WO2019105080A1 - 变海拔双vgt二级可调增压控制方法 - Google Patents

变海拔双vgt二级可调增压控制方法 Download PDF

Info

Publication number
WO2019105080A1
WO2019105080A1 PCT/CN2018/103190 CN2018103190W WO2019105080A1 WO 2019105080 A1 WO2019105080 A1 WO 2019105080A1 CN 2018103190 W CN2018103190 W CN 2018103190W WO 2019105080 A1 WO2019105080 A1 WO 2019105080A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
vgt
pressure stage
stage
bypass valve
Prior art date
Application number
PCT/CN2018/103190
Other languages
English (en)
French (fr)
Inventor
刘瑞林
张众杰
Original Assignee
中国人民解放军陆军军事交通学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军陆军军事交通学院 filed Critical 中国人民解放军陆军军事交通学院
Publication of WO2019105080A1 publication Critical patent/WO2019105080A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the technical field of engines, in particular to a two-step adjustable supercharge control method for variable altitude double VGT.
  • the Qinghai-Tibet Plateau is the most representative plateau in the world, with an average elevation of over 4,000 m and a total area of 2.4 million km2, accounting for about a quarter of the country's land area.
  • vehicles are driving on highland highways (such as the Qinghai-Tibet line, the Sichuan-Tibet line and the Yunnan-Tibet line), they have the characteristics of high altitude, large drop, steep slope, long slope and complicated working conditions.
  • the reduction of intake air volume causes the diesel engine to deteriorate.
  • the performance of various technologies such as power, fuel consumption rate and heat load deteriorates significantly.
  • the diesel engine power is reduced by 4.0% to 13.0%, the economy is reduced by 2.7% to 12.9%, and the vortex front temperature and cylinder head temperature are increased by 7% to 10%.
  • the diesel engine supercharging system and the combustion chamber are pneumatically connected, featuring nonlinearity, strong coupling and multiple constraints.
  • the dual VGT two-stage adjustable boost control system can be based on altitude and work.
  • the present invention designs a variable altitude double VGT two-stage adjustable boosting control method, which makes the diesel engine ECU dynamic according to changes in altitude and working conditions. Control the supercharging pressure and intake air flow of the double VGT two-stage adjustable supercharging system to achieve the goal of not reducing the diesel engine power in the range of 0m to 5500m.
  • a variable altitude double VGT two-stage adjustable pressure control method wherein a high pressure stage VGT and a low pressure stage VGT are arranged in series.
  • the diesel engine ECU queries and stores the initial boost pressure MAP according to the intake air temperature, pressure and diesel operating conditions, and corrects the initial boost pressure MAP through the intake air temperature sensor to obtain the target boost pressure MAP, and converts the digital signal into a low voltage through the drive circuit.
  • Execution electrical signals for stage VGT actuators, high pressure stage VGT actuators and high pressure stage turbine bypass valve actuators enable microcontrollers in low pressure stage VGT actuators, high pressure stage VGT actuators and high pressure stage turbine bypass valve actuators According to the target supercharging pressure and the actual supercharging pressure difference fed back, the position of the high pressure stage compressor bypass valve opening, the high pressure stage turbine bypass valve opening position and the opening position of the high and low pressure VGT blades are adjusted in real time. These opening positions are fed back to the ECU for control so that the boost pressure is optimal.
  • the control method of the above-mentioned low-voltage VGT actuator, high-pressure stage VGT actuator and high-voltage stage turbine bypass valve actuator is: firstly, the target supercharging pressure signal is converted into Hall position information, and then according to the current Hall The position information determines the rotation direction of the motor, and determines the PWM duty ratio according to the actual position and the target position, and controls the motor to reach the target position through the actuator; the PWM duty ratio is dynamically controlled in the program, and the target supercharging pressure is during the movement of the motor.
  • the electronic control unit ECU performs feedforward control on the received low pressure stage compressor bypass valve position signal, the high pressure stage turbine bypass valve position signal, and the opening and closing position signals of the high and low pressure stage VGT blades.
  • the electronic control unit ECU performs closed-loop feedback control on the received low-pressure stage compressor bypass valve opening position signal, the high-pressure stage turbine bypass valve opening position signal, and the opening and closing position signals of the high and low-pressure VGT blades.
  • the invention ensures the performance of the whole machine by adjusting the opening and closing of the high and low pressure stage VGT blades, the high pressure stage turbine bypass valve and the low pressure stage compressor bypass valve under different altitude conditions.
  • the opening degree of the high pressure stage VGT blade and the low pressure stage VGT blade is adjusted according to the supercharging pressure obtained by the calibration and the VGT blade opening degree MAP.
  • the high-pressure stage turbine regulating valve is opened and adjusted.
  • the timing and duration of the high pressure stage compressor bypass valve are controlled in real time.
  • FIG. 1 is a schematic diagram of a variable altitude dual VGT two-stage adjustable boost control system according to the present invention
  • Figure 3 is a flow chart of the actuator software
  • FIG. 4 is a schematic block diagram of a control mode of the present invention.
  • FIG. 5 is a block diagram showing another control mode of the present invention.
  • Figure 6 is a flow chart of the execution of the dual VGT two-stage adjustable boosting system
  • Table 1 shows the control strategies for the two-stage adjustable booster system at different altitudes.
