WO2019102528A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2019102528A1
WO2019102528A1 PCT/JP2017/041887 JP2017041887W WO2019102528A1 WO 2019102528 A1 WO2019102528 A1 WO 2019102528A1 JP 2017041887 W JP2017041887 W JP 2017041887W WO 2019102528 A1 WO2019102528 A1 WO 2019102528A1
Authority
WO
WIPO (PCT)
Prior art keywords
ram
logic chip
mpu
spacer
semiconductor module
Prior art date
Application number
PCT/JP2017/041887
Other languages
English (en)
French (fr)
Inventor
康二 越川
文武 奥津
Original Assignee
ウルトラメモリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウルトラメモリ株式会社 filed Critical ウルトラメモリ株式会社
Priority to US16/765,099 priority Critical patent/US20200357746A1/en
Priority to CN201780096913.XA priority patent/CN111357105A/zh
Priority to PCT/JP2017/041887 priority patent/WO2019102528A1/ja
Priority to JP2019555105A priority patent/JP7033332B2/ja
Publication of WO2019102528A1 publication Critical patent/WO2019102528A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1431Logic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • H01L2924/1441Ferroelectric RAM [FeRAM or FRAM]

Definitions

  • the present invention relates to a semiconductor module.
  • RAM volatile memory
  • DRAM dynamic random access memory
  • logic chips arithmetic units
  • miniaturization of memory memory cell array, memory chip
  • increase in capacity by planar expansion of cells have been achieved.
  • this type of increase in capacity has reached the limit due to the vulnerability to noise due to miniaturization and the increase in die area.
  • An object of the present invention is to provide a semiconductor module capable of improving the bandwidth between a logic chip and a RAM.
  • the present invention is electrically connected to each of the logic chip and the RAM unit, a logic chip, a RAM unit which is a stacked RAM module, a spacer which is disposed to overlap along the stacking direction of the RAM unit, and the logic chip and the RAM unit.
  • An interposer and a connection portion communicably connecting the logic chip and the RAM unit, wherein the logic chip and the spacer are arranged adjacent to each other in a direction intersecting the stacking direction of the RAM unit,
  • the RAM portion is mounted on the interposer, and one end portion thereof is disposed to overlap with one end portion of the logic chip in the stacking direction, and the connection portion is one end portion of the RAM portion and one end portion of the logic chip.
  • the present invention relates to a semiconductor module communicably connected.
  • the RAM portion and the spacer are provided in a pair on both sides of the logic chip, and the connection portion is provided for each RAM portion.
  • the spacer is approximately equal to the thickness of the logic chip.
  • the spacer is thicker than the thickness of the logic chip.
  • the end portion on the side opposite to the side facing the logic chip may be disposed to protrude from the RAM portion in the direction intersecting the stacking direction of the RAM portion. preferable.
  • the semiconductor module further includes a plurality of pillars communicably connecting the interposer and the logic chip, each of the plurality of pillars being longer than a thickness of the RAM portion in the stacking direction. .
  • a plurality of logic chips are provided for one interposer, and a pair of the RAM units and a pair of the spacers are provided for each of the logic chips.
  • FIG. 2 is a schematic plan view showing a semiconductor module according to an embodiment of the present invention excluding a spacer and a support. It is a schematic side view of the semiconductor module of one embodiment. It is a schematic side view showing MPU at the time of producing a semiconductor module of one embodiment. It is the schematic side view which provided the connection part in MPU at the time of producing the semiconductor module of one Embodiment. It is the schematic side view which provided the pillar in MPU at the time of producing the semiconductor module of one Embodiment. It is a schematic side view which shows the RAM part at the time of producing the semiconductor module of one Embodiment. It is the schematic side view which provided the connection part in the RAM part at the time of producing the semiconductor module of one Embodiment.
  • the semiconductor module according to one embodiment is, for example, an SIP (system in a package) in which an arithmetic device (hereinafter, referred to as a logic chip) and a stacked RAM are disposed on an interposer.
  • the semiconductor module is disposed on another interposer or package substrate and electrically connected using micro bumps, solder bumps, and the like.
  • the semiconductor module is a device that obtains power from other interposers and can transmit and receive data to and from other interposers.
  • MPU will be described as an example of a logic chip.
  • the semiconductor module 1 is, as shown in FIGS. 1 and 2, an interposer 10, an MPU 20, a pillar 30, a RAM unit 40, a connection unit 50, a spacer 60, and a support 70. Equipped with
  • the interposer 10 is a plate-like body having a rectangular shape in a plan view, and an electric circuit is formed inside.
  • the interposer 10 is electrically connected to each of the MPU 20 and the RAM unit 40 described later.
  • the interposer 10 is disposed on another interposer (not shown) or a package substrate (not shown), and one surface (bottom surface) is, for example, a micro bump (not shown) or a solder bump (not shown) Are electrically connected to other interposers or package substrates.
  • the thickness direction of the interposer 10 is described as the stacking direction C. Further, in the stacking direction C, the side on which the MPU 20 and the RAM unit 40 are mounted is described as being upward. Further, in the stacking direction C, the direction opposite to the upper side is described as the lower side.
