmospheric temperature) and different diesel mechanics from 0 m to 6000 m. Under the condition (speed, load), the diesel engine boost pressure, the fuel injection system parameters, and the cooling fluid cooling strength are coordinated to achieve the goal that the diesel engine's comprehensive performances such as dynamics, economy and heat balance are not reduced compared with the plain. .
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a schematic diagram of an optimized calibration process of a dual VGT two-stage adjustable boost adaptive system and a fuel injection adaptive system;
  • Figure 3 is a flow chart of the optimization of the cooling adaptive system calibration.
  • the diesel engine variable altitude adaptive system of the present invention is composed of a diesel engine body 1, a dual VGT two-stage adjustable boost adaptive system 3, a fuel injection adaptive system 2, a cooling adaptive system 27, and a diesel engine ECU 28.
  • the double VGT two-stage adjustable boost adaptive system 3 is connected in series by the high-pressure stage VGT4 and the low-pressure stage VGT5, and the VGT blades 6 and 7 of the high and low-pressure stage VGT turbines rotate around their own axes, after the high and low pressure air engines
  • the intercooler 15 and the intercooler 16, the boost pressure sensor 13, and the boost pressure sensor 14 are separately provided.
  • the diesel engine ECU 28 receives the actual boost pressure outputted by the high and low pressure stage compressor boost pressure sensors 13 and 14 in the double VGT two-stage adjustable boost adaptive system, and queries the target boost pressure map to finally optimize the calibration to obtain the boost pressure.
  • the target map makes the VGT blades 6 and 7 optimally open, and the driving signal dynamically adjusts the VGT blades;
  • the fuel injection adaptive system 2 adopts the German Bosch electronically controlled high pressure common rail technology.
  • the diesel engine ECU 28 queries the fuel injection parameters of different altitudes according to the received diesel engine 1 working conditions (load, speed) and environmental signals (pressure, temperature). , injection advance angle, common rail pressure) map, the output control signal drives the fuel injection adaptive system 2 actuator work.
  • the cooling adaptive system 27 is composed of a thermostat 19, a radiator 20, temperature sensors 21 and 22, an electronically controlled water pump 23, an electronically controlled fan 24, an electrically controlled fan inverter 25, an electrically controlled water pump inverter 26, and a cooling water flow sensor 29 composition.
  • the diesel engine ECU receives the actual coolant temperature and flow rate collected by the cooling adaptive system sensors 21, 22, and 29, and then calibrates the coolant and the coolant at different altitudes and different working conditions according to the cooling water target temperature and flow map transmitted by the ECU.
  • the flow rate and coolant temperature are optimally mapped to control the optimal temperature of the electronically controlled water pump 23 and the electronically controlled fan 24.
  • the diesel engine supercharging system and the fuel injection system are optimized and calibrated.
  • the boost pressure and fuel injection parameters are used together as calibration parameters for optimization.
  • the optimization process of the invention adopts an intelligent evolutionary algorithm, and the output parameters include supercharging pressure I, supercharging pressure II, fuel injection amount, fuel injection advance angle, and common rail pressure 5 calibration parameters, in certain environmental parameters (pressure, temperature).
  • the speed, the maximum load power, the partial load fuel consumption rate is the minimum optimization target, iterative calculation, and finally optimize the calibration to obtain the boost pressure target map and fuel injection parameters (injection amount, injection advance angle, common rail pressure) ) target map.
  • the invention is optimized according to different working conditions, with the maximum diesel power and the minimum fuel consumption rate, and the maximum combustion pressure ( ⁇ 17 MPa), the vortex front exhaust temperature ( ⁇ 750 ° C) and the turbine speed are restricted, and the calibration is obtained at different altitudes and The best map of boost pressure (high pressure and low pressure compressor pressure) and fuel injection parameters (injection pulse width, injection pressure, injection advance angle) under different working conditions.
  • boost pressure high pressure and low pressure compressor pressure
  • fuel injection parameters injection pulse width, injection pressure, injection advance angle
  • the diesel engine variable altitude cooling system is optimized and calibrated.
  • the two parameters of coolant temperature and flow rate are optimized and calibrated, and the optimal coolant parameters (flow rate, temperature) map under different altitudes and working conditions are obtained.
  • the invention optimizes the effective thermal efficiency of the diesel engine to the maximum, and limits the coolant boiling point and the temperature difference ⁇ T (5 ⁇ T ⁇ 9°C) of the coolant to the coolant and the parameters of the coolant at different altitudes and different working conditions (coolant) Flow rate, coolant temperature) best map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种柴油机变海拔自适应系统,由双VGT二级可调增压自适应系统(3)、燃油喷射自适应系统和冷却自适应系统(27)组成,这三个系统分别与柴油机ECU(28)进行通信,双VGT二级可调增压自适应系统(3)包括串接的高、低压级VGT(4,5),高、低压级涡轮和高、低级压气机,高、低压级涡轮分别连接涡轮转速传感器(12)且其内部具有绕自身轴心转动的VGT叶片(6,7),高、低级压气机后分别设置中冷器(15,16)和增压压力传感器(13,14),冷却自适应系统(27)包括节温器(19)、散热器(20)、电控水泵(23)、电控水泵变频器(26)、电控风扇(24)、电控风扇变频器(25)和冷却水流量传感器(29)。还涉及一种柴油机变海拔自适应系统的控制方法。该系统和方法使柴油机ECU根据海拔和工况的变化,动态控制三个系统,实现在0m~6000m海拔范围内,柴油机动力性、经济性和热平衡性能不降低的目标。