  • 1 - diesel engine 2 - high-temperature after-cooler; 3 - temperature sensor I; 4 - pressure sensor I; 5 - high-pressure compressor; 6 - high-pressure VGT; Temperature sensor II; 8 - pressure sensor II; 9 - low pressure stage intercooler; 10 - low pressure stage compressor; 11 - low pressure stage VGT; 12 - intake air temperature sensor III; 13 - intake pressure Sensor III; 14 - low pressure stage VGT actuator; 15 - high pressure stage vortex front temperature sensor; 16 - high pressure stage vortex front pressure sensor; 17 - high pressure stage turbine; 18 - high pressure stage VGT blade; High-pressure turbine speed sensor; 20 - low-pressure stage vortex front temperature sensor; 21 - low-pressure stage vortex front pressure sensor; 22 - low-pressure stage VGT blade; 23 - low-pressure stage turbine speed sensor; 24 - high-pressure stage compressor Bypass valve; 25 - high pressure stage turbine bypass valve; 26 - diesel engine speed sensor; 27 - diesel engine pedal pedal position sensor
  • variable altitude double VGT two-stage adjustable supercharging control system of the present invention comprises a diesel engine body 1, dual VGT superchargers 6 and 11, an ECU 31, actuators (14, 30, 32), temperature and pressure sensors. (3, 4, 7, 8, 12, 13, 15, 16, 20, 21) and other components.
  • the double VGT supercharger is arranged in series by the high pressure stage VGT6 and the low pressure stage VGT11. After the high and low stage compressors, the high pressure stage rear intercooler (2) and the low pressure stage rear intercooler (9) are respectively arranged, and the diesel ECU 31 is based on the receiving diesel engine speed.
  • the sensor (26), the throttle position sensor (27) and the intake pressure sensor (13) query and store the initial boost pressure MAP, and the initial MAP is corrected by the intake air temperature sensor (12) to obtain the target boost pressure MAP, which is driven.
  • the circuit converts the digital signal into an actuator (14, 30, 32) execution signal, driving the high and low pressure stage VGT blades (18, 22) and the high pressure stage compressor bypass valve, high pressure stage turbine bypass valve (24, 25)
  • the opening degree, the microcontroller in the booster system actuator (14, 30, 32) adjusts the high pressure stage compressor bypass valve (24) and the high pressure stage turbine in real time according to the target boost pressure and the actual boost pressure difference.
  • the block diagram of the variable altitude double VGT two-stage adjustable boost control system of the invention is mainly composed of three parts: an electronic control unit (ECU), a data acquisition module and an electric actuator.
  • ECU electronice control unit
  • data acquisition module data acquisition module
  • electric actuator electric actuator
  • the actuator position control strategy of the present invention is: firstly converting the target boost pressure signal into Hall position information, and then determining the motor rotation direction according to the current Hall position information, and according to the actual position and the target position. Determine the PWM duty cycle, and control the motor to reach the target position through the actuator; the PWM duty cycle is dynamically controlled in the program.
  • the target boost pressure is large, the corresponding spring return force is larger, and the PWM duty The ratio is larger; when the position is small, the spring return force is small, and the PWM duty ratio is also small; when the motor is in the holding position, the PWM duty ratio should also be determined according to the actual valve position.
  • the current duty cycle of the motor is between 30% and 55%, and the duty cycle is between 10% and 17% during the holding of the motor.
  • Table 1 shows the performance of the whole machine by adjusting the opening of the VGT blade, the turbine regulating valve and the opening and closing of the compressor bypass valve under different altitude conditions.
  • the opening degree of the high pressure stage VGT blade and the low pressure stage VGT blade is adjusted according to the supercharging pressure obtained by the calibration and the VGT blade opening degree MAP.
  • the high-pressure stage turbine regulating valve is opened and adjusted.
  • the timing and duration of the high pressure stage compressor bypass valve are controlled in real time.
  • the two VGT two-stage adjustable boosting system of the present invention are two embodiments.
  • the controller receives the collected sensor information, first determines the initial target boost value according to the engine speed and the throttle position, and then determines whether to add the transient correction value by the atmospheric pressure sensor, the atmospheric temperature sensor, and the throttle position change sensor change. The sum of the two is used as the final target boost value; then the high pressure level VGT and the low pressure level VGT blade position are determined according to the current boost pressure value, and the process is implemented by a PID control algorithm.
  • a PID control algorithm In order to prevent the PID algorithm from oscillating under transient transient conditions, avoid torque sags and compressor surge, add feedforward control adjustment to ensure transient control effect.
  • a second embodiment of the present invention integrates a supercharger and a separate position controller into a single system, and the specific implementation principle is as shown in FIG. 5.
  • the position servo system itself performs closed-loop control of VGT blade and bypass valve position feedback.
  • the position servo system receives a control command signal from the outside (generally the engine control system ECU) indicating the target position that the VGT blade and the bypass valve need to reach, and the position servo system itself realizes the wastegate to reach the target corresponding position through closed-loop control. That is to say, the position servo system itself is a position feedback closed-loop controller, and the closed-loop control of the pressure is realized by the engine control system ECU.
  • the advantage of this implementation is that the supercharger and the regulating unit are integrated and can be made into a supercharger system module for easy integration with other engine control systems with a simple interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