  • the MPU 20 is a plate-like body having a rectangular shape in plan view. As shown in FIGS. 1 and 2, the MPU 20 has a circuit surface (not shown) functioning as a power supply terminal, a communication terminal, and a ground terminal on the lower surface side. The circuit surface of the MPU 20 is disposed opposite to the top surface of the interposer 10.
  • a plurality of pillars 30 are arranged.
  • the pillars 30 communicably connect the interposer 10 and the MPU 20. Specifically, one end of the pillar 30 is connected to the interposer 10, and the other end is connected to the circuit surface of the MPU 20.
  • the pillars 30 are each longer than the thickness in the stacking direction C of the RAM portion 40 described later.
  • the RAM units 40 are each formed of a stacked RAM module having a rectangular shape in plan view.
  • the RAM unit 40 is mounted on the top surface of the interposer 10 as shown in FIG.
  • One end of the RAM unit 40 is disposed to overlap with one end of the MPU 20 in the stacking direction C via a connection unit 50 described later.
  • one end of the RAM unit 40 is disposed so as to be interposed between one end of the MPU 20 and the interposer 10.
  • the lower surface of the RAM portion 40 facing the upper surface of the interposer 10 is electrically connected to the interposer 10 using the microbumps M.
  • the RAM units 40 are not particularly limited, but may be provided in a pair so as to sandwich the MPU 20 in the direction intersecting the stacking direction C.
  • RAM units 40 may be disposed, and two each may be provided along one side of MPU 20 and the other side thereof.
  • the distance between the pair of RAM units 40 sandwiching the MPU 20 is shorter than the length of one side of the MPU 20 and the other side thereof.
  • the RAM unit 40 is formed by stacking memory circuits (not shown). Specifically, the RAM unit 40 is formed by stacking a plate-shaped die (not shown) having a rectangular shape in plan view and having a memory circuit on the upper surface in the stacking direction C.
  • the die is a Si substrate in which a circuit is formed, and each of the stacked dies is electrically connected to an adjacent die.
  • the power supply terminal and the ground terminal connecting between the dies to be stacked are formed by, for example, a bumpless TSV, and the signal line is formed by a TCI (ThruChip Interface).
  • TCI ThiChip Interface
  • the connection unit 50 is a communication interface that connects the MPU 20 and the RAM unit 40.
  • the connection unit 50 is configured of, for example, a TCI, a Cu pad, or the like.
  • the connection unit 50 communicably connects the MPU 20 and the RAM unit 40.
  • the connection unit 50 is connected to one end of the surface (upper surface) opposite to the surface (lower surface) to be mounted on the interposer 10 among the surfaces of the RAM unit 40.
  • the connection unit 50 is connected to one end of the surface (lower surface) of the MPU 20 facing the interposer 10.
  • the connection portion 50 is connected to a portion of the upper surface of the RAM portion 40 facing the MPU 20 and a portion of the lower surface of the MPU 20 facing the RAM portion 40.
  • connection unit 50 is disposed in each of the RAM units 40.
  • the connection unit 50 is disposed between each of the four RAM units 40 and the MPU 20.
  • the connection unit 50 is not limited to the physical connection between the MPU 20 and the RAM unit 40, and also includes a connection that allows both to be communicably connected using wireless (for example, TCI).
  • the spacer 60 is mounted on the upper surface of the RAM unit 40.
  • the spacer 60 is configured, for example, in a rectangular shape in plan view.
  • the spacer 60 is made of, for example, silicon.
  • the thickness of the spacer 60 is configured to be approximately equal to the thickness of the MPU 20 or greater than the thickness of the MPU 20. More preferably, the height from the top surface of interposer 10 to the top surface of spacer 60 is substantially the same as or the same height as the height from the top surface of interposer 10 to the top surface of MPU 20 connected to interposer 10 by pillar 30. Configured The spacer 60 is disposed adjacent to the MPU 20 in the direction intersecting the stacking direction C of the RAM unit 40.
  • the spacer 60 is disposed adjacent to the MPU 20 so as to sandwich the side surface of the MPU 20.
  • the end portion on the opposite side to the side facing the MPU 20 is disposed to protrude from the RAM portion 40 in the direction intersecting the stacking direction C of the RAM portion 40.
  • the end portion on the side opposite to the side facing the MPU 20 is disposed to project more than the RAM unit 40 in the direction opposite to the side facing the MPU 20.
  • the thickness of the spacer 60 is configured to be substantially equal to the thickness of the MPU 20.
  • the connection unit 50 is mounted on the RAM unit 40 and the MPU 20.
  • the connection unit 50 is a coil (not shown) disposed inside the RAM unit 40 and the MPU 20 or the upper surface of the RAM unit 40
  • the Cu pad (not shown) exposed on the lower surface of the MPU 20 are mounted on the RAM unit 40 and the MPU 20.
  • the support 70 is made of, for example, silicon.
  • the support 70 is formed, for example, in a substantially rectangular shape in a front view.
  • the support 70 is placed on the upper surface of the spacer 60 and the upper surface of the MPU 20.
  • the support 70 is formed in a size that can cover the spacer 60 and the MPU 20 in a front view.
  • power is supplied from the interposer 10 to the MPU 20. Further, power is supplied from the interposer 10 to the RAM unit 40. Also, the MPU 20 is connected to the interposer 10 at ground. The RAM unit 40 is grounded to the interposer 10. Note that power and ground may be supplied from the MPU 20 to the RAM unit 40 via the connection unit 50.
  • the data is sent from the interposer 10 to the MPU 20 via the pillars 30.
  • the MPU 20 sends the calculation result calculated based on the sent data to the RAM unit 40 as a store signal. That is, the store signal sent from the MPU 20 is sent to the RAM unit 40 through the circuit surface of the MPU 20 and the connection unit 50.