Description

柴油机变海拔自适应系统及其控制方法 技术领域
本发明涉及发动机技术领域,特别是涉及一种柴油机变海拔自适应系统。
背景技术
我国是一个高原大国,拥有世界上面积最大的高原地域。青藏高原是世界上最具代表性的高原,平均海拔超过4000m,总面积达240万km2,约占国土面积的1/4。车辆在高原公路(如青藏线、川藏线和滇藏线等)行驶时,具有海拔高、落差大、坡陡、长坡多、工况复杂的特点,进气充量减少致使柴油机燃烧恶化,功率、燃油消耗率、热负荷等各项技术性能劣化明显。据统计,海拔每升高1000m柴油机动力性下降4.0%~13.0%、经济性下降2.7%~12.9%,涡前排温和缸盖温度升高7%~10%,机体热强度增加1%~3%,加之水沸点降低,易出现冷却系统“开锅”现象。此外,在变海拔变工况条件下,柴油机不同控制参数具有非线性、强耦合、多约束等特点,仅依靠单参数或单系统调节控制,难以满足柴油机变海拔、变工况工作需求。
柴油机变海拔自适应系统能够根据海拔和工况协同控制增压系统、燃油喷射系统和冷却系统中的主要参数,在满足一定柴油机工作过程的限制条件下,实现海拔6000m柴油机动力性、经济性和热平衡性能与0m海拔相比不降低的目标。
发明内容
针对现有柴油机增压系统和冷却系统不能适应海拔和工况变化、增压系统与喷油系统变海拔、变工况工作不匹配的技术缺陷。本发明设计一种柴油机变海拔自适应系统,该系统使柴油机ECU根据海拔和工况的变化,动态控制双VGT二级可调增压系统、燃油喷射系统和冷却系统,实现在0m~6000m海拔范围内,柴油机动力性、经济性和热平衡性能不降低的目标。
为实现本发明的目的所采用的技术方案是:
一种柴油机变海拔自适应系统,由双VGT二级可调增压自适应 系统、燃油喷射自适应系统和冷却自适应系统组成,这三个系统分别与柴油机ECU进行通信;所述双VGT二级可调增压自适应系统包括高、低压级VGT、高、低压涡轮和高、低级压气机,高、低压级VGT为串联结构,高、低压涡轮分别连接涡轮转速传感器且其内部具有的绕自身轴心转动的VGT叶片,高、低压气机后分别设置中冷器和增压压力传感器;所述冷却自适应系统包括节温器、散热器、电控水泵、电控水泵变频、电控风扇、电控风扇变频器和冷却水流量传感器,柴油机的进、出水循环管路上安装节温器、散热器、电控水泵、电控水泵变频器和冷却水流量传感器,散热器两端安装温度传感器。
上述柴油机变海拔自适应系统的控制方法,其特征在于:
①柴油机ECU接收到双VGT二级可调增压自适应系统输出的高、低压级压气机后实际增压压力,查询目标增压压力map,最终优化标定得到增压压力目标map,使VGT叶片开度达到最佳,以驱动信号动态调节VGT叶片;
②柴油机ECU接收到的柴油机负荷、转速、温度和压力信号,查询不同海拔喷油量、喷油提前角和共轨压力map,输出控制信号动态控制燃油喷射燃油喷射自适应系统中高压泵压力控制阀和喷油器电磁阀工作;
③柴油机ECU接收到冷却自适应系统输出的实际冷却液温度和流量,再根据ECU传来的冷却水目标温度和流量map,标定得到不同海拔和不同工况下的和冷却液流量和冷却液温度最佳map,以控制电控水泵和电控风扇达到最佳转速。
上述燃油喷射自适应系统采用德国Bosch电控高压共轨技术。
上述冷却自适应系统以柴油机有效热效率最大为优化目标,以冷却液沸点和进出冷却液温差ΔT(5<ΔT<9℃)为限制条件,标定得到不同海拔和不同工况下的和冷却液流量和冷却液温度最佳map。
上述双VGT二级可调增压自适应系统和燃油喷射自适应系统以柴油机功率最大和燃油消耗率最小为优化目标,以最高燃烧压力<17MPa、涡前排温<750℃和涡轮转速为限制条件,标定得到不同海 拔和不同工况下增压压力,即高、低压级压气机后压力的最佳map和喷油脉宽、喷油压力、喷油提前角的最佳map。
