WO2019104490A1 - 多vr/ar设备的场景中抗干扰的方法及装置 - Google Patents

多vr/ar设备的场景中抗干扰的方法及装置 Download PDF

Info

Publication number
WO2019104490A1
WO2019104490A1 PCT/CN2017/113421 CN2017113421W WO2019104490A1 WO 2019104490 A1 WO2019104490 A1 WO 2019104490A1 CN 2017113421 W CN2017113421 W CN 2017113421W WO 2019104490 A1 WO2019104490 A1 WO 2019104490A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency point
frequency
noise ratio
tried
Prior art date
Application number
PCT/CN2017/113421
Other languages
English (en)
French (fr)
Inventor
骆磊
牟涛涛
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Priority to PCT/CN2017/113421 priority Critical patent/WO2019104490A1/zh
Priority to CN201780002653.5A priority patent/CN108064434B/zh
Publication of WO2019104490A1 publication Critical patent/WO2019104490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/43Jamming having variable characteristics characterized by the control of the jamming power, signal-to-noise ratio or geographic coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters

Definitions

  • the present invention relates to the field of VR/AR (full name of VR: Virtual Reality, Chinese name: virtual reality; full name of AR: Augmented Reality, Chinese name: augmented reality), especially a multi-VR/ Anti-interference method and device, storage medium, and computer program in the scene of the AR device.
  • VR technology refers to the use of VR devices that can generate 3D substitution, such as: VR glasses, so that users create a visual "immersion", which in turn affects other senses of the human body and also agrees that virtual things have a real sense of existence.
  • AR technology refers to the entity information in the real world, which is superimposed by computer simulation and simulation, and then applies the virtual information to the real world and is perceived by human senses, thus achieving the sensory experience beyond reality.
  • the VR/AR device can wear VR/AR equipment to move within a certain range.
  • the VR/AR device By arranging positioning equipment within the active range, using locating technology such as ultrasonic, infrared light, electromagnetic wave sound photoelectric, etc., the VR/AR device sends a data signal, and the positioning device receives the data signal.
  • the positioning of the VR/AR device is realized, so that the user can also obtain the scene change brought by the corresponding movement in the game in real time.
  • VR/AR devices when multiple people use multiple VR/AR devices to play in the same large space, since the VR/AR device performs positioning using an open positioning technology, VR/AR devices with the same signal frequency will mutually Interference, resulting in a drop in user experience.
  • Embodiments of the present invention provide a method and apparatus for anti-interference in a scenario of multiple VR/AR devices, a storage medium, and a computer program, to solve interference problems caused by multiple frequencies of multiple VR/AR devices in the same large space. .
  • the embodiment of the present invention adopts the following technical solutions:
  • an embodiment of the present invention provides a method for anti-interference in a scenario of a multiple VR/AR device, where the method includes the following steps:
  • step S3 determining whether the signal to noise ratio is greater than or equal to a set signal to noise ratio threshold, and if yes, continuing to transmit the signal; if not, proceeding to step S4.
  • step S4 determining whether there is still an untried frequency point in the set frequency range, if yes, selecting an untried frequency point to start transmitting the signal, and returning to step S2; if not, from the already tried Among the frequency points, the frequency point with the highest signal-to-noise ratio and currently unused is selected to transmit the signal.
  • the untried frequency point refers to a frequency point that has not attempted signal transmission; the frequency point that has been tried refers to a frequency point that has been attempted to perform signal transmission.
  • the foregoing technical solution determines whether the signal to noise ratio of the transmitted signal reaches a threshold after selecting a frequency point for the VR/AR device that is added to the positioning device to perform signal transmission. If it is reached, the interference of signal transmission at the current frequency point is small, and if there is no VR/AR device of the same frequency, the signal transmission can continue at the current frequency point. If it is not reached, it indicates that the interference at the current frequency point is large, and there may be VR/AR devices of the same frequency. At this time, the current frequency point is skipped, and the signal-to-noise ratio is judged again to select the SNR to reach the threshold.
  • the frequency point or the frequency point where the signal-to-noise ratio does not reach the threshold, but the signal-to-noise ratio is the highest and is not used. Therefore, multiple VR/AR devices in the same large space are avoided in the same frequency, which solves the interference problem caused by the problem, and ensures that the VR/AR device of each positioning device that joins the large space can always compare with the signal to noise ratio. Signal transmission at high frequency points reduces interference.
  • an embodiment of the present invention provides a method for anti-interference in a scenario of a multi-VR/AR device, where the method includes the following steps: using a pseudo-random code on a VR/AR device to transmit an original signal to be transmitted. Modulate to form a wideband signal and transmit it The bandwidth of the pseudo random code is greater than the bandwidth of the original signal; at the positioning device end, the wideband signal is demodulated by using the same pseudo random code to obtain the original signal.
  • the foregoing technical solution implements communication between a VR/AR device and a positioning device by modulating and demodulating the original signal by using a pseudo-random code having a bandwidth larger than the original signal to be transmitted. Since only the frequency response coding is consistent, the two parties can realize communication, and there are countless kinds of frequency sequential coding, so frequency point repetition is difficult to occur between multiple VR/AR devices, thereby solving multiple VR/ARs in the same large space. Interference caused by the same frequency of the device.
  • the embodiment of the present invention provides an anti-interference device in a scenario of a multi-VR/AR device, where the device includes: a frequency selection module, configured to set a frequency when a VR/AR device is added to the positioning device. Selecting a frequency point within the range; selecting an untried frequency point when there is an untried frequency point within the determined set frequency range; and when there is no untried frequency point within the determined set frequency range, Select the frequency point with the highest signal-to-noise ratio and not currently used from the frequency points that have been tried.
  • the detecting module is configured to detect a signal to noise ratio of a signal transmitted by the current VR/AR device.
  • the determining module is configured to determine whether the signal to noise ratio is greater than or equal to a set signal to noise ratio threshold; and determine whether there are any untested frequency points in the set frequency range.
  • the untried frequency point refers to a frequency point that has not attempted signal transmission; the frequency point that has been tried refers to a frequency point that has been attempted to perform signal transmission.
  • an embodiment of the present invention provides a storage medium, where the storage medium stores an instruction code, where the instruction code is used to execute the method according to the first aspect or the second aspect.
  • the beneficial effects of the above storage medium can be seen in the beneficial effects of the anti-interference method provided by the first aspect.
  • an embodiment of the present invention provides a computer program, where the computer program includes an instruction code for performing the method according to the first aspect or the second aspect.
  • FIG. 1 is a flowchart of a method for anti-interference in a scenario of a multiple VR/AR device according to an embodiment of the present invention
  • FIG. 2 is a first application scenario of a method according to an embodiment of the present disclosure
  • FIG. 3 is a second application scenario of a method according to an embodiment of the present disclosure.