  • the RAM unit 40 stores data included in the store signal based on the address included in the store signal.
  • a load signal is sent from the interposer 10 to the MPU 20 via the pillar 30. That is, the load signal sent from the MPU 20 is sent to the RAM unit 40 through the circuit surface of the MPU 20 and the connection unit 50.
  • the RAM unit 40 loads data from the corresponding address based on the address included in the load signal.
  • the RAM unit 40 sends the loaded data to the MPU 20 via the connection unit 50.
  • an MPU 20 having a circuit surface is prepared.
  • a part of the connection portion 50 is formed at both ends of the circuit surface of the MPU 20.
  • a plurality of pillars 30 are formed at the center of the circuit surface of the MPU 20.
  • a RAM unit 40 in which a plurality of dies are stacked is prepared.
  • a part of the connection portion 50 is formed at one end of the upper surface (the upper side in the drawing of FIG. 7) of the RAM portion 40.
  • a plurality of micro bumps M are formed on the lower surface of the RAM unit 40.
  • a support 70 is prepared.
  • the support 70 is disposed upside down in the stacking direction C (the up and down directions are shown to be reversed in FIGS. 9 to 12 below).
  • the MPU 20 is placed on one surface (lower surface) of the support 70.
  • the MPU 20 is mounted on the support 70 with the upper surface facing the one surface (lower surface) of the support 70.
  • the spacer 60 is placed on one surface (lower surface) of the support 70 adjacent to the MPU 20.
  • the RAM unit 40 is placed on the spacer 60. Thereby, the upper surface of the RAM unit 40 faces the lower surface of the spacer 60.
  • connection portion 50 formed in the RAM portion 40 and a portion of the connection portion 50 formed in the MPU 20 are disposed so as to overlap each other. Then, the upper surface of the interposer 10 is connected to the pillars 30 connected to the MPU 20 and the bumps formed in the RAM unit 40, whereby the structure of the semiconductor module 1 as shown in FIG. 2 is realized.
  • the semiconductor module is electrically connected to each of the logic chip, the RAM unit 40 which is a stacked RAM module, the spacer 60 disposed in an overlapping manner along the stacking direction of the RAM unit 40, and the logic chip and the RAM unit 40.
  • a connection unit 50 communicably connecting the logic chip and the RAM unit 40.
  • the logic chip and the spacer 60 extend in the direction intersecting the stacking direction of the RAM unit 40. Adjacent to each other, the RAM unit 40 is placed on the interposer 10, and one end thereof is arranged to overlap with one end of the logic chip in the stacking direction, and the connection unit 50 is one end of the RAM 40 and one end of the logic chip Communicably connect the units.
  • connection unit 50 since the MPU 20 and each of the pair of RAM units 40 can be directly connected by the connection unit 50, the signal line (the length of the connection unit 50) between the MPU 20 and each of the pair of RAM units 40 Can be shortened. Thus, the bandwidth between the MPU 20 and the pair of RAM units 40 can be increased.
  • the RAM unit 40 and the spacer 60 are provided in a pair on both sides of the logic chip, and the connection unit 50 is provided for each RAM unit 40.
  • the thickness of the spacer 60 is approximately equal to or thicker than the thickness of the logic chip.
  • the support 70 can be stably disposed while the lower surface of the MPU 20 is connected to the upper surface of the RAM unit 40.
  • the end portion on the opposite side to the side facing the logic chip is disposed to protrude from the RAM portion 40 in the direction intersecting the stacking direction of the RAM portion 40.
  • the exposed area of the spacer 60 is increased as compared with the case where the side surface of the spacer 60 is flush with the side surface of the RAM portion 40, so that the heat dissipation of heat generated in the RAM portion 40 can be enhanced.
  • a paste or the like for laminating can be applied to the entire surface of the RAM section 40, the structure can be stabilized and the inclination of the RAM section 40 can be prevented.
  • the semiconductor module further includes a plurality of pillars 30 communicably connecting the interposer 10 and the logic chip, each of the plurality of pillars 30 being longer than the thickness in the stacking direction of the RAM unit 40.
  • the position of the MPU 20 can be spaced apart from the top surface of the interposer 10 by the length of the pillar 30. Therefore, a part of the upper surface of the RAM unit 40 can be made to face a part of the lower surface of the MPU 20, and the signal line (the length of the connecting portion 50) can be shortened.
  • a plurality of MPUs 20 may be provided for one interposer 10, and a pair of RAM units 40 and a pair of spacers 60 may be provided for each MPU 20.
  • the RAM unit 40 can be connected to each of the plurality of MPUs 20, the signal line (the length of the connecting unit 50) between the MPU 20 and the RAM unit 40 can be shortened. The bandwidth can be broadened, even in the presence of
  • the RAM unit 40 and the spacer 60 are described as being provided in a pair so as to sandwich the MPU 20 in the above embodiment, the present invention is not limited thereto.
  • the RAM unit 40 and the spacer 60 may be disposed on only one side of the MPU 20.
  • the RAM unit 40 and the spacer 60 may be disposed on three sides of the MPU 20, or may be disposed on four sides so as to surround the MPU 20.
  • the arithmetic device is not limited to the MPU 20, and may be widely applied to logic chips in general, and the memory is not limited to the DRAM, and RAM (Random Access Memory) including nonvolatile RAM (for example, MRAM, ReRAM, FeRAM, etc.) ) It may be applied to the whole.
  • RAM Random Access Memory
  • nonvolatile RAM for example, MRAM, ReRAM, FeRAM, etc.