本发明ECU根据海拔和工况的变化,动态控制双VGT二级可调增压系统、燃油喷射系统和冷却系统,实现在0m~6000m不同海拔环境条件(大气压力、大气温度)和不同柴油机工况(转速、负荷)下,进行柴油机增压压力、喷油系统参数、冷却液冷却强度的协同控制,实现柴油机不同海拔动力性、经济性、热平衡性等综合性能与平原相比不降低的目标。
附图说明
图1是本发明的结构示意图;
图2是双VGT二级可调增压自适应系统和燃油喷射自适应系统优化标定流程示意图;
图3是冷却自适应系统优化标定流程图。
附图标记说明:1——柴油机;2——燃油喷射自适应系统;3——双VGT二级可调增压自适应系统;4——高压级VGT;5——低压级VGT;6——低压级VGT叶片;7——高压级VGT叶片;8——高压级涡轮直流电机;9——低压级直流电机;10——进气;11——排气;12——涡轮转速传感器;13、14——增压压力传感器;15、16——中冷器;17——进水口;18——出水口;19——电控节温器;20——散热器;21、22——温度传感器;23——电动水泵;24——电控风扇;25——电控风扇变频器;26——电动水泵变频器;27——冷却自适应系统;28——柴油机ECU;29——冷却水流量传感器。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明柴油机变海拔自适应系统由柴油机机体1、双VGT二级可调增压自适应系统3、燃油喷射自适应系统2、冷却自适应系统27和柴油机ECU28组成。其中,双VGT二级可调增压自适应系统3由高压级VGT4和低压级VGT5串联,高、低压级VGT 涡轮内部具有绕自身轴心转动的VGT叶片6、7,高、低压气机后分别设置中冷器15和中冷器16,增压压力传感器13和增压压力传感器14。柴油机ECU28接收到双VGT二级可调增压自适应系统中高、低压级压气机后增压压力传感器13和14输出的实际增压压力,查询目标增压压力map,最终优化标定得到增压压力目标map,使VGT叶片6、7开度达到最佳,以驱动信号动态调节VGT叶片;
燃油喷射自适应系统2采用德国Bosch电控高压共轨技术,柴油机ECU28根据接收到的柴油机1工况(负荷、转速)和环境信号(压力、温度),查询不同海拔喷油参数(喷油量、喷油提前角、共轨压力)map,输出控制信号驱动燃油喷射自适应系统2执行器工作。
冷却自适应系统27由节温器19、散热器20、温度传感器21和22、电控水泵23、电控风扇24、电控风扇变频器25、电控水泵变频器26、冷却水流量传感器29组成。
柴油机ECU接收到冷却自适应系统传感器21、22、29采集的实际冷却液温度和流量,再根据ECU传来的冷却水目标温度和流量map,标定得到不同海拔和不同工况下的和冷却液流量和冷却液温度最佳map,以控制电控水泵23和电控风扇24达到最佳转速。
如图2所示,本发明柴油机增压系统与喷油系统优化标定流程。图中,将增压压力和喷油参数(喷油量、喷油提前角、共轨压力)一同作为标定参数来进行优化。本发明优化过程采用智能进化类算法,输出参数有增压压力I、增压压力II、喷油量、喷油提前角、共轨压力5个标定参数,在一定的环境参数(压力、温度)和转速下,以满负荷功率最大、部分负荷燃油消耗率最小为优化目标,进行迭代计算,最终优化标定得到增压压力目标map和喷油参数(喷油量、喷油提前角、共轨压力)目标map。本发明根据工况不同,以柴油机功率最大和燃油消耗率最小为优化目标,在最高燃烧压力(<17MPa)、涡前排温(<750℃)和涡轮转速为限制条件,标定得到不同海拔和不同工况下增压压力(高、低压级压气机后压力)、喷油参数(喷油脉宽、喷油压力、喷油提前角)最佳map。