一种变海拔双VGT二级可调增压控制方法,柴油机ECU(31)根据进气温度、压力和柴油机工况查询存储初始增压压力MAP,经过进气温度传感器(12)对初始增压压力MAP进行修正得到目标增压压力MAP,并将数字信号经驱动电路转化为低压级VGT执行器(14)、高压级VGT执行器(30)和高压级涡轮旁通阀执行器(32)的执行电信号,使低压级VGT执行器(14)、高压级VGT执行器(30)和高压级涡轮旁通阀执行器(32)内的微控制器根据目标增压压力和其反馈的实际增压压力差值,实时调整高压级压气机旁通阀(24)开度位置、高压级涡轮旁通阀(25)开度位置和高、低压级VGT叶片(18、22)的开度位置。

Description

变海拔双VGT二级可调增压控制方法 技术领域
本发明涉及发动机技术领域,特别是涉及一种变海拔双VGT二级可调增压控制方法。
背景技术
我国是一个高原大国,拥有世界上面积最大的高原地域。青藏高原是世界上最具代表性的高原,平均海拔超过4000m,总面积达240万km2,约占国土面积的1/4。车辆在高原公路(如青藏线、川藏线和滇藏线等)行驶时,具有海拔高、落差大、坡陡、长坡多、工况复杂的特点,进气充量减少致使柴油机燃烧恶化,功率、燃油消耗率、热负荷等各项技术性能劣化明显。据统计,海拔每升高1000m柴油机动力性下降4.0%~13.0%、经济性下降2.7%~12.9%,涡前排温和缸盖温度升高7%~10%。此外,在变海拔变工况条件下,柴油机增压系统与燃烧室属于气动连接,具有非线性、强耦合、多约束等特点,双VGT二级可调增压控制系统系统能够根据海拔和工况的变化,实时控制增压压力和进气流量,提高不同海拔下柴油机的进气密度,确保缸内空燃比最佳,实现海拔5500m柴油机功率与0m海拔相比不降低的目标。
发明内容
针对现有柴油机增压系统不能适应海拔和工况变化的技术缺陷,本发明设计一种变海拔双VGT二级可调增压控制方法,该方法使柴油机ECU根据海拔和工况的变化,动态控制双VGT二级可调增压系统的增压压力和进气流量,实现在0m~5500m海拔范围内,柴油机功率不降低的目标。
为实现本发明的目的所采用的技术方案是:
一种变海拔双VGT二级可调增压控制方法,高压级VGT和低压级VGT串联布置。柴油机ECU根据进气温度、压力和柴油机工况查询存储初始增压压力MAP,经过进气温度传感器对初始增压压力MAP进行修正得到目标增压压力MAP,并将数字信号经驱动电路转化为低压级VGT执行器、高压级VGT执行器和高压级涡轮旁通阀执 行器的执行电信号,使低压级VGT执行器、高压级VGT执行器和高压级涡轮旁通阀执行器内的微控制器根据目标增压压力和其反馈的实际增压压力差值,实时调整高压级压气机旁通阀开度位置、高压级涡轮旁通阀开度位置和高、低压级VGT叶片的开度位置,并将这些开度位置反馈到ECU进行控制,使得增压压力达到最优。
上述低压级VGT执行器、高压级VGT执行器和高压级涡轮旁通阀执行器内的微控制器的控制方法是:首先将目标增压压力信号转化为霍尔位置信息,然后根据当前霍尔位置信息判断电机旋转方向,并根据实际位置和目标位置确定PWM占空比,通过执行器控制电机到达目标位置;程序中PWM占空比采用动态控制,电机在运动过程中,如果目标增压压力较大,相应弹簧回正力越大,PWM占空比也越大;当位置较小时,弹簧回正力较小,PWM占空比也偏小;当电机在保持位置时同样也应根据实际阀门位置来确定PWM占空比的大小。
上述电控单元ECU对接收到的低压级压气机旁通阀位置信号、高压级涡轮旁通阀位置信号和高、低压级VGT叶片的开度位置信号进行前馈控制。
上述电控单元ECU对接收到的低压级压气机旁通阀开度位置信号、高压级涡轮旁通阀开度位置信号和高、低压级VGT叶片的开度位置信号进行闭环反馈控制。
本发明在不同海拔条件下,通过调节高、低压级VGT叶片、高压级涡轮旁通阀开度以及低压级压气机旁通阀的开闭来保证整机性能。以动力性最大为优化目标,根据标定得到的增压压力和VGT叶片开度MAP,调节高压级VGT叶片和低压级VGT叶片的开度。随着转速增加,为了防止高压级涡轮超温、超速,高压级涡轮调节阀开启并调节。同时,为了防止瞬态工况下增压压力和转矩突降,实时控制高压级压气机旁通阀开启时刻和时长。
附图说明
图1为本发明的变海拔双VGT二级可调增压控制系统示意图;
图2为本发明的执行器位置控制策略;
图3为执行器软件流程图;
图4为本发明一种控制方式原理框图;
图5为本发明另一种控制方式原理框图;
图6为双VGT二级可调增压系统执行流程图;
表1为不同海拔二级可调增压系统控制策略。