Abstract

MPU及びDRAM間のバンド幅(帯域幅)を向上することが可能な半導体モジュールを提供すること。 半導体モジュール1は、論理チップ20と、積層型RAMモジュールであるRAM部40と、前記RAM部40の積層方向に沿って重ねて配置されるスペーサ60と、前記論理チップ20及び前記RAM部40のそれぞれに電気的に接続されるインタポーザ10と、前記論理チップ20と前記RAM部40の間とを通信可能に接続する接続部50と、を備え、前記論理チップ20及び前記スペーサ60は、前記RAM部40の積層方向に交差する方向に隣接配置され、前記RAM部40は前記インタポーザ10に載置されるとともに、一端部が前記論理チップ20の一端部と積層方向で重なって配置され、前記接続部50は、前記RAM部40の一端部及び前記論理チップ20の一端部を接続する。

Description

半導体モジュール
 本発明は、半導体モジュールに関する。
 従来より、記憶装置としてDRAM(Dynamic Random Access Memory)等の揮発性メモリ(RAM)が知られている。DRAMには、演算装置(以下、論理チップという)の高性能化やデータ量の増大に耐えうる大容量化が求められている。そこで、メモリ(メモリセルアレイ、メモリチップ)の微細化及びセルの平面的な増設による大容量化が図られてきた。一方で、微細化によるノイズへの惰弱性や、ダイ面積の増加等により、この種の大容量化は限界に達してきている。
 そこで、昨今では、平面的なメモリを複数積層して3次元化(3D化)して大容量化を実現する技術が開発されている。また、論理チップ及びRAMを重ねて配置することで、論理チップ及びRAMの設置面積を低減する半導体モジュールが提案されている(例えば、特許文献1及び2参照)。
特表2014-512691号公報 特開2010-232659号公報
 ところで、論理チップの高性能化やデータ量の増大により、論理チップ及びRAM間の通信速度の向上も大容量化とともに求められている。そこで、論理チップ及びRAM間のバンド幅(帯域幅)を向上することが可能な半導体モジュールを提供することができれば好ましい。
 本発明は、論理チップ及びRAM間のバンド幅(帯域幅)を向上することが可能な半導体モジュールを提供することを目的とする。
 本発明は、論理チップと、積層型RAMモジュールであるRAM部と、前記RAM部の積層方向に沿って重ねて配置されるスペーサと、前記論理チップ及び前記RAM部のそれぞれに電気的に接続されるインタポーザと、前記論理チップと前記RAM部の間とを通信可能に接続する接続部と、を備え、前記論理チップ及び前記スペーサは、前記RAM部の積層方向に交差する方向に隣接配置され、前記RAM部は前記インタポーザに載置されるとともに、一端部が前記論理チップの一端部と積層方向で重なって配置され、前記接続部は、前記RAM部の一端部及び前記論理チップの一端部を通信可能に接続する半導体モジュールに関する。
 また、前記RAM部及び前記スペーサは、前記論理チップを挟んで一対に設けられ、前記接続部は、RAM部ごとに設けられることが好ましい。
 また、前記スペーサは、前記論理チップの厚さとほぼ等しいことが好ましい。
 また、前記スペーサは、前記論理チップの厚さよりも厚いことが好ましい。
 また、前記スペーサの端部のうち、前記論理チップに対向する側とは逆側の端部は、前記RAM部の積層方向に交差する方向において、前記RAM部よりも突出して配置されることが好ましい。
 また、半導体モジュールは、前記インタポーザと前記論理チップとの間を通信可能に接続する複数のピラーであって、それぞれが前記RAM部の積層方向の厚さよりも長い複数のピラーを更に備えることが好ましい。
 また、前記論理チップは、1つの前記インタポーザに対して複数設けられ、一対の前記RAM部及び一対の前記スペーサは、前記論理チップごとに設けられることが好ましい。
 本発明によれば、論理チップ及びRAM間のバンド幅(帯域幅)を向上することが可能な半導体モジュールを提供することができる。
本発明の一実施形態に係る半導体モジュールを示し、スペーサ及び支持体を除いた概略平面図である。 一実施形態の半導体モジュールの概略側面図である。 一実施形態の半導体モジュールを作製する際のMPUを示す概略側面図である。 一実施形態の半導体モジュールを作製する際のMPUに接続部を設けた概略側面図である。 一実施形態の半導体モジュールを作製する際のMPUにピラーを設けた概略側面図である。 一実施形態の半導体モジュールを作製する際のRAM部を示す概略側面図である。 一実施形態の半導体モジュールを作製する際のRAM部に接続部を設けた概略側面図である。 一実施形態の半導体モジュールを作製する際のRAM部にマイクロバンプを設けた概略側面図である。 一実施形態の半導体モジュールを作製する際の支持体を示す概略側面図である。 一実施形態の半導体モジュールを作製する際の支持体にMPUを設けた概略側面図である。 一実施形態の半導体モジュールを作製する際の支持体にスペーサを設けた概略側面図である。 一実施形態の半導体モジュールを作製する際の支持体にRAM部を設けた概略側面図である。 本発明の変形例に係る半導体モジュールを示し、スペーサ及び支持体を除いた概略平面図である。
 以下、本発明に係る半導体モジュールの一実施形態について図1~図13を参照して説明する。
 一実施形態に係る半導体モジュールは、例えば、演算装置(以下、論理チップという)と、積層型RAMとをインタポーザ上に配置したSIP(system in a package)である。半導体モジュールは、他のインタポーザ又はパッケージ基板上に配置され、マイクロバンプやはんだバンプ等を用いて電気的に接続される。半導体モジュールは、他のインタポーザから電源を得るとともに、他のインタポーザとの間でデータ送受信が可能な装置である。なお、以下の一実施形態において、MPUを論理チップの一例として説明する。
 本実施形態に係る半導体モジュール1は、図1及び図2に示すように、インタポーザ10と、MPU20と、ピラー30と、RAM部40と、接続部50と、スペーサ60と、支持体70と、を備える。