如图3所示,本发明柴油机变海拔冷却系统优化标定流程。图中, 在一定的柴油机工况和环境参数下,对冷却液温度和流量两个参数优化标定,得到不同海拔和工况下最佳冷却液参数(流量、温度)map。本发明以柴油机有效热效率最大为优化目标,以冷却液沸点和进出冷却液温差ΔT(5<ΔT<9℃)为限制条件,标定得到不同海拔和不同工况下的和冷却液参数(冷却液流量、冷却液温度)最佳map。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种柴油机变海拔自适应系统,其特征在于:由双VGT二级可调增压自适应系统、燃油喷射自适应系统和冷却自适应系统组成,这三个系统分别与柴油机ECU进行通信;所述双VGT二级可调增压自适应系统包括高、低压级VGT、高、低压涡轮和高、低级压气机,高、低压级VGT为串联结构,高、低压涡轮分别连接涡轮转速传感器且其内部具有的绕自身轴心转动的VGT叶片,高、低压气机后分别设置中冷器和增压压力传感器;所述冷却自适应系统包括节温器、散热器、电控水泵、电控水泵变频、电控风扇、电控风扇变频器和冷却水流量传感器,柴油机的进、出水循环管路上安装节温器、散热器、电控水泵、电控水泵变频器和冷却水流量传感器,散热器两端安装温度传感器。
  2. 一种根据权利要求1所述的柴油机变海拔自适应系统的控制方法,其特征在于:
    ①柴油机ECU接收到双VGT二级可调增压自适应系统输出的高、低压级压气机后实际增压压力,查询目标增压压力map,最终优化标定得到增压压力目标map,使VGT叶片开度达到最佳,以驱动信号动态调节VGT叶片;
    ②柴油机ECU接收到的柴油机负荷、转速、温度和压力信号,查询不同海拔喷油量、喷油提前角和共轨压力map,输出控制信号动态控制燃油喷射燃油喷射自适应系统中高压泵压力控制阀和喷油器电磁阀工作;
    ③柴油机ECU接收到冷却自适应系统输出的实际冷却液温度和流量,再根据ECU传来的冷却水目标温度和流量map,标定得到不同海拔和不同工况下的和冷却液流量和冷却液温度最佳map,以控制电控水泵和电控风扇达到最佳转速。
  3. 根据权利要求1或2所述的柴油机变海拔自适应系统的控制方法,其特征在于:上述燃油喷射自适应系统采用德国Bosch电控高压共轨技术。
  4. 根据权利要求2所述的柴油机变海拔自适应系统的控制方法,其特征在于:上述冷却自适应系统以柴油机有效热效率最大为优化目标,以冷却液沸点和进出冷却液温差ΔT(5<ΔT<9℃)为限制条件,标定得到不同海拔和不同工况下的和冷却液流量和冷却液温度最佳map。
  5. 根据权利要求2所述的柴油机变海拔自适应系统的控制方法,其特征在于:上述双VGT二级可调增压自适应系统和燃油喷射自适应系统以柴油机功率最大和燃油消耗率最小为优化目标,以最高燃烧压力<17MPa、涡前排温<750℃和涡轮转速为限制条件,标定得到不同海拔和不同工况下增压压力,即高、低压级压气机后压力的最佳map和喷油脉宽、喷油压力、喷油提前角的最佳map。
PCT/CN2018/103187 2017-11-30 2018-08-30 柴油机变海拔自适应系统及其控制方法 WO2019105078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711235753.0 2017-11-30
CN201711235753.0A CN109854402A (zh) 2017-11-30 2017-11-30 柴油机变海拔自适应系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2019105078A1 true WO2019105078A1 (zh) 2019-06-06