图中:1——柴油机;2——高压级后中冷器;3——温度传感器I;4——压力传感器I;5——高压级压气机;6——高压级VGT;7——温度传感器II;8——压力传感器II;9——低压级中冷器;10——低压级压气机;11——低压级VGT;12——进气温度传感器III;13——进气压力传感器III;14——低压级VGT执行器;15——高压级涡前温度传感器;16——高压级涡前压力传感器;17——高压级涡轮;18——高压级VGT叶片;19——高压级涡轮转速传感器;20——低压级涡前温度传感器;21——低压级涡前压力传感器;22——低压级VGT叶片;23——低压级涡轮转速传感器;24——高压级压气机旁通阀;25——高压级涡轮旁通阀;26——柴油机转速传感器;27——柴油机油门踏板位置传感器;28——温度采集卡;29——压力采集卡;30——高压级VGT叶片执行器;31——柴油机ECU、32——高压级涡轮旁通阀执行器。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明变海拔双VGT二级可调增压控制系统由柴油机机体1、双VGT增压器6和11、ECU31、执行器(14、30、32)、温度和压力传感器(3、4、7、8、12、13、15、16、20、21)等组成。双VGT增压器由高压级VGT6和低压级VGT11串联布置,高、低级压气机后分别设置高压级后中冷器(2)和低压级后中冷器(9),柴油机ECU31根据接收柴油机转速传感器(26)、油门位置传感器(27)和进气压力传感器(13),查询存储初始增压压力MAP,经过进气温度传感器(12)对初始MAP进行修正得到目标增压压力MAP,经过驱动电路将数字信号转化为执行器(14、30、32)的执行信号,驱 动高、低压级VGT叶片(18、22)和高压级压气机旁通阀、高压级涡轮旁通阀(24、25)开度,增压系统执行器(14、30、32)内微控制器根据目标增压压力和实际增压压力差值,实时调整高压级压气机旁通阀(24)、高压级涡轮旁通阀(25)和高、低压级VGT叶片(18、22)的开度。
本发明变海拔双VGT二级可调增压控制系统框图,主要由电控单元(ECU)、数据采集模块和电动执行器三大部分组成。
如图2、3所示,本发明执行器位置控制策略是:首先将目标增压压力信号转化为霍尔位置信息,然后根据当前霍尔位置信息判断电机旋转方向,并根据实际位置和目标位置确定PWM占空比,通过执行器控制电机到达目标位置;程序中PWM占空比采用动态控制,电机在运动过程中,如果目标增压压力较大,相应弹簧回正力越大,PWM占空比也越大;当位置较小时,弹簧回正力较小,PWM占空比也偏小;当电机在保持位置时同样也应根据实际阀门位置来确定PWM占空比的大小。
根据试验,目前电机在运行过程中,占空比在30%~55%之间,而电机在保持位置过程中,占空比在10%~17%之间。
表1所示,不同海拔条件下,通过调节VGT叶片、涡轮调节阀开度以及压气机旁通阀的开闭来保证整机性能。以动力性最大为优化目标,根据标定得到的增压压力和VGT叶片开度MAP,调节高压级VGT叶片和低压级VGT叶片的开度。随着转速增加,为了防止高压级涡轮超温、超速,高压级涡轮调节阀开启并调节。同时,为了防止瞬态工况下增压压力和转矩突降,实时控制高压级压气机旁通阀开启时刻和时长。
如图4所示,本发明双VGT二级可调增压系统两种实施方式。第一种实施方式控制器接收到采集各个传感器信息,首先根据发动机转速和油门位置确定初步目标增压值,接着通过大气压力传感器、大气温度传感器和油门位置变化传感器变化确定是否加入瞬态修正值,两者之和作为最终的目标增压值;然后根据当前增压压力数值,确定高压级VGT和低压级VGT叶片位置,该过程通过PID控制算法实 现。为了防止PID算法在瞬态过渡工况下出现振荡现象,避免转矩突降、压气机喘振,加入前馈控制调整,保证瞬态控制效果。
本发明的第二种实施方式是增压器和单独的位置控制器集成到一体,独立成为一个系统,具体实现原理如图5所示。位置伺服系统本身完成VGT叶片和旁通阀位置反馈的闭环控制。位置伺服系统接收外界(一般是发动机控制系统ECU)的控制命令信号,该控制信号表示VGT叶片及旁通阀需要达到的目标位置,位置伺服系统自身通过闭环控制实现废气门达到目标对应位置。也即是说,位置伺服系统本身是位置反馈闭环控制器,压力的闭环控制通过发动机控制系统ECU实现。该种实现方式的好处是,增压器和调节单元是集成的,可以做成增压器系统模块,便于和其他发动机控制系统进行集成,接口简单。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