  • FIG. 4 is a third application scenario of the method provided by the embodiment of the present invention.
  • the inventor of the present invention proposes that when a VR/AR device is added to a positioning device, a frequency point is first selected for signal transmission, and then the current frequency point is determined by determining whether the signal to noise ratio of the signal reaches a threshold value. Whether the interference of signal transmission is large, and then whether there is a VR/AR device of the same frequency. If the signal-to-noise ratio reaches the threshold, the interference is small, and there is no VR/AR device of the same frequency, and the signal transmission continues at the current frequency point.
  • the device skips the current frequency point and additionally selects a frequency point with a high signal-to-noise ratio for signal transmission. In this way, by combining the signal-to-noise ratio judgment and the frequency hopping process, mutual interference caused by the same frequency of multiple VR/AR devices in the same large space can be effectively avoided.
  • the embodiment of the invention provides a method for anti-interference in a scenario of a multi-VR/AR device. As shown in FIG. 1 , the method includes the following steps:
  • step S3 determining whether the signal to noise ratio is greater than or equal to a set signal to noise ratio threshold, and if yes, continuing to transmit the signal; if not, proceeding to step S4.
  • step S4 determining whether there is still an untried frequency point in the set frequency range, if yes, selecting an untried frequency point to start transmitting the signal, and returning to step S2; if not, from the already tried Among the frequency points, the frequency point with the highest signal-to-noise ratio and currently unused is selected to transmit the signal.
  • the "unexpoked frequency point” refers to the frequency point at which the signal transmission has not been attempted; the so-called “frequency point that has been tried” refers to the frequency point at which the signal transmission has been attempted.
  • Scene 1 As shown in Figure 2, only one set of positioning devices is arranged in a large space, and multiple people use multiple VR/AR devices to play games in the positioning device.
  • the above method can prevent two or more VR/AR devices from using the same frequency point, thereby avoiding mutual interference between VR/AR devices, and can realize multiple VR/AR devices for multiple people in the same positioning system. The interaction has improved the user experience.
  • Scene 2 As shown in Figure 3, two sets of positioning devices are arranged adjacent to each other in a large space. Each of them uses one VR/AR device to play games in two sets of positioning devices. Between two VR/AR devices No interaction. Although the two VR/AR devices do not know each other's existence, because the above method determines whether the frequency hopping is determined by determining the signal to noise ratio, the signal to noise ratio It is related to the interference factors in the surrounding environment, and has nothing to do with whether the VR/AR device has interaction. Therefore, the above method can avoid being in different positioning devices and have no interaction with each other. Two or more VR/AR devices use the same frequency point. .
  • Scene 3 As shown in Figure 4, two sets of positioning devices are arranged adjacent to each other in a large space. Each set of positioning devices has multiple VR/AR devices for playing games, and VR/AR in the same set of positioning devices. Interaction between devices is required. There is no interaction between VR/AR devices in different sets of positioning devices, which is equivalent to the mixing of scenario 1 and scenario 2.
  • Scene 1 and Scene 2 it can be known that whether it is in the same set of positioning devices, between VR/AR devices that have interaction with each other, or in different sets of positioning devices, there is no interaction between each other VR/ Between the AR devices, the above methods can automatically avoid the same frequency point, thereby reducing interference.
  • step S1 the specific operation of step S1 is different for whether the VR/AR device added to the positioning device is the first one.
  • step S1 is specifically: selecting a frequency point among all frequency points in the set frequency range to start transmitting signals. It should be noted that since the added VR/AR device is the first station, all frequency points in the set frequency range are not attempted to perform signal transmission, and these frequency points can be selected, and are not selected in the current positioning device. VR/AR devices with the same frequency point will appear.
  • step S1 is specifically: determining whether there is an untried frequency point in the set frequency range, and if so, selecting an untried frequency point to start.
  • the signal is transmitted; if not, the signal is transmitted starting from the frequency point that has been tried and the frequency point with the highest signal-to-noise ratio and not currently used. It should be noted that, since the VR/AR device that is added is not the first device, that is, the VR/AR device has been added to the current positioning device before, so all the frequency ranges are set. It is possible that some or all of the frequency points have been tried for signal transmission.
  • the selection strategy used in the foregoing actions may be: random selection; or from small to large order; or from large to small; or combined with past interference records, intelligently select frequencies that may be less likely to interfere, ie, preferentially select The frequency of interference is relatively small; and so on.
  • the selected frequency points should be within the set frequency range, and the set frequency range should follow the world's radio open frequency bands, such as the common 2.4 GHz frequency band, the 5.8 GHz frequency band, and the like.
  • step S3 when it is determined that the signal to noise ratio of the signal transmitted at the current frequency point is greater than or equal to the set signal to noise ratio threshold, the signal transmission continues at the current frequency point, in the process, at a set time interval
  • the loop returns to step S2. Since the surrounding environment of the VR/AR device is constantly changing, the signal-to-noise ratio of the signal is also constantly changing. The interference at the current point of the frequency point is small, and the interference at the next moment is not small, for example, when there is a new VR/AR device. When adding or turning on a serious interference source such as a microwave oven, the signal-to-noise ratio may change.
  • the signal-to-noise ratio is judged at regular intervals, and the signal-to-noise of the signals transmitted in each time period can be determined. Whether the ratio satisfies the set signal-to-noise ratio threshold, and further skips the frequency point where the signal-to-noise ratio does not satisfy the set signal-to-noise ratio threshold, and reselects the frequency point for signal transmission, thereby reducing interference.
  • the specific value of setting the signal to noise ratio threshold may be set according to different requirements of the signal to noise ratio threshold in different scenarios.
  • the set time interval of the loop returning step S2 can also be set according to the requirements of different scenes. If the scene requires high signal transmission quality, the set time interval can be set shorter, for example, every 0.1s. If the scene does not require a high signal transmission quality, the set time interval can be set longer, for example, every 1 s to 2 s.
  • step S4 when it is determined that there is no untried frequency point within the set frequency range, the frequency point transmission with the highest signal to noise ratio and the current unused frequency is selected from the frequency points that have been tried.
  • the signal can also be looped back to step S2 at set time intervals, thereby achieving the purpose of reducing interference during signal transmission.
  • the time interval For the setting of the time interval, refer to the related description in the above step S3.
  • step S1 a blank list is previously established before step S1, which is used to record the unique identification code, frequency point and signal to noise ratio of the VR/AR device.
  • the frequency point is selected for it, and the signal to noise ratio is detected, the unique identification code, frequency point, and signal to noise ratio of the VR/AR device may be recorded in the established list.
  • the list can be as shown in Table 1 below.