 インタポーザ10は、図1及び図2に示すように、平面視矩形の板状体であり、内部に電気回路が形成される。インタポーザ10は、後述するMPU20及びRAM部40のそれぞれに電気的に接続される。インタポーザ10は、他のインタポーザ(図示せず)又はパッケージ基板(図示せず)上に配置され、一方の面(下面)が、例えば、マイクロバンプ(図示せず)やはんだバンプ(図示せず)等を用いて他のインタポーザ又はパッケージ基板に電気的に接続される。なお、以下において、インタポーザ10の厚さ方向は、積層方向Cとして説明される。また、積層方向Cのうち、MPU20及びRAM部40が載置される面側は、上方として説明される。また、積層方向Cのうち、上方とは逆側の方向は、下方として説明される。
 MPU20は、平面視矩形の板状体である。MPU20は、図1及び図2に示すように、下面側に電源端子、通信端子、及びグラウンド端子として機能する回路面(図示せず)が配置される。MPU20の回路面は、インタポーザ10の上面に対向配置される。
 ピラー30は、複数配置される。ピラー30は、インタポーザ10とMPU20との間を通信可能に接続する。具体的には、ピラー30の一端は、インタポーザ10に接続され、他端側がMPU20の回路面に接続される。ピラー30は、それぞれが後述するRAM部40の積層方向Cの厚さよりも長い。
 RAM部40は、それぞれが平面視矩形の積層型RAMモジュールから構成される。RAM部40は、図2に示すように、インタポーザ10の上面に載置される。RAM部40の一端部は、後述する接続部50を介してMPU20の一端部と積層方向Cで重なって配置される。具体的には、RAM部40の一端部は、MPU20の一端部とインタポーザ10との間に介在するように配置される。RAM部40のインタポーザ10の上面に対向する下面は、マイクロバンプMを用いてインタポーザ10と電気的に接続される。RAM部40は、特に制限されないが、積層方向Cに交差する方向でMPU20を挟むように一対に設けられ得る。具体的には、本実施形態において、特に制限されないが、RAM部40は、4つ配置され、MPU20の一辺とその逆側の一辺とにそれぞれの辺に沿って2つずつ設けられ得る。これにより、MPU20を挟む一対のRAM部40の間の距離は、MPU20の一辺及びその逆側の一辺との長さよりも短い距離で設けられる。
 RAM部40は、メモリ回路(図示せず)が積層されて形成される。具体的には、RAM部40は、上面にメモリ回路を有する平面視矩形の板状体のダイ(図示せず)が積層方向Cに積層されて形成される。ダイは内部に回路が形成されたSi基板であり、積層されたダイのそれぞれは、隣接するダイと電気的に接続される。積層されるダイの間を接続する電源端子及びグラウンド端子は、例えば、バンプレスTSVにより形成され、信号線がTCI(ThruChip Interface)により形成される。なお、「電気的に接続される」とは、直接接続されるものに限らず、TCIのように間接的に(例えば、磁界を用いて)接続されることを含む。
 接続部50は、MPU20とRAM部40とを接続する通信インタフェースである。接続部50は、例えば、TCIやCuパッド等により構成される。接続部50は、MPU20とRAM部40との間を通信可能に接続する。接続部50は、RAM部40の面のうち、インタポーザ10に載置される面(下面)とは逆の面(上面)の一端部に接続される。また、接続部50は、MPU20のインタポーザ10に対向する面(下面)の一端部に接続される。具体的には、接続部50は、RAM部40の上面のうちMPU20に対向する部分と、MPU20の下面のうちRAM部40に対向する部分とに接続される。接続部50は、RAM部40のそれぞれに配置される。例えば、本実施形態において、接続部50は、4つのRAM部40と、MPU20との間のそれぞれに配置される。なお、接続部50は、MPU20及びRAM部40を物理的に接続するものに制限されず、無線(例えば、TCI)を用いて両者を通信可能に接続するものも含む。
 スペーサ60は、RAM部40の上面に載置される。スペーサ60は、例えば、平面視矩形に構成される。スペーサ60は、例えば、シリコンで構成される。スペーサ60の厚さは、MPU20の厚さとほぼ等しく構成されるか、MPU20の厚さよりも厚く構成される。より好ましくは、インタポーザ10の上面からスペーサ60の上面までの高さは、インタポーザ10の上面から、ピラー30によってインタポーザ10に接続されるMPU20の上面までの高さと略同じ又は同じ高さとなるように構成される。スペーサ60は、MPU20に対して、RAM部40の積層方向Cに交差する方向に隣接配置される。本実施形態において、スペーサ60は、MPU20の側面を挟み込むようにMPU20に隣接配置される。スペーサ60の端部のうち、MPU20に対向する側とは逆側の端部は、RAM部40の積層方向Cに交差する方向において、RAM部40よりも突出して配置される。具体的には、スペーサ60の端部のうち、MPU20に対向する側とは逆側の端部が、MPU20に向かう側とは逆側の方向において、RAM部40よりも突出して配置される。
 なお、MPU20及びRAM部40の間に隙間が必要無い場合、スペーサ60の厚さは、MPU20の厚さとほぼ等しく構成される。この場合、接続部50は、RAM部40とMPU20に実装される。例えば、MPU20及びRAM部40がTCIや、Cuハイブリッドボンディング技術によって接続される場合、接続部50は、RAM部40とMPU20の内部に配置されるコイル(図示せず)やRAM部40の上部表面とMPU20の下部表面に露出するCuパッド(図示せず)としてRAM部40とMPU20に実装される。
 支持体70は、例えば、シリコンで構成される。支持体70は、例えば、正面視略矩形に形成される。支持体70は、スペーサ60の上面と、MPU20の上面とに載置される。支持体70は、スペーサ60及びMPU20を正面視で覆うことが可能な大きさで形成される。
 次に、半導体モジュール1の動作について説明する。
 まず、インタポーザ10から、MPU20に電源が供給される。また、インタポーザ10から、RAM部40に電源が供給される。また、MPU20は、インタポーザ10とグラウンド接続される。RAM部40は、インタポーザ10とグラウンド接続される。なお、接続部50を介してMPU20からRAM部40に電源とグラウンドを供給しても良い。
 RAM部40にデータがストアされる場合、まず、インタポーザ10からピラー30を介してMPU20にデータが送られる。MPU20は、送られたデータに基づいて演算した演算結果をストア信号として、RAM部40に送る。即ち、MPU20から送られたストア信号は、MPU20の回路面と、接続部50と、を通り、RAM部40に送られる。RAM部40は、ストア信号に含まれるアドレスに基づいて、ストア信号に含まれるデータをストアする。