  1. 一种变海拔双VGT二级可调增压控制方法,高压级VGT和低压级VGT串联布置,其特征在于:柴油机ECU根据进气温度、压力和柴油机工况查询存储初始增压压力MAP,经过进气温度传感器对初始增压压力MAP进行修正得到目标增压压力MAP,并将数字信号经驱动电路转化为低压级VGT执行器、高压级VGT执行器和高压级涡轮旁通阀执行器的执行电信号,使低压级VGT执行器、高压级VGT执行器和高压级涡轮旁通阀执行器内的微控制器根据目标增压压力和其反馈的实际增压压力差值,实时调整高压级压气机旁通阀开度位置、高压级涡轮旁通阀开度位置和高、低压级VGT叶片的开度位置,并将这些开度位置反馈到ECU进行控制,使得增压压力达到最优。
  2. 根据权利要求1所述的变海拔双VGT二级可调增压控制方法,其特征在于:上述低压级VGT执行器、高压级VGT执行器和高压级涡轮旁通阀执行器内的微控制器的控制方法是:首先将目标增压压力信号转化为霍尔位置信息,然后根据当前霍尔位置信息判断电机旋转方向,并根据实际位置和目标位置确定PWM占空比,通过执行器控制电机到达目标位置;程序中PWM占空比采用动态控制,电机在运动过程中,如果目标增压压力较大,相应弹簧回正力越大,PWM占空比也越大;当位置较小时,弹簧回正力较小,PWM占空比也偏小;当电机在保持位置时同样也应根据实际阀门位置来确定PWM占空比的大小。
  3. 根据权利要求1所述的变海拔双VGT二级可调增压控制方法,其特征在于:上述电控单元柴油机ECU对接收到的低压级压气机旁通阀位置信号、高压级涡轮旁通阀位置信号和高、低压级VGT叶片的开度位置信号进行前馈控制。
  4. 根据权利要求1所述的变海拔双VGT二级可调增压控制方法,其特征在于:上述柴油机ECU对接收到的低压级压气机旁通阀开度位置信号、高压级涡轮旁通阀开度位置信号和高、低压级VGT叶片的开度位置信号进行闭环反馈控制。
PCT/CN2018/103190 2017-11-30 2018-08-30 变海拔双vgt二级可调增压控制方法 WO2019105080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711235398.7 2017-11-30
CN201711235398.7A CN109854394A (zh) 2017-11-30 2017-11-30 变海拔双vgt二级可调增压控制方法