  • the frequency points recorded in the list are all frequency points that have been tried, and the frequency points that are not recorded in the list within the set frequency range are all frequency points that have not been tried.
  • Taiwan what is the signal-to-noise ratio when attempting to transmit, so that when selecting the frequency point that has not been tried, and selecting the frequency point with the highest signal-to-noise ratio and the current unused frequency from the frequency points that have been tried.
  • the information recorded in the list helps to increase the processing speed.
  • the information of the frequency points not used in the list can be periodically cleared.
  • the advantage of this is that since the surrounding environment changes in real time, the letter of the frequency point recorded in the list
  • the noise ratio is also constantly changing. Therefore, the information of the frequency points that are not in use in the list is periodically cleared, and then the frequency points that are repeated with the previous ones can be jumped again, and new signal-to-noise ratio data is obtained, thereby improving the data.
  • the utilization of the frequency points in the set frequency range makes it possible to select more frequency points for signal transmission for the VR/AR device, so that there is a greater chance of selecting a frequency point with a higher signal to noise ratio.
  • a blank list may be established for each set of positioning devices in the scene, so that each positioning device maintains one of its own.
  • the list so that each list does not distinguish between master and slave, nor does it need to be synchronized, which is beneficial to simplify the mechanism of selecting appropriate frequency points.
  • Step S1' The positioning device in the scene is started, and a blank list is established for each set of positioning devices.
  • Step S2' When a first VR/AR device is added to a positioning device, a frequency point is selected in the set frequency range to start transmitting a signal. Since it is the first VR/AR device, all the frequency points in the set frequency range are not untried, and the frequency points can be selected directly in all frequency points within the set frequency range.
  • Step S3' detecting the signal to noise ratio of the transmitted signal, and recording the unique identification code, frequency point and signal to noise ratio of the current VR/AR device in a pre-established blank list.
  • Step S4' determining whether the signal to noise ratio is greater than or equal to the set signal to noise ratio threshold, and if so, continuing to transmit the signal, and looping back to step 3' at the set time interval; if not, proceeding to step S5'.
  • Step S5' determining whether there is an unrecorded frequency point in the set frequency range, if yes, selecting an unrecorded frequency point to start transmitting the signal, and returning to step S3'; if not, from the recorded frequency point Choose the highest signal to noise ratio and is not currently used The frequency point transmits the signal and loops back to step 3' at set time intervals.
  • Step S6' when the Nth (N ⁇ 2) VR/AR device joins the same set of positioning devices, it is judged whether there are unrecorded frequency points in the set frequency range, and if so, an unrecorded frequency point is selected.
  • the transmission of the signal is started, and the process returns to step S3'; if not, the transmission of the signal is started from the recorded frequency points with the highest signal-to-noise ratio and the currently unused frequency point, and the process returns to step S3'.
  • Step S7' Periodically clear the information of the frequency points not in use in the list.
  • the embodiment further provides an anti-interference device in a scenario of a multi-VR/AR device, and the device includes: a frequency selection module, a detection module, and a judging module.
  • the frequency selection module is configured to select an untried frequency point for the VR/AR device that joins the positioning device within the set frequency range; and when there is no untested frequency point within the set frequency range, it is VR/
  • the AR device selects the frequency point with the highest signal-to-noise ratio and is currently unused.
  • the detection module is configured to detect a signal to noise ratio of a signal transmitted by the current VR/AR device.
  • the determining module is configured to determine whether the signal to noise ratio is greater than or equal to the set signal to noise ratio threshold; and determine whether there are any untested frequency points in the set frequency range.
  • the VR/AR device When the VR/AR device is added to the positioning device, the VR/AR device first selects a frequency point for signal transmission, and then determines whether the signal-to-noise ratio of the signal reaches the threshold. If the threshold is reached, If the signal-to-noise ratio reaches the threshold, the interference is small, and there is no VR/AR device of the same frequency, and the signal transmission continues at the current frequency point. If the signal-to-noise ratio does not reach the threshold, it means that the interference is large. If there is a VR/AR device with the same frequency, the current frequency point is skipped, and the frequency point with higher signal-to-noise ratio is selected for signal transmission. In this way, the signal-to-noise ratio is combined with the frequency hopping process to effectively avoid mutual interference caused by the same frequency of multiple VR/AR devices in the same large space.
  • the above apparatus can avoid the same frequency between the plurality of VR/AR devices, when the above device is applied to a scenario in which multiple VR/AR devices are played by the same set of positioning devices for multiple users, multiple devices can be realized.
  • the interaction between VR/AR devices enhances the user experience.
  • the signal-to-noise ratio is facilitated.
  • a storage module may be added in the above device, and the storage module is used for establishing and storing a list in which the unique identification code, frequency point and signal to noise ratio information of the VR/AR device are recorded.
  • the embodiment further provides another anti-interference method in the scenario of multiple VR/AR devices, as follows:
  • the original signal to be transmitted is modulated by a pseudo random code to form a wideband signal and transmitted; wherein the bandwidth of the pseudo random code is greater than the bandwidth of the original signal.
  • the wideband signal is demodulated using the same pseudorandom code to obtain the original signal.
  • the original signal to be transmitted is a narrowband signal
  • the narrowband signal is modulated by a pseudorandom code having a bandwidth much larger than the narrowband signal.
  • the bandwidth is extended and can then be modulated by the carrier and sent out.
  • the same wide pseudo-random code is used to demodulate the received wideband signal, and the wideband signal is converted into a narrowband signal containing the original information data, thereby realizing information communication.
  • the frequency matching and corresponding communication between the transmitting end and the receiving end are performed, and only the receiving end with the same frequency response encoding can intercept the signal. Since there are countless kinds of frequency sequential encoding, it is difficult to repeat, thereby solving multiple units in the same large space. Interference caused by the same frequency of VR/AR equipment.
  • the present embodiment further provides a storage medium, where the instruction code is used to execute the method, One of the two anti-interference methods described in the examples.
  • the beneficial effects of the storage medium are the same as those of the anti-interference method provided in this embodiment, and are not described herein again.
  • the embodiment further provides a computer program comprising instruction code for performing one of two anti-interference methods as described in this embodiment.
  • the beneficial effects of the computer program and the resistance provided by the embodiment The beneficial effects of the method of interference are the same and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种多VR/AR设备的场景中抗干扰的方法及装置,涉及VR/AR设备技术领域,用于解决多台VR/AR设备在同一个大空间中由于同频而引起的干扰问题。该方法包括:S1:当有VR/AR设备加入定位设备时,在设定频率范围内选取一频率点开始传输信号。S2:检测所传输信号的信噪比。S3:判断该信噪比是否大于或等于设定信噪比阈值,如果是,则继续传输信号;如果否,则进入S4。S4:判断设定频率范围内是否还有未尝试过的频率点,如果有,则选取一未尝试过的频率点开始传输信号,并返回S2;如果没有,则从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点传输信号。