 一方、RAM部40からデータがロードされる場合、まず、インタポーザ10からピラー30を介してMPU20にロード信号が送られる。即ち、MPU20から送られたロード信号は、MPU20の回路面及び接続部50を通り、RAM部40に送られる。
 RAM部40は、ロード信号に含まれるアドレスに基づいて、該当するアドレスからデータをロードする。RAM部40は、ロードしたデータについて接続部50を介してMPU20に送る。
 次に、半導体モジュール1の構造について説明する。
 まず、図3に示すように、回路面を有するMPU20が用意される。次いで、図4に示すように、MPU20の回路面の両端に、接続部50の一部が形成される。次いで、図5に示すように、MPU20の回路面の中央部に複数のピラー30が形成される。
 また、図6に示すように、複数のダイを積層したRAM部40が用意される。次いで、図7に示すように、RAM部40の上面(図7では紙面上方)の一端部に接続部50の一部が形成される。次いで、図8に示すように、RAM部40の下面に複数のマイクロバンプMが形成される。
 次いで、図9に示すように支持体70が用意される。支持体70は、積層方向Cにおいて、上下方向を反転して配置される(以下の図9~図12では、上下方向が逆に示される)。次いで、図10に示すように、支持体70の一方の面(下面)上に、MPU20が載置される。具体的には、MPU20は、上面を支持体70の一方の面(下面)に対向した状態で支持体70に載置される。次いで、図11に示すように、スペーサ60が、支持体70の一方の面(下面)上に、MPU20に隣接した状態で載置される。次いで、図12に示すように、RAM部40が、スペーサ60上に載置される。これにより、RAM部40の上面は、スペーサ60の下面に対向する。このとき、RAM部40に構成された接続部50の一部と、MPU20に構成された接続部50の一部とが重なるようにして配置される。そして、MPU20に接続されたピラー30と、RAM部40に構成されたバンプとに対してインタポーザ10の上面が接続されることで、図2に示すような半導体モジュール1の構造が実現される。
 以上のような一実施形態に係る半導体モジュール1によれば、以下の効果を奏する。
(1)半導体モジュールは、論理チップと、積層型RAMモジュールであるRAM部40と、RAM部40の積層方向に沿って重ねて配置されるスペーサ60と、論理チップ及びRAM部40のそれぞれに電気的に接続されるインタポーザ10と、論理チップとRAM部40の間とを通信可能に接続する接続部50と、を備え、論理チップ及びスペーサ60は、RAM部40の積層方向に交差する方向に隣接配置され、RAM部40はインタポーザ10に載置されるとともに、一端部が論理チップの一端部と積層方向で重なって配置され、接続部50は、RAM部40の一端部及び論理チップの一端部を通信可能に接続する。これにより、MPU20と一対のRAM部40のそれぞれとを接続部50により直接的に接続可能であるので、MPU20と一対のRAM部40のそれぞれとの間の信号線(接続部50の長さ)を短くすることができる。よって、MPU20と一対のRAM部40との間のバンド幅を広くすることができる。
(2)半導体モジュールは、RAM部40及びスペーサ60は、論理チップを挟んで一対に設けられ、接続部50は、RAM部40ごとに設けられる。これにより、それぞれのRAM部40が接続部50によって個別にMPU20に接続されるので、MPU20に対して複数のRAM部40を容易に接続することができ、RAM部40の容量を容易に増やすことができる。
(3)スペーサ60の厚さは、論理チップの厚さとほぼ等しいか、それよりも厚い。これにより、RAM部40の上面にMPU20の下面を接続しつつ、支持体70を安定して配置することができる。
(4)スペーサ60の端部のうち、論理チップに対向する側とは逆側の端部は、RAM部40の積層方向に交差する方向において、RAM部40よりも突出して配置される。これにより、スペーサ60の側面がRAM部40の側面と面一となる場合に比べ、スペーサ60の露出する面積が増えるので、RAM部40において発生した熱の放熱性を高めることができる。また、積層するためのペースト等をRAM部40の全面に塗布できるため構造を安定化させ、RAM部40の傾きを防止することができる。
(5)半導体モジュールは、インタポーザ10と論理チップとの間を通信可能に接続する複数のピラー30であって、それぞれがRAM部40の積層方向の厚さよりも長い複数のピラー30を更に備える。これにより、インタポーザ10の上面に対して、MPU20の位置をピラー30の長さだけ離して配置することができる。したがって、RAM部40の上面の一部をMPU20の下面の一部に対向させることが可能になり、信号線(接続部50の長さ)を短くすることができる。
 以上、本発明の半導体モジュールの好ましい一実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、図13に示すように、MPU20は、1つのインタポーザ10に対して複数設けられ、一対のRAM部40及び一対のスペーサ60は、MPU20ごとに設けられてもよい。これにより、複数のMPU20のそれぞれに対してRAM部40を接続することができるので、MPU20及びRAM部40の間の信号線(接続部50の長さ)を短くすることができ、複数のMPU20が存在する場合であっても、バンド幅を広くすることができる。
 また、上記実施形態において、RAM部40及びスペーサ60は、MPU20を挟むように一対に設けられるとして説明されたが、これに制限されない。例えば、RAM部40及びスペーサ60は、MPU20の一辺のみに配置されてもよい。また、RAM部40及びスペーサ60は、MPU20の三辺に配置されてもよく、MPU20を囲繞するように四辺に配置されてもよい。
 また、演算装置はMPU20に限定されず、広く論理チップ全般に適用されても良く、メモリはDRAMに限定されず、広く不揮発性RAM(例えばMRAM、ReRAM、FeRAM等)を含むRAM(Random Access Memory)全般に適用されても良い。
 1 半導体モジュール
 10 インタポーザ
 20 MPU
 30 ピラー
 40 RAM部
 50 接続部
 60 スペーサ
 70 支持体