Publications (1)

Publication Number Publication Date
WO2019105080A1 true WO2019105080A1 (zh) 2019-06-06

Family

ID=66665343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103190 WO2019105080A1 (zh) 2017-11-30 2018-08-30 变海拔双vgt二级可调增压控制方法

Country Status (2)

Country Link
CN (1) CN109854394A (zh)
WO (1) WO2019105080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112664282A (zh) * 2019-10-15 2021-04-16 上汽通用汽车有限公司 用于可变涡轮增压器的控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114135405A (zh) * 2021-11-19 2022-03-04 中国北方发动机研究所(天津) 一种高压共轨柴油机气路二级增压系统开环控制方法
CN114483343A (zh) * 2022-01-12 2022-05-13 东风商用车有限公司 改善发动机低速进气量的方法及系统
CN116241366B (zh) 2023-03-28 2023-10-10 上海交通大学 柴油机变海拔增压系统智能可变模式控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275832A2 (de) * 2001-07-12 2003-01-15 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur mehrstufigen Aufladung einer Brennkraftmaschine
CN101526042A (zh) * 2008-12-23 2009-09-09 天津大学 一种压燃式内燃机可变进排气系统的电子控制方法
CN103233825A (zh) * 2013-04-07 2013-08-07 中国人民解放军军事交通学院 二级可调增压控制系统及其控制方法
CN105673191A (zh) * 2015-06-05 2016-06-15 中国人民解放军军事交通学院 柴油机变海拔增压压力控制方法
CN105715361A (zh) * 2014-12-17 2016-06-29 通用汽车环球科技运作有限责任公司 具有双级涡轮增压器的内燃发动机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328831A (zh) * 2008-08-04 2008-12-24 清华大学 柴油机变海拔自适应增压控制方法及系统
CN101387236B (zh) * 2008-11-03 2010-06-23 北京汽车研究总院有限公司 一种可变喷嘴涡轮增压控制方法及系统
CN203257533U (zh) * 2013-04-07 2013-10-30 中国人民解放军军事交通学院 二级可调增压控制系统
CN103362636A (zh) * 2013-08-02 2013-10-23 中国人民解放军军事交通学院 一种车用柴油机高原二级可调增压系统及控制方法
JP6377340B2 (ja) * 2013-12-04 2018-08-22 三菱重工業株式会社 過給システムの制御装置
JP6434285B2 (ja) * 2013-12-04 2018-12-05 三菱重工業株式会社 過給システムの制御装置
JP6401305B2 (ja) * 2015-01-30 2018-10-10 三菱重工業株式会社 過給システム及び過給システム用制御装置並びに過給システムの運転方法
US20170328271A1 (en) * 2015-01-30 2017-11-16 Mitsubishi Heavy Industries, Ltd. Supercharging system, control device for supercharging system, and method for operating supercharging system
WO2016125238A1 (ja) * 2015-02-02 2016-08-11 三菱重工業株式会社 内燃機関の過給システム及び過給システムの制御方法
JP2016200034A (ja) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 内燃機関の制御装置
DE102015216105A1 (de) * 2015-08-24 2017-03-02 Ford Global Technologies, Llc Verfahren zur Regelung des Ladedrucks einer aufgeladenen Brennkraftmaschine mit mindestens zwei Verdichtern und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
JP6898346B2 (ja) * 2015-12-07 2021-07-07 アカーテース パワー,インク. 高負荷対向ピストンエンジンの空気処理