Description

多VR/AR设备的场景中抗干扰的方法及装置 技术领域
本发明涉及VR/AR(VR的英文全称为:Virtual Reality,中文名称为:虚拟现实;AR的英文全称为:Augmented Reality,中文名称为:增强现实)设备技术领域,尤其涉及一种多VR/AR设备的场景中抗干扰的方法及装置、存储介质、计算机程序。
背景技术
当前,VR技术和AR技术发展得如火如荼。VR技术是指通过可以产生3D代入感的VR设备,如:VR眼镜,使用户产生视觉上的“沉浸感”,进而影响人体的其他感官也一并认同虚拟事物具有真实存在感。AR技术是指把原本在现实世界的实体信息,通过电脑模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。
目前人们可以佩戴VR/AR设备在一定范围内移动,通过在活动范围内布置定位设备,利用超声波、红外光、电磁波声光电等定位技术,VR/AR设备发出数据信号,定位设备接收该数据信号,实现对VR/AR设备的定位,使用户在游戏中也可以实时得到对应移动所带来的场景变化。
然而,当多人用多台VR/AR设备在同一个大空间中游戏时,由于VR/AR设备进行定位使用的是开放性的定位技术,因此信号频率相同的VR/AR设备之间会互相干扰,导致用户体验下降。
发明内容
本发明实施例提供一种多VR/AR设备的场景中抗干扰的方法及装置、存储介质、计算机程序,以解决多台VR/AR设备在同一个大空间中由于同频而引起的干扰问题。
为达到上述目的,本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种多VR/AR设备的场景中抗干扰的方法,该方法包括以下步骤:
S1:当有VR/AR设备加入定位设备时,在设定频率范围内选取一频率点开始传输信号。
S2:检测所传输信号的信噪比。
S3:判断该信噪比是否大于或等于设定信噪比阈值,如果是,则继续传输信号;如果否,则进入步骤S4。
S4:判断所述设定频率范围内是否还有未尝试过的频率点,如果有,则选取一未尝试过的频率点开始传输信号,并返回步骤S2;如果没有,则从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点传输信号。
其中,所述未尝试过的频率点是指未尝试过进行信号传输的频率点;所述已经尝试过的频率点是指已经尝试过进行信号传输的频率点。
相较于现有技术,上述技术方案在为加入定位设备的VR/AR设备选取频率点进行信号传输后,判断所传输信号的信噪比是否达到阈值。如果达到,说明以当前频率点进行信号传输的干扰较小,不存在同频的VR/AR设备,则可以继续以当前频率点进行信号传输。如果未达到,说明以当前频率点进行信号传输的干扰较大,可能存在同频的VR/AR设备,此时跳过当前频率点,再次利用信噪比的判断,选取出信噪比达到阈值的频率点,或者信噪比未达到阈值,但是信噪比最高且未被使用的频率点。从而避免了同一大空间内多台VR/AR设备同频,解决了由此引起的干扰问题;且保证了每台加入该大空间的定位设备的VR/AR设备总能以信噪比相对较高的频率点进行信号传输,降低了干扰。
第二方面,本发明实施例提供了一种多VR/AR设备的场景中抗干扰的方法,该方法包括以下步骤:在VR/AR设备端,利用一伪随机码,对需要发送的原信号进行调制,形成一宽带信号并发送,所 述伪随机码的带宽大于所述原信号的带宽;在定位设备端,利用相同的伪随机码,对所述宽带信号进行解调,得到所述原信号。
相较于现有技术,上述技术方案通过利用一带宽大于需要发送的原信号的伪随机码,对原信号进行调制和解调,实现VR/AR设备与定位设备之间的通信。由于只有频率响应编码一致的情况下双方才能实现通信,并且有无数种频率顺序编码,因此多台VR/AR设备之间很难出现频率点重复,从而解决了同一大空间内多台VR/AR设备同频所引起的干扰问题。
第三方面,本发明实施例提供了一种多VR/AR设备的场景中抗干扰的装置,该装置包括:选频模块,用于当有VR/AR设备加入定位设备时,在设定频率范围内选取一频率点;在确定设定频率范围内还有未尝试过的频率点时,选取一未尝试过的频率点;且在确定设定频率范围内没有未尝试过的频率点时,从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点。检测模块,用于检测当前VR/AR设备所传输信号的信噪比。判断模块,用于判断所述信噪比是否大于或等于设定信噪比阈值;且判断所述设定频率范围内是否还有未尝试过的频率点。其中,所述未尝试过的频率点是指未尝试过进行信号传输的频率点;所述已经尝试过的频率点是指已经尝试过进行信号传输的频率点。
上述抗干扰的装置的有益效果可参见第一方面所提供的抗干扰的方法的有益效果。
第四方面,本发明实施例提供了一种存储介质,该存储介质存储有指令代码,该指令代码用于执行如第一方面或第二方面所述的方法。
上述存储介质的有益效果可参见第一方面所提供的抗干扰的方法的有益效果。
第五方面,本发明实施例提供了一种计算机程序,该计算机程序包括指令代码,该指令代码用于执行如第一方面或第二方面所述的方法。
上述计算机程序的有益效果可参见第一方面所提供的抗干扰的方法的有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的多VR/AR设备的场景中抗干扰的方法的流程图;
图2为本发明实施例所提供的方法的第一种应用场景;
图3为本发明实施例所提供的方法的第二种应用场景;
图4为本发明实施例所提供的方法的第三种应用场景。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由背景技术可知,现有技术中当多人用多台VR/AR设备在同一个大空间中游戏时,信号频率相同的VR/AR设备之间会互相干扰。基于这一现状,本发明的发明人提出:当有VR/AR设备加入定位设备时,首先选取一频率点进行信号传输,然后通过判断信号的信噪比是否达到阈值,来确定以当前频率点进行信号传输的干扰是否大,进而判断是否存在同频的VR/AR设备。如果信噪比达到阈值,说明干扰较小,不存在同频的VR/AR设备,继续以当前频率点进行信号传输。如果信噪比未达到阈值,说明干扰较大,存在同频的VR/AR 设备,则跳过当前频率点,另外选取信噪比较高的频率点进行信号传输。这样通过信噪比判断结合跳频过程,能够有效的避免同一个大空间内多台VR/AR设备同频所引起的互相干扰。