Family

ID=66664315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103187 WO2019105078A1 (zh) 2017-11-30 2018-08-30 柴油机变海拔自适应系统及其控制方法

Country Status (2)

Country Link
CN (1) CN109854402A (zh)
WO (1) WO2019105078A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116104634B (zh) * 2023-03-28 2023-09-15 上海交通大学 基于多点进排气压力的两级增压能量高效自适应控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082936A1 (en) * 2007-09-20 2009-03-26 Morgan Andreae Apparatus, system, and method for preventing turbocharger overspeed in a combustion engine
CN103362636A (zh) * 2013-08-02 2013-10-23 中国人民解放军军事交通学院 一种车用柴油机高原二级可调增压系统及控制方法
CN105649756A (zh) * 2016-01-13 2016-06-08 中国重汽集团济南动力有限公司 一种带级间冷却器的双级增压发动机
CN105840355A (zh) * 2016-05-23 2016-08-10 吉林大学 内燃机全工况egr率可调的二级增压系统及其控制方法
WO2016139009A1 (de) * 2015-03-02 2016-09-09 Bayerische Motoren Werke Aktiengesellschaft Zweistufige abgasturbo-aufladevorrichtung für eine brennkraftmaschine
CN106640385A (zh) * 2015-10-29 2017-05-10 长城汽车股份有限公司 双燃料发动机加速控制方法、控制装置、发动机及车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4067025B2 (ja) * 2006-09-11 2008-03-26 いすゞ自動車株式会社 多段ターボチャージャの制御装置
CN101328831A (zh) * 2008-08-04 2008-12-24 清华大学 柴油机变海拔自适应增压控制方法及系统
JP2010180782A (ja) * 2009-02-05 2010-08-19 Isuzu Motors Ltd 内燃機関の多段過給システム及びその制御方法
CN105673191B (zh) * 2015-06-05 2020-10-09 中国人民解放军军事交通学院 柴油机变海拔增压压力控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082936A1 (en) * 2007-09-20 2009-03-26 Morgan Andreae Apparatus, system, and method for preventing turbocharger overspeed in a combustion engine
CN103362636A (zh) * 2013-08-02 2013-10-23 中国人民解放军军事交通学院 一种车用柴油机高原二级可调增压系统及控制方法
WO2016139009A1 (de) * 2015-03-02 2016-09-09 Bayerische Motoren Werke Aktiengesellschaft Zweistufige abgasturbo-aufladevorrichtung für eine brennkraftmaschine
CN106640385A (zh) * 2015-10-29 2017-05-10 长城汽车股份有限公司 双燃料发动机加速控制方法、控制装置、发动机及车辆
CN105649756A (zh) * 2016-01-13 2016-06-08 中国重汽集团济南动力有限公司 一种带级间冷却器的双级增压发动机
CN105840355A (zh) * 2016-05-23 2016-08-10 吉林大学 内燃机全工况egr率可调的二级增压系统及其控制方法

Also Published As

Publication number Publication date
CN109854402A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
RU2600842C2 (ru) Турбокомпаундная двигательная установка с наддувом
US9228504B2 (en) Diesel engine
CN105673191B (zh) 柴油机变海拔增压压力控制方法
KR102440581B1 (ko) 엔진 시스템
CN111075578A (zh) 双vgt二级可调增压系统与柴油机变海拔匹配方法
CN113738519B (zh) 柴油机变海拔自适应能量调控方法
CN103615309A (zh) 内燃机全工况可调的两级增压系统
CN103362636A (zh) 一种车用柴油机高原二级可调增压系统及控制方法
CN105464769A (zh) 一种双流道动力涡轮系统及其控制方法
WO2019105080A1 (zh) 变海拔双vgt二级可调增压控制方法
CN107448277A (zh) 可变截面涡轮相继增压系统结构及控制方法
CN112081679A (zh) 变海拔柴油机二级可调增压系统与共轨燃油系统优化匹配方法
WO2019105078A1 (zh) 柴油机变海拔自适应系统及其控制方法
CN204532524U (zh) 一种增压发动机进气压力可调的柔性控制装置
CN208650995U (zh) 柴油机变海拔自适应系统
KR101526388B1 (ko) 엔진 시스템
CN109372628A (zh) 一种电动增压实现米勒循环柴油发动机系统
CN205225401U (zh) 一种双流道动力涡轮系统
CN202100325U (zh) 一种内燃机辅助增压系统
CN104533599A (zh) 内燃机的两级可调增压系统
CN209293909U (zh) 一种电动增压实现米勒循环柴油发动机系统
CN204552954U (zh) 内燃机的两级可调增压系统
CN215170349U (zh) 一种超增压式五冲程发动机的分流排气系统
CN203488250U (zh) 采用可变截面增压器的两级涡轮增压器
Wang et al. Preliminary study on a variable-geometry exhaust manifold turbocharging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884606

Country of ref document: EP

Kind code of ref document: A1