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275832A2 (de) * 2001-07-12 2003-01-15 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur mehrstufigen Aufladung einer Brennkraftmaschine
CN101526042A (zh) * 2008-12-23 2009-09-09 天津大学 一种压燃式内燃机可变进排气系统的电子控制方法
CN103233825A (zh) * 2013-04-07 2013-08-07 中国人民解放军军事交通学院 二级可调增压控制系统及其控制方法
CN105715361A (zh) * 2014-12-17 2016-06-29 通用汽车环球科技运作有限责任公司 具有双级涡轮增压器的内燃发动机
CN105673191A (zh) * 2015-06-05 2016-06-15 中国人民解放军军事交通学院 柴油机变海拔增压压力控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112664282A (zh) * 2019-10-15 2021-04-16 上汽通用汽车有限公司 用于可变涡轮增压器的控制方法
CN112664282B (zh) * 2019-10-15 2023-02-21 上汽通用汽车有限公司 用于可变涡轮增压器的控制方法

Also Published As

Publication number Publication date
CN109854394A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2019105080A1 (zh) 变海拔双vgt二级可调增压控制方法
US10006350B2 (en) Control apparatus for internal combustion engine
EP1974136B1 (en) Supercharged diesel engines
US10378433B2 (en) Supercharged internal combustion engine with exhaust-gas turbocharging arrangement, and method for operating an internal combustion engine of said type
US10526957B2 (en) Control device for internal combustion engine including turbocharger
CN105673191A (zh) 柴油机变海拔增压压力控制方法
KR101826551B1 (ko) 엔진 제어 장치 및 방법
JP2006274831A (ja) ターボチャージャ付き内燃機関の制御装置
CN109611193B (zh) 一种小型航空活塞二冲程涡轮增压发动机控制方法
CN111075578A (zh) 双vgt二级可调增压系统与柴油机变海拔匹配方法
CN111042910A (zh) 一种发动机用增压系统及控制方法
CN103233825A (zh) 二级可调增压控制系统及其控制方法
CN110529234A (zh) 涡轮旁通阀可调的两级电控气动增压系统及其变海拔控制方法
CN110566341A (zh) 一种混联式电动增压系统及其控制方法
CN203257533U (zh) 二级可调增压控制系统
CN104696084B (zh) 用于双涡轮系统中的模式转换的涡轮转速控制
CN108757158A (zh) 一种活塞发动机用涡轮增压器控制机构及其控制方法
CN111911300A (zh) 变海拔柴油机瞬态工况下二级可调增压系统vgt叶片控制路径优化方法
CN203769933U (zh) 一种用于发动机增压调节的电控气动系统
CN208650973U (zh) 涡轮旁通阀可调的两级电控气动增压系统
US20110270508A1 (en) Method of and apparatus for operating a supercharger
CN111219263B (zh) 废气涡轮发动机增压前馈控制系数确定方法和存储介质
CN208669418U (zh) 一种活塞发动机用涡轮增压器控制机构
Nazari et al. A coordinated boost control in a twincharged spark ignition engine with high external dilution
CN110168211A (zh) 用于控制内燃发动机的涡轮增压器的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884524

Country of ref document: EP

Kind code of ref document: A1