基于上述发明思想,下面对本发明实施例的技术方案进行具体详细的介绍。
本发明实施例提供了一种多VR/AR设备的场景中抗干扰的方法,如图1所示,该方法包括以下步骤:
S1:当有VR/AR设备加入定位设备时,在设定频率范围内选取一频率点开始传输信号。
S2:检测所传输信号的信噪比。
S3:判断该信噪比是否大于或等于设定信噪比阈值,如果是,则继续传输信号;如果否,则进入步骤S4。
S4:判断所述设定频率范围内是否还有未尝试过的频率点,如果有,则选取一未尝试过的频率点开始传输信号,并返回步骤S2;如果没有,则从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点传输信号。
其中,所谓“未尝试过的频率点”是指未尝试过进行信号传输的频率点;所谓“已经尝试过的频率点”是指已经尝试过进行信号传输的频率点。
上述方法能够适用于多种场景,下面示例性地给出三种场景。
场景一:如图2所示,一个大空间内仅布置了一套定位设备,多人用多台VR/AR设备在该定位设备中进行游戏。采用上述方法能够使避免两台及两台以上VR/AR设备使用相同的频率点,从而避免VR/AR设备之间相互干扰;并且能够实现多人用多台VR/AR设备在同一定位系统中的互动,提高了用户体验度。
场景二:如图3所示,一个大空间内相邻布置了两套定位设备,两人各用一台VR/AR设备分别在两套定位设备中进行游戏,两台VR/AR设备之间无互动。虽然两台VR/AR设备彼此不知道对方的存在,但是由于上述方法是通过判定信噪比确定是否跳频的,信噪比 与周边环境中的干扰因素相关,与VR/AR设备是否有互动无关,因此上述方法能够避免处于不同定位设备中,彼此无互动的,两台及两台以上VR/AR设备使用相同的频率点。
场景三:如图4所示,一个大空间内相邻布置了两套定位设备,每套定位设备中均有多人用多台VR/AR设备进行游戏,同一套定位设备中的VR/AR设备之间需要进行互动,不同套定位设备中的VR/AR设备之间不存在互动,这相当于场景一和场景二的混合。通过上面对场景一和场景二的说明能够知道,不论是处于同一套定位设备、彼此之间存在互动的VR/AR设备之间,还是处于不同套定位设备、彼此之间无互动的VR/AR设备之间,采用上述方法均能够自动避开相同的频率点,从而减少干扰。
需要说明的是,以上三种场景仅仅是对本实施例所提供的方法适用场景的示例性说明,本领域技术人员面对本实施例的发明思想能够获悉本实施例中的方法还适用于其它存在上述技术问题场景,例如同一个大空间内布置有三套或三套以上的定位设备,每套定位设备中有至少一台VR/AR设备。
在上述方法中,针对加入定位设备的VR/AR设备是否第一台,步骤S1的具体操作有所不同。
当第一台VR/AR设备加入定位设备时,步骤S1具体为:在设定频率范围内的全部频率点中选取一频率点开始传输信号。需要说明的是,由于所加入的VR/AR设备是第一台,因此设定频率范围内的全部频率点均未被尝试过进行信号传输,这些频率点均可选取,在当前定位设备中不会出现相同频率点的VR/AR设备。
当第N台VR/AR设备加入定位设备时,N≥2,步骤S1具体为:判断设定频率范围内是否有未尝试过的频率点,如果有,则选取一个未尝试过的频率点开始传输信号;如果没有,则从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点开始传输信号。需要说明的是,由于所加入的VR/AR设备不是第一台,即在此之前已经有VR/AR设备加入当前定位设备了,因此设定频率范围内全部 频率点有可能部分或全部被尝试过进行信号传输,为了避免当前定位设备中出现相同频率点的VR/AR设备,需要在选取频率点之前首先判断设定频率范围内是否还有未尝试过进行信号传输的频率点,然后再根据判断结果对频率点进行相应的选取。
对于本实施例所提供的方法,在步骤S1中存在“选取一频率点”的动作,及在步骤S4中存在“选取一未尝试过的频率点”的动作,那么作为一种可能的方案,进行前述动作时所采用的选取策略可为:随机选取;或者从小到大顺序选取;或者从大到小顺序选取;或者结合过往的干扰记录,智能地选择干扰可能更小的频率,即优先选取产生干扰的可能性相对更小的频率点;等等。
需要说明的是,所选取的频率点均应当在设定频率范围内,设定频率范围要遵循世界的无线电开放频段,比如常见的2.4GHz频率段、5.8GHz频率段等等。
在步骤S3中,当确定以当前频率点进行传输的信号的信噪比大于或等于设定信噪比阈值时,继续以当前频率点进行信号传输,在此过程中,可以以设定时间间隔循环返回步骤S2。由于VR/AR设备的周遭环境是不断变化的,信号的信噪比也随之不断变化,频率点当前时刻干扰较小,不代表下一时刻干扰也小,比如当有新的VR/AR设备加入,或者开启了微波炉等严重的干扰源时,都有可能造成信噪比变化,因此这样每隔一定的时间就进行一次信噪比的判断,可以确定各个时间段所传输的信号的信噪比是否满足设定信噪比阈值,进而可以跳过信噪比不满足设定信噪比阈值的频率点,重新选择频率点进行信号传输,降低了干扰。
需要说明的是,在保证信号传输速度的前提下,设定信噪比阈值的具体数值可根据不同场景对信噪比阈值的不同要求来设定。循环返回步骤S2的设定时间间隔也可根据不同场景的要求而设定,如果场景对信号传输质量要求较高,则设定时间间隔可设置的较短,比如每隔0.1s就循环一次,如果场景对信号传输质量要求不是很高,则设定时间间隔可设置的较长,比如每隔1s~2s循环一次。
基于上述步骤S3的方案,在步骤S4中,当确定设定频率范围内没有未尝试过的频率点时,从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点传输信号,在此过程中,同样也可以以设定时间间隔循环返回步骤S2,从而达到减小信号传输过程中的干扰的目的。设定时间间隔地设置可参见上述步骤S3中的相关描述。
为了方便对“已尝试过的频率点”和“未尝试过的频率点”的相关信息的提取,可以对这些相关信息进行记录。作为一种可能的方案,在步骤S1之前预先建立一空白列表,该空白列表用于记录VR/AR设备的唯一识别码、频率点和信噪比。当一VR/AR设备加入定位设备中,为其选取频率点,并检测完信噪比之后,可以将该VR/AR设备的唯一识别码、频率点和信噪比记录在所建立的列表中。列表可如下表1所示。