Claims (7)

  1.  論理チップと、
     積層型RAMモジュールであるRAM部と、
     前記RAM部の積層方向に沿って重ねて配置されるスペーサと、
     前記論理チップ及び前記RAM部のそれぞれに電気的に接続されるインタポーザと、
     前記論理チップと前記RAM部の間とを通信可能に接続する接続部と、
    を備え、
     前記論理チップ及び前記スペーサは、前記RAM部の積層方向に交差する方向に隣接配置され、
     前記RAM部は前記インタポーザに載置されるとともに、一端部が前記論理チップの一端部と積層方向で重なって配置され、
     前記接続部は、前記RAM部の一端部及び前記論理チップの一端部を通信可能に接続する半導体モジュール。
  2.  前記RAM部及び前記スペーサは、前記論理チップを挟んで一対に設けられ、
     前記接続部は、前記RAM部ごとに設けられる請求項1に記載の半導体モジュール。
  3.  前記スペーサの厚さは、前記論理チップの厚さとほぼ等しい請求項1又は2に記載の半導体モジュール。
  4.  前記スペーサの厚さは、前記論理チップの厚さよりも厚い請求項1又は2に記載の半導体モジュール。
  5.  前記スペーサの端部のうち、前記論理チップに対向する側とは逆側の端部は、前記RAM部の積層方向に交差する方向において、前記RAM部よりも突出して配置される請求項1から4のいずれか一項に記載の半導体モジュール。
  6.  前記インタポーザと前記論理チップとの間を通信可能に接続する複数のピラーであって、それぞれが前記RAM部の積層方向の厚さよりも長い複数のピラーを更に備える請求項1から5のいずれか一項に記載の半導体モジュール。
  7.  前記論理チップは、1つの前記インタポーザに対して複数設けられ、
     一対の前記RAM部及び一対の前記スペーサは、前記論理チップごとに設けられる請求項1から6のいずれか一項に記載の半導体モジュール。
PCT/JP2017/041887 2017-11-21 2017-11-21 半導体モジュール WO2019102528A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/765,099 US20200357746A1 (en) 2017-11-21 2017-11-21 Semiconductor module
CN201780096913.XA CN111357105A (zh) 2017-11-21 2017-11-21 半导体模块
PCT/JP2017/041887 WO2019102528A1 (ja) 2017-11-21 2017-11-21 半導体モジュール
JP2019555105A JP7033332B2 (ja) 2017-11-21 2017-11-21 半導体モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041887 WO2019102528A1 (ja) 2017-11-21 2017-11-21 半導体モジュール