表1
Figure PCTCN2017113421-appb-000001
可以知道,记录在列表中频率点均为已经尝试过的频率点,设定频率范围内未记录在列表中的频率点均为未尝试过的频率点。通过将已经尝试过的频率点及与其相关的VR/AR设备和信噪比的信息记录在列表中,可以明确的获悉哪些频率点已经被尝试传输过信号,进行尝试的VR/AR设备是哪台,尝试传输时的信噪比是多少,从而在选取未尝试过的频率点时,和从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点时,均可根据列表中所记录的信息,有利于提高处理速度。
基于此,作为一种可能的方案,可以周期性地清除列表中未正在使用的频率点的信息,这样做的好处是:由于周围的环境都在实时变化,记录在列表中的频率点的信噪比也是会不断变化的,因此对列表中非正在使用的频率点的信息进行周期性清除,后续就可以再次跳到和之前重复的频率点,并得到新的信噪比数据,从而提高了设定频率范围内频率点的利用率,使得在为VR/AR设备选取频率点进行信号传输可选择的频率点更多,从而更有机会选取到信噪比更高的频率点。
基于上述技术方案,对于一个大空间内有多套定位设备的场景,在预先建立空白列表时,可以针对场景中的每套定位设备各建立一个空白列表,使每套定位设备各自维护自己的一个列表,从而各个列表不分主从,也不需要同步,有利于简化选取适当频率点的机制。
结合上述各技术方案,下面对本实施例所提供的方法的一种可能的实施过程进行详细介绍。
步骤S1′:场景内的定位设备启动,针对每套定位设备建立一空白列表。
步骤S2′:当某套定位设备中加入第一台VR/AR设备时,在设定频率范围内以设定的选频策略选取一频率点开始传输信号。由于是第一台VR/AR设备,因此设定频率范围内的全部频率点均未未被尝试,可以直接在设定频率范围内的全部频率点中进行频率点的选取。
步骤S3′:检测所传输信号的信噪比,并将当前VR/AR设备的唯一识别码、频率点和信噪比记录在预先建立的空白列表中。
步骤S4′:判断该信噪比是否大于或等于设定信噪比阈值,如果是,则继续传输信号,并以设定时间间隔循环返回步骤3′;如果否,则进入步骤S5′。
步骤S5′:判断设定频率范围内是否还有未记录的频率点,如果有,则选取一未记录的频率点开始传输信号,并返回步骤S3′;如果没有,则从已记录的频率点中选取信噪比最高且当前未被使用 的频率点传输信号,并以设定时间间隔循环返回步骤3′。
步骤S6′:当第N台(N≥2)VR/AR设备加入同一套定位设备时,判断设定频率范围内是否还有未记录的频率点,如果有,则选取一未记录的频率点开始传输信号,并返回步骤S3′;如果没有,则从已记录的频率点中选取信噪比最高且当前未被使用的频率点开始传输信号,并返回步骤S3′。
步骤S7′:周期性地清除列表中未正在使用的频率点的信息。
基于上述多VR/AR设备的场景中抗干扰的方法,本实施例还提供了一种多VR/AR设备的场景中抗干扰的装置,该装置包括:选频模块、检测模块和判断模块。其中,选频模块用于在设定频率范围内为加入定位设备的VR/AR设备选取一未尝试过的频率点;且在设定频率范围内没有未尝试过的频率点时,为VR/AR设备选取信噪比最高且当前未被使用的频率点。检测模块用于检测当前VR/AR设备所传输信号的信噪比。判断模块用于判断信噪比是否大于或等于设定信噪比阈值;且判断设定频率范围内是否还有未尝试过的频率点。
通过上述多VR/AR设备的场景中抗干扰的装置,当有VR/AR设备加入定位设备时,首先选取一频率点进行信号传输,然后判断信号的信噪比是否达到阈值,如果达到阈值,如果信噪比达到阈值,说明干扰较小,不存在同频的VR/AR设备,继续以当前频率点进行信号传输。如果信噪比未达到阈值,说明干扰较大,存在同频的VR/AR设备,则跳过当前频率点,另外选取信噪比较高的频率点进行信号传输。这样通过信噪比判断结合跳频过程,有效地避免了同一个大空间内多台VR/AR设备频率相同所引起的互相干扰。
并且,由于上述装置能够避免多台VR/AR设备之间的频率相同,因此当上述装置应用于多人用多台VR/AR设备在同一套定位设备进行游戏的场景中时,能够实现多台VR/AR设备之间的互动,提升了用户体验度。
为了便于对尝试过进行信号传输的频率点,及与其相关的VR/AR设备的唯一识别码和信噪比信息的提取,进而方便信噪比的 判断和频率点的选取,可在上述装置中增设存储模块,该存储模块用于建立和存储列表,该列表中记录有VR/AR设备的唯一识别码、频率点和信噪比信息。
除了上述多VR/AR设备的场景中抗干扰的方法及装置,本实施例还提供了另外一种多VR/AR设备的场景中抗干扰的方法,具体如下:
在VR/AR设备端,利用一伪随机码,对需要发送的原信号进行调制,形成一宽带信号并发送;其中,所述伪随机码的带宽大于所述原信号的带宽。
在定位设备端,利用相同的伪随机码,对所述宽带信号进行解调,得到所述原信号。
在上述方法中,在VR/AR设备端(即发射端),需要发送的原信号为一窄带信号,用一个带宽远大于该窄带信号的伪随机码对该窄带信号进行调制后,该窄带信号的带宽被扩展,之后可再经载波调制并发送出去。在定位设备端(即接收端)使用完全相同的伪随机码,对接收的宽带信号进行解调,把宽带信号转换成包含原信息数据的窄带信号,从而实现了信息通信。
采用上述方式进行发射端和接收端的频率匹配和对应通信,只有频率响应编码一致的接收端才能拦截信号,由于有无数种频率顺序编码,因此很难出现重复,从而解决了同一大空间内多台VR/AR设备同频所引起的干扰问题。
基于本实施例所提供的两种多VR/AR设备的场景中抗干扰的方法,本实施例还提供了一种存储介质,该存储介质内存储有指令代码,该指令代码用于执行如本实施例所述的两种抗干扰的方法中的一种。该存储介质所能够带来的有益效果与本实施例所提供的抗干扰的方法的有益效果相同,此处不再赘述。
本实施例还提供了一种计算机程序,该计算机程序包括指令代码,该指令代码用于执行如本实施例所述的两种抗干扰的方法中的一种。该计算机程序所能够带来的有益效果与本实施例所提供的抗 干扰的方法的有益效果相同,此处不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (15)