Publications (1)

Publication Number Publication Date
WO2019102528A1 true WO2019102528A1 (ja) 2019-05-31

Family

ID=66630907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041887 WO2019102528A1 (ja) 2017-11-21 2017-11-21 半導体モジュール

Country Status (4)

Country Link
US (1) US20200357746A1 (ja)
JP (1) JP7033332B2 (ja)
CN (1) CN111357105A (ja)
WO (1) WO2019102528A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022020118A1 (en) * 2020-07-24 2022-01-27 Micron Technology, Inc. Semiconductor memory stacks connected to processing units and associated methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11967363B2 (en) 2020-11-25 2024-04-23 Ap Memory Technology Corporation Display controller having a surge protection unit and display system thereof
US11721685B2 (en) * 2021-05-26 2023-08-08 Avago Technologies International Sales Pte. Limited Copper-bonded memory stacks with copper-bonded interconnection memory systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252640A1 (en) * 2013-03-05 2014-09-11 Samsung Electronics Co., Ltd. Semiconductor package having a multi-channel and a related electronic system
US20150145116A1 (en) * 2013-11-22 2015-05-28 Invensas Corporation Die stacks with one or more bond via arrays
US20150171065A1 (en) * 2013-12-12 2015-06-18 John S. Guzek Embedded memory and power management subpackage
US20170200696A1 (en) * 2016-01-11 2017-07-13 Invensas Corporation Multi-chip package with interconnects extending through logic chip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429792B2 (en) 2006-06-29 2008-09-30 Hynix Semiconductor Inc. Stack package with vertically formed heat sink
US7986042B2 (en) * 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8330262B2 (en) * 2010-02-02 2012-12-11 International Business Machines Corporation Processes for enhanced 3D integration and structures generated using the same
US9099475B2 (en) * 2012-09-12 2015-08-04 Freescale Semiconductor, Inc. Techniques for reducing inductance in through-die vias of an electronic assembly
US9583456B2 (en) 2013-11-22 2017-02-28 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252640A1 (en) * 2013-03-05 2014-09-11 Samsung Electronics Co., Ltd. Semiconductor package having a multi-channel and a related electronic system
US20150145116A1 (en) * 2013-11-22 2015-05-28 Invensas Corporation Die stacks with one or more bond via arrays
US20150171065A1 (en) * 2013-12-12 2015-06-18 John S. Guzek Embedded memory and power management subpackage
US20170200696A1 (en) * 2016-01-11 2017-07-13 Invensas Corporation Multi-chip package with interconnects extending through logic chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022020118A1 (en) * 2020-07-24 2022-01-27 Micron Technology, Inc. Semiconductor memory stacks connected to processing units and associated methods
US11239169B1 (en) 2020-07-24 2022-02-01 Micron Technology, Inc. Semiconductor memory stacks connected to processing units and associated systems and methods
US11735528B2 (en) 2020-07-24 2023-08-22 Micron Technology, Inc. Semiconductor memory stacks connected to processing units and associated systems and methods

Also Published As

Publication number Publication date
CN111357105A (zh) 2020-06-30
JP7033332B2 (ja) 2022-03-10
US20200357746A1 (en) 2020-11-12
JPWO2019102528A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
US11410970B2 (en) Semiconductor module
US8680652B2 (en) Stack package
WO2012107972A1 (ja) 半導体装置
US9281296B2 (en) Die stacking techniques in BGA memory package for small footprint CPU and memory motherboard design
WO2013052320A4 (en) Stub minimization using duplicate sets of signal terminals in assemblies without wirebonds to package substrate
TW201628139A (zh) 包含內插器的半導體封裝
WO2019102528A1 (ja) 半導体モジュール
US11183484B2 (en) Semiconductor module, DIMM module, manufacturing method of semiconductor module, and manufacturing method of DIMM module
JP7149647B2 (ja) 半導体モジュール
US11881248B2 (en) Three-dimensional semiconductor module including system in a package (SIP) with improved heat dissipation efficiency
JP7222564B2 (ja) 半導体モジュール及びその製造方法
JP7210066B2 (ja) 半導体モジュール、その製造方法、及び半導体モジュールの実装体
US10978377B2 (en) Semiconductor chip set with double-sided off-chip bonding structure
JP6993023B2 (ja) 半導体モジュール
US20160079210A1 (en) Semiconductor packages including through electrodes and methods of manufacturing the same
WO2023084737A1 (ja) モジュール及びその製造方法
CN116207084A (zh) 内存模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932655

Country of ref document: EP

Kind code of ref document: A1