  1. 一种多VR/AR设备的场景中抗干扰的方法,其特征在于,所述方法包括以下步骤:
    S1:当有VR/AR设备加入定位设备时,在设定频率范围内选取一频率点开始传输信号;
    S2:检测所传输信号的信噪比;
    S3:判断该信噪比是否大于或等于设定信噪比阈值,如果是,则继续传输信号;如果否,则进入步骤S4;
    S4:判断所述设定频率范围内是否还有未尝试过的频率点,如果有,则选取一未尝试过的频率点开始传输信号,并返回步骤S2;如果没有,则从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点传输信号;
    其中,所述未尝试过的频率点是指未尝试过进行信号传输的频率点;所述已经尝试过的频率点是指已经尝试过进行信号传输的频率点。
  2. 根据权利要求1所述的方法,其特征在于,当第一台VR/AR设备加入定位设备时,步骤S1具体为:在所述设定频率范围内的全部频率点中选取一频率点开始传输信号。
  3. 根据权利要求1所述的方法,其特征在于,当第N台VR/AR设备加入定位设备时,N≥2,步骤S1具体为:判断所述设定频率范围内是否有所述未尝试过的频率点,如果有,则选取一个所述未尝试过的频率点开始传输信号;如果没有,则从所述已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点开始传输信号。
  4. 根据权利要求1所述的方法,其特征在于,在步骤S3中,所述继续传输信号之后,和步骤S4中,所述从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点传输信号之后,还包括:以设定时间间隔循环返回步骤S2。
  5. 根据权利要求1所述的方法,其特征在于,在步骤S1之前还包括:建立列表,所述列表用于记录VR/AR设备的唯一识别码、频率点和信噪比。
  6. 根据权利要求5所述的方法,其特征在于,步骤S2还包括:将当前VR/AR设备的唯一识别码、频率点和信噪比记录在所述列表中。
  7. 根据权利要求6所述的方法,其特征在于,选取未尝试过的频率点时,和从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点时,均根据所述列表中所记录的信息。
  8. 根据权利要求5所述的方法,其特征在于,周期性地清除所述列表中未正在使用的频率点的信息。
  9. 根据权利要求5所述的方法,其特征在于,所述建立列表具体包括:针对场景中的每套定位设备各建立一个所述列表。
  10. 根据权利要求1所述的方法,其特征在于,步骤S1中选取频率点,及步骤S4中选取所述未尝试过的频率点,所采用的选取策略为:随机选取,或者从小到大或从大到小顺序选取,或者优先选取产生干扰的可能性相对更小的频率点。
  11. 一种多VR/AR设备的场景中抗干扰的方法,其特征在于,所述方法包括以下步骤:
    在VR/AR设备端,利用一伪随机码,对需要发送的原信号进行调制,形成一宽带信号并发送;其中,所述伪随机码的带宽大于所述原信号的带宽;
    在定位设备端,利用相同的伪随机码,对所述宽带信号进行解调,得到所述原信号。
  12. 一种多VR/AR设备的场景中抗干扰的装置,其特征在于,所述装置包括:
    选频模块,用于当有VR/AR设备加入定位设备时,在设定频率范围内选取一频率点;在确定所述设定频率范围内还有未尝试过的频率点时,选取一未尝试过的频率点;且在确定所述设定频率范围内没有未尝试过的频率点时,从已经尝试过的频率点中选取信噪比最高且当前未被使用的频率点;
    检测模块,用于检测当前VR/AR设备所传输信号的信噪比;
    判断模块,用于判断所述信噪比是否大于或等于设定信噪比阈值;且判断所述设定频率范围内是否还有未尝试过的频率点;
    其中,所述未尝试过的频率点是指未尝试过进行信号传输的频率点;所述已经尝试过的频率点是指已经尝试过进行信号传输的频率点。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:存储模块,用于建立和存储列表,所述列表中记录有VR/AR设备的唯一识别码、频率点和信噪比信息。
  14. 一种存储介质,其特征在于,所述存储介质存储有指令代码,所述指令代码用于执行如权利要求1~11任一项所述的方法。
  15. 一种计算机程序,其特征在于,所述计算机程序包括指令代码,所述指令代码用于执行如权利要求1~11任一项所述的方法。
PCT/CN2017/113421 2017-11-28 2017-11-28 多vr/ar设备的场景中抗干扰的方法及装置 WO2019104490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/113421 WO2019104490A1 (zh) 2017-11-28 2017-11-28 多vr/ar设备的场景中抗干扰的方法及装置
CN201780002653.5A CN108064434B (zh) 2017-11-28 2017-11-28 多vr/ar设备的场景中抗干扰的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113421 WO2019104490A1 (zh) 2017-11-28 2017-11-28 多vr/ar设备的场景中抗干扰的方法及装置

Publications (1)

Publication Number Publication Date
WO2019104490A1 true WO2019104490A1 (zh) 2019-06-06

Family

ID=62142078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113421 WO2019104490A1 (zh) 2017-11-28 2017-11-28 多vr/ar设备的场景中抗干扰的方法及装置

Country Status (2)

Country Link
CN (1) CN108064434B (zh)
WO (1) WO2019104490A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406891B (zh) * 2018-11-08 2021-05-04 武汉中元通信股份有限公司 一种无人设备中自适应切频抗干扰方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111063A (zh) * 2006-07-20 2008-01-23 华为技术有限公司 最优小区更新方法及其系统、用户终端和网络
US20130251001A1 (en) * 2010-12-01 2013-09-26 Snu R&Db Foundation Interference Signal Avoiding Device of a Frequency Hopping Spread System and Method Thereof
CN103926461A (zh) * 2014-04-03 2014-07-16 北京锐质科控电气有限公司 局放信号空间定位接收频率的选频方法
CN106535266A (zh) * 2016-12-30 2017-03-22 京信通信技术(广州)有限公司 基站工作频点切换方法及装置
CN106569337A (zh) * 2016-10-21 2017-04-19 北京小鸟看看科技有限公司 一种虚拟现实系统及其定位方法
CN106908765A (zh) * 2017-02-27 2017-06-30 广东小天才科技有限公司 一种基于超声波信号的空间定位方法、系统及vr设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111063A (zh) * 2006-07-20 2008-01-23 华为技术有限公司 最优小区更新方法及其系统、用户终端和网络
US20130251001A1 (en) * 2010-12-01 2013-09-26 Snu R&Db Foundation Interference Signal Avoiding Device of a Frequency Hopping Spread System and Method Thereof
CN103926461A (zh) * 2014-04-03 2014-07-16 北京锐质科控电气有限公司 局放信号空间定位接收频率的选频方法
CN106569337A (zh) * 2016-10-21 2017-04-19 北京小鸟看看科技有限公司 一种虚拟现实系统及其定位方法
CN106535266A (zh) * 2016-12-30 2017-03-22 京信通信技术(广州)有限公司 基站工作频点切换方法及装置
CN106908765A (zh) * 2017-02-27 2017-06-30 广东小天才科技有限公司 一种基于超声波信号的空间定位方法、系统及vr设备

Also Published As

Publication number Publication date
CN108064434A (zh) 2018-05-22
CN108064434B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
Lee et al. Rollinglight: Enabling line-of-sight light-to-camera communications
US11648466B2 (en) Data transmission method and related apparatus
CN106464302A (zh) 最小化通信网络之间的干扰
CN105792290A (zh) 智能终端进行无线漫游的控制方法及装置
JP2018524888A5 (zh)
Maeda et al. Recognition among OFDM-based systems utilizing cyclostationarity-inducing transmission
US20220174643A1 (en) Ranging with a mobile cellular device
CN104080009B (zh) 一种多终端断点续播的方法及系统
CN105933784A (zh) 弹幕播放、转换方法及弹幕播放器、服务器及播放系统
WO2019104490A1 (zh) 多vr/ar设备的场景中抗干扰的方法及装置
CN104185057B (zh) 一种Wi‑Fi Display显示方法及装置
JP2024508680A (ja) アクセス方法、装置、通信機器及び可読記憶媒体
CN107294618A (zh) 在线信号质量监测方法、装置和系统
CN110312318A (zh) Pucch频域跳频方法、网元设备、终端及存储介质
CN113746536B (zh) 散射通信方法、信号发射装置、信号接收装置及系统
JP5314160B2 (ja) 無線リソースの2次利用に関する方法及び装置
CN105959496B (zh) 播放方法及装置
CN102694574B (zh) 跳速相关、间隔相关变速跳频通信方法
CN107018065B (zh) 一种消息同步控制方法及系统
Real et al. A channel model and estimation technique for MIMO underwater acoustic communications in ports and very shallow waters at very high frequencies
Ma et al. Comparison of CDMA and OFDM systems for broadband power line communications
US20120219036A1 (en) Using multiple antennas to improve ranging availability
WO2023179664A1 (zh) 信道信息的传输方法、装置及通信设备
Sun et al. M-ary code shift keying direct sequence spread spectrum with gold sequence using in underwater acoustic communication
KR20190016342A (ko) 주파수 도약 신호의 탐지율을 향상시키는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17933838

Country of ref document: EP

Kind code of ref document: A1